Raytracing in Schwarzschild spacetime

Josef Schmiat

FNSPE CTU in Prague
27.11 .2015

Raytracing in Schwarzschild spacetime

Showcase - Schwarzschild black hole

Raytracing in Schwarzschild spacetime

Showcase - accretion disc

Raytracing in Schwarzschild spacetime

Raytracing in Schwarzschild spacetime

Raytracing method

Raytracing method

- Camera generates rays for each pixel of image.
- Rays are propagated through spacetime.
- Intersections with object in the scene (spacetime) are calculated.
- Resulting pixel color is obtained by projecting textures on objects.

- Camera parameters: image resolution (width x height), size of projection plane and distance from focal point
- Camera located at point P with coordinates ($r_{P}, \theta_{P}, \varphi_{P}$)
- Lorentz tetrad $\left(e_{i}^{\mu}\right)_{i=0}^{3}$ at P
- i.e. $g_{\mu \nu} e_{i}^{\mu} e_{j}^{\nu}=\eta_{i j}$
- e.g. $\left(e_{(t)}^{\mu}, e_{(r)}^{\mu}, e_{(\theta)}^{\mu}, e_{(\varphi)}^{\mu}\right)$
- Tetrad can be rotated with $R \in S O(3)$ (rotating camera) or boosted (camera moving with velocity \vec{V})
- Direction $\vec{n}=\left(n_{x}, n_{y}, n_{z}\right)$ leading to null vector $u^{\mu}=\alpha e_{(t)}^{\mu}+n_{x} e_{(r)}^{\mu}+n_{y} e_{(\theta)}^{\mu}+n_{z} e_{(\varphi)}^{(\mu)}$, α determined by $g_{\mu \nu} u^{\mu} u^{\nu}=0$

Geometry

- Sphere of infinite radius - representing stars very far from black hole
- Plane intersecting singularity - representing plane of accretion disc around black hole
- Not yet implemented:
- "Centered" cylinder - simulating non-zero width of accretion disc
- "Centered" spheres with finite radius - e.g. surface of neutron star
- General surface $f(\vec{r})=0$, or even non-static $f(\vec{r}, t)=0$

Textures

- Image files
- Textures from Hubble Space Telescope - hubblesite.org
- e.g. Carina nebula
- Size $29566 x 14321 \mathrm{px} \approx 432 \mathrm{Mpx}$ (1211 MB RAM)

- Procedural textures: pixel color determined by function $f(u, v)$

Projections

- 2D textures has to be projected on objects in the scene
- Examples:
- Plane: affine transformation
- Sphere: azimuthal or cylindrical projections; practically: celestial sphere is covered by cylindrically projected texture around equator and two azimuthally projected textures on poles

Gnomonic -1 RE

Stereographic
-2 RE

Ray propagation

- Schwarzschild metric in equatorial plane $(\theta=\pi / 2)$

$$
d s^{2}=-\left(1-\frac{r_{S}}{r}\right) d t^{2}-\frac{d r^{2}}{1-\frac{r_{s}}{r}}+r^{2} d \phi^{2}
$$

- Let's denote $x^{\mu}(\lambda)=\left(t(\lambda), r(\lambda), \theta(\lambda)=\frac{\pi}{2}, \phi(\lambda)\right)$
- Denoting $\frac{d x^{\mu}}{d \lambda}=\dot{x}^{\mu}=u^{\mu}$ we get the normalization condition

$$
g_{\mu \nu} u^{\mu} u^{\nu}=0=-\left(1-\frac{r_{S}}{r}\right) \dot{t}^{2}-\frac{1}{1-\frac{r_{S}}{r}} \dot{r}^{2}-r^{2} \dot{\phi}^{2}
$$

Killing vectors and constants of motion

- If ξ^{μ} is Killing vector, the quantity $\xi^{\mu} u_{\mu}$ is a constant of geodesic motion.
- For Killing vector ∂_{t} and ∂_{ϕ} we get the following expressions

$$
u_{t}=g_{t t} u^{t}=-\left(1-\frac{r_{S}}{r}\right) \dot{t} \equiv-E, \quad u_{\phi}=g_{\phi \phi} u^{\phi}=r^{2} \dot{\phi} \equiv L
$$

- Substituting back into normalization condition we get the radial equation

$$
\dot{r}^{2}=E^{2}-\left(1-\frac{r_{S}}{r}\right) \frac{L^{2}}{r^{2}}
$$

- Reparametrizing $\frac{d r}{d \lambda}=\frac{d r}{d t} \frac{d t}{d \lambda}=\frac{d r}{d t} \frac{E}{1-\frac{r S}{r}}$ and introducing dimensionless variables:
- inverse radial coordinate: $\zeta=\frac{r_{s}}{r}$,
- impact parameter: $I=\frac{L}{E r s}$,
- dimeonsionless parametrization: $\sigma=\frac{E \lambda}{r_{s}}$;
we get

$$
\zeta^{\prime}= \pm \zeta^{2} \sqrt{1-(1-\zeta) I^{2} \zeta^{2}} \quad \text { and } \quad \phi^{\prime}=I \zeta^{2}
$$

where prime denotes differentiation w.r.t. σ

- Combining the above equations we obtain first order differential equation for function $\phi(\zeta)$

$$
\frac{d \zeta}{d \phi}= \pm \sqrt{q^{2}-\zeta^{2}(1-\zeta)}
$$

where inverse impact parameter $q=1 / /$ has been introduced.

Equation for $\phi(\zeta)$

$$
\frac{d \zeta}{d \phi}= \pm \sqrt{q^{2}-\zeta^{2}(1-\zeta)}= \pm \sqrt{P(\zeta)}
$$

- Solutions are symmetric around radial turning points given by $P(\zeta)=0$
- Solution can be written as

$$
\phi\left(\zeta_{a}, \zeta_{b}\right)=\int_{\zeta_{a}}^{\zeta_{b}} \frac{d \zeta}{\sqrt{q^{2}-\zeta^{2}(1-\zeta)}},
$$

which can be expressed using incomplete elliptic integrals or simply evaluated numerically.

Cubic polynomial $P(\zeta)=q^{2}-\zeta^{2}(1-\zeta)$

- Ray behaviour depends on properties of $P(\zeta)$ (and value of q).
- Minimum located at $\zeta_{\text {min }}=\frac{2}{3}$, i.e. at $r=\frac{3}{2} r_{S}=3 M$: photon sphere
- Depending on $q<=>q_{\text {crit }}=\frac{2}{3 \sqrt{3}}$ we have 2,1 or 0 roots for $\zeta>0$.

Different types of rays depending on $r<>3 M, q<>q_{c r i t}$ and $u^{r}<>0$.

Bending of light rays

Bending of light rays for $Q=1.85, Q=6.75, Q=9.85$ and $Q=14.3$, where $q=q_{\text {crit }}\left(1-e^{-Q}\right)$.

Raytracing in Schwarzschild spacetime

- Implemented in C++ - 2700 lines of code
- Parallelized with OpenMP
- Performance on Intel Quad Core 3.3GHz - rendering time:
- 4K resolution: $\approx 6 \mathrm{~s}$
- FullHD resolution: $\approx 1.5 \mathrm{~s}$
- (g++ compiler with -O3 flag)

What is next to be implemented?

- Doppler shift
- Brightness of images
- Subhorizon Lorentz camera tetrads
- Horizon crossing coordinates
- Retarded time, Shapiro delay
- Point stars
- "Full" raytracer (Minkowski space)
- More geometries
- Reissner-Nordström spacetime (charged black hole)
- Kerr spacetime (rotating black hole)
- wormhole spacetime
- Postprocessing effects
- GPU acceleration

Thank you for your attention

