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Chapter 1

Systems with finite number of
degrees of freedom

1.1 Harmonic oscillator

A system described by the harmonic oscillator equation,

ẍ+ ω2x = 0, (1.1)

where x(t) : R → R, is the simplest system exhibiting oscillatory motion. This mathematical
model is used to describe a number of physical systems more or less accurately. For example,
to describe the oscillation of a weight of mass m on a spring of stiffness k,

mẍ+ kx = 0, ω =

√
k

m
, (1.2)

or to describe the motion of a mathematical pendulum near the equilibrium position,

mlφ̈+mgφ = 0, ω =

√
g

l
, (1.3)

or to describe the current flow in an LC circuit,

LÏ +
1

C
I = 0, ω =

1√
LC

. (1.4)

Thus, different physical systems lead to the same mathematical description of their behavior.
This is characteristic of a number of wave phenomena that we will deal with. Typically, we
will consider a particular physical system, often mechanical, create a mathematical model of it,
and investigate the wave phenomena that arise from it. The knowledge obtained will then have
general validity for any system behaving according to the same mathematical model.

1.2 Mathematical supplement: Complex numbers and expo-
nentials

Complex number z ∈ C is a number of the form z = a + ib, where a, b ∈ R and i is an
imaginary unit with the property i2 = −1. The addition and multiplication of these numbers
is defined by “naturally”.
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A complex conjugate number z̄ is a complex number z̄ = a− ib. The formula z1z2 = z1 · z2
holds. The magnitude of a complex number is defined as |z| =

√
a2 + b2, this expression can be

written as |z| =
√
zz̄.

Real and imaginary parts. We define the functions Re : C → R and Im : C → R called
the real and imaginary parts using the rules

Re z = a, Im z = b

(note that the imaginary part does not contain an imaginary unit!). If the real part is zero, we
call the number pure imaginary. The functions Re and Im are real linear, i.e.

Re (z1 + z2) = Re z1 +Re z2, Re (αz) = αRe z, α ∈ R,

identically for Im. Note Re (z1z2) ̸= (Re z1)(Re z2) (same for Im). These functions can be
expressed simply by complex conjugation:

Re z =
z + z̄

2
, Im z =

z − z̄

2i
.

Complex exponential. Consider z = a + ib ∈ C. We define the complex exponential by
the following relation:

ez := ea+ib = eaeib = ea (cos b+ i sin b) .

Special case for a = 0,

eib = cos b+ i sin b, b ∈ R,

is called Euler’s formula 1. The following holds |eib| = 1 and we can therefore write |ez| = ea.

Polar form of a complex number. Any complex number z ∈ C can be written in the form
z = |z|eiφ, φ ∈ R. We call the number φ the argument of a complex number (this number is
not uniquely given, any integer multiple of 2π can be added). The argument φ is the solution
of the equations

cosφ =
Re z

|z|
, sinφ =

Im z

|z|
.

These equations are often formally2 combined into the equation

tgφ =
Im z

Re z
.

Gaussian (complex) plane. Complex numbers can be represented as points on a (two-
dimensional) plane, where the Cartesian axes are the real and imaginary parts of the complex
numbers, see Figure 1.1.

1The special case of which is “the most beautiful mathematical identity” eiπ = −1.
2In this notation, we lose information about whether φ ∈ ⟨0, π) and/or φ ∈ ⟨π, 2π).
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Re z

Im z

z = a+ ib = |z|eiϕ

a

b

0

ϕ

|z|

(a) Cartesian and goniometric representations of
the complex number z shown in the Gaussian
plane.

1

i

−1

−i

ϕ

eiϕ

Re z

Im z

1

(b) The unit circle in the Gaussian plane formed
by complex numbers of the form eiφ, φ ∈ R.

Figure 1.1: The Gaussian plane is used to graphically represent complex numbers, where we plot the
real part on the horizontal axis and the imaginary part on the vertical axis.

The addition of complex numbers then has the geometric meaning of adding two-dimensional
vectors in the Gaussian plane. The number eiφ represents a number on a unit circle. An intuitive
notion of multiplication of complex numbers is obtained from goniometric notation:

z1z2 = |z1|eiφ1 |z2|eiφ2 = |z1||z2|ei(φ1+φ2).

Thus, multiplication by the number eiφ represents a rotation by the angle φ in the complex
plane. Multiplication by |z| represents scaling in this plane.

Complex notation for goniometric functions. The following relations follow directly
from Euler’s formula:

cosφ = Re eiφ =
eiφ + e−iφ

2
, sinφ = Im eiφ =

eiφ − e−iφ

2i
.

1.3 Mathematical supplement: Ordinary linear differential equa-
tions with constant coefficients

Consider the following differential equation for the function x(t)

anx
(n) + an−1x

(n−1) + . . .+ a2ẍ+ a1ẋ+ a0x = 0, (1.5)

where the coefficients ai ∈ R are real constants, an ̸= 0. Let us look for a solution of the form
x(t) = eλt. Substituting into (1.5) (and factoring out eλt) we obtain the so-called characteristic
polynomial of this equation

anλ
n + an−1λ

n−1 + . . .+ a2λ
2 + a1λ+ a0 = 0. (1.6)

Let λ be the root of this polynomial with real coefficients, then λ̄ is also a root. That is,
either λ ∈ R or λ, λ̄ ∈ C are a pair of complex conjugated roots.

If all the roots are different from each other (have multiplicity one) we get the so-called
system of fundamental solutions {

eλ1t, eλ2t, . . . , eλnt
}
, (1.7)
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Since the polynomial (1.6) is of degree n, we have n fundamental solutions3.
Superposition Principle. If x1(t), x2(t) are solutions of the equation (1.5), then so is c1x1(t)+

c2x2(t), where c1 and c2 are arbitrary constants (generally complex). The superposition principle
applies only to linear differential equations.

The general solution of the equation (1.5) is a general complex linear combination of the
fundamental solutions:

x(t) = c1e
λ1t + c2e

λ2t + . . .+ cne
λnt. (1.8)

Complex and real solutions. If x(t) is a solution of equation (1.5), then so are x̄(t), Rex(t)
and Imx(t)4 solutions as well. Thus, if we have complex fundamental solutions (corresponding
to complex-conjugated roots of λ = a + ib, λ̄ = a − ib) of eλt and eλ̄t, we can change to real
fundamental solutions:

Re eλt =
eλt + eλ̄t

2
= eat cos bt, Im eλt =

eλt − eλ̄t

2i
= eat sin bt. (1.9)

This is equivalent to the restriction of the complex integration constants by the condition c2 = c̄1
in the linear combination c1e

λt + c2e
λ̄t.

The general real solution is then a real linear combination of real fundamental solutions.
Initial conditions. The general solution of an ordinary differential equation of n-th order

(i.e., the highest derivative is of n-th order) depends on n integration constants. These are
determined from the initial conditions. Typically by specifying the values of the zeroth through
to n− 1-th derivatives at a given time t0:

x(t0) = x0, ẋ(t0) = v0, . . . , x(n−1)(t0) = x
(n−1)
0 . (1.10)

Homogeneous equation. The general solution we wrote was a solution of the so-called homo-
geneous equation – the equation with vanishing right-hand side. If we add a specified function
f(t) to the right-hand side,

anx
(n) + an−1x

(n−1) + . . .+ a2ẍ+ a1ẋ+ a0x = f(t), (1.11)

we speak of the so-called inhomogeneous equation. The solution of the inhomogeneous equation
can be split into two parts because of linearity:

x(t) = xhom(t) + xpart(t). (1.12)

Part xhom(t) is the solution of the original equation with vanishing right-hand side. Part xpart(t)
is an arbitrary (particular) solution satisfying the equation with right-hand side (1.11), the
function xpart(t) is called particular solution.

Harmonic oscillator . The harmonic oscillator equation (1.1) has the characteristic poly-
nomial of the form

λ2 + ω2 = 0 (1.13)

with roots λ1,2 = ±iω and a fundamental system of solutions

{eiωt, e−iωt}. (1.14)

3If λ is a root with multiplicity k, then this root has k fundamental solutions of the form

{eλt, teλt, . . . , tk−1eλt}.

4If we write down the complex conjugate of the equation (1.5), then if x(t) was a solution of the original
equation (1.5), then by the realness of the coefficients of ai, i.e., ai = āi, the x̄(t) is a solution as well. If x(t) and
x̄(t) are solutions, then by the superposition principle, Rex(t) = 1

2
(x(t) + x̄(t)) and Imx(t) = 1

2i
(x(t)− x̄(t)) are

solutions as well.
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Thus, the general complex solution is of the form

x(t) = c1e
iωt + c2e

−iωt. (1.15)

We shift to the real solution by applying Re and Im to one of the solutions (e.g., eiωt) or by
restricting the constants c1 and c2 by the condition c1 = c̄2 =

a−ib
2 :

x(t) = aRe eiωt + b Im eiωt = a cosωt+ b sinωt =
1

2
(a− ib)eiωt +

1

2
(a+ ib)e−iωt. (1.16)

The initial conditions leading to a particular solution are usually the initial position and initial
velocity at time t = 0:

x(0) = x0, ẋ(0) = v0. (1.17)

1.4 Mathematical supplement: Mean values

Consider the function f(x) : R → R. Its mean value on the interval ⟨x1, x2⟩ is defined as

⟨f⟩⟨x1,x2⟩ =
1

x2 − x1

∫ x2

x1

f(x) dx.

x

f(x)

x1 x2

〈f〉〈x1,x2〉

Figure 1.2: Illustration of the mean value of a function. The area under the graph of the function
f between the points x1 and x2, S1 =

∫ x2

x1
f(x) dx, is the same as the area of the rectangle S2 =

⟨f⟩⟨x1,x2⟩(x2 − x1).

You can define the mean over the whole R by a limit

⟨f⟩ ≡ ⟨f⟩⟨−∞,∞⟩ = lim
x′→∞

1

2x′

∫ x′

−x′
f(x) dx.

If the function f is periodic with period L, its mean is given by the mean over an arbitrary
interval of length L:

⟨f⟩ = ⟨f⟩⟨x,x+L⟩ =
1

L

∫ x+L

x
f(x′) dx′, where x ∈ R is arbitrary.

For trigonometric functions, the following relations hold:

⟨sinωt⟩ = ⟨cosωt⟩ = 0, ⟨sin2 ωt⟩ = ⟨cos2 ωt⟩ = 1

2
. (1.18)

For functions of several variables it is necessary to specify in which variable the averaging
is performed. In this text, we will only perform time averaging, so we will often not mention it
explicitly. For example, if we have a function f(r⃗, t), then after time averaging we are left with
a function of only the position vector r⃗: f : R3 × R → R, ⟨f⟩ : R3 → R.
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1.5 Damped harmonic oscillator

The equation of a damped harmonic oscillator is

ẍ+ 2δẋ+ ω2
0x = 0. (1.19)

The notation Γ = 2δ is sometimes introduced, where δ is the so-called decrement of attenuation.
Assuming a solution of the form x(t) = eλt, the characteristic polynomial is then of the form

λ2 + 2δλ+ ω2
0 = 0. (1.20)

If we consider a small (so-called subcritical) damping δ < ω0, then the solution (1.20) is a
pair of complex-conjugated roots

λ1,2 = −δ ± i
√
ω2
0 − δ2. (1.21)

Thus, the resulting complex and real solution is

x(t) = e−δt
(
c1e

iωt + c2e
−iωt) , x(t) = e−δt (a cosωt+ b sinωt) , (1.22)

where we have defined ω =
√
ω2
0 − δ2.

1.6 Driven harmonic oscillator

The equation of the driven harmonic oscillator is obtained by adding a driving force to the
right-hand side of the damped oscillator equation:

ẍ+ 2δẋ+ ω2
0x = B(t) (1.23)

Consider the harmonic driving “force”5 B(t) = B cos(Ωt), or its complex form

B̂(t) = BeiΩt, B ∈ R. (1.24)

Let us look only for a partial solution of this equation, which will represent the steady state
oscillation of the driven harmonic oscillator. Due to the complexification of the driving force,
this solution will also be complex. If we take its real part, we get the solution for the original
real driving force. Assume a solution of the form

x̂(t) = AeiΩt, (1.25)

where A ∈ C. We can write the number A in polar form, A = |A|e−iφ, and thus

x̂(t) = |A|ei(Ωt−φ), (1.26)

where |A| is the amplitude of the forced oscillations and φ is the phase delay of the oscillations
after the driving force.

Substituting our ansatz (1.25) into Eq. (1.23), we get

A(iΩ)2 + 2δA(iΩ) + ω2
0A = B, (1.27)

5The word force is in quotes because the quantity B(t) has an acceleration dimension, since we have the
isolated term ẍ in the differential equation.
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From this relation, we trivially express the complex amplitude A:

A =
B

ω2
0 − Ω2 + 2iδΩ

. (1.28)

The amplitude of the driven oscillations |A| is

|A| =
√
AĀ =

B√
(ω2

0 − Ω2)2 + 4δ2Ω2
. (1.29)

Next, we denote C and −D as the real and imaginary parts of A, A = C − iD. We expand the
expression for A with a complex conjugated denominator and obtain

A = B
ω2
0 − Ω2 − 2iδΩ

(ω2
0 − Ω2)2 + 4δ2Ω2

= C − iD. (1.30)

We now easily read off the coefficients of C and D:

C =
ω2
0 − Ω2

(ω2
0 − Ω2)2 + 4δ2Ω2

B, D =
2δΩ

(ω2
0 − Ω2)2 + 4δ2Ω2

B. (1.31)

The coefficient C is called the elastic amplitude and the coefficient D is called the absorption
amplitude. The real solution is then of the form

x(t) = Re [x̂(t)] = Re [(C − iD)eiΩt] = |A| cos(Ωt− φ) = C cosΩt+D sinΩt. (1.32)

Ω

|A|, C,D

0 ω0Ωr

Figure 1.3: The figure shows the resonance curves of a harmonic oscillator driven by a harmonic driving
force. The total amplitude |A| is shown in black, the absorption amplitude D in red, and the elastic
amplitude C in blue. The maximum amplitude |A| is at Ωr =

√
ω2
0 − 2δ2 < ω0.

For the phase delay of the driven oscillations, we have the relation

tg (−φ) = −D
C

→ tgφ =
D

C
=

2δΩ

ω2
0 − Ω2

. (1.33)

The power delivered by the driving force. Why are the coefficients C and D named elastic
and absorption amplitude? Let us study the power delivered to the system by the driving
force. Let the physical system considered be an oscillating weight on a spring with damping.

13



The instantaneous value of the mechanical power is P (t) = F (t)v(t), where F (t) = mB(t).
Substituting the expressions for B(t) and v(t), we have

P (t) = F (t)v(t) = mB cosΩt (−CΩsinΩt+DΩcosΩt) . (1.34)

If we now calculate the time-averaged value of this power (over one period) we get the result

⟨P ⟩ = 1

2
mB ΩD. (1.35)

Thus, the time-averaged value of the delivered power is proportional only to the absorption
amplitude D. The power corresponding to the elastic amplitude C only transfers from the
driving source to the driven system and back, so that on average no power transfer occurs. If
we want to deliver as much energy as possible to the system, we drive the system at a frequency
that corresponds to the maximum of the absorption amplitude D.

Total oscillator energy. The instantaneous energy of an oscillator is given by the sum of its
kinetic and potential energy:

E(t) =
1

2
mv(t)2 +

1

2
mω2

0x(t)
2 =

1

2
m|A|2

(
Ω2 sin2(Ωt− α) + ω2

0 cos
2(Ωt− α)

)
. (1.36)

If we again calculate the time-average value over one period, we obtain

⟨E⟩ = 1

4
m|A|2

(
Ω2 + ω2

0

)
. (1.37)

Thus we see that the total energy is proportional to the total amplitude of the oscillation. If we
want to accumulate as much energy as possible in the oscillator (resonance phenomenon), we
drive the system at a frequency that corresponds to the maximum of the total amplitude |A|.

The maximum of the amplitude |A| is at point ΩA =
√
ω2
0 − 2δ2, the approximate value of

the maximum of the amplitude D is at point6 ΩD ≈
√
ω2
0 − δ2. For small values of damping δ

we can consider ΩA ≈ ΩD ≈ ω0.

Quality factor. A quantity called quality factor is often introduced,

Q = 2π
⟨E⟩

⟨P ⟩T0
= 2π

⟨E⟩
⟨E0⟩

, (1.38)

which (up to a multiple 2π) indicates how much energy delivered per oscillation period ⟨E0⟩ is
stored in the oscillating system.

Example. Wireless charging. A schematic of a wireless charging circuit is shown in Figure
1.4. The driving force is generated by the charging station with the transmitting coil, which
due to mutual inductance induces the voltage in the coil L in the RLC charging circuit. The
resistor R represents the appliance to be charged. Tuning the driving frequency of the voltage
U(t) to near resonance in the charging circuit causes not only the largest energy transfer (max-
imum absorption amplitude D) but also the largest voltage amplitude in the charging circuit
(maximum total amplitude |A|).

6The exact value is given by the solution of equation dD
dΩ

= 0 with the result

ΩD =

√
ω2
0 − 2δ2 + 2

√
ω4
0 − δ2ω2

0 + δ4
√
3

.
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B(t)

L

C

R

U(t)

Figure 1.4: Wireless charging principle.

1.7 Systems with n degrees of freedom

Let us now turn our attention to systems with more degrees of freedom. The harmonic oscillator
had one degree of freedom – its position was described by a single coordinate x. For a system
with n degrees of freedom, we describe its position by Cartesian coordinates x⃗ = (x1, . . . , xn).

Again, we will consider simple mechanical models such as a system of two weights on springs
as in Figure 1.5 described by a pair of coordinates x⃗ = (x1, x2). Or a pair of pendulums
connected by a spring as in Figure 1.6 requiring four coordinates x⃗ = (x1, x2, x3, x4).

x1 x2O1 O2

Figure 1.5: Two longitudinally oscillating weights on springs.

x1

x2

x3

x4

O12 O34

Figure 1.6: Two pendulums connected by a spring.

Consider Newton’s equations of motion for a general system of the form

miẍi = Fi = −∂U
∂xi

, i ∈ {1, . . . , n}, (1.39)

where mi is mass of the body corresponding to the coordinate xi and the forces in the system
are described by a potential function U(x1, . . . , xn).

We will be concerned with the motion (i.e., the solution of the equations of motion) of these
systems in the neighborhood of stable equilibrium position.

Definition. Equilibrium position is the position x⃗0 of the system for which Fi(x⃗0) = 0 holds
for ∀i ∈ {1, . . . , n}, i.e., no forces are acting at this position (if the system was at rest at x⃗0, it
will remain at this position). The forces are vanishing when the potential at x⃗0 has stationary
point, i.e.

Fi(x⃗0) =
∂U

∂xi

∣∣∣∣
x⃗=x⃗0

= 0, ∀i ∈ {1, . . . , n}. (1.40)
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Definition. Stable equilibrium position is the equilibrium position where the matrix

Uij :=
∂2U

∂xi∂xj

∣∣∣∣
x⃗=x⃗0

(1.41)

is positive definite. In other words, the potential at the point x⃗0 has a local minimum. Due to
the commutation of partial derivatives, this matrix is symmetric Uij = Uji.

The method for solving the equations of motion, which will be described below, has one
technical requirement – the equilibrium position must be at the origin of the coordinates. This
is achieved by introducing new coordinates ξ⃗ by substitution ξ⃗ = x⃗ − x⃗0, where x⃗0 are the
constant coordinates of the chosen stable equilibrium position. Substituting into the equations
(1.39), we have trivially on the left hand side

miẍi = mi
d2

dt2
(ξi + x0i) = miξ̈i. (1.42)

On the right-hand side we have to make the substitution in the potential function U(x⃗):

Ũ(ξ⃗) := U ◦ x⃗(ξ⃗) = U(ξ⃗ + x⃗0), (1.43)

where we have defined a new function Ũ of the variables ξ⃗. The inverse relation is U(x⃗) =
Ũ(x⃗ − x⃗0), and after differentiating this relation (where on the right hand side we have the
derivative of the composite function) we get7 (using Einstein’s summation rule)

∂U

∂xi
=
∂Ũ

∂ξj

∂ξj
∂xi

=
∂Ũ

∂ξj
δij =

∂Ũ

∂ξi
. (1.44)

Thus, the equation of motion has the same form as in the original coordinates x⃗:

miξ̈i = −∂Ũ
∂ξi

. (1.45)

1.7.1 Approximation of small oscillations

For a general potential, the equations (1.45) can be very difficult to solve. We will resort to
the so-called small oscillations approximation – we will study the behavior of the system near
the equilibrium position. This is done by expanding the potential function Ũ into a Taylor
series8 (around the equilibrium position, i.e., around the point ξ⃗ = 0) and we keep only the first

7Consider a function f(x1, . . . , xk) : Rk → R and k functions gi(y1, . . . , yl) : Rl → R. We get the function
h(y1, . . . , yl) : Rl → R by composition

h(y1, . . . , yl) = f (g1(y1, . . . , yl), . . . , gk(y1, . . . , yl)) .

Then the chain rule states

∂h

∂yi
=

k∑
m=1

∂f

∂xm

∂gm
∂yi

.

This rule is an extension of the rule for differentiating a composite function of one variable, [f(g(x))]′ =

f ′(g(x)) g′(x), for multiple variables. Here, we have Ũ(ξ⃗) ∼ f(x1, . . . , xn), ξi(x⃗) ∼ gi(y1, . . . , yn).
8Compare with the Taylor series expansion of a function of one variable! For the function f(x) around the

point 0, it has the following form:

f(x) = f(0) +
df

dx

∣∣∣∣
x=0

x+
1

2

d2f

dx2

∣∣∣∣
x=0

x2 + . . .
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nonzero term:

Ũ(ξ⃗) = Ũ(0) +

n∑
i=1

∂Ũ

∂ξi

∣∣∣∣∣
ξ⃗=0

ξi +
1

2

n∑
i,j=1

∂2Ũ

∂ξi∂ξj

∣∣∣∣∣
ξ⃗=0

ξi ξj + . . . (1.46)

Let us now examine the different orders of the expansion. The zero order represents the value
of the potential at the equilibrium position U0 = Ũ(0). We can choose this to be zero, U0 := 0,
since a shift of the potential by a constant does not alter the equations of motion. The first
order derivative represents the (minus) force evaluated at the equilibrium position,

Fi(0) = − ∂Ũ

∂ξi

∣∣∣∣∣
ξ⃗=0

, (1.47)

but this is zero by the definition of the equilibrium position! The first non-zero order is therefore
the second. If we denote the matrix U as

Uij =
∂2Ũ

∂ξi∂ξj

∣∣∣∣∣
ξ⃗=0

(1.48)

(which is a constant numerical matrix), which we will call the potential energy matrix, we can
write the potential Ũ in the form

Ũ(ξ⃗) =
1

2

n∑
i,j=1

Uijξiξj + . . . , (1.49)

where the three dots indicate higher orders of the Taylor expansion, which we neglect in the
small oscillations approximation. The matrix U is symmetric due to the commutativity of
partial derivatives, Uij = Uji. We have replaced the arbitrarily complicated potential function

Ũ by a quadratic polynomial in the deviations from the equilibrium position ξ⃗.
Let us now substitute the approximated potential (1.49) to the right-hand side of the equa-

tions of motion (1.47) and manipulate it (using Einstein’s summation rule):

−Fi =
∂Ũ

∂ξi
=

∂

∂ξi

(
1

2
Ujkξjξk

)
=

1

2
Ujk (δijξk + ξjδik) =

1

2
(Uikξk + Ujiξj) = Uijξj , (1.50)

where we have used the symmetry of the matrix U (and renaming the summation index) in the
last equation. By approximating the potential, we have achieved that the equations of motion
are linear !

miξ̈i +
n∑
j=1

Uijξj = 0. (1.51)

If we introduce another matrix T = diag (m1, . . . ,mn), which we will call kinetic energy matrix 9,
we can write

n∑
j=1

(
Tij ξ̈j + Uijξj

)
= 0,

9The kinetic energy of the system can be written as

T =
1

2

n∑
i=1

miξ̇
2
i =

1

2

n∑
i,j=1

Tij ξ̇iξ̇j .
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or written in a matrix form

T ¨⃗
ξ + Uξ⃗ = 0. (1.52)

This is the final form10 of the equations of motion we will try to solve. The matrices T and U
are symmetric positive definite constant matrices.

1.7.2 Method of modes

Intuitively, we expect that when the system is slightly perturbed from a stable equilibrium
position, the system will oscillate about this position. Let us try to assume a solution containing
harmonic oscillations eiωt (of an as yet undetermined angular frequency ω). Consider a vector
function of the form

ξ⃗(t) = a⃗ eiωt, (1.53)

where a⃗ ∈ Rn is a constant vector. This form of the solution is called a mode. All parts of
the system oscillate with the same angular frequency ω and the same phase. The real solutions
are obtained, for example, by acting with Re and Im on the obtained complex solutions. By
substituting the ansatz (1.53) into the equations (1.52) we obtain

(Ta⃗(iω)2 + Ua⃗)eiωt = 0. (1.54)

After simple manipulation we get: (
U− ω2T

)
a⃗ = 0. (1.55)

Of course, we require a non-trivial (non-zero) solution, so we look for frequencies ω such that
the problem has a non-zero vector a⃗ as a solution. If we multiply the equation by T−1 and
denote by A = T−1U and λ = ω2, we get the form

(A− λ)⃗a = 0. (1.56)

This is thus the problem of finding the eigenvalues and their corresponding eigenvectors of the
matrix A. Thus, we proceed in the same way as in linear algebra. The requirement of non-
triviality of the vector a⃗ is a requirement of non-triviality of the kernel of the operator U−ω2T,
which is equivalent to its singularity, which is easily ensured by its zero determinant:

det
(
U− ω2T

)
= 0. (1.57)

This equation is called a secular equation. On the left-hand side is the n-th degree polynomial
in the variable ω2. Denote the roots of this polynomial by ω2

k, k ∈ {1, . . . , n}. We denote the
corresponding kernel vectors to these eigenvalues by a⃗k, i.e. we solve the equations(

U− ω2
kT
)
a⃗k = 0. (1.58)

For a given mode, the general solution is a linear superposition

ξ⃗k(t) = a⃗k
(
c1e

iωkt + c2e
−iωkt

)
. (1.59)

Moving on to the real solution (by choosing c2 = c̄1):

ξ⃗k(t) = Aka⃗k cos(ωkt+ φk). (1.60)

10We could multiply the equations by T−1 to get the form
¨⃗
ξ + (T−1U)ξ⃗ = 0.
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The general solution found by the method of modes is then the linear superposition of all modes:

ξ⃗(t) =
n∑
k=1

Aka⃗k cos(ωkt+ φk). (1.61)

The constants of the angular velocities ωk and amplitude vectors a⃗k are given by the physical
system, i.e., for example, the masses of the individual weights and the stiffnesses of the individual
springs. The integration constants of mode amplitudes Ak and phase shifts φk are given by the
initial conditions, i.e., for example, the initial positions and velocities of the individual weights.

Have we found a complete solution of the equations of motion (1.52) by the method of
modes? There are n equations of motion and they are of second order. Thus, we expect the
complete solution to depend on the 2n integration constants. We found n modes and each
contains two integration constants of the mode amplitude and its phase shift, for a total of
2n integration constants. Thus, we can conclude that we have found the complete (general)
solution of the equations (1.52).

Since we are looking for roots of the form ω2, we need these to come out positive. This
is ensured if the matrices T and U are positive definite. For physical systems that we perturb
from a stable equilibrium position, this is always satisfied; see Section 1.9 for details.

It may be that some ωk is a multiple root of a secular equation. Then it is a so-called
degenerate problem. However, the only thing that changes is that the corresponding angular
frequency ωk has multiple linearly independent vectors of amplitude a⃗ (i.e., for the given ωk the
kernel matrix U− ω2

kT is multidimensional).

1.7.3 Cookbook

Let’s quickly repeat the steps to get to the general solution using the method of modes.

1. Introduce the coordinates ξ⃗ = (ξ1, . . . , ξn) ∈ Rn that measure the deviation from the
equilibrium position.

2. Write the equations of motion in the form T ¨⃗
ξ+Uξ⃗ = 0, where T,U ∈ Rn,n are symmetric

constant matrices. If necessary, use the small oscillations approximation.

3. Assume solutions of the form ξ⃗(t) = a⃗eiωt, a⃗ ∈ Rn is a constant vector of amplitude ratios.

4. Substitute it into the equations of motion and require non-triviality of the solution, i.e.,
a⃗ ̸= 0. We get

(
U− ω2T

)
a⃗ = 0. These conditions lead to the so-called secular equation∣∣U− ω2T

∣∣ = 0.

5. The secular equation is a polynomial of n-th degree in ω2. Find the corresponding roots
ω2
k. Find the corresponding eigenvectors a⃗k as solutions of equations

(
U− ω2

kT
)
a⃗k = 0.

6. The general solution of the motion is of the form

ξ⃗(t) =

n∑
k=1

Aka⃗k cos (ωkt+ φk) .

1.8 Normal coordinates

We represent the position of our physical system by n coordinates ξ⃗. Instead of representing this
position, for example, for a mechanical system as the concrete position of the individual bodies,
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we introduce the abstract notion of a configuration space C. This will represent the abstract
set of all possible positions of a given physical system. Each point p ∈ C then represents a
particular position of, for example, weights and springs.

In our case, the situation is quite simple. Our coordinates ξ⃗ ∈ Rn measure the Cartesian
displacements of the bodies from the equilibrium position and thus uniquely determine the
position of these bodies. Thus, we can directly consider the space of coordinates11, C = Rn as
the configuration space. As an example, Figure 1.7 shows the configuration space for a simple
mechanical system.

ξ1 ξ2O1 O2

(a) Physical system.

ξ1

ξ2

(ξ1, ξ2)

(b) Abstract configuration space C = R2.

Figure 1.7: Configuration space for a longitudinally oscillating system of two masses and three springs.

Normal coordinates η⃗ ∈ Rn are defined such that when the system oscillates in i-th mode,
the following holds

ηi = A cos(ωit+ φ), ηk = 0, k ̸= i. (1.62)

This behavior is achieved if we introduce the new coordinate axes ηi in the directions of the
vectors a⃗i (the original coordinate axes point in the directions of the standard basis vectors
e⃗i = (0, . . . , 0, 1, 0, . . . , 0)). Thus, the representation of the i-th mode in the original and normal
coordinates is

ξ⃗(t) = A a⃗i cos(ωit+ φ), η⃗(t) = A e⃗i cos(ωit+ φ). (1.63)

The transformation relation between the original ξ⃗-coordinates and the normal coordinates
looks as follows:

ξ⃗ = Aη⃗, (1.64)

where matrix A,

A =

a⃗1
 . . .

a⃗n
 , (1.65)

is a matrix consisting of column vectors a⃗i. This transformation relation has exactly the property
described above – it converts a solution of the form (1.63) for η⃗(t) to ξ⃗(t).

In normal coordinates, the equations of motion are of the form

η̈k + ω2
kηk = 0, (1.66)

11It depends, of course, whether it makes sense to choose a completely arbitrary position ξ⃗ ∈ Rn as the
configuration space. For example, in the small oscillation approximation we require that ξ⃗ be close to 0. However,
we can also look at it in such a way that in the small oscillations approximation we have mathematical equations
of motion that make (mathematical) sense for any ξ⃗ ∈ Rn.
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i.e., the system appears mathematically as a set of n independent harmonic oscillators.
The following normalization condition is often added to the definition of normal coordinates

a⃗Ti Ta⃗i = 1, ∀i ∈ {1, . . . , n}. (1.67)

This fixes the magnitude of the vectors a⃗i – that is, we fix the scale on the new coordinate
axes ηi. These coordinates are still not uniquely defined. We are free to choose the signs of the
vectors a⃗i, and also in the case of the degenerate problem we are free to choose the basis of the
corresponding multidimensional eigenspace. However, the formal definition is as follows:

Definition: Let a⃗i, i ∈ {1, . . . , n} be the eigenvectors of the problem (U − ω2T)⃗a = 0
normalized by the condition a⃗Ti Ta⃗i = 1, i ∈ {1, . . . , n}. Normal coordinates η⃗ are defined by the
relation

ξ⃗ = Aη⃗, (1.68)

where A is the matrix defined in (1.65).
In these coordinates

ATTA = I, ATUA = diag(ω2
1, . . . , ω

2
n), (1.69)

see the next section. Substituting the definition (1.68) into the equations of motion (1.52) (and
multiplying by the matrix AT ), we arrive at the form of the equations of motion in normal
coordinates (1.66) already mentioned, using the relations (1.69).

Example. Let us illustrate the concept of normal coordinates with the example of longi-
tudinal oscillations of two weights on three springs (see Figure 1.7). The general solution is of
the form (for m1 = m2 = m, k1 = k2 = k3 = k):

x⃗(t) = A1

(
1
−1

)
cos(ω1t+ φ1) +A2

(
1
1

)
cos(ω2t+ φ2). (1.70)

If we excite the first mode, the system will inscribe a line segment in the direction of the
vector a⃗1; analogously if we build the second mode. See Figure 1.8.

x1

x2

~a1

~a2

(a) Oscillation of the system in the first mode.

x1

x2

~a1

~a2

(b) Oscillation of the system in the second mode.

Figure 1.8: Schematically plotted trajectories in the configuration space of the system oscillating in each
mode.

We would now like to introduce new coordinates (η1, η2), which will have the property that
if the system oscillates in the first mode, then only the coordinate η1 will describe the entire
motion and the second coordinate η2 will be zero. Similarly, for a system excited to the second
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mode, we want η1 = 0 and only η2 describing the position of the system. If we look again at
Figure 1.8, we see that it is sufficient to introduce the new coordinate axes in the directions of
the vectors a⃗1 and a⃗2, as shown in Figure 1.9.

x1

x2

η2

η1

~e1

~e2

~a1

~a2

Figure 1.9: Normal coordinates (η1, η2) pointing in the directions of the amplitude ratio vectors a⃗1 and
a⃗2. Basis vectors e⃗1 and e⃗2 pointing in the directions of axes x1 and x2.

So we want to go from the coordinates x⃗ = (x1, x2) to the new coordinates η⃗ = (η1, η2) using
the transition matrix A defined as x⃗ = A η⃗ (and hence also η⃗ = A−1x⃗).

We need a matrix A such that when we pass it the coordinates η⃗ = (1, 0)T we get the vector
a⃗1 and when we pass it the vector η⃗ = (0, 1)T we get the vector a⃗2. This condition is obviously
satisfied by the following matrix

P =

((
a⃗1

)(
a⃗2

))
=

(
1 1
−1 1

)
, (1.71)

i.e., we put the individual vectors a⃗i in the columns. Broken down by components (into indi-
vidual coordinates) we have

x1 = η1 + η2, x2 = −η1 + η2, η1 =
x1 − x2

2
, η2 =

x1 + x2
2

. (1.72)

In these normal coordinates, the motion of the system looks as follows:

η⃗(t) =

(
η1(t)
η2(t)

)
= A1

(
1
0

)
cos(ω1t+φ1)+A2

(
0
1

)
cos(ω2t+φ2) =

(
A1 cos(ω1t+ φ1)
A2 cos(ω2t+ φ2)

)
. (1.73)

In this example, we have omitted the step of normalizing the vectors a⃗ for simplicity.

1.9 Small oscillations theoretically

In this section we answer a few nagging questions. Will the eigenvalues λk = ω2
k always be

real and positive? Will we always have enough eigenvectors to form a basis Rn? How does the
transition to normal coordinates simultaneously diagonalize the matrices T and U?

In the small oscillations problem we work with the coordinates ξ⃗ ∈ Rn. Consider this space
as a vector space V = Rn of dimension n. In it we have a standard basis E = (e⃗i)

n
i=1, where

e⃗i = (0, . . . , 0, 1︸︷︷︸
i-th component

, 0, . . . 0)T . (1.74)

22



Let us now define the bilinear forms of T and U ,

T : V × V → R, U : V × V → R, (1.75)

so that (T )E = T and (U)E = U, i.e., the matrices of these bilinear forms12 in the standard basis
E are just the matrices of kinetic and potential energy. Since the matrix T is positively definite,
so is the form T . The symmetric positive definite bilinear form T defines a scalar product on V ,
⟨•, •⟩T . Let us denote by13 orthonormal basis (according to the scalar product T ) F = (f⃗i)

n
i=1.

That is, ⟨f⃗i, f⃗j⟩T = T (f⃗i, f⃗j) = δij .

The relation between bases E and F is given as follows by the regular transition matrix S,

f⃗i =

n∑
j=1

Sjie⃗j (1.76)

(this relationship defines the matrix S). In the transition between bases, the matrices of bilinear
forms are transformed

(B)F = ST (B)ES. (1.77)

Specifically, for bilinear forms T and U :

(T )F = STTS = I, (U)F = STUS. (1.78)

Since F is an ON basis with respect to T , the matrix (T )F is of identity. From the transformation
relation of the form T we can express T−1 = S ST . Denoting Ũ = (U)F , this matrix is symmetric:

ŨT = (STUS)T = STUT S = STUS = Ũ (1.79)

(and real). The theory of linear algebra says that a symmetric matrix has real eigenvalues λk
and one can choose vectors a⃗k from eigensubspaces to form an orthonormal basis A = (⃗ai)

n
i=1 of

the vector space V with respect to the scalar product T . Since the form U is positive definite,
all its eigenvalues must be positive, λi = ω2

i > 0.

Here, we were looking for the eigenvalues of the matrix Ũ, i.e., we were solving the problem

Ũ(⃗a)F = λ(⃗a)F → STUS (⃗a)F = λ(⃗a)F . (1.80)

(we use the symbol (⃗a)F to indicate that the solutions of these linear equations are the com-
ponents of the vectors a⃗ in the basis F). After multiplying this equation by the matrix S, we
have

SSTU (S (⃗a)F ) = λ (S (⃗a)F ) → T−1U (S (⃗a)F ) = λ (S (⃗a)F ) . (1.81)

For the transformation relation of the vectors between bases E and F , (v⃗)F = S−1(v⃗)E holds. We
will denote the components of the vectors in the standard basis Rn by v⃗ only. Thus, S(⃗a)F = a⃗
and equation (1.80) implies

T−1Ua⃗ = λa⃗ ↔ (U− λT)⃗a = 0. (1.82)

Thus we have shown that the vectors a⃗ found in the method of modes are nothing but the
component representations of the abstract vectors a⃗ in the standard basis E in the vector space
equipped with the forms T and U .

12The matrix of the bilinear form B in basis E = (e⃗i)
n
i=1 is defined as (B)E = Bij = B(e⃗i, e⃗j)

13An arbitrary but fixed. This basis will be only auxiliary in our endeavour.
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In the basis A = (⃗ai)
n
i=1 it holds (T )A = I, since it is an ON basis (⟨⃗ai, a⃗j⟩T = δij), and also

(U)A = diag (λ1, . . . , λn), since it is a basis formed by eigenvectors of the form U . Defining the
transition matrix A as

a⃗i =

n∑
j=1

Ajie⃗j , (1.83)

then the following will hold

ATTA = I, ATUA = diag(ω2
1, . . . , ω

2
n). (1.84)

The standard basis has components (e⃗i)k = δik, and after substituting into the definition of the
transition matrix A (1.83) we have

(⃗ai)k = Aki, (1.85)

i.e., that the matrix A is obtained by stacking the vectors a⃗ (or their components in the standard
basis) side by side in columns:

A =

a⃗1
 . . .

a⃗n
 . (1.86)

1.10 Dampened small oscillations

Equations of motion with damping are

T ¨⃗
ξ + IΓ

˙⃗
ξ + Uξ⃗ = 0, (1.87)

where the damping matrix IΓ is symmetric, IΓT = IΓ, positively definite (and real). Typically
IΓ = diag (2δ1, . . . , 2δn).

Consider again ansatz in the form of a mode ξ⃗(t) = a⃗ eλt, where a⃗ ∈ Cn is a constant
(generally complex) vector. The substitution yields the so-called quadratic eigenvalue problem(

λ2T+ λIΓ + U
)
a⃗ = 0 (1.88)

leading to the secular equation

det
(
λ2T+ λIΓ + U

)
= 0, (1.89)

where the left-hand side is a polynomial of degree 2n. With sufficiently weak damping, the
roots are complex. Since we have a polynomial with real coefficients, the roots are made up
of pairs of conjugated roots (if λ is a root, then λ̄ is a root). To a complex-conjugated root λ̄
belongs a complex-conjugated vector a⃗. Thus we always have pairs of solutions

ξ⃗1(t) = a⃗ eλt, ξ⃗2(t) = a⃗ eλ̄t. (1.90)

Consider a general linear combination of these solutions (which, by the linearity of the equations
of motion, is also a solution) for a given root λ (and its complex-conjugated λ̄):

ξ⃗(t) = c1a⃗e
λt + c2a⃗e

λ̄t. (1.91)

If we now write λ = −κ + iω, where κ > 0, and the components of the vector aj ∈ C in polar
form as aj = |aj |eiαj we get

ξj(t) = |aj |e−κt
(
c1e

i(ωt+αj) + c2e
−i(ωt+αj)

)
. (1.92)
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If we require a real solution, then again the condition c2 = c1 holds. In the same way as for the
solution of the harmonic oscillator equation, we can proceed to the solution of the form

ξj(t) = A|aj |e−κt cos(ωt+ αj + φ), (1.93)

where the constants A and φ (arising from the constant c1 = a − ib) are given by the initial
conditions. We see that for a damped system, in general, not all parts of the system oscillate
in phase! Each degree of freedom is phase shifted by an angle αj !

The general solution is then given by the superposition of all modes (of which there are n):

ξj(t) =
n∑
k=1

Ak|a
(k)
j |e−κkt cos

(
ωkt+ α

(k)
j + φk

)
, (1.94)

where we have denoted the individual roots as λk = −κk + iωk and their corresponding eigen-

vectors as a⃗(k) and their components as a
(k)
j = |a(k)j |eiα

(k)
j .

1.11 Driven small oscillations

We now consider the equations of motion of damped small oscillations with a non-zero right-
hand side in the form of a harmonic driving force

T ¨⃗
ξ + IΓ

˙⃗
ξ + Uξ⃗ = F⃗ eiΩt, (1.95)

where F⃗ ∈ Cn. Writing Fj = |Fj |eiβj we can interpret the numbers |Fj | as the amplitudes of
the driving force at each degree of freedom and βj as the phase shift of the harmonic driving
force at each degree of freedom.

Consider now ansatz
ξ⃗(t) = a⃗ eiΩt, (1.96)

which is a combination of ansatz from the driven oscillations of the harmonic oscillator and
from the method of modes, a⃗ ∈ Cn. When substituted into the equations of motion, we get(

−Ω2T+ iΩIΓ + U
)
a⃗ = F⃗ . (1.97)

The vector a⃗ is then obtained from the previous equation by simply inverting the matrix A =
−Ω2T+ iΩIΓ + U:

a⃗ =
(
−Ω2T+ iΩIΓ + U

)−1
F⃗ . (1.98)

This inversion exists since the determinant of matrix A is non-zero. Why is this so? The matrix
A is actually the matrix in equation (1.89) when we replace λ = iΩ. For weak damping, there
are only complex roots λ with a non-zero real part. Thus, the real Ω (i.e., the purely imaginary
λ) cannot be a root and hence detA must be nonzero.

The actual solution for the real driving force is then

ξj(t) = Re
[
|aj |eiαjeiΩt

]
= |aj | cos(Ωt+ αj), (1.99)

where we have again written the components of the vector a⃗ in polar form as aj = |aj |eiαj . The
numbers |aj | then represent the excited amplitudes at each degree of freedom, and the numbers
αj then represent the phase shift relative to the driving force (which itself could be variously
shifted at each degree of freedom using the constants βj).

Example. Consider again the longitudinal oscillations of two weights on springs with
equal masses of the bodies and equal stiffnesses of the springs. Let the damping matrix be
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IΓ = diag (γ, γ). We have two degrees of freedom and the driving force has two components
F⃗ = (F1, F2). Consider βi = 0 and hence Fi ∈ R, i ∈ {1, 2}.

Figures 1.10, 1.11 and 1.12 show the resonance curves for three different forms of the driving
force F⃗ . The figures plot the absolute values of the individual components of the vector a⃗ =
(a1, a2). The component |a1| is shown in red and the component |a2| in blue.

Note that the two modes of the unperturbed undamped system have the amplitudes a⃗ =
(1, 1) and a⃗ = (1,−1). Depending on the form of “driving vector” F⃗ , resonance peaks over the
individual eigenfrequencies of the driven system may be present or absent.

This distinguishes the individual figures. In the first one, the driving force is set to excite
primarily the mode with vector a⃗ = (1, 1). In the second, on the other hand, we observe a
resonant peak over the second mode a⃗ = (1,−1). The third figure shows the situation with a
driving force that “does not prefer” either mode.

Ω

|a1|, |a2|

ω1 =
√

k
m

√
3k
m = ω2

1

Figure 1.10: The driving force of the form F⃗ = (1; 0, 75) has a resonance peak near the frequency of the
first mode.

Ω

|a1|, |a2|

ω1 =
√

k
m

√
3k
m = ω2

1

Figure 1.11: The driving force of the form F⃗ = (1;−0.75) has a resonance peak near the frequency of
the second mode.
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Ω

|a1|, |a2|

ω1 =
√

k
m

√
3k
m = ω2

1

Figure 1.12: The driving force F⃗ = (1; 0) can excite both modes.
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Chapter 2

String vibrations and travelling
waves

2.1 The chain of atoms

Let us first examine the behavior of a series of weights of masses m connected by springs of
stiffness k, see Figure 2.1. This model can be thought of as a 1D crystal – a so-called chain of
atoms. Also, this physical system can be viewed as a discretely modeled string, rope, etc.

k k
xkxk−1 xk+1

k k

m m m

a a

Figure 2.1: A chain of atoms aka transverse oscillations of a series of weights.

Let us consider the transverse oscillations of this system and find the equations of motion
for the transverse motion of the k-th weight xk. Figure 2.2 shows the forces F⃗1 and F⃗2 from
adjacent weights, including their transverse projections F⃗1x, F⃗2x.

~F1

~F2

~F1x

~F2x

xk

xk−1

xk+1

ϑ1

ϑ2

Figure 2.2: Forces acting on the k-th weight.

The equation of motion will be of the form

mẍk = F1x + F2x = −|F1| sinϑ1 + |F2| sinϑ2, (2.1)

where ϑ1 and ϑ2 are angles between spring directions and horizontal direction. Let the length
of the unstretched spring be a0, and in the equilibrium state the springs are thus stretched
to the tension T = k(a − a0). In the approximation of small oscillations we may consider1,

1The same result would be obtained without much geometrical consideration by expanding the potential

U(∆x) =
1

2
k
(√

a2 +∆x2 − a0
)2
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that |F1| ≈ |F2| ≈ T and that sinϑ ≈ tgϑ = ∆x
a , where ∆x denotes the difference of adjacent

positions of the weights connected by a given spring. Substituting these assumptions into
equation (2.1), we obtain

mẍk =
T

a
(xk+1 − 2xk + xk−1, ) . (2.2)

where
T

a
= k

(
1− a0

a

)
= k′ (2.3)

represents “effective” spring stiffness of transverse oscillations. If we were to write the corre-
sponding kinetic and potential energy matrices, they would take the following form:

T =


. . .

m
m

. . .

 , U =
T

a


. . .

. . .
. . .

−1 2 −1
−1 2 −1

. . .
. . .

. . .

 , (2.4)

where, in the case of a finite number of weights in the chain, we would have to add the ap-
propriate boundary conditions for e.g. fixed ends, i.e. x0 = 0 and xN+1 = 0 (where N is the
number of weights).

2.1.1 Solution of the chain motion

Let us look for solutions of the equations of motion (2.2) for an infinite chain of atoms, i.e. we
have an infinite set of equations, one for each index k ∈ Z. Let us take inspiration from the
method of modes, where solutions were the form

x⃗(t) = a⃗ eiωt. (2.5)

In our case, the vector a⃗ has infinitely many components. The derivatives of the components of
ansatz (2.5) look like this

xl(t) = ale
iωt, ẋl(t) = ialωe

iωt, ẍl(t) = −ω2ale
iωt, (2.6)

and after substituting into the equations of motion (and factoring out the exponentials):

−mω2al =
T

a
(al+1 − 2al + al−1) . (2.7)

Spatial ansatz. Let’s try to find the shapes of modes a⃗ by assuming that harmonic waves
can be excited on the chain. In complex notation, we consider Re ei(kz+φ), where we substitute
the respective (horizontal) positions of the individual weights, z = la, for the coordinate z:

al = Re ei(kla+φ) = cos(kla+ φ), (2.8)

the as yet undetermined constant k = 2π
λ is called wavenumber. After substituting the ansatz

(2.8) into (2.7):

Re
[(

2− am

T
ω2
)
ei(kla+φ)

]
= Re

ei(kla+φ) (eika + e−ika
)

︸ ︷︷ ︸
2 cos ka

 . (2.9)

to the second order of the Taylor expansion.
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Factoring out eikla and expressing the angular frequency ω, we have

1− cos ka

2
=
am

4T
ω2. (2.10)

We rewrite the cosine term using the goniometric formula for double the angle and get the
relationship between the angular frequency ω and the wave number k:

ω2 =
4T

am
sin2

ka

2
. (2.11)

This relation is generally called dispersion relation. The pair of parameters ω and k must satisfy
the relation (2.11) for the expression

xl(t) = (Re ei(kla+φ))(Re eiωt) = cos(kla+ φ) cosωt (2.12)

to be a solution of the equations of motion (2.2). The solution (2.12) is of the form standing
wave, X(z) cos(ωt+ φ), i.e. the amplitude of the standing waveform X(z) varies harmonically.

The dispersion relation (2.11) has a solution only for a limited range of angular frequencies:

ω ∈

〈
0,

√
4T

am

〉
. (2.13)

In the language of wave numbers k (and wavelengths λ = 2π
k of excited waves), this corresponds

to an interval:
ka

2
∈
〈
0,
π

2

〉
↔ k ∈

〈
0,
π

a

〉
↔ λ ∈ ⟨2a,+∞⟩. (2.14)

Thus, on an infinite chain of atoms we can excite standing waves with a continuous range
of wavelengths (and to them there is always a corresponding given angular frequency also from
the continuous range). But we cannot build a standing wave with a wavelength shorter than
twice the distance between the weights 2a (and also with an angular frequency greater than√

4T
am).

For the region of frequencies (and wavelengths) for which we have found solutions to the
equations of motion, we say that the chain of atoms is a transparent medium – waves of given
parameters can exist (propagate) in this medium. For frequencies (and wavelengths) outside
this region, the environment is called reactive. We will learn more about these two types of
environments in the chapter on dispersion relations.

2.1.2 Continuous limit

The weight chain model is a good microscopic model for a string. Now we would like to move
to a continuous description by bringing the atoms closer together – we will consider the limit
a→ 0.

If we consider a finite chain of length L, then the number of weights is approximately N = L
a .

We would like to keep the tension on the chain constant, T = const., so We must increase the
stiffness of the springs accordingly2. k′ = T

a . We also want to preserve the total string mass
M , so we reduce the mass of the individual weights such that const. = ρL = M = mN , i.e.,
m = M

N (we introduce the notation ρ as the string linear density, [ρ] = kg.m−1).

2It’s good to remember that this is not some kind of magic “to make it work”. If you take a spring of length a
and stiffness k and split it in half, you get two springs of length a

2
and stiffness 2k! Increasing the stiffness of the

springs by the prescription T
a
therefore just means that we keep the springs of the same type, but shorten them.

This is a simple consequence of the definition of stiffness k as a force per unit change of length of the spring. It
is easy to derive “spring composition laws” for the resulting stiffnesses of parallel and series spring connections.
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Next, we introduce a continuous description of the position, where we move from a discrete
set of functions describing the position of the individual weights xl(t), to a function of two
variables ψ(z, t) that describes the transverse displacement of the weights at the location z at
time t. The weights are only at coordinates z = la, l ∈ Z,

xl(t) = ψ(la, t), (2.15)

for the other points z, the function ψ can take arbitrary values3. See also Figure 2.3 for an
illustration.

z

ψ

z0

ψ(z0, t)

Figure 2.3: Function ψ(z, t) describing the displacement of the weights.

After substituting (2.15) into the equations of motion (2.2), rewriting m = ρa and labeling
z = la:

(ρa)ψ̈(z, t) = T

(
ψ(z + a, t)− ψ(z, t)

a
− ψ(z, t)− ψ(z − a, t)

a

)
, (2.16)

where by the symbol ψ̇ we understand ∂ψ
∂t (and similarly by the symbol ψ′ we will understand

∂ψ
∂z ). If we introduce the new function ϕ(z, t) = ψ(z+a,t)−ψ(z,t)

a , we can further write the equations
of motion as

ρ ψ̈(z, t) = T
ϕ(z, t)− ϕ(z − a, t)

a
(2.17)

We now use Lagrange’s mean value theorem4:

ρψ̈(z, t) = Tϕ′(ξ, t) = T
ψ′(ξ + a, t)− ψ′(ξ, t)

a
, (2.18)

where ξ ∈ (z − a, z). Applying Lagrange’s theorem once more to the new fraction on the
right-hand side arising after the substitution from the definition of the function ϕ(z, t), we get

ρ ψ̈(z, t) = Tψ′′(η, t), (2.19)

where η ∈ (ξ, ξ + a) and η ∈ (z − a, z + a) overall. Schematically, the position of the points ξ
and η is shown in Figure 2.4.

z
zz − a z + a

ξ ξ + aη

Figure 2.4: Positions of points ξ and η on the axis z. Lagrange’s theorem says that ξ ∈ (z − a, z) and
η ∈ (ξ, ξ + a). Overall, we can say that η ∈ (z − a, z + a).

3We will need it to be at least twice differentiable.
4For a function f differentiable on the interval ⟨a, b⟩, there exists a point c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.
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In the limit a→ 0 goes η → z and so the resulting equation is5

ρ ψ̈(z, t) = Tψ′′(z, t), neboli ρ
∂2ψ

∂t2
(z, t) = T

∂2ψ

∂z2
(z, t). (2.20)

This equation is called the wave equation and we will encounter it throughout the rest of the
semester.

Note that the original discrete equation (2.16) determined the value of the function ψ(z, t)
only at points z = la, l ∈ Z. In the limit a → 0, these points have been condensed and the
result is the equation for all z ∈ R.

2.2 String oscillations and wave equation

Let us derive the wave equation for a string once more, but now straight from the continuous
description. Let the string at rest be stretched along the axis z with tension T . The displacement
of the point (z, 0, 0) will be described by the vector ψ⃗(z, t) = (ψx, ψy, ψz), see figure (2.5).

z

x

y

~ψ(z, t)

Figure 2.5: The displacement of the string from the equilibrium position is described by the vector
ψ⃗(z, t).

The components ψx and ψy represent two independent components of the transverse dis-
placements – we speak of two polarizations of the transverse waves. Component ψz represents
longitudinal displacements in the string. We will only consider transverse oscillations in one
direction, i.e., we will restrict ourselves to the vector of the form ψ⃗ = (ψx, 0, 0) (and we stop
writing the index x).

Consider the segment of the string between points z1 and z2. According to the first impulse
theorem, the change in the total momentum of this piece of string is proportional to the resultant
of the external forces,

dP⃗

dt
= F⃗ (e) = F⃗1 + F⃗2 = F⃗x, (2.21)

where the forces F⃗1 and F⃗2, respectively, act on the left and right ends of the chosen section of
string. See Figure 2.6.

5Alternatively, we can expand the function ψ(z, t) into a Taylor series

ψ(z +∆z, t) = ψ(z, t) +
∂ψ

∂z
(z, t)∆z +

1

2

∂2ψ

∂z2
(z, t)∆z2 +O(∆z3).

Substituting this expansion into (2.16) (for ∆z ∈ {a,−a}) we get

ρψ̈(z, t) = T

(
∂2ψ

∂z2
(z, t) +

O(a3)

a2

)
.

In the limit of a→ 0, the term O(a3) vanishes (the remainder in the Taylor expansion has the property that the

limit of lim∆z→0
O(∆z3)

a3
is finite).
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z

x

z1 z2

~F2
~F2x

~F1x~F1

ϑ2
ϑ1

∆z

Figure 2.6: Forces F⃗1 and F⃗2 acting on the section of a string. At z1 and z2, the string is deflected by
an angle ϑ1 and ϑ2, respectively, from the horizontal direction.

We will consider only small transverse oscillations – the following approximations will follow
from this assumption. We are only interested in the transverse projections of the forces, F⃗1x

and F⃗2x:

Fx1 = −|F1| sinϑ1 ≈ −T tgϑ1 = −T ∂ψ
∂z

(z1, t), Fx2 = |F2| sinϑ2 ≈ T tgϑ2 = T
∂ψ

∂z
(z2, t),

(2.22)
where we have used the assumption that at small deflections the magnitude of the forces Fi
differs little from the string tension at equilibrium T , and we can replace the sine function by
the tangent function, which we will further replace by the derivative of the function ψ in the
direction z.6

The longitudinal forces cancel exactly in the small deviations approximation:

Fz1 = −|F1| cosϑ1 ≈ −T, Fz2 = |F2| cosϑ2 ≈ T. (2.23)

Thus, in the first impulse theorem (2.21), only the component x is nontrivial. Its right-hand
side can be written as

F (e)
x = T

(
∂ψ

∂z
(z2, t)−

∂ψ

∂z
(z1, t)

)
= T∆z

∂2ψ

∂z2
(ξ, t), (2.24)

where we have used Lagrange’s mean value theorem, i.e., ξ ∈ (z1, z2) (see the previous section
on the continuous chain limit for details), and denoted by ∆z = z2 − z1. Let us next look in
more detail at the left-hand side of the impulse theorem. We can express the total momentum
in terms of the center of gravity velocity V⃗CM :

P⃗ =MV⃗CM , V⃗CM = (Vx, 0, 0), (2.25)

where M denotes the total mass of the selected string segment. The position of the center of
gravity is given by

R⃗ =
1

M

∫
l
ρ r⃗ dl =

(
ψCM , 0, zCM =

z1 + z2
2

)
, (2.26)

where ψCM we denote the position of the center of gravity on the axis x, see Figure 2.7.

zz1 z2zCM

ψCM

x

Figure 2.7: The center of gravity of the section of a string.

6The positive directions of the angles are chosen to correspond to the positive value of the derivative at a
given point. Since the force F1x points in the negative direction of the axis x, we have added an explicit sign at
its expression.
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Calculation of ψCM gives

ψCM (t) =
ρ

M

∫ z2

z1

ψ(z, t) dz =
1

∆z

∫ z2

z1

ψ(z, t) dz = ψ(η, t)
∆z

∆z
, (2.27)

where we have used the integral mean value theorem7, η ∈ (z1, z2). Thus, the left-hand side of
the impulse theorem has the form

dPx
dt

=M
d2

dt2
ψCM =M

∂2ψ

∂t2
(η, t). (2.28)

The overall form of the first impulse theorem (its non-trivial component x) in the small devia-
tions approximation is

ρ∆z
∂2ψ

∂t2
(η, t) = T∆z

∂2ψ

∂z2
(ξ, t). (2.29)

After cancelling ∆z, we can perform the limit z2 → z1 and arrive at the wave equation

ρ
∂2ψ

∂t2
(z, t) = T

∂2ψ

∂z2
(z, t). (2.30)

2.3 Longitudinal oscillations

Let us now compare the transverse oscillations with the longitudinal ones, which we have omitted
in the continuous derivation of the wave equation. Let us work again with the discrete model
of weights and springs and look at the right-hand side of the equations of motion (2.2). For
transverse oscillations, the factor k

(
1− a0

a

)
comes out here, and for longitudinal oscillations,

the simple factor k would be there. For springs whose rest length a0 is close to a, the following
would hold

k
(
1− a0

a

)
≪ k. (2.31)

This assumption is usually satisfied for the string model. When the string is stretched, its
elongation is much less than its total length, ∆l ≪ l. Thus, the effective stiffness of springs for
transverse vibrations is much less than that of springs for longitudinal vibrations. It is therefore
much more difficult to excite longitudinal oscillations of comparable amplitude than transverse
oscillations. Therefore, we may have neglected them in the previous description.

Finally, let us still compare the descriptions of the deflections for longitudinal and transverse
oscillations using the function ψ(z, t) in Figure 2.8.

7For a function f continuous on the interval ⟨a, b⟩, there exists a point c ∈ (a, b) such that

∫ b

a

f(x) dx = f(c) (b− a).
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z

xk−1 xk xk+1

z

x

z

ψ(z, t)

(a) Transverse oscillations of a chain and a string.

z

xk−1 xk xk+1

zz z + ψ(z, t)

ψ(z, t)

xk−1

(b) Longitudinal oscillations of a chain and a string.

Figure 2.8: Comparison of longitudinal and transverse oscillations descriptions.

For transverse oscillations, the position of a piece of string is given by a vector (z, ψ(z, t)).
For longitudinal oscillations, the deflected piece of string is at coordinate z + ψ(z, t).

2.4 Sound

Sound is nothing but longitudinal waves in the material. Let us now derive the wave equation
for the pressure changes caused by longitudinal waves in an ideal gas. Consider a tube of gas
with a cross-section S oriented along the axis z. We describe the longitudinal movements of the
gas from its equilibrium position by the function ψ(z, t). Consider a small section of the tube
⟨z, z + dz⟩, then due to the displacements the gas moves to the position〈

z + ψ(z, t), z + dz + ψ(z + dz, t)
〉
. (2.32)

Pressure p(z, t) is applied to the left side of the gas section, pressure p(z + dz, t) is applied to
the right side. See figure 2.9.

S

zψ(z) ψ(z + dz)

z z + dz

p(z) p(z + dz)

Figure 2.9: A tube of air and its small section between points ⟨z, z + dz⟩. Function ψ(z, t) describes the
longitudinal displacement of the gas particles from the equilibrium position. Function p(z, t) describes
the pressure at each point in the tube.

The equation of motion of the chosen section will again be given by the first impulse theorem:

dM
∂2ψ

∂t2
= p(z)S − p(z + dz)S, (2.33)

where dM = ρ dV = ρ0dV0. dV0 denotes the original volume of the segment, dV0 = S dz, dV
is the volume after displacement by the deflections ψ(z, t). The mass of the selected section
remains constant, our imaginary boundary shifts as the gas molecules move. The volume dV
can be expressed as a cross section times length as follows:

dV = S
((
z+dz+ψ(z+dz)

)
−
(
z+ψ(z)

))
= S

(
1 +

ψ(z + dz)− ψ(z)

dz

)
dz = S

(
1 +

∂ψ

∂z

)
dz.

(2.34)
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Another important assumption is that the process in the gas is adiabatic – that is, that heat
is not exchanged between the parts of the gas during pressure changes8. For adiabatic process
in an ideal gas, the following holds

pV κ = const., (2.35)

where κ is the Poisson constant appropriate to the gas. In our case, we consider the gas in our
small section of volume dV , so we have

p0(dV0)
κ = p dV κ, (2.36)

where p0 denotes the pressure of the gas at equilibrium. Expressing the pressure as p:

p = p0

(
dV0
dV

)κ
= p0

(
1 +

∂ψ

∂z

)−κ
≈ p0

(
1− κ

∂ψ

∂z

)
, (2.37)

where we substituted dV from (2.34), for dV0 = S dz, and used the Taylor expansion to the first
order of the function (1 + x)α ≈ 1 + αx in the last equation.

We can write the pressure difference at different locations on the right-hand side of equation
(2.33) using the derivative:

p(z + dz)− p(z)

dz
=
∂p

∂z
≈ −p0κ

∂2ψ

∂z2
, (2.38)

where we have used (2.37). If we now plug the previous result into the equation of motion (2.33)
(after expanding dM = ρ0S dz):

ρ0
∂2ψ

∂t2
= p0κ

∂2ψ

∂z2
. (2.39)

This is the wave equation describing the longitudinal oscillations in the gas tube. If we consider
isothermal action (which satisfies pV = const.), we would not get the Poisson constant κ in the
result.

We will see in Section 2.8 that if the wave equation is written in the form ∂2ψ
∂t2

= v2 ∂
2ψ
∂z2

, then
the constant v represents the wave propagation velocity in a given medium. By comparison with

(2.39) we can write that the speed of sound is v =
√

p0κ
ρ0

. Substituting the atmospheric pressure

p0 = 101, 325 kPa, Poisson’s constant κ = 1, 4, and the density of dry air at temperature 20◦C
ρ0 = 1, 2041 kg.m−3, we get v = 343, 3m.s−1. For κ = 1, we would get v = 290, 1m.s−1.

2.5 Fixed-end string oscillations

Consider now a string of length L, which is stretched between points z = 0 and z = L. The
motion of the inner points of the string is governed by the wave equation:

∂2ψ

∂t2
=
T0
ρ0

∂2ψ

∂z2
, z ∈ (0, L), t ∈ R, (2.40)

where ρ0 is the length density and T0 is the tension on the string. We further consider the
following boundary conditions of so called fixed ends – the string is fixed at the ends, i.e.

ψ(0, t) = 0, ψ(L, t) = 0, ∀t ∈ R. (2.41)

We try to find a solution by the method of separation of variables. We assume a solution of
the form

ψ(z, t) = Z(z)T (t), (2.42)

8Newton considered the process is isothermal. The speed of sound in air then came out wrong.
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with unknown functions Z(z) and T (t) of one variable. If we substitute this ansatz into the
wave equation (2.40), we obtain

Z(z)T̈ (t) =
T0
ρ0
Z ′′(z)T (t). (2.43)

If we now divide this equation by Z(z)T (t) and multiply by ρ0
T0
, we obtain the separated equation

Z ′′

Z
(z) =

ρ0
T0

T̈

T
(t), ∀z, t ∈ R, (2.44)

where the left-hand side depends only on the variable z and the right-hand side depends only
on t. Since this equation must be satisfied for all z, t ∈ R, the left and right sides must equal
the common constant9, let us denote it by C ∈ R:

Z ′′

Z
(z) = C =

ρ0
T0

T̈

T
(t). (2.45)

A simple manipulation leads to two ordinary differential equations for the functions Z(z) and
T (t) with the not-yet-determined constant C:

Z ′′ − CZ = 0, T̈ − C
T0
ρ0
T = 0. (2.46)

Before we start solving the equations (2.46), let us look at the boundary conditions (2.41),
into which we substitute ansatz (2.42):

ψ(0, t) = Z(0)T (t) = 0, ψ(L, t) = Z(L)T (t) = 0, ∀t ∈ R. (2.47)

If we require a non-trivial T (t) (and hence a non-zero solution to ψ(z, t)), the boundary condi-
tions (2.47) reduce to:

Z(0) = 0, Z(L) = 0. (2.48)

We will therefore have to satisfy these when solving equation (2.46) for the function Z(z) with
the as yet undetermined constant C. The solution Z(z) is

Z(z) = c1e
√
Cz + c2e

−
√
Cz, (2.49)

where c1 and c2 are the integration constants. The boundary conditions therefore look as follows

Z(0) = c1 + c2 = 0, Z(L) = c1e
√
CL + c2e

−
√
CL = 0. (2.50)

After substituting from the first equation into the second equation, we have the condition

c1e
−
√
CL
(
e2
√
CL − 1

)
= 0. (2.51)

9If we differentiate the equation (2.44) with respect to the variables z and t, respectively, we obtain:

d

dz

(
Z′′

Z

)
= 0, 0 =

d

dt

(
ρ0
T0

T̈

T

)
.

If a function has zero derivative, the function must be constant:

Z′′

Z
= C1,

ρ0
T0

T̈

T
= C2.

Thus, we have shown that the left and right sides of the equation (2.44) are equal to the constants C1 and C2,
respectively. But since the left-hand sides of the equations written above are equal for ∀z, t, it must be C1 = C2.
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We require a non-trivial solution, i.e., c1(= −c2) ̸= 0; the exponential of e−
√
CL is always non-

zero; thus, it is necessary that the zero term be in parentheses. This is only possible for C < 0,
i.e.

√
C = i

√
|C|, and hence the function Z(z) is of the form

Z(z) = c1e
i
√
|C|z + c2e

−i
√
|C|z = a cos

(√
|C|z

)
+ b sin

(√
|C|z

)
, (2.52)

where in the second equation we have switched to the real solution by choosing c2 = c̄1. Now
the boundary conditions (2.48) take the form:

Z(0) = a = 0, Z(L) = b sin
(√

|C|L
)
= 0, (2.53)

where in the second condition we have already used a = 0. If we require a non-trivial solution,
we need b ̸= 0 and hence the sine must be zero, which leads to the condition:√

|C|L = mπ, m ∈ N. (2.54)

This means that the admissible constants C for which the solution satisfies the boundary con-
ditions are numbered by natural numbers and specifically given as

Cm = −
(mπ
L

)2
. (2.55)

Denoting km = mπ
L , so called wavenumber, then we can write

√
|Cm| = km = mπ

L and the form
of the function Z(z) is

Zm(z) = bm sin(kmz). (2.56)

For each admissible Cm (i.e., those satisfying the boundary conditions), we still have to solve
the corresponding time equation for T (t), see (2.46):

T̈ +
(mπ
L

)2 T0
ρ0
T = 0. (2.57)

This has a solution of the form:

Tm(t) = am sin

(
mπ

L

√
T0
ρ0
t+ φm

)
, (2.58)

where the angular frequency ωm can be written using the wave number km as

ωm =

√
T0
ρ0
km =

√
T0
ρ0

mπ

L
, km =

mπ

L
. (2.59)

The resulting solution of the string motion ψm(z, t) corresponding to the admissible value
of the constant Cm is obtained by substituting into (2.42):

ψm(z, t) = Zm(z)Tm(t) = Am sin
(mπz

L

)
sin

(
mπ

L

√
T0
ρ0
t+ φm

)
, (2.60)

where we have grouped the dependent integration constants and named them Am = ambm.
These solutions represent the vibrational modes of the string. The solutions came out in the
form of so-called standing waves, i.e., in the form ψ(z, t) = Z(z) sin(ωt + φ0), where the wave
retains its shape Z(z) and only changes its amplitude by a harmonic function.
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Since the wave equation (2.40) is linear, the solution is also a linear combination of all the
solutions found above:

ψ(z, t) =

+∞∑
m=1

ψm(z, t), (2.61)

where the coefficients of the linear combination take the place of the amplitudes Am already
hidden in the functions ψm(z, t) (2.60). The resulting general solution found by the method of
separation of variables is

ψ(z, t) =
∞∑
m=1

Am sin (kmz) sin (ωmt+ φm) , (2.62)

where the angular frequency ω and the wave number k satisfy the following dispersion relation,
and the admissible values of the wave numbers km are

ω =

√
T0
ρ0
k, km =

mπ

L
, m ∈ N. (2.63)

The constants Am and φm are given by the initial conditions, while the constants ωm and
km are given by the properties of the physical system we are investigating, here the length of
the string L, its density ρ0 and the tension in it T0 (and the boundary conditions).

Figure 2.10 shows the first four modes of this solution (i.e., functions ψ1 to ψ4).

L0 z

m = 1

m = 2

m = 3

m = 4

Figure 2.10: The first four modes of string motion with fixed ends. The dotted lines indicate the shapes
of the modes shifted by half the time period.

2.5.1 Free end boundary condition

The second type of boundary condition on a finite length string is the free end boundary
condition. Physically, this means that the end of the string is free to slide without friction on a
rod perpendicular to the axis z. In what follows, without loss of generality, let us choose z = 0
to be the location of the boundary.

If we consider that the string attachment has a mass M , then Newton’s equation of motion
for the end of the string will take the form

M
∂2ψ

∂t2
(0, t) = Fx = T

∂ψ

∂z
(0, t), (2.64)

where on the right-hand side is the transverse force from the string acting on the string attach-
ment.
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~Fx, Fx = T ∂ψ

∂z

0

M

Figure 2.11: The transverse force acting on the suspension weight M .

For an massless attachment, M = 0, we obtain from the equation of motion a free end
boundary condition of the form

∂ψ

∂z
(0, t) = 0, (2.65)

i.e., no transverse force acts on the attachment; geometrically – the string is attached horizon-
tally.

2.6 Mathematical supplement: Fourier series

Consider a periodic function f : R → R with period 2L. Then we call the following function a
Fourier series fF of the function f :

fF (z) =
a0
2

+
+∞∑
m=1

(
am cos

mπz

L
+ bm sin

mπz

L

)
, (2.66)

where the coefficients am and bm are given by the relations:

am =
1

L

∫ L

−L
f(z) cos

mπz

L
dz, m ∈ N0; bm =

1

L

∫ L

−L
f(z) sin

mπz

L
dz, m ∈ N. (2.67)

For piecewise differentiable functions, at the points of continuity the Fourier series converges
to the original function f , fF (z) = f(z). For the discontinuity point z0, the following holds

fF (z0) =
1

2

(
lim

z→z0+
f(z) + lim

z→z0−
f(z)

)
, (2.68)

thus, the Fourier series converges to the average of the one-sided limits of the function f at this
point.

The Fourier series represents the expansion of the periodic function f into a discrete super-
position of harmonic waves.

For even functions (f(x) = f(−x)) and odd functions (f(x) = −f(−x)), respectively, the
Fourier series (2.66) and the formulas for the coefficients am and bm (2.67) simplify. For even
functions we get

am =
2

L

∫ L

0
f(z) cos

mπz

L
dz, bm = 0, fF (z) =

a0
2

+

+∞∑
m=1

am cos
mπz

L
. (2.69)

For odd functions:

am = 0, bm =
2

L

∫ L

0
f(z) sin

mπz

L
dz, fF (z) =

+∞∑
m=1

bm sin
mπz

L
. (2.70)
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*Note from a linear algebra perspective: the Fourier series is actually the decomposition of
the vector f from the vector space of periodic functions F into an (infinite) basis

B = {(cos kmz)+∞m=0 , (sin kmz)
+∞
m=1}, (2.71)

where km = mπ
L . Moreover, if we introduce the scalar product of two periodic functions f and

g (f, g ∈ F) as

⟨f, g⟩ := 1

L

∫ L

−L
f(z)g(z) dz, (2.72)

then the coefficients am and bm are nothing but the coefficients of the linear combination
obtained as the projection of the vector f onto the basis vectors by the scalar product (2.72)10:

am = ⟨f, cos kmz⟩, bm = ⟨f, sin kmz⟩, (2.73)

In linear algebra, these coefficients are called Fourier coefficients.

2.6.1 Even and odd extensions

Let us have a function f : ⟨0, L⟩ → R. Let us define its so-called even and odd extensions
feven : R → R and fodd : R → R.

First, define the functions feven and fodd on the interval ⟨0, L⟩ to agree with the original
function f :

feven|⟨0,L⟩ = f, fodd|⟨0,L⟩ = f. (2.74)

Then we redefine the functions feven and fodd on the interval ⟨−L, 0⟩ as follows:

feven(z) = f(−z), fodd(z) = −f(−z), z ∈ ⟨−L, 0⟩, (2.75)

i.e., so that the function feven is even on the interval ⟨−L,L⟩ and the function fodd is odd11 on
⟨−L,L⟩.

Finally, we uniquely redefine the functions feven and fodd to integer R so that they are
periodic functions with period 2L. The result of these extensions for the particular case of the
function f in Figure 2.12 can be seen in Figure 2.13.

L0 z

f(z)

Figure 2.12: The original function f : ⟨0, L⟩ → R defined only on the interval ⟨0, L⟩.

10Except for the coefficient a0, where we are bothered by the non-normality of the function f(z) = 1, ⟨f, f⟩ = 2
11For the odd extension, there may be a problem if f(0) ̸= 0 and f(L) ̸= 0 (the function cannot then be odd

or periodic, respectively). We can safely ignore this problem, since the coefficients of the Fourier series am and
bm are given by integral formulas and the integrals are not sensitive to a change in the functional value of the
integrated function at a single point. Thus, we can imagine redefining the original function f at the odd extension
by putting f(0) = f(L) = 0.
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L0 z

feven

−L

(a) Even extension feven.

L0 z

fodd

−L

(b) Odd extension fodd.

Figure 2.13: Even and odd extensions of function f .

From the given function f : ⟨0, L⟩ → R we obtained the periodic even and odd functions
feven and fodd, respectively. We can then compute their Fourier series, which, due to evenness
and oddness, respectively, come out in the following forms:

feven(z) =
a0
2

+
+∞∑
m=1

am cos
mπz

L
, fodd(z) =

+∞∑
m=1

bm sin
mπz

L
, (2.76)

where the coefficients am and bm are, according to (2.69) and (2.70), respectively, given by

am =
2

L

∫ L

0
feven(z) cos

mπz

L
dz =

2

L

∫ L

0
f(z) cos

mπz

L
dz,

bm =
2

L

∫ L

0
fodd(z) sin

mπz

L
dz =

2

L

∫ L

0
f(z) sin

mπz

L
dz, (2.77)

where we have taken advantage of the fact that feven(z) = fodd(z) = f(z) for z ∈ ⟨0, L⟩. Then

f(z) =
a0
2

+
+∞∑
m=1

am cos
mπz

L
=

+∞∑
m=1

bm sin
mπz

L
pro z ∈ ⟨0, L⟩. (2.78)

Thus, we were able to express the function f on the interval ⟨0, L⟩ as a linear combination of
either the sine functions only or the cosine functions only.

2.7 Initial value problem for fixed ends

Now we want to find a particular motion of the string, given the initial conditions. Let us write
down the procedure of this problem for the boundary conditions of fixed ends.

The initial conditions consist of the initial position of the string and the initial velocity of
the string (for simplicity, we choose that they are given in time t = 0). These are specified as a
function of the initial position f : ⟨0, L⟩ → R (we must specify the initial displacement of each
point of the string) and as a function of the initial velocity g : ⟨0, L⟩ → R (the same for the
initial velocity of each point of the string). Thus, our particular solution must satisfy:

ψ(z, 0) = f(z),
∂ψ

∂t
(z, 0) = g(z), ∀z ∈ ⟨0, L⟩. (2.79)

In order to achieve this, we have the integration constants Am and φm whose value we want to
determine.
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Initial conditions. Let us write the left-hand sides of the equations (2.79) explicitly, i.e.,
let us add the time t = 0 to the general solution (2.62) and its time derivative:

ψ(z, 0) =
+∞∑
m=1

(Am sinφm) sin
mπz

L
= f(z),

∂ψ

∂t
(z, 0) =

+∞∑
m=1

(Amωm cosφm) sin
mπz

L
= g(z). (2.80)

Odd extensions of the functions f and g. Now we need to write the functions f and
g as Fourier series, which will contain only the functions sin mπz

L . This is easily achieved if we
compute the series of the functions f and g in odd extension (see Section 2.6.1):

f(z) =

+∞∑
m=1

fm sin
mπz

L
, g(z) =

+∞∑
m=1

gm sin
mπz

L
, (2.81)

where the coefficients fm and gm are given by the following formulae:

fm =
2

L

∫ L

0
f(z) sin

(mπz
L

)
dz, gm =

2

L

∫ L

0
g(z) sin

(mπz
L

)
dz. (2.82)

Equations for the coefficients Am, φm. The equations for the coefficients Am and φm
are obtained by comparing the series (2.80) and (2.81) term by term:

Am sinφm = fm, Amωm cosφm = gm. (2.83)

These equations can be (formally12) solved:

Am =

√
f2m +

g2m
ω2
m

, tgφm =
fmωm
gm

. (2.84)

2.8 d’Alembert’s solution of the wave equation

Consider a wave equation of the form

∂2ψ

∂t2
= v2

∂2ψ

∂z2
, (2.85)

which we rewrite into the following form by starting to look at partial derivatives as differential
operators: (

1

v2
∂2

∂t2
− ∂2

∂z2

)
ψ = 0. (2.86)

The differential operator on the left-hand side of the previous equation is called d’Alembert
operator13 and is denoted □:

□ =
1

v2
∂2

∂t2
− ∂2

∂z2
. (2.87)

12Formal is the second equation, which actually represents the two equations sinφm = fm
Am

and cosφm = gm
Amωm

that uniquely define the angle φm for Am ̸= 0. If Am = 0, the corresponding mode is missing and its phase does
not matter.

13Another convention introduces a d’Alembert operator with the opposite sign
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Due to the commutativity of partial derivatives, the identity A2 − B2 = (A − B)(A + B) also
applies to derivatives and we can write

□ψ =

(
1

v

∂

∂t
− ∂

∂z

)(
1

v

∂

∂t
+

∂

∂z

)
ψ = 0. (2.88)

Now, we would like to introduce new variables to simplify the form of the equation (2.88).
We do this by introducing the variables ξ and η according to the following rules

ξ = z − vt, η = z + vt,

(
z =

ξ + η

2
, t =

η − ξ

2v

)
. (2.89)

z

vt

η

ξ

Figure 2.14: Original coordinates (z, vt) and new coordinates (ξ, η).

Let’s rewrite the wave equation in the original variables z, t into the new variables ξ, η. We
define a new function ψ̃(ξ, η) by the substitution:

ψ̃(ξ, η) := ψ (z(ξ, η), t(ξ, η)) = ψ

(
ξ + η

2
,
η − ξ

2v

)
. (2.90)

The inverse substitution will then look like the following

ψ(z, t) = ψ̃(z − vt, z + vt) = ψ̃(ξ, η). (2.91)

These substitution relations allow us to transform the derivatives. If we differentiate ψ
according to the variables z and t, we obtain, according to the chain rule14

∂ψ

∂t
=
∂ψ̃

∂ξ

∂ξ

∂t
+
∂ψ̃

∂η

∂η

∂t
= −v∂ψ̃

∂ξ
+ v

∂ψ̃

∂η
,

∂ψ

∂z
=
∂ψ̃

∂ξ

∂ξ

∂z
+
∂ψ̃

∂η

∂η

∂z
=
∂ψ̃

∂ξ
+
∂ψ̃

∂η
. (2.92)

14Let’s have the function f(x1, . . . , xk) : Rk → R and k-three functions gi(y1, . . . , yl) : Rl → R. We obtain the
function h(y1, . . . , yl) : Rl → R by composing

h(y1, . . . , yl) = f (g1(y1, . . . , yl), . . . , gk(y1, . . . , yl))

Then the chain rule states

∂h

∂yi
=

k∑
m=1

∂f

∂xm

∂gm
∂yi

.

This rule is an extension of the rule for differentiating a composite function, [f(g(x))]′ = f ′(g(x)) g′(x), into
multiple variables. Here we have ψ̃(ξ, η) ∼ f(x1, x2), ξ(z, t) ∼ g1(y1, y2), η(z, t) ∼ g2(y1, y2).
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Combining these results into the form of the operators appearing in (2.88):(
1

v

∂

∂t
− ∂

∂z

)
ψ =

(
∂

∂η
− ∂

∂ξ
− ∂

∂ξ
− ∂

∂η

)
ψ̃ = −2

∂

∂ξ
ψ̃,(

1

v

∂

∂t
+

∂

∂z

)
ψ =

(
∂

∂η
− ∂

∂ξ
+

∂

∂ξ
+

∂

∂η

)
ψ̃ = 2

∂

∂η
ψ̃. (2.93)

Thus, in the language of differential operators, we have

1

v

∂

∂t
− ∂

∂z
= −2

∂

∂ξ
,

1

v

∂

∂t
+

∂

∂z
= 2

∂

∂η
. (2.94)

Substituting these expressions into the wave equation (2.88), we get

∂2ψ̃

∂ξ∂η
= 0. (2.95)

This equation has a solution15 in the form

ψ̃(ξ, η) = F (ξ) +G(η), (2.96)

where F,G : R −→ R are arbitrary real functions of one real variable (appropriately differen-
tiable). Using the original variables, the function ψ(z, t) is of the form

ψ(z, t) = F (z − vt) +G(z + vt), (2.97)

We call this solution the d’Alembert solution of the wave equation. What is the physical meaning
of this solution? Consider first the situation with G ≡ 0. In time t = 0, the function F (z) simply
represents the shape of the excited wave. Next, let us consider the evolution of the location of
constant phase. We call phase the argument of the function F , i.e., z− vt. Let us find the time
dependence of the location zc(t) as a solution of equation z − vt = c, where c is an arbitrary
constant. This is trivially

zc(t) = c+ vt. (2.98)

(for the initial condition zc(0) = z0 we get zc(t) = z0 + vt). Thus, a particular point on the
wave propagates at speed v. Thus, the part of the solution F (z − vt) represents a wave (of the
shape of the form of the function F (z)) propagating as a whole in the positive direction of the
axis z at speed v. This velocity is called phase velocity. By analogy, if we look at the function
G(z + vt), it represents a wave of the form G(z) propagating with velocity v in the negative
direction of the axis z.

15If we write the equation in the form
∂

∂ξ

(
∂ψ̃

∂η

)
= 0,

we see that the function ∂ψ̃
∂η

is a function of the variable η only,

∂ψ̃

∂η
= g(η).

We now integrate this with respect to η and get

ψ̃(ξ, η) =

∫
g(η) dη︸ ︷︷ ︸
G(η)

+F (ξ),

where F (ξ) is the integration constant with respect to the integration variable η.
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z

F (z − vt) G(z + vt)

ψ(z, t) = F (z − vt) +G(z + vt)

Figure 2.15: d’Alembert’s solution representing the superposition of two oppositely propagating waves
F (z − vt) and G(z + vt).

2.8.1 Emission of travelling waves

How can we build these travelling waves? Consider that our environment, e.g. a string, has an
oscillating source at z = 0, which determines a displacement at this point by its motion:

ψ(0, t) = y(t), (2.99)

y(t) is an arbitrary but given function. A condition of this type, where we give the state of
the system for a given position, is generally called a boundary condition. It determines the
form of the solution at the edge of the system under study. This is specifically the condition
in z = 0. To obtain an unambiguous solution to this emission problem, we need to prescribe a
second boundary condition at the other “edge” of the system, here z = +∞. We require that no
waves come from infinity, i.e., we prescribe G ≡ 0. This boundary condition is called radiation
boundary condition.

Now we can find the concrete form of d’Alembert’s solution. After substituting ψ(z, t) =
F (z − vt) into (2.99):

ψ(0, t) = F (−vt) = y(t) −→ F (x) = y
(
−x
v

)
. (2.100)

Knowing the concrete form of the function F (x) we can easily already write

ψ(z, t) = F (z − vt) = y

(
−z − vt

v

)
= y

(
t− z

v

)
. (2.101)

The resulting solution is therefore of the form

ψ(z, t) = y
(
t− z

v

)
. (2.102)

What is the expression in the argument of the driving function y? The fraction z
v represents

the time it takes for the signal emitted at point z = 0 to propagate to point z. This means that
the wave we observe at point z at time t was radiated from the source at time t − z

v . We call
this time retarded time:

tr = t− z

v
. (2.103)

Symbolically, we can write
ψ(z, t) = y(tr). (2.104)

2.8.2 Harmonic travelling wave

If the source harmonically oscillates according to the prescription

y(t) = A cos(ωt+ φ), (2.105)
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then the emitted wave is of the form

F (x) = y
(
−x
v

)
= A cos

[
ω
(
−x
v

)
+ φ

]
= A cos

(ω
v
x− φ

)
, (2.106)

resp.

ψ(z, t) = y
(
t− z

v

)
= A cos

[
ω
(
t− z

v

)
+ φ

]
= A cos

(
ωt− ω

v
z + φ

)
. (2.107)

If we denote the wave number by k = ω
v (dispersion relation), we get the harmonic travelling

waves

ψ(z, t) = A cos(ωt− kz + φ). (2.108)

For the function G(x) = A cos(kx+φ) we have a wave propagating in the opposite direction

ψ(z, t) = G(z + vt) = A cos(ωt+ kz + φ). (2.109)

2.8.3 Initial value problem for the d’Alembert solution

Consider a string extending along the whole axis z. The initial conditions for position and
velocity in time t = 0 are of the form

ψ(z, 0) = f(z),
∂ψ

∂t
(z, 0) = g(z), ∀z ∈ R, (2.110)

where f, g : R → R are functions of the initial position and velocity. If we plug the d’Alembert
solution (2.97) into the above initial conditions, we get

ψ(z, 0) = F (z) +G(z) = f(z),
∂ψ

∂t
(z, 0) = (−v)F ′(z) + v G′(z) = g(z), (2.111)

where by the symbols F ′ and G′, respectively, we mean dF
dx and dG

dx . We integrate the second of
the initial conditions (with respect to the variable z),

G(z)− F (z) =
1

v

∫
g(z) dz︸ ︷︷ ︸
g̃(z)

+ c, (2.112)

where we denote the primitive function (including the constant 1
v ) as g̃(z) and the integration

constant as c. Now we just need to add and subtract the left equation in (2.111) with the
previous equation to get

F (x) =
f(x)− g̃(x)− c

2
, G(x) =

f(x) + g̃(x) + c

2
, (2.113)

where we have additionally renamed the variable to x. The resulting concrete solution satisfying
the given initial conditions is obtained by substituting it into the d’Alembert solution:

ψ(z, t) = F (z − vt) +G(z + vt) =
f(z − vt)− g̃(z − vt)

2
+
f(z + vt) + g̃(z + vt)

2
, (2.114)

The constants c
2 canceled each other. Let us repeat that g̃(x) is a primitive function to 1

vg(x),
g̃(x) = 1

v

∫
g(x) dx. Note that the resulting solution does not depend on the value of the

integration constant c – it does not depend on the choice of the primitive function – and thus
the solution is uniquely determined by the initial conditions.
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2.9 Energy of waves

Let’s now look at the waves on the string from an energy perspective – we find expressions for
the mechanical energy in a given section of the string. We derived the equation of motion of
the string from the first impulse theorem,

dP⃗

dt
= F⃗ (e). (2.115)

Since the law of conservation of mechanical energy applies to systems where no external forces
are acting, and since the chosen section of the string is subject to external forces from the rest
of the string, the energy will not be conserved at that particular point on the string, but will
be transferred from one point to another. We now quantify these considerations.

The total energy is the sum of kinetic and potential energy. The kinetic energy of a small
section of string ⟨z, z + dz⟩ is

dT =
1

2
dmv2 =

1

2
ρ

(
∂ψ

∂t

)2

dz, (2.116)

where we have substituted dm = ρ dz.

We introduce the general notion of energy density ε as follows. If dE is the energy contained
in the segment ⟨z, z + dz⟩, we define the energy density ε as

dE = ε dz. (2.117)

The energy contained in the finite section ⟨z1, z2⟩ is then given by

E =

∫ z2

z1

dE(z) =

∫ z2

z1

ε dz. (2.118)

While the unit of energy is [E] = J, the unit of (linear) energy density is [ε] = J.m−1.

Thus, kinetic energy density according to the previous definition and expression (2.116) is

τ =
1

2
ρ

(
∂ψ

∂t

)2

. (2.119)

Next, to derive an expression for the potential energy, we use the discrete model of a chain of
atoms and its consequent continuous limit. In the string section ⟨z, z + dz⟩, the total potential
is the sum of the potential energies of the individual springs,

dU =
∑
l

Ul. (2.120)

The linearized expression for the increase in potential energy at transverse displacements
is16:

Ul =
1

2
k
(
1− a0

a

)
(∆ψl)

2 , (2.121)

where ∆ψl is the difference in displacements of adjacent weights, see Figure 2.16.

16This is an approximation of the small oscillations of the spring potential at transverse deflections U(y) =

1
2
k
(√

a2 + y2 − a0
)2
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∆ψl
ψl

ψl+1

za

Figure 2.16: The displacements ψl of the individual weights of the chain and their difference ∆ψl.

The number of springs between ⟨z, z + dz⟩ is dN = dz
a . For a small stretch of a string, we

can consider that all ∆ψl are approximately equal17 and hence

dU = dN Ul0 =
1

2
ka
(
1− a0

a

)(∆ψl0
a

)2

dz. (2.122)

Performing the continuous limit a→ 0 (and holding T = ka
(
1− a0

a

)
= const.), the fraction

∆ψ
a becomes the derivative ∂ψ

∂z and we get

dU =
1

2
T

(
∂ψ

∂z

)2

dz. (2.123)

Potential energy density is then

u =
1

2
T

(
∂ψ

∂z

)2

. (2.124)

We can now write total energy density on the string as

ε = τ + u =
1

2
ρ

(
∂ψ

∂t

)2

+
1

2
T

(
∂ψ

∂z

)2

. (2.125)

The total energy in the segment ⟨z1, z2⟩ is given by the integral

E⟨z1,z2⟩(t) =

∫ z2

z1

ε(z, t) dz. (2.126)

Let us see how this energy changes with time:

dE⟨z1,z2⟩

dt
=

∫ z2

z1

∂ε

∂t
dz =

∫ z2

z1

ρ
∂ψ

∂t

∂2ψ

∂t2
+ T

∂ψ

∂z

∂2ψ

∂z∂t
dz. (2.127)

Using the wave equation, we have

dE⟨z1,z2⟩

dt
= T

∫ z2

z1

∂ψ

∂t

∂2ψ

∂z2
+
∂ψ

∂z

∂2ψ

∂z∂t
dz = T

∫ z2

z1

∂

∂z

(
∂ψ

∂t

∂ψ

∂z

)
dz = T

[
∂ψ

∂t

∂ψ

∂z

]z2
z1

. (2.128)

17It can again be done more rigorously. The expression ∆ψk
a

can be written as ψ′(ξk, t) using the mean value
theorem and then

∆U =
∑
k

1

2
Tψ′(ξk, t)

2 a
a→0−→ ∆U =

∫ z2

z1

1

2
Tψ′(z, t)2dz =

1

2
Tψ′(ξ, t)2∆z,

where we have used the definition of the Riemann integral as the limit of integral sums and the integral mean
value theorem in the last equality. If we now ∆z → 0, we will go ξ → z and get

dU =
1

2
Tψ′(z, t)2 dz.
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If we define the quantity energy flux S

S(z, t) = −T ∂ψ
∂t

∂ψ

∂z
, (2.129)

then we can write the equation (2.128) as

dE⟨z1,z2⟩(t)

dt
= S(z1, t)− S(z2, t), (2.130)

i.e., that the temporal change of energy in a given string section is given by the balance of
energy inflow and outflow at its ends. A positive flux at point z1 increases the total energy
and a positive flux at point z2 decreases it. The equality (2.130) represents the integral law
of conservation of energy on the string. Let us show that the energy flux S is nothing but
the power of the tension forces on the string. This result will not be surprising, because it
actually represents the third impulse theorem – the time change in the total energy of a system
of particles is equal to the power of the external forces. Consider the situation at z1 in Figure
2.17.

zz1

~v

~F = ~T
~Fpr

α

Figure 2.17: The tension force applied at point z1 from the rest of the string to the section ⟨z1, z2⟩. The
velocity of the string is v = ∂ψ

∂t . The magnitude of the transverse projection is Fpr = T cosα.

When substituted into the formula for mechanical power:

P = F⃗ · v⃗ = T⃗ · v⃗ = −T v cosα = −Fpr v = −T ∂ψ
∂z

∂ψ

∂t
= S, (2.131)

where we have explicitly included a minus sign in the scalar product since the vectors form an
obtuse angle in the situation in Figure 2.17. From relation P = S we can easily write the units
of the energy flux [S] = W = J.s−1.

We obtain the differential form of the conservation law by the limit z2 → z1. We rewrite
the left-hand side of the conservation law using the integral mean value theorem,

dE

dt
=

∂

∂t
ε(ξ, t)∆z, (2.132)

where ∆z = z2 − z1. After substituting into (2.130) (and dividing by ∆z):

∂ε

∂t
(ξ, t) = −S(z2, t)− S(z1, t)

∆z

∆z→0−→ ∂ε

∂t
+
∂S

∂z
= 0 (2.133)

Performing the limits of ∆z → 0 we get the differential law of conservation of energy on the
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string18:

∂ε

∂t
+
∂S

∂z
= 0. (2.134)

This is actually the equation of continuity19. The temporal change in energy density is given
by the (spatial) change in energy flux at a given location.

The energy quantities (ε, τ , u, S) are quadratic in deviation ψ. Thus, the superposition
principle does not hold! Consider the superposition of two waves ψ = ψ1 + ψ2, then

εψ1+ψ2 ̸= εψ1 + εψ2 , etc. (2.135)

For example, for the time derivative we have(
∂ψ

∂t

)2

=

(
∂ψ1 + ψ2

∂t

)2

=

(
∂ψ1

∂t

)2

+

(
∂ψ2

∂t

)2

+ 2
∂ψ1

∂t

∂ψ2

∂t︸ ︷︷ ︸
interference term

. (2.136)

2.9.1 Energy in a travelling wave

Consider a wave propagating in one direction

ψ(z, t) = F (z − vt). (2.137)

Denote by F ′(x) = dF
dx , then the derivatives by z and t have the following form and the

relation between them holds:

∂ψ

∂z
= F ′(z − vt),

∂ψ

∂t
= −vF ′(z − vt) −→ −v∂ψ

∂z
=
∂ψ

∂t
. (2.138)

Consequently, the equality of kinetic and potential energy densities, u = τ , holds, or

τ =
1

2
ρ

(
∂ψ

∂t

)2

=
1

2
ρv2

(
∂ψ

∂z

)2

=
1

2
T

(
∂ψ

∂z

)2

= u (2.139)

For the total energy, therefore, ε = u+ τ = 2u = 2τ .

18We could also arrive at it in another way. Rewrite (2.130) as

dE

dt
=

∫ z2

z1

∂ε

∂t
dz = −

∫ z2

z1

∂S

∂z
dz,

put all the terms on one side, ∫ z2

z1

(
∂ε

∂t
+
∂S

∂z

)
dz = 0,

and since this equality must hold for any z1, z2, the integrand must be zero.
19Remember the equation of continuity in electricity and magnetism:

∂ρ

∂t
+ div j⃗ = 0.

For a 1D problem (current flowing only in the direction of the axis z), we would get

∂ρ

∂t
+
∂j

∂z
= 0.
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Let us next look at the energy flux in a travelling wave. We can choose two different
manipulations:

S = −T ∂ψ
∂z

∂ψ

∂t
= Tv

(
∂ψ

∂z

)2

= 2τv = ε v (2.140)

=
T

v

(
∂ψ

∂t

)2

= Z

(
∂ψ

∂t

)2

, (2.141)

where we have introduced the quantity impedance Z =
√
Tρ (after substitution from v =

√
T
ρ ).

Thus, one result is

S = ε v, energy flux = energy density · speed of propagation. (2.142)

We can say that the propagation of a wave on a string is actually the propagation of energy
along the string. Or the second result:

S = Z

(
∂ψ

∂t

)2

energy flux = impedance · square of velocity, (2.143)

which tells us how to convert the velocity at a given point into a flux of energy at that point –
through a constant of proportionality called impedance.

2.9.2 Example: Harmonic travelling wave

For a harmonic wave,

F (x) = A cos kx, ψ(z, t) = F (z − vt) = A cos(ωt− kz), (2.144)

we get the following forms of kinetic and potential energy densities and energy flux:

τ =
1

2
ρA2ω2 sin2(ωt− kz),

u =
1

2
TA2k2 sin2(ωt− kz) =

1

2

T

v2
A2ω2 sin2(ωt− kz) = τ,

S = ZA2ω2 sin2(ωt− kz). (2.145)

For the mean values, we have

⟨τ⟩ = ⟨u⟩ = 1

4
ρA2ω2, ⟨S⟩ = 1

2
ZA2ω2. (2.146)
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Chapter 3

Dispersion relation, wave packets,
group velocity

3.1 Phase velocity, dispersion relation

3.1.1 Travelling waves

Consider a harmonic travelling wave ψ(z, t) (or its complexification) of the form:

ψ(z, t) = A cos(ωt− kz), ψ̂(z, t) = Aei(ωt−kz), (3.1)

Where ω is called the angular frequency, [ω] = s−1, k the wave number, [k] = m−1. These give
the period T , [T ] = s, and the wavelength λ, [λ] = m, of this wave by the relations

ω =
2π

T
, k =

2π

λ
. (3.2)

This wave is shown in Figure 3.1.

λ = 2π
k

T = 2π
ω

vϕ
z

Figure 3.1: Harmonic travelling wave. At any given point z = z0, we observe a harmonic oscillation
with period T . In space, the harmonic wave has wavelength λ. The wave as a whole moves with phase
velocity vφ.

Let us now study the phase function φ(t) = ωt − kz. Let us derive the relation for the
velocity of motion of a place of constant phase, φ(t) = φ0 = const. We express the function z(t)
implicitly given by this equation:

φ(t) = ωt− kz = φ0 −→ z(t) =
ω

k
t− φ0

k
= vφt−

φ0

k
. (3.3)

From it we read the so-called phase velocity of magnitude

vφ =
ω

k
. (3.4)
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3.1.2 Dispersion relation

We have no restrictions on parameters ω and k yet (except that we consider only positive
values). However, if we want to excite a harmonic travelling wave in some environment, we fail
to do so for arbitrary combinations of angular velocity ω and wave number k.

Example. Consider the wave equation,

∂2ψ

∂t2
= v2

∂2ψ

∂z2
, (3.5)

and substitute a harmonic travelling wave (3.1) and require that the wave equation is satisfied
for all points in space and time. The individual derivatives come out as follows

∂2ψ

∂t2
= −ω2ψ,

∂2ψ

∂z2
= −k2ψ, (3.6)

and thus

(ω2 − v2k2)ψ = 0. (3.7)

If we require a non-trivial solution (i.e. a non-zero amplitude of the travelling wave), the
following relation must be satisfied

ω = vk. (3.8)

This relation is called a dispersion relation. It specifies the admissible combinations of angular
frequencies ω and wave numbers k for which the travelling wave is a solution of the wave
equation. From the form of the dispersion relation, we see that the constant v in the wave
equation has the meaning of phase velocity.

In general, a dispersion relation is of the form

ω = ω(k), k = k(ω) (3.9)

(one form is the inverse of the other). Thus, it is a function of ω(k), or k(ω) given by the
physical environment. This relation characterizes the wave properties of a given medium in
the sense that it gives us the admissible (i.e., solving the equations describing the medium)
harmonic travelling waves propagating through that medium:

ψ(z, t) = Aei(ω(k)t−kz) = Aei(ωt−k(ω)z). (3.10)

The phase velocity of these travelling waves is given by

vφ =
ω

k
, vφ(k) =

ω(k)

k
, vφ(ω) =

ω

k(ω)
. (3.11)

We see that, in general, the phase velocity can depend on the angular frequency ω, or wave
number k, of the excited wave.

The interpretation of the two mutually inverse dispersion relations in (3.9) is shown in
Figure 3.2. We can have a wave source oscillating at angular frequency ω, then the function
k(ω) gives the wavenumber k (wavelength λ) of the resulting travelling waves. Or we can build
up standing waves in the medium with a wavenumber k, then the expression ω(k) tells us what
angular frequency ω they will oscillate at.

56



vϕ

λ

ω

(a) Emission of a travelling wave by a source of
angular frequency ω.

λ

ω

(b) Standing wave oscillations of wavelength λ.

Figure 3.2: The dispersion relation gives the relationship between angular frequency ω and wavenumber
k = 2π

λ (and hence wavelength λ).

Examples of various dispersion relations can be found in Table 3.1.

Environment Dispersion relation Comment
string, sound, EM wave ω = vk linear dispersion relation
chain of atoms ω = ωmax sinβk
waveguide, ionosphere ω2 = ω2

min + v2k2

waves on shallow water ω2 = gk tanh kh gravity g, depth h
waves on deep water ω =

√
gk, ω2 = gk + σ

ρ k
3 surface tension σ, density of water ρ

non-ideal string ω2 = T
ρ k

2 + αk4

light in matter ω = c
nk, n(ω) =

√
1 + α(ω2

0 − ω2)−1

Table 3.1: Examples of dispersion relations in various environments.

3.1.3 Reactive Environment

What happens if we have a source of angular frequency ω in a given environment (medium),
but there is no wave number k ∈ R that satisfies the given dispersion relation? In this case, we
speak of reactive environment. More precisely, for a given angular frequency, the environment
appears to be reactive. In this environment, it is not possible to excite a travelling wave of the
chosen angular frequency ω. An environment that allows the propagation of a travelling wave
with angular frequency ω is called transparent environment.

Example. Consider an example of an environment that has the following form of the
dispersion relation

ω2 = ω2
min + v2k2 ↔ ∂2ψ

∂t2
= v2

∂2ψ

∂z2
− ω2

minψ, (3.12)

where the given wave equation on the right leads to the dispersion relation given on the left.
For ω ∈ ⟨ωmin,+∞) there exists k ∈ R satisfying the dispersion relation. Thus, for ω ≥ ωmin

this is a transparent environment. For ω < ωmin we cannot find a real wave number k ∈ R, but
there is a solution for k ∈ C:

k = i

√
ω2
min − ω2

v2
= iκ. (3.13)

If I plug this solution for k ∈ C into the travelling wave (which gave rise to the dispersion
relation) I get the wave that the source will induce in this reactive medium:

ψ(z, t) = ei(ωt±kz) = ei(ωt±iκz) = e∓κzeiωt. (3.14)

That is, an exponentially damped standing wave; this is shown in Figure 3.3. These non-
propagating waves are called evanescent waves. Thus, in a reactive medium/environment, the
wave does not propagate, but is exponentially damped – this is due to the complex solution iκ,
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where the harmonic oscillations (in the form of a complex exponential) become a real exponen-
tial.

ω

standing wave

Figure 3.3: A wave source of angular frequency ω at the boundary of the reactive medium will produce
an exponentially damped standing wave.

Figure 3.4 shows the propagation of a wave in a transparent medium that is obstructed by
a reactive medium of finite width. Passing through the reactive medium will partially dampen
the wave. We can define a distance called depth of penetration, δ = 1

κ , where the amplitude of
the wave drops to 1/e.

vφ

vφ

travelling wave

travelling wave

standing wave

reactive environment

Figure 3.4: A travelling wave in a transparent medium that encounters a thin reactive medium will
partially decay exponentially.

Example. Let’s look at a more complicated example of a chain of atoms. The dispersion
relation is of the form

ω = ωmax sinβk, β =
a

2
, (3.15)

which was derived by substituting a standing wave

ψl(t) = [Re eikla]eiωt (3.16)

into the equations of motion1, ψl gives the deflection of the l-th weight, a is the distance
of the individual bodies, see figure 3.5. We see that the chain is a transparent medium for
ω ∈ ⟨0, ωmax⟩.

a

l l + 1l − 1 z

ψl

Figure 3.5: The chain of atoms. The individual atoms are numbered l ∈ Z, their displacements are
described by functions ψl(t), and the distance between the atoms is a.

1The standing wave is produced by the superposition of travelling waves, so the dispersion relation encodes
the same information for travelling and standing waves.
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For ω ∈ ⟨0, ωmax⟩ there exists k ∈ R satisfying the dispersion relation and hence it is a
transparent medium. In the reactive regime for ω > ωmax, the simple trick k → iκ we used
in the previous example will not work (try to work out that the dispersion relation will not be
satisfied for ω, κ ∈ R). So let us first manipulate the dispersion relation (3.15) using complex
exponentials:

ω

ωmax
= sinβk =

eiβk − e−iβk

2i
=

(−i)eiβk + ie−iβk

2
=
ei(βk−

π
2
) + e−i(βk−

π
2
)

2
, (3.17)

where we have used the identity of e±i
π
2 = ±i. For the purely imaginary choice of βk − π

2 , i.e.,
for example, of the form βk − π

2 = iβκ, κ ∈ R, we get

ω

ωmax
=
eβκ + e−βκ

2
= coshβκ ≥ 1. (3.18)

Thus, by choosing k = iκ− 1
β
π
2 and for ω > ωmax we satisfy the dispersion relation for ω, κ ∈ R,

and it is of the form

ω = ωmax coshβκ. (3.19)

The waveform of the evanescent wave (after substituting k = iκ+ 1
β
π
2 into (3.16)) is

ψl(t) = e−κlae
i 1
β
π
2
la
eiωt = (−1)le−κlaeiωt, (3.20)

this is shown in Figure 3.6.

ω

z

ψl(t)

Figure 3.6: A wave on a chain of atoms in the reactive mode. The displacement of adjacent weights
differs by a factor −1. The whole system oscillates as a standing wave with angular frequency ω (the gray
positions of the weights are plotted half a period later than the black positions of the weights shown).
The amplitude of the oscillation decreases exponentially with distance from the source of the wave.

3.2 Mathematical supplement: Fourier transform

We have already seen how to decompose a periodic signal into a (discrete) sum of harmonic
waves. This was the decomposition of a periodic function into a Fourier series. Consider a
function f(t) : R → R with period T , its Fourier series is then2.

f(t) =

+∞∑
m=0

am cos

(
2mπt

T

)
+ bm sin

(
2mπt

T

)
, (3.21)

Where the coefficients am, bm are given by the formulae

am =
2

T

∫ T/2

−T/2
f(t) cos

(
2mπt

T

)
dt, bm =

2

T

∫ T/2

−T/2
f(t) sin

(
2mπt

T

)
dt, (3.22)

2To simplify the following explanation, we have included the coefficient a0 directly in the sum, it should then
be remembered that the formula for calculating a0 must be divided by two.
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where the index m ∈ N0 indexes the frequencies from which we superimpose the original signal.
We denote the lowest frequency by ω1 = 2π

T . Higher frequencies can then be written as ωm =
mω1. Decomposing a periodic signal into a Fourier series tells us that we need a discrete number
of frequencies, {ωm |m ∈ N}. See the schematic Figure 3.7.

ω1 2ω1 3ω1 4ω1 5ω1 6ω1 7ω1
ω

2π
T

ak, bk

Figure 3.7: Schematic representation of discrete frequencies in a Fourier series.

Consider now a nonperiodic function f(t) : R → R. For each T ∈ R+, we can calculate the
coefficients of am, bm according to the formulae (3.22) to obtain the Fourier series of the periodic
extension of the function f |⟨−T

2
,T
2
⟩. In a non-rigorous procedure, we get Fourier transform as

the limit of these Fourier series if we perform T → +∞. In this case ω1 → 0 and the discrete
frequencies mω1, m ∈ N, become a continuum of frequencies ω ∈ ⟨0,+∞).

Thus, the nonperiodic function f(t) can be written as the following limit of Fourier series

f(t) = lim
T→+∞

+∞∑
m=0

(
am(T )

ω1(T )
cos(mω1t) +

bm(T )

ω1(T )
sin(mω1t)

)
ω1(T ), (3.23)

where we have expanded the terms in the series by the frequency ω1. This expression is actually
the Riemann integral3:

f(t) =

∫ +∞

0
A(ω) cosωt+B(ω) sinωt dω, (3.24)

where we denote ω = mω1 and the functions A(ω) and B(ω) are defined as

A(ω) = lim
T→+∞

am(T )

ω1(T )
, B(ω) = lim

T→+∞

bm(T )

ω1(T )
, (3.25)

Performing these limits, we obtain

A(ω) =
1

π

∫ +∞

−∞
f(t) cosωt dt, B(ω) =

1

π

∫ +∞

−∞
f(t) sinωt dt. (3.26)

The relations (3.24) and (3.26) represent the Fourier transform and its inverse. We have
shown that nonperiodic functions can be written as a continuous superposition of harmonic

3From the definition of the Riemann integral, the following holds

lim
N→+∞

N∑
k=1

f
(
k a
N

) a

N
=

∫ a

0

f(x) dx.

Here the situation is complicated by the fact that we have infinite sums corresponding to the integration for
ω ∈ ⟨0,+∞).
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waves. We will refer to the functions A(ω) and B(ω) as spectral functions or spectra of f .
These functions give the amplitudes of the individual harmonic waves constituting the function
f .

The non-rigorousness of our procedure lies in the double limit. First, we actually do a
limit to obtain the functions A(ω) and B(ω), and then we do a limit to go from summation to
integration. However, the rigorous procedure leads to the same expressions.

3.2.1 Fourier transform in complex notation

Let us write the Fourier transform (3.24) in the language of complex exponentials:

f(t) =

∫ +∞

0
A(ω) cosωt︸ ︷︷ ︸

eiωt+e−iωt
2

+B(ω) sinωt︸ ︷︷ ︸
eiωt−e−iωt

2i

dω

=

∫ +∞

0

A(ω)− iB(ω)

2︸ ︷︷ ︸
C(ω)

eiωt +
A(ω) + iB(ω)

2︸ ︷︷ ︸
C̄(ω)

e−iωt dω. (3.27)

Thus, we can define a complex spectral function,

C(ω) =
A(ω)− iB(ω)

2
, (3.28)

encoding the amplitudes A(ω) and B(ω) as the real and imaginary parts (except for the factor
of two and minus). If we now look at the formulas for A(ω) and B(ω) (3.26), we see that they
also make sense for ω < 0 and the following hold:

A(−ω) = A(ω), B(−ω) = −B(ω). (3.29)

For the function C(ω), the above implies C(−ω) = C̄(ω):

C(−ω) = A(−ω)− iB(−ω)
2

=
A(ω) + iB(ω)

2
= C̄(ω). (3.30)

After substituting this fact into (3.27), the Fourier integral takes the form

f(t) =

∫ +∞

0
C(ω)eiωt dω +

∫ +∞

0
C(−ω)e−iωt dω (3.31)

and after the substitution in the second integral ω̃ = −ω, dω̃ = −dω we get this very simple
form of complex Fourier transform

f(t) =

∫ +∞

−∞
C(ω)eiωt dω. (3.32)

The condition C(−ω) = C̄(ω) is the necessary and sufficient condition for the reality of the
function f(t). The relation for the calculation of the function C(ω) is obtained by a simple
combination of the relations (3.26):

C(ω) =
A(ω)− iB(ω)

2
=

1

2π

∫ +∞

−∞
f(t)e−iωt dt. (3.33)

At this point it is worth noting that there are various conventions for introducing the complex
Fourier transform. The factor 1

2π is often decomposed into 1√
2π

1√
2π

and one of the factors is
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assigned to the formula for f(t). This convention leads to a very symmetric form of the Fourier
transform,

f(t) =
1√
2π

∫ +∞

−∞
C(ω)eiωt dω, C(ω) =

1√
2π

∫ +∞

−∞
f(t)e−iωt dt. (3.34)

Another possible convention is to swap the functions eiωt and e−iωt, or to use the frequency
f = ω

2π as a variable in the Fourier transform. Thus, when studying the literature, it is always
advisable to familiarize oneself with the convention used.

3.3 Wave packets and uncertainty relations

A source oscillating in a purely harmonic waveform x(t) for an indefinite time – a source of
harmonic travelling waves ψ(z, t),

x(t) = A cos(ω0t+ φ), ψ(z, t) = A cos(ω0t− k0z + φ), ∀t ∈ R, (3.35)

– is not a completely realistic model. Such waves are called monochromatic because their
spectrum contains a single frequency ω0, see Figure 3.8 (a). Therefore, we introduce the notion
of quasi-monochromatic waves of the form

x(t) = A(t) cos(ω0(t) t+ φ(t)), ψ(z, t) = A(tr) cos(ω0(tr) t− k0(tr)z + φ(tr)), (3.36)

where the amplitude A, frequency ω, and phase shift φ can in general change over time (the
symbol tr denotes retarded time). However, these changes must be slow enough so that over a
period of time τ ≫ T = 2π

ω these parameters can be considered nearly constant – and hence
the chosen wave duration τ approximates the monochromatic wave accurately enough. The
spectrum of the quasi-monochromatic wave is centered around the frequency ω0, but contains
the entire continuum of frequencies around it, see figure 3.8 (b).

ω

C(ω)

ω0

+∞

(a) Monochromatic wave spectrum.

ω

C(ω)

ω0

(b) Quasi-monochromatic wave spectrum.

Figure 3.8: Spectrum of monochromatic and quasi-monochromatic waves.

One possible example is the emission of a weakly damped harmonic oscillation

x(t) = e−αt cos(ω0t), ψ(z, t) = e−α(t−
z
v ) cos(ω0t− k0z), (3.37)

see Figure 3.9. The weak damping condition is defined here by the fact that the decay time
τ = 1

α of the wave to 1/e amplitude value is much larger than the period of the harmonic
oscillations:

τ =
1

α
≫ T =

2π

ω0
, α≪ ω0. (3.38)
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t

x(t)

Figure 3.9: Exponentially damped oscillation.

The last concept we will need here is the notion of wave packet. We will use the notion to
mean a temporally and spatially bounded oscillations. It is not directly meant that outside of
a given temporal or spatial region the waves must completely disappear. Rather, it is meant
that the “main” part of the wave (with the greatest amplitude, with the greatest energy) is
concentrated in a limited temporal or spatial interval. Thus, for wave packets, we would like
to define the quantities ∆t–time width of the packet – and ∆z–spatial width of the packet.
These two quantities will have a simple relationship between them. If v is the packet’s velocity
through the environment, then ∆z = v∆t will hold.

We obtain quasi-monochromatic wave packets as a continuous superposition of harmonic
waves,

x(t) =

∫ +∞

−∞
C(ω) eiωt dω, ψ(z, t) = x

(
t− z

v

)
. (3.39)

Now, we consider a simple model of a wave packet, where we choose a real spectral function
C(ω) as in Figure 3.10. That is, a spectrum centered around the frequency ω0 and the spectral
width ∆ω.

ω

C(ω)

ω0

A
2

∆ω

Figure 3.10: Rectangular spectrum.

The Fourier transform of this spectrum then follows

x(t) =

∫ +∞

0
A(ω) cos(ωt) dω =

∫ ω0+
∆ω
2

ω0−∆ω
2

A cos(ωt) dω (3.40)

and after calculating and manipulating it using the sum formula, we get the resulting waveform
of the packet,

x(t) = A∆ω
sin
(
∆ω
2 t
)

∆ω
2 t

cos(ω0t), (3.41)
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which is shown in Figure 3.11. After it is emitted from the source, it will have the form4.

ψ(z, t) = A∆ω
sin
(
∆ω
2 tr

)
∆ω
2 tr

cos(ω0t− k0z), tr = t− z

v
, (3.42)

where tr is the retarded time.

t

x(t)

t+t−

A∆ω

Figure 3.11: The wave packet generated from a rectangular spectrum. The actual waveform of the
function x(t) is shown by the solid line. The amplitude envelope is indicated in dashed lines, the
envelope given by inverse proportion only is indicated in black. The times t± indicate the points where
the amplitude envelope first crosses zero.

The functional form of the wave packet x(t) (3.41) can be written in the form

x(t) = A(t) cos(ω0t), where A(t) = A∆ω
sin
(
∆ω
2 t
)

∆ω
2 t

. (3.43)

That is, the wave packet is in the form of a carrier harmonic wave of frequency ω0 that is
modulated by an amplitude envelope described by the function A(t) (see the black dashed line
in Figure 3.11 representing function ±A(t)). Let us now find the width of this envelope by
calculating the times t+ and t− (t+ > 0, t− < 0) when the amplitude envelope first crosses zero,
and the difference of these times will represent the width of this envelope. The sine has the first
zeros at ±π and thus

∆ω

2
t± = ±π. (3.44)

The width of the packet is therefore

∆t = t+ − t− =
4π

∆ω
(3.45)

and after rearrangement we get the relation

∆t ·∆ω = 4π = const. (3.46)

This relation says that the time width of the packet and the width of its frequency spectrum
are inversely proportional to each other! The shorter the wave packet, the more frequencies we

4At time t = 0, the function can be continuously defined according to the limit limx→0
sin x
x

= 1.
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need to create it (and vice versa). The specific value of the constant on the right depends on
the specific definition of the values ∆t and ∆ω and is not very important. The main conclusion
is the qualitative relation of inverse proportionality.

In general, the following statement can be proved, which is called the uncertainty relation:

∆t ·∆ω ≥ π. (3.47)

The product of the temporal width ∆t and the spectral width ∆ω will never be less than a
certain constant (independent5 of the shape of the signal or spectrum). Of course, the quantities
∆t and ∆ω are rigorously defined in the theorem. Unfortunately, there is no room for that here.
But let us give a simple statement from the theory of Fourier analysis that intuitively illustrates
the validity of the uncertainty relations, although it does not prove them:

Consider a function f(t) and its corresponding spectral function C(ω). Consider the constant
a ∈ R+. Then the spectral function f(at) is of the form 1

aC
(
ω
a

)
. Let us prove this statement.

Let us denote by Ca(ω) the spectral function to the function f(at). From the definition of the
Fourier integral, we have

Ca(ω) =
1

2π

∫ +∞

−∞
f(at) e−iωt dt. (3.48)

Performing the substitution t′ = at, we obtain the statement of the theorem:

Ca(ω) =
1

a

1

2π

∫ +∞

−∞
f(t′)e−i

ω
a
t′ dt′ =

1

a
C
(ω
a

)
. (3.49)

Now let us see what this theorem practically asserts. Let the time width of the wave packet
f(t) be of size ∆t and the corresponding frequency spectrum width ∆ω,

∆t . . . f(t) ↔ C(ω) . . . ∆ω. (3.50)

Multiplying the argument of the function f by the constant a > 0 represents the scaling of the
timeline. For a > 1 the function shrinks on the timeline, for a < 1 the function expands. Thus,
the time width of the function f(at) is ∆t

a . From the assertion of the theorem, the spectrum of
the scaled function is of the form 1

aC
(
ω
a

)
, so the scaling of the frequency spectrum is inverse to

that of the time course of the function. If the original width of the frequency spectrum is ∆ω,
for the scaled function it will be a∆ω,

∆t

a
. . . f(at) ↔ 1

a
C
(ω
a

)
. . . a∆ω. (3.51)

Thus, the product of the time width and the spectral width remains constant for arbitrary value
of a: (

∆t

a

)
(a∆ω) = ∆t∆ω. (3.52)

Finally, let us consider a simple example of the application of uncertainty relations con-
cerning the order of magnitude estimation of achievable data transmission rates. Consider the
primitive way of encoding a binary signal into a broadcast signal, where we encode 1 by sending
a wave packet, while we encode 0 by not sending it, see Figure 3.12.

5The constant is in turn dependent on the particular convention used in the Fourier transform.
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t

1 0 1 0 0 1 1 0 1

Figure 3.12: Binary signal encoded into transmitted/not-sent packets.

If the wave packets have a width of ∆t we must wait approximately at least time ∆t before
possibly sending or not sending the next packet in the queue, so that the receiver can easily
distinguish between the sent packets. This means that we can send N = 1

∆t packets, and
thus bits of information, per unit time. If we have a bandwidth of ∆f = ∆ω

2π available for
transmission, according to the uncertainty relations, the packet width is approximately at least
∆t = π

∆ω = 1
2∆f . The transmission rate is therefore at most N = 2∆f bits per second. For

example, the bandwidth of a single Wi-fi channel is ∆f = 20MHz, which gives an estimate for
the bit rate of N = 40Mbps when just one channel is used.

3.4 Group velocity

3.4.1 Superposition of two travelling harmonic waves

First, we will illustrate the phenomenon of group velocity with the simplest possible example
– the superposition of two travelling harmonic waves. Consider an environment with disper-
sion relation ω(k) and take travelling waves with wave numbers k1 and k2, and obtain the
corresponding angular frequencies from the dispersion relation:

k1, k2 −→ ω1 = ω(k1), ω2 = ω(k2). (3.53)

Consider the following superposition of waves with the same amplitude and no phase shift6 and
manipulate it with the trigonometric formula for a sum of cosines:

ψ(z, t) = A cos (ω1t− k1z) +A cos (ω2t− k2z)

= 2A cos

(
ω1 + ω2

2
t− k1 + k2

2
z

)
cos

(
ω1 − ω2

2
t− k1 − k2

2
z

)
. (3.54)

Now let us consider k1 close to k2, without any loss of generality we take k1 > k2. Let us
denote by

k0 =
k1 + k2

2
, kmod =

k1 − k2
2

. (3.55)

Then, kmod ≪ k0 holds due to the closeness of k1, k2. Next, we denote

ω0 =
ω1 + ω2

2
, (3.56)

due to the closeness of k1 and k2, ω1 and ω2 will also be close and hence ω1 ≈ ω2 ≈ ω0 from the
continuity of the dispersion relation. We further manipulate the expression

ω1 − ω2

2
=
ω(k1)− ω(k2)

k1 − k2

k1 − k2
2

=
dω

dk
(ξ) kmod ≈

dω

dk
(k0) kmod, (3.57)

6The phase shift adds nothing except longer writing time.
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where we have used Lagrange’s theorem on the increment of a function, ξ ∈ (k1, k2) and then
approximated the derivative by substituting ξ for k0. The superposition (3.54) will then be
approximately of the form

ψ(z, t) ≈ 2A cos (ω0t− k0z) cos
(
ω′(k0)kmod t− kmod z

)
. (3.58)

This superposition takes the form of the product of two travelling harmonic waves. The first is
a carrier wave with (high) angular velocity ω0 and large wavenumber k0 (small wavelength λ0).
The second is a modulating wave, which modulates the amplitude of the carrier wave – forming
its amplitude envelope. This wave has much larger wavelength λmod (smaller wavenumber kmod).
We get the waveform of periodically repeating wave packets. See Figure 3.13.

z

ψ vg

vϕ

Figure 3.13: Superposition of two travelling harmonic waves in the form of periodically repeating wave
packets.

What are the phase velocities of the carrier and modulation waves? According to relation
v = ω

k , we insert the respective angular frequencies and wave numbers of the individual waves
and obtain:

vcarrier = vφ =
ω0

k0
, vmodulating = vg =

ω′(k0)kmod
kmod

=
dω

dk
(k0). (3.59)

The phase velocity of the modulating wave is called group velocity. This gives the speed of
motion of the wave packets, or their amplitude envelope, through the medium.

In the case where we have a linear dispersion relation of the form ω = vk, the phase velocity
of the carrier wave and the group velocity are equal. Otherwise, in general, they may differ.

The phase velocities of the original harmonic waves are

vφ1 =
ω1

k1
=
ω(k1)

k1
, vφ2 =

ω2

k2
=
ω(k2)

k2
. (3.60)

Due to the proximity of k1 and k2, these velocities are close to the phase velocity of the carrier
wave, vφ ≈ vφ1 ≈ vφ2.

3.4.2 General wave packet

Consider now a general wave packet, which is a continuous superposition of harmonic waves.
Let there be a source in the environment that emits a signal of the form

f(t) =

∫ +∞

−∞
C(ω)eiωt dω, (3.61)

where the spectrum function C(ω) is centered around the frequency ω0, see Figure 3.14. The
source emits travelling waves, so each harmonic component becomes a travelling wave:

f(t) ∝ eiωt −→ ψ(z, t) ∝ ei(ωt−kz), (3.62)
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where k = k(ω) is given by the dispersion relation. The full superposition of the travelling wave
then takes the form

ψ(z, t) =

∫ +∞

−∞
C(ω)ei(ωt−k(ω)z) dω. (3.63)

We find it more convenient to integrate over the wave numbers k, so by substitution,

ω = ω(k), dω =
dω

dk
dk, C̃(k) := C(ω(k))

dω

dk
, (3.64)

we transform the expression to a form where we integrate the waves over their wavelengths
(wavenumbers):

ψ(z, t) =

∫ +∞

−∞
C̃(k)ei(ω(k)t−kz) dk. (3.65)

The spectral function C̃(k) is also centered around a single wavenumber k0 = k(ω0), once again
see Figure 3.14.

ω, k

C(ω), C̃(k)

ω0, k0

∆ω,∆k

Figure 3.14: Wave packet spectrum. Schematic representation of the spectral functions C(ω) and C̃(k).

We now expand the dispersion relation into a Taylor series with center k0,

ω(k) = ω(k0)︸ ︷︷ ︸
ω0

+
dω

dk
(k0)(k − k0) +O((k − k0)

2), (3.66)

and insert the expansion to the individual harmonic components forming the total wave:

ei(ω(k)t−kz) = eik0ze−ik0z︸ ︷︷ ︸
=1

eiω0tei(ω
′(k0)(k−k0)t−kz)eiO((k−k0)2)t

= ei(ω0t−k0z)ei
(
ω′(k0)(k−k0)t−(k−k0)z

)
eiO((k−k0)2)t, (3.67)

where we have multiplied the expression by an appropriately chosen unity and rearranged the
terms to factor out the complex carrier wave. We substitute the previous expression into the
integral (3.65) and denote by k′ = k − k0 to shorten the notation:

ψ(z, t) = ei(ω0t−k0z)
∫ +∞

−∞
C̃(k′ + k0)e

i(ω′(k0)k′t−k′z)eiO(k′2)tdk. (3.68)

We now take advantage of the fact that the spectral function C̃(k) is centered around the
wave number k0 (with spectral width ∆k). Thus, we can approximate the function ψ(z, t)
by restricting the domain of integration to k ∈ ⟨k0 − ∆k

2 , k0 +
∆k
2 ⟩ only. Since we have thus
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restricted ourselves to values of k close to k0, we can further neglect the higher orders of the
Taylor expansion, eiO(k′2). The result is:

ψ(z, t) ≈ ei(ω0t−k0z)
∫ k0+

∆k
2

k0−∆k
2

C̃(k′ + k0) e
i(ω′(k0)k′t−k′z)︸ ︷︷ ︸
e−ik

′(z−ω′(k0)t)

dk. (3.69)

The whole complicated expression under the integral depends on the variables z and t in only
one place: the exponential contains the expression z − ω′(k0)t, which is constant with respect
to the integration variable. We can therefore define the function F (x),

F (x) =

∫ k0+
∆k
2

k0−∆k
2

C̃(k)e−i(k−k0)xdk, (3.70)

and write the resulting wave ψ(z, t) as

ψ(z, t) ≈ ei(ω0t−k0z)F
(
z − ω′(k0)t

)
. (3.71)

This is an analogous result to the superposition of two harmonic waves. Here we have a car-
rier wave ei(ω0t−k0z) propagating at phase velocity vφ = ω0

k0
and it is amplitude modulated

by a modulation function F (x) which propagates at velocity ω′(k0) (recall d’Alembert’s solu-
tion F (z − vt)). Thus we have the same expressions for phase and group velocity (as for the
superposition of two harmonic waves):

vφ =
ω0

k0
, vg =

dω

dk
(k0), (3.72)

representing the velocities of propagation of the carrier and modulation waves.

3.4.3 Wave packet dispersion

In the previous section, after neglecting higher orders of Taylor expansion, we obtained a trav-
elling wave packet whose amplitude envelope has a shape F (x) that is constant in time. Under
the integral, we have neglected a term of the form

exp
[
i O
(
(k − k0)

2
)
t
]
, (3.73)

which makes the function F (x) not constant in time, but has an additional time dependence,

F (x) −→ F (x, t). (3.74)

This additional time dependence causes the travelling amplitude envelope F (z−vgt, t) to change
its shape over time – it deforms. This phenomenon is called wave packet dispersion. Let us try
to quantify this phenomenon elementarily.

Consider again the spectrum of a wave packet C̃(k) (shown again in Figure 3.15 (a)) centered
around a wave number k0 of frequency width ∆k and its corresponding wave packet ψ(z, t) (given
by the Fourier transform of the spectrum C̃(k)). Let us decompose it into a superposition of
the two packets,

ψ(z, t) = ψ−(z, t) + ψ+(z, t), (3.75)

where the frequency spectrum of the ψ− package is centered around k0 − ∆k
4 and ψ+ around

k0 +
∆k
4 , both with spectral width ∆k

2 , see Figure 3.15 (b).
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(a) Total spectrum of the wave packet.
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k0

k0−∆k
4

k0+∆k
4

∆k
2

(b) Decomposition of the wave packet spectrum
into two sub-packets.

Figure 3.15: Decomposition of the spectrum for the study of wave packet dispersion.

Each of these sub-packets may move at a different group velocity:

vg− =
dω

dk
(k−), vg+ =

dω

dk
(k+), (3.76)

where vg− and vg+ denote the group velocity ψ− and ψ+, respectively. What will be the
difference of these velocities ∆vg?

∆vg = vg+ − vg− =
ω′(k+)− ω′(k−)

k+ − k−
(k+ − k−) = ω′′(ξ)

∆k

2
≈ ω′′(k0)

∆k

2
=
dvg
dk

(k0)
∆k

2
. (3.77)

In the manipulations, we have used Lagrange’s theorem and the fact that ξ ∈ (k−, k+), ξ ≈ k0,
and the spectral centers of each subpackage are denoted by k− = k0 − ∆k

4 and k+ = k0 +
∆k
4 ,

respectively. Thus, it holds

∆vg =
1

2
v′g(k0)∆k. (3.78)

Let us denote the (spatial) packet width at time t as ∆z(t) and investigate how this will
change. Let the time width of the original signal f(t) transmitted by the source be ∆t. Its
initial width is then

∆z(0) = vg∆t, (3.79)

as it travels at velocity vg and takes approximately ∆t to transmit. The sub-packet’s centers
are moving away from each other at a rate of ∆vg, so the packet width at time t is

∆z(t) = ∆z(0) + ∆vg t ≈ ∆z(0) +
1

2
ω′′(k0)∆k t. (3.80)

Wave packet dispersion is a phenomenon that generally degrades our transmitted signal. If
we transmit a number of packets in succession, the effect of their dispersion is to cause them
to overlap and make it impossible to tell from the distorted signal whether or not a packet is
present (we have primitively encoded a binary signal in this way).
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Chapter 4

Wave reflections

In this chapter we will discuss the behavior of waves at the interface of environments. We will
illustrate the concepts using a string model. We begin by studying a semi-infinite string that
is terminated at a given point, see Figure 4.1. We then move on to the case where we have two
different strings that are connected at a given location. Our goal will be to find expressions for
the transmitted and reflected waves depending on the prescribed wave incident at the interface,
see Figure 4.2.

termination

reflected wave

incident wave

string

Figure 4.1: Model situation for studying reflections #1: Termination of a single string.

interface

1st string 2nd string

reflected wave

incident wave transmitted wave

Figure 4.2: Model situation for studying reflections #2: Connection of two strings.

4.1 Termination of a string

Consider a string of density ρ and tension T , which for simplicity is terminated in z = 0. This
means that the string itself spans at z ∈ (−∞, 0⟩. See Figure 4.3.

z0

T, ρ

ψ(z, t), z ∈ (−∞, 0〉

Figure 4.3: Termination of a string.
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The motion of the string is described by the transverse displacement function ψ(z, t), which
is governed by the wave equation for z ∈ (−∞, 0),

∂2ψ

∂t2
= v2

∂2ψ

∂z2
, v =

√
T

ρ
. (4.1)

Consider the d’Alembert solution of the wave equation,

ψ(z, t) = F (z − vt)︸ ︷︷ ︸
incident wave

+ G(z + vt)︸ ︷︷ ︸
reflected wave

, (4.2)

where the wave ψi(z, t) = F (z − vt) is the prescribed incident wave and the wave ψr(z, t) =
G(z + vt) is the reflected wave of interest. Next, we need to prescribe a boundary condition at
the interface z = 0 to determine how the wave will be reflected at this interface. Meanwhile,
for generality, consider that the string attachment (termination) has mass M and a velocity-
dependent frictional force is applied at the attachment point,

Ffriction = −α∂ψ
∂t

(0, t), (4.3)

where α represents the coefficient of frictional force. The string itself also exerts a force on the
attachment – the transverse projection of the tension force Fx = −T ∂ψ

∂z , see Figure 4.4.

z

~T
~Fx, Fx = −T ∂ψ

∂z (0, t)

0

M

Figure 4.4: The transverse force from the string acting on the termination.

Let us now write down the general equation of motion for the termination. From Newton’s
second law we have:

M
∂2ψ

∂t2
(0, t) = Fx + Ftřeńı = −T ∂ψ

∂z
(0, t)− α

∂ψ

∂t
(0, t). (4.4)

Considering now for simplicity a massless termination, M = 0, we obtain at z = 0 a
boundary condition of the form:

T
∂ψ

∂z
(0, t) + α

∂ψ

∂t
(0, t) = 0, ∀t ∈ R. (4.5)

We further substitute d’Alembert’s solution (4.2) into this condition. By computing the
corresponding derivatives,

∂ψ

∂z
(0, t) = F ′(−vt) +G′(vt),

∂ψ

∂t
(0, t) = −vF ′(−vt) + vG′(vt), (4.6)

where we’ve denoted by F ′(x) = dF
dx , we obtain

T
(
F ′(−vt) +G′(vt)

)
+ α

(
−vF ′(−vt) + vG′(vt)

)
= 0. (4.7)
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This is the equation for the unknown shape of the reflected wave G(x) given the shape of the
incident wave F (x). So we express the function G′ from the previous equation:

G′(vt) =
αv − T

αv + T
F ′(−vt). (4.8)

We denote x = vt and introduce the quantity impedance Z =
√
Tρ (then T

v = Z). We can
rewrite (4.8) as

G′(x) =
α− Z

α+ Z
F ′(−x). (4.9)

After integrating with respect to the variable x, we find the shape of the reflected wave G(x):

G(x) =
Z − α

Z + α
F (−x), (4.10)

where we put the integration constant c = 0, because it only shifts the whole solution ψ(z, t)
along the vertical axis.

We have shown that the reflected wave is just a mirror flip of the incident wave, G(x) ∝
F (−x), and the amplitude is changed by the constant amplitude coefficient

R =
Z − α

Z + α
, (4.11)

which is called reflection coefficient. The resulting solution is of the form

ψ(z, t) = F (z − vt) +RF (−(z + vt)). (4.12)

If we require that there be no reflections, R = 0, then α = Z must hold. In this case, the
frictional force takes such a form that it perfectly simulates the continuation of the string and no
wave is reflected. This case is called correct termination. The case α ̸= Z is called non-correct
termination. If we consider zero friction, α = 0, we get the free end condition and R = 1. For
large friction, α→ +∞, we get the fixed end condition and R = −1.

4.2 Connection of two strings

Let’s move on to the second model situation – connection of two different strings. The situation
is shown in detail in Figure 4.5. The first string spans the coordinates z ∈ (−∞, 0⟩ and the
second string spans the coordinates z ∈ ⟨0,+∞). The string parameters are denoted by ρi, Ti
(and the complementary quantities vi and Zi), i ∈ {1, 2}.

T1, ρ1, (v1, Z1) T2, ρ2, (v2, Z2)

ψ1(z, t), z ∈ (−∞, 0〉 ψ2(z, t), z ∈ 〈0,+∞)
z0

Figure 4.5: Connection of two strings.

Each of the strings is governed by an appropriate wave equation (with an appropriate value
of phase velocity vi):

∂2ψi
∂t2

= v2i
∂2ψi
∂z2

, i ∈ {1, 2}. (4.13)
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Let us write the corresponding d’Alembert solutions on the individual string sections and
interpret each term in terms of studying the reflections of the waves coming from the first string
(i.e., from z = −∞):

ψ1(z, t) = F1(z − v1t)︸ ︷︷ ︸
incident wave

+G1(z + v1t)︸ ︷︷ ︸
reflected wave

,

ψ2(z, t) = F2(z − v2t)︸ ︷︷ ︸
transmitted wave

+G2(z + v2t)︸ ︷︷ ︸
=0

. (4.14)

The wave G2(z + v2t), i.e., the wave propagating from z = +∞, has no interpretation in
our model. So we impose the radiation boundary condition, i.e., we put G2 = 0. We forbid
the propagation of the wave from +∞, which would interfere with our study of the reflection
of waves coming from the first string. Our task, then, will be to find the shapes of the reflected
wave G1(x) and the transmitted wave F2(x) given the prescribed incident waveform F1(x).

We now need to write the appropriate junction conditions at the location z = 0. The first
is the continuity junction condition,

ψ1(0, t) = ψ2(0, t), ∀t ∈ R. (4.15)

The second condition is the Newton’s equation of motion at the point of connection. The
situation is illustrated in Figure 4.6. Let us consider for the time being the general connection
of the mass M . This connection is then acted upon by the transverse projections of the forces
from the individual strings.

z
~T1

~Fx1

0

M

~T2
~Fx2

Figure 4.6: The transverse forces acting at the point of connection.

The equation of motion then takes the form

M
∂2ψ12

∂t2
= Fx1 + Fx2, (4.16)

where on the left side of the equation of motion we can choose whether to use the acceleration
of the deflection ψ1 or ψ2 (indicated by the symbol ψ12) due to the continuity condition. The
expression for the transverse forces is as follows:

Fx1 = −T1
∂ψ1

∂z
(0, t), Fx2 = T2

∂ψ2

∂z
(0, t). (4.17)

If we now take the mass of the connection to be zero, M = 0, (non-zero masses will be discussed
later), we get the condition of equality of transverse forces at the connection point:

T1
∂ψ1

∂z
(0, t) = T2

∂ψ2

∂z
(0, t), ∀t ∈ R. (4.18)

Based on these two junction conditions, the continuity condition (4.15) and the condition
of equality of transverse forces (4.18), we express the shape of the reflected wave G1(x) and
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the transmitted wave F2(x) using the shape of the incident wave F1(x). Let us substitute the
d’Alembert solution (4.14) into the junction conditions:

F1(−v1t) +G1(v1t) = F2(−v2t), T1F
′
1(−v1t) + T1G

′
1(v1t) = T2F

′
2(−v2t) (4.19)

and perform the substitution x = −v1t:

F1(x) +G1(−x) = F2

(
v2
v1
x
)
, F ′1(x) +G′1(−x) =

T2
T1
F ′2

(
v2
v1
x
)

(4.20)

Integrating the second of the equations with respect to x, we obtain

F1(x)−G1(−x) =
T2
T1

v1
v2
F2

(
v2
v1
x
)
, (4.21)

where we have chosen the integration constant to be zero, because it ends up only shifting the
entire resulting function ψ(z, t) by a constant (try leaving it there and you’ll see!). The constant
term on the right-hand side can be rewritten with the impedances Z1 and Z2, Z =

√
Tρ:

T2
T1

v1
v2

=
Z2

Z1
. (4.22)

The result is the following system of equations for the functions G1(x) and F2(x):

F1(x) +G1(−x) = F2

(
v2
v1
x
)
, F1(x)−G1(−x) =

Z2

Z1
F2

(
v2
v1
x
)
. (4.23)

By summing the equations, we express the traveling wave

F2(x) = PF1

(
v1
v2
x
)
, P =

2Z1

Z1 + Z2
, (4.24)

where the constant amplitude coefficient P is called transmission coefficient. It is also denoted
T , but it does not suit the notation here because of the tension in the strings Ti. We express
the reflected wave from the first equation in (4.23) (arising from the continuity condition) after
substituting from (4.24):

G1(x) = (P − 1)F1(−x) = RF1(−x), R =
Z1 − Z2

Z1 + Z2
, (4.25)

The coefficient R is again (as for the termination of a single string) called reflection coefficient.
We see that the continuity condition implies a simple relationship between the coefficients of
transmission and reflection:

1 +R = P. (4.26)

For completeness, let us also write the waveforms ψi(z, t) propagating along each string:

ψ1(z, t) = F1(z − v1t) +RF1(−(z + v1t)), ψ2(z, t) = PF1

(
v1
v2
(z − v2t)

)
. (4.27)

It turns out that the reflection at the interface of two strings is in a sense a very simple
phenomenon. The reflected wave is mirror-reversed and advances back along the first string.
The transmitted wave is only deformed by the fraction of phase velocities v2

v1
– for v2 > v1 the

wave is stretched on the second string, while for v2 < v1 it is shrunk. All the information about
the passage and reflection of waves is encoded in the constant amplitude coefficients R and P

75



– these are determined only by the string parameters and not by the waveform of the incident
wave.

The wave is not reflected if the impedances on the individual strings are matched:

R = 0 ⇔ Z1 = Z2 ⇔ T1
T2

=
ρ2
ρ1
. (4.28)

The reflection coefficient can be written in various forms

R =
Z1 − Z2

Z1 + Z2
=

Z1
Z2

− 1
Z1
Z2

+ 1
=

1− Z2
Z1

1 + Z2
Z1

; (4.29)

from these forms, it follows that the coefficients depend on the ratio of impedances Z1
Z2

and the
coefficients of passage and reflection have the following ranges

R ∈ ⟨−1, 1⟩, P ∈ ⟨0, 2⟩. (4.30)

With Z1 fixed, we get a coefficient of R = −1 (P = 0) for Z2 = +∞ (a fixed end, an infinitely
heavy or tensioned string), and R = 1 (P = 2) for Z2 = 0 (a free end, a massless or untensioned
string).

4.2.1 Harmonic incident wave

Consider an incident harmonic wave (here its complexification):

F1(x) = Aeik1x, ψi(z, t) = F1(z − v1t) = Ae−i(ωt−k1z), (4.31)

where we denote the incident part of the wave ψ1(z, t) as ψi(z, t) and use the dispersion relation
ω = v1k1. Let us now insert the incident wave F1(x) to the formulas (4.24) and (4.25) (and
(4.27)). We denote the reflected and transmitted wave by ψr(z, t) and ψt(z, t):

G1(x) = RF1(−x), ψr(z, t) = G1(z + v1t) = RF1(−z − v1t) = ARe−i(ωt+k1z),

F2(x) = PF1

(
v1
v2
x
)
, ψt(z, t) = F2(z − v2t) = PF1

(
v1
v2
z − v1t

)
= AP e−i(ωt−k2z), (4.32)

where we reuse the dispersion relation ω = v1k1 and denote k2 = k1
v1
v2
. Let us take a closer

look at the wavenumber of the transmitted wave:

2π

λ2
= k2 =

v1
v2
k1 =

v1
v2

2π

λ1
−→ λ2 =

v2
v1
λ1. (4.33)

The wavelength of the transmitted wave is changed by the ratio of the phase velocities on the
first and second strings. This corresponds to the fact that the interface can be thought of as a
source of waves excited by the incident wave from the first string. This imaginary source then
radiates a transmitted wave propagating along the second string.

4.3 Energy relations

Let’s look at the relations between the energy fluxes of incident, reflected and transmitted waves.
We define the coefficients of reflectivity (reflectance) and transmissivity (transmitance) as the
ratio of the respective energy fluxes:

R =
|⟨Sref⟩|
⟨Sinc⟩

, T =
⟨Str⟩
⟨Sinc⟩

, (4.34)
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(for reflectivity, we put an absolute value around the reflected wave energy since the reflected
wave energy flux is negative). For a harmonic progressive wave, we derived the following relation
for the energy flux in the chapter on energy quantities on the string:

|⟨S⟩| = 1

2
ZA2ω2. (4.35)

The energy fluxes for each wave are then

⟨Sinc⟩ =
1

2
Z1A

2ω2, |⟨Sref⟩| =
1

2
Z1A

2R2ω2, ⟨Str⟩ =
1

2
Z2A

2P 2ω2. (4.36)

Substituting these relations into the definitions of reflectivity and transmissivity (4.34), where
we substitute the appropriate values for the amplitudes and impedances:

R = R2, T =
Z2

Z1
P 2. (4.37)

We see that the amount of reflected energy (intensity) is simply given by the square of the
amplitude coefficient R. On the other hand, the amount of energy passed cannot be inferred
just from the change in amplitudes alone, but it must be taken into account that different
environments are involved and that therefore the same amplitudes can carry different amounts
of energy. There is therefore the additional factor of the ratio of impedances Z2

Z1
.

Let us use the previous paragraph to explain “paradox” for the case of R → 1 and P → 2.
This is the case where Z2 → 0. Almost the entire wave is reflected (R → 1), but at the same
time a wave with almost twice the amplitude (P → 2) passes through! But at the same time we
see that the transmissivity coefficient goes to zero due to the low impedance Z2, T → 0, i.e. the
energy carried by the transmitted wave is also limitingly close to zero. So there is no paradox.
In different environments, it is not enough to compare amplitudes to infer the energies carried
by individual waves. In the free-end limit we have ρ = 0 or T = 0. A massless or unstretched
string carries no energy.

From the law of conservation of energy, the sum of the energy fluxes of the transmitted and
reflected waves is equal to the energy flux of the incident wave (in absolute terms), thus:

R+ T = 1, i.e. R2 +
Z2

Z1
P 2 = 1. (4.38)

4.4 Frequency-dependent coefficients of transmission and re-
flection

In the previous chapters we considered that the connection of two strings is massless. We now
consider the opposite case. We will see that we will have to fundamentally change the procedure
used so far to find reflected and transmitted waves. Let us consider the situation shown in Figure
4.7. For simplicity of calculation, this time we consider that the strings are stretched to the
same tension T , have generally different densities ρ1 and ρ2, and the connection is realized by
a point mass M .

M 6= 0
ρ1, T ρ2, T

Figure 4.7: Connection with mass.
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Let us repeat here the junction conditions – the continuity condition and the equation of
motion of the point of connection:

ψ1(0, t) = ψ2(0, t), M
∂2ψ12(0, t)

∂t2
= T

(
∂ψ2

∂z
(0, t)− ∂ψ1

∂z
(0, t)

)
, ∀t ∈ R, (4.39)

where the symbol ψ12 means that, due to the continuity condition, we can choose whether to
consider the displacement ψ1 or ψ2. Let us focus on the second condition. We can see that the
first and second derivatives are mixed here and thus the simple procedure used in the previous
models, where we integrated the equation, will not be possible1. Let us try to take a step aside.
Consider that each incident waveform F1(x) can be decomposed into a sum of harmonic waves
using the Fourier transform:

F1(x) =

∫ +∞

−∞
C(k) eikx dk. (4.40)

So we will consider the incident wave in the form of a harmonic travelling wave with unit
amplitude, see what is reflected and what passes through, and then write back the resulting
solution as a (continuous) superposition of these elementary reflections. Moreover, let’s do
the following ansatz – assume that both the reflected and transmitted waves are of harmonic
waveforms:

F1(x) = eik1x, G1(x) = Re−ik1x, F2(x) = P eik2x, k2 =
v1
v2
k1, (4.41)

where the wave number k2 is changed by the ratio of the phase velocities compared to the wave
number of the incident wave k1. If we can find a solution to the reflection problem in this form,
we know that we have found the correct (and only) solution from the uniqueness of the solution.
Let us write down the d’Alembert solutions in this ansatz,

ψ1(z, t) = F1(z − v1t) +G1(z + v1t), ψ2(z, t) = F2(z − v2t), (4.42)

where the individual waves have the form:

F1(z − v1t) = e−i(ωt−k1z),

G1(z + v1t) = Re−i(ωt+k1z),

F2(z − v2t) = P e−i(ωt−k2z). (4.43)

We plug these into the junction conditions (4.39). From the continuity condition we have

e−iωt +Re−iωt = P e−iωt −→ 1 +R = P, (4.44)

and from the equation of motion of the connection (where we choose the function ψ2 on the
left-hand side, since it contains only one wave F2 and thus we get an equation of simpler form):

−PMω2e−iωt = T (ik1)

[
R− 1 +

v1
v2
P

]
e−iωt. (4.45)

1After substituting the d’Alembert solutions (4.14) into the connection conditions (4.39), we arrive at the
following inhomogeneous second order linear differential equation with constant coefficients:

F ′′
2 (x)−

T (1 + v2
v1
)

Mv22
F ′
2(x) = − 2T

Mv22
F ′
1

(
v2
v1
x
)
.

This equation can be solved. The homogeneous solution is found by the standard characteristic polynomial
method, the inhomogeneous solution is found by the method of variations of constants. However, the resulting
very complicated solution does not provide much insight into the reflection phenomenon in such a setting.
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From this equation, we express the coefficient P (after substituting after R = P − 1) with the
result:

P (ω) =
2

1 + v1
v2

− iMωv1
T

∈ C, R(ω) = P (ω)− 1, (4.46)

where we additionally got rid of the wave number k1 by substituting from the dispersion relation
ω = v1k1. We see two surprising facts. The coefficients came out dependent on the angular
frequency of the incident wave ω and we also found the coefficients to be complex!

The complex nature of the coefficients simply means that the coefficients encode not only
the change in amplitude of the transmitted and reflected waves, but also the phase shift. We
can, for example, use the polar form of the complex number for the coefficient P ,

P = |P |eiφ, (4.47)

which, when substituted into the transmitted wave F2(x), gives:

F2(x) = Peik2x = |P |ei(k2x+φ). (4.48)

The magnitude of the coefficient |P | thus has the original meaning of the amplitude change of
the transmitted wave. The angle φ in the complex exponential eiφ gives the phase shift relative
to the incident wave.

The dependence of the coefficients on the angular frequency of the incident wave ω means
that each harmonic component generally behaves differently being reflected. This has an im-
portant implication if we return to the original problem, where we chose the general function
F1(x) as the waveform of the incident wave. Consider as an example the shape of the reflected
wave G1(x). In the Fourier integral (4.40), we replace each of the harmonic components eikx by
R(k)e−ikx (R(k) is the function formed by substituting ω = v1k for R(ω)):

G1(x) =

∫ +∞

−∞
C(k)R(k)e−ikxdk ̸= RF1(−x). (4.49)

Since the coefficient R is dependent on ω (on k), it cannot be extracted from the integral,
and thus the resulting wave cannot be written as the total reflection coefficient R times the
reflected incident wave F1(−x). For frequency-dependent coefficients, the incident wave deforms
nontrivially upon reflection (by nontriviality we mean deformation beyond the mirroring for the
reflected wave and expansion by the ratio v1

v2
for the transmitted wave).

4.5 Transmission matrix

In this chapter we want to encode the transmission and reflection coefficients into a suitably
chosen matrix so that we can then start considering reflections at more than one interface in a
very simple way.

So far, in the reflection problem, we have always considered the radiation condition, ne-
glecting the wave arriving from the “right”, since this had no interpretation in the study of
reflections. Now we consider a more general situation where we have a given interface of two
media and we let the waves on either side of the interface propagate in both directions, see
Figure 4.8.
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ψ1R

A1L

ψ1L

A2R

ψ2R

ψ2L

A2L

A1R

Figure 4.8: Interface between two environments. In both environments, travelling waves propagate in
both directions, denoted ψ1R (wave in the first environment advancing to the right), ψ1L (wave in the
first environment advancing to the left), ψ2R and ψ2R (analogous in the second environment). Their
amplitudes are denoted A1R, A1L, A2R and A2L.

If, as in the previous section, we consider complexified harmonic travelling waves, these
expressions have the following forms:

ψ1R = A1R e
i(ωt−k1z), ψ2R = A2R e

i(ωt−k2z),

ψ1L = A1L e
i(ωt+k1z), ψ2L = A2L e

i(ωt+k2z), (4.50)

where k1 and k2 are the wave number in the first and second environments, respectively.

Transmission matrix D ∈ C2,2 converts the amplitudes of the waves (A2R, A2L) in the second
medium to the amplitudes of the waves (A1R, A1L) in the first medium by the relation(

A1R

A1L

)
= D

(
A2R

A2L

)
. (4.51)

The transmission matrix D is practically found by solving the junction conditions between the
two environments. At the end of this section we will show this by an example.

First, as a simple introductory example, let us return to the reflection problem for the
connection of two strings of impedances Z1 and Z2 at location z = 0. Analogous schemes to
the general Figure 4.8 are shown in Figure 4.9. Thus, we consider an incident wave of unit
amplitude (either from the left or from the right), and the amplitude of the transmitted and
reflected waves directly gives the coefficients of transmission and reflection.

Z1 Z2

1

ψd

R

ψr

P
ψt

∅

(a) Incident wave from the left.

Z1 Z2

∅

P ′

ψt

R′

ψr

ψd

1

(b) Incident wave from the right.

Figure 4.9: Connecting two strings of impedances Z1 and Z2. We study reflections for a wave incident
from the left and from the right. We denote the coefficients of transmission and reflection for a wave
incident from the right by primes.

According to the definition of the transmission matrix (4.51), we can write the relations
between the amplitudes of the individual waves as:(

1
R

)
= D

(
P
0

)
,

(
0
P ′

)
= D

(
R′

1

)
. (4.52)
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By solving the equations (4.52) for the coefficients of the matrix D after substituting the already
known forms of the transmission and reflection coefficients 2 to get the resulting form of the
transmission matrix

D =
1

2Z1

(
Z1 + Z2 Z1 − Z2

Z1 − Z2 Z1 + Z2

)
. (4.53)

For the situation where we have only one interface between two environments, the trans-
mission matrix is not very useful. But let’s look at the situation where we take three adjacent
environments – for example, three strings with impedances Z1, Z2, and Z3. If we proceed by al-
ways splitting the “actual” incident wave into reflected and transmitted parts at each interface,
we get the situation described in Figure 4.10.

ψd

1

ψr

R

ψt

P

ψ→ ψ←

1st interface 2nd interface

...

...
...

...

Figure 4.10: Two interfaces between three environments. A wave ψi of unit amplitude is incident from
the left. There are infinitely many reflections (and transmissions) between the two interfaces, and the
resulting reflected wave ψr, or transmitted wave ψt, is obtained as a superposition of all reflected, or
transmitted, contributions. We denote the superposition of the waves all propagating in one direction
and the other in the space between the interfaces by ψ→ and ψ←. After summing all the transmitted
and reflected contributions (which again form a travelling wave), we can determine the “total” coefficient
of transmission P and reflection R.

This procedure, where we sum infinitely many contributions, is tedious but possible. Let us
look at the situation from the perspective of the transmission matrix. The transmission matrix
converts the amplitudes of the resulting travelling waves from one medium to another. The
situation is shown schematically in Figure 4.11.

ψd

1

ψr

R

ψt

P

∅

ψ→

ψ←

1st interface 2nd interface

D1 D2

A→

A←

Figure 4.11: Two interfaces and the resulting propagating waves and their amplitudes. The amplitudes of
the travelling waves between the two interfaces are denoted by A→ and A←. The transmission matrices
at each interface are denoted by D1 and D2.

2Reflection coefficient R = Z1−Z2
Z1+Z2

and transmission coefficient P = 1+R. For the coefficients “from the other

side”, we just swap the indices for the impedances, R′ = Z2−Z1
Z1+Z2

, P ′ = 1 +R′.
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The transmission matrices of the individual interfaces, D1 and D2, relate the respective
amplitudes according to the definition (4.51) as follows:(

1
R

)
= D1

(
A→
A←

)
,

(
A→
A←

)
= D2

(
P
0

)
. (4.54)

In the case that we combine these equations by excluding the amplitudes A→ and A←, we
obtain (

1
R

)
= D1D2

(
P
0

)
. (4.55)

In the language of transmission matrices, compounding of interfaces reduces to a mere multi-
plication of the individual matrices! From equations (4.55) we can already easily express the
resulting coefficients R and P (the components of matrices D1 and D2 are known – they specify
the interfaces in question).

Now let us look at the aforementioned example of finding the transfer matrix D by solving
the junction conditions. We have already seen the derivation of the transition matrix from
the already known transmission and reflection coefficients for the connection of two strings at
the point z = 0. Let us show a more general derivation of the form of the matrix D for the
interface of two strings at z = L. We will also construct the junction conditions by considering
the general situation as in Figure 4.8. Thus, we take the waves on each string to be of the form
(4.50). We have to adjust the junction conditions for the string for the interface position to
z = L. The first is the continuity condition,

ψ1R(L, t) + ψ1L(L, t) = ψ2R(L, t) + ψ2L(L, t), (4.56)

and the second is the condition of equality of transverse forces (we consider a massless connec-
tion),

T1

(
∂ψ1R

∂z
(L, t) +

∂ψ1L

∂z
(L, t)

)
= T2

(
∂ψ2R

∂z
(L, t) +

∂ψ2L

∂z
(L, t)

)
. (4.57)

For simplicity, consider that the stresses on both strings are equal, T1 = T2 = T . After
substituting the harmonic waves (4.50) into the connection conditions (4.56) and (4.57) (and
cancelling out the exponentials and −iT ), we obtain the following set of equations relating the
amplitude coefficients:

A1Re
−ik1L +A1Le

ik1L = A2Re
−ik2L +A2Le

ik2L,

k1A1Re
−ik1L − k1A1Le

ik1L = k2A2Re
−ik2L − k2A2Le

ik2L. (4.58)

Let us rewrite the left and right sides of the equations using matrix notation:(
e−ik1L eik1L

k1e
−ik1L −k1eik1L

)
︸ ︷︷ ︸

DL

(
A1R

A1L

)
=

(
e−ik2L eik2L

k2e
−ik2L −k2eik2L

)
︸ ︷︷ ︸

DR

(
A2R

A2L

)
, (4.59)

where we have denoted the matrix on the left and right sides of the equation by DL and DR,
respectively. Comparing the form of the equations (4.51) defining the matrix D and the obtained
equation (4.59) from the junction conditions, it is clear that the transmission matrix is of the
form

D = D−1L DR. (4.60)
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Performing the inversion of the matrix3 and multiplying them together we get the result

D =
1

2

 (1 + k2
k1

)
ei(k1−k2)L

(
1− k2

k1

)
ei(k1+k2)L(

1− k2
k1

)
e−i(k1+k2)L

(
1 + k2

k1

)
e−i(k1−k2)L

 . (4.61)

Substituting L = 0 gives the matrix

D(L = 0) =
1

2

(
1 + k2

k1
1− k2

k1

1− k2
k1

1 + k2
k1

)
, (4.62)

which is of the same form as the matrix already obtained in (4.53), since the following relation
holds

k2
k1

=
Z2

Z1
. (4.63)

3The inversion of the 2x2 matrix is

A =

(
a11 a12
a21 a22

)
, A−1 =

1

detA

(
a22 −a12
−a21 a11

)
.
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Chapter 5

Waves in space

5.1 Plane waves

Let us briefly review what we know about harmonic travelling waves in one dimension. They
are a solution to the one-dimensional wave equation,

∂2ψ

∂t2
= v2

∂2ψ

∂z2
, (5.1)

and can propagate in either the positive or negative direction of the axis z:

ψ(z, t) = ei(ωt−kz), ψ(z, t) = ei(ωt+kz). (5.2)

If we introduce a (one-dimensional) propagation direction vector n⃗ = (±1), a position vector
r⃗ = (z), and a so-called wave vector k⃗ = k n⃗, we can write the expression ∓kz in a travelling
wave as −k⃗ · r⃗. Thus, the travelling wave takes the form

ψ(z, t) = ψ(r⃗, t) = ei(ωt−k⃗·r⃗), (5.3)

where by choosing the vector n⃗ (or k⃗ = kn⃗) we choose the direction of the propagation. This
expression is well defined for any dimension. We will now take advantage of this and examine
it in 2D (and subsequently in 3D).

Let us move on to the two-dimensional situation. As a model for a two-dimensional wave,
we can choose an elastic membrane that extends in the plane (y, z) and consider the trans-
verse displacement of this membrane (in the direction of the axis x) described by the function
ψ(y, z, t). See Figure 5.1.

y

z

x

(y, z)

ψ(y, z, t)

Figure 5.1: Model of the two-dimensional environment for transverse deflections of an elastic membrane.
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Consider now a two-dimensional position vector r⃗ = (y, z), a unit vector n⃗ = (ny, nz),

|n⃗| = 1, a wave vector k⃗ = k n⃗ and take a wave again of the form (5.3), i.e.

ψ(r⃗, t) = ei(ωt−k⃗·r⃗). (5.4)

Let’s look at the shape of the wavefront, i.e., a set of points with a constant value of phase.
The phase function is φ(r⃗, t) = ωt− k⃗ · r⃗. Let’s put

φ(r⃗, t) = ωt− k⃗ · r⃗ = φ0, ωt− φ0 = kyy + kzz = k(nyy + nzz). (5.5)

After rewriting, we get an algebraic equation of a line in the plane (y, z):

1

k
(ωt− φ0) = nyy + nzz. (5.6)

The constant phase curves are therefore lines with the vector n⃗ as their normal vector, see
Figure 5.2 on the left. At a given time, the expression n⃗ · r⃗ is a constant. If we introduce
notation as in Figure 5.2 on the right, we can write

n⃗ · r⃗1 = n⃗ · r⃗2 = d = ri cos θi, (5.7)

that is, for all points on the line, the scalar product n⃗ · r⃗ is constant and has the meaning of
the perpendicular distance d of the line from the origin. However, the distance d changes with
time; it is the left-hand side of the equation (5.6). The rate of advance of the constant phase
location is vφ = ω

k . Thus, the straight line of the constant phase moves in the direction of the
vector n⃗ – the vector of the wave’s direction of propagation – at the phase velocity vφ = ω

k . The

wave vector k⃗ = k n⃗ thus encodes both the wavelength through its magnitude, |⃗k| = k = 2π
λ ,

and the direction of propagation, n⃗.

n⃗

vφ

φ = const.

λ = 2π
k

(a) Schematic representation of the harmonic
“plane” wave in 2D. A single line of constant phase
is shown in bold. The harmonic wave propagates
in the n⃗ direction (perpendicular to the line wave-
form) at vφ.

O

d

r⃗1

r⃗2

P1

P2

n⃗

θ2 θ1
φ = const.

(b) On a line of constant phase, n⃗ · r⃗ = r cos θ =
d = vφt− φ0

k
holds

Figure 5.2: Harmonic travelling wave in 2D of the form given by (5.3).

This harmonic travelling “plane” wave1 is a solution to the 2D wave equation

∂2ψ

∂t2
= v2

(
∂2ψ

∂y2
+
∂2ψ

∂z2

)
= v2∆2Dψ, (5.8)

1Perhaps we should call it a line wave in 2D?
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where we have introduced the notation of the 2D Laplace operator ∆2D (here in variables y and
z), if the dispersion relation ω = v|⃗k| is satisfied. This wave equation is a direct generalization
of the one-dimensional wave equation. This equation could be obtained, for example, by the
continuous limit of a 2D lattice of weights on springs (a generalization of a chain of atoms in
two dimensions).

Based on the analysis of the 2D case, we arrive at a straightforward generalization for the
3D case. We introduce three-dimensional vectors: the propagation direction n⃗, the wave vector
k⃗ = k n⃗ (and the position vector r⃗ = (x, y, z)):

k⃗ = (kx, ky, kz) = k n⃗ = k(nx, ny, nz), |n⃗| = 1. (5.9)

The wave ψ(r⃗, t) has formally the same shape as in (5.4). The constant-phase surface (its
wavefront) is this time the plane to which the vector n⃗ is a normal vector; this propagates
through space at phase velocity vφ = ω

k , see schematic figure 5.3. Thus, waves of the form (5.4)
are called harmonic travelling plane waves.

x y

z

~n

ϕ = konst.

Figure 5.3: A plane wave in 3D space propagating through space in the direction of the vector n⃗ (or k⃗)
at a velocity of vφ = ω

k .

This wave is a solution of the three-dimensional wave equation

∂2ψ

∂t2
= v2∆ψ = v2

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
, (5.10)

where ∆ is the 3D Laplace operator, if the dispersion relation ω = v|⃗k| is satisfied.
Finally, let us write down a generalization of the d’Alembert solution of the one-dimensional

wave equation. In one dimension, there were only two possible directions of wave propagation
– in the positive and negative directions, i.e.

ψ(z, t) = F (z − vt) +G(z + vt). (5.11)

In multiple dimensions, the propagation directions are given by the unit vector n⃗ and hence we
assign a travelling plane wave to a given direction n⃗

ψ(r⃗, t) = F (n⃗ · r⃗ − vt). (5.12)

The general solution is then obtained as a superposition of travelling plane waves propagating
in all possible directions:

ψ(r⃗, t) =

∫
(n⃗)
F(n⃗)(n⃗ · r⃗ − v t) d3n. (5.13)
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5.2 Spherical waves

A harmonic travelling wave with spherical wavefronts is a wave of the following form

ψ(r, t) = ei(ωt−kr). (5.14)

Let us verify that the surfaces of the constant phase (wavefronts) are indeed spheres:

φ(r, t) = ωt− k
√
x2 + y2 + z2 = φ0, (5.15)

After rewriting r2, we obtain the algebraic equation of a sphere,

(
1

k
(ωt− φ0)

)2

︸ ︷︷ ︸
R(t)2=(vt−r0)2

= x2 + y2 + z2, (5.16)

where the radius R(t) increases with the phase velocity v = ω
k . The spherical wave is shown

schematically in Figure 5.4. Unfortunately, a spherical wave with constant amplitude does not
satisfy the wave equation,

∂2ψ

∂t2
= v2∆ψ. (5.17)

Therefore, let us find a real solution to the wave equation for spherically symmetric waves, i.e.,
consider the function ψ(r, t) as a function of only the distance from the origin r (and time t).
To do this, we will need to express the Laplace operator ∆ = ∂

∂x2
+ ∂

∂y2
+ ∂

∂z2
using derivatives

according to the radial coordinate r, ∂
∂r . At TEF1, you have shown2 that

∆ψ(r) =
∂2ψ

∂r2
+

2

r

∂ψ

∂r
. (5.18)

2First take the first derivative of the function ψ(r, t)

∂ψ

∂xi
=
∂ψ

∂r

∂r

∂xi
=
∂ψ

∂r

xi
r
,

where we used the identity ∂r
∂xi

= xi
r
. The second derivative is then

∂

∂xi

∂ψ

∂xi
=

∂

∂xi

(
∂ψ

∂r

xi
r

)
=
∂2ψ

∂r2
xi
r

xi
r

+
∂ψ

∂r

∂

∂xi

(xi
r

)
.

We use Einstein’s summation rule, i.e., we sum over the second derivative of ∂2

∂x2i
(i.e., over the index i). Then

xixi = r2 holds. We still need to calculate the term

∂

∂xi

(xi
r

)
=
δiir − xi

∂r
∂xi

r2
=
δiir − xixi

r

r2
=

1

r

(
δii −

xixi
r2

)
=

2

r
;

in the last equation we summed over i, i.e. δii = 3 and again xixi = r2. So in total we have

∆ψ(r, t) =
∂2ψ

∂r2
+

2

r

∂ψ

∂r
.
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x y

z

O

r
ϕ = konst.

vϕ

Figure 5.4: The spherical wavefront of a spherical wave in 3D space propagating at a velocity vφ.

Thus, the wave equation for a wave with functional dependence ψ(r, t) is of the form

∂2ψ

∂t2
= v2

(
∂2ψ

∂r2
+

2

r

∂ψ

∂r

)
. (5.19)

The right-hand side of the wave equation in coordinate r can be written as (verify!):

∂2ψ

∂r2
+

2

r

∂ψ

∂r
=

1

r

∂2(rψ)

∂r2
. (5.20)

Substituting back into the wave equation (5.17) and multiplying by r, we get

∂2(rψ)

∂t2
= v2

∂2(rψ)

∂r2
, (5.21)

which is the one-dimensional wave equation in the spatial coordinate r for the function Ψ(r, t) =
r ψ(r, t)! We know the solution of the one-dimensional wave equation, it is the d’Alembert
solution:

Ψ(r, t) = F (r − vt) +G(r + vt), (5.22)

After expressing ψ = 1
rΨ, we get the solution of the original wave equation for spherically

symmetric waves ψ(r, t):

ψ(r, t) =
1

r
F (r − vt) +

1

r
G(r + vt), (5.23)

where F,G : R → R are arbitrary functions (twice differentiable). The wave 1
rF (r − vt)

represents a spherical wave propagating from the origin with phase velocity v with amplitude
decaying as 1

r . Wave 1
rG(r + vt) represents a spherical wave propagating from infinity towards

the origin, we do not usually consider this wave – we prescribe the radiating condition, G = 0.
If we choose the shape of the radiated wave to be a harmonic function, F (x) = e−ikx, the
corresponding wave ψ(r, t) will have the form

F (r − vt) =
1

r
ei(ωt−kr), ψ(r, t) =

1

r
ei(ωt−kr), (5.24)

where we have denoted ω = vk (dispersion relation).
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Chapter 6

Electromagnetic Waves

6.1 Plane Electromagnetic Waves

We consider a homogeneous medium filling the entire space, composed of a linear dielectric and
a linear magnetic material. This means that the medium can be described by two (constant)
parameters: permittivity ε and permeability µ. We also introduce the parameters of relative
permittivity εr and relative permeability µr using the relations

ε = εrε0, µ = µrµ0, (6.1)

where ε0 and µ0 are the permittivity and permeability of vacuum. Maxwell’s equations for the
electromagnetic field E⃗(r⃗, t) and B⃗(r⃗, t) in this medium without free charges and currents take
the form:

div E⃗ = 0 (Gauss’s law), curl E⃗ = −∂B⃗
∂t

(Faraday’s law of induction),

div B⃗ = 0 (B⃗ is solenoidal), curl B⃗ = εµ
∂E⃗

∂t
(Ampère-Maxwell’s law). (6.2)

Let’s derive the wave equations resulting from these equations for the vectors E⃗ and B⃗.
Apply the differential operator of curl to Faraday’s law:

curl

(
−∂B⃗
∂t

)
= curl curl E⃗ = grad div E⃗ −∆E⃗ = −∆E⃗, (6.3)

where we used the differential identity curl, curl = grad div−∆ and Gauss’s law. By switching
the derivatives on the left side (6.3) and using Ampère-Maxwell’s law, we obtain

− ∂

∂t
curl B⃗ = −εµ ∂

2

∂t2
E⃗. (6.4)

Comparing the right-hand sides (6.3) and (6.4), we get the wave equation for the electric field
vector E⃗:

∂2E⃗

∂t2
=

1

εµ
∆E⃗. (6.5)

By the same process, starting with Ampère-Maxwell’s law, we arrive at the wave equation for
the magnetic field vector B⃗:

∂2B⃗

∂t2
=

1

εµ
∆B⃗. (6.6)
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Thus, we have six independent wave equations for the individual components of vectors E⃗ and
B⃗. The phase velocity of electromagnetic waves derived from the wave equations is

vφ =
1

√
εµ
. (6.7)

In the case of vacuum, we have vφ = c and

c =
1

√
ε0µ0

. (6.8)

We can define the refractive index n of the medium as the ratio of the speed of light to the
phase velocity in the given medium:

n =
c

vφ
=

√
εrµr ≈

√
εr, (6.9)

the last approximation comes from the fact that most materials have a relative magnetic per-
meability close to one.

Any solution to the wave equations (6.5) and (6.6) may not necessarily be a solution to the
original Maxwell’s equations (6.2). The validity of the wave equations was derived from the
validity of Maxwell’s equations. Any solution that satisfies our original Maxwell’s equations will
also be a solution to the wave equations, but the converse may not be true. Consider electrical
and magnetic plane traveling waves as solutions to the wave equations (6.5) and (6.6) in the
form:

E⃗(r⃗, t) = E⃗0 F (n⃗ · r⃗ − vt), B⃗(r⃗, t) = B⃗0 F (n⃗ · r⃗ − vt), (6.10)

where vectors E⃗0 and B⃗0 are constant vectors. The form of the traveling wave F (x) is the same
for all six components of vectors. Similarly, we consider the same direction of progression n⃗1.
Now, let’s verify whether these traveling waves satisfy Maxwell’s equations. And if not, under
what conditions they do so. Start with Gauss’s law, into which we substitute E⃗ from (6.10):

div E⃗ = 0 = ∂iEi = E0iniF
′(n⃗ · r⃗ − vt) = (E⃗0 · n⃗)F ′(n⃗ · r⃗ − vt), ∀r⃗, t, (6.11)

where we utilized Einstein’s summation convention and ∂i(n⃗ · r⃗) = ni (symbol ∂i =
∂
∂xi

). If the
form of our traveling wave F (x) is non-constant, then certainly the derivative F ′(x) cannot be
everywhere zero, and we must require the scalar product to vanish

E⃗0 · n⃗ = 0, E⃗0 ⊥ n⃗. (6.12)

From Gauss’s law, it follows that the vector E⃗0 (and therefore E⃗(r⃗, t)) must be perpendicular
to the direction of propagation n⃗. Identically, from the condition of the solenoidality of the
magnetic field, we get the condition of perpendicularity of the vector B⃗0 to the direction of
propagation n⃗:

div B⃗ = 0 ⇒ B⃗0 · n⃗ = 0, B⃗0 ⊥ n⃗. (6.13)

The electromagnetic wave is therefore a transverse wave! Displacements are perpendicular to
the direction of propagation.

Take Faraday’s law next,

curl E⃗ = −∂B⃗
∂t
, εijk∂jEk = −∂tBi, (6.14)

1This ansatz, where we consider the same F and the same n⃗, is a consequence of Maxwell’s equations. If
we considered a different form of the traveling wave F (x) and a different direction of progression n⃗ for each
component of E⃗ and B⃗, Maxwell’s equations would imply that they must be equal. For simplicity, we skip this
step and directly assume the same F and n⃗ for all.
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which we have written in index notation (using Einstein’s summation convention). After sub-
stituting traveling waves and differentiating, we have:

εijkE0knj F
′(n⃗ · r⃗ − vt) = −(−v)B0i F

′(n⃗ · r⃗ − vt). (6.15)

Returning to vector notation, (
n⃗× E⃗0 − vB⃗0

)
F ′(n⃗ · r⃗ − vt) = 0, (6.16)

after canceling F ′(x), we get a condition on vectors E⃗0 and B⃗0:

n⃗× E⃗0 = vB⃗0. (6.17)

The same condition would be reached using Ampère-Maxwell’s law. This condition states that
the vector B⃗0 is perpendicular to the vector E⃗0 and also provides the relationship between their
magnitudes:

|E⃗0| = v|B⃗0|. (6.18)

From conditions (6.12), (6.13), and (6.17) it also follows that the set (E⃗, B⃗, n⃗) forms a right-
handed orthogonal set of vectors, see figure 6.1. Fulfilling these conditions ensures that the
traveling wave (6.10) is a solution to Maxwell’s equations.

~E

~n~B

~n× ~E

Figure 6.1: Vectors E⃗, B⃗, n⃗ forming a right-handed orthogonal system of vectors.

~E

~B

~n

~E0

~B0

Figure 6.2: Harmonic traveling electromagnetic wave.

If we consider a harmonic traveling wave, i.e., choose (in complex notation)

F (x) = eikx, (6.19)
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then the resulting electromagnetic wave is of the form

E⃗(r⃗, t) = E⃗0 e
−i(ωt−k⃗·r⃗), B⃗(r⃗, t) = B⃗0 e

−i(ωt−k⃗·r⃗), (6.20)

where
E⃗0, B⃗0, n⃗ form a right-handed OG set, ω = v|⃗k|, k⃗ = k n⃗. (6.21)

The relationship ω = v|⃗k| is the dispersion relation for EM waves. This wave is depicted in
figure 6.2. For a special choice of direction of propagation in the direction of the z axis, we get

n⃗ = (0, 0, 1), E⃗ = E⃗0 e
−i(ωt−kz), B⃗ = B⃗0 e

−i(ωt−kz). (6.22)

6.2 Radiation of Electromagnetic Waves

In this chapter, we will look at how to generate electromagnetic waves. First, a quick recap
from the course on electricity and magnetism. For a charge q at rest at the origin, we obtain
the Coulomb electric field

E⃗(r⃗, t) =
q

4πε0

r⃗

r3
, (6.23)

which is radial and decreases with distance as 1
r2
, see Figure 6.3 on the left.

q

~E

x

y

(a) Electric field of a static point charge.

q

~E

~v

x

y

(b) Electric field of a point charge moving with con-
stant velocity.

Figure 6.3: Electric field of a point charge.

In the case of a charge moving with constant velocity v⃗ such that at time t = 0 it passes
through the origin, the electric field at time t = 0 is of the form

E⃗(r⃗, 0) =
q

4πε0

1− β2

(1− β2 sin2 θ)3/2︸ ︷︷ ︸
Γ(θ)

r⃗

r3
, β =

v

c
, (6.24)

where Γ(θ) is the so-called Heaviside factor, θ is the angle between the velocity vector of the
charge v⃗ and the (field) position vector r⃗, and the factor β = v

c . The field remains radial, only
its magnitude changes in different directions. Here we will consider low speeds, v ≪ c, so we
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approximate the Heaviside factor with one, Γ(θ) ≈ 1. Furthermore, the electric field as a whole
moves with the velocity v⃗ along with the charge. We can write

E⃗(r⃗, t) =
q

4πε0

r⃗′

r′3
, r⃗′ = r⃗ − v⃗t, (6.25)

where the meaning of the vector r⃗′ is illustrated in Figure 6.4. It is the vector connecting the
current position of the charge q with the location determining the electric field.

~r

q

~r′

~vt

P

O

Figure 6.4: Relationship between vectors r⃗ and r⃗′. Vector r⃗ is the position vector of point P , vector r⃗′

connects charge q with point P .

The fact that the radial field moves through space with the charge only applies if the charge
has been moving with constant velocity the entire time. Now, we will study the situation when:

� at time t ≤ 0 the charge is at rest at the origin,

� at time 0 ≤ t ≤ τ we let the charge accelerate to velocity v,

� for t ≥ τ the charge will move with constant velocity.

We will consider constant acceleration a in the direction of the x axis, so the resultant velocity
v⃗ will also be in the direction of the x axis. We will consider the acceleration period τ to
be very short, so that the distance traveled by the charge during acceleration, 1

2aτ
2, is also

considered small. Now, we cannot proceed further without introducing the following statement:
The disturbance in the electromagnetic field propagates at speed c, and the field at point P and
at time t is determined by what the charge was doing at the retarded time tr = t − R

c , where
R is the distance between point P and the position of the charge at time tr, see Figure 6.5.
Let’s call this fact the principle of retarded time. Demonstrating that this principle applies in
all generality is beyond our current scope. For a rigorous derivation, see the lecture TEF2.

q

P

t

R

tr = t− R
c

Figure 6.5: Principle of retarded time. The field created by the charge at time tr propagates through
space at speed c to arrive at location P at time t = tr +

R
c .

Based on this principle, we can divide the field around the charge at time t > τ into three
regions illustrated in Figure 6.6. The first is a thin spherical shell of width cτ with a radius of
approximately ct – this will represent the field radiated by the charge during its acceleration.
The next is the field outside this shell – this is the field from when the charge was stationary
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at the origin. And the last is the field inside this shell – the field of the charge moving with
constant velocity v⃗.

Our task now is to determine the shapes of the fields in each region. But we already know
the shapes of the fields outside and inside the shell, they are the fields (6.23) and (6.25). Thus,
the main task will be to determine the acceleration field E⃗acc directly at the shell. We limit
ourselves only to times t≫ τ , when the shell of the acceleration field is far from the origin.

x

y

cτc

c

c

v

Figure 6.6: Radiation of an electromagnetic wave. The solid lines represent the electric field lines. The
spherical shell of width cτ (dashed line) corresponding to the electromagnetic field of the accelerating
charge expands at speed c and separates the field areas from the static and moving charge. The static
electric field lines starting at the origin are marked with dots (inside the shell they are replaced by the
field of the moving charge).

Let’s look in detail at an electric field line at the location of the shell in Figure 6.7. The
static field E⃗stat. and the ”moving” field E⃗mov. having a field line under the same angle will be
continuously connected by an acceleration field line. This fact is given by that if we gradually
reduce the value of acceleration a to zero in our model, the field must transition to the field of a
static charge everywhere in space. Furthermore, let’s divide the acceleration field E⃗acc. present
in the shell into a part parallel to the position vector E⃗∥ and a part perpendicular E⃗⊥.
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E⃗acc.

E⃗∥

E⃗⊥

E⃗stat.

E⃗mov.

Figure 6.7: Detail of an electric field line near the shell. The acceleration field is divided into a perpen-
dicular component E⃗⊥ and a parallel component E⃗∥ to the position vector r⃗.

We determine the parallel field E⃗∥ from Gauss’s law,∮
S
E⃗ · dS⃗ =

Q

ε0
, (6.26)

where we choose the closed surface S as shown in Figure 6.8 – thus as a cylindrical surface
passing through the outer edge of the shell. Inside this surface, no charge is enclosed, hence
Q = 0.

~E⊥

~E‖

S

Figure 6.8: Surface S in Gauss’s law. The cylinder is oriented perpendicular to the surface of the shell
and passes through the outer side of the shell so that one base is directly in the shell and the other base
is in the area with static field.

The flux through the mantle is zero – outside the shell, we only have the radial field E⃗stat.,
which lies in the mantle, E⃗∥ by definition also lies in the mantle, and finally E⃗⊥ on one side of
the mantle flows in, but flows out equally on the other side (we consider S small so that E⃗⊥
does not change much). What remains are the fluxes through the bases, and by Gauss’s law,
these fluxes must equal (in absolute value):

E∥Sbase = Estat.Sbase. (6.27)

Thus, the magnitude of E∥ is exactly the same as that of the static electric field:

E∥ =
1

4πε0

q

r2
, (6.28)

where r is the radius of the shell. If the shell is thin (cτ is small) and we consider large times
(t≫ τ), around the shell it will apply2 E⃗mov. ≈ E⃗∥ ≈ E⃗stat.. Next, let’s look at the magnitude
of E⊥. Let’s draw a selected electric field line even more detailedly – as in Figure 6.9.

2Gauss’s law could also be used on the inner side of the shell with the field E⃗mov.
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x

y

v⃗
1
2aτ

2
v(t− τ) ≈ vt

E⃗stat.

E⃗acc.

E⃗mov.

θ

v⊥t

cτ

≪ r′

r

Figure 6.9: Detail of an electric field line for t ≫ τ . The angle θ denotes the deviation of the direction
of the field lines of the static and ”moving” field from the x axis (i.e., from the vector v⃗, respectively,
a⃗). The width of the shell is cτ . The radius of the outer side of the shell (separating the static electric

field E⃗stat.) is r, the radius of the inner side of the shell (separating the ”moving” electric field E⃗mov.) is
r′. It holds that r = ct and r − r′ ≈ cτ , for large t (≫ τ) we can consider r ≈ r′. At the same time, we

consider 1
2aτ

2 ≪ vt, so the distance between the field lines of E⃗stat. and E⃗mov. is v⊥t, where v⊥ is the
magnitude of the perpendicular projection of velocity v⃗, v⊥ = v sin θ, (i.e., we completely neglected the
distance 1

2aτ
2).

We express the magnitude of E⊥ using the similarity of two triangles. One is formed by
vectors E⃗⊥ and E⃗∥ and the other formed by distances v⊥t and cτ :

cτ

v⊥t
=
E∥

E⊥
. (6.29)

We express E⊥

E⊥ =
v⊥t

cτ
E∥ =

a⊥τ, r

c2τ

1

4πε0

q

r2
=

1

4πε0

q

c2
a⊥
r
, (6.30)

where we substituted for E∥ from (6.28), v⊥ = a⊥τ (a⊥ = a sin θ) and t ≈ r
c . The perpendicular

component of the electric field E⃗⊥ is called the radiation field E⃗rad:

Erad =
1

4πε0

q

c2
a⊥
r
. (6.31)

Now let’s examine the properties of the radiation field by analyzing the relationship (6.31).
We see that the field depends on the acceleration of the charge, not on its resultant velocity.
Only an accelerated charge emits electromagnetic radiation.

Moreover, the radiation field varies in different directions – it is anisotropic – since it depends
on the projection of acceleration a⊥. Figure 6.10 illustrates the perpendicular component a⃗⊥ of
the acceleration vector a⃗. If θ is the angle between vectors r⃗ and a⃗, then the magnitude of the
perpendicular acceleration is a⊥ = a sin θ. In the direction of acceleration, the charge does not
radiate (a⊥(θ = 0) = 0), and it radiates the most perpendicular to the direction of acceleration
(a⊥(θ =

π
2 ) = a).
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O ~a

θ

~a⊥, a⊥ = a sin θ

a⊥(θ=
π
2 ) = a

a⊥(θ=0) = 0

~r

Figure 6.10: Projection of the acceleration vector into the perpendicular direction to the direction of the
position vector r⃗.

The anisotropy of radiation is depicted using the so-called radiation diagram, which for our
specific case is shown in Figure 6.11. The radiation diagram represents the intensity of radiation
into different directions. In the chapter 6.3 on energy quantities, we will see that intensity is
proportional to the square of the amplitude. Here the amplitude of the electric field is given
by the perpendicular projection of acceleration a⊥, so in the radiation diagram, we plot the
quantity a2⊥.

~a x

y

θ

a2⊥
r

Figure 6.11: Radiation diagram of a charge accelerated in the direction of the x axis. It is a polar
diagram (x, y) = (r(θ) cos θ, r(θ) sin θ), where the radius function r(θ) is chosen as the square of the
perpendicular projection of acceleration, r(θ) = a2⊥(θ) = a2 sin2 θ. The distance of the radiation curve
from the origin under angle θ expresses the intensity of radiation in that direction.

A very surprising property of the radiation field is that it decreases with distance as 1
r ! The

parallel component E⃗∥ of the acceleration field E⃗acc decreases as 1
r2
, as does the field outside

the shell E⃗stat. and E⃗mov., see the schematic Figure 6.12. At a great distance from the source,
therefore, the radiation field dominates over the static field!

~Erad. ∝ 1
r

c

~Estat. ∝ 1
r2

Figure 6.12: Decrease of the static and radiation field with distance.

It holds that the radiation field E⃗rad is, by definition, perpendicular to the direction of
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propagation, E⃗rad ⊥ s⃗, where s⃗ = r⃗0 = r⃗
r . Generally (without proof here), the same relation-

ship applies to vectors E⃗, B⃗, and s⃗ as in a plane electromagnetic wave. The set of vectors
(E⃗rad, B⃗rad, s⃗) forms a right-handed set of orthogonal vectors, and in terms of magnitudes, it
holds that Erad = cBrad. See the schematic Figure 6.13.

~s

~Erad

~Brad

Figure 6.13: Directions of vectors E⃗rad, B⃗rad, and s⃗. Magnitudes fulfill Erad = cBrad.

The presented special case (when we have a charge at rest, then a period of short acceleration,
and finally uniform motion) can be generalized in the following way: We consider the motion
of a charge such that it always occurs near the origin and its velocity is small compared to the
speed of light, v ≪ c, then the radiation field at a large distance from the origin is of the form

E⃗rad(r⃗, t) = − 1

4πε0

q

c2
a⃗⊥(tr)

r
, tr = t− r

c
, (6.32)

where a⃗⊥(tr) is the perpendicular component of acceleration at the retarded time tr and the
minus sign is given by the fact that the radiation field points in the opposite direction to the
vector a⃗⊥, see Figures 6.6, 6.7, and 6.9. This generalization corresponds to the fact that we
imagine the radiation field as a series of shells connected to each other, where the radiation field
in each shell corresponds to the acceleration of the charge at the respective retarded time. If
the motion of the charge q is prescribed by the function r⃗q(t), then the acceleration a⃗(t) = r̈q(t)
and the perpendicular component of acceleration is calculated as

a⃗⊥ = a⃗− a⃗∥ = a⃗− (⃗a · r⃗0)r⃗0, r⃗0 =
r⃗

r
, (6.33)

thus as the difference between the whole vector a⃗ and the parallel projection a⃗∥, which we easily
calculate using the scalar product.

Consider as an example a charge oscillating along the z axis around the origin with acceler-
ation

a⃗(t) = a0z⃗ cos(ωt), z⃗ = (0, 0, 1). (6.34)

The acceleration at the retarded time tr then is

a⃗(tr) = a0z⃗ cos(ωtr) = a0z⃗ cos(ωt− kr), (6.35)

where we denoted k = ω
c (dispersion relation). The magnitude of the perpendicular projection

is

|⃗a⊥| = |⃗a| sin θ, (6.36)

where θ is the angle between vectors z⃗ and r⃗ (and thus also the standard angle θ of spherical
coordinates). After substituting (6.34) and (6.36) into the formula for the radiation field (6.32),
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we obtain for the magnitude the result

Erad =
1

4πε0

q

c2
a0︸ ︷︷ ︸

E0

1

r
sin θ cos(ωtr) =

E0
r
sin θ cos(ωt− kr), (6.37)

where we introduced the quantity E0 representing the amplitude of the electric field at a unit
distance from the origin. We see that for a harmonically oscillating charge, we obtained a
spherical harmonic traveling wave, which additionally has an angular dependence – anisotropy
– given by the additional expression sin θ.

6.3 Energy Quantities in Electromagnetic Field

6.3.1 Energy Density

In the lecture on electricity and magnetism, you derived the relationship for the energy density
of static electric and magnetic fields:

w =
1

2

(
εE⃗2 +

1

µ
B⃗2

)
. (6.38)

Let’s remind ourselves again of the definition of energy density. Now we have an electromagnetic
field in 3D space, thus here (unlike the case on a string) energy density determines a small
amount of energy dE in a volume dV :

dE = w dV, [w] = J.m−3. (6.39)

The relationship (6.38) applies not only to static fields but to any fields. It is a general
expression for the energy density w(r⃗, t) of any electromagnetic field (in a linear material medium
with permittivity ε and permeability µ). We leave this statement without proof.

6.3.2 Energy Flow

Let’s look at the change in energy density w over time, i.e., compute the derivative of the
expression over time:

∂w

∂t
= ε

∂E⃗

∂t
· E⃗ +

1

µ

∂B⃗

∂t
· B⃗, (6.40)

where we used the rule for differentiating the scalar product:

∂

∂t

(
1

2
E⃗2

)
=

∂

∂t

(
1

2
EiEi

)
=

1

2

(
∂Ei
∂t

Ei + Ei
∂Ei
∂t

)
=
∂Ei
∂t

Ei =
∂E⃗

∂t
· E⃗ (6.41)

(and the same for the B⃗ field). Using Maxwell’s equations (6.2), we replace the time derivatives
with curls (from Faraday’s and Ampère-Maxwell’s laws):

∂w

∂t
=

1

µ

(
(curl B⃗) · E⃗ − (curl E⃗) · B⃗

)
. (6.42)

Using Einstein’s summation convention, it’s easy to prove the identity3 (see TEF1)

div(B⃗ × E⃗) = (curl B⃗) · E⃗ − (curl E⃗) · B⃗. (6.43)

3Using index notation and Einstein’s summation convention:

div(B⃗ × E⃗) = ∂i(εijkBjEk) = εijk((∂iBj)Ek +Bj(∂iEk)) = Ekεkij∂iBj −Bjεjik∂iEk = E⃗ · curlB⃗ − B⃗ · curlE⃗.
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Substituting into (6.42) we get the continuity equation:

∂w

∂t
+ div

(
1

µ
E⃗ × B⃗

)
= 0, (6.44)

where the term in brackets is interpreted as the energy flow vector. We denote it as S⃗ and call
it the Poynting vector :

S⃗ =
1

µ
E⃗ × B⃗. (6.45)

The unit of energy flow S⃗ is [S⃗] = W.m−2. The amount of energy dE, which flows through the
area dA with the normal vector n⃗ in time dt, is given by the relation:

dE = (S⃗ · n⃗) dt dA. (6.46)

The continuity equation (6.44) represents the differential form of the law of conservation of
energy in the electromagnetic field. The integral form is obtained by integrating over a given
volume V :

d

dt

∫
V
w dV = −

∫
A
S⃗ · dA⃗, (6.47)

where the right side was obtained by applying Gauss’s theorem to the volume integral, the
surface A is the boundary of volume V , A = ∂V . The integral form of the law states that the
change in the amount of field energy in volume V is given by the total energy flow through the
boundary A.

6.3.3 Momentum Density

The electromagnetic field carries momentum in addition to energy. We introduce the concept
of momentum density g⃗, which indicates the amount of momentum dp⃗ contained in a volume
element dV :

dp⃗ = g⃗ dV. (6.48)

The unit is

[⃗g] = [p⃗].m−3 = (kg.m.s−1).m−3 = kg.m−2.s−1. (6.49)

Consider only the case of an electromagnetic field in vacuum. We show that the electro-
magnetic field carries momentum that it can transfer to charged particles. General derivation
see lecture TEF2, where it will be shown that generally

g⃗ =
1

c2
S⃗ =

1

c2
1

µ0
E⃗ × B⃗ = ε0E⃗ × B⃗. (6.50)

For simplicity and just for illustration, we will only show a very rough model of a plane harmonic
electromagnetic wave and its interaction with a heavily damped point charge q. We will see
how the momentum of the electromagnetic field is transferred to the charged particle due to
this interaction. The charge is acted upon by the Lorentz force from the electromagnetic wave,

F⃗L = q(E⃗ + v⃗ × B⃗), (6.51)

where v⃗ is the velocity of the charge. Additionally, a strong frictional force linearly dependent
on the velocity of the charge v⃗ acts on the charge. The equation of motion is then of the form

ma⃗ = −αv⃗ + F⃗L. (6.52)
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For very strong damping, the inertial term ma⃗ is negligible compared to the frictional term αv⃗.
In such a case, we have the equation of motion

αv⃗ = F⃗L, (6.53)

where the velocity v⃗ is directly proportional to the applied force and not to the acceleration a⃗.
Without loss of generality, consider that the charge is positive, q > 0. If there were only an
electric field E⃗ present in the passing wave, the particle would only perform oscillatory motion
in the direction of the electric field, see Figure 6.14

on the left. Now, let’s superpose the effect of the magnetic part of the Lorentz force on this
motion. In one half-period of the electromagnetic wave, the situation is depicted in Figure 6.14
in the middle, and in the second half-period, it is depicted in Figure 6.14 on the right. Since the
direction of velocity flips simultaneously with the direction of the electric field E⃗, and therefore
also with the direction of the magnetic field B⃗, the direction of the magnetic part of the Lorentz
force remains the same – in the direction of the propagation of the electromagnetic wave!

~v

q

~E

~E

~v

~v

q

~E

~B

~FB q

~E

~B

~FB

~v

Figure 6.14: Interaction of a charge with a passing plane harmonic traveling wave. The EM wave
propagates to the right. On the left, the velocity of the charge v⃗ due to the electric field E⃗ is depicted.
The velocity vector is oriented in the direction of the field E⃗. The directions of the magnetic part of the
Lorentz force are in the direction of propagation in both half-periods of the EM wave, as shown in the
middle and right images.

Let’s now quantify these considerations. Without loss of generality, consider an EM wave
propagating in the direction n⃗ = z⃗, with the electric field oscillating in the direction x⃗, E⃗ = Exx⃗,
and thus the magnetic field oscillating in the direction y⃗, B⃗ = Byy⃗. The Lorentz force is then
of the form

F⃗L = q
(
E⃗ + v⃗ × B⃗

)
= qExx⃗+ qvxBy z⃗ − qvzByx⃗. (6.54)

Let’s calculate the time-average value of the Lorentz force F⃗L (which is also the time-average
value of the momentum transferred due to this force):〈

dp⃗

dt

〉
= ⟨F⃗L⟩ = 0 + q⟨vxBy⟩z⃗ − 0. (6.55)

The first term is zero due to the harmonicity of the component Ex and the third term is zero
because the component By is harmonic (i.e., changing sign), but vz is positive due to the reason
discussed above (with half the period compared to the EM wave).

Next, let’s study the change in energy of the particle due to the acting Lorentz force:

dE

dt
= P = F⃗L · v⃗ = qv⃗ · E⃗ + q v⃗ · (v⃗ × B⃗)︸ ︷︷ ︸

B⃗·(v⃗×v⃗)=0

= qvxEx, (6.56)

where only the term from the electric field remains (the magnetic field does not do work; we

103



used the vector identity4 a⃗ · (⃗b× c⃗) = c⃗ · (⃗a× b⃗)). For the time-average value, we get〈
dE

dt

〉
= q⟨vxEx⟩ (6.57)

and if we use the relationship between the magnitude of the electric and magnetic components
in a plane electromagnetic wave, Ex = cBy, we arrive at〈

dE

dt

〉
= qc⟨vxBy⟩. (6.58)

Comparing (6.55) and (6.58) we get a relationship between the transferred momentum and
energy: 〈

dp⃗

dt

〉
=

1

c

〈
dE

dt

〉
z⃗. (6.59)

The momentum and energy transferred to the particle must occur at the expense of the mo-
mentum and energy of the electromagnetic field. If we multiply the previous relationship by dt
and divide by dV , we get

⟨g⃗⟩ = 1

c
⟨w⟩ n⃗. (6.60)

In the following chapter, we will see that for a plane wave, this result is equivalent (if we ignore
the average values) to the general relationship (6.50).

6.3.4 Energy Quantities in a Plane Wave

Now, let’s specify energy quantities for the case of a plane traveling wave. In this wave, the set
of vectors (E⃗, B⃗, n⃗) forms a right-handed orthogonal system (n⃗ is the direction of propagation,
|n⃗| = 1) and the relationship between the magnitudes of the field vectors is E = vB (for vacuum
v = c).

For the energy density w we get

w =
1

2

(
εE2 +

1

µ
B2︸︷︷︸

B2=E2

v2
=εµE2

)
= εE2. (6.61)

For the Poynting vector S⃗, we have

S⃗ =
1

µ
E⃗ × B⃗ =

√
ε

µ
E⃗ × (n⃗× E⃗) =

√
ε

µ
E2 n⃗, (6.62)

where we utilized the relationship B⃗ = 1
v n⃗× E⃗ (stemming from the properties of vectors E⃗, B⃗,

n⃗ for a plane EM wave) and also the relationship E⃗ × (n⃗× E⃗) = E2n⃗, which we easily deduce
from figure 6.1. For a plane electromagnetic wave, the Poynting vector can be written using the
energy density:

S⃗ = v w n⃗. (6.63)

4Which we again easily prove using the summation convention and index notation:

a⃗ · (⃗b× c⃗) = aiεijkbjck = εijkaibjck = ckεkijaibj = c⃗ · (⃗a× b⃗).
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For an electromagnetic plane traveling wave in vacuum, we can write the momentum density
g⃗ after substituting expressions for the Poynting vector as

g⃗ =
1

c2
S⃗ =

1

c
w n⃗ = ε0E⃗ × B⃗. (6.64)

For a harmonic plane traveling wave propagating in the direction of the z axis (and the
electric field vector oscillating in the direction of the x axis), the vectors E⃗ and B⃗ are of the
form

E⃗ = E0x⃗ cosωt, B⃗ = B0y⃗ cosωt, E0 = cB0, n⃗ = z⃗. (6.65)

Then the energy density w and the Poynting vector S⃗ (and their time-average values) come out
as

w = εE2 = εE2
0 cos

2 ωt, S⃗ =

√
ε

µ
E2

0 cos
2 ωt z⃗, (6.66)

⟨w⟩ = 1

2
εE2

0 , ⟨S⃗⟩ = 1

2

√
ε

µ
E2

0 z⃗. (6.67)

The magnitude of the time-average value of the Poynting vector is called the intensity of the
electromagnetic wave I = ⟨|S⃗|⟩.

Energy quantities of the electromagnetic field are quadratic in fields, just as in the case of
a string. Again, we cannot use complexified waves for their calculation.

6.3.5 Radiation Pressure

Due to the carried momentum, an electromagnetic wave exerts pressure on the surface it strikes.
First, consider the case where the wave strikes a surface perpendicularly and the entire wave
is absorbed. Then all the momentum carried by this wave is transferred to the given surface.
Let’s quantify these considerations. Consider a small area dS and a small moment in time dt.
Pressure is defined as force per unit area,

p =
dF

dS
=

dp

dS dt
, (6.68)

and the acting force is the transferred momentum per unit time dF = dp
dt (note, p denotes

pressure and dp momentum). Now we need to look at how much momentum dp the surface
absorbs in time dt. In time dt, radiation from the volume dV = c dt dS hits the surface, see
Figure 6.15. The momentum contained in this volume is dp = g dV .

dS

c dt

dV

Figure 6.15: Radiation absorbed by an area of size dS over time dt comes from the volume dV = c dt dS.

Substituting into the expression (6.68) we get

p =
g dV

dS dt
=
g c dt dS

dS dt
= c g. (6.69)
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Using relationships for momentum density in a plane traveling wave (6.64), we can write the
radiation pressure in several equivalent forms:

p = c g = w =
S

c
. (6.70)

If we have a surface with reflectivity R ∈ ⟨0, 1⟩, the radiation pressure increases accordingly:

p = (1 +R)w. (6.71)

If radiation strikes a surface at an angle α (angle of deviation from perpendicular), the radiation
pressure decreases by a factor of cos2 α, p = w cos2 α. This is due to two effects: the amount of
radiation hitting the area dS decreases by a factor of cosα and the momentum transferred in
the direction perpendicular to the area dS also decreases by a factor of cosα, see the schematic
Figure 6.16.

dA = cosαdS

dS~n
α

Figure 6.16: Radiation pressure on a surface inclined at an angle α. The size of the projection of area
dS into the direction perpendicular to the radiation is dA = cosαdS.

Finally, for an idea of the magnitude of radiation pressure from the Sun at a distance of
1AU ≈ 150.106 km (i.e., at a distance where Earth orbits). The energy flow of solar radiation at
this distance is S = 1361W.m−2 (also called the solar constant). The radiation pressure then is
p = S

c = 4, 5.10−6 Pa. The closer we are to the center of the Sun, the greater the pressure. At a
distance of d = 106 km from the center of the Sun (the radius of the Sun R⊙ ≈ 0, 7.106 km) the
pressure will be 1502 times greater, p = 0, 1Pa. However, inside very massive stars, radiation
pressure plays a significant role as one of the processes acting against the gravitational collapse
of these stars.

6.3.6 Energy of the Radiated Wave

Let’s now look at the energy flow S⃗ of the electromagnetic wave radiated by a point charge.
The Poynting vector

S⃗ =
1

µ0
E⃗ × B⃗ (6.72)

takes the form

S⃗(r⃗, t) =
1

µ0
EBr⃗0 =

√
ε0
µ0
E2r⃗0 =

√
ε0
µ0

(
1

4πε0

q

c2

)2 1

r2
a2⊥(tret)r⃗0 (6.73)

after substituting from the relationship for the radiation field of a moving charge (6.32) and
the relationship between the direction and magnitude of vectors E⃗ and B⃗ (see Figure 6.13),
tret = t− r

c is the retarded time. We see that the energy flow is directed radially away from the
source. Let’s now calculate the energy flow passing through a sphere of radius r at time t. If
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we now introduce spherical coordinates such that the z axis points in the direction of the vector
a⃗(tret), then the expression for the magnitude of the perpendicular projection of acceleration
a⊥ is

a⊥ = a sin θ, (6.74)

where θ is the standard angle of spherical coordinates measuring the deviation from the z
axis. The energy flow dP through a small area dA, whose normal vector is n⃗, is given by the
relationship

dP = S⃗ · dA⃗, (6.75)

where dA⃗ = n⃗ dA. The area through which we calculate the flow is a sphere, the normal vector
points also in the radial direction like the vector S⃗ (see Figure 6.17), so dP = S dA applies.

dA

~S

~n

Figure 6.17: Area dA.

The total power P (t, r) passing through the sphere of radius r at time t is obtained by
integration:

P =

∫
A
dP =

∫ 2π

0

∫ π

0
S r2 sin θ dφ dθ︸ ︷︷ ︸

dA

=

∫ 2π

0

∫ π

0

√
ε0
µ0

(
1

4πε0

q

c2

)2 1

r2
a2(tr) sin

2 θ r2 sin θ dφ dθ, (6.76)

where we substituted for S from (6.73) and (6.74). After simplifying, we get

P = 2π

√
ε0
µ0

(
1

4πε0

q

c2

)2

a2(tret)

∫ π

0
sin3 θ dθ, (6.77)

where we integrated over the angle φ and pulled out all constants, including acceleration a(tr),
which from the perspective of integration at a given t and on a sphere of constant radius r is
also constant. The only thing left is the integral over the angle θ, which we easily calculate:∫ π

0
sin3 θ dθ =

∫ π

0

(
1− cos2 θ

)
sin θ dθ =

[
− cos θ +

1

3
cos3 θ

]π
0

=
4

3
. (6.78)

After substituting and simplifying constants, the result is the so-called Larmor formula for the
power radiated by a non-relativistic point charge:

P (t, r) =
µ0q

2

6πc
a2(tret), (6.79)

the formula may appear in various forms depending on how one chooses to write the constant
µ0
c (using the relationship c = 1√

µ0ε0
). The power depends on the radius of the sphere r only

through the retarded time tret. This means that the energy contained in the sphere expanding
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at speed c remains constant5. This is due to the fact that the electric field decreases as 1
r ,

therefore the Poynting vector decreases as 1
r2
, but the surface area of the sphere is proportional

to r2, these two effects thus cancel each other out.
Consider a harmonically oscillating charge, then its position, the square of acceleration

including the time-average value are:

x(t) = A cosωt, a2(t) = A2ω4 cos2 ωt, ⟨a2(t)⟩ = 1

2
A2ω4. (6.80)

The time-average value of the carried power then is

⟨P ⟩ = µ0q
2

6πc
⟨a2(tr)⟩ =

µ0q
2

12πc
A2ω4. (6.81)

This no longer depends on r and thus ”on average” the same energy is contained in every shell
of radius r.

6.4 Refractive Index in Materials and Plasma

Consider a simple model of light passing through a material as an interaction of the traveling
electromagnetic wave with bound electrons in the atoms of the material. Initially, assume that
there is only one type of electron present in the material, which has its own natural angular
frequency of oscillation ω0 due to binding in the electric field of the atomic nucleus.

e−

x⃗

E⃗(t)

nucleus

Figure 6.18: Model of an electron bound in a material oscillating under the influence of the electric field
from the traveling electromagnetic wave.

The equation of motion for this electron will be

m¨⃗x+mω2
0x⃗ = F⃗L, (6.82)

where m is the mass of the electron and F⃗L is the Lorentz force acting on the electron in the
traveling electromagnetic wave. Damping of the electron in this simple model is neglected. If
we now in the Lorentz force,

F⃗L = q
(
E⃗ + v⃗ × B⃗

)
, (6.83)

estimate the magnitude of the magnetic part in the traveling electromagnetic wave,

|v⃗ × B⃗| ≤ v|B⃗| = v

c
|E⃗| ≪ |E⃗|, (6.84)

we see that for non-relativistic speeds, v ≪ c, due to the relationship |E⃗| = c|B⃗|, the mag-
netic force can be neglected. For a non-relativistic electron, the equation of motion (6.82) will
approximately be

m¨⃗x+mω2
0x⃗ = −eE⃗(t), (6.85)

5If I consider a fixed retarded time tret = t− r
c
, then I can express r(t) = −ctret + ct – thus shells of constant

retarded time expand at speed c.
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where e is the elementary electric charge. For a harmonic electromagnetic wave, we have at a
given point

E⃗(t) = E⃗0 cos(ωt), (6.86)

meaning we have a harmonic oscillator driven by a harmonic driving force. Therefore, using
the results from chapter 1.6, specifically equations (1.24), (1.25), and (1.28) (for zero damping
δ = 0, driving amplitude B → − e

mE⃗0, and driving frequency Ω = ω), we can write

x⃗(t) = − e

m

E⃗0

ω2
0 − ω2

cosωt. (6.87)

The oscillating electron creates a variable dipole moment p⃗ of magnitude

p⃗ = −ex⃗ =
e2

m

E⃗(t)

ω2
0 − ω2

. (6.88)

Heavy positively charged nuclei are considered stationary and therefore do not create any dipole
moment. This way, the electromagnetic wave affects all electrons (with angular frequency ω0)
present in the material. If the number density of electrons in the material is N , then the
polarization vector P⃗ (representing the volumetric density of dipole moment, dp⃗ = P⃗ dV ) is
given by

P⃗ = N p⃗. (6.89)

The permittivity ε of the medium can be expressed from the relationship for the electric
displacement D⃗:

D⃗ = ε0E⃗ + P⃗ = εE⃗. (6.90)

(this relationship defines ε for the resulting E⃗
and P⃗ ). If we substitute the value of polarization P⃗ into (6.90), we get

ε0

(
1 +

Ne2

mε0

1

ω2
0 − ω2

)
E⃗ = εE⃗ (6.91)

and thus

ε(ω) = ε0

(
1 +

Ne2

mε0

1

ω2
0 − ω2

)
. (6.92)

For the refractive index, we have an approximate relationship n ≈ √
εr =

√
ε
ε0
, meaning

n(ω) =

√
1 +

Ne2

mε0

1

ω2
0 − ω2

. (6.93)

Having the refractive index n(ω), we know the dispersion relation of the given medium

ω =
c

n(ω)
k. (6.94)

This model quantifies the classical notion of the interaction of an electromagnetic wave with
a material. The change in phase velocity of EM waves when passing through a material is
interpreted as the effect of superposition of induced fields (from oscillating electrons) and the
passing wave.

The singularity for ω = ω0 would be removed by accounting for the non-zero damping of
individual electrons. A schematic graph of the refractive index function n(ω) (6.93) is shown
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in Figure 6.19. In the region ω < ω0, the fraction under the square root is positive, and thus
the refractive index n > 1 (and vφ < c). In the region ω > ω0, the fraction is negative. For

frequencies in the range ω ∈ (ω0,
√
ω2
0 +

Ne2

mε0
), the expression under the square root is negative,

and the entire medium behaves as reactive. For frequencies ω ≥
√
ω2
0 +

Ne2

mε0
, the medium is

again transparent, this time with n < 1 (vφ > c).

ω

n(ω)

1

0

ω0
√

ω2
0+

Ne2

mε0

√
1+ Ne2

mε0ω2
0

Figure 6.19: The function of the refractive index n(ω).

Typically, there are multiple types of electrons (differently ”strongly” bound in the atom) in
a material, thus generally we would consider the densities of each type of electron Nk with their
own frequencies ωk. This generalization would lead to a relationship for the refractive index

n(ω) =

√
1 +

∑
k

Nke2

mε0

1

ω2
k − ω2

. (6.95)

Let’s proceed to the case of plasma. In plasma, we have electrons and positively charged
ions that can move freely. Similarly to the case of the refractive index for materials, we neglect
the motion of positively charged ions (in materials, these were atomic nuclei) due to their much
higher mass compared to electrons6. For plasma, we use the previous results simply by setting
ω0 = 0 – electrons are not bound. From the result (6.93), we therefore get

n(ω) =

√
1− Ne2

mε0

1

ω2
. (6.96)

From the general dispersion relation for the refractive index ω = c
nk, we can express

n = 1
ω ck and after substituting into (6.96),

c2k2
1

ω2
= 1− Ne2

mε0

1

ω2
, (6.97)

and with a minor adjustment, we obtain the dispersion relation for waves in plasma

ω2 = ω2
p + c2k2, (6.98)

where we designated the so-called plasma frequency ωp =
√

Ne2

mε0
. For ω > ωp, plasma behaves as

a transparent medium, for ω < ωp as a reactive medium. In the Earth’s ionosphere, depending

6A proton is approximately two thousand times heavier than an electron (
mp

me
≈ 1836).
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on the time of day, season, and solar activity, the plasma frequency is in the range of 10−30MHz.
Waves of lower frequencies thus do not pass through the ionosphere and are reflected.

A waveguide is a device capable of guiding electromagnetic waves with minimal losses.
Unlike in free space, where electromagnetic waves from a source propagate as spherical waves
with amplitude decreasing with distance, a waveguide confines the wave propagation to a limited
space along one direction, thus preventing amplitude reduction during propagation. Practically,
it consists of a metallic tube or a plated conduit—a space bounded by a metallic shell. As a
model, we will consider a long straight waveguide of rectangular cross-section, whose walls are
made of perfectly conductive material (material with zero or negligible resistance).

Let’s consider the propagation of the electric part of the electromagnetic wave in this envi-
ronment. The electric field vector E⃗ must satisfy the wave equation and Gauss’s law,

∂2E⃗

∂t2
= c2∆E⃗, div E⃗ = 0, (6.99)

thus entirely the same equations as, for example, for a planar electromagnetic wave. The
significant difference is the presence of boundary conditions. We are looking for an electric
field inside the waveguide with the requirement of fulfilling the boundary conditions of perfectly
conductive walls. Perfectly conductive walls enforce the vanishing of the tangential components
of the electric field at the waveguide walls. This fact follows from the differential form of Ohm’s
law,

j⃗ = σE⃗, (6.100)

which relates the current density j⃗ in the conductor with the acting electric field E⃗ using the
proportionality constant σ – the conductivity of the material. If we express the magnitude of
the electric field E = 1

σ j and consider infinite conductivity (zero resistance), we get E = 0.
Physically speaking, charges can follow the changing electric field and always precisely compen-
sate for it with their movement7. However, since charges must remain within the waveguide
wall, the perpendicular component of the electric field at the boundary cannot induce charge
movement and thus remains undisturbed.

Let’s introduce coordinates as in Figure 6.20, where the respective tangential components
in the various walls of the waveguide are also illustrated.

x

y

z

O
b

a

~Ex ~Ez

~Ez

~Ey

Figure 6.20: Rectangular waveguide of dimensions (a, b) oriented along the z axis. The corresponding

tangential components of the electric field E⃗ are shown in the top (and bottom), and right (and left)
walls.

7For static fields, this fact holds for any conductors. The static electric field in a conductor is always zero.
For non-static fields, we additionally require the condition of perfect conductivity.
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In these introduced coordinates, the boundary conditions are as follows. For the left (y = 0)
and right (y = b) wall, we have:

Ex(x, 0, z, t) = Ex(x, b, z, t) = 0 ∀x ∈ ⟨0, a⟩, ∀z, t ∈ R,
Ez(x, 0, z, t) = Ez(x, b, z, t) = 0 ∀x ∈ ⟨0, a⟩, ∀z, t ∈ R. (6.101)

For the top (x = a) and bottom (x = 0) wall:

Ey(0, y, z, t) = Ey(a, y, z, t) = 0 ∀y ∈ ⟨0, b⟩, ∀z, t ∈ R,
Ez(0, y, z, t) = Ez(a, y, z, t) = 0 ∀y ∈ ⟨0, b⟩, ∀z, t ∈ R. (6.102)

We will now seek the simplest solution to equations (6.99) that satisfy boundary conditions
(6.101) and (6.102) and that propagates along

the waveguide (i.e., along the z axis). We do not aim to find a completely general solution.
We can simplify the search for a solution if we consider the electric field constant in some
directions. Definitely, we want to preserve dependence on coordinates z and t, as we want to
describe a wave traveling in the direction of the z axis. Unfortunately, if we were to leave
the electric field constant in the xy planes, i.e., consider functions E⃗(z, t), boundary conditions
would force the solution to vanish (see below). Let’s, therefore, add dependence on one more
variable and study what happens. Let’s take, for example, the electric field constant along the
x axis, i.e., consider functions

E⃗ = E⃗(y, z, t). (6.103)

The ansatz E⃗(y, z, t) leads to the nullification of the Ey and Ez components throughout the
waveguide. Why? Boundary conditions for the top and bottom wall (6.102) talk about the field
at points x = 0 and x = a, but our field is constant in the x direction. If it’s zero at the edge,
it must also be zero8 for all x:

0 = Ey(0, y, z, t) = Ey(y, z, t) = Ey(x, y, z, t) ∀x, y, z, t,
0 = Ez(0, y, z, t) = Ez(y, z, t) = Ez(x, y, z, t) ∀x, y, z, t. (6.104)

Boundary conditions simplified the electric field E⃗ to the form

E⃗ = (Ex, 0, 0), Ex = Ex(y, z, t). (6.105)

Gauss’s law is then automatically satisfied,

div E⃗ =
∂Ex(y, z, t)

∂x
= 0, (6.106)

and from the wave equation, one component remains and the Laplace operator acts only in
coordinates y and z:

∂2Ex
∂t2

= c2∆Ex = c2
(
∂2Ex
∂y2

+
∂2Ex
∂z2

)
. (6.107)

We are still left with the boundary condition for the Ex component from (6.101):

Ex(0, z, t) = Ex(b, z, t) = 0 ∀z, t ∈ R. (6.108)

8For the same reason, the Ex component also disappeared for a field that had dependence only E⃗(z, t). From
the boundary condition of the left and right wall (6.101), we would have gotten:

Ex(x, 0, z, t) = Ex(z, t) = Ex(x, y, z, t) ∀x, y, z, t.
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As we have already mentioned, we want to find an electric field propagating along the z
axis. Let’s consider the following ansatz:

Ex(y, z, t) = Y (y)ei(ωt−kzz). (6.109)

We wrote the electric field as a traveling wave in the direction of the z axis with an unknown
function Y of the coordinate y. We have denoted the wave number corresponding to the z
direction with kz. Individual derivatives in the wave equation (6.107) lead to expressions

∂2Ex
∂t2

= −ω2Y (y)ei(ωt−kzz),
∂2Ex
∂z2

= −k2zY (y)ei(ωt−kzz),
∂2Ex
∂y2

= Y ′′(y)ei(ωt−kzz),

(6.110)
and after substituting them into (6.107) and canceling the exponential, we get an ordinary
differential equation for the function Y (y) in the form

Y ′′ +
(
ω2

c2
− k2z

)︸ ︷︷ ︸
K

Y = 0. (6.111)

Boundary conditions (6.108) reduce to the following conditions on the function Y (y):

Y (0) = 0, Y (b) = 0. (6.112)

For K ≤ 0, solutions are hyperbolic functions (K < 0) or linear functions (K = 0), and these
cannot satisfy the boundary conditions non-trivially. For K > 0, we obtain the equation

Y ′′ + k2y Y = 0, (6.113)

where we have denoted as the wave number in the direction y,

ky =

√
ω2

c2
− k2z . (6.114)

The solution (6.113) can be written in the form

Y (y) = α cos(kyy) + β sin(kyy). (6.115)

Let’s find the form of the solution that satisfies the boundary conditions (6.108):

0 = Y (0) = α ⇒ 0 = Y (b) = β sin(kyb). (6.116)

We must set α = 0, and if we require a non-trivial solution, β ̸= 0 and simultaneously

kyb = mπ, m ∈ N (6.117)

(since kyb > 0, m ∈ N). Thus, in the waveguide, through the form of the function Y (y),
there exist modes numbered by natural numbers m ∈ N in the form of sin functions. This is
very similar to a string with fixed ends—fixed ends forced the displacement to vanish at the
points of fixation. Here, the electric field must vanish at the walls due to the ”fixed ends” of
perfect conductivity. The permissible wave numbers for the function Y (y) and the corresponding
functions Ym(y) are thus in the form

ky(m) =
mπ

b
, Ym(y) = β sin

(
ky(m)y

)
= β sin

(mπy
b

)
, m ∈ N (6.118)
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Now, let’s put all the information together. The electric field in the waveguide can be excited
in various modes numbered by a natural number m ∈ N in the form

E⃗ = (Ex, 0, 0), Ex(y, z, t) = E0 sin
(mπy

b

)
ei(ωt−kzz), (6.119)

(where we started writing E0 instead of β). Meanwhile, constants ky = mπ
b , kz, and ω must

satisfy the dispersion relation (resulting from (6.114)):

ω2 = c2
(
k2y + k2z

)
=
(mπc

b

)2
+ c2k2z . (6.120)

Denoting ωmin(m) =
mπc
b , we can write the dispersion relation for the waveguide in the form

ω2 = ω2
min(m) + c2k2, (6.121)

where we also stopped writing the index on kz, as, although we have an electric field in space, it
effectively acts as a traveling wave only in the direction z, so there is no dispute that the wave
number k (formerly kz) describes the wavelength of the electric field in the direction z. We can
therefore calculate the phase and group velocity of the electromagnetic wave traveling through
the waveguide along the z axis as

vφ =
ω

k
, vg =

dω

dk
, (6.122)

thus entirely the same as for one-dimensional wave propagation.
From the dispersion relation (6.121), it follows that for a given mode (i.e., for a given

natural numberm), there exists a minimum angular frequency ωmin(m), which can still propagate
through the waveguide. For ω > ωmin(m), it is a transparent environment; for ω < ωmin(m), it
is a reactive environment. The lowest mode for m = 1 also has the lowest minimum angular
frequency

ωmin = ωmin(1) =
πc

b
. (6.123)

For a waveguide of size b = 10cm, that is fmin =
ωmin
2π = 1, 5GHz. For frequencies ω in the

reactive regime, we can easily find a solution to the dispersion relation in the form of k = iκ,
i.e.,

ω2 = ω2
min(m) − c2κ2, (6.124)

and the resulting wave in the waveguide will be an exponentially damped standing wave in the
form

Ex(y, z, t) = E0 sin
(mπy

b

)
e−κzeiωt. (6.125)

The waveguide thus leads the electromagnetic wave without reducing the amplitude, but its
dimensions must be sufficient for it to lead the wave of a given frequency at all. If the dimensions
of the waveguide are not sufficient, the wave does not propagate through the waveguide but
forms an exponentially damped standing wave. Illustrations of individual modes are shown in
Figure 6.21.
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(a) First mode, m = 1. (b) Second mode, m = 2.

(c) Third mode, m = 3. (d) Fifth damped mode, m = 5.

Figure 6.21: Illustration of the electric field in the waveguide for several modes. Waves are shown for a
fixed angular frequency ω. As the mode number m increases, the minimum angular frequency ωmin(m)

increases until inevitably, from a certain m0, the wave stops propagating; here it happened for m0 = 5
in the last image. The electric field is constant along the x axis, so the fields in a selected plane x = x0
are illustrated in the images. At the beginning of the waveguide, vectors of the electric field intensity
E⃗ are directly illustrated (in black), while elsewhere, the intensity of the electric field is continuously
plotted (in color) without showing individual vectors. For propagating modes (m < m0), the wave as
a whole moves through the waveguide with the phase velocity vφ(m) (different for each mode), and for
non-propagating modes (m ≥ m0), a standing wave is formed.
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6.5 Boundary Conditions for EM Fields at the Interface of Non-
conductive Media

Consider two homogeneous media composed of linear dielectrics and magnetics described by
permittivities ε1 and ε2 and permeabilities µ1 and µ2. We will now derive the so-called boundary
conditions for the electric and magnetic fields at the interface of these two media, which will
specify the relationship between the values of the electric and magnetic fields on one side of the
interface and the other.

Write Maxwell’s equations in material media for generally variable permittivity ε(r⃗) and
permeability µ(r⃗):

div (εE⃗) = ρfree (Gauss’s law), div B⃗ = 0 (B⃗ is solenoidal),

rot E⃗ = −∂B⃗
∂t

(Faraday’s law), rot
( 1
µ
B⃗
)
= j⃗free +

∂(εE⃗)

∂t
(Ampère-Maxwell’s law).

(6.126)

Non-conductive media are characterized by the absence of free charges and currents:

ρfree = 0, j⃗free = 0. (6.127)

The general strategy will be to rewrite each of Maxwell’s equations into integral form, apply
Gauss’s or Stokes’s theorem, and appropriately choose the volume/surface/curve of integration
to provide relationships between fields on one and the other side of the interface.

Start with Gauss’s law. Integrating over a given volume V and using Gauss’s theorem, we
get ∫

V
div (εE⃗) dV =

∮
S
εE⃗ · dS⃗ = 0, (6.128)

where the closed surface S is the boundary of volume V , ∂V = S. The right side is zero due to
the absence of free charges. The element of surface in the integral is dS⃗ = n⃗ dS, where n⃗ is the
unit normal vector to surface S. Now choose the volume/surface V /S as a cylinder whose axis
is perpendicular to the interface of the two media as shown in Figure 6.22.

V, ∂V = S

Sp

h

~n −~n

~E1, ~B1 ~E2, ~B2

rozhrańı

ε1, µ1 ε2, µ2

Figure 6.22: Cylindrical surface S placed with its axis perpendicular to the interface of two homogeneous
media. The surface area of the base is Sp and the height of the cylinder is h. The unit normal vector to
the base in the first medium is denoted n⃗, for the second base it is then −n⃗.

Divide the integration area into both bases and the mantle. Thus, the flux Φ through the
entire cylinder can be split into Φ = Φmantle +Φp1 +Φp2:

Φ = Φmantle +
(
ε1E⃗1 · n⃗− ε2E⃗2 · n⃗

)
Sp = 0, (6.129)
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where the integral over the small base area was written9 as the product of the area Sp and the

value of the scalar product E⃗ · n⃗ at that location. The flux through the mantle can be estimated
as |Φmantle| ≤ αSmantle = α (2πr)h, where α is the maximum of the function |E⃗ · n⃗| on the
surface of the mantle and r is the radius of the base. In the limit h → 0, the flux through the
mantle disappears and after cancelling Sp from (6.129), we obtain

n⃗ ·
(
ε1E⃗1 − ε2E⃗2

)
= 0, (6.130)

where E⃗1 and E⃗2 represent the values of the electric field from one and the other side of the
interface. The scalar product E⃗ · n⃗ geometrically represents the magnitude of the projection of
vector E⃗ in the direction of the normal vector, thus representing the magnitude of the normal
component of the electric field E⃗⊥. From Gauss’s law, it follows that the normal components
of the electric field have a discontinuity at the interface given by the ratio of the respective
permittivities of the media:

ε1E⃗1⊥ = ε2E⃗2⊥,
E1⊥
E2⊥

=
ε2
ε1
. (6.131)

The same procedure is applied to the second divergent Maxwell’s equation, i.e., the solenoidal-
ity of the magnetic field. The integral form∫

V
div B⃗ dV =

∮
S
B⃗ · dS⃗ = 0 (6.132)

after choosing a cylindrical surface as before leads to

n⃗ ·
(
B⃗1 − B⃗2

)
= 0, (6.133)

or the normal components of the magnetic field are continuous at the interface:

B⃗1⊥ = B⃗2⊥. (6.134)

Next, consider Ampère-Maxwell’s law in (6.126), whose integral form is obtained by inte-
grating over the surface S, ∫

S
rot

(
1

µ
B⃗

)
· dS⃗ =

∫
S

∂(εE⃗)

∂t
· dS⃗ (6.135)

and applying Stokes’s theorem to the left side of the equation, we get∮
l

1

µ
B⃗ · d⃗l =

∫
S

∂(εE⃗)

∂t
· dS⃗, (6.136)

where the closed curve l is the boundary of the surface S, l = ∂S. The element of length in
the integral is d⃗l = t⃗ dl, where t⃗ is the unit tangent vector to curve l, the element of surface

9We are essentially using the generalized mean value theorem of integration. The integral of a continuous
scalar function E⃗ · n over a compact (bounded and closed) surface S can be written as the size of this surface
times the function value at some point of the surface:∫

S

E⃗ · n⃗ dS = (E⃗ · n⃗)(ξ⃗)S = E⃗(ξ⃗) · n⃗(ξ⃗)S,

where the point ξ⃗ is an unspecified point on the surface S. Performing the limit S → 0 we get the function value
(E⃗ · n⃗) at the chosen point around which we constructed the surface S.
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is again dS⃗ = n⃗ dS. Choose the surface S (or its boundary l) as a rectangle whose surface is
perpendicular to the interface of the media, as shown in Figure 6.23.

S, ∂S = l

h

~E1, ~B1 ~E2, ~B2

~t −~t

Figure 6.23: Rectangular surface S, or curve l, placed perpendicular to the interface of the media. Let’s
denote the dimension of the rectangle across the interfaces as h and along the interface as l. The unit
tangent vector to the left side of the rectangle is t⃗, then the tangent vector to the right side maintaining
the direction of traversal is −t⃗.

First, let’s look at the integral on the right side of (6.136). This can be absolutely estimated

from above by the expression αS = α l h, where α is the maximum of the function
∣∣∣∂(εE⃗)

∂t · n⃗
∣∣∣

and S is the area of the chosen rectangle. In the limit h→ 0, this integral therefore disappears.
The integration on the left side of (6.136) over the curve l is divided into individual sides.
Analogous argumentation as before shows that the integrals over the top and bottom side of
the rectangle disappear in the limit h→ 0. Therefore, in the integral form of Ampère-Maxwell’s
law after performing the limit h→ 0, only remains:

1

µ1
B⃗1 · t⃗ l −

1

µ2
B⃗2 · t⃗ l = 0, (6.137)

where (for reminder) l is the length of the left and right side of the rectangle and B⃗1 and B⃗2 are
the values of magnetic fields from one and the other side of the interface. After cancelling10 l:

t⃗ ·

(
B⃗1

µ1
− B⃗2

µ2

)
= 0. (6.138)

The scalar product with vector t⃗ gives the magnitude of the projection in the direction tangent
to the interface. Since we could have initially chosen the orientation of the rectangular surface
S arbitrarily, the relation (6.138) must hold for any tangent vector t⃗. This gives us the following
result

B1∥

µ1
=
B2∥

µ2
,

B1∥

B2∥
=
µ1
µ2
, (6.139)

meaning that the tangential components of the magnetic field have a discontinuity at the inter-
face given by the ratio of the respective permeabilities of the media.

Exactly the same procedure is also applied in the case of Faraday’s law. The integral form∮
l
E⃗ · d⃗l = −

∫
S

∂B⃗

∂t
· dS⃗ (6.140)

10And also the limit l → 0, so that we again use the integral mean value theorem to get the values of fields B⃗1

and B⃗2 at well-defined places.
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leads after choosing a rectangular surface as in the previous case to the condition

t⃗ ·
(
E⃗1 − E⃗2

)
= 0 (6.141)

and thus the tangential components of the electric field are continuous at the interface:

E⃗1∥ = E⃗2∥. (6.142)

Finally, let’s summarize the found boundary conditions for the electric and magnetic fields
at the interface of two non-conductive media into a table (with the law from which they derive):

ε1E⃗1⊥ = ε2E⃗2⊥ (Gauss’s law), B⃗1⊥ = B⃗2⊥ (B⃗ is solenoidal),

E⃗1∥ = E⃗2∥ (Faraday’s law),
1

µ1
B⃗1∥ =

1

µ2
B⃗2∥ (Ampère-Maxwell’s law). (6.143)
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Chapter 7

Polarization

We have shown that an electromagnetic traveling wave is a transverse wave. The electric and
magnetic fields are perpendicular to the direction of propagation. This means that there are
two independent directions for the electric and magnetic field vectors – we say that we have two
independent polarizations. We will focus on describing only the electric part of the wave E⃗, the
magnetic part is then fully determined by the relation B⃗ = 1

v s⃗× E⃗, where s⃗ is the vector of the
direction of propagation. Let’s choose coordinates so that the direction of propagation is s⃗ = z⃗,
then we can choose vectors x⃗ and y⃗ as the basis of the transverse plane in which the vectors
E⃗ lie. Therefore, the general vector of the electric field can be decomposed into components in
the direction of the x and y axes:

E⃗ = Exx⃗+ Eyy⃗. (7.1)

If we consider harmonic traveling waves, we can choose for each of these components a wave
with different amplitude and with different phase shift on the principle of superposition:

E⃗(r⃗, t) = Ex0e
i(ωt−kz+φ1) x⃗+ Ey0e

i(ωt−kz+φ2) y⃗. (7.2)

Graphically, these two traveling components in mutually perpendicular directions x⃗ and y⃗ are
illustrated in figure (7.1).
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~Ex

~Ey

~n

~Ex0

~Ey0

x

y

Figure 7.1: Two linearly independent directions of the electric field – each wave can generally have
different amplitude, here Ex0 and Ey0, and different phase shift.

The phase difference of these two components δφ,

δφ = (ωt− kz + φ1)− (ωt− kz + φ2) = φ1 − φ2, (7.3)

does not depend on time or place in space. If we now choose any place z = z0, we can observe
the time evolution of the electric field E⃗(t) = E⃗(z0, t):

E⃗(t) = Ex0 x⃗ e
i(ωt+φ′

1) + Ey0 y⃗ e
i(ωt+φ′

2), (7.4)

where φ′i = φi − kz0, again it holds

δφ = φ1 − φ2 = φ′1 − φ′2. (7.5)

For the phase difference δφ, it does not matter in which specific place we observe the progression
of the electric field. Therefore, let’s stop distinguishing specific values of phases φ1 and φ2 (i.e.,
for example, stop writing the primes in expression (7.4)), but distinguish only their difference
δφ. At the same time, a shift in space by ∆z will achieve a phase shift in both waves of −k∆z,
similarly, a shift in time by ∆t will achieve a phase shift in both waves of ω∆t. From this fact, it
follows that in the expression (7.4) we can add a suitable phase to both exponentials (the same
in both!), as it will be convenient in the given case – for example, to simplify the expression.

The real part from the expression (7.4),

E⃗(t) = Ex0 x⃗ cos(ωt+ φ1) + Ey0 y⃗ cos(ωt+ φ2), (7.6)

is the parametric equation of an ellipse1. At a given point z = z0, the electric field vector E⃗(t)
generally describes an elliptical curve, see figure 7.2. We say that the electromagnetic wave is
elliptically polarized.

1This fact can be shown by converting the parametric form (where the parameter is time t) into the algebraic
form for components Ex and Ey. We decompose the components of the electric field using sum formulas

Ex = Ex0
(
cosωt cosφ1 − sinωt sinφ1

)
, Ey = Ey0

(
cosωt cosφ2 − sinωt sinφ2

)
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x

y

~E(t)

Figure 7.2: For general polarization, the electric field vector describes an ellipse at a selected point.

Let’s look at the expression for the intensity of the electromagnetic wave in general polariza-
tion (7.6). The intensity is given as the time-average value of the absolute value of the energy
flux:

I = ⟨|S⃗|⟩, S⃗ =

√
ε

µ
|E⃗|2 z⃗. (7.7)

Therefore, let’s compute the expression |E⃗|2 = E⃗ · E⃗ for the wave (7.6),

|E⃗|2 = E2
x0 x⃗

2 cos2(ωt+ φ1) + E2
y0 y⃗

2 cos2(ωt+ φ2) + 2Ex0Ey0(x⃗ · y⃗) cos(ωt+ φ1) cos(ωt+ φ2)

= E2
x0 cos

2(ωt+ φ1) + E2
y0 cos

2(ωt+ φ2) + 0, (7.8)

due to the perpendicularity of vectors x⃗ and y⃗ the interference term disappears and the to-
tal intensity is then simply the sum of intensities in the individual perpendicular directions
(averaging over time gives a factor of 1

2 from the cos2 functions):

I =
1

2

√
ε

µ

(
E2
x0 + E2

y0

)
= Ix + Iy. (7.9)

The resulting intensity thus depends only on the amplitudes of the individual waves, not on
their mutual phase. Specifically, the resulting intensity is proportional to the sum of the squares
of the amplitudes

of the waves in mutually perpendicular directions.

Every wave of the form (7.4) can be represented by a complex two-component vector
ˆ⃗
E ∈ C2,

if we rewrite the form of the electric field E⃗(t) (7.4) in the following way:

E⃗(z, t) =
(
Ex0e

iφ1 x⃗+ Ey0e
iφ2 y⃗

)
ei(ωt−kz) =

ˆ⃗
Eei(ωt−kz),

ˆ⃗
E =

(
Ê1

Ê2

)
=

(
Ex0 e

iφ1

Ey0 e
iφ2

)
∈ C2.

(7.10)
The intensity of the wave using this vector is written as

I =
1

2

√
ε

µ
∥ ˆ⃗E∥2 = 1

2

√
ε

µ

(
|Ê1|2 + |Ê2|2

)
=

1

2

√
ε

µ

(
E2
x0 + E2

y0

)
. (7.11)

These relations can be seen as linear equations for functions sinωt and cosωt. Solving these equations, we get

cosωt = aEx + bEy, sinωt = cEx + dEy,

where numbers a, b, c, d are given by specific values of Ex0, Ey0, φ1, φ2. Squaring and adding up, we get

1 = (aEx + bEy)
2 + (cEx + dEy)

2,

which is the equation of a conic section in variables Ex and Ey (it is a quadratic polynomial in Ex and Ey).
Since the values Ex and Ey are bounded (by amplitudes Ex0 and Ey0), it must be an ellipse or its degenerate
cases (circle, line segment).
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Now, let’s look at two special cases of polarization. The case of linear polarization occurs
if the electric field vector E⃗(t) oscillates in one given direction, see figure 7.3, where the vector
E⃗(t) in the perpendicular plane xy is illustrated, and also see figure 7.4, where the electric field
in space E⃗(z, t0) at a given time t0 is shown.

x

y

~n
θ

~E(t)

Figure 7.3: In linear polarization, the electric field vector E⃗(t) harmonically oscillates in the xy plane
(perpendicular to the direction of propagation along the z axis) along a unit direction vector n⃗ = (nx, ny).

~s

~E0

x

y

~n

~E

z

Figure 7.4: Spatial progression of the electric field in linear polarization. Illustrated is the electric field
E⃗(z, t0) along the z axis at a given time t0.

This case occurs for a phase shift δφ ∈ {0, π}, then the electric field (7.4) can be written in
the form

E⃗(t) = E0 n⃗ e
i(ωt+φ),

ˆ⃗
E = E0 n⃗ e

iφ = E0

(
cos θ
sin θ

)
eiφ, (7.12)

where the unit vector n⃗ = (nx, ny) = (cos θ, sin θ) represents the direction of oscillation of the

electric field E⃗(t) in the xy plane and the angle θ is the deviation of this vector from the x axis.

The second special case is circular polarization, when the electric field vector E⃗(t) describes
a circle in the xy plane. In this case, we also distinguish two subcases according to the direction
of rotation of the vector E⃗(t). If, when viewed against the direction of propagation, the vector
E⃗(t) rotates counter-clockwise, we speak of left-handed circular polarization, and if it moves in
the direction of clock hands, then it is right-handed circular polarization2. These polarizations
illustrated in the xy plane are in figure 7.5. For circular polarization, the electric field vector
E⃗(z, t0) at a given time forms a helix along the z axis, which is shown in figure 7.6.

2Unfortunately, there are two conventions. The second has definitions exactly opposite to what we have here.
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x

y

~E(t)

z

(a) Left-handed circular polarization.

x

y

~E(t)

z

(b) Right-handed circular polarization.

Figure 7.5: Circular polarization of the electromagnetic wave. The direction of rotation of the vector E⃗(t)
is determined when viewed against the direction of wave propagation (indicated by the z axis pointing
towards us/out of the paper).

x

y

z

Figure 7.6: Spatial progression of the electric field for circular polarization. Illustrated is the electric
field E⃗(z, t0) along the z axis at a given time t0. In this case, it is right-handed polarization (the wave

moves in the direction of the z axis and then in the given xy plane, the vector E⃗(t) will rotate clockwise,
whereas the helix itself along the z axis rotates counter-clockwise...).

Circular polarization is obtained for δφ = ±π
2 and Ex0 = Ey0 = E0. After substituting

these conditions into (7.4), the result is the expression

E⃗(t) = E0

(
x⃗ cos(ωt+ φ)± y⃗ sin(ωt+ φ)︸ ︷︷ ︸

y⃗ cos(ωt+φ∓π
2
)

)
, (7.13)

which is the parametric equation of a circle. The plus sign with the sine (i.e., the phase −π
2 )

corresponds to left-handed polarization and the minus sign (i.e., the phase +π
2 ) to right-handed

3.
In the complex notation, we have

E⃗(t) = E0

(
x⃗ ei(ωt+φ) + y⃗ ei(ωt+φ∓

π
2
)
)
,

ˆ⃗
E = E0

(
1

e∓i
π
2

)
eiφ. (7.14)

3This fact is easily seen for small positive values of the phase ωt+ φ. Thanks to the cosine, the electric field
vector then points in the direction of the x axis, and the sine of a small positive phase is also positive. Depending
on the sign in front of the sine, we get a vector that has turned a little bit either into the positive or negative
direction of the y axis.
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If we do not have polarizations of the special types mentioned above, we speak, as already
mentioned, of general elliptical polarization. This can again be divided into two categories:
left-handed and right-handed,

see figure 7.7. In space, the electric field forms an elliptical helix.

y

E⃗(t)

right-handed

left-handed

z
x

Figure 7.7: Left-handed and right-handed elliptical polarization.

7.1 Polarizer and Wave Plate

In the previous chapter, we introduced the formalism for describing polarization states, and
now we will focus on how to change polarization states. For this purpose, we describe two basic
optical elements, the polarizer and the wave plate, which we will place in the path of a traveling
electromagnetic wave.

7.1.1 Polarizer

A polarizer is an optical element that allows only the component of the electric field that
oscillates in the direction of the polarizer’s axis – called the transmission axis – described by
the direction vector n⃗ = (nx, ny), see Figure 7.8.

~n

~E~E‖

~E⊥

Figure 7.8: From the electric field E⃗ incident on the polarizer, only the component E⃗∥ parallel to the
transmission axis n⃗ is transmitted.

y

x

y

~E(t)

z

cos ε

+ sin ε

− sin ε
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Thus, if the electric field entering the polarizer is decomposed into E⃗in = E⃗∥+ E⃗⊥, then the

output field will be E⃗out = E⃗∥. The action of the polarizer can be described by projecting the

vector E⃗in onto the direction n⃗ using the scalar product in the following way:

E⃗out =
(
E⃗in · n⃗

)
n⃗, (7.15)

where n⃗ is the unit vector in the direction of the transmission axis. Furthermore, we want to

encode the action of the polarizer into an appropriate transformation of vectors
ˆ⃗
Ein,

ˆ⃗
Eout ∈ C2

in complex notation. The transformation (7.15) is linear, and thus it can be encoded into a

matrix Pn⃗ ∈ C2,2 – projector onto the axis n⃗, relating vectors
ˆ⃗
Ein,

ˆ⃗
Eout as follows:

ˆ⃗
Eout = Pn⃗

ˆ⃗
Ein. (7.16)

Let’s find the expression of this matrix by expanding the relationship (7.15):

E⃗out =
(
Exnx + Eyny

)(nx
ny

)
=

(
n2xEx + nxnyEy
nxnyEx + n2yEy

)
=

(
n2x nxny
nxny n2y

)
︸ ︷︷ ︸

Pn⃗

(
Ex
Ey

)
= Pn⃗E⃗in. (7.17)

Introducing the angle θ as the angle of deviation of the vector n⃗ from the x-axis, we get the
expression n⃗ = (cos θ, sin θ) and can write

Pn⃗ = Pθ =
(

cos2 θ cos θ sin θ
cos θ sin θ sin2 θ

)
. (7.18)

Let’s consider examples of projectors on the basic transmission axes: x⃗, y⃗, x⃗+y⃗√
2

(

the transmission axis must be unitary):

Px⃗ = P0 =

(
1 0
0 0

)
, Py⃗ = Pπ

2
=

(
0 0
0 1

)
, P x⃗+y⃗√

2

= Pπ
4
=

1

2

(
1 1
1 1

)
. (7.19)

Consider a linearly polarized wave incident on a polarizer. How does the intensity of the
wave change after passing through the polarizer? Without loss of generality, let’s direct the
x-axis in the direction of the vector of the incoming polarized light, i.e., E⃗in = E0 x⃗ cosωt. Let
the transmission axis be generally n⃗ = (cos θ, sin θ), where the angle θ now describes the angle
between the direction of oscillation of the linearly polarized wave and the transmission axis of
the polarizer. Substituting into (7.15), the output amplitude vector comes out as

E⃗0out = E0(x⃗ · n⃗) n⃗ = (E0 cos θ) n⃗ (7.20)

and thus the output wave will be in the form E⃗out = (E0 cos θ) n⃗ cosωt. Substituting the forms
of the input and output waves into the relationship for wave intensity (7.7) we get

Iout =

√
ε

µ

〈
|E⃗out|2

〉
=

√
ε

µ
cos2 θ

〈
E2

0 cos
2 ωt

〉
= Iin cos

2 θ. (7.21)

This relationship between intensities is called Malus’s Law :

Iout = Iin cos
2 θ. (7.22)
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7.1.2 Wave Plate

Let’s now move on to the second optical element, which is the wave plate. A wave plate allows
changing the phase difference φ1 − φ2 between individual perpendicular components of the
electric field. How does it achieve this? First, let’s look at how much the actual phase of the
wave changes after passing through a material of thickness d with a refractive index n. The
situation is schematically shown in Figure 7.9. In the material, the wave takes the form ei(ωt−kz),
where k is the wave number given by the dispersion relation ω = c

nk. Beyond the plate, the
phase is shifted by −kd compared to before the plate. However, the phase changes the same
way for both perpendicular components of the electric field, so there is no change in the phase
difference...

n

λ= 2π
k

λ0=
2π
k0

d

∝ ei(ωt−k0z) ∝ ei(ωt−kz)

Figure 7.9: Wave passage through a material with refractive index n. In the material, the wave takes
the form ei(ωt−kz), where k is the wave number given by the dispersion relation ω = c

nk.

To achieve this, we need a material, a so-called birefringent crystal, which behaves as a
material with different refractive indices for waves polarized in different directions, see the
schematic Figure 7.10. Such behavior arises due to the anisotropy of the given substance. The
substance’s response to the passing wave of the electric field varies depending on the orientation
of the electric field vector (depending on the polarization of light).

nl n↔

Figure 7.10: Birefringent crystal. For the electric field oriented in the vertical direction, it behaves as a
material with refractive index n↕, for the electric field oriented perpendicular to the vertical field, i.e.,
oscillating in the horizontal direction here, it behaves as a material with refractive index n↔.

A wave plate made of birefringent crystal is parameterized by two perpendicular axes, n⃗1
and n⃗2, to which correspond different refractive indices n1 and n2 (note, these are not the
magnitudes of vectors n⃗1 and n⃗2, which are unitary, |n⃗1| = |n⃗2| = 1) and its thickness d, or
change in phase difference φ1 − φ2 by ∆φ.
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~n1

~n2

n1

n2

Figure 7.11: Labeling of the axes in the wave plate made of birefringent crystal. Perpendicular axes of
the plate are in the direction of n⃗1 and n⃗2 and the corresponding refractive indices are n1 and n2.

How does the magnitude of the phase shift ∆φ depend on the values n1, n2, and d? As we
have already mentioned, the phase before and after the plate generally differs by −kd, here for
individual components of the electric field −k1d and −k2d. Therefore, if the electric field at the
beginning of the plate takes the form

E⃗in(t) = E1 n⃗1 cos(ωt+ φ1) + E2 n⃗2 cos(ωt+ φ2), (7.23)

the field at the end of the plate will be

E⃗out(t) = E1 n⃗1 cos(ωt+ φ1 − k1d) + E2 n⃗2 cos(ωt+ φ2 − k2d). (7.24)

The phase difference changes from φ1 − φ2 to φ1 − φ2 +∆φ, where ∆φ is

∆φ = (k2 − k1)d =
ω

c
(n2 − n1)d. (7.25)

Using the dispersion relation in vacuum ω = ck0 = 2πc
λ0

, we can express the phase shift ∆φ in
terms of the vacuum wavelength λ0 as

∆φ =
2π

λ0
(n2 − n1)d. (7.26)

This phase shift ∆φ is added to the part of the wave corresponding to the refractive index n1.
This can be easily seen if we add the value k2d to the phases of both waves in expression (7.24)
(which is an operation not changing the polarization state), then we get

E⃗out(t) = E1 n⃗1 cos
(
ωt+ φ1 + (k2 − k1)d︸ ︷︷ ︸

∆φ

)
+ E2 n⃗2 cos

(
ωt+ φ2

)
. (7.27)

Considering ∆φ to be positive only, which requires us to label the refractive indices such that
n1 < n2, we obtain a practical rule: a positive phase shift ∆φ is added to the component of the
electric wave corresponding to the smaller refractive index.

A plate causing a phase difference change of ∆φ = π
2 is called a quarter-wave plate, for a

phase shift ∆φ = π, it is called a half-wave plate.

How do we write the action of a wave plate with a phase shift ∆φ in complex notation? Or

how do we define the matrix D∆φ transforming the complex vector
ˆ⃗
Ein ∈ C2 into the vector

ˆ⃗
Eout ∈ C2 according to the prescription

ˆ⃗
Eout = D∆φ

ˆ⃗
Ein? (7.28)
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First, we need to decompose the electric field wave into the directions of the wave plate axes
n⃗1 and n⃗2. This can be done using projectors onto these axes, Pn⃗1

and Pn⃗2
. For perpendicular

unit vectors n⃗1 and n⃗2, it holds that Pn⃗1
+ Pn⃗2

= I, so we can write

ˆ⃗
Ein = Pn⃗1

ˆ⃗
Ein + Pn⃗2

ˆ⃗
Ein. (7.29)

We obtain the output field by adding the phase shift ∆φ to the part corresponding to the
smaller refractive index (considering n1 < n2):

ˆ⃗
Eout = ei∆φPn⃗1

ˆ⃗
Ein + Pn⃗2

ˆ⃗
Ein =

(
ei∆φPn⃗1

+ Pn⃗2

) ˆ⃗
Ein. (7.30)

Comparing the right side (7.30) and the definition of the matrix D∆φ (7.28), we see that

D∆φ = ei∆φ Pn⃗1
+ Pn⃗2

. (7.31)

Considering, for simplicity, n⃗1 = x⃗ and n⃗2 = y⃗ (and using the definition of projectors Px⃗
and Py⃗ from (7.19)) we get

D∆φ = ei∆φ Px⃗ + Py⃗ =
(
ei∆φ 0
0 1

)
. (7.32)

7.2 Polarization Measurement

The angular frequency ω of the electromagnetic wave is usually too large for us
to directly measure the actual course of the electric field (for the visible light spectrum,

frequencies are in the order of hundreds of THz). We are inevitably confined to measuring
only time-averaged values of certain quantities. To determine the polarization state (and total
intensity) described by the relationship (7.6), we need to determine the amplitude values in
individual directions, Ex0 and Ey0, and also the phase difference value φ1−φ2. Let’s show that
we can determine these quantities by measuring the following intensities:

Ix = ⟨E2
x⟩, Iy = ⟨E2

y⟩, Ixy = ⟨ExEy⟩, Ixy = ⟨Ex(ωt− π
2 )Ey⟩, (7.33)

where under the expression Ex(ωt − π
2 ) we understand that in the component Ex we shift the

phase by −π
2 . If we calculate these intensities by substituting from the generally elliptically

polarized light (7.6) we get

Ix = ⟨E2
x⟩ = E2

x0⟨cos2(ωt+ φ1)⟩ =
1

2
E2
x0,

Iy = ⟨E2
y⟩ = E2

y0⟨cos2(ωt+ φ2)⟩ =
1

2
E2
y0,

Ixy = ⟨ExEy⟩ = Ex0Ey0
〈
cos(ωt+ φ1) cos(ωt+ φ2)︸ ︷︷ ︸

1
2

(
cos(2ωt+φ1+φ2)+ cos(φ1−φ2)

)
〉
=

1

2
Ex0Ey0 cos(φ1 − φ2),

Ixy = ⟨Ex(ωt− π
2 )Ey⟩ = Ex0Ey0

〈 sin(ωt+φ1)︷ ︸︸ ︷
cos(ωt+ φ1 − π

2 ) cos(ωt+ φ2)︸ ︷︷ ︸
1
2

(
sin(2ωt+φ1+φ2)+ sin(φ1−φ2)

)
〉
=

1

2
Ex0Ey0 sin(φ1 − φ2).

(7.34)

From intensities Ix and Iy, we can calculate amplitudes Ex0 and Ey0. Then, intensities Ixy and
Ixy give the sin and cos of the phase difference, which uniquely determines it (in the interval
⟨0, 2π)).
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How can we practically measure these four intensities? Intensities Ix, respectively Iy, are
measured by placing a polarizer with the transmission axis x⃗, respectively y⃗, in the path of the
light, these only transmit the components Ex, respectively Ey. The intensity Ixy is measured

by placing a linear polarizer with the transmission axis x⃗+y⃗√
2
in the path of the light. The output

intensity after passing through this polarizer then comes out4

Iout =
1

2
(Ix + Iy) + Ixy. (7.35)

The last intensity Ixy is determined by first placing a quarter-wave plate with the axis n⃗1 = y⃗
(the axis corresponding to the smaller refractive index) in the path of the light – this adds a
phase shift of π

2 to the component Ey, which is equivalent to subtracting a phase of π
2 in the

component Ex – and then again a polarizer with the transmission axis x⃗+y⃗√
2
. In this configuration,

the output intensity is given by the relationship5

Iout =
1

2
(Ix + Iy) + Ixy. (7.36)

Thus, intensities Ix and Iy are measured directly by inserting an appropriately oriented
polarizer, intensities Ixy and Ixy are calculated from the measured intensities Iout and Iout.

7.3 Unpolarized Light

So far, our description only includes the concept of (completely, perfectly) polarized light. For
any values of the parameters Ex0, Ey0, φ1, φ2 in a wave of form (7.4), respectively (7.6), we
have (completely, perfectly) polarized light. How then do we describe unpolarized light? What
exactly is it? Roughly speaking, unpolarized light is such light whose polarization randomly
changes over time. Imagine an atom (electron in an atom) that emits linearly polarized light by
its oscillation. After a while, another atom collides with it and causes it to start oscillating in
a different direction, thus changing the plane of polarization of the emitted light. This process
is continuously repeated in the material, and thus the plane of polarization of the emitted light
is constantly randomly changed. See the schematic Figure 7.12. Now, let’s try to define and
quantify this rough idea more carefully.

Figure 7.12: Oscillating atom emitting linearly polarized light. Due to external influences (collisions
with other atoms), it randomly changes the direction of its oscillation, leading to a change in the plane
of polarization of the emitted light.

First, let’s introduce three important time scales that we will need when studying unpolar-
ized light. The first scale is the period T of the electromagnetic oscillation itself. For visible
light, it is approximately T ≈ 10−14 s.

4See example 9.4 in the exercises.
5Completely analogously as the previous relationship.
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The second scale is the so-called coherence time tkoh. This time represents the duration for
which a given polarization is preserved, i.e., in the initial illustrative example, the time during
which the atom oscillates undisturbed. Typically, tkoh ≈ 10−9 − 10−8 s. This time can also
be defined using the concept of temporal coherence. We say that the field at a given location
E⃗(t) at times t1 and t2 are temporally coherent if knowing the field around time t1 allows us
to determine the field around time t2 (and vice versa). The coherence time tkoh is thus the
maximum distance of times |t1 − t2| when the fields are still mutually coherent. If the field
around t2 cannot be predicted from knowing the field around t1, we say that the fields are
incoherent.

And the last scale is the resolution time troz of the instrument we use to measure the
polarization state. The instrument measures the intensity of the incoming light, which is given
by averaging over the resolution time, I = ⟨E⃗2⟩troz . Now let’s distinguish two cases. First, if
tkoh ≫ troz – in this case, we will talk about

a fast instrument. In this case, the instrument is capable of tracking changes in polarization,
and we will simply measure completely polarized light, whose polarization changes with a period
tkoh.

In the case that tkoh ≪ troz – we talk about a slow instrument, – the instrument is unable to
track rapid random changes in polarization, and in this case, we will talk about the light hitting
the instrument as unpolarized light (more precisely, as partially polarized or unpolarized light).
Let’s now look more closely at this intensity measurement by a slow instrument. We will show
that by measuring a set of intensities Ix, Iy, Ixy, and Ixy, we can distinguish polarized light
from unpolarized (or partially polarized).

We generalize the notation of completely polarized light (7.6) so that the parameters Ex0,
Ey0, φ1, and φ2 can be time-variable:

E⃗(t) = Ex0(t) x⃗ cos(ωt+ φ1(t)) + Ey0(t) y⃗ cos(ωt+ φ2(t)). (7.37)

The functions Ex0(t), Ey0(t), φ1(t), and φ2(t) change on the scale of coherence time tkoh. We
can imagine that they change very slowly so that for the duration of tkoh they remain almost
constant. Also, due to the inequality T ≪ tkoh, the change of these functions is much slower
than the change in phase given by the term ωt. If we now perform averaging over one period
T for the electric field (7.37), we can consider the functions Ex0(t), Ey0(t), φ1(t), and φ2(t)
as almost constant due to the relationship T ≪ tkoh, and the result of this averaging will be
time-varying intensities,

Ix(t) =
1

2
E2
x0(t),

Iy(t) =
1

2
E2
y0(t),

Ixy(t) =
1

2
Ex0(t)Ey0(t) cos(φ1(t)− φ2(t)),

Ixy(t) =
1

2
Ex0(t)Ey0(t) sin(φ1(t)− φ2(t)), (7.38)

which change on the scale tkoh. A slow instrument with a resolution time troz will then measure
such intensities, which result from additional averaging over the resolution time troz:

Ix = ⟨Ix(t)⟩troz , Iy = ⟨Iy(t)⟩troz , Ixy = ⟨Ixy(t)⟩troz , Ixy = ⟨Ixy(t)⟩troz . (7.39)

Let’s see how much these intensities will be for the model of unpolarized light we outlined
at the beginning – that is, for linearly polarized light, whose plane of polarization randomly
changes. The electric field will take the form

E⃗(t) = E0 n⃗(t) cos(ωt+ φ), (7.40)
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where we write the directional vector n⃗(t) using the time-varying angle θ(t) as

n⃗(t) = (cos θ(t), sin θ(t)). (7.41)

The function of angle θ(t) changes on the scale tkoh, and we consider that all angle values ⟨0, 2π⟩
are evenly represented. The intensities (7.38) for light of form (7.40) are in the form

Ix(t) =
1

2
E2

0 cos
2 θ(t),

Iy(t) =
1

2
E2

0 sin
2 θ(t),

Ixy(t) =
1

2
E2

0 cos θ(t) sin θ(t) cos(φ− φ) =
1

4
E2

0 sin 2θ(t),

Ixy(t) =
1

2
E2

0 cos θ(t) sin θ(t) sin(φ− φ) = 0. (7.42)

Averaging over the instrument’s resolution time troz ≫ tkoh leads to

Ix =
1

4
E2

0 , Iy =
1

4
E2

0 , Ixy = 0, Ixy = 0, (7.43)

the average values ⟨cos2 θ(t)⟩troz = ⟨sin2 θ(t)⟩troz = 1
2 and ⟨sin 2theta(t)⟩troz = 0 come out

exactly the same as standard time-averaged values of trigonometric functions over one period,
since during the measurement duration troz, the angle θ changes many times and evenly covers
the interval ⟨0, 2π). Intensities Ixy and Ixy both came out zero, which is not possible for
completely polarized light (sin and cos in (7.34) cannot be zero at the same time)! We see,
therefore, that we can distinguish unpolarized light from polarized light by measurement.

In general, in unpolarized light, we have a condition on the functions Ex0(t), Ey0(t), φ1(t),
and φ2(t) arising precisely from the constancy of the total intensity:

I0 = ⟨E⃗2⟩ = ⟨E2
x + E2

y⟩ = Ix + Iy = konst. (7.44)

In unpolarized light, the values of functions Ex0(t), Ey0(t), φ1(t), and φ2(t) change randomly
and evenly assume all permissible values. From this condition, it follows, among other things,

Ix = Iy (7.45)

(it must not matter if we relabel the x and y axes). And further, for random angles φ1(t) and
φ2(t), it holds that

⟨cos(φ1(t)− φ2(t))⟩troz = ⟨sin(φ1(t)− φ2(t))⟩troz = 0. (7.46)

From relationships (7.44), (7.45), and (7.46) for unpolarized light, it follows that

Ix =
1

2
I0, Iy =

1

2
I0, Ixy = 0, Ixy = 0. (7.47)

We can further consider a superposition of completely polarized light and unpolarized light.
Then we get partially polarized light.

The polarization state and degree of polarization are described by so-called Stokes parame-
ters, which are given by the relationships

P1 =
Ix − Iy
Ix + Iy

, P2 =
2Ixy
Ix + Iy

, P3 =
2Ixy
Ix + Iy

. (7.48)
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Generally, it holds (here without proof) that

P 2
1 + P 2

2 + P 2
3 ≤ 1. (7.49)

For completely polarized light, then P 2
1 + P 2

2 + P 2
3 = 1 (this part can be easily shown by

substituting into (7.48) from (7.34)). For unpolarized light, we get P1 = P2 = P3 = 0 (by
substituting into (7.48) from (7.47)). Furthermore, we define the degree of polarization as the
magnitude of the Stokes vector P⃗ = (P1, P2, P3), i.e., |P⃗ | =

√
P 2
1 + P 2

2 + P 2
3 . In the case that

0 < |P⃗ | < 1, we call the light partially polarized. (For completely polarized light, we have
|P⃗ | = 1, and for unpolarized light, |P⃗ | = 0.)

7.4 The problem of the reflection of an EM wave at a planar
interface

In this chapter, we will deal with the problem of the transmission (refraction) and reflection
of electromagnetic waves at the planar interface of two non-conductive media. From Maxwell’s
equations, we will derive the laws of reflection and refraction, find the amplitude coefficients of
transmission and reflection depending on the angle of incidence and polarization of the incident
electromagnetic wave. We predict the existence of a notable angle at which a certain polarization
is not reflected and thus allows us to polarize light by reflection. In the solution, we will use the
conditions of connection at the interface of non-conductive media, which we derived in chapter
6.5.

Let a plane traveling harmonic electromagnetic wave fall on a planar interface. As an ansatz,
take that the reflected and transmitted wave will also be plane waves, whose electric components
can therefore be written in the form

E⃗d = E⃗d0e
i(ωt−k⃗d·r⃗), E⃗r = E⃗r0e

i(ωrt−k⃗r·r⃗), E⃗t = E⃗t0e
i(ωtt−k⃗t·r⃗), (7.50)

where E⃗d, E⃗r, and E⃗t denote the incident, reflected, and transmitted wave, respectively. The
constant amplitude vectors E⃗d0, E⃗r0, and E⃗t0 are left unspecified for now. The magnetic part
of electromagnetic waves is uniquely given by the relationship

B⃗ =
1

v
n⃗× E⃗ =

1

v

k⃗

k
× E⃗ =

1

ω
k⃗ × E⃗ (7.51)

(for respective values of ω, v, and k⃗ = k n⃗). Wave vectors k⃗d, k⃗r, and k⃗t indicate the direction
of wave propagation, k⃗ = k n⃗, and wavelength λ = 2π

k . The relations between angular velocities
and wave numbers are given by the respective dispersion relations

ω =
c

n1
|⃗kd| =

kd√
ε1µ1

, ωr =
c

n1
|⃗kr| =

kr√
ε1µ1

, ωt =
c

n2
|⃗kt| =

kt√
ε2µ2

, (7.52)

the refractive indexes are given by the properties of the medium as n =
√
εrµr, the speed of

light is c = 1√
ε0µ0

.

The plane of incidence is defined as the plane perpendicular to the planar interface and
containing the wave vector of the incident wave k⃗d, see figure 7.13. We introduce Cartesian
coordinates so that the plane of the interface is given as z = 0 and the plane of incidence is
parallel to the yz coordinate plane. The whole problem is then translationally symmetric along
the x

axis.
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interface

incidence plane

k⃗d

y

x
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translation
symetry

Figure 7.13: The interface plane and the plane of incidence perpendicular to it containing the wave
vector of the incident wave k⃗d. Cartesian coordinates are introduced so that the plane of the interface is
at z = 0 and the plane of incidence corresponds to planes parallel to the yz plane.

The translational symmetry along the x axis means that the waves (7.50) must not depend
on the variable x. This means that the wave vectors must have a zero kx component,

k⃗ = (0, ky, kz) (7.53)

(for the incident wave, this statement is trivial, since we introduced coordinates so that kdx = 0,
this fact is non-trivial for the reflected and transmitted wave). The entire problem of transmis-
sion and reflection of an electromagnetic wave is thus planar. Next, we introduce the angles of
incidence ϑd, reflection ϑr, and transmission (refraction) ϑt as deviations of the directions of
propagation of the respective waves from the normal to the interface, see figure 7.14.

k⃗d k⃗r

k⃗t

ϑd ϑr

ϑt

ε1, µ1

ε2, µ2 interface

incident wave

transmitted wave

reflected wave

y

z

Figure 7.14: The electromagnetic wave incident on the interface in the direction of the wave vector k⃗d
with a deviation from the normal ϑd. For the reflected and transmitted wave, the angles of deviation
from the normal are denoted ϑr and ϑt.

Using these angles, we can express the individual components of the wave vectors k⃗d, k⃗r,
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and k⃗t as follows:

k⃗d = (0, kd sinϑd, kd cosϑd), k⃗r = (0, kr sinϑr,−kr cosϑr), k⃗t = (0, kt sinϑt, kt cosϑt).
(7.54)

7.4.1 Law of reflection and refraction, critical angle, and total reflection

Let’s start with the first condition of connection, the condition of continuity of the tangential
components of the electric field at the interface,

E⃗1∥ = E⃗2∥, E⃗d∥ + E⃗r∥ = E⃗t∥, (7.55)

the electric field in the first medium E⃗1 is the sum of the incident and reflected wave, E⃗d + E⃗r,
and the field in the second medium E⃗2 is given by the transmitted wave E⃗t. After substituting
from the ansatz (7.50) we get

E⃗d0∥e
i(ωt−kdyy) + E⃗r0∥e

i(ωrt−kryy) = E⃗t0∥e
i(ωtt−ktyy), (7.56)

where we used the form of wave vectors (7.53) and the fact that at the interface z = 0. The
condition (7.56) is a linear combination of exponentials (or a set of several linear combinations).
For generally non-zero electric fields, we get that the exponentials must be pairwise linearly
dependent, which is only possible if they are equal:

ei(ωt−kdyy) = ei(ωrt−kryy) = ei(ωtt−ktyy), ∀y, t ∈ R. (7.57)

If these functions are to be equal, the parameters in them must be equal:

ω = ωr = ωt, kdy = kry = kty. (7.58)

Thus, the angular frequencies of the individual waves must be the same (from now on we will
write only ω) and the tangential components of the wave vectors must be equal (here, the
tangential component is the y component):

k⃗d∥ = k⃗r∥ = k⃗t∥. (7.59)

Now, substituting the expression of the tangential component of the wave vectors ky from (7.54)
we get

kd sinϑd = kr sinϑr = kt sinϑt (7.60)

and further replacing the magnitudes of the wave vectors from the dispersion relations (7.52)
(and canceling the common factor ω

c ):

n1 sinϑd = n1 sinϑr = n2 sinϑt. (7.61)

From the left equality follows the law of reflection – the angle of incidence equals the angle of
reflection, the right equality represents the Snell’s law of refraction:

ϑd = ϑr, n1 sinϑd = n2 sinϑt. (7.62)

In the following, we will denote the angle of incidence and reflection as ϑ1, the angle of
refraction as ϑ2, thus Snell’s law will be in the form

n1 sinϑ1 = n2 sinϑ2. (7.63)
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For n1 > n2, i.e., when passing from optically denser to optically rarer medium, Snell’s law
implies ϑ2 > ϑ1. However, it must hold that ϑ2 ≤ π

2 . We define the so-called critical angle ϑC
as such an angle ϑ1, at which ϑ2 =

π
2 . From Snell’s law for the value of the critical angle follows

sinϑC =
n2
n1
. (7.64)

For the angle of incidence ϑ1 > ϑC , the transmitted wave “has nowhere to refract” and leads
to so-called total reflection, where the wave does not propagate into the second medium and is
completely reflected. In this case, the second medium acts as a reactive medium. Let’s look at

this fact in more detail. Consider the dispersion relation of the second medium for the
transmitted wave

ω2 =
c2

n22
|⃗kt|2 =

c2

n22
(k2ty + k2tz). (7.65)

Let’s express the component of the wave number k⃗t in the direction of the z axis, indicating
how much the wave progresses in the direction of the z axis,

k2tz =
ω2

c2
n22 − k2ty. (7.66)

Furthermore, we can set kty = kdy, from the expression (7.54) we have kdy = kd sinϑ1 and
finally kd can be expressed from the dispersion relation in the first medium (7.52), kd = ω

c n1.
After making these adjustments, we get the relationship (7.66) for k2tz in the form

k2tz =
ω2

c2
(
n22 − n21 sin

2 ϑ1
)
. (7.67)

For ϑ1 > ϑC , the dispersion relation (7.67) does not have a solution for real ktz. Thus, indeed,
for ϑ1 > ϑC , the second medium acts as reactive, i.e., does not support the propagation of the
electromagnetic wave in the direction of the z axis. The solution (7.67) is found for the ansatz
ktz = −iκ, after substituting we have

κ2 =
ω2

c2
(
n21 sin

2 ϑ1 − n22
)
. (7.68)

The form of the electromagnetic wave in the second medium is obtained after substituting our
ansatz k⃗t = (0, kty,−iκ) into the form for the transmitted electric wave E⃗t (7.50):

E⃗t = E⃗t0 e
i(ωt−k⃗t·r⃗) = E⃗t0 e

i(ωt−ktyy)e−κz. (7.69)

This form represents an electric wave traveling in the direction of the y axis, but exponentially
attenuated in the direction of the z axis. We can again define the penetration depth δ as the
distance at which the wave amplitude decreases to e−1 of its original value. Clearly, δ = κ−1.

7.4.2 Connection conditions for individual polarizations

Now consider all the connection conditions of the electric and magnetic field at the interface,

E⃗1∥ = E⃗2∥ ⇒
(
E⃗d0 + E⃗r0

)
x,y

=
(
E⃗t0

)
x,y
,

ε1E⃗1⊥ = ε2E⃗2⊥ ⇒ ε1
(
E⃗d0 + E⃗r0

)
z
= ε2

(
E⃗t0

)
z
,

B⃗1⊥ = B⃗2⊥ ⇒
(
B⃗d0 + B⃗r0

)
z
=
(
B⃗t0

)
z
,

1

µ1
B⃗1∥ =

1

µ2
B⃗2∥ ⇒ 1

µ1

(
B⃗d0 + B⃗r0

)
x,y

=
1

µ2

(
B⃗t0

)
x,y
, (7.70)
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where on the left side are the conditions without coordinates, on the right side we introduced the
relationships using the individual components of the given vectors. In all waves, the exponentials
at the interface are the same, so we can cancel them out, and only the amplitude vectors will
remain in the connection conditions. The components x and y are the components tangential
to the interface, the component z is the component perpendicular to the interface (see the
introduction of coordinates in figure 7.13). For clarity of notation, we introduced the notation
(A⃗+ B⃗)x = Ax +Bx, etc. for other components.

Now we must split the approach into two separate parts according to the polarization of
the incident wave. We consider a linearly polarized incident wave and once choose the plane
of polarization so that the electric field oscillates in the plane of incidence, the second time we
choose the plane of polarization with the vector of the electric field oscillating perpendicular to
the plane of incidence, see figures 7.15.

y

x

z

(a) Polarization in the plane of incidence.

y

x

z

(b) Polarization perpendicular to the plane of inci-
dence.

Figure 7.15: We distinguish two cases according to the direction of linear polarization of the incident
wave.

Consider the ansatz that the polarization is preserved in the reflected and transmitted wave
– this corresponds to the idea that the incident wave oscillates charges in the direction of
its polarization, and these charges then emit waves with the same polarization. Now we can
introduce positive directions of the electric and magnetic fields in individual electromagnetic
waves. We want the triplet of vectors E⃗, B⃗, and k⃗ to form a right-handed system of vectors.
The wave vectors k⃗ are given, the directions of the electric field vectors are limited by the
choice of polarization in the plane of incidence or perpendicular to it. Let’s then choose positive
directions, for example, as in figures 7.16.
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z = 0 y

z

~Ed

~kd

~Bd

~Er

~kr

~Br

~kt

~Et

~Bt

x

ϑ1 ϑ1

ϑ2

(a) The case of polarization in the plane of inci-
dence. The directions of the magnetic field B⃗ are
chosen to point in the positive direction of the x
axis. The directions of the electric field E⃗ are then
determined by the right-hand rule.

z = 0 y

z

x

~Ed ~kd

~Bd

~Er

~kr
~Br

~kt

~Et

~Bt

ϑ1

ϑ2

ϑ1

(b) The case of polarization perpendicular to the
plane of incidence. The directions of the electric
field E⃗ are chosen to point in the positive direction
of the x axis. The directions of the magnetic field
B⃗ are then determined by the right-hand rule.

Figure 7.16: Positive directions of the vectors of the electric field E⃗ and magnetic field B⃗ for individual
polarizations. The plane of incidence with axes y and z is drawn.

Now we can specialize the general connection conditions in (7.70) for individual cases of
polarization. On the left polarization in the plane of incidence, on the right polarization per-
pendicular to the plane of incidence:

Ed0y + Er0y = Et0y, Ed0x + Er0x = Et0x,

ε1
(
Ed0z + Er0z

)
= ε2Et0z, 0 = 0,

0 = 0, Bd0z +Br0z = Bt0z,

1

µ1

(
Bd0x +Br0x

)
=

1

µ2
Bt0x,

1

µ1

(
Bd0y +Br0y

)
=

1

µ2
Bt0y. (7.71)

Some connection conditions turned out to be trivial due to the fact that in a specific case
the electric or magnetic field does not point in a certain direction at all, and the condition is
therefore automatically met.

Further, let’s express the individual components of the electric and magnetic field vectors
using the angles of incidence ϑ1 and refraction ϑ2 from figures 7.16. For the case of polarization
in the plane of incidence, we have:

E⃗d0 = Ed0(0,− cosϑ1, sinϑ1), E⃗r0 = Er0(0, cosϑ1, sinϑ1), E⃗t0 = Et0(0,− cosϑ2, sinϑ2),

B⃗d0 = Bd0(1, 0, 0), B⃗r0 = Br0(1, 0, 0), B⃗t0 = Bt0(1, 0, 0), (7.72)

and for polarization perpendicular to the plane of incidence:

E⃗d0 = Ed0(1, 0, 0), E⃗r0 = Er0(1, 0, 0), E⃗t0 = Et0(1, 0, 0),

B⃗d0 = Bd0(0, cosϑ1,− sinϑ1), B⃗r0 = Br0(0,− cosϑ1,− sinϑ1), B⃗t0 = Bt0(0, cosϑ2,− sinϑ2).
(7.73)

Amplitudes of magnetic fields can be expressed using the amplitudes of electric fields

Bd0 =
1

v1
Ed0, Br0 =

1

v1
Er0, Bt0 =

1

v2
Et0. (7.74)
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We introduce the coefficients of transmission P , and reflection R, as the ratio of the ampli-
tude of the transmitted, respectively, reflected wave to the amplitude of the incident wave.

R =
Er0

Ed0
, P =

Et0

Ed0
. (7.75)

Now, substitute the forms of the components of the electric and magnetic fields (7.72) and
(7.73) into the connection conditions (7.71). Replace the amplitudes of the magnetic field
according to (7.74) and finally, in these equations, introduce the coefficients R and P using
the definitions (7.75). Denote the coefficients R∥ and P∥ for the coefficients of transmission
and reflection for polarization in the plane of incidence and R⊥ and P⊥ for the coefficients
for polarization perpendicular to the plane of incidence. After a series of these operations, we
obtain these equations:

(−1 +R∥) cosϑ1 = −P∥ cosϑ2, 1 +R⊥ = P⊥,

ε1(1 +R∥) sinϑ1 = ε2P∥ sinϑ2, 0 = 0,

0 = 0,
1

v1
(1 +R⊥) sinϑ1 =

1

v2
P⊥ sinϑ2,

1

µ1

1

v1
(1 +R∥) =

1

µ2

1

v2
P∥,

1

µ1

1

v1
(1−R⊥) cosϑ1 =

1

µ2

1

v2
P⊥ cosϑ2. (7.76)

We always get three equations for the respective coefficients R and P . We will show that
always two of the equations are the same and we are left with two independent equations for
the coefficients of transmission and reflection. Sines in the equations (7.76) can be eliminated
using Snell’s law,

sinϑ1
sinϑ2

=
n2
n1
, (7.77)

and we arrive at
ε1
n1

(1 +R∥) =
ε2
n2
P∥,

1

n1v1
(1 +R⊥) =

1

n2v2
P⊥. (7.78)

Write the relations between the constants v, n, ε, and µ:

n =
c

v
, v =

1
√
εµ
,

ε

n
=

1

c

√
ε

µ
,

1

nv
=

1

c
,

1

µ

1

v
=

√
ε

µ
. (7.79)

After substituting these relationships into equations (7.76) and (7.78), it will be shown that the
equations (7.78) are not independent (they are the same as the fourth equations in (7.76)).

7.4.3 Transmission and reflection coefficients – Fresnel’s formulas

The final form of the equations (after eliminating dependent equations (7.78) and substituting
from (7.79)) for the coefficients of transmission and reflection for the respective polarizations is
as follows:√

ε1
µ1

(1 +R∥) =

√
ε2
µ2
P∥, 1 +R⊥ = P⊥,

(1−R∥) cosϑ1 = P∥ cosϑ2,

√
ε1
µ1

(1−R⊥) cosϑ1 =

√
ε2
µ2
P⊥ cosϑ2. (7.80)

We see that between the coefficients of transmission and reflection for polarization perpendicular
to the plane of incidence, we obtain the ”classical” relationship P⊥ = 1+R⊥ resulting from the
continuity condition at the interface – here, it is the continuity of the components of the electric
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field lying in the plane of the interface (the first of the connection conditions in (7.70)). In
contrast, for polarization in the plane of incidence, the continuity condition does not apply, and
the relationship between R∥ and P∥ is more complex. Solving the equations (7.80) we obtain

R∥ =

√
ε2
µ2

cosϑ1 −
√

ε1
µ1

cosϑ2√
ε2
µ2

cosϑ1 +
√

ε1
µ1

cosϑ2
, R⊥ =

√
ε1
µ1

cosϑ1 −
√

ε2
µ2

cosϑ2√
ε1
µ1

cosϑ1 +
√

ε2
µ2

cosϑ2
,

P∥ =

√
ε1
µ1√
ε2
µ2

(1 +R∥), P⊥ = 1 +R⊥. (7.81)

This result represents the exact solution of the coefficients of transmission and reflection at the
interface of two non-conductive media resulting from Maxwell’s equations.

The quantity
√

µ
ε is called the impedance Z,

Z =

√
µ

ε
. (7.82)

For most materials, it holds that µ1 ≈ µ2 ≈ µ0. Therefore, we can write

n =
√
εrµr ≈

√
εr ≈

√
εr
µr

=

√
µ0
ε0

√
ε

µ
. (7.83)

By substituting the previous expression into (7.81), we arrive at the so-called Fresnel formulas:

R∥ =
n2 cosϑ1 − n1 cosϑ2
n2 cosϑ1 + n1 cosϑ2

, R⊥ =
n1 cosϑ1 − n2 cosϑ2
n1 cosϑ1 + n2 cosϑ2

, (7.84)

where, of course, only one of the angles is the parameter, the other is determined from Snell’s
law.

For normal incidence, ϑ1 = 0, from Snell’s law we have ϑ2 = 0 and the Fresnel formulas
reduce to a simple form

R = ±n1 − n2
n1 + n2

. (7.85)

However, this result is quite peculiar. At normal incidence, the plane of incidence is not uniquely
defined, and both polarizations are completely equivalent. They should therefore give the same
results. The stumbling block is in the introduction of positive directions, see figure 7.16. For
the case of polarization in the plane of incidence for ϑ1 → 0, vectors E⃗d and E⃗r point in
opposite directions, while for polarization perpendicular to the plane of incidence, they still
point in the same direction (along the x axis). This situation points out the fact that for the
interpretation of Fresnel formulas, it is necessary to have information on how positive directions
were introduced. Their introduction then can change the signs of the R and P coefficients for
different polarizations. And as usual, the convention in the literature is not uniform. From
here on in the text, let’s change the positive direction of the vector E⃗r for the case
of polarization in the plane of incidence to the opposite. This causes R∥ → −R∥, so
from now on we work with the expression for R∥, which has the opposite sign than is stated in
(7.84), (for normal incidence thus consistently R = n1−n2

n1+n2
). The resulting forms of the Fresnel

formulas are then:

R∥ =
n1 cosϑ2 − n2 cosϑ1
n1 cosϑ2 + n2 cosϑ1

, R⊥ =
n1 cosϑ1 − n2 cosϑ2
n1 cosϑ1 + n2 cosϑ2

, (7.86)
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in the figure 7.17, the final positive directions of the electric field of the incident and reflected
wave necessary for interpreting the formulas (7.86) are drawn.

z = 0 yz

~Ed

~kd

~Er ~kr

x

ϑ1 ϑ1

(a) The case of polarization in the plane of inci-
dence.

z = 0 yz

x

~Ed ~kd
~Er

~kr

ϑ1ϑ1

(b) The case of polarization perpendicular to the
plane of incidence.

Figure 7.17: Adjusted final positive directions of the electric field vectors E⃗ for each polarization of the
incident and reflected wave. The plane of incidence with the y and z axes is drawn.

The forms of the Fresnel formulas can be further simplified if we substitute for the refractive
index n1 using Snell’s law,

n1 = n2
sinϑ2
sinϑ1

. (7.87)

Thus, we arrive at simple forms6

R∥ =
tg (ϑ2 − ϑ1)

tg (ϑ2 + ϑ1)
, R⊥ =

sin(ϑ2 − ϑ1)

sin(ϑ2 + ϑ1)
. (7.88)

The plots of these functions are shown in figures 7.18, where cases for n1 < n2 and n1 > n2
are separated. Furthermore, we define reflectivity as R = R2, indicating what portion of the
intensity of the incident wave is reflected, Ir = R Id. The graphs of reflectivity are also shown
in figure 7.18. For angles ϑ1 → π

2 for the case n1 < n2, reflectivity approaches one, and the
interface becomes a perfect mirror (similarly for ϑ1 → ϑC for the case n1 > n2). The value of
reflectivity differs depending on the polarization (except for ϑ1 = 0 and ϑ1 =

π
2 , resp. ϑ1 = ϑC).

This causes that if unpolarized light falls on the interface, it becomes partially linearly polarized
after reflection.

7.4.4 Brewster’s Angle, Polarization by Reflection

Looking at the graphs of reflection coefficients, respectively reflectivity, we see that there is a
special value of the angle at which the polarization in the plane of incidence does not reflect at
all. This angle is called Brewster’s angle.

Let’s find the angle value for which the reflection coefficient is zero. If we considered nulli-
fying the numerator in the expressions for the reflection coefficient (whether for R∥ or R⊥), we
get the condition ϑ1 = ϑ2. However, this only occurs for ϑ1 = ϑ2 = 0, and then R = n1−n2

n1+n2
is

non-zero.
Another possibility is that the denominator becomes infinity. This situation can only occur

with the function tangent, tg (ϑ2 + ϑ1) = +∞, hence for a combination of angles

ϑ1 + ϑ2 =
π

2
, (7.89)

6The form R⊥ is obtained directly by using the sum formula, for the expression R∥ it is necessary to first use
the formula for the sine of a double angle and then the respective sum formula.
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this condition thus defines Brewster’s angle ϑ1 = ϑB and says that at incidence under Brewster’s
angle, the directions of the reflected and refracted waves form a right angle, see figure 7.19.

ϑ190◦0◦

1

−1

R

ϑB

R⊥

R‖

(a) Reflection coefficients for reflection on a opti-
cally denser medium, i.e., the situation for n1 < n2.

ϑ190◦0◦

1

−1

R

ϑB

R⊥

R‖

ϑC

(b) Reflection coefficients for reflection on a opti-
cally rarer medium, i.e., the situation for n2 < n1.
For angles ϑ > ϑC total reflection occurs.

ϑ190◦0◦

1

0

R

ϑB

R⊥

R‖

(c) Reflectivities for reflection on a optically denser
medium, i.e., the situation for n1 < n2.

ϑ190◦0◦

1

0

R

ϑB

R⊥
R‖

ϑC

(d) Reflectivities for reflection on a optically rarer
medium, i.e., the situation for n1 > n2. For angles
ϑ > ϑC total reflection occurs.

Figure 7.18: Fresnel’s formulas. Graph of reflection coefficients R and reflectivity R depending on the
angle of incidence ϑ1 and polarization – in the plane of incidence R∥ and R∥, perpendicular to the plane
of incidence R⊥ and R⊥. In the images on the left, the situation is for n1 < n2, on the right for n1 > n2.
Brewster’s angle ϑB denotes the angle at which R∥ = R∥ = 0.

143



ϑB ϑB

ϑ2

Figure 7.19: A beam incident at Brewster’s angle ϑB refracts such that the direction of the transmitted
and reflected waves forms a right angle. The reflected beam is linearly polarized perpendicular to the
plane of incidence, as the reflection coefficient R∥ is zero.

By substituting into Snell’s law,

n1 sinϑB = n2 sin
(
π
2 − ϑB

)︸ ︷︷ ︸
cosϑB

, (7.90)

we express

tgϑB =
n2
n1
. (7.91)

This equation has a solution for any combination of refractive indexes n1 and n2 – thus, for any
interface, there exists a Brewster’s angle.

The existence of Brewster’s angle can be utilized in several ways. If we let unpolarized
light fall under Brewster’s angle, the electric field oscillating in the plane of incidence does not
reflect, and we obtain light polarized perpendicular to the plane of incidence. This phenomenon
is called polarization by reflection. As already mentioned, at other angles, the light becomes
partially polarized. Furthermore, if we have linearly polarized light, we can let it fall under
Brewster’s angle in such a way that the polarization lies in the plane of incidence, in which
case no light is reflected and the interface is perfectly transparent – this phenomenon is called
Brewster’s window.
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Chapter 8

Interference and Diffraction

The linearity of Maxwell’s equations results in the principle of superposition – if we take any two
solutions of Maxwell’s equations, their linear combination is also a solution. However, energy
quantities are quadratic in fields – it does not hold that if we take the sum of solutions, we also
get the corresponding sum of energy quantities. An additional interference term appears, which
is responsible for the phenomenon of interference. In the following chapter, we will describe this
phenomenon using the example of Michelson’s interferometer and explore the conditions that
may prevent the observation of interference, i.e., cause the disappearance of the interference
term.

8.1 Michelson’s Interferometer

Michelson’s interferometer is illustrated and described in Figure 8.1.

detector

mirror

mirrorlight source l1

l2

Figure 8.1: Michelson’s interferometer. A beam from a light source is split by a beam splitter into two,
reflects off mirrors, and then recombines to hit the detector. The path lengths of the individual beams
are denoted l1, l2.

We will focus on a slightly more general and at the same time simpler arrangement illustrated
in Figure 8.2. The main change is replacing a single light source with a beam splitter directly
with two sources.
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detector

mirror
S1

l1

l2

S2
semitransparent mirror

light sources

Figure 8.2: ”Pedagogical” interferometer. Two light sources are directed into the detector with mirrors
with path lengths l1 and l2.

Let’s write down the electric fields generated by the individual light sources, assuming they
have the same angular frequency ω:

E1(t) = E1 cos(ωt+ φ1), E2(t) = E2 cos(ωt+ φ2). (8.1)

For now, let’s assume that the phase shifts φ1 and φ2 are constants. We have also written the
electric field as a scalar quantity – the phenomenon of polarization and the fact that the electric
field quantity is vectorial are not important for the subsequent discussion. The electric field at
a distance l along the path of the respective beam can be written as a traveling wave

E(l, t) = E cos(ωt− kl + φ). (8.2)

The wave hitting the detector is then the superposition of waves from the individual sources:

ED(t) = E1(l1, t) + E2(l2, t) = E1 cos(ωt− kl1 + φ1) + E2 cos(ωt− kl2 + φ2). (8.3)

We are interested in the intensity measured by the detector with a resolution time troz ≫ T .
Due to the periodicity of the wave ED(t), it suffices to average over one period T :

ID = ⟨E2
D(t)⟩troz = ⟨E2

D(t)⟩T
= ⟨E2

1 cos
2(. . .)⟩+ ⟨E2

2 cos
2(. . .)⟩+ 2E1E2⟨cos(ωt− kl1 + φ1) cos(ωt− kl2 + φ2)⟩. (8.4)

Now denote

Ii =
1

2
E2
i , Ei =

√
2Ii, i ∈ {1, 2}, (8.5)

thus expressing the intensities of the individual waves Ii using amplitudes Ei and vice versa

(and ignoring the constant
√

ε
µ , which only corresponds to a different choice of units). Also,

use the sum formula for the product of cosines in (8.4):

ID = I1 + I2 + 4
√
I1I2

[
1

2
⟨cos(2ωt− k(l1 + l2) + φ1 + φ2⟩+

1

2
⟨cos(k(l1 − l2) + φ1 − φ2)⟩

]
(8.6)

After averaging, the resulting intensity hitting the detector is:

ID = I1 + I2 + 2
√
I1I2 cos

(
k(l1 − l2) + φ1 − φ2

)
. (8.7)

The resulting intensity depends on the phase difference function ∆φ of the form

∆φ = k(l1 − l2) + φ1 − φ2, (8.8)

which depends on the difference in paths of the individual beams. Depending on this difference,
we observe either constructive or destructive interference, the intensity can generally vary in
the interval

I1 + I2 − 2
√
I1I2 = (

√
I1 −

√
I2)

2 ≤ ID(∆φ) ≤ (
√
I1 +

√
I2)

2 = I1 + I2 + 2
√
I1I2. (8.9)

For equal intensities of both sources, I1 = I2 = I0, the expression simplifies to

ID(∆φ) = 2I0(1 + cos∆φ) ∈ ⟨0, 4⟩I0. (8.10)
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8.1.1 Effect of Temporal and Spatial Coherence on the Visibility of Interfer-
ence

In the previous text, we considered the phase shifts φ1 and φ2 to be constant. This is an
idealized state that never occurs in reality. Let’s consider that the phase shifts are functions
of time, φ1(t) and φ2(t), such that they remain almost constant over a time tkoh ≫ T – the
coherence time. After the coherence time has elapsed, the phase values randomly change. Recall
that for thermal sources of visible light, we have T ≈ 10−14 s and tkoh ≈ 10−9 s.

First, let’s see how the expressions calculated in the previous chapter change. The electric
fields emitted from the individual sources now take the form

E1,2(t) = E1,2 cos(ωt+ φ1,2(t)). (8.11)

Along the beams, we then have traveling waves of the form

E1,2(l1,2, t) = E1,2 cos(ωt− kl1,2 + φ1,2(tret1,2)), (8.12)

where we have expressed the phase functions at the respective retarded times

tret1 = t− l1
c
, tret2 = t− l2

c
. (8.13)

The interference part Iint of the intensity ID hitting the detector (8.7), which resulted from
averaging over one period T , does not change, as during one period the phases φ1,2(t) are
constant. However, the interference intensity will now be time-dependent with a time scale of
change tkoh:

Iint(t) = 2
√
I1I2 cos

(
k(l1 − l2) + φ1(tret1)− φ2(tret2)

)
. (8.14)

The resulting intensity observed in the detector is given by
additional averaging of relation (8.14) over the instrument’s resolution time troz:

ID(t) = I1 + I2 + ⟨Iint(t)⟩troz . (8.15)

Now we distinguish different situations and deal with how the averaged intensity ID(t) from
relation (8.15) comes out.

1. Sources S1 and S2 are spatially coherent.
Spatial coherence describes the relationships between light (electric) fields at different points

in space. We say that the fields at points P1 and P2 are spatially coherent if knowing the field
at point P1 allows us to predict the field at point P2 (and vice versa). If this is not the case,
we say that the sources are spatially incoherent.

If the light sources S1 and S2 are spatially coherent, it will hold for the phase functions1

φ1(t) = φ2(t) = φ(t). It should be noted that the spatial coherence of light sources is typically
ensured by splitting the beam from one source, as in Michelson’s interferometer. The phase
difference function ∆φ is thus now of the form

∆φ = k(l1 − l2) + φ
(
t− l1

c

)
− φ

(
t− l2

c

)
. (8.16)

We distinguish two cases:
(a) The difference in retarded times is less than the coherence time, |tret1 − tret2| ≪ tkoh.
In such a case, the phase values at different (but close) times are the same, they cancel out in

the phase function, and the interference intensity will not be time-dependent – the interference
phenomenon will be constant and thus visible.

1More generally, φ1(t) − φ2(t) = const., with a known value of the constant on the right side. Here, for
simplicity, we choose the right side to be zero.
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This situation occurs for |l1 − l2| ≪ ctkoh, because

|tret1 − tret2| =
∣∣∣t− l1

c − t+ l2
c

∣∣∣ = 1

c
|l1 − l2|. (8.17)

The difference in paths of the individual beams must therefore be less than the distance light
travels during the coherence time. For tkoh ≈ 10−9 s, we have |l1 − l2| ≪ 30 cm.

(b) The difference in retarded times is greater than the coherence time, |tret1− tret2| ≫ tkoh.
In this case, we are comparing phase shift values in different ”windows” of temporal coher-

ence, i.e., the phase managed to randomly change between times tret1 and tret2. We then have
a situation where the quantity

δφ(t) = φ(tret1)− φ(tret2) (8.18)

randomly changes on the time scale tkoh. We must again distinguish two subcases:
(i) We have a ”fast” instrument, i.e., troz ≪ tkoh. In such a case, we average a constant

in the expression for intensity (8.15), as the value δφ remains unchanged during the averaging
time. A fast instrument, therefore, observes rapid changes in interference on the scale of tkoh.

(ii) We have
a ”slow” instrument, i.e., troz ≫ tkoh. Now, during the instrument’s resolution time, the

phase value δφ changes many times randomly, evenly filling the interval of angles ⟨0, 2π). Av-
eraging in intensity (8.15) causes the interference cosine to be nullified, and the interference
phenomenon will not be observable. The total intensity measured in the detector will be a
simple sum of the intensities of the individual beams, ID = I1 + I2.

2. Sources S1 and S2 are not spatially coherent.
In such a case, knowing the field at source S1 (and thus knowing the function φ1(t)) does

not allow determining the function φ2(t). The difference δφ(t) = φ1(tret1)− φ2(tret2) now also
randomly changes on the time scale tkoh (regardless of the size of the difference |l1 − l2|, or
|tret1 − tret2|). Thus, the same case as in 1. (b) occurs, i.e., depending on the ”speed” of
the instrument, we either observe rapid changes in interference intensity or the observation of
interference is prevented.

In practical cases for optical phenomena, we only have ”slow” instruments, and we can
therefore summarize the detailed discussion above into a simple rule: Incoherent waves (whether
temporally or spatially) do not interfere with each other, the resulting intensity is given by a
simple sum of the intensities of the individual waves.

This is also why the interference phenomenon is observed only under certain conditions in
everyday life. Light emitted by various light sources (or also by non-point light sources) is
spatially incoherent and thus we do not observe interference. On the other hand, we observe,
for example, interference on thin films (oil slick on water), where the path difference of the
individual beams is very small and thus the waves are temporally coherent.

8.2 Diffraction

Under the problem of diffraction, we will understand the arrangement in figure 8.3. A source of
light emits electromagnetic waves, which we allow to pass through an opaque barrier with an
aperture2 and let the resulting wave hit a screen, where we observe so-called diffraction pattern,
by which we mean the distribution of wave intensity falling on the screen depending on the
position on the screen. Our task will be to predict the form of the diffraction pattern based on
the arrangement of the experiment.

2The aperture can have very various and very complex forms.
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barrier with aperture
screen

light source

diffraction pattern

Figure 8.3: Diffraction problem. Light falls on a barrier with an aperture and creates a diffraction pattern
on the screen.

8.2.1 Babinet’s Principle

To be able to grasp the problem of diffraction in any way, let’s look at how the opaque barrier
actually works. First, consider a full barrier without any aperture. Denote E⃗dop as the field
falling from the left on the opaque barrier. This field interacts with the atoms forming the
barrier, and these atoms must emit a field E⃗ind such that behind the barrier both fields
superimpose to zero:

E⃗dop + E⃗ind = 0. (8.19)

I.e., by definition of an opaque barrier, the induced field must be such that it exactly cancels
the incident field in the area behind the barrier.

~Edop ~Eind
~Edop+

Figure 8.4: A full barrier must induce such a field that the total field behind the barrier is exactly zero.

Now conceptually divide the barrier into areas A and B, see figure 8.5. The induced field
E⃗ind from the full barrier can be decomposed into induced fields from parts A and B (fields
from atoms forming part A and B):

E⃗ind = E⃗indA + E⃗indB. (8.20)

A

B

Figure 8.5: Barrier conceptually divided into two areas A and B.
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Now we decide to remove part B of the barrier. What will now be the field behind barrier
A, denote it E⃗A? By removing part B, the induced field E⃗indB must disappear, and behind the
barrier, there will be a superposition of the following fields:

E⃗A = E⃗dop + E⃗indA. (8.21)

Substituting the decomposition (8.20) into (8.19), we get the relation

E⃗dop + E⃗indA + E⃗indB = 0. (8.22)

Simply moving the term E⃗indB to the other side of the equation gives us the answer to our
question:

E⃗A = −E⃗indB, (8.23)

meaning the field behind the barrier with the removed part B is exactly the same as if we only
allowed part B of the barrier to emit (except for the sign, but the resulting intensity does not
depend on the sign). See schematic figure 8.6. The equality (8.23) will greatly help us in solving
the problem of diffraction.

A

(a) Field E⃗A = E⃗dop + E⃗indA.

B

(b) Field E⃗indB .

Figure 8.6: Field behind the barrier shaped A (with aperture B), E⃗A, is the same as the field emitted

by plug B, E⃗indB .

It is important to note that Babinet’s principle only applies approximately. Why is that?
Induced fields from parts of the barrier A and B influence each other. This means that after
removing part B of the barrier, the field E⃗indA will necessarily change. See schematic figure 8.7.
This effect is most pronounced at the boundary between A and B, the disappearance of the field
E⃗indB will cause the most significant changes in the radiation of atoms around the boundary
B. One of our assumptions will therefore be that the aperture B is sufficiently large compared
to the wavelength of the passing light, D ≫ λ, where we denoted the size of the aperture as D.

A

B

~Edop

~EindA
~EindB

Figure 8.7: The incident field E⃗dop induces fields radiated from barriers A and B, E⃗indA and E⃗indB , and
these influence each other.
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8.2.2 Complementary Barriers

Barriers A and B, which complement each other to form a full barrier, are called complementary,
see figure 8.8. Let’s now look at how the diffraction patterns of these complementary barriers
will differ.

A

(a) A without B.

B

(b) B without A.

Figure 8.8: Complementary barriers.

Starting from the already proven relation (8.23) and by adding a suitable zero, we modify
it:

E⃗A = −E⃗indB = −(E⃗indB + E⃗dop) + E⃗dop = E⃗dop − E⃗B, (8.24)

where we denoted the field behind barrier B (without A), E⃗dop + E⃗indB, as E⃗B. The relation
between fields for complementary barriers is thus

E⃗B = E⃗dop − E⃗A. (8.25)

Babinet’s principle is then identified as the identity E⃗A+E⃗B = E⃗dop, i.e., that by superimposing

fields caused by the presence of barrier A, respectively B, we get the original field E⃗dop in the
absence of any barrier.

The significance of the identity (8.25) is as follows. In places where the incident field is zero,
E⃗dop = 0, it applies behind the barrier

E⃗B = −E⃗A, (8.26)

thus, the diffraction patterns from complementary screens are the same! (For clarity, we repeat
that intensity, as a quantity proportional to the square of the electric field, does not depend on
the signs.) Where the incident field is non-zero, there is interference between the incident field
and the diffraction field from barrier A. The situation is illustrated by the following example
with a laser beam falling on a screen. In the absence of any barrier, we observe on the screen
the field E⃗dop itself as a shining dot, see figure 8.9.

laser dotE⃗dop

Figure 8.9: The laser beam representing the incident field E⃗dop creates a shining dot on the screen.
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If we now place barrier A in the path of the laser beam, we get the diffraction pattern E⃗A,
see figure 8.10 (a). Now, if we place the complementary screen in the path, besides the original
shining dot, we observe exactly the same diffraction pattern, see figure 8.10 (b).

laser ~Edop

~EA

A

(a) Diffraction pattern E⃗A from barrier A.

laser B

~EB
~Edop

(b) Diffraction pattern E⃗B from barrier B.

Figure 8.10: Diffraction patterns from complementary barriers – for example, two narrow slits and the
corresponding complement. In the place on the screen outside the original shining dot, the patterns are
identical. In the place of the original dot, the field E⃗B is given by the interference of the pattern E⃗A
with the incident field E⃗dop.

8.2.3 Huygens-Fresnel Principle

Now we can proceed to the actual solution of the diffraction problem. For simplicity, we will
only consider the case of a very distant light source in the axis of the aperture in the barrier.
Because of this, a plane traveling electromagnetic wave falls perpendicularly on the barrier.

In the chapter about Babinet’s principle, we showed (see relation (8.23)), that the diffraction
pattern in the presence of barrier A (and thus the presence of an aperture at location B), E⃗A, is
given only by the induced field emitted by fictitious charges at the location of the aperture B,
E⃗indB. Charges are oscillated by the incident wave and then emit spherical waves themselves.
Given that in the case of a full barrier the task has translational symmetry along the plane of
the barrier, the amplitude of the emitted waves must be the same at every point of the barrier.
The resulting field behind the barrier is then given by the superposition of spherical waves
emitted by fictitious charges at the location of the aperture B. These considerations lead us to
the following diffraction integral describing the field at point P behind the barrier:

E⃗P = E⃗0

∫
B

1

r
ei(ωt−kr) dS, (8.27)

where B is the set of points forming the aperture in the barrier, dS is the area element in
the plane of the barrier, and r is the distance between the current area element and point P .
This distance both causes the amplitude of the emitted wave to decrease and the term −kr
determines the phase shift of the emitted wave at the location of point P . The amplitude E⃗0

cannot be determined from our considerations. Therefore, our final prediction will be only the
relative distribution of intensities on the screen.

In the diffraction integral, we completely neglected that the radiation of charges is not
isotropic. Charges are oscillated in the plane of the barrier and will thus emit most strongly
in the direction perpendicular to this plane. We limit ourselves to stating that our diffraction
integral is valid only for such an area of the screen that is not too far from the perpendicular
passing through the aperture in the barrier.

Now, we introduce Cartesian coordinates (X,Y ) in the plane of the barrier and (x, y) in the
plane of the screen as in figure 8.11. Denote the distance between the planes of the barrier and
the screen as L. The area element has the expression dS = dX dY .
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x

y

Z, z

barrier/aperture screen

(x, y)

R

incident plane wave
r

o

X

Y

B (X,Y )

O |Oo| = L

Figure 8.11: Introduction of Cartesian coordinates (X,Y ) for the plane of the barrier and (x, y) for the
plane of the screen. The distance r is then the distance between points (X,Y ) and (x, y), the distance R
is between the origin of the plane of the barrier and point (x, y) in the plane of the screen. The distance
between the parallel planes of the barrier and the screen is L.

The distance r in the diffraction integral (8.27) has the expression

r = r(x, y,X, Y ), r2 = L2 + (X − x)2 + (Y − y)2. (8.28)

Thus, the diffraction task is generally solved (of course, with all the limitations that accompanied
our derivation). For a given aperture B, we can use the diffraction integral (8.27) to determine
the electric field E⃗(x, y) on the screen and subsequently calculate the intensity distribution
I(x, y) = ⟨E⃗2(x, y)⟩. Due to not knowing the amplitude E⃗0, we do not determine the absolute
distribution of intensity but only the relative one.

Finally, let’s explain the term Huygens-Fresnel principle. This principle says that points
of the aperture in the barrier are sources of spherical waves (Huygens’ principle) and the re-
sulting field behind the barrier is obtained as their superposition (Huygens-Fresnel principle).
Historically, this principle was postulated by Fresnel and directly leads to the diffraction inte-
gral (8.27). Here, we derived this integral (and thus the Huygens-Fresnel principle) based on
Babinet’s principle, the principle of superposition, and the study of radiation from oscillating
charges.

8.2.4 Fraunhofer Diffraction

The diffraction integral (8.27) is generally very complex to compute. Here, through a series of
approximations, we arrive at the simplest possible diffraction, which is the so-called Fraunhofer
diffraction.

Let’s now introduce the distance R, which indicates the distance of the location (x, y) on the
screen from the origin O of the plane of the barrier, once again see figure 8.11. The coordinate
expression of this distance is

R2 = L2 + x2 + y2. (8.29)

We see that this does not depend on the coordinates (X,Y ) and therefore from the perspective
of integration in the plane of the barrier, the distance R is constant. We will now want to
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express the distance r using the distance R and neglect some terms to simplify the expression
under the integral. Substituting for L2 in the expression for r (8.28) from the expression for R
(8.29) we get

r2 = R2 + (X − x)2 − x2 + (Y − y)2 − y2. (8.30)

By extracting the square root and extracting R, we obtain the sought expression for the rela-
tionship between distances r and R:

r = R

√
1 +

(X − x)2 − x2 + (Y − y)2 − y2

R2
. (8.31)

Now, let’s approximate the square root using Taylor’s expansion to the first order,
√
1 + x ≈

1 + x
2 ; here, we must assume that the dimensions of the aperture in the barrier (ranges of

coordinates X and Y ) and the size of the area on the screen where we observe the diffraction
pattern (ranges of coordinates x and y) are much smaller than the distance of the screen from
the barrier L (R in the denominator we estimated by the distance L):

r ≈ R

(
1 +

(X2 − 2Xx) + (Y 2 − 2Y y)

2R2

)
. (8.32)

Additionally, if the aperture in the barrier is sufficiently small, we can further neglect the
quadratic terms in the coordinates of the barrier X2 and Y 2 compared to the linear terms 2Xx
and 2Y y. What exactly is meant by ”sufficiently small” will be learned later when we derive the
so-called criterion for Fraunhofer diffraction. After neglecting the quadratic terms, we arrive at
the final approximation for the distance r in the form

r ≈ R

(
1− Xx+ Y y

R2

)
= R− Xx+ Y y

R
. (8.33)

If we approximated even a bit more, we would simply get r ≈ R. Now, let’s substitute these ap-
proximations into the diffraction integral (8.27). Into the phase of the exponential, we substitute
the approximation (8.33) and for the amplitude decrease, we use the even rougher approximation
r = R. This leads us to the Fraunhofer diffraction integral :

E⃗(x, y) =
E⃗0

R
ei(ωt−kR)

∫
B
ei

k
R
(Xx+Y y) dX dY. (8.34)

Why did we use a rougher approximation for the amplitude than for the phase? The phase
is more important for the interference phenomenon than the amplitude – the phase decides
whether the interference will be constructive or destructive, whereas the amplitudes only decide
how much contrast there will be in the interference3. Additionally, the phase function involves
the wave number k = 2π

λ , which is of the order of 107m−1 for optical wavelengths, meaning even
small phase differences are greatly amplified by the large wave number. The last addition is
that if we used the approximation r ≈ R in the phase function, we would not get any non-trivial
interference at all.

Mathematical digression. Denote new variables u and v as

u =
k

R
x, v =

k

R
y (8.35)

and introduce the so-called characteristic function f(X,Y ) of set B, f : R2 → R, such that

f(X,Y ) =

{
1 for (X,Y ) ∈ B
0 for (X,Y ) /∈ B.

(8.36)

3I.e., how large will be the luminance difference between constructive and destructive interference.
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Then the integral in Fraun
hofer’s diffraction integral takes the form

E(u, v) ∝
∫
R2

f(X,Y ) ei(uX+vY ) dX dY. (8.37)

This is a 2D Fourier transform (compare with the 1D Fourier transform in section 3.2). From a
mathematical point of view, the electric field on the screen predicted by Fraunhofer diffraction is
given by the two-dimensional Fourier transform of the characteristic function f of the aperture
in the barrier.

Now, let’s derive the so-called criterion for Fraunhofer diffraction, i.e., under what circum-
stances we can confidently neglect the quadratic terms in the expression (8.32). If we did not
neglect them, there would appear an additional phase shift in the phase function of the form

∆φ = k
X2 + Y 2

2R
. (8.38)

If this additional term is to minimally affect the resulting interference pattern, it must hold4

∆φ ≪ 1. Express the wave number using the wavelength, k = 2π
λ , and introduce the diameter

D as the diameter of a thought circle into which the entire aperture B already fits, see figure
8.12.

O

D

B

Figure 8.12: Diameter D of a thought circle into which the entire aperture in the barrier B fits.

Now, we can use the estimates X2 + Y 2 ≤ 1
4D

2 and L ≤ R in the expression for the phase
shift (8.38):

2π

λ

X2 + Y 2

2R
≤ π

4

D2

λL
≪ 1 (8.39)

We discard the numerical factor π
4 (increasing it to one) and thus arrive at the final criterion

for Fraunhofer diffraction:

L≫ D2

λ
, D2 ≪ λL. (8.40)

The resulting criterion thus quantifies how far the screen must be, or how small the aperture in
the barrier must be, for us to confidently use Fraunhofer diffraction.

In the case that the criterion for Fraunhofer diffraction is not met, it is then referred to as
Fresnel diffraction. Likewise, we talk about Fresnel diffraction in the case that the light source
is not sufficiently far from the barrier with the aperture, so we cannot consider that plane waves
are falling on the barrier. We will not deal with this more complex diffraction here.

Finally, let’s look at the geometric meaning of the term Xx+Y y
R in the Fraunhofer integral.

Without loss of generality and for simplicity, let’s set Y, y = 0 and study the expression only in

4Thus, we made a certain argumentative shift. In the end, it is not as important how large the quadratic term
is compared to the linear one, but how much it contributes to the resulting phase shift, where a change in phase
by π represents the difference between constructive and destructive interference.
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the plane (x, z), respectively (X,Z). The situation is illustrated in figure 8.13. The main thing
is the introduction of angle θ, which represents the angle under which we see a given point on
the screen from the origin of the barrier, and the distance of the orthogonal projection l, again
see figure 8.13. Then the relation l = X sin θ = X x

R holds. The large distance of the screen
causes that the rays emanating from the origin of the barrier and from a point at distance X
are almost parallel and the difference in their lengths R− r is approximately equal to l. In the
Fraunhofer approximation, we thus imagine that all rays falling at a given point on the screen
emanate parallelly from

the corresponding points in the aperture B under angle θ and the path differences are then
simply given by the orthogonal projection between the individual rays.

X

O o
θ

X x

Z, zL

θ

l

x

R

r large

distance

Figure 8.13: Geometric meaning of the phase function in Fraunhofer diffraction. The angle θ can be
expressed as sin θ = x

R . The distance l is given as the size of the leg of the triangle formed by the
orthogonal projection from point X to the ray emanating from the origin of the barrier. The size of l
can be expressed as l = X sin θ = Xx

R .

In the following sections, we will study applications of the Fraunhofer integral to several
basic shapes of the aperture in the barrier.

8.2.5 Young’s Experiment

Young’s experiment involves the study of diffraction at two rectangular slits. The main features
of this experiment are preserved even if we simplify the situation by replacing rectangular
openings with two point holes, see the schematic figure 8.14. The situation is further simplified
by studying the resulting diffraction pattern only along the x axis, i.e., for y = 0. It is, of
course, possible to calculate the entire situation with full preservation of the geometry of two
rectangular slits, see exercise example 11.7.

Figure 8.14: Young’s experiment on a double slit. For simplicity, we replace rectangular slits with point
holes.
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Fraunhofer’s integral (8.34) then changes to just a sum of two terms,∫
B

−→
∑

2 sources

, (8.41)

where the source positions are Y = 0 and X = ±d
2 , where d denotes the distance between point

holes in the barrier, see figure 8.15.

xX

d
2

−d
2

O o
θ

|Oo| = L Z, z

R

r1 ≈ R+ d
2

x
R

r2 ≈ R− d
2

x
R

x

Figure 8.15: Young’s experiment on a double slit.

Specifically, we get the following expression for the electric field along the x axis, E⃗(x):

E⃗(x) =
E⃗0

R
ei(ωt−kR)

(
ei

k
R
d
2
x + e−i

k
R
d
2
x
)
=
E⃗0

R
ei(ωt−kR)2 cos

(
k

R

d

2
x

)
=

2E⃗0

R
ei(ωt−kR) cos

(
1

2
kd sin θ

)
, (8.42)

where we introduced the angle θ as in figure 8.13, i.e., as sin θ = x
R , see also figure 8.15. The

intensity observed on the screen will be

I(sin θ) = ⟨(Re E⃗)2⟩ = 4E2
0

R2
⟨cos2(ωt− kR)⟩ cos2

(
1

2
kd sin θ

)
=

2E2
0

R2
cos2

(
1

2
kd sin θ

)
. (8.43)

The intensity obviously weakens with increasing distance from the screen as 1
R2 , but the main

feature is the interference term given by the square of the cosine. Points where this cosine
reaches maxima are given by the condition

1

2
kd sin θ = mπ, m ∈ Z, (8.44)

and thus diffraction maxima are seen on the screen approximately under angles

sin θm = m
λ

d
, m ∈ Z. (8.45)

We see that the size of the ”bending” (i.e., how much the maximum is deviated from the direct
direction) is directly proportional to the wavelength λ – the longer the wavelength, the more
light bends – and inversely proportional to the distance of the slits d – the closer the slits are,
the more maxima are distanced from the direct direction. The number m is called

the order of the maximum, and the maximum observable order is evidently given by the
following condition:

sin θ ≤ 1 m
λ

d
≤ 1 m ≤ d

λ
. (8.46)
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The course of intensity on the x axis on the screen is shown in figure 8.16 along with the
appropriately marked maxima.

sin θ

I

0 λ
d

2λ
d− 2λ

d
−λ
d

Figure 8.16: The course of intensity on the x axis on the screen for two point sources depicted as a
function of the variable sin θ. Intensity maxima are at points sin θm = mλ

d , m ∈ Z.

If we are directly interested in the Cartesian coordinates of the diffraction maxima on the
screen, it is sufficient to express x from the definition sin θ = x

R :

xm = Rm sin θm ≈ Lm
λ

d
, (8.47)

where, for simplicity, we considered maxima near the origin, where we can approximate R =√
L2 + x2 ≈ L. The distance between adjacent diffraction maxima on the screen is then

∆x = xm+1 − xm = L
λ

d
. (8.48)

8.2.6 Diffraction Grating

The generalization of Young’s experiment is the case of a diffraction grating, where the number
of rectangular slits is generalized to any natural number N ∈ N, N ≥ 2. Again, we simplify
the situation by replacing finitely large rectangular slits with point holes, see figure 8.17. We
will study the intensity pattern only along the x axis. The distance between adjacent points is
again d.

Figure 8.17: Diffraction grating. Again, for simplicity, we consider point holes and intensity on the screen
along the x axis.

We introduce coordinates in the plane of the barrier so that the first hole lies at the origin
and each subsequent one lies in the positive part of the X axis, i.e., at coordinates Xj = j d,
j ∈ {0, 1, . . . , N − 1}, see figure 8.18.
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(N−2)d

R

θ

r1

r2

r3

rN−2

rN−1

Figure 8.18: Introduction of coordinates for the case of a diffraction grating. Point holes lie at coordinates
Xj = j d, j ∈ {0, 1, 2, . . . , N − 1}. Distances from individual holes to a point on the screen are in
Fraunhofer’s approximation rj ≈ R− jd xR .

Fraunhofer’s integral (8.34) is now, similarly to the case of Young’s experiment (see e.g.,
(8.42)), a sum of spherical waves over individual point holes:

E⃗(x) =
E⃗0

R
ei(ωt−kR)

N−1∑
j=0

ei
k
R
(jd)x =

E⃗0

R
ei(ωt−kR)

N−1∑
j=0

(
ei

k
R
xd
)j
. (8.49)

We apply the formula for the sum of a finite geometric series,

N−1∑
k=0

xk =
xN − 1

x− 1
, (8.50)

and suitably expand the resulting expression to eventually eliminate as many complex expo-
nentials as possible by conversion to trigonometric functions:

E⃗(x) =
E⃗0

R
ei(ωt−kR) e

i k
R
Nxd − 1

ei
k
R
xd − 1

· e
−i k

R
x d

2

e−i
k
R
x d

2

· e
−i k

R
Nx d

2

e−i
k
R
Nx d

2

. (8.51)

Then we just modify:

E⃗ =
E⃗0

R
ei(ωt−kR) e

i 1
2
kdN x

R − e−i
1
2
kdN x

R

ei
1
2
kd x

R − e−i
1
2
kd x

R

e−i
1
2
kd(N−1) x

R =
E⃗0

R
ei(ωt−kR−

1
2
kd(N−1) x

R
) sin

(
k
RNx

d
2

)
sin
(
k
Rx

d
2

) .

(8.52)

The resulting intensity on the screen written using angle θ, sin θ = x
R , is

I = ⟨(Re E⃗)2⟩ = E2
0

2R2

(
sin
(
1
2kNd sin θ

)
sin
(
1
2kd sin θ

) )2

. (8.53)

Let’s now examine, just as with Young’s experiment, the location of diffraction maxima.
These are now determined by a zero denominator (but the intensity limit obviously comes out
finite). The denominator is zero under the condition

1

2
kd sin θ = mπ, m ∈ Z. (8.54)
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This condition is exactly the same as in the case of the double slit! See condition (8.44). Thus,
we can adopt the results about the angular position of diffraction maxima (8.45), the number
of diffraction maxima (8.46), and the distance of maxima on the screen (8.48):

sin θm = m
λ

d
, m ≤ d

λ
, ∆x = L

λ

d
. (8.55)

So, how does the case of a diffraction grating differ from Young’s experiment with two slits?
Let’s look at the graph of intensity on the x axis on the screen in figure 8.19 for N = 10.
Diffraction maxima are narrower depending on the number of slits, this narrowing is illustrated
in figure 8.20.

sin θ

I

0 λ
d

2λ
d− 2λ

d
−λ
d

Figure 8.19: The course of intensity on the x axis on the screen for a diffraction grating depicted as a
function of the variable sin θ. Intensity maxima are at points sin θm = mλ

d , m ∈ Z. Here, specifically
shown for N = 10 slits.

The width of the diffraction maximum is defined for simplicity as the distance between
points where the intensity first reaches zero value around this maximum. These points are
given by the first zeros of the numerator in the intensity (8.53), where the denominator is also
non-zero. For the central maximum, we get:

1

2
kNd sin θ± = ±π, sin θ± = ± 1

N

λ

d
. (8.56)
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Figure 8.20: Width of diffraction maxima for different numbers of slits in the diffraction grating. The
position of the maxima remains the same, only their width changes inversely proportional to the number
of slits.

For the width of the maximum ∆(sin θ), we have:

∆(sin θ) = sin θ+ − sin θ− =
2

N

λ

d
, ∆θ ≈ 2

N

λ

d
, (8.57)

where we approximated sin θ ≈ θ.
Diffraction gratings are often used as spectrometers. The angles at which we observe diffrac-

tion maxima (except for the central maximum) depend on the wavelength of light. Therefore,
if light composed of multiple wavelengths hits the diffraction grating, the maxima for different
wavelengths will be displayed at different points on the screen. On the screen, we can deter-
mine from which wavelengths the light hitting the diffraction grating is composed – we can thus
determine its spectrum.

However, we must not forget that the diffraction maxima have a finite width. Therefore,
if the spectrum contains wavelengths that are too close to each other, we will not be able to
distinguish them on the screen. A simple criterion for the resolving power of the grating is such
that the distance between the diffraction maxima corresponding to different wavelengths must
be greater than the width of these diffraction maxima. The position of the diffraction maxima
for two wavelengths λ1 and λ2 is

sin θ1 = m
λ1
d
, sin θ2 = m

λ2
d
. (8.58)

We want the distance between the maxima to be greater than the width of these maxima:

m

∣∣∣∣λ1d − λ2
d

∣∣∣∣ > 2λ

Nd
, |λ1 − λ2| >

λ1 + λ2
mN

. (8.59)

where for the width of the maxima, we chose for simplicity the average wavelength λ = λ1+λ2
2 .
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8.2.7 Slit of finite width

The last application of the Fraunhofer integral, which we will look at in detail, is diffraction on
a single rectangular slit, see the schematic figure 8.21 on the left.

(a) Rectangular slit.

X

Y

a
2

−a
2

b
2

− b
2

O

(b) Coordinates of the rectangle in the barrier
plane.

Figure 8.21: Diffraction on a rectangular slit with dimensions a× b.

By direct application of the Fraunhofer integral (8.34), where the coordinate expression of
the rectangular slit B is shown in the figure 8.21 on the right, we show:

E(x, y) ∝
∫ a/2

−a/2

∫ b/2

−b/2
ei

k
R
(xX+yY ) dX dY =

(∫ a/2

−a/2
ei

k
R
xXdX

)(∫ b/2
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ei
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R
yY dY

)

=
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1

i kRx
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R
xX
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R
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a
2x
)
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Rx

sin
(
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R
b
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)
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R

)
1
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R

·
sin
(
1
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y
R

)
1
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y
R

. (8.60)

Since we cannot determine the amplitude E⃗0 in the diffraction integral, we limited ourselves only
to the calculation of the actual (phase) integral. If we are further only interested in the behavior
of the electric field and intensity on the axis x (i.e., we consider y = 0), we get expressions

E(x, 0) ∝
sin
(
1
2kd sin θ

)
1
2kd sin θ

, I(x, 0) ∝

(
sin
(
1
2kd sin θ

)
1
2kd sin θ

)2

, (8.61)

where we denoted by d = a the width of the slit in the direction of the axis x and again
introduced the angle θ as sin θ = x

R . The intensity function (in the variable sin θ is no longer

periodic but has the form of the function
(
sinu
u

)2
, where u = 1

2kd sin θ). The graph of intensity
on the axis x is shown in the figure 8.22.
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Figure 8.22: Intensity profile on the axis x on the screen for a slit of width depicted as a function of the
variable sin θ. The position of the minima is at points sin θm = mλ

d , m ∈ Z \ {0}.

The width of the central maximum is given by the distance of the first zeros of intensity,
i.e.,

1

2
kd sin θ± = ±π, ∆(sin θ) = sin θ+ − sin θ− =

2λ

d
, ∆θ ≈ 2λ

d
. (8.62)

The angular size of the main maximum ∆θ is also referred to as the size of the angular divergence
of the beam. Once the propagation of the electromagnetic wave is limited by an aperture of
some size, diffraction occurs at this aperture and the beam behind the aperture does not remain
the same size but expands at a rate given by the corresponding angular divergence. Examples
of limitations include the finite size of the output aperture of a laser system, the finite size of a
telescope lens, etc. In other words, precise “parallelism” of a spatially limited beam cannot be
achieved, but it will always diver

ge due to diffraction.

Let’s look at the position of the minima next. These positions are given by the zeros of the
numerator, i.e.,

1

2
kd sin θ = mπ, m ∈ Z \ {0}, (8.63)

which is again the same condition as in the case of Young’s experiment or a diffraction grating
(only now it’s about minima instead of maxima), i.e., the same relationships apply,

sin θm = m
λ

d
, m ≤ d

λ
, ∆x = L

λ

d
, (8.64)

for the position of minima, the number of visible minima, and the distance of minima on the
screen.

8.2.8 Diffraction on a circular aperture

Naturally, we may ask, what will diffraction on a circular aperture look like? Since the aperture
has rotational symmetry, we expect the diffraction pattern to have the same symmetry.
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Figure 8.23: Diffraction on a circular aperture.

When calculating the diffraction pattern, it seems advantageous not to introduce Cartesian
coordinates X,Y and x, y into the barrier and screen plane, but polar coordinates ρ, ϕ and
r, φ. From the symmetry of the problem, then the resulting intensity will only depend on the
coordinate r, I(r). Unfortunately, despite the apparent simplicity of this problem, the resulting
diffraction integral leads to special functions called Bessel functions Jn(x), n ∈ N0. The resulting
diffraction intensity has the form

I(sin θ) ∝

(
J1(

1
2kd sin θ)

1
2kd sin θ

)2

, (8.65)

where d is the diameter of the aperture and sin θ = r
R = r√

L2+r2
. Bessel functions can be defined

by integrals

Jn(x) =
1

π

∫ π

0
cos(nu− x sinu) du. (8.66)

The shape of the function I(sin θ) is illustrated in the figure 8.24. The central maximum, which
is defined by the positions of the first zero points of intensity I, is determined by the first zero
of the function J1(x) for x > 0. The value of x cannot be analytically calculated, so we express
it in the form x = απ, where α ≈ 1.22. Then the positions of the first minima on the screen
will be at positions

sin θ = ±αλ
d
. (8.67)
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d

2λ
d− 2λ

d
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3λ
d− 3λ

d
αλd

Figure 8.24: The shape of the function I(sinϑ) for diffraction on a circular aperture – depicted in black.
For comparison, the course of the function I(sinϑ) for a (rectangular) slit of width d is shown in gray.
The central maximum for the circular aperture is slightly wider than for the slit.
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8.2.9 Influence of coherence on the visibility of the diffraction pattern

Now let’s address the question of what can prevent the observation of the diffraction phe-
nomenon. Since diffraction is an interference phenomenon, the coherence of the light source
that causes diffraction will affect its visibility.

Diffraction is caused by path differences (and thus induced phase differences) of waves orig-
inating at the aperture in the barrier and hitting a specific spot on the screen. If we illuminate
the barrier with a point source of light with a coherence time tkoh, then the difference in paths
of the individual beams must be much less than c tkoh. At the end of

the chapter 8.2.4 on Fraunhofer diffraction, we showed that the path difference is of the
size d sin θ, where d is the size of the aperture in the barrier. For thermal sources, we have
tkoh ≈ 10−9 s, and thus c tkoh ≈ 30 cm. Therefore, the temporal coherence of thermal sources
will not be a problem for apertures in the barrier much smaller than 30 centimeters. Otherwise,
the contrast of the interference pattern and thus the visibility of diffraction will decrease.

What about in the case of a non-point light source? In a thermal non-point source, its
individual points are sources of spatially incoherent waves – based on the knowledge of the
wave emitted from one point of the source, we cannot predict the wave coming out of another
place of the source. As a simple example, consider a non-point light source consisting of three
discrete point sources as in figure 8.25.

aperture

A B

C

light sources

Figure 8.25: Non-point light source formed by points A, B, and C. Points A and B are placed on the axis
of the aperture perpendicular to the barrier (and screen). Point C, on the other hand, is displaced off-
axis. On the screen, the diffraction patterns from individual sources A, B, and C are then schematically
depicted.

In the section on the influence of coherence on the visibility of interference, we showed that
incoherent waves do not interfere with each other – thus, the intensities from individual waves
simply add up. So, the patterns from sources A and B will simply overlap, and the interference
pattern will remain unchanged (see schematic graphs on the screen in figure 8.25). It remains
now to determine what the diffraction pattern from source C – that is, the source transversely
displaced off the axis of the aperture in the barrier – will look like. We have not yet considered
this situation – we always took plane waves falling perpendicularly on the barrier.

Fortunately, the answer is relatively simple. In such a case, the main diffraction maximum
will be displaced off the axis of the aperture so that the line passing through source C and the
maximum on the screen goes through the center of the aperture in the barrier, see figure 8.26.
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Figure 8.26: Paths of the extreme rays coming from source C hitting one spot on the screen. The lengths
of these rays are s1 + r1 and s2 + r2. Constructive interference occurs where these paths equal. In this
case, it also holds that s2 − s1 = r2 − r1 = l = d sin θ, where d is the size of the aperture.

Displacement of the source off the axis of the aperture in the barrier thus causes a displace-
ment of the diffraction pattern on the screen. The superposition of diffraction patterns from
very close sources A and C will appear as a blurring of the diffraction pattern caused only
by source A. A continuously distributed (non-point) light source will then create an infinite
superposition of non-interfering diffraction patterns on the screen – this superposition will ap-
pear as a blurring of the original diffraction pattern. If the size of the light source is so large
that the position of the main diffraction maxima from the extreme points of the light source
reaches the diffraction maxima of the first order from the central points of the light source, the
diffraction pattern will completely disappear. The previous sentence will serve as a criterion
for determining the limit of the size of the light source so that the blurring of the diffraction
pattern is not too great. Let’s look at figure 8.27, where we introduce the necessary geometric
quantities.

0th order

1st orderlight source

d

s

Ls L

∆ϑ ∆θ

Figure 8.27: We consider a light source just wide enough s at a distance Ls from the barrier (with angular
size ∆ϑ) that causes the overlap of the zeroth-order maximum from the edge points of the source with
the first-order maximum from the central points of the source.

Quantitatively, the requirement for sufficient unblurredness is written as

∆ϑ≪ ∆θ. (8.68)

The distance of interference maxima for a point light source is ∆θ = λ
d and for small ∆ϑ we can

write ∆ϑ ≈ s
Ls

. We can then get different forms of inequality (8.68) depending on the specific
application:

s

Ls
≪ λ

d
, resp. s≪ Ls

λ

d
, resp. d≪ λ

∆ϑ
. (8.69)
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Finally, let’s give a small example. The angular size of the Sun in the sky is about ∆ϑ = 30′.
Considering that the dominant wavelength in visible light is λ = 600 nm, then the above criterion
gives d ≪ 70µm. Thus, to be able to observe the diffraction of sunlight, it would have to pass
through apertures smaller than 70µm ¡ 0.1 mm!
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Chapter 9

*Geometric Optics

9.1 *Transition from wave optics to geometric optics

The concepts we have worked with so far – in wave optics – were, for example: wave, amplitude,
wavefront, interference. In contrast, in geometric optics, the main concept is the ray. Our
main task will therefore be to introduce this concept – for this, we will have to make some
approximations, which will mean that geometric optics will only be an approximate theory of
light propagation. We will see that our approximation will require λ → 0, thus in geometric
optics, among other things, we completely neglect diffraction phenomena, which are directly
proportional to the wavelength λ.

In the chapter on plane electromagnetic waves, we showed that the individual components
of the electric and magnetic field are governed by the wave equation:

∂2ψ

∂t2
= v2∆ψ, ψ ∈ {Ei, Bj}. (9.1)

Let’s generally decompose the wave ψ(r⃗, t) solving the wave equation (9.1) into an ”amplitude”
function A(r⃗, t) and a phase function φ(r⃗, t) as

ψ(r⃗, t) = A(r⃗, t) eiφ(r⃗,t). (9.2)

Without additional assumptions, this decomposition is completely ambiguous. We will therefore
require that the amplitude function A changes only very slowly over distances of the order of
λ. In contrast, the phase function φ will change very rapidly – by a value of 2π over a distance
of λ.

Now we want to find, among other things, the so-called local propagation directions indicating
in which direction the wave propagates at each point in space. In the case of a plane traveling
harmonic wave, the situation is simple – the direction of propagation is the same everywhere
in space and given by the wave vector k⃗, which is also perpendicular to the plane wavefronts
(surfaces of constant phase) everywhere in space – in this case, we can talk about a global wave
vector k⃗. Local directions for a general wavefront are obtained by approximating individual
small parts of the wavefront with a plane and by comparing it with the corresponding equivalent
plane traveling wave, we determine the corresponding local quantities.

Therefore, let’s expand the phase function φ(r⃗, t) to the first order of Taylor’s expansion in
variables r⃗ and t around the point r⃗0 at time t0:

φ(r⃗, t) = φ(r⃗0, t0) +

3∑
j=1

∂φ(r⃗0, t0)

∂xj
(xj − xj0) +

∂φ(r⃗0, t0)

∂t
(t− t0) + . . .

= φ(r⃗0, t0) + gradφ(r⃗0, t0) · (r⃗ − r⃗0) +
∂φ(r⃗0, t0)

∂t
(t− t0) + . . . (9.3)
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We see that in the first order, we can write the phase function as

φ(r⃗, t) = φ0 + k⃗ · (r⃗ − r⃗0)− ω(t− t0), (9.4)

where

k⃗ = gradφ, ω = −∂φ
∂t
. (9.5)

By expanding the phase function φ(r⃗, t) to the first order of Taylor’s polynomial around the point
(r⃗0, t0), we replaced the general wavefront defined by the equation φ(r⃗, t) = const. around the
point r⃗0 at time t0 with a plane traveling wave, see schematic figure 9.1. The vector field k⃗(r⃗, t),
or scalar field ω(r⃗, t), we call local wave vector, or local angular frequency, respectively. Naturally,
the local wave vector k⃗ defines the local wave number k(r⃗, t) = |⃗k(r⃗, t)|, local wavelength λ(r⃗, t) =
2π

k(r⃗,t) and the local direction of propagation n⃗(r⃗, t) = k⃗(r⃗,t)
k(r⃗,t) . Similarly, we can define the so-

called local propagation speed v(r⃗, t) = ω(r⃗,t)
k(r⃗,t) , or its vector form by adding the direction of

propagation v⃗(r⃗, t) = v(r⃗, t) n⃗(r⃗, t). Since the vector k⃗ is given as the gradient of the phase
function, k⃗ = gradφ, it is perpendicular to the wavefronts due to the property of the gradient;
the same applies to the local speed v⃗, as it is just a multiple of the wave vector, v⃗ ∝ k⃗.

P

wavefront

tangent plane
to wavefront
at pointP

φ(r⃗, t0) = C

φ0+k⃗·(r⃗−r⃗0)−ω(t−t0)

Figure 9.1: Replacement of the precise wavefront at time t0 with a plane at point P (whose position is
described by vector r⃗0).

Rays, the central concept of geometric optics, are defined as curves r⃗(t) : R → R3 satisfying
the differential equation

dr⃗(t)

dt
= v⃗(r⃗(t), t), (9.6)

where on the right appears the local propagation speed at the current location of the ”end” of
the ray. This equation is simply an expression of the requirement that the speed of the ray dr⃗

dt
is equal to the local propagation speed v⃗ at each point. Curves whose derivative equals a given
vector field are generally called integral curves (of the given vector field) in mathematics. Since
the speed v⃗ is perpendicular to the wavefronts everywhere, the rays are also perpendicular to the
wavefronts they pass through at every point. The course of the rays relative to the wavefronts
is schematically shown in figure 9.2.
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ray r⃗(t)

wavefrontsφ(r⃗) = C

k⃗

k⃗

k⃗

Figure 9.2: A ray as an integral curve of the vector field v⃗, or k⃗. Since the vector k⃗ = gradφ is
perpendicular to the wavefronts everywhere, the rays are also perpendicular to the wavefronts.

Purely based on the knowledge of the phase function φ(r⃗, t), we were able to define local
wave quantities and from them derive the paths of rays in the given wave. Now we need to find
a differential equation that will determine the phase function. We defined the phase function as
part of the ”total” wave ψ(r⃗, t) satisfying the wave equation (9.1) according to the ansatz (9.2).
Let’s first calculate the individual derivatives of this ansatz occurring in the wave equation:

∂ψ

∂t
=

[
∂A

∂t
+ iA

∂φ

∂t

]
eiφ, (9.7)

∂2ψ

∂t2
=

[
∂2A

∂t2
+ 2i

∂A

∂t

∂φ

∂t
+ iA

∂2φ

∂t2
−A

(
∂φ

∂t

)2
]
eiφ, (9.8)

and analogously for spatial derivatives we get

∆ψ =

3∑
j=1

[
∂2A

∂x2j
+ 2i

∂A

∂xj

∂φ

∂xj
+ iA

∂2φ

∂x2j
−A

(
∂φ

∂xj

)2
]
eiφ. (9.9)

Now we want to estimate the magnitudes of individual terms in the derivatives (9.8) and (9.9)
based on approximations resulting from both the slow change of the amplitude function A and
from the approximation of geometric optics, when we consider λ→ 0 (and thus k = 2π

λ → +∞,
ω = vk → +∞). According to (9.5), the first spatial derivatives of φ are proportional to the
first power of the wave number k size, and the first time derivative of φ as well (since ω is
directly proportional to k):

∂φ

∂xi
∝ k1,

∂φ

∂t
∝ k1,

(
∂φ

∂xj

)2

∝ k2,

(
∂φ

∂t

)2

∝ k2. (9.10)

The amplitude and its derivatives do not significantly change with the change in wavelength,
so we can write

A ∝ k0,
∂A

∂xj
∝ k0,

∂A

∂t
∝ k0,

∂2A

∂x2j
∝ k0,

∂2A

∂t2
∝ k0. (9.11)

What about the second derivatives of the phase function? These represent the change in the
wave vector in space and the change in angular frequency over time. We also assume that these
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change slowly and the magnitude of their change does not scale with the size k, so we can
consider

∂2φ

∂x2j
∝ k0,

∂2φ

∂t2
∝ k0. (9.12)

In the limit k → +∞, then only terms with the highest power of k will remain in the derivatives
(9.8) and (9.9) – these are precisely the quadratic terms of the first derivatives, which are
proportional to k2. From the wave equation then in the approximation of geometric optics only
remains (

∂φ

∂t

)2

= v2
3∑
j=1

(
∂φ

∂xj

)2

. (9.13)

This equation is called the eikonal equation. In this text, let’s further consider that everywhere
in space we have a monochromatic wave with angular frequency ω0, thus

−∂φ(r⃗, t)
∂t

= ω(r⃗, t) = ω0 = const. (9.14)

If we solve this simple differential equation, we get the following form of the phase function:

φ(r⃗, t) = −ω0t+ φ0(r⃗), (9.15)

where the function φ0(r⃗) emerged as an integration constant when integrating over time. In
the phase function, we have separated the dependence on time and space, and the temporal
dependence is very trivial. Substituting into the eikonal equation (9.13) we get

3∑
j=1

(
∂φ0

∂xj

)2

=
ω2
0

v2
. (9.16)

This equation we may call the time-independent eikonal equation. If we look into the definition
of local quantities (9.5) (and below in the text) and substitute the form of the phase function
(9.15) we find out that for monochromatic waves all local quantities are constant in time and
only depend on spatial coordinates:

k⃗(r⃗) = gradφ0(r⃗), ω = ω0, λ(r⃗) =
2π

|⃗k(r⃗)|
, etc. (9.17)

We will look at the significance and solution of the (time-independent) eikonal equation after
an important generalization in the following section.

9.2 *Inhomogeneous Media

So far, our results are not very interesting, since we have so far only considered homogeneous
media, where the phase velocity v and therefore the refractive index n = c

v are constant.
Let’s therefore consider a medium where the refractive index varies in space – n(r⃗). Since

n ≈ √
εr =

√
ε
ε0
, we thus have a variable permittivity in space as well – ε(r⃗). How will these

new assumptions change the derivations we have made so far?
Let’s return to the derivation of the wave equation for the electric field E⃗ from the chapter

6.1 on electromagnetic waves. Gauss’s law for non-constant permittivity ε in a medium without
free charges has the form:

0 = div(εE⃗) = εdivE⃗ + (grad ε) · E⃗ ⇒ divE⃗ = −1

ε
(grad ε) · E⃗. (9.18)
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When calculating the double curl of the electric field E⃗ (6.3), the term grad divE⃗ does not
disappear:

rotrotE⃗ = grad divE⃗︸ ︷︷ ︸
̸=0

−∆E⃗ = −grad

(
1

ε
(grad ε) · E⃗

)
−∆E⃗. (9.19)

The resulting wave equation for the electric field then takes a modified form compared to (6.5):

εµ
∂2E⃗

∂t2
−∆E⃗ = grad

(
1

ε
grad ε · E⃗

)
. (9.20)

How will the additional term manifest when deriving the eikonal equation? Fortunately, not at
all. The term on the right side of the modified wave equation (9.20) contains zeroth, or first,
spatial derivatives of the components of the electric field – Ei and

∂Ei
∂xj

. These are proportional

to at most the first power of the local wave number k: k1. In the limit of geometric optics,
when λ→ 0 and thus k → +∞, only terms that we have already retained in the original eikonal
equation (9.16), i.e., terms proportional to k2, will prevail. The eikonal equation thus remains
the same, the only thing that appears additionally is the dependence of the refractive index on
position:

3∑
j=1

(
∂φ0

∂xj

)2

=
ω2
0

c2
n2(r⃗). (9.21)

The local propagation speed (local phase velocity) v is now variable – it can be different at
every point in space – v(r⃗):

v(r⃗) =
c

n(r⃗)
. (9.22)

Equation (9.21) can be written in a more geometric manner. On its left side appears the square
of the magnitude of the gradient of the phase function φ0, so we can write:

|gradφ0| =
ω0

v(r⃗)
. (9.23)

The rate of growth of the phase function φ0(r⃗) is therefore determined at each point in space by
the reciprocal value of the instantaneous phase velocity v(r⃗). How to imagine the solution of the
eikonal equation (9.23)? And how do we find the course of specific rays from the resulting phase
function φ0(r⃗)? We will perform the solution in several steps (which can also be schematically
followed in figure 9.3):

1. First, we need to choose an initial wavefront φ0(r⃗) = C = const. – i.e., we select points
in space (forming a surface) and assign them an arbitrary initial phase value C. The
simplest choices are, for example, a plane or a spherical surface. At each point of this
surface, we construct unit normal vectors n⃗ – these will represent the directions of the
greatest growth of the phase function φ0. The magnitude of this growth is prescribed by
the eikonal equation (9.23).

2. Now I want to get the ”next” wavefront defined by the condition φ0(r⃗) = C + dC – i.e.,
look at what the super-surface with the phase infinitesimally increased by the value dC
will look like. Since the magnitude of the gradient indicates the magnitude of growth of a
given function along the normal vector from the given isosurface, it is necessary to move
by a distance given by a simple equation |gradφ0| dl = dC, thus by a distance

dl =
dC

|gradφ0|
=

v

ω0
dC, (9.24)
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where in the second equality we substituted from the eikonal equation. In this way
(by infinitesimally increasing the constant C and gradually constructing wavefronts), I
”develop” the phase function φ0(r⃗). This process is schematically shown in two steps in
figure 9.3. This construction actually represents Huygens’s construction of wavefronts,
where every point of the ”current” wavefront becomes a source of secondary spherical
waves, whose common boundary forms a new wavefront.

φ0(r⃗) = C

n⃗

wavefronts

ray

φ0(r⃗) = C + dC

φ0(r⃗) = C + 2dC

n⃗ dl = n⃗ v
ω0

dC

Figure 9.3: Solving the eikonal equation. Bold on the left is the initial super-surface φ0(r⃗) = C.
Perpendicular to it are shown the black unit normal vectors. Further wavefronts with the phase value
infinitesimally increased by multiples of dC are obtained by moving in the direction of normal vectors
by a distance dl = dC

|gradφ0| =
v
ω0
dC. The rays are then given as curves everywhere perpendicular to the

found wavefronts.

3. Rays r⃗(t) we defined as curves satisfying the differential equation (9.6), dr⃗dt = v⃗. Now just
substitute for the speed:

v⃗ = v n⃗ = v
k⃗

k
=
v2

ω0
k⃗ =

v2

ω0
gradφ0, (9.25)

thus using the phase function φ0(r⃗) we find the rays as solutions to the differential equation

dr⃗

dt
=
v2

ω0
gradφ0. (9.26)

Let’s finally look at the above-described method of solving the eikonal equation on a specific
case, which is described in figure 9.4.
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wavefronts

ray

Figure 9.4: An example of a qualitative solution of the eikonal equation for an initial plane super-
surface and an environment in which the refractive index n increases from top to bottom. Such an
inhomogeneous environment causes the wavefronts (and thus the rays) to turn downwards. A simple
realization of such an environment is a container with water, where salt is dissolved at the bottom. The
highest concentration of salt is at the bottom and gradually decreases towards the surface. The gradient
of salt concentration causes a variable refractive index – the highest salt concentration corresponds to
the highest refractive index and vice versa.

9.3 *Fermat’s Principle

The eikonal equation allowed us to find the phase function φ0, from which we could then
determine the paths of rays as curves perpendicular to the wavefronts. Fermat’s principle, on
the other hand, postulates that the actual paths of rays are such that they extremize the so-
called optical path between given end points. Let’s now formulate this principle more precisely.
Consider two points in space P1 and P2 and we are interested in what the trajectory of the ray
passing between these points will look like.

P1

P2

?

?

Figure 9.5: What trajectory will the ray follow from point P1 to point P2?

Generally, a ray is a curve r⃗(σ) : R → R3, where the parameter σ lies in the interval ⟨σ1, σ2⟩
and for the end points of the curve it is true

r⃗(σ1) = P1, r⃗(σ2) = P2. (9.27)

The optical path of the ray is the length of the ray weighted by the refractive index through
which the ray passes. If we had a homogeneous medium with a constant refractive index and the
length of the ray l, then the optical path s is simply s = n · l. In the case of an inhomogeneous
medium, where the refractive index is a function of spatial variables, n(r⃗), it is necessary to
integrate

s =

∫ P2

P1

ndl. (9.28)

For each curve r⃗(σ), we can calculate its optical path s and get the so-called functional S[r⃗(σ)] =
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s, which is a mapping from the space of all curves connecting points P1 and P2 into real numbers:

S[r⃗(σ)] =

∫ P2

P1

ndl =

∫ σ2

σ1

n(r⃗(σ))

∣∣∣∣ dr⃗dσ
∣∣∣∣ dσ, (9.29)

where in the second equality we used the definition of the line integral1. Fermat’s principle then
states that the actual path of the ray is such that among all other rays it has a minimum value
of the optical path. In the language of variational calculus, the actual trajectory of the ray is
such that the variation of the optical path is zero:

δS = δ

∫ 2

1
ndl = 0. (9.30)

If we were to substitute the definition of the refractive index n = c
v into the functional of the

optical path, we would arrive at the fact that, equivalently, actual trajectories minimize the
time that the ray needs to travel between points P1 and P2:

S =

∫ 2

1
ndl = c

∫ 2

1

dl

v
= c

∫ 2

1
dt. (9.31)

Fermat’s principle (9.30) is nothing other than Hamilton’s principle2, known from La-
grangian mechanics. From the expanded form of the optical path functional (9.29), we can
deduce the form of the so-called optical Lagrangian:

L(r⃗, ˙⃗r) = n(r⃗) | ˙⃗r|, (9.32)

where under the symbol ˙⃗r we understand dr⃗
dσ . The actual path of the ray is then given by

Euler-Lagrange equations, d
dt(

∂L
∂ ˙⃗r

)− ∂L
∂r⃗ = 0, which for the optical Lagrangian take the form

d

dt

(
n

˙⃗r

| ˙⃗r|

)
= | ˙⃗r| gradn. (9.33)

The functional S (9.29) is so-called invariant with respect to reparametrization – the resulting
optical path is determined only by the trajectory of the ray and is not influenced by the specific
parametrization of the curve r⃗(σ)3. The resulting differential equation (9.33) for the path of

1The integral of a scalar function f : R3 → R along a curve l given as r⃗(σ) : R → R3 with end points r⃗(σ1) = P1

and r⃗(σ2) = P2 is defined as: ∫ 2

1

f dl :=

∫ σ2

σ1

f(r⃗(σ))

∣∣∣∣dr⃗(σ)dσ

∣∣∣∣ dσ,
where the integral on the right is now a standard one-dimensional Riemann integral.

2Hamilton’s principle states that a physical system evolves along such paths that extremize the action func-
tional

S =

∫ t2

t1

L(qj(t), q̇j(t), t) dt, δS = 0.

The function L is called the Lagrangian of the given system. In geometric optics, time t does not appear as an
independent variable but rather the curve parameter σ.

3This is an implicit property of the definition of the line integral, but it can also be shown explicitly. Consider
the original curve r⃗(σ) and its reparametrization R⃗(κ) = r⃗(σ(κ)) given by the function σ(κ) : R → R, where
R⃗(κ1,2) = P1,2 and σ1,2 = σ(κ1,2). Then it holds∫ σ2

σ1

n(r⃗(σ))

∣∣∣∣ dr⃗dσ
∣∣∣∣ dσ =

∣∣∣∣σ = σ(κ), dσ =
dσ(κ)

dκ
dκ

∣∣∣∣ = ∫ κ2

κ1

n(R⃗(κ))

∣∣∣∣ dr⃗dσ
∣∣∣∣ dσ(κ)dκ

dκ =

∫ κ2

κ1

n(R⃗(κ))

∣∣∣∣∣dR⃗dκ
∣∣∣∣∣ dκ.

176



the ray can then be simplified by choosing a suitable parametrization, for example, by choosing
so-called parametrization by path | ˙⃗r| = 1:

d

dt

(
n · ˙⃗r

)
= gradn. (9.34)

What is the relationship between the formulation of geometric optics through the eikonal
equation and through Fermat’s principle? These formulations provide identical predictions
regarding the trajectories of rays4. The eikonal equation also predicts the temporal course of
light along the trajectory of the ray. This information is technically not provided by Fermat’s
principle due to reparametrization invariance, however, the temporal dependence can be easily
calculated once the trajectory is known. This statement regarding the equivalence of two
formulations of geometric optics is not at all obvious at first glance and we will not delve
into it in detail5.

From Fermat’s principle, 5 rules of ray behavior in geometric optics easily follow:

1. In a homogeneous medium, light propagates in a straight line. This fact immediately
follows from equation (9.34) for n = const. the relation ˙⃗r = ⃗const. or from Fermat’s
principle the constant refractive index can be factored out,

∫ 2
1 ndl = n

∫ 2
1 dl and the

shortest connection between two points is a straight line.

2. The principle of the independence of ray paths applies – rays do not interact with each
other. Fermat’s principle obviously does not include the interaction of different rays.

3. The principle of reversibility of ray paths applies. The value of the functional S does not
depend on the direction of integration,

∫ 2
1 ndl =

∫ 1
2 ndl and thus rays are an extremum

of the functional in both direct and reverse directions.

4. The law of reflection applies. Consider the class of rays shown in figure 9.6. The total
length of the ray is l(x) =

√
h2 + x2 +

√
h2 + (l − x)2 (the optical path is simply s(x) =

n · l(x)). The requirement of extremization, dl(x)
dx = 0, leads to the condition x = l

2 and
thus also the equality of angles of incidence and reflection.

P1 P2

O xx l

Figure 9.6: Class of rays for deriving the law of reflection from Fermat’s principle. From the first rule
of ray behavior, the resulting ray must consist of two segments. The parameter x ∈ R determines the
position of reflection on the plane interface. The perpendicular distances of points P1 and P2 from the
interface are h.

5. The law of refraction applies. Now consider the class of rays shown in figure 9.7. Here we
must consider the optical path of the ray directly: s(x) = n1

√
h21 + x2+n2

√
h22 + (l − x)2.

4Of course, assuming the setting of corresponding initial, or boundary, conditions.
5Very roughly speaking, solving the eikonal equation is equivalent to Huygens’s construction of wavefronts

(and rays) and Huygens’s construction implicitly creates rays so that their paths extremize the propagation time.
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The extremization condition ds(x)
dx = 0 leads to the equation

n1
x√

h21 + x2
= n2

l − x√
h22 + (l − x)2

. (9.35)

The fractions are direct expressions of the sines of the angle of incidence and refraction,
n1 sin θ1 = n2 sin θ2.

P1

P2

O xx l

Figure 9.7: Class of rays for deriving the law of refraction from Fermat’s principle. From the first rule
of ray behavior, the resulting ray must consist of two segments. The parameter x ∈ R determines the
position of the ray’s transition from one medium to another on the plane interface. The perpendicular
distances of points P1 and P2 from the interface are h1 and h2.
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Chapter 10

Limits of Classical Physics

In previous chapters, we have thoroughly addressed wave phenomena and the theory of elec-
tromagnetic waves, and we have thus managed to explain a number of physical phenomena.
Now, we will look at several cases where the wave character of light cannot explain the results
of experimental observations. To resolve these discrepancies, it will be necessary to postulate
the so-called quantum hypothesis – that the energy of certain systems under certain conditions
cannot assume a continuum of values, but only discretely separated levels. In a figurative sense,
this leads us back to the particle character of light, where light is composed of a stream of
particles, called photons. However, the purely particle character of light cannot explain the
interference phenomena we dealt with in previous chapters. This contradiction is resolved by
adopting the so-called wave-particle duality, where a physical field or particle can simultane-
ously have the characteristics of both waves and particles. The resulting theory born from these
contradictions is called quantum mechanics.

10.1 Photoelectric Effect

The photoelectric effect is a process in which light falling on a certain material releases electrons
from its surface. Let’s first describe how this effect is explained by classical (wave) physics.

The classical idea of this effect, schematically shown in Figure 10.1, considers the incoming
electromagnetic wave oscillating a bound electron on the principle of a driven harmonic oscil-
lator. If the kinetic energy of the oscillating electron exceeds the binding energy, the electron
is released. Thus, the character of the effect should be determined by the properties of the
resonance curve: at low energy of the incoming wave (low amplitude), the electrons do not
oscillate sufficiently and will not be released, and further, the value of the threshold amplitude
of the incoming wave at which electrons begin to be released should depend on the frequency
of the incoming radiation – the closer to resonance, the smaller the amplitude of the incoming
wave needed. This prediction is completely wrong.

Experiments show that electrons are released only if the frequency of the incoming radiation
is higher than a certain threshold frequency νmin (determined by the properties of the material on
which light falls), and the release of electrons occurs at any intensity of the incoming radiation
and the number of released electrons depends linearly on this intensity. These experimental
facts can be fully explained by the particle character of light – considering that light consists of
a stream of particles, called photons, whose energy linearly depends on the frequency of light1

ν as Ef = hν. If the binding energy of an electron in an atom is W , then electrons are released
only if Ef ≥ W – that is, the photon of the incoming radiation has sufficient energy to release

1The linear dependence is explained in the results of the experiment at the end of this section.

179



the bound electron by its absorption. The threshold frequency is thus given by the relationship
Ef = W , hνmin = W . The ”excess” energy of the photon is converted into kinetic energy Ek
of the released electron. By these considerations, we have arrived at the basic equation of the
photoelectric effect (for ν ≥ νmin):

hν =W + Ek, (10.1)

where Ek =
1
2mev

2, v is the speed of the released electron.

atom

bounded electron

e−
A

incident EM wave

Figure 10.1: Classical idea of the photoelectric effect. The incoming electromagnetic wave oscillates an
electron bound in an atom on the principle of a driven harmonic oscillator.

Finally, consider the experimental setup, which is described in Figure 10.2.

E⃗

A

V +

light

Figure 10.2: Experimental setup for measuring the photoelectric effect. Light falling on the electrode of
a phototube releases electrons, which must overcome the potential difference U between the electrodes
caused by the connected voltage. We measure the current I, which flows through the circuit due to the
release of electrons and their transport between the electrodes.

In this experiment, for different frequencies ν of the incoming radiation, we measure the
voltage U , at which the current flowing through the circuit just becomes null. The released
electrons have energy Ek = hν −W and these are able to overcome the potential difference U
between the electrodes only if Ek > Ue. The voltage U0, at which the current just becomes null,
is clearly given by the condition U0e = Ek, i.e., combining with the equation of the photoelectric
effect (10.1) we get a prediction for the stopping voltage:

U0(ν) =
h

e
ν − W

e
. (10.2)

For frequencies ν < νmin, no frequencies are released, so we can set U(ν < νmin) = 0. The
illustration of this simple relationship for voltage U0(ν) is in Figure 10.3.
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ν

U0

νmin

−W
e

slope h
e

Figure 10.3: Graph of the stopping voltage U0, at which the current flowing through the circuit in Figure
10.2 just disappears.

Experiments indeed confirm this shape of the dependency U0(ν) and from it, we can draw the
following three conclusions. For ν > νmin, the graph is linear, thus confirming the assumption
of a linear dependence of the photon’s energy on its frequency ν. From the slope of the line,
we can determine the value of Planck’s constant h from the knowledge of the electron’s charge!
And finally, from the value of νmin, we can easily calculate the material constant of the work
function, W = hνmin.

10.2 Energy, Momentum, and Mass of a Photon

Let’s ask what the momentum of a photon is if we accept the quantum hypothesis that the
energy of a photon is given as

Ef = hν. (10.3)

If a traveling electromagnetic wave is to be composed of photons, the energy and momentum
of this electromagnetic wave must be composed of the energy and momentum of individual
photons. In chapter 6.3, we derived the relationship between momentum density g⃗ and energy
density w in a plane traveling EM wave (6.64):

g⃗ =
w

c
n⃗, g =

w

c
, (10.4)

where n⃗ is the direction of travel of the EM wave. This relationship leads2 to the conclusion
that the energy and momentum of a photon, Ef and p⃗f, must be in the same relationship:

p⃗f =
Ef

c
n⃗ =

hν

c
n⃗, pf =

Ef

c
=
hν

c
. (10.5)

What will be the mass
of the photon mf? The relativistic relationship between energy and momentum3 is(

mc2
)2

= E2 − p2c2. (10.6)

2It can also be done slightly more rigorously (but at the same time slightly superfluously). Consider that in the
EM wave, the number density of photons is n, i.e., in a small volume dV there are in total dN = ndV photons.
The total energy dE and momentum dp of these photons is dE = Ef dN = hνndV , dp = pf dN = pfndV . At
the same time, from the definitions of energy and momentum density of the EM field, it follows dE = wdV ,
dp = gdV . By comparing these relationships, we obtain w = hνn and g = pn. Since g = w

c
, we get (after

canceling the number densities n) p = hν
c
.

3The four-momentum of a particle has the form pµ = (E
c
, p⃗). The so-called relativistic invariant, i.e., a

quantity that remains the same in all reference frames, is the quantity

pµpµ = −p20 + p21 + p22 + p23.
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If we substitute the values of energy Ef (10.3) and momentum pf (10.5) of a photon,

(mfc
2)2 = E2 − p2c2 = (hν)2 −

(
hν
c

)2
c2 = 0, (10.7)

we see4, that the photon is a massless particle:

mf = 0. (10.8)

For completeness, let’s finally explicitly state the form of the four-momentum of a photon
pµ:

pµ =
(
E
c , p⃗

)
=
(
hν
c ,

hν
c n⃗
)
=
hν

c
(1, n⃗). (10.9)

10.3 Compton Scattering

Consider an experiment in which we allow electromagnetic radiation of frequency ν to fall on
a given material and we examine the frequency ν ′ with which the wave scatters depending on
the angle of deviation θ from the original direction – the so-called scattering angle θ, see Figure
10.4.

ν

θ

ν′(θ)

matter

incident EM wave

scattered EM wave

Figure 10.4: Scattering of the incident electromagnetic wave of frequency ν on the substance. We are
interested in the frequency of the scattered wave ν′ depending on the scattering angle θ.

The classical explanation, considering the wave nature of electromagnetic radiation, goes as
follows: The incident electromagnetic wave oscillates the electrons present in the material, and
these, as accelerated charges, emit electromagnetic radiation into their surroundings, forming a
scattered electromagnetic wave, schematically see Figure 10.5. This classical process is called

For the four-momentum of a particle expressed in any two reference frames pµ and p′µ, the equality pµpµ = p′µp′µ
holds. If we choose the rest frame of the chosen particle as the system (S′), then E′ = m0c

2 and p⃗′ = 0, thus
p′µ = (m0c, 0⃗). By substituting into the equality of invariants:

−E
2

c2
+ |⃗p|2 = −(mc)2 + 0⃗

2
.

After a simple rearrangement, we obtain the final form of the relativistic relationship between energy and mo-
mentum:

(mc2)2 = E2 − |⃗p|2c2.

4Strictly speaking, our deduction is erroneous, as the relativistic relationship between energy and momentum
was derived by transitioning to the rest frame of the particle, which is not possible with a photon – it is not
possible to transition to a frame moving relative to another at the speed of light c. Also, we took the expression
for rest energy as E0 = mc2, which is a quantity that does not make sense for a photon – in every reference
frame, a photon moves at speed c, so it cannot be observed at rest. However, the only consistent value for the
mass of the photon in the relationship (10.6) with the expressions for energy and momentum of the photon is
zero.
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Thomson scattering. Therefore, the prediction of the properties of the scattered EM wave is
based on a combination of the excited harmonic oscillator formed by the bound electrons in
the material oscillated by the incident EM wave and the EM wave emitted by this accelerated
electron. This prediction says that the frequency of the scattered radiation does not depend on
the scattering angle θ at all – the accelerated charge emits an EM wave of the same frequency
in all directions, and this accelerated charge oscillates with the same frequency as the incident
wave. That means, Thomson scattering simply predicts ν ′ = ν without dependence on the
angle θ.

incident EM wave

e−
radiated EM wave

oscillating
electron

Figure 10.5: Classical explanation of scattering – Thomson scattering.

A. H. Compton conducted the aforementioned experiment in 1923, where he allowed X-rays
to scatter. The result of the experiment contradicted the classical explanation of Thomson
scattering! The frequency of the scattered radiation depended on the scattering angle θ! For
high-frequency radiation, the particle nature of light begins to manifest in this experiment. Let
us now look at the course of the experiment, assuming that the incident EM wave is composed
of a stream of photons. For X-ray radiation, the energy of photons is many orders of magnitude
greater than the binding energy of electrons (photon energy Ef = hν ≈ 10 − 100 keV, electron
work function W ≈ 1 eV), so we can effectively consider the electrons in the material as free.
Figure 10.6 shows the geometry of the particle explanation of Compton scattering.

θ

φ
photon

scattered photon

scattered electron

e−

e−

Figure 10.6: Geometry of Compton scattering. The scattered photon deviates from its original direction
by an angle θ, the scattered electron begins to move in the direction making an angle φ with the original
direction of the photon.

The main task, as already mentioned in the introduction, will be to predict the function of
the frequency of the scattered radiation (photons) depending on the scattering angle θ, ν ′(θ).
We will use the conservation laws of energy and momentum:

Ef + Ee = E′f + E′e, p⃗f = p⃗′f + p⃗′e, (10.10)

where unprimed, resp. primed, quantities denote values before, resp. after, the collision; indices
f, resp. e, denote quantities for the photon, resp. electron. Consider the electron initially at
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rest, thus p⃗e = 0. From the law of conservation of momentum, it immediately follows that the
problem is planar5, i.e., the scattering angles θ and φ fully describe the directions in which the
scattered photon and electron will move.

Let’s now modify the law of conservation of momentum and energy into forms where mo-
mentum and energy of the scattered electron appear on the right sides:

p⃗f − p⃗′f = p⃗′e,

p2f + p′2f − 2 p⃗f · p⃗′f︸ ︷︷ ︸
pfp

′
f cos θ

= p′2e , (10.11)

Ef − E′f + Ee = E′e. (10.12)

The momentum and energy of the scattered electron in the material into which the radiation
falls cannot be simply measured, so it is appropriate to eliminate them from the relationships
by substitution into the relativistic relationship between energy and momentum:

E′e − p′2e c
2 = E2

e , (10.13)

where the rest energy of the electron Ee = mec
2 (me denotes its rest mass) appears on the right

side. Thus, by substituting (10.11) and (10.12) into (10.13), we get:(
Ef − E′f +mec

2
)2 − (p2f + p′2f − 2pf p

′
f cos θ) c

2 = m2
ec

4. (10.14)

After substituting the relationship between the energy and momentum of the photon pf =
Ef
c ,

p′f =
E′

f
c , and rearranging:

2EfE
′
f(cos θ − 1) + 2(Ef − E′f)mec

2 = 0. (10.15)

Finally, we express the photon energies using the frequencies of the incident and scattered waves
ν and ν ′, Ef = hν and E′f = hν ′ and after a minor rearrangement we arrive at an equation of
the form:

νν ′(cos θ − 1) + (ν − ν ′)
mec

2

h
= 0. (10.16)

From this, we can easily express the dependency of the frequency of the scattered wave ν ′ on
the scattering angle θ describing Compton scattering:

ν ′(θ) =
ν

1 + hν
mec2

(1− cos θ)
. (10.17)

We see that for incident radiation, whose photons have much less energy than the rest energy of
the electron, hν ≪ mec

2, Compton’s formula transitions to the prediction of classical Thomson
scattering ν ′ = ν. Only for high frequencies of the incident radiation does the particle nature
of light begin to manifest, and the classical explanation ceases to work.

From the conservation laws of energy and momentum, it is not possible to uniquely de-
termine the angle at which the photon scatters. Initially, we had four equations (1x energy
conservation and 3x momentum conservation). The planarity of the problem limited the num-
ber of momentum equations to two. Thus, we have three equations for four unknowns φ, θ,
ν ′, and E′e. From the equations, we can find functions such as ν ′(θ), E′e(θ), and φ(θ), i.e., the
dependencies of the remaining variables on the photon scattering angle θ (we focused only on
the first of these in the text).

5Vector p⃗f is a linear combination of p⃗′f and p⃗′e, thus it lies in the plane formed by these vectors.
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In reality, there is no further equation that would uniquely determine the scattering angle θ
– scattering has a probabilistic nature – a photon scatters with different probabilities at different
angles θ – these probabilities are predicted by quantum electrodynamics (QED, a quantum field
theory describing electromagnetism).

In conclusion, we can express the relationship (10.17) in terms of wavelength variables,
λ = c

ν , λ
′ = c

ν′ , and obtain the relation λ′(θ):

λ′(θ) = λ+
h

mec
(1− cos θ) = λ+ λC(1− cos θ). (10.18)

The quantity λC = h
mec

is called the Compton wavelength. Photons with the Compton wave-

length have energy equal to the rest energy of the electron, EC = hνC = hc
λC

= mec
2. The

strength of the Compton effect depending on the frequency of the incident radiation can be
determined, for example, by the relative change in wavelength upon scattering:

∆λ

λ
=
λ′ − λ

λ
=
λC
λ

(1− cos θ). (10.19)

10.4 Stability of atoms

In Rutherford’s planetary model of the atom, electrons orbit around a very small and massive
nucleus in circular paths like planets around the Sun. Let us show that this idea, without
additional assumptions, is completely incompatible with the fact that accelerated charges con-
stantly emit electromagnetic radiation and thus lose energy. Since the electrons move in curved
(circular) paths, they are constantly subjected to centripetal acceleration, which then leads to
the emission of electromagnetic radiation, the energy of which must be taken at the expense
of the mechanical energy of the electron’s orbital motion. Therefore, the electron inevitably
spirals into the nucleus of the atom. By quantifying the above considerations, we calculate the
time it takes for an electron to fall into the nucleus – the so-called lifetime of a classical atom.
If this time were sufficiently long, i.e., the fall of the electron is sufficiently slow, the idea of the
Rutherford atom would be sustainable in this respect. Unfortunately, we will see that this is
not the case.

As a simple example, take an atom with atomic number Z (i.e., the number of protons Z in
the nucleus), but only one electron in the atomic shell6. Consider Newton’s equation of motion
in the radial direction for this electron; it includes the Coulomb attractive force between the
nucleus and the electron:

1

4πε0

Ze2

r2
= mear, (10.20)

where ar denotes the radial component of acceleration (with the positive direction pointing
towards the nucleus). Writing the radial acceleration in polar coordinates (r, φ) and considering
that the electron spirals into the nucleus very slowly7, we get

ar = −r̈ + rφ̇2 ≈
v2φ
r

≈ v2

r
, (10.21)

where we considered r̈ ≈ 0, the tangential component of velocity vφ = rφ̇, and also v ≈
vφ. Moreover, again considering slow falling, we can take the total acceleration a ≈ ar. By

6That is, the atom is always ionized so that only one electron remains in it.
7That is, it falls into the nucleus much more slowly than it orbits the nucleus.
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substituting these considerations into the motion equation (10.20), we can express the velocity
and acceleration of motion as a function of the distance from the nucleus r:

a2 =

(
Ze2

4πε0r2me

)2

=
r20c

4

r4
Z2, v2 = ra =

Ze2

4πε0rme
=
r0
r
c2Z, (10.22)

where, for simplification, we introduced a helper constant r0 = 1
4πε0

e2

mec2
called the classical

electron radius.
Now let’s focus on the electron’s energy balance equation, dE

dt = P , where E is the total
mechanical energy of the electron and P is the power of the emitted electromagnetic radiation
due to the accelerated motion of the electron. From this balance equation, we will eventually
derive the time dependence of the electron’s orbit radius r(t). The emitted power is given by
Larmor’s formula

P = −µ0q
2

6πc
a2 = − q2

6πε0c3
a2 = −2

3

r30
r4
mec

3 (10.23)

(the minus sign here is given conventionally because the emitted power occurs at the expense
of mechanical energy). The total mechanical energy of the electron is given by the sum of its
kinetic and potential energy:

E = T + U =
1

2
mev

2 − 1

4πε0

Ze2

r
= − 1

4πε0

Ze2

2r
= −1

2
mec

2Z
r0
r
, (10.24)

where we used the expression for the electrostatic energy of two charges 1
4πε0

q1q2
r12

and substituted
the expression for velocity from (10.22). The energy balance equation, after combining (10.23)
and (10.24), becomes:

dE

dt
=

1

2
mec

2Z
r0
r2
ṙ = P = −2

3

r30
r4
mec

3. (10.25)

After canceling common factors on both sides, we get a simple differential equation for the orbit
radius of the electron r(t):

r2ṙ = − 4

3Z
r20c. (10.26)

This can be easily solved by the transformation r2ṙ = 1
3
dr3

dt and integrating:

dr3

dt
= − 4

Z
r20c −→ r3(t) = a30 −

4

Z
r20ct, (10.27)

where we used the initial condition r3(0) = a30, a0 thus denotes the initial orbit radius of the
electron (initial “size” of the atom). The time it takes for the electron to fall into the nucleus
of the atom tfall is given by the condition r(tfall) = 0, by solving it we obtain the final classical
prediction:

tfall =
Za30
4r20c

. (10.28)

The classical electron radius is numerically r0 = 2.8× 10−15m, for the so-called Bohr radius of
the hydrogen atom a0 = 5.3× 10−11m (and thus also Z = 1) the result is tfall = 1.6× 10−11 s.
In classical physics, therefore, atoms would disappear in the order of tens of picoseconds! If we
were to discuss the approximation a ≈ ar more closely or

consider relativistic corrections8, the problem becomes even worse (tfall comes out even
smaller)! This situation is resolved by Bohr’s model of the atom, where it is postulated that
electrons can orbit only along paths with certain discretely distributed radii. Electrons for
jumps between these paths must absorb or emit a finite quantum of energy, and this effectively
prevents the emission of electromagnetic radiation and a continuous decrease in the orbit radius.

8In our Newtonian model, the electron in the hydrogen atom reaches the speed of light for r = r0, see (10.22).
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10.4.1 Bohr’s model of the atom

In Bohr’s model, the principle of quantization of the angular momentum of individual electron
orbits is postulated – electrons can orbit only along such paths whose angular momentum has
the following size

L = nℏ, n ∈ N, (10.29)

where ℏ = h
2π is called the reduced Planck constant. Based on this postulate, let’s derive the

permissible radii of electron orbits (and also their energies). For a circular orbit of radius r and
orbital velocity v, the angular momentum is L = m|r⃗ × v⃗| = mvr. For an atom with atomic
number Z, we have already derived the orbital velocity v in (10.22) on the right, by substituting
this velocity into the quantization condition (10.29), mevr = nℏ, we get

me

√
Ze2

4πε0rme
r = nℏ, (10.30)

from this equation we can easily express the permissible radii of electron orbits rn:

rn =
4πε0n

2ℏ2

Ze2me
, n ∈ N. (10.31)

The energies En of these individual orbits, after substituting for r into (10.24):

En = − 1

(4πε0)2
Z2e4me

2ℏ2n2
= −RE

Z2

n2
, n ∈ N, (10.32)

where we introduced the quantity RE = 1
(4πε0)2

mee4

2ℏ2 = 13.6 eV called the Rydberg energy.

Electrons can then jump between these energy levels upon absorption/emission of photons with
energy

hνmn = ∆Emn = |Em − En| = REZ
2

∣∣∣∣ 1

m2
− 1

n2

∣∣∣∣ , m, n ∈ N, (10.33)

where m, n are the indices of the initial and final levels. For Z = 1, this formula is called
the Rydberg formula and accurately predicts the emission/absorption spectrum shape of the
hydrogen atom. For higher atomic numbers Z > 1, this formula remains valid for ionized atoms,
in whose atomic shell only one electron remains, i.e., for atoms X(Z−1)+ – for example, He+,
Li2+, etc. For atoms, in whose shell more than one electron remains, the interaction between
individual electrons in the atomic shell causes various shifts (and splitting) of individual spectral
lines, so then their emission/absorption spectra are much more complex than given by the simple
Rydberg formula.

10.4.2 Schrödinger’s quantum model of the atom

In quantum mechanics, it is possible to predict the energy values of individual levels En (10.32)
by solving the problem of the ”motion” of a charged quantum particle in a Coulomb central
field, where quantized levels directly emerge as a consequence of the calculation and not as an

ad hoc added assumption. This calculation is the basis of the so-called Schrödinger quantum
model of the atom, where individual ”orbits” (better said states) of electrons are described by
quantum numbers (n, l,m, s):

� Principal quantum number n ∈ N describes the energy of the given electron state En in
accordance with formula (10.32).
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� Orbital quantum number l ∈ {0, 1, . . . , n − 1} indicates the square of the total angular
momentum of the electron L2 = ℏ2l(l + 1).

� Magnetic quantum number m ∈ {−l,−l+ 1, . . . , l− 1, l} determines one component from
the angular momentum of the electron L⃗, Lz = mℏ (typically the third component is
taken by convention).

� Spin quantum number s ∈ {−1
2 ,+

1
2} represents an ”additional” intrinsic angular momen-

tum (called spin) of the electron. The square of its magnitude is S = ℏ2s(s+ 1) and one
of its components Sz = ℏs.

10.5 Black Body Radiation

A black body (sometimes also referred to as a perfectly black body) is a physical idealization
where all radiation incident on the surface of this body is absorbed. At the same time, this
body emits thermal radiation – the so-called black body radiation. The figure 10.7 on the right
shows an approximate physical realization of a perfectly black body – a dark cavity specially
formed so that the radiation that gets into the cavity is absorbed as much as possible by multiple
reflections. The entrance aperture of this cavity then behaves as the surface of a perfectly black
body. The surface of the black body then emits thermal radiation, the form of which depends
only on the temperature T of this body.

black body

incident radiation is absorbed

thermal radiation

black body realization

Figure 10.7: A black body absorbs all incident radiation, in contrast, it emits black body thermal
radiation. The cavity in the right picture represents the physical realization of a black body, multiple
reflections cause almost perfect absorption of incident radiation and the cavity opening then behaves as
the surface of a perfectly black body.

Furthermore, every real body is described by a parameter called emissivity ε, which indicates
the ratio between the actual emitted radiation power and the radiation emitted by a perfectly
black body. Another parameter that can be introduced is called absorptivity α, which, on the
contrary, indicates the ratio between the actual absorbed power and the total power of radiation
incident on the body. Kirchhoff’s law of thermal radiation states that the absorptivity α is
always equal to the emissivity ε, α = ε. From this, it follows that the emissivity is always less
than or equal to one, ε ≤ 1, since it is not possible for a body to absorb more energy than is
incident on it, ε = α ≤ 1.

In reality, the emissivity can depend on the frequency of the emitted radiation, ε(ν), thus
each frequency can be emitted in a different ratio to the radiation of a black body. The function
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of emissivity ε(ν) is a characteristic of the body and does not depend on the temperature
T . If we know the intensity of black body radiation I(T ), then a body with emissivity ε will
emit power εI(T ); alternatively, for frequency-dependent emissivity ε(ν) we need to know the
emission intensities of the black body at individual frequencies, the so-called spectral density
i(ν, T ), then the real body will emit intensity of density ε(ν)i(ν, T ).

Let’s now look more closely at the meaning of the term spectral density. The total intensity
of radiation indicates the power of radiation emitted from a unit area of the body, [I] = W.m−2.
The spectral density i(ν) of this intensity then indicates the power dI emitted in the frequency
range ⟨ν, ν + dν⟩ as:

dI = i(ν) dν. (10.34)

Clearly, the unit of spectral density is the unit of radiation intensity per Hertz: [i(ν)] =
W.m−2.Hz−1. If we want to return from the spectral density back to the total emitted power,
we must integrate over all frequencies:

I =

∫ +∞

0
dI(ν) =

∫ +∞

0
i(ν) dν. (10.35)

The figure 10.8 schematically shows the relationship between the spectral density i(ν) and the
emitted power dI.

ν [Hz]

i(ν) [W.m−2.Hz−1]

ν ν+dν

dI(ν) = i(ν) dν

Figure 10.8: The spectral density i(ν) and the emitted power dI in the range of frequencies ⟨ν, ν + dν⟩
– this is given by the area of the graph between the values of frequency ν and ν + dν. Similarly, the
emitted power in the range of frequencies ⟨ν1, ν2⟩ is given by the area between these frequencies, i.e.,
I⟨ν1,ν2⟩ =

∫ ν2
ν1
i(ν) dν.

10.5.1 Planck’s Law of Radiation

Planck’s law of radiation specifies the spectral density9 of black body radiation. Its form is as
follows:

i(ν, T ) =
2πhν3

c2
1

e
hν
kT − 1

, [i] = W.m−2,Hz−1. (10.36)

9Planck’s law of radiation is often stated using a quantity called spectral radiance ir. While spectral density
i indicates the total emitted power in all directions (thus into the entire hemisphere above the surface of the
body), spectral radiance normalizes this power to a unit of solid angle, i.e., the unit of spectral radiance is
[ir] = [i].sr−1. For isotropically emitting bodies (which a perfectly black body is), a simple relationship i = π ir
applies. Therefore, some formulas presented here may differ by a factor of π from formulas in other literature.
The emitted power dP from an area of size dS, into the frequency interval width dν, into a small solid angle of
size dΩ is given as dP = i dν dS dΩcos θ, where the angle θ is the angle of deviation of the direction of emission
from the normal vector to the area dS. If the radiation is emitted at an angle θ, then the effective area from
which the radiation comes is reduced to size dA = dS cos θ.
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where h is Planck’s constant, c is the speed of light, and k is Boltzmann’s constant. The
graphical representation of this function as a function of variable ν is in the figure 10.9.

ν [Hz]

i(ν) [W.m−2.Hz−1]

Figure 10.9: Planck’s law of radiation. The graph shows the spectral density i(ν, T ) for a constant
temperature T .

The derivation of this law requires knowledge of statistical physics10 and will not be presented
here. Perhaps just mention that the formula (10.36) is composed of two fundamental parts:

i = n⟨E⟩. The first part n = 2πν2

c2
is the density of the number of modes of the electromagnetic

field in the frequency range ⟨ν, ν+dν⟩, which follows from classical electromagnetic theory, when
considering EM radiation confined in a cavity. The second part ⟨E⟩ = hν

exp( hν
kT

)−1 is the average

energy of one electromagnetic mode in the cavity, as predicted by statistical physics. Planck’s
key contribution to the result ⟨E⟩ was the consideration that the energy levels of a given mode
of the electromagnetic field must be quantized in the form En = nhν, n ∈ N0. The classical
notion, where the energy of the electromagnetic field is continuous, led to an incorrect prediction
of the spectral density of thermal radiation in the form of the so-called Rayleigh-Jeans law (see
also the section 10.5.3 on the limits of Planck’s law).

10.5.2 Spectral Density in Other Variables

In Planck’s law of radiation, we have frequency ν as the variable in which we express spectral
density (and thus how we divide the total intensity), and we could more precisely call the
function i(ν) frequency spectral density. However, we could also divide the intensity so that we
are interested in how much energy is emitted in the range of wavelengths ⟨λ, λ+ dλ⟩:

dI = i(λ) dλ (10.37)

to obtain ”wavelength” spectral density i(λ). As a result of this definition, the unit is clearly
[i(λ)] = W.m−2.m−1 = W.m−3. Naturally, the question arises, what is the relationship between

~n

dΩ

θ

dS

dP = i dS dΩ cos θ

(a) Emission into a small solid angle dΩ.

dS

dA=dS cos θ

dΩ

θ

(b) Graphical explanation of the cos θ factor.

10Which you will gain in 02TSFA.
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these densities (i(ν) and i(λ))? We do not switch between these functions by a mere substitution!
It is due to the very definition of spectral density – we require that the power emitted into the
corresponding intervals of frequencies ⟨ν, ν + dν⟩ and wavelengths ⟨λ, λ+ dλ⟩ be the same11:

dI = i(ν) dν = i(λ) dλ. (10.38)

What is meant by corresponding? Naturally, we require ν = c
λ , but the infinitesimal increments

of these variables must also correspond, thus if we differentiate:

dν = − c

λ2
dλ. (10.39)

The minus sign is naturally given by the fact that as the frequency of radiation increases,
its wavelength decreases. However, we are more interested in the relationship between the
magnitudes of these changes, hence in the following we will take their absolute values,

|dν| = c

λ2
|dλ|, (10.40)

and further in the text, we will not explicitly write them out.

ν [Hz]

i(ν) [W.m−2.Hz−1]

ν ν+dν

dI(ν) = i(ν) dν

(a) Frequency spectral density i(ν).

λ [m]

i(λ) [W.m−3]

λ λ+dλ

dI(λ) = i(λ) dλ

(b) ”Wavelength” spectral density i(λ).

Figure 10.10: Schematic representation of the relationship between frequency spectral density and ”wave-
length” spectral density. It is not about the identity of function values, but about the equivalence of the
area dI in corresponding intervals ⟨ν, ν + dν⟩ and ⟨λ, λ+ dλ⟩, i.e., it must hold dI = i(ν) dν = i(λ) dλ.

Now we can take Planck’s law of radiation (10.36) as an example of a specific frequency
spectral density i(ν) and convert it into a wavelength function i(λ):

dI = i(ν, T ) dν =
2πhν3

c2
1

e
hν
kT − 1

dν =
2πh

c2
c3

λ3
1

e
hc
λkT − 1

c

λ2
dλ = i(λ, T ) dλ. (10.41)

From the last equality, we deduce the spectral density of Planck’s law of radiation for wave-
lengths i(λ, T ):

i(λ, T ) =
2πhc2

λ5
1

e
hc
λkT − 1

. (10.42)

Similarly, functions of spectral densities could be converted into other variables such as angular
frequency ω, wave number k, etc.

11And similarly for finite ranges of frequencies and wavelengths:∫ ν2

ν1

i(ν) dν =

∫ λ2

λ1

i(λ) dλ.
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10.5.3 Limits of Planck’s Law

Historically, inaccurate predictions of the spectral density of black body radiation were known,
which turned out to be mere approximations of Planck’s law in the limit of low and high
frequencies. Let’s now look at these approximations.

Low frequencies: Rayleigh-Jeans Law

For low frequencies (high wavelengths), we can expand the exponential in the denominator of
Planck’s law (10.36) to the first order of Taylor’s expansion,

e
hν
kT ≈ 1 +

hν

kT
, (10.43)

and after substitution, we obtain the Rayleigh-Jeans Law :

i(ν, T ) ≈ 2πkTν2

c2
,

(
i(λ, T ) ≈ 2πkTc

λ4

)
12 (10.44)

As already indicated in the chapter on the exact Planck law, the Rayleigh-Jeans law histori-
cally emerged as a classical prediction of the spectral density of black body radiation, assuming
a continuum of energy13 of electromagnetic modes in a black body cavity. This law predicts
that the power dI emitted in the frequency range ⟨ν, ν + dν⟩ increases quadratically with the
frequency ν. If we look at how much energy per unit of time a black body emits altogether at
all frequencies, we get

I(T ) =

∫ +∞

0
i(ν, T ) dν = +∞, ∀T ̸= 0. (10.45)

This result is called the ultraviolet catastrophe. The prediction of classical theory leads to an
absurd result: a body, which is not at absolute zero temperature, necessarily emits an infinite
amount of energy! Let us repeat that the derivation was corrected by Planck, who ad hoc added
the so-called quantum hypothesis, assuming that the energies of electromagnetic wave modes in
a black body cavity are quantized.

A comparison of the exact Planck’s law and the approximate Rayleigh-Jeans formula can
be seen in Figure 10.11.

12If we did the same for the spectral density for wavelengths, then in the limit of large wavelengths we obtain
this expression in brackets.

13For a continuous distribution of EM mode energies, statistical physics predicts the average energy of one
mode in the form ⟨E⟩ = kT (k is again the Boltzmann constant). Which after substitution into i = n⟨E⟩ leads
to the Rayleigh-Jeans law.
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ν [Hz]

i(ν) [W.m−2.Hz−1]

Wien

Rayleigh-Jeans

(a) Spectral density i(ν).

λ [m]

i(λ) [W.m−3]

Rayleigh-Jeans

Wien

(b) Spectral density i(λ).

Figure 10.11: Approximations of Planck’s law of spectral density of black body radiation i(ν, T ), resp.
i(λ, T ): Rayleigh-Jeans Law for low frequencies (high wavelengths) and Wien’s Law for high frequencies
(low wavelengths).

High frequencies: Wien’s Law

For high frequencies (low wavelengths) e
hν
kT ≫ 1 and therefore we can neglect the one in the

denominator in Planck’s law (10.36):

e
hν
kT ≫ 1 e

hν
kT − 1 ≈ e

hν
kT (10.46)

The resulting approximation is called Wien’s Law :

i(ν, T ) ≈ 2πhν3

c2
e−

hν
kT ,

(
i(λ, T ) ≈ 2πhc2

λ5
e−

hc
λkT

)
. (10.47)

Wien’s Law was derived by Wilhelm Wien in 1896 by combining the Maxwell-Boltzmann dis-
tribution of molecular velocities and the empirically known Stefan-Boltzmann law.

A comparison of the exact Planck’s law and the approximate Wien formula can be seen in
Figure 10.11.

10.5.4 Wien’s Displacement Law

How will the value of the wavelength λmax with the highest spectral density evolve with the
temperature T of the black body? I.e., at what wavelength does the black body emit the most?
Let’s find the maximum of the spectral density i(λ, T ) (10.42):

∂ i(λ, T )

∂λ
= 2πhc2

[
−5λ−6

1

ex − 1
+ λ−5

x
λe

x

(ex − 1)2

]
=

2πhc2λ−6

(ex − 1)2
[exx− 5(ex − 1)]

!
= 0, (10.48)

where we denoted x = hc
λkT ∈ R+. The condition of zero derivative obviously leads to the

equation
xex

ex − 1
= 5. (10.49)

This equation cannot be solved using elementary functions14, but the numerical solution is in
the form

xmax =̇ 4, 965114. (10.50)

14However, it can be solved using special functions! The Lambert W function (otherwise also known as
the product logarithm) is defined as the inverse function to the function f(x) = xex, W (x) := f−1(x), i.e.,
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By substituting this value back into the notation x = hc
λkT , we obtain the sought relation for

the wavelength λmax with the highest spectral density:

xmax =
hc

λmaxkT
⇒ λmaxT =

hc

xmaxk
= b, (10.51)

where we denoted a new constant as b = hc
xmaxk

. This relation is called bfWien’s Displacement
Law:

λmaxT = b = const. =̇ 2, 89777.10−3K.m. (10.52)

In Figure 10.12 on the left, the progression of maxima of spectral densities i(λ, T ) for various
temperatures T is illustrated.

λ [m]

i(λ) [W.m−3]

(a) Spectral densities i(λ, T ) and their maxima.

ν [Hz]

i(ν) [W.m−2.Hz−1]

(b) Spectral densities i(ν, T ) and their maxima.

Figure 10.12: Spectral intensity of black body radiation for various temperatures T . The curve connecting
the maxima of individual curves as a function of temperature is highlighted.

Note: The same question as at the beginning of this chapter can also be asked for the
frequency νmax with the highest spectral density. We proceed in exactly the same way only
with the density i(ν, T ) (10.36). If I denote y = hν

kT , then the requirement of zero derivative,

∂ i(ν, T )

∂ν

!
= 0, (10.53)

leads to the following equation and its solution ymax:

eyy − 3(ey − 1) = 0, 3 =
yey

ey − 1
, ymax = 2, 82144. (10.54)

Substitution into the substitution and expressing νmax leads to a law analogous to Wien’s:

νmax

T
=
kymax

h
= a = const. = 0, 058789THz.K−1. (10.55)

W (y) = x, where x and y satisfy y = xex. The function f is not injective over the whole R! It is necessary to
take Df = HW = ⟨−1,+∞) and Hf = DW = ⟨− 1

e
,+∞).

The equation (10.49), where on the right side we can write a general c (for us c ∈ {3, 5}), can then be solved
as

xex

ex − 1
= c, xex = cex − c, after subst. x = x′ + c : x′ex

′
= − c

ec
, x′ =W

(
− c

ec

)
, x = c+W

(
− c

ec

)
.

The argument of the W function must be within its domain, i.e., − c
ec

= (−c)e−c = f(−c) ≥ − 1
e
, which is always

satisfied.
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At this point, it is appropriate to note that since the relationship between spectral densities
i(λ, T ) and i(ν, T ) is not given by a mere substitution, then the resulting values of λmax and νmax

are not given by a simple conversion λmax ̸= c
νmax

. Let’s demonstrate this with the example
of the Sun with a surface temperature of T = 6000K: λmax =̇ 483 nm (and the corresponding
frequency of approximately 621 THz) and νmax =̇ 353 THz (and the corresponding wavelength
of about 850 nm).

10.5.5 Stefan-Boltzmann Law

Let’s now look at the total power I(T ) emitted by a black body at temperature T regardless
of the frequency or wavelength of the radiation. It is sufficient to only integrate the spectral
density i(ν, T ) over all frequencies ν (or the density i(λ, T ) over all wavelengths λ):

I(T ) =

∫ +∞

0
i(ν, T ) dν,

(
I(T ) =

∫ +∞

0
i(λ, T ) dλ

)
. (10.56)

After substituting from Planck’s radiation law (10.36) we have the expression

I(T ) =
2πh

c2

∫ +∞

0

ν3

e
hν
kT − 1

dν. (10.57)

By performing the substitution x = hν
kT , ν = kTx

h , dν = kT
h dx, we convert the integral into the

form

I(T ) =

[
2πk4

c2h3

∫ +∞

0

x3

ex − 1
dx

]
T 4 = σ T 4. (10.58)

The expression in brackets is already a mere numerical constant, which we denoted by σ and is
called the Stefan-Boltzmann constant. The total power emitted by a body at temperature T thus
depends on the fourth power of this temperature. This fact is called the Stefan-Boltzmann
Law:

I(T ) = σ T 4. (10.59)

Utilizing the mathematical statement

∫ +∞

0

x3

ex − 1
dx =

π4

15
, (10.60)

which we will not derive here, we obtain the Stefan-Boltzmann constant in the form

σ =
2k4π5

15c2h3
= 5, 6704.10−8W.m−2.K−4. (10.61)

The expression for this constant thus fully follows from Planck’s radiation law and its value is
fully determined by fundamental physical constants15.

In Figure 10.13, the curves of spectral intensities for various temperatures T are illustrated.

15And fundamental mathematical constants 2 and 15. And also π.
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ν [Hz]

i(ν) [W.m−2.Hz−1]

(a) Spectral intensity i(ν) for various temperatures
T .

λ [m]

i(λ) [W.m−3]

(b) Spectral intensity i(λ) for various temperatures
T .

Figure 10.13: Graphs of spectral intensity i(ν, T ) and i(λ, T ) for various temperatures T . The total
power emitted (and thus the area under these graphs) according to the Stefan-Boltzmann law grows
with the fourth power of temperature T 4, I(T ) = σT 4.
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