
Exercises from Waves

September 27, 2023

1 Mean values

Consider function f(x) : R → R. Its mean value in the interval ⟨x1, x2⟩ is defined as

⟨f⟩⟨x1,x2⟩ =
1

x2 − x1

∫ x2

x1

f(x) dx.

We can define the mean over the whole R by a limit

⟨f⟩ ≡ ⟨f⟩⟨−∞,∞⟩ = lim
x′→∞

1

2x′

∫ x′

−x′
f(x) dx.

If the function f is periodic with period L, its mean value is given by the mean value over
an arbitrary interval of length L:

⟨f⟩ = ⟨f⟩⟨x′,x′+L⟩ =
1

L

∫ x′+L

x′
f(x) dx, x′ ∈ R.

By definition, the following rules obviously hold

⟨cf⟩ = c ⟨f⟩, ⟨f + g⟩ = ⟨f⟩+ ⟨g⟩.

Exercise 1.1 Calculate ⟨1⟩, ⟨cosωt⟩, ⟨sinωt⟩, ⟨sin(ωt + φ0)⟩, ⟨cos2 ωt⟩, ⟨sin2 ωt⟩, ⟨cos2 ωt +
sin2 ωt⟩.

1



2 Complex numbers

Complex number z ∈ C is a number of the form z = a + ib, where a, b ∈ R and i is an
imaginary unit with the property i2 = −1. The addition and multiplication of these numbers
is defined by “natural” extension.

A complex number z̄ is a complex number z̄ = a − ib. The formula z1z2 = z1 · z2 applies.
The magnitude of a complex number is defined as |z| =

√
a2 + b2, this expression can be written

as |z| =
√
zz̄.

Real and imaginary parts. We define the functions Re : C → R and Im : C → R called
the real and imaginary parts using the rules

Re z = a, Im z = b

(note that the imaginary part does not contain an imaginary unit!). If the real part is zero, we
call the number pure imaginary. The functions Re and Im are real linear, i.e.

Re (z1 + z2) = Re z1 +Re z2, Re (αz) = αRe z, α ∈ R,

equally for Im. Note Re (z1z2) ̸= (Re z1)(Re z2) (equally for Im). These functions can be
expressed simply by complex conjugation:

Re z =
z + z̄

2
, Im z =

z − z̄

2i
.

Complex exponential. Consider z ∈ C. Let us now consider ez and manipulate it:

ez = ea+ib = eaeib.

The first term is an ordinary real exponential function. The question is what is the exponential
of a purely imaginary number. The answer is given by Euler’s formula 1:

eiφ = cosφ+ i sinφ,

Moreover, |eiφ| = 1 holds. We can thus write ez = ea(cos b+ i sin b). For the magnitude of this
number, |ez| = ea holds.

Polar form of a complex number. Any complex number z ∈ C can be written in the form
z = |z|eiφ, φ ∈ R. We call the number φ the argument of a complex number (this number is
not given uniquely, any integer multiple of 2π can be added). The argument φ is the solution
of the equations

cosφ =
Re z

|z|
, sinφ =

Im z

|z|
.

These equations are often formally2 combined into one equation

tgφ =
Im z

Re z
.

Gaussian (complex) plane. Complex numbers can be represented as points on a (two-
dimensional) plane, where the Cartesian axes are the real and imaginary parts of the complex
numbers.

1Of which “the most beautiful mathematical identity” eiπ = −1 is a special case.
2In this notation, we lose information about whether φ ∈ ⟨0, π) and/or φ ∈ ⟨π, 2π).
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Re z

Im z

z = a+ ib = |z|eiϕ

a

b

0

ϕ

|z|

Figure 2.1: Gaussian plane.

The addition of complex numbers then has the geometric meaning of adding two-dimensional
vectors in the Gaussian plane. The number eiφ represents a number on the unit circle. An
intuitive idea of multiplication of complex numbers is obtained from goniometric notation:

z1z2 = |z1|eiφ1 |z2|eiφ2 = |z1||z2|ei(φ1+φ2).

Thus, multiplication by the number eiφ represents a rotation by the angle φ in the complex
plane. Multiplication by |z| represents scaling in this plane.

Complex notation for goniometric functions. The following relations follow directly
from Euler’s formula:

cosφ = Re eiφ =
eiφ + e−iφ

2
, sinφ = Im eiφ =

eiφ − e−iφ

2i
.

Replacing φ ∈ R by the general z ∈ C, we can use the previous formulas to define the sine
and cosine functions on the entire complex plane.

Exercise 2.1 Find the real and imaginary parts of a number

w =
a+ ib

c+ id
.

Exercise 2.2 Calculate Re [(C − iD)eiΩt], where C,D,Ωt ∈ R.

Exercise 2.3 Show that ez = ez̄ holds, specially eib = e−ib.

Exercise 2.4* Prove the validity of the relations

Re (iz) = −Im z, Im (iz) = Re z.

Use these relations to show the validity of the identity

cosx = sin
(
x+

π

2

)
.

Exercise 2.5 Derive the summation formulas for the sines and cosines of the sum (and differ-
ence) of angles using the trivial identity

eiαeiβ = ei(α+β).

Exercise 2.6 Derive the summation formulas for sums of sines and cosines by manipulating
the expression as follows

eiα + eiβ = ei
α
2 ei

β
2

(
ei

α−β
2 + ei

β−α
2

)
.
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Exercise 2.7* Prove the validity of the relations

sin ix = i sinhx, cos ix = coshx, sinh ix = i sinx, cosh ix = cosx.

Exercise 2.8 Consider the expression c1e
iωt + c2e

−iωt, where c1, c2 ∈ C and ωt ∈ R. What
conditions must the constants c1 and c2 satisfy for the above expression to be real for all t ∈ R?

Exercise 2.9 The solution of the harmonic oscillator equation can be written in several equiv-
alent forms:

x(t) = A cos(ωt+ φ) = A sin(ωt+ ϕ) = a cosωt+ b sinωt = ceiωt + c̄e−iωt,

A, a, b, φ, ϕ, ωt ∈ R, c ∈ C. Find the relationships between the constants A, φ, ϕ, a, b, and c.

Exercise 2.10* “Prove” Euler’s formula using differential identity

d

dx
eλx = λeλx.

Instructions: show that the function f(x) = cosx+ i sinx satisfies the differential equation for
the exponential with the appropriate initial condition.

Exercise 2.11* Write expressions cos2 x, cos3 x, in general** cosn x, n ∈ N, using only functions
cos kx, k ∈ N0.

Exercise 2.12 Sum the series
N∑
m=0

cosmx.

Exercise 2.13 Calculate the following definite integrals:∫ +∞

0
e−ax cos bx dx,

∫ ∞

0
e−ax sin bx dx, a, b ∈ R, a > 0.

*Calculate the corresponding indefinite integrals (primitive functions).
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3 Small oscillations and method of modes

Method of modes Cookbook

1. Introduce coordinates x⃗ = (x1, . . . , xn) ∈ Rn that measure the deviation from the equilib-
rium position.

2. Write the equations of motion in the form T¨⃗x + Ux⃗ = 0, where T,U ∈ Rn,n are constant
matrices.

3. Assume a solution of the form x⃗(t) = A a⃗ cos (ωt+ φ), a⃗ ∈ Rn is a constant vector of
amplitudes.

4. Substitute the ansatz into the equations of motion and require nontriviality of the solu-
tions, i.e., A ̸= 0 and a⃗ ̸= 0. We get

(
U− ω2T

)
a⃗ = 0. These conditions lead to the

so-called secular equation
∣∣U− ω2T

∣∣ = 0.

5. The secular equation is a polynomial of n-th degree in ω2. Find the corresponding roots
ω2
k. Find the corresponding eigenvectors a⃗k as solutions of equations

(
U− ω2

kT
)
a⃗k = 0.

6. The general solution of the motion is of the form

x⃗(t) =
n∑
k=1

Aka⃗k cos (ωkt+ φk) .

Small oscillations

In the Taylor series of the potential function U(x⃗), the first nonzero term is just the second
order of the expansion. If we denote Uij as

Uij =
∂2U

∂xi∂xj

∣∣∣∣
x⃗=0

, (1)

we have the expansion of the function U(x⃗) of the form

U(x⃗) =
1

2

n∑
i,j=1

Uijxixj + . . . (2)

Neglecting all higher orders, we get an approximate expression

Usmall(x⃗) =
1

2

n∑
i,j=1

Uijxixj =
1

2
x⃗T U x⃗, (3)

which is exactly the form we need for the method of modes.

Exercise 3.1 Construct the potential for the longitudinal and transverse vibrations of the
weights on the springs as in the figure. The length of the unstretched springs is a0.

mk k

a a
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Find the forms of these potentials in the small oscillation approximation.

Exercise 3.2 Construct the equations of motion for the longitudinal oscillations of the system
in the figure. The length of the unstretched springs is a0.

mk k km

a a a

Find their solutions by the method of modes.

Exercise 3.3 Write the potential for the transverse oscillations of the system in the figure. The
length of the unstretched springs is a0.

mk k km

a a a

Find its form in the small oscillations approximation. How does it differ from the potential for
longitudinal oscillations?

Exercise 3.4 Find the potential of a spring pendulum (see figure) in the small oscillations
approximation. The pendulum can perform 2D motion in the vertical plane.

m

k a ~g

Exercise 3.5* Find the potential of the spring pendulum (see figure) in the small oscillation
approximation. The pendulum can perform 2D motion in the vertical plane.

m

kx kx

ky

ky

a a

a

a

Exercise 3.6* Find the solution to the equations of motion of the following mechanical system
using the method of modes. Only longitudinal motion is allowed.

M
m mk k

a a

Is the solution found complete? “Where did the problem occur?”

Exercise 3.7 Consider a general solution to the motion of a system of the form

x⃗(t) =

(
x1(t)
x2(t)

)
= A1

(
1
1

)
cos(ω1t+ φ1) +A2

(
1
−1

)
cos(ω2t+ φ2).
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Find a specific solution for the initial conditions

x1(0) = A ̸= 0, x2(0) = 0, ẋ1(0) = 0, ẋ2(0) = 0.

Exercise 3.8* Find a general solution for the currents in each branch in the following LC
circuit.

L

CC

L

C

Further examples for home practice:

Exercise 3.9 Equations of motion. Find the equations of motion and their corresponding
matrices T and U, defined using T¨⃗x+ Ux⃗ = 0.

a) Construct the equations of motion for three longitudinally oscillating weights on four
springs.

mk k km

a a a

k m

a

Figure 3.2: Longitudinal vibrations of three weights on four springs.

b) Find the equations for the currents in the following triple LC circuit.

L

CC

L L

C C

Figure 3.3: Triple LC circuit.

Exercise 3.10 System modes. Find the modes and the general solution of the form

x⃗(t) =

N∑
k=1

Aka⃗k cos (ωkt+ φk)

for the systems described by the following matrices T and U:

a)

T =

(
m 0
0 m

)
, U =

(
3k −2k
−2k 6k

)
;

b)

T =

(
2m 0
0 3m

)
, U =

(
5k −2k
−2k 5k

)
;

7



c)

T =

(
m 0
0 m

)
, U =

(
2k −k
−k 4k

)
;

d)

T =

(
m 0
0 2m

)
, U =

(
3k −2k
−2k 6k

)
;

e)

T =

 m 0 0
0 m 0
0 0 m

 , U =

 3k −2k 0
−2k 4k −2k
0 −2k 5k

 ;

Hint: One of the angular frequencies is ω =
√

k
m .

f)

T =

 m 0 0
0 m 0
0 0 m

 , U =

 2k −k 0
−k 2k −k
0 −k 2k

 .

Help: One of the angular frequencies is ω =
√

2k
m .

g)

T =

 m 0 0
0 2m 0
0 0 2m

 , U =

 2k −k 0
−k 2k −k
0 −k 4k

 .

Hint: One of the angular frequencies is ω =
√

2k
m .

h)

T =

 m 0 0
0 m 0
0 0 3m

 , U =

 2k −k 0
−k 4k −3k
0 −3k 6k

 .

Help: One of the angular frequencies is ω =
√

2k
m .

Exercise 3.11 Small oscillations. Find the matrices U for the following potential energy
functions U :

a)

U(x1, x2) =
1

2
k
[
x21 + 2 (x2 − x1)

2 + 4x22

]
,

b)

U(x1, x2, x3) =
1

2
k
[
x21 + (x2 − x1)

2 + (x3 − x2)
2 + x23

]
,

c)

U(y) = k
[√

a2 + y2 − a0

]2
d)

U(x1, x2) =
1

2
k

[√(
a+ l sin

x2
l
− l sin

x1
l

)2
+ l2

(
cos

x2
l
− cos

x1
l

)2
− a

]2

−

mgl
(
cos

x1
l
+ cos

x2
l

)
.
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4 Strings and Fourier series

String with fixed ends. A string of length L with fixed ends at z = 0 and z = L has a general
solution of its equations of motion in the form of the following superposition of modes

ψ(z, t) =
∞∑
m=1

Am sin (kmz) sin (ωmt+ φm) , (4)

where

ω =

√
T0
ρ0
k, km =

mπ

L
, m ∈ N. (5)

Thus, the angular frequency ω and the wavenumber k satisfy the given dispersion relation and
the wavelengths of the modes are given by the discrete wavenumbers km.

Boundary conditions. Consider z0 ∈ {0, L}. Fixed-end boundary condition: ψ(z0, t) =

0,∀t ∈ R, free-end boundary condition: ∂ψ(z0,t)
∂z = 0,∀t ∈ R.

Fourier series. Consider a periodic function f : R → R with period 2L. Then we call the
following function fF a Fourier series of f :

fF (z) =
a0
2

+
+∞∑
m=1

(
am cos

mπz

L
+ bm sin

mπz

L

)
, (6)

where the coefficients am and bm are the given relations:

am =
1

L

∫ L

−L
f(z) cos

mπz

L
dz, m ∈ N0; bm =

1

L

∫ L

−L
f(z) sin

mπz

L
dz, m ∈ N. (7)

For even functions (f(x) = f(−x)) and odd functions (f(x) = −f(−x)), respectively, the
Fourier series (6) and the formulas for the coefficients am and bm (7) are simplified. For even
functions we get

am =
2

L

∫ L

0
f(z) cos

mπz

L
dz, bm = 0, fF (z) =

a0
2

+
+∞∑
m=1

am cos
mπz

L
. (8)

For odd functions:

am = 0, bm =
2

L

∫ L

0
f(z) sin

mπz

L
dz, fF (z) =

+∞∑
m=1

bm sin
mπz

L
. (9)

Initial value problem. The initial conditions consist of the initial position of the string
and the initial velocity of the string (for simplicity, we choose that they are specified in time
t = 0). These are specified as a function of the initial position f : ⟨0, L⟩ → R (we must
specify the initial deflection of each point on the string) and as a function of the initial velocity
g : ⟨0, L⟩ → R (the same for the initial velocity of each point on the string). Thus, our search
for a particular solution must satisfy:

ψ(z, 0) = f(z),
∂ψ

∂t
(z, 0) = g(z), ∀z ∈ ⟨0, L⟩. (10)

In order to achieve this, we have the integration constants Am and φm whose value we want to
determine.
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Let us write explicitly the left-hand sides of the equations (10), i.e., let us substitute the
time t = 0 to the general solution (4) and its time derivative:

ψ(z, 0) =
+∞∑
m=1

(Am sinφm) sin
mπz

L
= f(z),

∂ψ

∂t
(z, 0) =

+∞∑
m=1

(Amωm cosφm) sin
mπz

L
= g(z). (11)

Extensions of the functions f and g. Now we need to write the functions f and g as
Fourier series, which contain only the functions sin mπz

L . This is easily achieved if we compute
series of functions f and g in odd extension:

f(z) =
+∞∑
m=1

fm sin
mπz

L
, g(z) =

+∞∑
m=1

gm sin
mπz

L
, (12)

where the coefficients of fm and gm are given by the following formulas:

fm =
2

L

∫ L

0
f(z) sin

(mπz
L

)
dz, gm =

2

L

∫ L

0
g(z) sin

(mπz
L

)
dz. (13)

Equations for the coefficients Am, φm. The equations for the coefficients Am and φm
are obtained by comparing the series (11) and (12) term by term:

Am sinφm = fm, Amωm cosφm = gm. (14)

Exercise 4.1 If we shorten the string by ∆l = 10 cm, its vibration frequency increases to
α = 150%. Calculate the original length of the string L. Assume that the string tension
remains the same.

Exercise 4.2 A piano string of length L = 1m has a diameter of d = 0, 5mm and makes a
fundamental tone of C with a frequency of f = 256Hz. The volume density of this string is
ρvol = 9g/cm3. What is the tension T of the string?

Exercise 4.3 Find the mode shapes for a string of length L (stretched between z ∈ ⟨0, L⟩) for
the free ends. Assume a mode-shaped (standing wave) solution ψ(z, t) = X(z) cos(ωt + φ) (or
a complexification ψ̂(z, t) = X(z)eiωt). Write the general solution as a superposition of these
modes. Is there anything missing in the solution?

Exercise 4.4* Same problem as the previous exercise, except that now you consider one end
fixed and the other free.

Exercise 4.5 Calculate the Fourier series of the following functions f with period 2L.

a) Square wave .

L0 z

f(z)

−L

A

−A
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b) *Triangular wave .

L0 z

f(z)

−L

A

Exercise 4.6 Consider a string with fixed ends. Find a particular solution of its motion if you
let it oscillate so that at time t = 0 it is at rest and has the form ψ(z, 0) = A, where A is a
constant.

Exercise 4.7 Consider a string with fixed ends. Find a particular solution of its motion if it
is in equilibrium at time t = 0 and at the same time you strike it with a hammer to give a
segment of string length ∆z centred about a point L/2 a velocity of v0.

Exercise 4.8* Initial value problem for a string with free ends. Modify the procedure to find a
particular solution from the given initial conditions for a string of length L with free ends. For
example, the general solution from the separation of variables method comes out as

ψ(z, t) = z0 + v0t+
+∞∑
m=1

Am cos kmz sin(ωmt+ φm), where km =
mπ

L
and ωm =

√
T0
ρ0
km.
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5 Travelling and standing waves

The d’Alembert solution of the wave equation is a solution of the form

ψ(z, t) = F (z − vt) +G(z + vt),

where the functions F,G : R → R represent a waveform of a travelling wave propagating in the
positive and negative directions of the axis z, respectively.

A wave source located at z = 0 oscillating according to the prescription x(t) emits in the
positive direction of the axis z a travelling wave of the form

ψ(z, t) = x(tr),

where tr = t− z
v is the so-called retarded time.

A harmonic travelling wave is a wave of the form

ψ(z, t) = A cos(ωt− kz + φ), ψ̂(z, t) = Aei(ωt−kz+φ),

where the angular velocity ω gives the period T by the relation T = 2π
ω , the wave number k

gives the wavelength λ by the relation λ = 2π
k .

The energy flux on a string is given by

S = −T ∂ψ
∂t

∂ψ

∂z
.

Exercise 5.1 Two tuning forks produce 20 beats in 10 seconds. One tuning fork has a frequency
of 256 Hz. What is the frequency of the second tuning fork?

Exercise 5.2 What is the amplitude, period, phase velocity, and wavelength of a wave, ex-
pressed in the SI system by the equation

ψ(z, t) = 4.10−2 sin[2π(8t+ 5z)] ?

Exercise 5.3 The superposition of travelling waves in the same direction is a travelling wave.
Show that the sum of

A1 cos(ωt− kz + φ1) +A2 cos(ωt− kz + φ2)

can be written as A cos(ωt− kz + φ). Determine the values of the constants A and φ.

Exercise 5.4 The superposition of opposing travelling waves is a standing wave. Show that the
sum of

A cos(ωt− kz + φ1) +A cos(ωt+ kz + φ2)

is of the form X(z) cos(ωt+ φ). Determine the form of the function X(z) and the value of the
constant φ.

Exercise 5.5 Two sources on the z axis at z = −d and z = d oscillate according to the
prescription x1(t) = x2(t) = A cos(ωt) and emit waves in both directions. Determine the
resulting travelling waves from each source and discuss the nature of their superposition.
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Exercise 5.6 Consider a homogeneous string stretched from z = 0 to z = +∞. The string has
linear density ρ = 0, 1 g.cm−1 and is tensioned by force T = 400N. The origin of the string
z = 0 performs a harmonic motion of frequency f = 100Hz with amplitude A = 1 cm. What is
the time-mean value of the energy flux in watts?

Exercise 5.7 There are waves on a string propagating in opposite directions. Show that the
energy flux vector on the string is equal to the sum of the energy fluxes corresponding to each
wave.

Instructions: Consider the d’Alembert solution and use the relation between the derivatives
of z and t for travelling waves.

Exercise 5.8 Two harmonic travelling waves propagate in the same direction on a string in
superposition. They have the same wavelength and angular frequency. If the intensity (time-
mean value of energy flux) of each wave is I, what must be the phase shift of these waves for
the resulting intensity to be 0, I, 2I, 4I?
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6 Wave packets, uncertainty relations, group velocity

Fourier transform

f(t) =

∫ +∞

0
A(ω) cosωt+B(ω) sinωt dω.

Spectral functions

A(ω) =
1

π

∫ +∞

−∞
f(t) cosωt dt, B(ω) =

1

π

∫ +∞

−∞
f(t) sinωt dt.

Uncertainty relation
∆ω∆t ≥ π.

Group velocity and phase velocity

vg =
dω

dk
, vφ =

ω

k
.

Exercise 6.1 Find the form of the wave packet f(t) for a spectrum of the form B(ω) = 0 and

A(ω) =

{
A0 for ω0 − ∆ω

2 ≤ ω ≤ ω0 +
∆ω
2 ,

0 otherwise.

Show how the width of the spectrum ∆ω is related to the duration of the wave packet ∆t, defined
here as the distance of the first zero points of the amplitude envelope of the wave packet.

Exercise 6.2 Have a rectangular pulse f(t) of the form

f(t) =

{
A0 for − ∆t

2 ≤ t ≤ ∆t
2 ,

0 otherwise.

Determine its spectrum. Show how the duration of the pulse ∆t is related to the width of its
frequency spectrum ∆ω defined here as the first zero of the frequency spectrum.

Exercise 6.3* Consider a damped oscillation f(t) of the form

f(t) =

{
0 for t < 0,

e−αt cosω0t otherwise.

Find its spectrum. Use the results of exercise 2.13.

Exercise 6.4 WiFi occupies the frequency range 20MHz (channel width) with its transmission.
Estimate what the transmission rate will be. Use the uncertainty relations.

Exercise 6.5* Estimate the maximum trill frequency3 ftrylek of two tones a semitone apart4

depending on the frequency of one of the notes in the trill f . Take advantage of the uncertainty
relations. Why is the tuba not used for trilling?

Exercise 6.6 A linear dispersion relation is a relation of the form ω = vk, where v = const.
Such an environment is called a nondispersive environment. Determine the phase and group
velocity.

3A rapid alternation of two close tones.
4The octave divides into twelve semitones. A shift of an octave means frequency changes of twice or half. A

shift of a semitone then means a change in frequency by a factor of 12
√
2.
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Exercise 6.7 Determine the phase and group velocity for electromagnetic waves in a plasma.
This medium is described by the dispersion relation

ω2 = ω2
min + c2k2.

Is the phase and group velocity greater or less than the speed of light? What does this mean?

Exercise 6.8 Consider light in a substance with a refractive index n, defined as n = c
vφ
. The

refractive index in a substance is described for a simple model of electrons as

n(ω) = 1 +
α

ω2
0 − ω2

,

where α > 0 and we consider only ω < ω0. Determine the group velocity and show that it is
less than the speed of light.

Exercise 6.9 Show that for light in a medium with refractive index n(λ0), where λ0 is the
wavelength of light in vacuum, the following holds

1

vg
=

1

vφ
− λ0

c

dn

dλ0
.
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7 Reflections

When studying reflections using harmonic waves, we consider an incident wave of the form

ψinc = Aei(ωt−k1z)

and we look for reflected and transmitted wave forms

ψref = ARei(ωt+k1z), ψtr = ATei(ωt−k2z).

The coefficients R and T are determined by the respective junction conditions on the interface.
The transmission matrix D ∈ C2,2 is defined by the following equation:(

A1R

A1L

)
= D

(
A2R

A2L

)
, (15)

where AiLR are the amplitudes of waves ψiLR as in the following figure:

Z1 Z2

ψ1R

A1L

ψ1L

A2R

ψ2R

ψ2L

A2L

z = L

A1R

The matrix D is given by the respective junction conditions at the interface.
To study the reflection at one interface for a given transmission matrix, we solve Eqs.(

1
R

)
= D

(
T
0

)
,

where R is the reflection coefficient and T is the transmission coefficient.
For two interfaces (where each interface has a transition matrix D1 and D2), the equation

for the transmission and reflection coefficients is as follows:(
1
R

)
= D1D2

(
T
0

)
.

Exercise 7.1* Derive the telegraph equations for voltage and current waves u(z, t) and i(z, t)
on a homogeneous line

−∂u
∂z

= Ri+ L
∂i

∂t
, − ∂i

∂z
= Gu+ C

∂u

∂t
,

where L is the line inductance per unit length, [L] =H.m−1, C is the capacitance, [C] =F.m−1,
R is the resistance, [R] = Ω.m−1 and G = 1

R′ is the leakage conductance, [G] = Ω−1.m−1.
Recall the equations by analyzing a substitute circuit of line length ∆z:

L∆zR∆z

1
G∆z C ∆z

∆z

u(z, t) u(z + ∆z, t)

i(z, t) i(z + ∆z, t)
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Exercise 7.2 Consider an ideal homogeneous line, where R = 0 and G = 0. Show that the
telegraph equations (see the previous exercise) yield the wave equations for the functions u(z, t)
and i(z, t). Find a d’Alembert solution satisfying the original telegraph equations.

Instruction #1: Consider the ansatz in the form of d’Alembert solutions

u(z, t) = F (z − vt) +G(z + vt), i(z, t) = α1F (z − vt) + α2G(z + vt). (16)

Instruction #2: Substitute d’Alembert solution for u into the telegraph equations and solve
for i.

Note: The coefficient of proportionality between the voltage and current waves is called the
impedance Z (“generalization of Ohm’s law”).

Exercise 7.3 A homogeneous line of impedance Z is terminated by a termination resistor of
resistance Rs. Find the reflection coefficient R for voltage waves coming down the line. Discuss
the special cases Rs = 0 (short circuit), Rs = +∞ (unconnected resistor), and R = 0 (no
reflection). Use harmonic travelling waves.

Exercise 7.4 A homogeneous line of impedance Z1 = 50Ω is connected to a line of impedance
Z2 = 100Ω. Find the coefficients of transmission P and reflection R for voltage waves passing
from the first line to the second. If a pulse of amplitude 15V is incident on the interface, what
will be the amplitude of the transmitted and reflected waves?

Instructions: Use harmonic travelling waves.

Exercise 7.5 A homogeneous line of impedance Z1 = 50Ω is connected to a line of impedance
Z2 = 100Ω in the following two ways:

Z1 Z2Rs Z1 Z2Rb

Find the transmission and reflection coefficients for the voltage waves for these two situations.
Under what conditions is there no reflection? Use harmonic travelling waves. Write down the
junction conditions and solve for the coefficients.

Exercise 7.6 Consider three interacting environments through two interfaces, one in z = 0 and
the other in z = L. Let us denote the amplitude coefficients of transmission and reflection as
Tij and Rij representing the transmission and reflection coefficients at the interface from the
i-th to the j-th environment. The wave numbers in each medium are k1, k2, k3. Consider a
harmonic incident wave of the form Aei(ωt−k1z). Find the total reflection coefficient R ∈ C,
i.e., the total reflected wave of the form ARei(ωt+k1z) = A|R|ei(ωt+k1z+φ) resulting from the
infinite superposition of reflected waves between two interfaces. Require continuity of the phase
functions of the individual waves at the interfaces.

Finally, specialize the result by considering the relations 1 +Rij = Tij and Rij = −Rji.

Exercise 7.7* Find the total transmission coefficient T ∈ C, i.e., the total transmitted wave
ATei(ωt−k3z) = A|T |ei(ωt−k3z+φ) for the situation described in the previous exercise.

Exercise 7.8 The transmission matrix D is given. Find the transmission T and reflection R
coefficients for a wave incident from the first (left) medium to the second (right) medium.

Exercise 7.9 The coefficients of transmission and reflection, T and R, for a wave incident from
the first to the second medium, and the coefficients T ′ and R′ for a wave incident from the
second medium to the first medium are given. Find the form of the transmission matrix D.
Specialize the matrix assuming R′ = −R and 1 +R = T (and 1 +R′ = T ′).

17



Exercise 7.10 Consider the interfaces defined in Exercise 7.6. Write the transmission matrices
for each interface by analyzing the harmonic wave reflections at each interface using the result
of Exercise 7.9. Compose these matrices and use the result of the example 7.8 to verify that
the total reflection coefficient R for the two interfaces comes out the same as in exercise 7.6.

Exercise 7.11* Do the same as in the previous exercise but for the total transmission coefficient
T .

Exercise 7.12* Consider the connection of two strings at z = L with the same tension. The
transmission matrix is of the form

D =
1

2

 (
1 + k2

k1

)
ei(k1−k2)L

(
1− k2

k1

)
ei(k1+k2)L(

1− k2
k1

)
e−i(k1+k2)L

(
1 + k2

k1

)
e−i(k1−k2)L

 .

Find the total transmission matrix for two interfaces of three strings. The interfaces are at
z = 0 and z = L. Using the total transmission matrix, find the total reflection coefficient R.
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8 Waves in space

The 3D wave equation is an equation of the form

∂2ψ

∂t2
= v2∆ψ = v2

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
.

∆ is the Laplace operator, v is the constant phase velocity.

Exercise 8.1 Show that a harmonic travelling plane wave of the form ψ(r⃗, t) = Aei(ωt−k⃗·r⃗)

satisfies the 3D wave equation provided the dispersion relation is satisfied. Find it.

Exercise 8.2 Find the dispersion relation of the following wave equations:

∂2ψ

∂t2
= v2∆ψ − ω2

0ψ,
∂2ψ

∂t2
= v2∆ψ − α∆(∆ψ).

Instructions: Substitute a harmonic travelling plane wave.

Exercise 8.3 Show that a travelling plane wave of the form ψ(r⃗, t) = F (n⃗· r⃗−vt), where |n⃗| = 1
and F : R → R are arbitrary twice differentiable functions, satisfies the 3D wave equation.

Exercise 8.4* Show that a spherical wave of the form ψ(r⃗, t) = 1
re
i(ωt−kr) satisfies the 3D wave

equation provided the dispersion relation ω = vk is satisfied.

Exercise 8.5 Superposition of spatial waves. Consider two travelling harmonic plane waves
with the same wavelength λ and different amplitudes, between whose directions of propagation
there is an angle ∆φ. Consider a planar screen that is perpendicular to the “average direction”
of the propagation of these waves. Find the intensity waveform (i.e., the time-mean of the
square of the waves) of the resulting superposition on the screen. Determine the distance ∆y
of the interference maxima.

Exercise 8.6 Consider the planar interface of two transparent media with refractive indices
n1 and n2. Consider an incident and a transmitted harmonic travelling plane wave. The wave
vectors k⃗1 and k⃗2 lie in a plane perpendicular to the plane of the interface and make angles ϑ1
and ϑ2, respectively, with the normal vector. Based on the condition k⃗1∥ = k⃗2∥ (this condition
follows from the condition of continuity of tangential components of the electric field at the
interface, E⃗1∥ = E⃗2∥), derive Snell’s law of refraction.

Exercise 8.7 Let us have the same problem as in the previous problem. Consider now the
interface of the following two environments: a transparent environment with refractive index n
and an ionosphere with plasma frequency ωp. Derive the relevant law of refraction.

Exercise 8.8 Show that an electromagnetic standing wave of the form

E⃗ = (A cosωt cos kz, 0, 0), B⃗ = (0, 1cA sinωt sin kz, 0),

where ω = ck, satisfies Maxwell’s equations in vacuum. Determine the electric and magnetic
energy densities and the Poynting vector.

Exercise 8.9* Larmore’s formula. Show that by integrating the Poynting vector S⃗ of the
radiation field E⃗rad from the accelerated charge,

E⃗rad(r⃗, t) = − 1

4πε0

q

c2
a⃗⊥(tr)

r
,
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over a sphere of radius r, you get Larmor’s formula for the total radiated power P of an emitted
electromagnetic wave,

P (t, r) =
µ0q

2

6πc
a2(tr).

Retarded time tr is tr = t − r
c . The Poynting vector has the form S⃗ = 1

µ0
E⃗ × B⃗ =

√
ε0
µ0
E2 n⃗,

where n⃗ is the direction of propagation perpendicular to the given sphere.

Exercise 8.10 Consider a waveguide of a rectangular cross-section with dimensions a = 5 cm
and b = 10 cm. What is the lowest frequency f0 an electromagnetic wave can have to pass
through the waveguide without damping? Calculate the phase and group velocity (as a multiple
of c) of a wave whose frequency is f = 5

4f0. What highest mode m0 can be excited for a
propagating wave of this frequency? For a wave with frequency f = 4

5f0, determine the distance
over which the amplitude of the wave decreases e-fold.
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9 Polarization

A travelling harmonic electromagnetic plane wave propagating in the z axis direction generally
has an electric component in the complexified form (for z = z0):

E⃗(t) = Ex0 x⃗ e
i(ωt+φ1) + Ey0 y⃗ e

i(ωt+φ2) =

(
Ex0e

iφ1

Ey0e
iφ2

)
eiωt =

ˆ⃗
Eeiωt,

where x⃗ and y⃗ are unit vectors in the direction of the x and y axis, respectively. In general, we
speak of elliptically polarized light.

A polarizer (linear polarizer) is defined by its transmittance axis n⃗ and its action is given
by

E⃗out = (E⃗in · n⃗) n⃗,
ˆ⃗
Eout = Pn⃗

ˆ⃗
Ein,

where Pn⃗ is the projector on the axis n⃗,

Pn⃗ =

(
n2x nxny
nxny n2y

)
.

The waveplate is characterized by the phase shift and the axis n⃗1 (and the axis perpendicular
to it n⃗2). If the incoming light is in the form

E⃗in(t) = E1 n⃗1 e
i(ωt+φ1) + E2 n⃗2 e

i(ωt+φ2),

then the output light is given by

E⃗out(t) = E1 n⃗1 e
i(ωt+φ1+∆φ) + E2 n⃗2 e

i(ωt+φ2).

The operator D∆φ defined by
ˆ⃗
Eout = D∆φ

ˆ⃗
Ein is of the form

D∆φ = ei∆φ Pn⃗1
+ Pn⃗2

.

The light intensity is given by

I = ⟨E⃗2⟩ = 1

2

(
E2
x0 + E2

y0

)
.

Stokes parameters are given by the formulae

P1 =
⟨E2

x⟩ − ⟨E2
y⟩

⟨E2
x⟩+ ⟨E2

y⟩
, P2 =

⟨2ExEy⟩
⟨E2

x⟩+ ⟨E2
y⟩
, P3 =

⟨2Ex(ωt− π
2 )Ey⟩

⟨E2
x⟩+ ⟨E2

y⟩
.

Exercise 9.1 How does the intensity of circularly polarized light change after passing through
a polarizer?

Exercise 9.2 How does the intensity of unpolarized light change after passing through a linear
polarizer?

Exercise 9.3 Rotation of the plane of linearly polarized light by 90◦. Consider linearly polarized
light E⃗ = E0x⃗ cos(ωt). Put in its path N polarizers, each with its axis of transmittance rotated
by π

2N relative to the previous one (and the first one relative to the plane of the incident light).
What will be the intensity of the transmitted light for N = 1, N = 2 and the general N ∈ N?
*What is the limit for N → +∞?
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Exercise 9.4 Consider generally elliptically polarized light. You put a polarizer with a n⃗ = x⃗+y⃗√
2

transmittance axis in its path. Show that for the intensity of the output light it holds

Iout =
1

2
(Ix + Iy) + Ixy,

where
Iout = ⟨E2

out⟩, Ix = ⟨E2
x⟩, Iy = ⟨E2

y⟩, Ixy = ⟨ExEy⟩,

Ex and Ey are the electric field components in the directions x⃗ and y⃗ for the incoming light.

Exercise 9.5 The refractive indices of crystalline quartz for light of wavelength λ0 = 500 nm
in vacuum are n1 = 1, 544 and n2 = 1, 553. Determine the smallest thickness of a quarter-
wavelength waveplate made of this material.

Exercise 9.6 Write the matrix D∆φ for a waveplate with axes n⃗1 = x⃗+y⃗√
2

and n⃗2 = y⃗−x⃗√
2
.

Specialize the result for ∆φ = π
2 and ∆φ = π.

Exercise 9.7 Rotation of the plane of linearly polarized light by 90◦, the second time. Consider
linearly polarized light E⃗ = E0x⃗ cos(ωt). Put a half-wave waveplate in its path with its axis
oriented in the n⃗ = x⃗+y⃗√

2
direction. What polarization state will the light have after passing

through the plate? How will the intensity change?

Exercise 9.8 A circular polarizer is a (linear) polarizer followed by a quarter-wave plate with
axes rotated 45◦ relative to the transmittance axis of the linear polarizer.

Show that, depending on the choice of the axes of the wave plate, we get a left- or right-
handed circular polarizer that converts any light coming from the side of the linear polarizer
into corresponding circularly polarized light.

Show that left-handed polarized light coming from the waveplate side is absorbed in a right-
handed polarizer.

Exercise 9.9 Linearly polarized light polarized in the direction of the axis x⃗ with intensity
I0 enters the optical instrument. Determine the electric field and the intensity of light after
each of the optical elements in the following apparatus consisting of the optical elements in the
following order:

� Polarizer with axis n⃗ = x⃗+y⃗√
2
.

� Half-wave waveplate with axis n⃗ = y⃗.

� Polarizer with axis y⃗.

� Quarter-wave waveplate with axis n⃗ = x⃗−y⃗√
2
.

Exercise 9.10* What values of the Stokes parameters P1, P2 and P3 correspond to linearly
polarized light and circularly polarized light, respectively? Plot the results.

Exercise 9.11* Light incident on a linear polarizer is a mixture of linearly polarized light
and unpolarized light. If you rotate the polarizer by 60◦ compared to the rotation with the
maximum transmitted intensity you get half the intensity. Determine the ratio of the intensities
of unpolarized and linearly polarized light in the mixture.

Exercise 9.12* The direction of polarization of linearly polarized light changes rapidly (much
faster than the resolving time of your measuring instrument) between the following two states:
n⃗ = (cos θ0,± sin θ0) where θ0 < π

2 . Calculate the Stokes parameters. Determine |P⃗ | =
|(P1, P2, P3)|.
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10 Interference

Exercise 10.1* Fabry-Pérot etalon. Consider the result of Exercise 7.6, i.e., the total reflection
coefficient at the two interfaces,

R =
R12 +R23e

−2ik2L

1 +R12R23e−2ik2L
,

where R12 and R23 are the reflection coefficients of each interface, k2 is the wavenumber in the
medium between the interfaces, and L is the distance between the interfaces. Now consider that
the interfaces are composed of identical semi-transparent mirrors, i.e., R12 = R23 = r. Find
the relationship between the wavelength λ and the distance between the mirrors L at which the
total reflectance R = |R2| is zero.

Exercise 10.2 Glass wedge. The planar surfaces of a glass wedge of refractive index n = 1, 5
form a very small angle φ = 0, 1′. Light of wavelength λ = 500 nm is incident perpendicularly
on the wedge. Calculate the distance of the interference fringes produced by the reflected light.

Instructions: Find the angle between the incident rays and use the result of Exercise 8.5.

Exercise 10.3* Air wedge. The air wedge is bounded by two perfectly planar glass plates with
refractive index n = 1, 5, which are at a very small angle φ. This angle is due to the fact that a
strip of foil of thickness d = 0, 02mm has been inserted between the glass plates at a distance of
L = 10 cm from their touching edges. Sodium light with a wavelength of λ = 589nm is incident
perpendicularly on the wedge layer. Determine the distance of the interference fringes in (a)
reflected and (b) transmitted light.

Instructions: Find the angle between the incident rays and use the result of Exercise 8.5.

Exercise 10.4 Soap bubble a.k.a. thin film interference. You have a planar soap bubble of
thickness d with refractive index n. If you observe the reflection of light at an angle ϑ on the
soap film, due to constructive interference for a certain wavelength of light λ you see the film
colored. Find the condition for constructive interference for the parameters of the thickness of
the membrane d, the angle of incidence (and reflection) ϑ, the wavelength of light λ (and the
index of refraction n).
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11 Diffraction

The position of the interference maxima on the two thin slits, the diffraction grating and the
slit of a finite width, is given by

sin θm = m
λ

d
, ym = mL

λ

d
,

where d is the distance of the slits, or the distance of adjacent slits in the diffraction grating, or
the slit width. The angle θm denotes the angle at which the interference maximum is observed.
Distance ym then represents the distance from the origin on the screen. The value m is called
the order of the maximum. The distance between adjacent maxima is then (for small m)

∆θ =
λ

d
, ∆y = L

λ

d
.

For a diffraction grating, the width of the diffraction maxima (the distance between the first
intensity zeros around the maximum) is

δθ =
2λ

Nd
, δy =

2Lλ

Nd
,

where N is the number of notches/slits of the diffraction grating.
Fraunhofer diffraction integral

E(x, y) =
E0

R
ei(ωt−kR)

∫
B
ei

k
R
(xX+yY ) dX dY.

The plane of the obstruction has Cartesian coordinates X,Y . The plane of the screen has
coordinates x, y. B represents the obstacle/opening in the obstruction (from Babinet’s principle,
these situations are equivalent), R is the distance from the origin in the obstruction/opening
to the point (x, y) on the screen, R =

√
L2 + x2 + y2, where L is the perpendicular distance of

the screen and the obstruction/opening.

X

Y

x

y

Z, z

obstruction/opening screen

B

(x, y)

R

incident plane wave
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Exercise 11.1 The maximum of what largest order can you observe in green light of wavelength
λ = 550 nm for a diffraction grating with 5000 indentations per 1 cm?

Exercise 11.2 Can the 1st- and 2nd-order spectra and the 2nd- and 3rd-order spectra produced
on a diffraction grating overlap if it is illuminated with white light composed of wavelengths of
400− 700 nm?

Exercise 11.3* A diffraction grating has 500 indentations per 1 mm. Calculate its so-called
dispersion, i.e., the magnitude dθ

dλ , in the vicinity of green light (λ = 500 nm) for the first and
second orders.

Exercise 11.4 The yellow light emitted by sodium atoms is dominated by the so-called sodium
doublet, whose wavelengths are λ1 = 589, 0 nm and λ2 = 589, 6 nm. How many notches must a
diffraction grating have to distinguish these two wavelengths in a first-order spectrum?

Exercise 11.5 You place a hair of diameter d in the path of a laser beam of wavelength
λ = 632, 8 nm. On a screen at a distance of L = 6m, you observe diffraction maxima at a
distance of ∆l = 3 cm. What is the diameter of the hair?

Exercise 11.6 Diffraction pattern of a rectangular slit. Find the diffraction pattern (i.e., find
the intensity distribution on the screen) of a rectangular slit of dimensions a, b.

Exercise 11.7 Diffraction pattern of two slits. Find the diffraction pattern of two slits of width
D whose centers are at distance d, for simplicity only for y = 0.

Instructions: Use the result of the previous example for y = 0. Show how the diffraction
integral changes if you move the slit by ±d

2 along the X axis. Add the fields from the two slits
so shifted.

Exercise 11.8* Diffraction pattern of a circular hole. Construct the diffraction integral for a
circular hole of diameter D. Write the result using the Bessel function Jn(x), whose integral
definition is

Jn(x) =
1

π

∫ π

0
cos(x sinu− nu) du =

1

2π

∫ π

−π
ei(x sinu−nu)du.

Instructions: Establish polar coordinates in the plane of both the screen and the obstruction.
Notice that the result cannot depend on the value of the polar angle in the plane of the screen
and set it equal to a suitable constant. Integrate first according to the angle variable. Use the
recurrent relation

d

dx
[xmJm(x)] = xmJm−1(x)

for m = 1.
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12 Exercise results

12.1 Complex numbers

12.2 Mean values

12.3 Small oscillations

Exercise 3.9 Equations of motion

a)

T =

m 0 0
0 m 0
0 0 m

 , U =

2k −k 0
−k 2k −k
0 −k 2k


b)

Exercise 3.10 Method of modes

a) ω1 =
√

2k
m , ω2 =

√
7k
m , a⃗1 = (2, 1), a⃗2 = (−1, 2)

b) ω1 =
√

7k
6m , ω2 =

√
3k
m , a⃗1 = (3, 4), a⃗2 = (−2, 1)

c) ω1 =

√
(3−

√
2)k

m , ω2 =

√
(3+

√
2)k

m , a⃗1 = (1 +
√
2, 1), a⃗2 = (1−

√
2, 1)

d) ω1 =

√
(3−

√
2)k

m , ω2 =

√
(3+

√
2)k

m , a⃗1 = (
√
2, 1), a⃗2 = (−

√
2, 1)

e) ω1 =
√

k
m , ω2 =

√
4k
m , ω3 =

√
7k
m , a⃗1 = (2, 2, 1), a⃗2 = (−2, 1, 2), a⃗3 = (1,−2, 2)

f) ω1 =

√
(2−

√
2)k

m , ω2 =
√

2k
m , ω3 =

√
(2+

√
2)k

m , a⃗1 = (1,
√
2, 1), a⃗2 = (−1, 0, 1), a⃗3 =

(1,−
√
2, 1)

g) ω1 =
√

k
2m , ω2 =

√
2k
m , ω3 =

√
5k
2m , a⃗1 = (2, 3, 1), a⃗2 = (−1, 0, 1), a⃗3 = (2,−1, 1)

h) ω1 =

√
(3−

√
5)k

m , ω2 =
√

2k
m , ω3 =

√
(3+

√
5)k

m , a⃗1 = (1,
√
5 − 1, 1), a⃗2 = (−3, 0, 1), a⃗3 =

(1,−
√
5− 1, 1)

Exercise 3.11 Small oscillations

a)

U =

(
3k −2k
−2k 6k

)
b)

U =

2k −k 0
−k 2k −k
0 −k 2k


c)

U =
(
2k

(
1− a0

a

))
26



d)

U =

(
k + mg

l −k
−k k + mg

l

)
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