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You are getting your hands on a collection of detailed solved exercises from the Štoll:
Electricity and Magnetism textbook.

Each of the exercises should more or less form a separate unit. It is often not necessary to
read the preceding or following exercises to understand the solution of a given example (but
not always...). If an example is an exception to this rule, it is usually referred to the relevant
passage elsewhere in the book.

A solved exercise always consists of a problem, its solution, and an appendix if necessary.
The appendix is not necessary to (understand) the solution; it often comments on, extends, or
looks at the calculation from a different perspective.

The examples are arranged in logical units and are therefore often not in the order they
appear in the original textbook. However, their number is retained for ease of reference. The
table of contents is followed by a list of examples arranged in the same order as in the textbook,
which makes it easy to quickly find where an exercise is in here.
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Chapter 1

Fundamentals of relativity

1.1 Time dilation and length contraction

1.1.1 1.1 Muon in the atmosphere

A muon in cosmic rays has been observed to travel the distance d0 = 5 km in the atmosphere
from its formation to its decay at speed v = 0, 99c. How long did it exist in our frame of
reference, how long in its own rest frame, and how thick a layer of atmosphere passed around
it in its own frame?

Solution: We can determine the lifetime in our frame of reference simply from the kinematic
relation

t =
d0

v
=

5 km

0, 99c
= 1, 68.10−5 s = 16, 8µs (1.1)

(we used the approximate value of the speed of light c = 3.108m/s). From our point of view,
the time for muon passes more slowly due to time dilation. We therefore determine the proper
time of the muon from the relation for time dilation:

τ =
t

γ
= t

√
1− v2

c2
=
d0

v

√
1− v2

c2
= 2, 375.10−6 s = 2, 375µs. (1.2)

From the muon’s point of view, the atmosphere is whizzing around it at speed v, so it will
be contracted in the direction of its motion; substituting in the relation for length contraction,
we get the thickness of the atmosphere from the muon’s point of view:

d =
d0

γ
= d0

√
1− v2

c2
= 705m. (1.3)

The same result is obtained by using the kinematic relation

d = τ v = 705m, (1.4)

where we have taken advantage of the fact that the atmosphere around the muon travels at v
for its own lifetime τ .

Supplement: In this example, it is possible to come across a relativistic “paradox”. From
the muon’s point of view, it is the observer on Earth who is moving, so the time dilation “affects”
him. Thus, the muon measures the calculated time τ = 2, 37µs on his watch during his lifetime,
and according to the muon, the observer on Earth will only experience time

τ ′ =
τ

γ
= τ

√
1− v2

c2
= 0, 335µs (instead of t = 16, 8µs). (1.5)
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How is this possible? The problem here is with the relativity of the simultaneity. Two events
that appear to have occurred simultaneously in one frame of reference may not be simultaneous
in another frame of reference. In the system associated with the observer on Earth, we have two
simultaneous events: the creation of the muon and “starting the stopwatch” by the observer on
Earth, also these are simultaneous events: the extinction of the muon and the stopping of the
stopwatch by the Earth observer. In the system associated with the muon, these events will
generally not be simultaneous! From the point of view of the muon, therefore, the observer on
Earth, quite incomprehensibly, starts and stops the stopwatch at a completely different times
than the instants when the muon comes into existence and ceases to exist. Let us now quantify
these considerations.

Let’s write down the spatial and temporal coordinates of each event in the system associated
with the Earth and transform them using the Lorentz transformation into the system associated
with the muon. Consider a spatial coordinate x whose origin is at the muon point of creation
and points downward toward the observer. Then the muon’s point of creation PV , the beginning
of the measurement PM , the muon’s extinction PZ , and the end of the measurement PK have
spatiotemporal coordinates (x, t):

PV = (0, 0), PM = (d0, 0), PZ = (d0, t), PK = (d0, t). (1.6)

(for simplicity we consider that the muon decays exactly at the observer’s feet).

O

ground

muon creation

muon decay

x x′

O′

v

Figure 1.1: Coordinate x associated with an observer on Earth, with the origin at the muon’s point of
creation. Coordinate x′ associated with a moving muon, the muon is located at the origin.

We introduce the coordinate x′ pointing in the direction of the coordinate x, and its origin
is associated with the moving muon. See also Figure 1.1 for the introduction of coordinates x
and x′. We can go between coordinates (x, t) and (x′, t′) in the reference frames thus introduced
by the following Lorentz transformations

x′ = γ(x− vt) =
x− vt√
1− v2

c2

, t′ = γ
(
t− v

c2
x
)

=
t− v

c2
x√

1− v2

c2

. (1.7)

After substituting specific values of coordinates (x, t) for individual events, we obtain the co-
ordinates (x′, t′) of events in the reference frame associated with the muon (in order: muon
formation P ′V , start of measurement P ′M , muon extinction P ′Z , end of measurement P ′K):

P ′V = (0, 0), P ′M =
(
γd0,−γ

v

c2
d0

)
, P ′Z =

(
0,
t

γ

)
, P ′K =

(
0,
t

γ

)
, (1.8)
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where we used the relation d0 = vt to obtain the final expressions. Thus, we see that in the
system associated with the muon, the observer on Earth started the measurement long before
the muon’s creation in time t′M = −γ v

c2
d0 = −117µs (the muon emerged in time t′V = 0 s).

The end of the measurement occurred (simultaneously with the extinction of the muon) at time
t′Z = t′K = t

γ = 2, 37µs. Thus, in total, the observer in the system associated with the muon
has been measuring for the time

t′m = t′M − t′Z =
t

γ
+ γ

v

c2
d0 = t

(
1

γ
+ γ

v2

c2

)
= tγ = 119µs, (1.9)

where we again used the relation d0 = vt. The observer’s measurement time is then t′m
γ = t =

16, 8µs, which is exactly the value we had at the beginning. The time 0, 335µs, which led us to
this whole reasoning, simply represents a small fraction of the observer’s proper time. So there
is no paradox involved.

1.1.2 1.2 Protons flying through the galaxy

Protons of energy E = 1010GeV are found in cosmic rays. How long will it take for them to fly
through our galaxy in our reference frame and in their own?

Solution: First, let’s calculate the speeds of the protons passing through the galaxy. The
relationship between energy and velocity is obtained from the famous relationship

E = mc2 = m0γc
2 = E0γ =

E0√
1− v2

c2

, (1.10)

where we have introduced the factor γ =
(

1− v2

c2

)−1/2
and the rest energy E0 = m0c

2. By

expressing the velocity we get

v =

√
1−

(
E0

E

)2

c. (1.11)

The rest energy of the proton is approximately E0 = 1GeV . The value of the velocity is then

v =
√

1− 10−20 c ≈ (1− 0, 5 · 10−20)c = 0, 99 . . . 99︸ ︷︷ ︸
20x

5c. (1.12)

where we have used the approximation (Taylor expansion to first order)
√

1 + x ≈ 1 + x
2 . From

the point of view of an observer in the galaxy we can consider v ≈ c. If we consider the length
of our Galaxy l0 = 100 000 ly (light years), then the time it takes for protons to pass through
the Galaxy from the point of view of an observer in the Galaxy is simply

t =
l0
v
≈ l0

c
= 100 000 years. (1.13)

The time elapsed from the point of view of the proton is obtained by using the relation for
time dilation (here we must use the exact velocity v)

τ =
t

γ
= t

√
1− v2

c2
. (1.14)

From the relation (1.10) we see that E0
E =

√
1− v2

c2
, for the proton’s proper time, we get

τ = t
E0

E
= 105 years · 10−10 = 10−5 years = 315 s. (1.15)
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Addendum: If we look at the situation from the point of view of the protons, the Galaxy
whizzes past them at a tremendous speed v and is therefore extremely shortened due to length
contraction. Let us calculate this length using the relation for length contraction (again we
must use the exact velocity v):

l =
l0
γ

= l0

√
1− v2

c2
= l0

E0

E
= 105 ly · 10−10 = 10−5 ly = 315 ls (light seconds), (1.16)

which is less than the distance from the Earth to the Sun. We can also get this distance using
the kinematic relation

l = τv ≈ τc, (1.17)

where we have used the fact that the Galaxy flies around the proton at approximately c for its
proper transit time τ .

1.1.3 1.5 Density

The body is moving with respect to the reference frame at a velocity v = 0, 8c. Determine the
ratio between its density in this frame and its rest density.

Solution: The density in the rest frame ρ0 and the density in the moving frame ρ are given
by the relations

ρ0 =
m0

V0
, ρ =

m

V
, (1.18)

where m0 and V0 are the mass and volume in the rest frame and m and V are the mass and
volume in the moving frame.

The volume is transformed due to Lorentz length contraction as

V =
V0

γ
= V0

√
1− v2

c2
. (1.19)

This transformation relation follows from the fact that the dimension in the direction of motion
is subject to contraction, see Figure 1.2.

V0

a0

b0

c0

V

a =
a0

γ

b = b0

c = c0

v

Figure 1.2: Rest volume and moving volume.

When a body moves, the mass of the body increases at the same time, m = m0γ. Putting
these relations together, we get the result:

ρ =
m

V
=
m0γ
V0
γ

=
m0

V0
γ2 = ρ0γ

2. (1.20)
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1.1.4 1.4 Doppler effect

A physicist gambler, who ran a red light with his car and was stopped by a police officer,
defended himself by saying that he saw green instead of red as a result of the Doppler effect.
However, the physics-literate police officer ticketed him anyway, for speeding. Determine this
speed, assuming that red corresponds to spectral line λ0 = 700nm and green to λ = 550nm.

Solution: The relativistic relationship between the emitted frequency of the source f0 and
the observed frequency fp, if the observer approaches the source at a speed of v (and hence with
a factor of β = v

c ), is

fp =

√
1 + β

1− β
f0. (1.21)

We add the frequencies using the wavelengths, f = c
λ :

c

λ
=

√
1 + β

1− β
c

λ0
. (1.22)

Now we just express the factor β:

β =
λ2

0 − λ2

λ2
0 + λ2

= 0, 237, (1.23)

So the speed of the physicist gambler in the car was v = βc = 71 000 km/s.

Addendum: Let’s derive the above relationship between frequencies f0 and fp. Consider
a source that is at rest, and an observer approaching it at speed v.

What will be the period of the wave T for the observer? He travels at speed v towards the
wavelets propagating at speed c. The period T indicating how long it takes for one wavelength
to propagate around the observer is then given by the equation

vT + cT = λ0, (1.24)

where λ0 is the wavelength of light emitted by the source, see also Figure 1.3. Thus T = λ0
v+c .

vT cT

λ0

P

Figure 1.3: The observer P travels at speed v to meet the wave radiating towards him at speed c.

We must not forget, however, that the moving observer’s clock runs slower. The period
T we have determined so far is determined by the time passed in the system associated with
the source of the waves. Meanwhile, the moving observer’s proper time τ is given by the time
dilation relation:

τ =
T

γ
= T

√
1− v2

c2
= T

√
1− β2. (1.25)

So the observed frequency is fp = 1
τ , successive substitutions give the resulting relation:

fp =
1

τ
=

1√
1− β2

1

T
=

1√
1− β2

v + c

λ0
=

1 + β√
1− β2

c

λ0
=

√
1 + β

1− β
f0. (1.26)
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1.2 Speed addition

1.2.1 Derivation of the formula for velocity addition using Lorentz transfor-
mations

Find the law of relativistic velocity folding in one direction by composing two Lorentz trans-
formations. In particular, find the form of one Lorentz transformation that is equivalent to the
composition of the two transformations mentioned above.

Solution: For two frames of reference (S) and (S′) that have identically oriented axes, and
the system (S′) moving along the axis x (or x′) with respect to (S) at a speed of V , the Lorentz
transformation has the form1

x′ = γ(x− V t), y′ = y, z′ = z, t′ = γ

(
t− V

c2
x

)
, γ =

(
1− V 2

c2

)−1/2

. (1.27)

Consider three reference frames (S), (S′) and (S′′). The system (S′) is moving at speed V
with respect to the system (S), the system (S′′) is moving at speed W w.r.t. (S′), and finally
the (S′′) is moving at searched-for speed Y w.r.t (S).

Between the systems (S) and (S′) we pass at the given speed V , between (S′) and (S′′) at
the given speed W , and between (S) straight to (S′′) we pass at the search speed Y . See also
Figure 1.4.

(S) (S0) (S00)

V W

Y

x x0 x00

y y0 y00

z z0 z00

O O0 O00

Figure 1.4: Three reference frames (S), (S′) and (S′′).

Let us denote the gamma factors with by the corresponding velocity index:

γ = γV =

(
1− V 2

c2

)−1/2

, γW =

(
1− W 2

c2

)−1/2

, γY =

(
1− Y 2

c2

)−1/2

. (1.28)

Then the Lorentz transformations for the coordinates x, x′, x′′ and t, t′, t′′ between the systems
(S) and (S′), (S′) and (S′′), (S) and (S′′) have the form

x′ = γV (x− V t) , t′ = γV

(
t− V

c2
x

)
, (1.29)

x′′ = γW
(
x′ −Wt′

)
, t′′ = γW

(
t′ − W

c2
x′
)
, (1.30)

x′′ = γY (x− Y t) , t′′ = γY

(
t− Y

c2
x

)
. (1.31)

We now perform the composition of the Lorentz transformations (1.30) and (1.29) and compare
the result with (1.31). Take the relation for the transformation x′′ (1.30) and substitute for x′

1For the origins of systems passing through each other in time t = t′ = 0.
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and t′ from (1.29)2:

x′′ = γW

(
γV (x− V t)−WγV

(
t− V

c2
x

))
. (1.32)

We want to modify the above expression to the form x′′ = γY (x − Y t) (1.31) – we then read
the expression for the compound velocity Y standing next to the variable t. Let us then modify
(1.32):

x′′ = γWγV

((
1 +

VW

c2

)
x− (V +W ) t

)
=

[
γWγV

(
1 +

VW

c2

)](
x− V +W

1 + VW
c2

t

)
= γY (x− Y t) . (1.33)

From the last equality in the previous expression, we get the relation for the compound velocity
Y by comparison:

Y =
V +W

1 + VW
c2

. (1.34)

At the same time, we obtain the relationship between the gamma coefficients for each velocity,

γWγV

(
1 +

VW

c2

)
= γY ; (1.35)

its validity can be proved by simply breaking down all the gamma factors (and inserting a
specific value for the velocity Y ) and then doing a tedious expression manipulations...

1.2.2 1.3 Spacecraft and rocket

A rocket was launched from a spacecraft moving relative to the Earth at v1 = 0, 8c in the
direction of its motion at v2 = 0, 6c relative to the spacecraft. The proper length of the rocket
is l0 = 10m. What is the length of this rocket from the point of view of an observer in the ship
and from the point of view of an observer on Earth?

Solution: The formula for relativistic velocity folding is as follows:

v =
v1 + v2

1 + v1v2
c2

, (1.36)

where v is the resulting velocity, v1 and v2 are the original velocities with the same positive
direction. After substitution, we get the resultant velocity v:

v =
(0, 8 + 0, 6)c

1 + 0, 6 · 0, 8
= 0, 946c. (1.37)

To obtain the observed rocket lengths, we just need to substitute the correct velocities into
the formula for length contraction

l =
l0
γ

= l0

√
1− v2

c2
, (1.38)

where l0 is the proper (rest) length, l the length after contraction, and v the corresponding
velocity of motion.

The rocket, from the point of view of an astronaut on a spacecraft, has a velocity of v2,
and from the point of view of an observer on Earth it has just a compound velocity of v. The
resulting contracted lengths are thus:

lv2 = 10
√

1− 0, 62 = 8m, lv = 10
√

1− (0, 946)2 = 3, 24m. (1.39)
2We could also take the relation for the transformation t′′, but the procedure would be essentially identical.
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1.2.3 1.6 Astronaut on the Moon

An astronaut on the Moon observes two spacecrafts approaching him from opposite sides at
v1 = 0, 8c and v2 = 0, 9c. What is the velocity of one of the ships measured from the deck of
the other?

Solution: Just for the sake of argument, note that the astronaut observes the spacecraft
approaching each other by the simple sum of their velocities: v1 + v2 = 1, 7c.

The situation is different for the observers on each spacecraft, from their perspective the
spacecraft are approaching each other at the speed of

v =
v1 + v2

1 + v1v2
c2

=
(0, 8 + 0, 9)c

1 + 0, 8 · 0, 9
= 0, 988c. (1.40)

1.3 Relativistic equation of motion

1.3.1 1.7 Hyperbolic motion

Determine the velocity and position of a relativistic particle subject to a constant force F . Com-
pare with uniformly accelerated motion in nonrelativistic physics and show that the particle’s
velocity does not exceed the speed of light c.

Solution: Let’s solve the relativistic equation of motion, or a one-dimensional version of it

d

dt
(m0γ~v) = ~F ,

d

dt
(m0γv) = F. (1.41)

After substituting γ =
(

1− v2

c2

)−1/2
and integrating by time (the force F is constant), we obtain

m0
v√

1− v2

c2

= Ft+ C1, (1.42)

where we determine the integration constant C1 from the initial conditions. If we consider zero
velocity at time zero, v(0) = 0, we get C1 = 0. From the previous equation, we express the
velocity v(t):

v(t) =
Ftc√

m2
0c

2 + F 2t2
=
Ft

m0

1√
1 +

(
Ft
m0c

)2
=

c√
1 +

(
m0c
F t

)2 . (1.43)

From the last expression, obviously v(t) < c for arbitrary time t, moreover, limt→+∞ v(t) = c
holds. We obtain the position x(t) by integrating the velocity with respect to time:

x(t) =

∫
v(t) dt =

∫
Ftc√

m2
0c

2 + F 2t2
dt. (1.44)

Using the substitution u = m2
0c

2 + F 2t2, du = 2F 2t dt we obtain the result

x(t) =
c

F

∫
du

2
√
u

=
c

F

√
u+ C2 =

c

F

√
m2

0c
2 + F 2t2 + C2. (1.45)

For the initial condition x(0) = 0, we have C2 = − c
Fm0c. We can then write the result in the

form:

x(t) =
m0c

2

F

√1 +

(
Ft

m0c

)2

− 1

 . (1.46)
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Finally, we show how the relativistic result differs from the non-relativistic one. We will use
the Taylor polynomial of the function (1 + x)α, where α ∈ R and x is close to zero:

(1 + x)α =
+∞∑
k=0

(
α

k

)
xk = 1 + αx+

α(α− 1)

2
x2 + . . . (1.47)

Let us now take the functions v(t) in the middle expression (1.43) and x(t) (1.46) and apply
the Taylor expansion to the square roots in them:(

1 +

(
Ft

m0c

)2
)±1/2

= 1± 1

2

(
Ft

m0c

)2

+
±1

2

(
±1

2 − 1
)

2

(
Ft

m0C

)4

+ . . . , (1.48)

where we have considered x =
(
Ft
m0c

)2
and hence our expansion is valid only for the times t

when x is small. Substituting these expansions into the functions x(t) and v(t) (for position we
used the second order expansion, for velocity only the first order expansion) we get

x(t) =
1

2

F

m0
t2 − 1

8

F 3

m3
0c

2
t4 + . . . , (1.49)

v(t) =
F

m0
t− 1

2

F 3

m3
0c

2
t3 + . . . . (1.50)

Thus we see that the formulas for non-relativistic motion are a first approximation to relativistic
motion. In the so-called non-relativistic limit c→ +∞ we get the formulas for non-relativistic
motion.

Addendum: Why is the example called hyperbolic motion? Because the trajectory of
relativistic motion with a constant force applied is a hyperbola in the space-time diagram. To
make it easier to show, it will be useful to change the initial condition of the initial position to
x(0) = m0c2

F = α. Then the integration constant comes out C2 = 0 and the resulting position
as a function of time x(t) is

x(t) = α

√
1 +

c2t2

α2
. (1.51)

The manipulation yields the equation for the trajectory in the space-time diagram with variables
(x, t) as

x2 − c2t2 = α2, (1.52)

which is the hyperbola shown in Figure 1.5. The non-relativistic motion x = 1
2
F
m0
t2 then

represents the parabolic motion.
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x

ct

α

Figure 1.5: Hyperbolic motion plotted on a space-time diagram

.

Addendum: In the scripts, the result is written using the constant a = F
m0

. This constant
does not represent the acceleration of the particle. For relativistic motion, when a constant
force is applied, the acceleration is non-constant. The actual value of the acceleration is obtained
in the classical way from the kinematic relation:

a(t) =
dv(t)

dt
=

d

dt

(
Ftc√

m2
0c

2 + F 2t2

)
=

m2
0Fc

3(
m2

0c
2 + F 2t2

)3/2 . (1.53)

1.4 Relativistic energy and work

1.4.1 1.8 Accelerator

The accelerator gives energy to protons E = 500GeV . What speed do they reach? (The rest
energy of a proton is E0 = 0, 938GeV .)

Solution: The relationship between energy and velocity is obtained from the famous rela-
tionship

E = mc2 = m0γc
2 = E0γ =

E0√
1− v2

c2

, (1.54)

where we have introduced the notation of the factor γ =
(

1− v2

c2

)−1/2
and the rest energy of

the proton E0 = m0c
2. By expressing the velocity, we obtain

v =

√
1−

(
E0

E

)2

c = 0, 9999982c. (1.55)

1.4.2 1.9 Work done on the electron

How much work is required to increase the velocity of an electron from v1 = 1, 2.108m.s−1 to
v2 = 2, 4.108m.s−1 according to non-relativistic and relativistic mechanics? (The rest energy
of the electron is 0, 511MeV .)
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Solution: In non-relativistic mechanics, work is the difference in kinetic energies of an
object

W = EK2−EK1 =
1

2
m0v

2
2−

1

2
m0v

2
1 =

1

2
m0c

2

(
v2

2

c2
− v2

1

c2

)
=

1

2
E0

(
β2

2 − β2
1

)
= 0, 24E0 = 0, 123MeV,

(1.56)
where we have written the relationship using “relativistic” quantities – rest energy E0 and factor
β = v

c ; in our particular case we have β1 = 2
5 and β2 = 4

5 (using the approximate value of the
speed of light c = 3.108m/s).

In the relativistic case, work is directly equal to the difference of the total energies of the
bodies:

W = E2 − E1 = m2c
2 −m1c

2 = m0c
2 (γ2 − γ1) = E0 (γ2 − γ1) = 0.58E0 = 0.296MeV, (1.57)

where we have used the factor γ = (1− β2)−1/2 in the expression.
The resulting relations for non-relativistic, or relativistic, work are

W =
1

2
E0

(
β2

2 − β2
1

)
, resp. W = E0 (γ2 − γ1) . (1.58)

We obtain the non-relativistic relation from the relativistic one by Taylor expansion of the factor

γ to first order: γ =
(
1− β2

)−1/2 ≈ 1 + 1
2β

2.

1.4.3 1.10 Meson decay

The π−-meson (with rest energy E0π = 139, 6MeV ) decays at rest to the muon µ− (rest energy
E0µ = 105, 7MeV ) and the antineutrino ν̄. Determine the energy of the muon and antineutrino
and the released kinetic energy.

Solution: First, we calculate the total kinetic energy released. This is given by the simple
difference of the total rest energies before and after the decay – the mass loss must have been
converted to kinetic energy:

EK = E0π − (E0µ + E0ν̄) = E0π − E0µ = 33, 9MeV, (1.59)

where we put the rest energy of the antineutrino E0ν̄ equal to zero. Although present experi-
ments show that the neutrino mass is non-zero, it is also on the order of unity eV or less (i.e.,
about 8 orders of magnitude less than the rest masses of the π-meson and muon).

How is the kinetic energy distributed among the particles produced? For this we must use
the laws of conservation of momentum and energy:

pπ = pµ + pν̄ , Eπ = Eµ + Eν̄ . (1.60)

The π-meson was at rest at the beginning and so we have pπ = 0 and Eπ = E0π:

0 = pµ + pν̄ , E0π = Eµ + Eν̄ . (1.61)

The relativistic relationship between energy and momentum is

E2
0

c2
=
E2

c2
− p2 → p2 =

1

c2
(E2 − E2

0). (1.62)

The law of conservation of momentum implies the equality of the squares of the momenta,
p2
µ = p2

ν̄ , and after substituting from the above relation we get (again after putting E0ν̄ = 0)

1

c2
(E2

µ − E2
0µ) =

1

c2
(E2

ν̄ − E2
0ν̄) → E2

µ − E2
0µ = E2

ν̄ . (1.63)
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Thus we arrive at the following system of two equations with unknowns Eµ and Eν̄ :

E0π = Eµ + Eν̄ , E2
0µ = E2

µ − E2
ν̄ . (1.64)

After decomposing the right-hand side of the second equation into (Eµ − Eν̄)(Eµ + Eν̄) and
substituting from the first, we avoid solving the quadratic equation and obtain a set of linear
equations:

E0π = Eµ + Eν̄ ,
E2

0µ

E0π
= Eµ − Eν̄ . (1.65)

Adding and subtracting these equations gives the results:

Eµ =
1

2

(
E0π +

E2
0µ

E0π

)
= 109, 8MeV, Eν̄ =

1

2

(
E0π −

E2
0µ

E0π

)
= 29, 8MeV. (1.66)

Finally, it is still worth explicitly calculating the kinetic energy of the decayed particles simply
by subtracting the rest energies:

EKµ = Eµ − E0µ = 4, 1MeV, EKν̄ = Eν̄ = 29, 8MeV. (1.67)

We see that the massless antineutrino takes away most of the kinetic energy produced!

1.4.4 1.11 Binding energy of the alpha particle

Determine the binding energy of the particle α in MeV if the rest masses of the proton, neutron
and particle α are: mp = 1, 67265.10−27 kg, mn = 1, 67495.10−27 kg and mα = 6, 644.10−27 kg.

Solution: The binding energy is given by the difference of the rest energies of the product
and its constituents:

EV = mαc
2 − (2mp + 2mn)c2 = −4, 61.10−12 J = −28, 8MeV, (1.68)

where we used the approximate value of the speed of light c = 3.108m/s. The negative sign
indicates that this energy is released when the alpha particle is created. The conversion between
joules and electron volts is given by the following simple unit consideration

1 eV = (1 e).V =
1 e

C
C.V =

1 e

C
J = 1, 602.10−19J. (1.69)

1.4.5 1.12 Sun

The energy of solar radiation incident per unit time per square metre at the boundary of the
Earth’s atmosphere is the so-called solar constant K = 1327W.m−2, the mean distance of the
Earth from the Sun being d = 1, 5.1011m = 1AU . The source of solar energy is the so-called
hydrogen cycle, in which four hydrogen nuclei (protons) of relative atomic mass mrp = 1, 008
are converted into a helium nucleus (mrα = 4, 0039). Determine the mass loss of the Sun and
the amount of hydrogen burned per second. Estimate the time it would take to burn an amount
of hydrogen equivalent to the mass of the Sun today M� = 2.1030 kg.

Solution: First, we determine the total radiant power of the Sun P�. If at a distance d the
power K passes through one square meter, then the total power is obtained by multiplying by
the area of a sphere of radius d:

P� = 4πd2K = 3, 752.1026W = 3, 752.1014 TW. (1.70)
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This energy is taken from nuclear reactions inside the Sun, where a small fraction of the mass is
converted into energy (either kinetic energy subsequently radiated by electromagnetic radiation
or straight gamma radiation). The amount of converted matter is determined from equation
E = mc2, or its time derivative:

P =
dE

dt
=
dm

dt
c2 → dm

dt
=
P

c2
=

4πd2K

c2
= 4, 169.109 kg/s = 4, 169Mt/s, (1.71)

where we have used the approximate value of the speed of light c = 3.108m/s. This is therefore
the total mass loss of the Sun per unit time due to the conversion of mass to radiated energy.

We now determine the amount of hydrogen burned per unit time. One reaction of the
hydrogen cycle will provide the following amount of energy:

E1 = ∆mc2 = (4mp −mα)c2. (1.72)

The total number of reactions required in one second for a power P� is then

N =
P�
E1

=
4πd2K

(4mp −mα)c2
. (1.73)

In one reaction, 4mp hydrogen is burned, the total amount of hydrogen burned is

dmH

dt
= 4mpN = 4mp ·

4πd2K

(4mp −mα)c2
=

4πd2K

(1− mα
4mp

)c2
. (1.74)

In the last expression, only the mass ratio mα
mp

comes out, and thus the masses can be given in
any units, e.g. using relative atomic weights:

dmH

dt
=

4πd2K

(1− mrα
4mrp

)c2
= 5, 982.1011 kg/s = 598, 2Mt/s. (1.75)

If the Sun were made only of hydrogen, and nuclear reactions proceeded at the same rate the
whole time, then the hydrogen would burn out in time

T =
M�
dmH
dt

= 3, 343.1018 s = 106 bn. years. (1.76)

Stellar evolution is, of course, much more complicated, and current models predict a total burn
time of about 10 billion years for hydrogen.
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Chapter 2

Electrostatics

2.1 Formulae overview

• Coulomb’s law The force ~FC from a point charge Q acting on a point charge q is given
by

~FC =
q Q

4πε0

~r

r3
, FC =

1

4πε0

q Q

r2
, (2.1)

where ~r is the vector connecting the charge Q to the charge q (from Q to q), r is its
magnitude, and ε0

.
= 8, 854.10−12 F.m−1 is the vacuum permittivity.

q

Q

~r

~FC

Figure 2.1: Coulomb’s law (the direction of the force is plotted here for charges of the same polarity).

• Electrostatic energy W of a system of point charges:

W =
∑
α<β

1

4πε0

qαqβ
rαβ

, (2.2)

where qα are the individual magnitudes of the point charges and rαβ are the distances
between the individual charges.

q1

q2

q3

r12

r23

r13

Figure 2.2: Electrostatic energy of a system of three point charges.

• Gaussian law relates the flow of an electric field ~E through a closed surface with a total
charge Q inside the volume enclosed by the surface:∮

S

~E · d~S =
Q

ε0
. (2.3)
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The surface element is d~S = ~n dS, where ~n is a unit normal vector to the surface of area
dS, see also Figure 2.3. The normal ~n is oriented to point outward from the closed surface.

S

Q

~n

~E

dS

Figure 2.3: The closed surface S in Gaussian law with point charge Q and the surface element d~S = ~n dS.

If the electric field strength vector ~E is tangent to the surface S at a given location, then
it does not contribute to the integral, since ~E ⊥ ~n and hence ~E · d~S = 0. If, on the other
hand, the vector ~E is perpendicular to the surface S at a given location, then the scalar
product reduces to ~E · d~S = E dS.

In the case that we are working with point charges and some of the charges lie directly on
the surface, Gaussian’s law does not apply (we cannot actually decide whether or not the
charge lies inside the surface)1! This is because part of the electric field lines then “leak”
out of the surface and are not included in the total electric field flux.

• Electrostatic potential ϕ for point charges:

ϕ =
1

4πε0

∑
α

qα
Rα

, (2.4)

qα are the charges of individual particles. For a continuous charge distribution; in order
for linear, surface, and volume charge distributions:

ϕ =
1

4πε0

∫
l

τ

R
dl, ϕ =

1

4πε0

∫
S

σ

R
dS, ϕ =

1

4πε0

∫
V

ρ

R
dV, (2.5)

where τ , σ and ρ are, in order, the length, area, volume charge density functions. The
distance R (for point charges Rα) is the distance between the chosen point for determina-
tion of electrostatic potential ϕ at position vector ~r and the integrating element (dl, dS,
dV ) at position vector ~r′, i.e. R = |~r − ~r′|, see Figure 2.4. For point charges, the role ~r′

is played by the particle position vector ~rα, i.e., Rα = |~r − ~rα|.

dV

~r0

O
~r

~R = ~r − ~r0ρ(~r0)

'(~r) = ?

Figure 2.4: The vector shown ~R = ~r − ~r′ for determining the electrostatic (scalar) potential ϕ. The
vector ~r is the position vector of the point for determination ϕ(~r), and the vector ~r′ is the position vector
of the volume element dV .

1Similar problem happens with line and surface charges, if part of the curve or part of the surface with the
charges lies on the surface S in Gaussian’s law.
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In detail, the formulas have the following forms. For point charges:

ϕ(~r) =
1

4πε0

∑
α

qα
|~r − ~rα|

, (2.6)

and for a continuous distribution of charges:

ϕ(~r) =
1

4πε0

∫
l

τ(~r′)

|~r − ~r′|
dl, ϕ(~r) =

1

4πε0

∫
S

σ(~r′)

|~r − ~r′|
dS, ϕ(~r) =

1

4πε0

∫
V

ρ(~r′)

|~r − ~r′|
dV.

(2.7)

• Electric field ~E (in the static case): is defined as the (Coulombic) force acting on a
unit (test) charge:

~E =
~FC
q
. (2.8)

The electric field vector ~E can be obtained from the electrostatic potential ϕ:

~E = −gradϕ =

(
−∂ϕ
∂x

,−∂ϕ
∂y
,−∂ϕ

∂z

)
. (2.9)

Direct calculation for point charges:

~E =
1

4πε0

∑
α

qα
~Rα
R3
α

, (2.10)

and for a continuous charge distribution:

~E =
1

4πε0

∫
l
τ
~R

R3
dl, ~E =

1

4πε0

∫
S
σ
~R

R3
dS, ~E =

1

4πε0

∫
V
ρ
~R

R3
dV, (2.11)

where τ , σ and ρ are in turn functions of the length, area, volume charge density. The
vector ~R (for point charges ~Rα) is the distance between the electric field location ~E at
the position vector ~r and the integrating element (dl, dS, dV ) at the position vector ~r′,
i.e. ~R = ~r − ~r′, see Figure 2.5. For point charges, the role ~r′ is played by the particle
position vector ~rα, i.e., ~Rα = ~r − ~rα. The distance R is the magnitude of the vector ~R,
i.e. R = |~r − ~r′| (for point charges we have Rα = |~r − ~rα|).

dV

~r0

O

~r

~R = ~r − ~r0ρ(~r0)

~E(~r) = ?

Figure 2.5: Showing the vector ~R = ~r − ~r′ for determining the electric field ~E. Vector ~r is the position
vector of the point for determination of the value ~E(~r), vector ~r′ is the position vector of the volume
element dV .

In detail, the formulas have the following forms. For point charges:

~E(~r) =
1

4πε0

∑
α

qα
~r − ~rα
|~r − ~rα|3

(2.12)
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and for a continuous distribution of charges:

~E(~r) =
1

4πε0

∫
l
τ(~r′)

~r − ~r′

|~r − ~r′|3
dl,

~E(~r) =
1

4πε0

∫
S
σ(~r′)

~r − ~r′

|~r − ~r′|3
dS,

~E(~r) =
1

4πε0

∫
V
ρ(~r′)

~r − ~r′

|~r − ~r′|3
dV. (2.13)

• Multipole expansion of the electrostatic potential is given by

ϕ(~r) =
1

4πε0

[
Q

r
+
~p · ~r
r3

+
1

2

∑
i,j Qijxixj

r5
+ . . .

]
, (2.14)

where r is the magnitude of the position vector ~r, Q is the total charge, ~p is the dipole mo-
ment vector, and (Qij) is the quadrupole moment tensor. These quantities are determined
by the following formulae (for point charges and continuous volume charge distributions2,
respectively):

– Total charge:

Q =
∑
α

qα, Q =

∫
V
ρ(~r) dV, (2.15)

– Dipole moment:

~p =
∑
α

qα~rα, ~p =

∫
V
ρ(~r)~r dV, (2.16)

– Quadrupole moment:

Qij =
∑
α

qα
(
3xixj − δijr2

)
α
, Qij =

∫
V
ρ(~r)

(
3xixj − δijr2

)
dV, (2.17)

where qα are the charges of the individual particles, ~rα = (x1α, x2α, x3α) = (xα, yα, zα)
their position vectors, to simplify the notation we use the notation (xα, yα, zα) =
(x, y, z)α. The vector ~r = (x1, x2, x3) = (x, y, z) is the position vector of the volume
element dV , ρ(~r) is the volume charge density function.

• Electrical voltage is defined as the work of external forces ~F acting on a unit charge
along a path l:

U =
1

q

∫
l

~F · d~l, (2.18)

where d~l = ~t dl, dl is the line element and ~t is a unit tangent vector to the curve l. In
electrostatics, the only force acting on a charge is usually the electric force, ~F = q ~E, so
the formula is concretized to

U =

∫
l

~E · d~l. (2.19)

2For brevity, the formulae for linear and surface charge distributions are not given. The difference is only
in the substitution of the volume integral for the line or surface integral and in the substitution of the volume
charge density function for the linear or surface density.
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• Capacitance of a capacitor is defined as the charge on the capacitor per unit voltage:

C =
Q

U
. (2.20)

Units: capacitance C [F ] = [C.V −1], charge Q [C], voltage U [V ].

• Capacitance addition: The formulas for the series (left) and parallel (right) connections
(see Figure 2.6) of capacitors are

1

C
=

1

C1
+

1

C2
, C = C1 + C2. (2.21)

C1 C2

C1

C2

Figure 2.6: Capacitance addition of C1 and C2. On the left, there is the series connection, and on the
right, there is the parallel connection.

2.2 Coulomb’s Law

2.2.1 2.1 Balls on threads

Two identical small balls of masses m = 1 g hang from two threads of length l = 1m. If we
charge them with a same polarity charge of the same magnitude q, they will spread apart so
that the threads make a right angle. Determine the magnitude of the charge q.

mm

l l

~FC
~FC

~Fg
~Fg

~Fn
~Fn

Figure 2.7: Balls on the threads.

Solution: For the balls to be in equilibrium, the resultant of the gravitational ~Fg and

Coulomb ~FC forces must point in the direction of the threads (then they can be balanced by
the tension force ~Fn). The magnitude of the Coulomb force between two charges is generally
given by

FC =
1

4πε0

q1q2

r2
, (2.22)

where q1, q2 are the values of the individual charges and r is the distance between them. For
threads forming right angles and thus for the deflection of the individual threads by an angle
45◦, the magnitudes of the gravitational and Coulomb forces must be equal, FC = Fg. The
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distance between the balls is from the Pythagorean theorem r =
√

2l and the magnitudes of
the individual forces are then:

FC =
1

4πε0

q2

2l2
, Fg = mg. (2.23)

Expressing the charge q from the equation of equality of forces, we get

FC = Fg −→ q = ±
√

8πε0mg l = ±1, 48.10−6C, (2.24)

where we have used the value of the vacuum permittivity ε0 = 8, 854.10−12 F.m−1 and the
gravitational acceleration g = 9, 81m.s−2 for the numerical result.

2.2.2 2.2 Charged drops

Two identical water droplets have one excess electron each, and the force of electrical repulsion
is as big as the force of gravitational attraction. Determine the radius of the drops.

~FC
~Fg

~Fg
~FC

d

Figure 2.8: Droplets with an excess electron.

Solution: The spheres are repelled by the Coulomb force ~FC and attracted by the gravita-
tional force ~Fg, the magnitudes of these forces are generally given by

FC =
1

4πε0

q1q2

r2
, Fg = κ

m1m2

r2
, (2.25)

where q1, q2 are the individual charges, m1 and m2 are the masses of the bodies, and r is their
distance. These formulas are valid for spherically symmetrically distributed charge and mass
(Gauss theorem) – r is the distance of their centers. We consider here that the only excess
electron on the droplets is at their center. The formulas (2.25) are then specifically

FC =
1

4πε0

e2

d2
, Fg = κ

m2

d2
, (2.26)

where m is the masses of the individual droplets, e is the magnitude of the elementary electric
charge, and d is the distance of the droplet centers.

We express the mass of the droplets in terms of their density ρ and radius r:

m = ρV =
4

3
πr3ρ. (2.27)

From the equality of the magnitudes of the forces FC = Fg we express the radius of the droplets:

r = 6

√
9e2

64π3ε0κρ2
= 7, 63.10−5m = 76, 3µm, (2.28)

where we have used the values of the elementary electric charge e = 1, 602.10−19C, the permit-
tivity of the vacuum ε0 = 8, 854.10−12 F.m−1, the gravitational constant κ = 6, 674.10−11m3.kg−1.s−2

and the density of water ρ = 1000 kg.m−3 for the numerical result.
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2.3 Electrostatic energy

2.3.1 2.3 Three charges

The three charges −e, e, −e are placed at equal distances a in the order shown. Determine the
forces acting on each charge and the electrostatic energy of the system.

a a−e e −e

Figure 2.9: Three charges −e, e, −e at distances a from each other.

Solution: The Coulomb force ~FC from a point charge Q acting on a point charge q is given
by

~FC =
q Q

4πε0

~r

r3
, (2.29)

where ~r is the vector connecting charge Q to charge q (from Q to q) and r is its magnitude.
This notation then naturally expresses the property that charges of the same polarity repel and
charges of opposite polarity attract. Let us denote the force acting from the i-th charge to the
j-th charge as ~Fij . These forces are shown in Figure 2.10. Their magnitudes are

F12 = F21 = F23 = F31 =
1

4πε0

e2

a2
, F13 = F31 =

1

4πε0

e2

4a2
. (2.30)

−e e −e

1 2 3

~F31
~F21

~F12
~F32

~F23
~F13

Figure 2.10: The individual forces acting on the charges. The force ~Fij represents the force from the ith
charge acting on the jth charge.

If we denote F1, F2 and F3 the total magnitudes of the forces acting from the left on the
individual charges we get (according to the magnitudes of the partial forces ~Fij (2.30) and their
directions in Figure 2.10):

F1 = F3 =
1

4πε

(
e2

a2
− e2

(2a)2

)
=

1

4πε0

3e2

4a2
, F2 = 0. (2.31)

The directions of these resultant forces are shown in Figure 2.11.

−e e −e

~F1
~F3

Figure 2.11: Total forces acting on the charges. The force ~F2 is zero.

The electrostatic energy of the system is given by the general relation

W =
1

4πε0

∑
α<β

qαqβ
rαβ

, (2.32)

where qα are the charges on the individual particles and rαβ are their mutual distances. Here
specifically

W =
1

4πε0

(
q1q2

r12
+
q1q3

r13
+
q2q3

r23

)
=

1

4πε0

(
−e2

a
+
e2

2a
+
−e2

a

)
= − 1

4πε0

3e2

2a
. (2.33)
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2.3.2 2.4 Zero electrostatic energy

Find an arrangement of one proton and two electrons on a line such that the electrostatic energy
of the system is zero.

Solution: There are two possible non-equivalent arrangements of one proton and two elec-
trons on a straight line, see Figure 2.12. We have labeled the distances between the charges in
general a and b.

a b

e p e e e p

a b

Figure 2.12: Two arrangements of one proton and two electrons on a straight line.

The electrostatic energy for a system of three charges is

W =
1

4πε0

∑
α<β

qαqβ
rαβ

=
1

4πε0

(
q1q2

r12
+
q1q3

r13
+
q2q3

r23

)
, (2.34)

where qα are the charges on each particle and rαβ are their mutual distances.
For the electron-proton-electron arrangement we have the expression

W =
1

4πε0

(
−e2

a
+

e2

a+ b
+
−e2

b

)
= − e2

4πε0

a2 + b2 + ab

ab(a+ b)
. (2.35)

In the numerator we have the sum of all positive numbers (the distances a and b must be
considered positive since we used them as values for r12, r13 and r23, which are always positive),
so in the e-p-e arrangement the electrostatic energy W cannot be zero.

For the electron-electron-proton arrangement we get

W =
1

4πε0

(
e2

a
+
−e2

a+ b
+
−e2

b

)
=

e2

4πε0

b2 − a2 − ab
ab(a+ b)

. (2.36)

The electrostatic energy is zero, W = 0 just when

b2 − a2 − ab = 0 −→
(
b

a

)2

− b

a
− 1 = 0 −→

(
b

a

)
1,2

=
1±
√

5

2
. (2.37)

The ratio of positive distances must be positive, so the solution is the ratio of distances b
a = 1+

√
5

2
when the electrostatic energy W of the e-e-p arrangement is zero.

2.3.3 2.5 Charged tetrahedron

Find the energy required to place four electrons at the vertices of a tetrahedron with edge
a = 10−10m, with a proton at its center.

e

e
e

e p

Figure 2.13: A tetrahedron with electrons at its vertices and a proton at its center.

28



Solution: The electrostatic energy of a system of charges W is given by

W =
1

4πε0

∑
α<β

qαqβ
rαβ

, (2.38)

where qα are the charges on each particle and rαβ are their mutual distances.
We will not list here all ten terms of this sum for 5 charges. We will note that due to

the symmetry of the tetrahedron we have only two different kinds of interactions between the
charges. It is the interaction of the electrons at the vertices of the tetrahedron – they are all
equidistant along the length of the tetrahedron edge a, and there are six of these edges. The
second interaction is a proton in the center of the tetrahedron interacting with four electrons
at a distance r:

W =
1

4πε0

(
6
e2

a
+ 4
−e2

r

)
. (2.39)

The distance of the center of the tetrahedron from its vertices is3 r =
√

6
4 a, where a is the length

of its edge. After substitution:

W =
e2

4πε0

6− 8
√

2
3

a
= 1, 23.10−18 J, (2.40)

we used the values of the elementary electric charge e = 1, 602.10−19C and the vacuum permit-
tivity ε0 = 8, 854.10−12 F.m−1 for the numerical result.

2.3.4 2.6 Nuclear decay

The atomic nuclei of heavy elements can be thought of as spheres charged with a volume charge
density ρ = 4

3 · 1025C.m−3. How does the electrostatic energy change when a uranium 92U
nucleus symmetrically decays into two identical palladium 46Pd nuclei?

Solution: The electrostatic energy of a volume-charged sphere of radius R with constant
charge density ρ, or total charge on the sphere Q, is

W =
4πR5ρ2

15ε0
=

3

5

1

4πε0

Q2

R
. (2.41)

The charge of the uranium nucleus is QU = 92e and the charge of the palladium nucleus is
QPd = 46e = 1

2QU. Their radii are determined from the relation for the total charge Q of a
homogeneously charged sphere:

Q = ρV = ρ
4

3
πR3 −→ R = 3

√
3Q

4πρ
. (2.42)

Thus, the radii of the uranium and palladium nuclei are

RU = 3

√
69e

πρ
, RPd = 3

√
69e

2πρ
= RU

1
3
√

2
. (2.43)

The change in electrostatic energy ∆W is

∆W = WU − 2WPd =
3

5

1

4πε0

(
Q2

U

RU
− 2

Q2
Pd

RPd

)
=

3

5

1

4πε0

Q2
U

RU

(
1− 2

1
22

1
3√2

)

=
3

5

1

4πε0
Q2

U
3

√
πρ

69e

(
1− 1

3
√

4

)
= 7, 36.10−11 J, (2.44)

3Derivation of this fact deliberately omitted...
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where we have used the values of the elementary electric charge e = 1, 602.10−19C and the
vacuum permittivity ε0 = 8, 854.10−12 F.m−1 for the numerical result.

2.4 Gaussian law

2.4.1 2.7 Charge in a cube

A point charge is located a) in the center of a cube, b) in one of the corners of the cube.
Determine the flux of electric field through each of the walls of the cube.

Q

(a) Charge in the middle of the cube.

Q

(b) Charge in the corner of the cube.

Figure 2.14: Charges in cubes.

Solution: We will use Gauss’s law to solve this problem. This states that the flux of
electric field Φ through a closed surface S is proportional to the charge Q enclosed in that
surface:

Φ =

∮
S

~E · d~S =
Q

ε0
. (2.45)

If we consider the charge in the middle of the cube, we can take the surface of the cube as
the closed surface S in Gauss’s law. Thus the total flux of electric field ~E through the cube is
Φ = Q

ε0
. The symmetry of the problem says that the same electric field flux must flow through

each of the cube walls4. This flux is obviously equal to

Φ1 wall =
1

6
Φ =

Q

6ε0
. (2.46)

For the charge at the corner of the cube, the situation is more complicated because Gauss’s
law does not hold if the point charge lies on the chosen surface S. But we can determine the
flux through the three walls of the cube in which the charge lies directly from the definition of
the electric field flux:

Φ =

∫
S

~E · d~S. (2.47)

Electric field vectors ~E are radial – they always point directly away from or toward the charge.
This means that the vectors ~E are tangential to the walls in which the charge lies, see Figure
2.15.

4The cube is symmetric when rotated by multiples of right angles about axes passing through the center of
the cube (and the charge) perpendicular to the respective two cube walls.
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Q

~E

~E

Figure 2.15: The electric intensity vectors ~E for the charge in the corner of the cube are tangent to the
walls in which the charge lies.

When tangent to the walls, they are perpendicular to the normal vector of those walls,
~E ⊥ ~n. But then the flux through these walls is zero, Φ1 = 0, since the scalar products vanish
in the flux definition, ~E · d~S = ( ~E · ~n) dS.

To determine the flux of the remaining three faces, we surround the small cube with the
charge in the corner with seven other cubes of equal size to form one large cube, see Figure
2.16. We use this supercube as the surface S in Gauss’s law. The law is now valid; the charge
lies inside (in the middle of) the supercube.

Q

Figure 2.16: Eight cubes built around the charge.

The non-zero flux through one wall of the small cube will then be one quarter of the flux
through the large wall, which in turn is one sixth of the total flux through the supercube:

Φ1 malá stěna =
1

4
Φ1 velká stěna =

1

4

1

6

Q

ε0
=

Q

24ε0
. (2.48)

2.5 Electrostatic potential and electric field strength

2.5.1 2.8 Charged rod

A thin rod charged with linear charge density τ is located on the axis z between the points
z = a, z = −a. Determine the potential ϕ at the points on the axis x > 0.
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zO a−a

x

'(x) = ?

τ

Figure 2.17: The charged rod on axis z and the electrostatic potential ϕ induced by it on axis x.

Solution: The electrostatic potential of a linear charge distribution is determined using
the following relation:

ϕ =
1

4πε0

∫
l

τ

R
dl, (2.49)

where τ is the linear charge density and R is the distance between the potential location and
the line element dl, R = |~r−~r′| (we are determining the potential ϕ at the location ~r, vector ~r′

is the position vector of the line element dl).
The rod lies on the Cartesian axis z, the line element is dl = dz. The coordinates z, on

which the rod lies, are z ∈ 〈−a, a〉. The distance R is R =
√
x2 + z2, see figure 2.18.

zO

x

dl

R =

p

x2 + z2

Figure 2.18: Line element dl and its distance R from the point where we determine the electrostatic
potential ϕ

Substituting the above information into the formula for the electrostatic potential (2.49)
gives the integral:

4πε0 ϕ =

∫ a

−a

τ√
x2 + z2

dz =

∫ a

−a

τ

x
√

1 +
(
z
x

)2 dz = 2

∫ a

0

τ

x
√

1 +
(
z
x

)2 , (2.50)

where in the last modification we used the evenness of the function in the integrand. After
substitutions u = z

x , du = dz
x and u = sinh v, du = cosh v dv we arrive at the result:

4πε0 ϕ = 2τ

∫ a
x

0

du√
1 + u2

= 2τ

∫ argsinh a
x

0

cosh v dv√
1 + sinh2 v

= 2τ

∫ argsinh a
x

0
dv

= 2τ [v]
argsinh a

x
0 = 2τ argsinh

a

x
= 2τ ln

(
a

x
+

√
a2

x2
+ 1

)
. (2.51)

The final result is therefore

ϕ(x) =
τ

2πε0
ln

(
a

x
+

√
a2

x2
+ 1

)
. (2.52)
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2.5.2 2.9 Charged plates

Determine the potential ϕ at the centre of a charged plate Q if the plate is a) a circle of radius
R̄, b) a square of side a.

Q

' =?

R̄

(a) Circular plate.

' =?
a

Q

(b) Square plate.

Figure 2.19: Electrostatic potential in the middle of a circular and square plate.

Solution: The electrostatic potential of a planar body is determined by the following
relation:

ϕ =
1

4πε0

∫
S

σ

R
dS, (2.53)

where σ is the surface charge density and R is the distance between the potential location and
the surface element dS, R = |~r−~r′| (we are determining the potential ϕ at the location ~r, vector
~r′ is the position vector of the surface element dS).

Solution for a circular plate: Introduce the polar coordinates (r, α) starting at the
center of the plate. The plate is then at coordinates r ∈ 〈0, R̄〉 and α ∈ 〈0, 2π〉.

r

α

dS

Figure 2.20: Polar coordinate (r, α) in the circular plate, the surface element is dS = r dr dα.

The surface element in polar coordinates is dS = r dr dα. The distance R here is simply
R = r. The surface charge density here is constant σ = Q

πR̄2 = const. After plugging all this
information into the integral (2.53) for the electrostatic potential, we get:

4πε0 ϕ =

∫ R̄

0

∫ 2π

0

σ

r
r dr dα = σ

∫ R̄

0
dr

∫ 2π

0
dα = σR̄ 2π =

2Q

R̄
. (2.54)

The resulting expression for the electrostatic potential ϕ is

ϕ =
σR̄

2ε0
=

Q

2πR̄ ε0
. (2.55)

Solution for the square plate: Here we use the result of the previous example 2.8 (Section
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2.5.1) for the potential of a charged rod of length 2a at distance x from the rod on its axis:

ϕ(x) =
τ

2πε0
ln

(
a

x
+

√
a2

x2
+ 1

)
. (2.56)

Let us divide the square plate diagonally into four parts, see Figure 2.21 on the left. Because
of symmetry, each part will contribute equally by potential ϕpart to the total potential ϕ:

ϕ = 4ϕpart. (2.57)

Then we divide each of the sections into thin strips of width dx, see figure 2.21 on the right.

(a) We divide the cube diagonally into quarters.

x

x

x

(b) We divide a quarter of the plate into thin
strips of width dx. If their distance is x from
the center of the wafer, their length is 2x.

Figure 2.21: Division of a square plate.

Let the distance of the strip from the center of the plate be x, then the strips have length
2x. The total charge on the strip is dQ = σ dS = σ 2x dx. “Linear charge density” is then
dτ = dQ

l = dQ
2x = σ dx. Substituting these data into the formula for the potential of a charged

rod (2.56) gives the contribution to the potential

dϕ(x) =
σ dx

2πε0
ln

(
x

x
+

√
x2

x2
+ 1

)
=

σ

2πε0
ln
(

1 +
√

2
)
dx. (2.58)

We integrate this contribution dϕ to give the total potential of the section ϕpart. We need to
sum the contributions from the strips with distance x ∈ 〈0, a2 〉:

ϕpart =

∫ a/2

0
dϕ(x) =

∫ a/2

0

σ

2πε0
ln
(

1 +
√

2
)
dx =

σ

2πε0
ln
(

1 +
√

2
) a

2
. (2.59)

The surface charge density is σ = Q
S = Q

a2
. After substitution, we get the result:

ϕ = 4ϕpart =
σa

πε0
ln
(

1 +
√

2
)

=
Q

πa ε0
ln
(

1 +
√

2
)
. (2.60)

Addendum: Alternatively, we can calculate the potential at the center of a square plate
as in the case of a circular plate, i.e. by integration in polar(!) coordinates. Coming soon.

2.5.3 2.10 Axis of a charged circular disc

Determine the potential ϕ and the magnitude of the electric field E on the axis of a circular
disc of radius R̄ charged with an surface charge density σ.
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R̄

' =?; ~E =?

z

σ

Figure 2.22: Electrostatic potential ϕ and electric field strength ~E on the axis of the circular disc.

Solution: The electrostatic potential of a planar body is determined using the following
relation:

ϕ =
1

4πε0

∫
S

σ

R
dS, (2.61)

where σ is the surface charge density and R is the distance between the potential location and
the surface element dS, R = |~r−~r′| (we are determining the potential ϕ at the location ~r, vector
~r′ is the position vector of the surface element dS).

We introduce the polar coordinate (r, α) with origin at the center of the disc (and introduce
the Cartesian coordinate z along the disc axis). The disc is then at coordinates r ∈ 〈0, R̄〉 and
α ∈ 〈0, 2π〉.

R =

p

r2 + z2

dS

α

z

r

Figure 2.23: Distance R between the surface element dS and the the chosen point for determining the
electrostatic potential ϕ.

The surface element in polar coordinates is dS = r dr dα. The distance R here is R =√
r2 + z2, see Figure 2.23. The surface charge density here is constant σ = Q

πR̄2 = const. After
substituting this information into the integral (2.61) for the electrostatic potential, we get:

4πε0 ϕ =

∫ R̄

0

∫ 2π

0

σ√
r2 + z2

r dr dα = σ

∫ R̄

0

r√
r2 + z2

dr

∫ 2π

0
dα = 2πσ

∫ R̄

0

r√
r2 + z2

dr.

(2.62)
Substituting u = r2 + z2, du = 2r dr, we have:

4πε0 ϕ = 2πσ

∫ R̄2+z2

z2

du

2
√
u

= 2πσ
[√
u
]R̄2+z2

z2
= 2πσ

(√
R̄2 + z2 − |z|

)
. (2.63)

The resulting electrostatic potential is (after possibly substituting for the charge density σ):

ϕ(z) =
σ

2ε0

(√
R̄2 + z2 − |z|

)
=

Q

2πR̄2ε0

(√
R̄2 + z2 − |z|

)
. (2.64)
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The electric field ~E on the axis is obtained from the relation

~E = − gradϕ = −
(
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

)
. (2.65)

We must note, however, that we have calculated the potential ϕ only at points on the axis of
the disc – so we only know the functional values ϕ(x = 0, y = 0, z) for the constant coordinate
values x and y. Therefore, we cannot calculate the derivatives of ∂ϕ

∂x and ∂ϕ
∂y ! We have to

determine the electric field components Ex and Ey differently.
The rotational symmetry about the axis of the disc implies that these components must be

zero, Ex = Ey = 0. The resulting vector ~E is therefore

~E(z) =

(
0, 0,−dϕ

dz

)
(2.66)

and the component Ez is given by the expression

Ez = −dϕ
dz

= − σ

2ε0

(
z√

R̄2 + z2
− sgn z

)
. (2.67)

2.5.4 2.11 Hemispherical shell

Determine the magnitude of the electric field E at the center of a spherical shell of radius R̄ if
one half of it is charged with surface density σ.

~E =?

R̄

σ

Figure 2.24: The electric field ~E at the centre of a charged hemispherical shell.

Solution: The electric field ~E of a planar body is determined using the following relation:

~E =
1

4πε0

∫
S
σ
~R

R3
dS, (2.68)

where σ is the surface charge density and ~R is the vector connecting the potential location
given by the position vector ~r and the position of the surface element dS given by the vector
~r′, ~R = ~r − ~r′ (R is the magnitude of this vector, R = |~r − ~r′|).

Specifically, the vector ~R = (X,Y, Z) here has the form ~R = −~r′, since the intensity ~E is
determined at the origin of the coordinates, so ~r = 0 holds, see figure 2.25 on the left. At
the same time, rotational symmetry about the axis of the shell must imply that the resulting
electric field vector ~E must lie on the axis of the hemispherical shell. If we introduce Cartesian
coordinates as in Figure 2.25 on the right, then Ex = Ey = 0 will hold, hence ~E = (0, 0, Ez).
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dS
~R

~E =?

(a) Vector ~R connecting the surface element dS
with the point of determination of the electric
field ~E.

x

y

z

O

(b) Cartesian coordinates (x, y, z) with origin
at the center of the shell and axis z along the
shell axis.

Figure 2.25: Cartesian coordinates and vector ~R on the hemispherical shell.

The formula for the component Ez then looks like the following according to (2.68):

Ez =
1

4πε0

∫
S
σ
Z

R3
dS. (2.69)

If we introduce spherical coordinates (r, θ, ϕ) (see also Figure 2.26)

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ (2.70)

with origin at the center of the spherical shell, the hemisphere will be at the coordinates

r = R̄, θ ∈
〈

0,
π

2

〉
, ϕ ∈ 〈0, 2π〉. (2.71)

The surface element in spherical coordinates is (here we have constant r = R̄):

dS = r2 sin θ dθ dϕ = R̄2 sin θ dθ dϕ. (2.72)

x

y

z

O

P

'

θ r

Pxy

Figure 2.26: The spherical coordinates (r, θ, ϕ) of point P . The point Pxy represents the perpendicular
projection of the point P into the plane xy.

The actual calculation then looks as follows. In the integral (2.69) we use (2.70)-(2.72) and
~R = −~r′:

4πε0Ez =

∫ π/2

0

∫ 2π

0
σ
−R̄ cos θ

R̄3
R̄2 sin θ dα dθ = −σ

∫ π/2

0
sin θ cos θ dθ

∫ 2π

0
dα

= −2πσ

∫ π/2

0

1

2
sin 2θ dθ = 2πσ

[
1

4
cos 2θ

]π/2
0

= −πσ. (2.73)
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Thus, the value of Ez and the magnitude of | ~E| is

Ez = − σ

4ε0
−→ | ~E| = σ

4ε0
. (2.74)

2.5.5 2.13 Almost closed circle

A thin bar is bent into the shape of an almost closed circle of radius r = 0, 5m. A gap of width
d = 2 cm remains between the ends, and the rod carries a charge q = 3, 34.10−10C. Determine
the magnitude and direction of the electric field at the center of the circle.

~E =?

d

r

q

Figure 2.27: An almost closed circle.

Solution: The electric field of a linear charge distribution is determined using the following
relation:

~E =
1

4πε0

∫
l
τ
~R

R3
dl, (2.75)

where τ is the linear charge density and ~R is the vector connecting the potential location given
by the position vector ~r and the position of the line element dl given by the vector ~r′, ~R = ~r−~r′
(R is the magnitude of this vector, R = |~r − ~r′|).

Let us denote by α0 the central angle that the ends of the bar are at, see figure 2.28 on the
left. We can express this as sin α0

2 = d/2
r . The longitudinal charge density can then be expressed

as
τ =

q

(2π − α0)r
, (2.76)

where (2π − α0)r is the length of the rod.

α0

(a) The central angle α0 that marks the missing
segment of the circle.

x

y

O

αr

dl

(b) Cartesian and polar coordinates on the cir-
cle and the corresponding line element.

Figure 2.28: Coordinates on an almost closed circle.
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Specifically, the vector ~R = (X,Y, Z) here has the form ~R = −~r′, since the intensity ~E is
determined at the origin of the coordinates, so ~r = 0 holds. At the same time, mirror symmetry
about the plane that halves circle implies that the resulting electric field strength vector must lie
in this plane (and also in the plane of the circle, since this is a planar problem). If we introduce
Cartesian coordinates as in Figure 2.28 on the right it will be true that Ey = Ez = 0, hence
~E = (Ex, 0, 0). Then the formula for the component Ex according to (2.75) looks as follows:

Ex =
1

4πε0

∫
l
τ
X

R3
dl. (2.77)

In polar coordinates
x = r cosα, y = r sinα (2.78)

the bar extends in coordinates α ∈ 〈α0
2 , 2π −

α0
2 〉 and the line element is dl = r dα. The

vector ~r′ = (x, y, 0) in these coordinates has the expression ~r′ = (r cosα, r sinα, 0) and hence
~R = (−r cosα,−r sinα, 0) and R = r. After substituting all the above expressions into the
integral (2.77), we can calculate the value of Ex:

4πε0Ex =

∫ 2π−α0/2

α0/2
τ
−r cosα

r3
r dα = −τ

r
[sinα]

2π−α0/2
α0/2

=
τ

r

(
sin

α0

2
− sin

(
2π − α0

2

))
=

2τ

r
sin

α0

2
, (2.79)

where we have used the relations sin(2π + x) = sinx and sin(−x) = − sinx. After substituting
in the charge density τ from (2.76) we get

Ex =
1

4πε0

2 sin α0
2

(2π − α0)

q

r2
. (2.80)

This is the exact result for an arbitrarily large angle α0
5. The exercise assignment emphasizes

that this is a small gap, so let us consider α0 � 2π and make the following approximations. We
have 2π − α0 ≈ 2π, sin α0

2 ≈
α0
2 :

Ex ≈
1

4πε0

α0
2π q

r2
=

1

4πε0

q̃

r2
, (2.81)

where we denote the charge q̃ = α0
2π q, which represents the charge that would be on the missing

segment of the circle. Thus, the approximated result for the magnitude of the electric field
looks like the field from a point charge of magnitude q̃ located at the center of the missing circle
segment. And this is no coincidence, see Addendum.

Addendum: We could also solve the exercise using the superposition principle. We could
write the original electric field strength ~E as the sum of the electric fields of the full circle ~Efull

and of the small oppositely charged complement ~Egap, ~E = ~Efull + ~Egap, see Figure 2.29.

5We could still substitute for α0: sin α0
2

= d
2r

and α0 = 2arcsin d
2r

for α0 < π.
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=
~Eplné

τ τ

−τ

~E ~Emezera

+

Figure 2.29: Original electric field ~E as the sum of the electric fields of the solid circle ~Efull and of the
small oppositely charged complement ~Egap, ~E = ~Efull + ~Egap.

From symmetry, however, the electric field ofthe solid circle ~Efull is zero, ~Efull = 0. Thus,
the original electric field at the center of the circle is the same as the field from the oppositely
charged complement, ~E = ~Egap. The exact result (2.79), or (2.80), would be obtained by a very
similar calculation as in (2.79), i.e., by calculating the integral of

4πε0Ex = 4πε0Exmezera =

∫ α0/2

−α0/2
(−τ)

−r cosα

r3
r dα. (2.82)

We, however, make a straightforward approximation for the small gap. In this case, we can
consider the small segment of the circle as a point charge, since the center of the circle is far
enough away from the charges. The magnitude of this charge is −q̃ = (−q)α0

2π and hence the
magnitude of the electric field is approximately

Ex ≈
1

4πε0

q̃

r2
. (2.83)

2.5.6 2.14 Cut shell

Consider a spherical shell of radius R̄ charged with areal density σ. Around a selected point on
this surface, cut a small spherical cap of radius a� R̄. Determine the magnitude of the electric
field at the centre of the hole.

~E =?

R̄

2a

Figure 2.30: The electric field ~E at the center of the hole created by cutting the cap of the spherical
shell.

Solution: The rotational symmetry about the axis of the spherical shell (and the cut cap)
implies that the resulting electric field strength vector ~E will lie on this axis. If we introduce
Cartesian coordinates as in Figure 2.31, then ~E = (0, 0, Ez) will hold.
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O

x
y

z

Figure 2.31: Cartesian coordinates (x, y, z) in the truncated spherical shell.

Let’s determine the electric field component Ez by calculating the electrostatic potential ϕ
at an arbitrary location on the axis of the spherical shell, ϕ(z) and then deriving the electric
field from this by taking the derivative:

~E = −gradϕ, Ez = −dϕ
dz
. (2.84)

We start from the relation for the potential of a surface charged body

ϕ =
1

4πε0

∫
S

σ

R
dS, (2.85)

where σ is the surface charge density and R is the distance between the potential location and
the surface element dS, R = |~r−~r′| (we are determining the potential ϕ at the location ~r, vector
~r′ is the position vector of the surface element dS).

We introduce the spherical coordinates

x = r sin θ cosα, y = r sin θ sinα, z = r cos θ. (2.86)

Using the cosine theorem, the distance R is given by R =
√
z2 + R̄2 − 2zR̄ cos θ (z here rep-

resents the position on the axis z, not the position of the surface element dS, so we do not
substitute z for spherical coordinates), see Figure 2.32. The cut shell extends in coordinates
r = R̄, θ ∈ 〈θ0, π〉, α ∈ 〈0, 2π〉, where θ0 is half the central angle of the cut shell (again, see
Figure 2.32). The surface element in spherical coordinates is dS = r2 sin θ dθ dα.

θ0
R̄

θ

z

O

'(z) = ?

R =
p

R̄2 + z2 { 2zR̄ cos θ

Figure 2.32: Distance R expressed in terms of shell radius R̄, angle θ and position on axis z.

Substituting all of the above information into (2.85) yields the following double integral:

ϕ(z) =
1

4πε0

∫ 2π

0

∫ π

θ0

σR̄2 sin θ√
z2 + R̄2 − 2zR̄ cos θ

dα dθ. (2.87)
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After a relatively simple calculation

ϕ(z) =
σR̄2

2ε0

∫ π

θ0

sin θ√
z2 + R̄2 − 2zR̄ cos θ

dθ =

∣∣∣∣ u = − cos θ
du = sin θ dθ

∣∣∣∣ =

(2.88)

=
σR̄2

2ε0

∫ 1

− cos θ0

du√
z2 + R̄2 + 2zR̄u

=
σR̄2

2ε0

[
1

zR̄

√
z2 + R̄2 + 2zR̄u

]1

− cos θ0

, (2.89)

we obtain an expression for the potential

ϕ(z) =
σR̄

2ε0

|z + R̄| −
√
z2 + R̄2 − 2zR̄ cos θ0

z
=
σR̄2

ε0

1 + cos θ0

|z + R̄|+
√
z2 + R̄2 − 2zR̄ cos θ0

. (2.90)

By differentiation and subsequent algebraic modifications we arrive at the expression for the
electric field component Ez

6:

Ez(z) = −dϕ
dz

= . . . =
σ

2ε0

R̄2

z2

[
sgn(z + R̄)− R̄− z cos θ0√

z2 + R̄2 − 2zR̄ cos θ0

]
. (2.91)

This is the exact result for any large angle θ0. For z = R̄ cos θ0 (i.e., the point in the middle of
the canopy), we have

E(R̄ cos θ0) = . . . =
σ

2ε0

1

1 + sin θ0
. (2.92)

Using the radius of the cut canopy a, the angle θ0 is given by sin θ0 = a
R̄

. The result then
takes the form

E(R̄ cos θ0) =
σ

2ε0

1

1 + a
R̄

. (2.93)

For small a, we can simplify the result a little further by approximating (1 + x)−1 = 1− x to

E(R̄ cos θ0) ≈ σ

2ε0

(
1− a

R̄

)
. (2.94)

Addendum: Other interesting places on the z axis are: at the top of the missing cap, i.e.,
for z = R̄; in the middle of the spherical shell, i.e., for z = 0. For these locations we obtain the
following exact and approximate expressions:

E(R) =
σ

2ε0

(
1− sin

θ0

2

)
≈ σ

2ε0

(
1− a

2R̄

)
, (2.95)

E(0) =
σ

4ε0
sin2 θ0 ≈

σ

4ε0

a2

R̄2
, (2.96)

where we put sinx ≈ x and hence θ0 ≈ a
R to obtain the approximate expressions.

2.5.7 2.12 Soap bubble potential
2.15 Earth’s electrostatic field
2.16 Dielectric strength of air

A conducting soap bubble of radius R = 2 cm charged to potential ϕ1 = 104 V will form a water
droplet of radius r = 0, 05 cm when it bursts. Determine the potential of the drop.

6We differentiate the “left” expression for the potential ϕ using the identity z sgn(z+R̄) = |z+R̄|−R̄ sgn(z+R̄)
and convert the terms with square roots to the common denominator.

42



The electrostatic field strength near the surface of the Earth is E = 100V.m−1 and is directed
downward. Determine the charge and potential of the Earth.

What is the maximum charge that can be held on a metal sphere of radius R = 10 cm if the
dielectric strength of air is Emax = 30 kV.cm−1?

Solution: The electrostatic potential ϕ and the magnitude of the electric field strength E
from a spherically symmetrically distributed charge of total magnitude Q are given by

ϕ(r) =
1

4πε0

Q

r
, E(r) =

1

4πε0

Q

r2
, (2.97)

where r is the distance from the center of spherical symmetry. We use these relations to calculate
all three examples, see the Addendum for their derivation.

Example 2.12 Denote by ϕ2 the potential after the drop breaks. Thus we have

ϕ1 =
1

4πε0

Q

R
, ϕ2 =

1

4πε0

Q

r
, (2.98)

where we assume that the charge is spherically symmetrically distributed on the droplet and is
not lost when it bursts. After expressing Q we have

Q = 4πε0Rϕ1, Q = 4πε0rϕ2, (2.99)

and by comparing them we get the result

ϕ2 =
R

r
ϕ1 = 4.105 V = 400 kV. (2.100)

Example 2.15 Expressing the charge Q from the formula (2.97) on the right, we have

Q = 4πε0r
2E(r). (2.101)

Substituting in the radius of the Earth, r = RZ , we get the result

Q = 4πε0R
2
ZE(RZ) = 4, 52.105C, (2.102)

where we have used the value of the vacuum permittivity ε0 = 8, 854.10−12 F.m−1 and the Earth
radius RZ = 6378 km. Since the assignment says that the vector ~E points towards the Earth,
the total charge of the Earth must be negative, so in fact Q = −4, 52.105C (the formula for the
magnitude E actually works with the absolute value of the charge |Q|). The potential at the
surface of the Earth is

ϕ =
1

4πε0

Q

RZ
= RZE(RZ) = 6, 38.108 V, (2.103)

or ϕ = −6, 38.108 V taking into account the sign of the charge.

Example 2.16 The magnitude of the electric field E from the charged sphere is again given
by the relation (2.97) on the right. We require E(r) ≤ Emax to hold. The strongest electric field
is obviously for r = R, directly on the surface of the sphere. The resulting maximum charge
Qmax is then

Qmax = 4πε0R
2Emax = 3, 34.10−6C. (2.104)

Addendum: We now derive the formulas (2.97) for the potential ϕ and the electric field
strength ~E outside a spherically symmetrically distributed chargeQ. Let us start by determining
the electric field ~E using Gauss’s law ∮

S

~E · d~S =
Q

ε0
, (2.105)
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which relates the flow of electric field strength ~E through a closed surface S to the total charge
Q that is enclosed in that surface.

Let us first see what constraints the symmetry of the problem places on the form of the
electric field ~E. Spherical symmetry ensures that the vector ~E can only depend on the distance
from the center of spherical symmetry r – ~E(r) – the vectors ~E must be constant on spheres of
a given radius. What will be the direction of the vector ~E? Spherical symmetry allows only a
radial direction – a vector pointing directly to/from the center of symmetry: consider an axis
of symmetry connecting the center of spherical symmetry and the point at which we determine
the electric field ~E – then rotational symmetry about this axis ensures that the vector ~E must
lie on this axis, i.e. point in the radial direction.

We can now calculate the left-hand side of Gauss’s law (2.105). We choose the surface S
a sphere of radius r (where r is so large that all the charge already lies in this sphere) with
a centre agreeing with the centre of the symmetry. The vector ~E then points in the direction
d~S = ~n dS (~n is a unit normal vector to the surface element dS), i.e. ~E · d~S = E dS:∮

S

~E · d~S =

∮
S
E dS = E(r)

∮
S
dS = 4πr2E(r), (2.106)

where we have further exploited the fact that the magnitude of the electric field strength on the
surface of the sphere S is constant and can be factored out of the integral, and also the integral
of unity over the sphere is the area of the sphere 4πr2. If we plug this result into (2.105) and
express E(r), we get the result:

E(r) =
1

4πε0

Q

r2
. (2.107)

The formula for the vector ~E is obtained simply by multiplying E(r) by the unit vector pointing
in the radial direction7 – ~E = E(r)~rr :

~E(~r) =
Q

4πε0

~r

r3
. (2.108)

The potential ϕ is obtained by “solving” the equation

~E = −gradϕ. (2.109)

We know that the following general formula for α ∈ R holds:

grad rα = α rα−2 ~r, (2.110)

by putting α = −1 we get

grad

(
1

r

)
= − ~r

r3
, (2.111)

which is exactly the relation needed to solve (2.109). Therefore, the following holds

ϕ =
1

4πε0

Q

r
. (2.112)

7We have somewhat swept under the rug whether the direction ~E is radially outward from the center or
inward to the center. In Gauss’s law, we always choose normal vectors to point outward from a closed surface.
So here we have vectors ~n pointing away from the center of symmetry. For Q > 0 we need the vectors ~E and ~n
to point in the same direction, then the scalar product ~E · d~S = E dS is positive and the integral

∫
~E · d~S is also

positive (and then Gauss’ law gives two positive numbers in the equation). For Q < 0, the direction of ~E must
be opposite to the direction of ~n (i.e., ~E now points to the center), and then the scalar product ~E · d~S = −E dS
is negative and Gaussian’s law consistently gives two negative numbers in the equation.
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These relations can easily be generalized to situations where we ask what the electric field
will be not only outside but also inside a spherically symmetrically distributed charge. The only
thing that changes in Gauss’s law (2.105) is that the charge Q on the right hand side will now
depend on r, Q(r), and will represent the total charge enclosed in a sphere of radius r. The
resulting magnitude of the electric field strength (and self intensity) is then:

E(r) =
1

4πε0

Q(r)

r2
, ~E =

Q(r)

4πε0

~r

r3
. (2.113)

The potential is again given by the solution of equation ~E = −gradϕ, this time with the result

ϕ(r) =
1

4πε0

∫ ∞
r

Q(r′)

r′2
dr′. (2.114)

(For r large enough that all the charge is already contained in a sphere of radius r, i.e. Q(r) =
Qtotal, the formula (2.114) reduces to the simpler (2.112).)

Calculation of function Q(r). We calculate the charge contained in a sphere of radius r
(denote Vr and its surface as Sr) using the volume charge density function ρ(~r) as

Q(r) =

∫
Vr

ρ(~r′) dV, (2.115)

where ~r′ is the position vector of the volume element dV . In the spherically symmetric case,
however, the charge density must depend only on the distance from the center of symmetry,
ρ(r). Writing the volume element dV as dV = dr dS, where dr is the increment of the radial
coordinate r and dS is the surface element on the sphere of radius r. Then the volume integral
over the sphere can be decomposed as follows:

Q(r) =

∫
Vr

ρ(~r′) dV =

∫
Vr

ρ(~r′) dS dr′ =

∫ r

0

∫
Sr′

dS ρ(r′) dr′. (2.116)

After integrating over the surface of the sphere,
∫
Sr′

dS = 4πr′2, we get the relation

Q(r) =

∫ r

0
4πr′2ρ(r′) dr′. (2.117)

2.6 Electric dipole and quadrupole moment

2.6.1 2.17 Point charges

The point charges are arranged a) at the vertices of an equilateral triangle with side a in the
order q, q, −2q, b) in the vertices of a square of side a in the order −q, q, q, −q, c) in the order
−q, q, −q, q. Determine the electric dipole moment of the system.

a

a

q q

−2q

(a) Triangle.

q q

−q −q

a

a

(b) Polarized square.

q −q

−q q

a

a

(c) Symmetric square.

Figure 2.33: Dipole moment ~p of point charges.
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Solution: The formula for the dipole moment of a discrete point charge distribution is as
follows:

~p =
∑
α

qα~rα, (2.118)

where sum is over all charges and qα are the magnitudes and ~rα are the position vectors of the
corresponding charges. It holds that if the total charge of the system Q is zero, then the dipole
moment ~p does not depend on the choice of the origin of the coordinate system.

So let us introduce Cartesian coordinates so that we have the simplest possible calculation.
One possibility is shown in Figure 2.34.

q q

−2q

O

x

y

1 2

3

(a) Triangle.

q q

−q −q x

y

O

1 2

34

(b) Polarized square.

q −q

−q q x

y

O

1 2

34

(c) Symmetric square.

Figure 2.34: Cartesian coordinates (x, y, z) for individual point charge systems.

The dipole moment ~p for the triangle is then calculated as follows:

~p = q ~r1 + q ~r2 − 2q ~r3 = q
(
−a

2
, 0, 0

)
+ q

(a
2
, 0, 0

)
− 2q

(
0,

√
3a

2
, 0

)
=
(

0,−
√

3qa, 0
)
. (2.119)

For the polarized square we have:

~p = −q ~r1−q ~r2 +q ~r3 +q ~r4 = −q(0, 0, 0)−q(a, 0, 0)+q(a, a, 0)+q(0, a, 0) = (0, 2qa, 0). (2.120)

Finally, for the symmetric square:

~p = −q ~r1 + q ~r2 − q ~r3 + q ~r4 = −q(0, 0, 0) + q(a, 0, 0)− q(a, a, 0) + q(0, a, 0) = (0, 0, 0). (2.121)

In this case we have a total charge Q and a dipole moment ~p zero. The non-zero moment will
then only be the quadrupole moment, see Example 2.21 in Section 2.6.5.

2.6.2 2.18 Polarized rod

Determine the electric dipole moment of a thin rod of length l, a) one half of which is positively
charged and the other negatively charged with a linear charge density τ , b) whose charge density
increases linearly from −τ0 at one end to τ0 at the other end.

−τ +τ

l

(a) Constant charge density.

l

−τ0 +τ0

(b) Linear charge density.

Figure 2.35: Polarized rods.

Solution: The formula for the dipole moment of a continuous linear charge distribution is
as follows:

~p =

∫
l
τ ~r dl, (2.122)
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where τ is the linear charge density and ~r is the position vector of the line element dl. It holds
that if the total charge of the system Q is zero, then the dipole moment ~p does not depend on
the choice of the origin of the coordinate system.

Let us introduce a Cartesian coordinate x with origin at the center of the rod, see Figure
2.36. The rod is then located at coordinates x ∈ 〈− l

2 ,
l
2〉. The line element is then dl = dx and

its position vector is ~r = (x, 0, 0).

−τ +τ

O x
−

l

2

l

2

(a) Constant charge density.

−τ0 +τ0

O x
−

l

2

l

2

(b) Linear charge density.

Figure 2.36: Polarized rods with an established Cartesian coordinate x.

O x
−

l

2

l

2

dl

x

Figure 2.37: Line element dl at coordinate x in the rod.

Substituting the above information into the formula (2.122) for the dipole moment ~p, we get

~p =

∫ l
2

− l
2

τ(x)~r dx, ~p = (px, 0, 0), px =

∫ l
2

− l
2

τ(x)x dx, (2.123)

(The only non-zero component is px, since the only non-zero component of ~r = (x, 0, 0) is x.)
For a polarized rod where each half is charged with opposite charge density, we have the

following charge density function τ(x):

τ(x) =

{
−τ pro x ∈

〈
− l

2 , 0
〉

+τ pro x ∈
〈
0, l2
〉 (2.124)

Substituting into the integral (2.123), we have:

px =

∫ 0

− l
2

(−τ)x dx+

∫ l
2

0
τ x dx = −τ

[
x2

2

]0

− l
2

+ τ

[
x2

2

] l
2

0

= 2τ
l2

4

2
=
τ l2

4
. (2.125)

For a rod where the charge density varies linearly, the function τ(x) is generally of the form
τ(x) = ax + b, and τ(− l

2) = −τ0 and τ( l2) = +τ0 must hold. These conditions lead to the
function

τ(x) =
2τ0

l
x. (2.126)

When substituted into the integral (2.123):

px =

∫ l
2

− l
2

2τ0

l
x2 dx = 2

2τ0

l

∫ l
2

0
x2 dx = 2

2τ0

l

l3

8

3
=
τ0l

2

6
. (2.127)

2.6.3 2.19 Polarized sphere

The charge is distributed on the surface of a sphere of radius R such that one hemisphere
has a positive charge with density σ, the other hemisphere has a negative charge with density
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−σ. Determine the electric dipole moment of the sphere. What will this moment be if both
hemispheres are charged volumetrically with opposite charges of the same volume density ρ?

R
+σ; +ρ

−σ; −ρ

Figure 2.38: Dipole moment ~p of the surface and volume charged sphere.

Solution: The formulas for the dipole moment of a continuous area and volume charge
distribution are as follows:

~p =

∫
S
σ ~r dS, ~p =

∫
V
ρ~r dV, (2.128)

where σ and ρ are the area and volume charge densities, respectively, and ~r is the position
vector of the surface element dS and volume element dV , respectively. It holds that if the
total charge of the system Q is zero (which is obviously satisfied here from the symmetry of the
charge distribution), then the dipole moment ~p does not depend on the choice of the origin of
the coordinate system.

We introduce Cartesian coordinates as in Figure 2.39 on the left with the origin at the center
of the sphere and the plane xy merging with the plane that divides the sphere into two charged
halves.

x

y

z

O

(a) Cartesian coordinates (x, y, z) in a sphere.

x

y

z

O

P

'

θ r

Pxy

(b) Spherical coordinates (r, θ, ϕ).

Figure 2.39: Dipole moment ~p of a surface and volume charged sphere.

From the symmetry of the problem (rotation about the z axis), the resulting dipole moment
must lie on the z axis, i.e., ~p = (0, 0, pz). For the dipole moment component pz, according to
(2.128) we have the formula

pz =

∫
S
σ z dS, pz =

∫
V
ρ z dV, (2.129)

where z is the third component of the position vector ~r = (x, y, z). We further introduce
spherical coordinates as in Figure 2.39 on the right, i.e., using the following prescriptions,

x = r cosϕ sin θ, y = r sinϕ sin θ, z = r cos θ. (2.130)
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The surface and volume elements are then of the following forms:

dS = r2 sin θ dθ dϕ, dV = r2 sin θ dr dθ dϕ. (2.131)

The surface-charged sphere is then layed out at coordinates r = R, θ ∈ 〈0, π〉 (hemisphere
charged with +σ at θ ∈ 〈0, π2 〉, hemisphere with −σ at θ ∈ 〈π2 , π〉), ϕ ∈ 〈0, 2π〉. The actual
computation of the integral (2.129) after all of the above information has been inserted is then
as follows:

pz =

∫
S
σ(~r) z dS =

∫ π

0

∫ 2π

0
σ(θ)R cos θ R2 sin θ dθ dϕ

= R3

∫ 2π

0
dϕ

(∫ π
2

0
σ sin θ cos θ dθ +

∫ π

π
2

(−σ) sin θ cos θ dθ

)

= 2πR3σ

([
−1

4
cos 2θ

]π
2

0

−
[
−1

4
cos 2θ

]π
π
2

)

= 2πR3σ

(
−1

4

)
((−1− 1)− (1− (−1))) = 2πσR3. (2.132)

For a volume-charged sphere we have the ranges r ∈ 〈0, R〉, θ ∈ 〈0, π〉 (hemisphere charged
+ρ again to θ ∈ 〈0, π2 〉, hemisphere with −ρ to θ ∈ 〈π2 , π〉), ϕ ∈ 〈0, 2π〉. Calculation of the
integral (2.129):

pz =

∫
V
ρ(~r) z dV =

∫ R

0

∫ π

0

∫ 2π

0
ρ(θ) r cos θ r2 sin θ dr dθ dϕ

=

∫ R

0
r3 dr

∫ 2π

0
dϕ

(∫ π
2

0
ρ sin θ cos θ dθ +

∫ π

π
2

(−ρ) sin θ cos θ dθ

)

= 2π
R4

4
ρ

([
−1

4
cos 2θ

]π
2

0

−
[
−1

4
cos 2θ

]π
π
2

)

=
1

2
πR4ρ

(
−1

4

)
((−1− 1)− (1− (−1))) =

1

2
πρR4. (2.133)

Addendum: The symmetry arguments allow us to say straightforwardly that the form of
the dipole moment will be ~p = (0, 0, pz). However, we could safely forget them and calculate
the components px and py directly according to relations analogous to (2.129):

px =

∫
S
σ x dS, py =

∫
S
σ y dS, (2.134)

(and the same for the volume-charged sphere).

2.6.4 2.20 Force on electric dipole

An electric dipole with the moment ~p = (0, p, 0) lies at a point ~r = (x, 0, 0) in the electric field
of a point charge q located at the origin. Determine the force ~F and moment of the force ~D
that will act on the dipole.

x

y

z

q ~p

Figure 2.40: Point charge q and dipole ~p.

49



Solution: If we have a small electric dipole with dipole moment ~p in an external electric
field ~E, then the force acting on the dipole due to this field is given by the following equation

~F = (~p · ∇) ~E, (2.135)

i.e., using the ~p-grad operator, which is defined as follows:

~p-grad ~E = (~p · ∇) ~E = (~p · ∇Ex, ~p · ∇Ey, ~p · ∇Ez) =

(
3∑
i=1

pi
∂Ex
∂xi

,

3∑
i=1

pi
∂Ey
∂xi

,

3∑
i=1

pi
∂Ez
∂xi

)
.

(2.136)
The electric field vector ~E from a point charge of magnitude q located at the origin (or its

component expression) is:

~E(~r) =
q

4πε0

~r

r3
, Ei =

q

4πε0

xi
r3

(2.137)

Let us now calculate in general the derivatives ∂Ei
∂xj

for the field from the point charge (2.137),

which we will need to calculate the force ~F according to the relation (2.136):

∂Ei
∂xj

=
q

4πε0

∂

∂xj

(xi
r3

)
=

q

4πε0

[
∂xi
∂xj

1

r3
+ xi

∂

∂xj

(
1

r3

)]
, (2.138)

where we have used the product derivative rule. Let’s calculate the derivatives of each term in
the expression (2.138) above one by one:

∂xi
∂xj

= δij , δij =

{
0 pro i 6= j,
1 pro i = j

, (2.139)

where we introduced the Kronecker delta symbol δij . We differentiate the term r−3 as a com-
posite function:

∂r−3

∂xj
= −3r−4 ∂r

∂xj
, (2.140)

where we compute the derivative of the magnitude of the position vector r as follows:

∂r

∂xj
=

∂

∂xj

√
x2

1 + x2
2 + x2

3 =
1

2
√
x2

1 + x2
2 + x2

3

· 2xj =
xj
r
. (2.141)

After substituting these intermediate calculations into (2.138), we get

∂Ei
∂xj

=
q

4πε0

(
δij
r3
− 3

xixj
r5

)
. (2.142)

Since we have ~p = (0, p, 0) from the assignment, the general formula (2.136) for the force ~F
simplifies to

~F = (~p · ∇) ~E = p

(
∂Ex
∂y

,
∂Ey
∂y

,
∂Ez
∂y

)
. (2.143)

After substituting from the general formula for the derivative of ∂Ei
∂xj

(2.142):

~F =
pq

4πε0

(
−3

xy

r5
,

1

r3
− 3

y2

r5
,−3

yz

r5

)
. (2.144)
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This result represents the force acting on the dipole ~p = (0, p, 0) at any location ~r = (x, y, z).
For ~r = (x, 0, 0), i.e., y = 0 and z = 0, we get

~F (~r) =
pq

4πε0

(
0,

1

r3
, 0

)
=

1

4πε0

pq

r3
(0, 1, 0). (2.145)

The moment of the force ~D acting on the dipole ~p in the electric field ~E is

~D = ~p× ~E. (2.146)

Inserting ~p = (0, p, 0) and ~E = (Ex, 0, 0), we have

~D = (0, 0,−pEx) =
pq

4πε0

1

x2
(0, 0,−1), (2.147)

where we have substituted Ex = q
4πε0

1
x2

.

Addendum: The total force acting on a dipole can be illustrated by the composition of the
Coulombic forces acting on the individual charges of a “model” dipole, see Figure 2.41. Coming
soon.

x

y

z

~q

−~q

q

~F~q

~F
−~q

Figure 2.41: A point charge q and a model dipole ~p composed of charges q̃ and −q̃ separated by distances
d so that p = q̃d.

2.6.5 2.21 Quadrupole moment of point charges

The four charges q, −q, q, −q are respectively located in the corners of the square with side a.
Determine the principal quadrupole moments of the system.

a

a

q −q

−q q

Figure 2.42: Quadrupole moment of a system of point charges.

Solution: The formula for the quadrupole moments of a system of point charges is as
follows:

Qij =
∑
α

qα
(
3xixj − δijr2

)
α
, (2.148)

where qα are the charges of the individual particles and ~rα = (x1α, x2α, x3α) = (xα, yα, zα) are
their position vectors (purely to simplify the notation, we have factored out the index α after
the bracket, (. . .)α).

It holds that if the total charge of the system Q and the dipole moment ~p are zero, then the
quadrupole moments Qij do not depend on the choice of origin of the coordinate system. (Here
the dipole moment ~p is zero, see Example 2.17 in Section 2.6.1.)
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The principal quadrupole moments are obtained if we choose the Cartesian axes so that the
matrix Qij comes out diagonal. So we want the off-diagonal moments to be zero, the formulas
for them look like this:

Q12 = Q21 =
∑
α

qα (3xy)α , Q13 = Q31 =
∑
α

qα (3xz)α , Q23 = Q32 =
∑
α

qα (3yz)α .

(2.149)
Since we have a planar problem, let us choose the charges in the plane z = 0, hence Q13 =
Q23 = 0. If we now choose the axes x and y so that the charges lie alternately on these axes,
i.e. as in Figure 2.43, we also get Q12 = 0 (see below).

q −q

−q q

y

1 2

34

x

O

Figure 2.43: Coordinates for calculating the quadrupole moment of the system of point charges.

The position vectors of the individual particles have the following form,

~r1 =

(
−
√

2

2
a, 0, 0

)
, ~r2 =

(
0,−
√

2

2
a, 0

)
, ~r3 =

(√
2

2
a, 0, 0

)
, ~r4 =

(
0,

√
2

2
a, 0

)
,

(2.150)
and the products xαyα are thus always zero.

The general formula for the moment Q11 is as follows

Q11 =
∑
α

qα
(
3x2 − r2

)
α

=
∑
α

qα
(
2x2 − y2 − z2

)
α

; (2.151)

after substituting the values of the charges and position vectors (2.150):

Q11 = −q (2
a2

2
) + q (−a

2

2
)− q (2

a2

2
) + q (−a

2

2
) = −3qa2. (2.152)

The same calculation leads to the value Q22 = 3qa2. Since for diagonal quadrupole moments
the following holds

3∑
i=1

Qii = Q11 +Q22 +Q33 = 0, (2.153)

it must be Q33 = 0. The resulting matrix of quadrupole moments Qij is therefore of the form

Qij =

 −3qa2 0 0
0 3qa2 0
0 0 0

 , (2.154)

where on the diagonal are the corresponding principal quadrupole moments.

2.6.6 2.22 Quadrupole moment of the ellipsoid

Determine the electric quadrupole moment of a rotational ellipsoid.
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Solution: The formula for the quadrupole moments of a continuous volume charge distri-
bution is as follows:

Qij =

∫
V
ρ(~r)(3xixj − δijr2) dV, (2.155)

where ρ(~r) is the volume charge density function and ~r = (x1, x2, x3) = (x, y, z) is the position
vector of the volume element dV . Let us first calculate the quadrupole moment Q11, which is
given by (2.155), from the formula

Q11 =

∫
V
ρ(~r)(2x2 − y2 − z2)dV. (2.156)

The volume charge density ρ is here considered constant. We introduce Cartesian coordinates
with origin at the center of the ellipsoid and axes oriented in the directions of the ellipsoid axes.
Since the ellipsoid has a nonzero total charge, Q 6= 0, the resulting quadrupole moment Qij
(and also the dipole moment ~p) depends on the choice of the origin of the coordinates. It is
natural to choose the origin at the center of the ellipsoid for the reason that then the dipole
moment ~p of the ellipsoid comes out vanishing. The volume element is in Cartesian coordinates
dV = dx dy dz and the resulting relation for the moment Q11 is:

Q11 =

to∫ ∫ ∫
from

ρ
(
2x2 − y2 − z2

)
dx dy dz. (2.157)

The integration limits are chosen to satisfy the inequality

x2

a2
+
y2

a2
+
z2

b2
≤ 1. (2.158)

We now perform the substitution where “we make the ellipsoid a sphere”:

x = ax̃, y = aỹ, z = bz̃, dx dy dz = a2b dx̃ dỹ dz̃. (2.159)

After substituting in the integral, we have

Q11 =

to’∫ ∫ ∫
from’

ρ
(
2a2x̃2 − a2ỹ2 − b2z̃2

)
a2b dx̃ dỹ dz̃, (2.160)

where the new limits in coordinates x̃, ỹ and z̃ satisfy the inequality

x̃2 + ỹ2 + z̃2 ≤ 1, (2.161)

i.e., by substitution we have made the ellipsoid into a unit sphere. Next, we perform the
substitution into spherical coordinates

x̃ = r sin θ cosϕ, ỹ = r sin θ sinϕ, z̃ = r cos θ, dx̃ dỹ dz̃ = r2 sin θ dr dθ dϕ, (2.162)

where the ellipsoid (now a unit sphere in coordinates x̃, ỹ, z̃) is located at coordinates r ∈ 〈0, 1〉,
θ ∈ 〈0, π〉, ϕ ∈ 〈0, 2π〉. The integral now looks as follows:

Q11 =

∫ 1

0

∫ π

0

∫ 2π

0
ρ
(
2a2x̃2 − a2ỹ2 − b2z̃2

)
a2b r2 sin θ dr dθ dϕ, (2.163)
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where we have not yet substituted for x̃, ỹ, z̃ from (2.162). Now we are faced with the task of
finding the value of ∫

sphere

x̃2 dV = ?,

∫
sphere

ỹ2 dV = ?,

∫
sphere

z̃2 dV = ?, (2.164)

which could be calculated simply by substituting from (2.162) and integrating. But let’s try to
avoid this complicated computation by the following trick. The symmetry of the sphere must
imply ∫

sphere

x̃2 dV =

∫
sphere

ỹ2 dV =

∫
sphere

z̃2 dV (2.165)

and hence∫
sphere

x̃2 dV =
1

3

∫
sphere

x̃2 + ỹ2 + z̃2 dV =
1

3

∫
sphere

r2 dV =
1

3

∫ 1

0

∫ π

0

∫ 2π

0
r4 sin θ dr dθ dϕ

=
1

3

[
r5

5

]1

0

[− cos θ]π0 [ϕ]2π0 =
4π

15
. (2.166)

Now we just plug this result into (2.163) and get

Q11 =
4π

15
ρ
(
2a2 − a2 − b2

)
a2b =

4π

15
ρ a2b(a2 − b2). (2.167)

We can still express the result in terms of the total charge on the ellipsoid Q, which is

Q = ρV = ρ
4

3
πa2b, (2.168)

and after plugging it into (2.167) we have

Q11 =
1

5
Q(a2 − b2). (2.169)

Since the following holds for the diagonal quadrupole moments

3∑
i=1

Qii = Q11 +Q22 +Q33 = 0, (2.170)

and further from the symmetry of the ellipsoid we have Q11 = Q22, it must be Q33 = −2Q11:

Q33 = −2Q11 = −2

5
(a2 − b2). (2.171)

The off-diagonal quadrupole moments, which are given by

Qij =

∫
V

3ρ(~r)xixj dV, i 6= j, (2.172)

come out to be zero. If we perform analogous calculations up to equation (2.163) we would get
integrals in the variable ϕ of the form∫ 2π

0
sinϕdϕ, resp.

∫ 2π

0
cosϕdϕ, resp.

∫ 2π

0
sinϕ cosϕdϕ, (2.173)

which are vanishing.
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2.7 Capacitors

2.7.1 2.26, 2.28 and 2.29 Plate capacitor

How many electrons make up the charge of a sphere of mass m = 10−11 g if it is kept in
equilibrium in a plate capacitor whose plates are spaced apart d = 5mm and charged to a
voltage U = 76, 5V .

What area would the electrodes of a plate capacitor with a distance of d = 1mm have to have
for the capacitor to have a capacitance of C = 1F?

What is the force of attraction between the plates of the capacitor?

d
S;Q;+σ

S;−Q;−σ

Figure 2.44: Plate capacitor.

Solution: The magnitudes of the electric field strength E inside the plate capacitor, the
voltage U between the plates and the capacitance of this capacitor are given by the relations
(see the Appendix to this exercise for their derivation):

E =
σ

ε0
, U = E d =

σ

ε0
d, C = ε0

S

d
, (2.174)

where σ is the surface charge density on the plates of the capacitor, S is the area of the
plates (each of them), and d is the distance of these plates. The electric field vector ~E points
perpendicular to the plates of the capacitor.

Example 2.26 : If we place a charge of magnitude q between the plates of a capacitor, a
force of magnitude FE = q E = qUd will act on this charge. This force must be cancelled by the
gravitational force Fg = mg, i.e.

FE = Fg, q
U

d
= mg, q =

mgd

U
. (2.175)

If we write the charge q as n-times the elementary electric charge e, q = n e, we can write the
result as the number of elementary electric charges on the sphere n:

n =
mgd

Ue

.
= 40, (2.176)

where we have used the value of the gravitational acceleration g = 9, 81m.s−2 and the magnitude
of the elementary electric charge e = 1, 602.10−19C.

Example 2.28 : After expressing the area S from the relation (2.174) on the right, we have

S =
Cd

ε0
= 1, 13.108m2 = 113 km2, (2.177)

where we used the value of the vacuum permittivity ε0 = 8, 854.10−12 F.m−1.

55



Example 2.29 : We can solve the example in two ways. Either we start from the energy W
of the electrostatic field between the plates of the capacitor:

W =

∫
V

1

2
ε0
~E2 dV =

1

2
ε0E

2

∫
V
dV =

1

2
ε0E

2Sd =
1

2

(
ε0
S

d

)
(Ed)2 =

1

2
CU2. (2.178)

We will use the relation W = 1
2ε0E

2Sd. When the distance between the plates changes by
dx, the electrostatic field energy changes by dW = 1

2ε0E
2S dx (E and S are constant and

d(d) = dx). The change in this energy must come from the work done by moving the plates of
the capacitor apart (closer), i.e., dW = F dx and thus the relation for the force is

F =
1

2
ε0E

2S =
1

2

σ2S

ε0
=

1

2

Q2

ε0S
. (2.179)

Another way to get the result is to calculate the force dF = f dS acting on a small area dS
of one plate of the capacitor from the entire (infinitely) large other plate (f is called the force
density). The total force will then be

F =

∫
S
dF =

∫
S
f dS = f

∫
S
dS = fS, (2.180)

since the force density is constant everywhere. Force dF = E dq, where E = σ
2ε0

(We are directly
in the plane of one of the plates where the electric field strength is half! See the Addendum.)

and dq = σ dS, hence dF = σ2

2ε0
dS. Then f = σ2

2ε0
and hence F = fS = σ2

2ε0
S, which is the same

result as via the energy calculation.

Addendum: Let us now derive the relations (2.174) for electric field ~E, voltage U and
capacitance C. We begin by determining the electric field ~E from a single infinitely large
charged plane from Gauss’s law ∮

S

~E · d~S =
Q

ε0
, (2.181)

which relates the flux of electric field ~E through a closed surface S to the total charge Q that
is enclosed in that surface.

Let us see what constraints on the electric field ~E are imposed by the symmetry of the
problem. If we have an infinite charged plane, the electric field can only depend on the distance
z from this plane, ~E = ~E(z) – we have a translational symmetry in any direction along the
charged plane, which ensures that the vector ~E must be constant on planes parallel to the
charged plane. At the same time, the electric field must always point perpendicular to the
charged plane, since we have rotational symmetry about an axis perpendicular to the plane and
passing through the point where we determine the field ~E – the only direction of the vector
~E that is conserved in this rotation is the direction perpendicular to the plane. Reflection
symmetry through the charged plane provides the relation ~E(−z) = − ~E(z), i.e., the vector ~E
on the opposite side of the plane is opposite.

To apply Gauss’s law, we choose the surface S to be a cylindrical surface whose axis is
perpendicular to the charged plane, and the bases have the same distance z from this plane, see
Figure 2.45.
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Sside

Sbase

z

z

σ

Figure 2.45: Closed cylindrical surface S in Gaussian law to determine the magnitude of the electric field
E around an infinite charged plane. We have denoted the area of the cylinder side as Sside and the area
of each of the bases as Sbase.

Let us now split the integral on the left-hand side (2.181) separately into integration over
the side and over the bases: ∮

S

~E · d~S =

∫
Sbases

~E · d~S +

∫
Sside

~E · d~S. (2.182)

Since the vectors ~E point perpendicular to the charged plane, the total flux through the cylinder
side is zero, since ~E · d~S = ~E · ~n dS = 0, where ~n is the unit normal vector to the surface dS.
On the other hand, ~E · d~S = E dS holds for the bases since the vector ~E points in the direction
d~S, see Figure 2.46.

σ

dS

~n

dS

~n

~E

~E

~n

~E

dS

Figure 2.46: Directions of the vectors ~E and d~S = ~n dS for each base and cylinder side. The vector ~n is
the unit normal vector to the element dS.

We continue with the manipulations (2.182):∮
S

~E · d~S =

∫
Sbases

~E · d~S +

∫
Sside

~E · d~S =

∫
Sbases

E dS = E(z)

∫
Sbases

dS = 2SbaseE(z), (2.183)

where we have taken advantage of the fact that on the substrate (at equal distances from the
charged plane) the magnitude of the electric field strength E(z) is constant, and we can therefore
put it in front of the integral, and the integral of unity over the surface S is the area of that
surface 2Sbase.

The charge Q enclosed in the surface S on the right-hand side of Gauss’s law (2.181) is
simply Q = σSbase. Gauss’s law then gives:

2E(z)Sbase =
σSbase

ε0
−→ E =

σ

2ε0
, (2.184)

where we have expressed the magnitude of the electric field strength E and shown that it does
not depend on the distance from the plane z.
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Remark: We can achieve this result without using Gauss’s law by directly integrating the contri-
butions d ~E to the electric field from each part of the charged plane:

~E =

∫
S

d ~E =
1

4πε0

∫
S

σ
~R

R3
dS, (2.185)

where ~R is the vector connecting the electric field location ~E given by the position vector ~r and the
position of the surface element dS given by the vector ~r′, ~R = ~r − ~r′ (R is the magnitude of this vector,
R = |~r − ~r′|), see figure 2.47 on the left.

Let us introduce cylindrical coordinates (r, ϕ, z) as in figure 2.47 on the right, i.e., the origin located
in the charged plane and the axis z pointing perpendicular to this plane. Then the charged plane is at
coordinates z = 0, r ∈ 〈0,+∞〉, ϕ ∈ 〈0, 2π〉. The surface element in polar coordinates is dS = r dr dϕ.

For the symmetry reasons discussed above, the vector ~E must have the form ~E = (0, 0, Ez). The distance
R between the surface element dS and the electric field location ~r = (0, 0, z) is R =

√
r2 + z2. The vector

~R expressed in cylindrical coordinates has the form ~R = (−r cosϕ,−r sinϕ, z).

σ

O

~E(~r) = ?

~r

dS
~r0

~R

(a) Vector ~R = ~r − ~r′ as a vector connecting
the surface element dS and the point where we
determine the electric field ~E.

σ

z

r

'

O

(b) Cylindrical coordinates (r, ϕ, z) introduced
as polar coordinates (r, ϕ) in the charged plane
and Cartesian coordinate z perpendicular to
this plane.

Figure 2.47: Charged plane – vector ~R and coordinate (r, ϕ, z).

Substituting all the above information into (2.185) and calculating the single non-zero component
Ez we get:

Ez =
1

4πε0

∫ +∞

0

∫ 2π

0

σ z

(r2 + z2)3/2
r dr dϕ =

zσ

2ε0

∫ +∞

0

r dr

(r2 + z2)3/2
(2.186)

After substituting u = r2 + z2, du = 2r dr we have

Ez =
zσ

2ε0

∫ +∞

z2

du

u3/2
=

zσ

4ε0

[
−2

1√
u

]+∞
z2

=
zσ

2ε0

1

|z|
=

σ

2ε
sgn z, (2.187)

i.e., the same result as from Gauss’s law (now with a sign).

We must now add the electric fields from two oppositely charged infinite plates. The situation
is illustrated and described in Figure 2.48. For our purposes, we need the result that the field
inside the capacitor is twice as strong compared to the situation with only one charged plate,
E = σ

ε0
.
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+σ

−σ

~E+σ

~E
−σ

~E

Figure 2.48: Vectors of electric field strengths from each oppositely charged plane (in gray, ~E+σ from the

positively charged plane and ~E−σ from the negatively charged plane) and their resulting superposition

(in black, ~E). The result is a zero field outside the capacitor, ~Eoutside = 0; a twice strong field inside the
capacitor, Einside = σ

ε0
; directly on the plates is the field Eplate = σ

2ε0
!

Now we must integrate this electric field to obtain the voltage between the electrodes. The
definition of the voltage between two points along the path l is

U =
1

q

∫
l

~F · d~l, (2.188)

where ~F is the force acting on the charge q and d~l = ~t dl is the line element pointing tangentially
to the curve (~t is the unit tangent vector). Thus, the voltage U is the work done along the path
l to move a unit charge.

The only force acting inside the capacitor is from the electric field, ~F = q ~E. We choose a
line perpendicular to the electrodes as the curve l, see Figure 2.49. Then the vectors ~E and d~l
point in the same direction (again, see Figure 2.49), and ~E · d~l = E dl holds. Thus, we have

U =
1

q

∫
l

~F · d~l =

∫
l

~E · d~l =

∫
l
E dl = E

∫
l
dl = E d =

σ

ε0
d, (2.189)

where, in addition, we have taken advantage of the fact that the electric field E is constant and
the integral of unity

∫
l dl is the length of the curve, i.e. the distance of the plates, d.

+σ

−σ

l

dl

~t

~E

Figure 2.49: The section l connecting the plates of the capacitor for calculating the voltage U . Vectors
~E and d~l = ~t dl (where ~t is the unit tangent vector to curve l) point in the same direction.

The capacitance C of a plate capacitor is by definition C = Q
U :

C =
Q

U
=
σS
σ
ε0
d

= ε0
S

d
. (2.190)
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2.7.2 2.30 and 2.33 Cylindrical capacitor and Geiger-Müller counter

Consider a cylindrical capacitor with electrode radii R1 = 3 cm, R2 = 10 cm charged to a voltage
U = 450V . Determine the charge per unit length, the surface charge density on each cylinder,
and the electrostatic field strength at the center of the distance between the cylinders.

The capacitor (Geiger-Müller counter) consists of a wire of radius R1 = 5mm and a coaxial
cylinder of radius R2 = 5 cm. To what maximum voltage can we charge the capacitor if the
breakdown voltage is air Emax = 3 kV.cm−1? How will the voltage between the electrodes
change if we decrease the radius of the inner electrode?

R1

R2

Q
−Q

Figure 2.50: Cylindrical capacitor.

Solution: We first determine the electric field ~E and voltage U between the electrodes
of infinitely long cylindrical capacitor and then its capacitance C for its length section l with
radii of inner and outer electrodes R1 and R2. We then apply the resulting formulas to the
specific problems in exercises 2.30 and 2.33.

Let a segment of length l of the inner electrode be charged to charge Q and the outer
electrode to charge −Q. We can then define the linear charge density at the electrodes as
τ = Q

l , that is, the charge per unit length of the electrode; and also the surface charge densities

σinner =
Q

Sinner
=

Q

2πR1l
=

τ

2πR1
, σouter =

Q

Souter
=

Q

2πR2l
=

τ

2πR2
(2.191)

on the inner and outer electrodes of areas Sinner and Souter (these are the areas of the length
segment l).

We start by determining the electric field ~E between the electrodes (and then integrate this
to determine the voltage U between the electrodes) from Gauss’s law∮

S

~E · d~S =
Q

ε0
, (2.192)

which relates the flux of electric field strength ~E through a closed surface S to the total charge
Q that is enclosed in that surface.

Let us see what constraints on the electric field ~E the symmetry of the problem imposes.
If we introduce naturally cylindrical coordinates (r, ϕ, z) (as in figure 2.51), then rotational
symmetry about the z axis (the axis of the capacitor) forbids the dependence of the magnitude
E on the angle ϕ and translational symmetry along the axis of the capacitor (axis z) precludes
dependence on the coordinate z (this is true only for an infinite capacitor). Thus, the magnitude
of the electric field can depend only on the distance from the axis of symmetry, E(r).
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z

r

'

Figure 2.51: Cylindrical coordinates (r, ϕ, z) in a cylindrical capacitor.

Mirror symmetry about planes perpendicular to the z axis implies that the vector ~E must
lie in these planes. At the same time, mirror symmetry about the planes in which the axis z
lies implies again that the vectors ~E must lie in these planes. For the planes of symmetry, see
Figure 2.52. This leads to the only admissible direction, which is the radial direction – in the
direction “axis r”.

(a) A plane of symmetry perpendicular to the
axis z.

(b) The z axis lies in the plane of symmetry.

Figure 2.52: Role of mirror symmetry to determine the direction of the electric field vector ~E.

Next, we need a surface S for Gaussian law. Consider a cylindrical surface of height l of
general radius r, R1 < r < R2, concentric with the electrodes of the capacitor, see figure 2.53
on the left.

61



r

S

(a) Cylindrical surface S of radius r for Gaus-
sian law.

r ~n
~E

dS

S

(b) Directions of the electric field ~E and the
normal vector ~n to the element dS on the cylin-
der side of radius r.

Figure 2.53: Use of Gauss’s law to determine the electric field ~E.

Now we can start to manipulate the left-hand side of Gauss’s law (2.192). First, we split
the integral over the cylinder S into an integration over the side and the cylinder’s bases:∮

S

~E · d~S =

∫
Sside

~E · d~S +

∫
Sbases

~E · d~S, (2.193)

where the surface element is d~S = ~n dS; ~n is the unit normal vector. Since the vector ~E is radial,
i.e., it lies in the cylinder bases S, the scalar product vanishes under this integral, ~E · d~S = 0:∫

Sbases

~E · d~S = 0. (2.194)

The situation on the cylinder side S is shown in the figure 2.53 on the right. Here the vector
~E points in the direction d~S (in the direction ~n) and hence ~E · d~S = E dS holds. At the same
time, the magnitude of the electric field strength E depends only on the coordinate r, E(r), so
it is constant on the cylinder side S and can be factored out from the integral:∫

Sside

~E · d~S =

∫
Sside

E dS = E(r)

∫
Sside

dS = E(r) 2πrl. (2.195)

(We have used the formula for the cylinder’s side area, S =
∫
dS = 2πrl.) The total charge

enclosed in the cylindrical surface S is just Q (it is the charge at length l, and the cylinder S
also has length l). Substituting the result (2.195) into Gauss’s law (2.192) and expressing the
magnitude of the electric field E(r), we get

E(r) =
Q

2πrlε0
=

τ

2πrε0
. (2.196)

Now we must integrate this electric field to obtain the voltage between the electrodes. The
definition of the voltage between two points along the path l is

U =
1

q

∫
l

~F · d~l, (2.197)

where ~F is the force acting on the charge q and d~l = ~t dl is the line element pointing tangentially
to the curve (~t is the unit tangent vector). Thus, the voltage U is the work done along the path
l to move a unit charge.

The only force acting inside the capacitor is from the electric field, ~F = q ~E. We choose the
curve l as the radial line joining the inner and outer electrodes (see figure 2.54 on the left), and
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when the radial coordinate r is introduced, the line is at r ∈ 〈R1, R2〉 (see figure 2.54 in the
middle) and the line element is dl = dr. Then the vectors ~E and d~l point in the same direction
(see figure 2.54 on the right) and ~E · d~l = E dl holds. Thus, we have

U =
1

q

∫
l

~F · d~l =

∫
l

~E · d~l =

∫
l
E dl =

∫ R2

R1

E(r) dr. (2.198)

l

(a) The line l connecting the in-
ner and outer electrode.

rO R1 R2

(b) Radial coordinate r.

rO

dl ~t

~E

(c) Vectors ~E and d~l = ~t dl
point in the same direction.

Figure 2.54: The curve l, its parameterization and the vectors ~E and d~l shown.

After substituting for E(r) from (2.196), we can easily calculate the voltage U :

U =

∫ R2

R1

Q

2πrlε0
dr =

Q

2πlε0
[ln r]R2

R1
=

Q

2πlε0
ln
R2

R1
=

τ

2πε0
ln
R2

R1
. (2.199)

The capacitance of a section of length l of a cylindrical capacitor can be obtained trivially
from the definition C = Q

U , i.e.

C =
Q

U
=

2πlε0

ln R2
R1

,
C

l
=

2πε0

ln R2
R1

, (2.200)

where on the right we have given the capacity C/l per unit length.
And now to the actual exercises. In the exercise 2.30 we simply express the linear

charge density τ from the relation (2.199):

τ = 2πε0
U

ln R2
R1

= 2, 08.10−8C.m−1, (2.201)

where we have used the value of the vacuum permittivity ε0 = 8, 854.10−12 F.m−1. The surface
charge densities according to (2.191) are

σinner =
τ

2πR1
= 1, 10.10−7C.m−2, σouter =

τ

2πR2
= 3, 31.10−8C.m−2. (2.202)

The electric field strength for r = R1+R2
2 is according to (2.196)

E

(
R1 +R2

2

)
=

τ

π(R1 +R2)ε0
= 5, 75 kV.m−1. (2.203)

In the exercise 2.33, we need to express the electric field of E(r) in terms of the voltage
across the capacitor, i.e. we combine the relations (2.196) and (2.199):

E(r) =
U

ln R2
R1

1

r
. (2.204)
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We see that the strongest electric field is at the inner electrode for r = R1. Our limit given by
the breakdown voltage of air Emax = 30 kV.cm−1 will therefore be E(R1) ≤ Emax, giving the
maximum voltage

Umax = R1 ln
R2

R1
Emax = 34, 5 kV. (2.205)

2.7.3 2.31 Spherical capacitor

Determine the voltage between two concentric spheres of radii R1 < R2 and charges Q1, Q2.

R1

R2

Q1

Q2

Figure 2.55: Spherical electrodes.

Solution: The magnitude of the electric field of a spherically symmetric charge distribution
is

E(r) =
1

4πε0

Q(r)

r2
, (2.206)

where Q(r) is the total charge enclosed in a sphere of radius r. The directions of the electric
field vectors are radial – pointing from/to the center of spherical symmetry. See the Addendum
in section 2.5.7 for the derivation. We now integrate this electric field to obtain the voltage
between the spherical electrodes. The definition of the voltage between two points along the
path l is

U =
1

q

∫
l

~F · d~l, (2.207)

where ~F is the force acting on the charge q and d~l = ~t dl is the line element pointing tangentially
to the curve (~t is a unit tangent vector). Thus, the voltage U is the work done along the path
l to move a unit charge.

The only force acting inside the capacitor is from the electric field, ~F = q ~E. We choose the
curve l as a radial line joining the inner and outer electrodes (see figure 2.56 on the left), and
when the radial coordinate r is introduced, the line extends over r ∈ 〈R1, R2〉 (see figure 2.56
in the middle) and the line element is dl = dr. Then the vectors ~E and d~l point in the same
direction (see figure 2.56 on the right) and ~E · d~l = E dl holds. Thus, we have

U =
1

q

∫
l

~F · d~l =

∫
l

~E · d~l =

∫
l
E dl =

∫ R2

R1

E(r) dr. (2.208)
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l

(a) The path l connecting the
inner and outer electrode.

rO R1 R2

(b) Radial coordinate r.

rO

dl ~t

~E

(c) Vectors ~E and d~l = ~t dl
point in the same direction.

Figure 2.56: The curve l, its parametrization and the vectors ~E and d~l shown.

Substituting for E(r) from (2.206), where we consider Q(r) = Q1 (since for r ∈ 〈R1, R2〉
the charge enclosed in a sphere of radius r is simply the charge on the inner electrode Q1), we
easily calculate the voltage U :

U =

∫
l

~E · d~l =

∫
l
E dl =

∫ R2

R1

E(r) dr =
Q1

4πε0

∫ R2

R1

dr

r2
=

Q1

4πε0

[
−1

r

]R2

R1

=
Q1

4πε0

(
1

R1
− 1

R2

)
.

(2.209)

Addendum: If we want to know the capacitance of a spherical capacitor, we put Q1 = Q
(and Q2 = −Q) and knowing the voltage U (2.208) we can easily determine the capacitance
C = Q

U from its definition:

C =
Q

U
=

4πε0
1
R1
− 1

R2

=
4πR1R2ε0

R2 −R1
. (2.210)

2.7.4 2.32 Line capacitance

Determine the capacitance of a line formed by two parallel wires of length l = 9 km, radius
r = 1mm and mutual distance d = 15 cm.

+τ
−τ

d

2r

Figure 2.57: Capacity of power lines.

Solution: The magnitude of the electric field E from a charged cylindrical conductor (see
section 2.7.2 for derivation) is given by

E =
τ

2πrε0
, (2.211)

where τ is the linear charge density on each conductor, r is the radius of the conductor. The
direction of the vector ~E is always radial from/to the axis/e of the cylindrical conductor. To
determine the total capacitance of the conductor C, we need to find the voltage U between the
conductors, which is obtained by integrating the electric field ~E between the conductors.

Let the conductors be charged with a constant linear charge density +τ or −τ , see Figure
2.57. Let’s denote the electric fields from these conductors by ~E1 (from conductor +τ) and ~E2

(from conductor −τ). The definition of the voltage between two points along the path l is

U =
1

q

∫
l

~F · d~l, (2.212)
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where ~F is the force acting on the charge q and d~l = ~t dl is the line element pointing tangentially
to the curve (~t is a unit tangent vector). Thus, the voltage U is the work done along the path
l to move a unit charge.

The only force acting inside the capacitor is from the electric field, ~F = q ~E, where ~E =
~E1 + ~E2 is the total electric field from the conductors. We choose the shortest line segment
connecting the left and right wires as the curve l, see Figure 2.58.

+τ
−τ

l

Figure 2.58: Curve l for integrating the voltage U between the wires.

Introducing the Cartesian coordinate x as in Figure 2.59, the line l extends at x ∈ 〈r, d− r〉.
The line element is dl = dx. The vectors ~E = ~E1 + ~E2 and d~l point in the same direction (since
~E1 points away from the positively charged conductor, i.e., in the positive direction of the x
axis, and ~E2 points toward the negatively charged conductor, i.e., also in the positive direction
of the x axis, see Figure 2.60), and thus ~E · d~l = E dl holds. Thus, we have

U =
1

q

∫
l

~F · d~l =

∫
l

~E · d~l =

∫
l
E dl =

∫ d−r

r
E(x) dx. (2.213)

xO r d− r d

+τ
−τ

Figure 2.59: Cartesian coordinate x for the line capacitance calculation.

1 2

dl

~t+τ
−τ

l

~E1
~E2

Figure 2.60: The line element dl and its associated vectors d~l = ~t dl, ~E1 and ~E2. The electric field
~E1 is from the left (positively charged) conductor, the field ~E2 is from the right (negatively charged)
conductor.

The magnitudes of the electric fields E1(x) and E2(x) as a function of the position x between
the conductors are obtained by substituting the correct distance r into the relation (2.211). For
these distances, r1 = x and r2 = d−x apply, see Figure 2.61. The individual magnitudes of the
electric fields E1 and E2 and their total magnitude E = E1 + E2 are then:

E1(x) =
τ

2πxε0
, E2(x) =

τ

2π(d− x)ε0
, E(x) =

τ

2πε0

(
1

x
+

1

d− x

)
. (2.214)

xO dl

+τ
−τ

l

r1 = x r2 = d− x

Figure 2.61: Distances r1 and r2 of the line element dl from the centres of the individual conductors.
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After substituting for E(x) from (2.214) into (2.213) we can easily calculate the voltage U :

U =
τ

2πε0

∫ d−r

r

1

x
+

1

d− x
dx =

τ

2πε0
[lnx− ln(d− x)]d−rr

=
τ

2πε0

(
ln
d− r
r
− ln

r

d− r

)
=

τ

πε0
ln
d− r
r

. (2.215)

The capacitance C of a line of length l is determined simply from the definition, C = Q
U , where

we substitute the total charge on the line for the charge Q, i.e., Q = τ l:

C =
Q

U
=

πε0l

ln d−r
r

= 5, 0.10−8 F = 50nF, (2.216)

where we have used the value of the vacuum permittivity ε0 = 8, 854.10−12 F.m−1.

2.7.5 2.34 Capacitance addition

Determine the capacitance between points A, B of the capacitor system in Figure 2.62. All
capacitors have the same capacitance C.

A B

Figure 2.62: Capacitor capacitance addition.

Solution: We determine the total capacitance CAB by sequentially adding the respective
capacitors in series and parallel. The formulas for the total capacitance C of the series and
parallel connection of capacitors with capacitances C1 and C2 are

1

C
=

1

C1
+

1

C2
, resp. C = C1 + C2. (2.217)

C1 C2

C1

C2

Figure 2.63: Capacitance addition of C1 and C2. On the left is the series connection and on the right is
the parallel connection.

In the capacitor network, we mark the capacitance value of the given groups of resistors as
Ca, Cb and Cc, see Figure 2.64.
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A B

Ca
Cb

Cc

Figure 2.64: Capacitor capacitance addition.

The capacitors in group Ca are connected in series; group Cb is then formed by a capacitor
connected in parallel to them, and Cc is obtained by connecting another capacitor in series.
Using the formulas for capacitance addition, we arrive at the relations:

Ca =
C

2
, Cb = Ca + C,

1

Cc
=

1

Cb
+

1

C
. (2.218)

The total capacitance CAB is given by connecting two capacitors with capacitances Cc and one
with capacitance C in parallel:

CAB = C + 2Cc. (2.219)

After substitution and some manipulation, we get the result

CAB =
11

5
C. (2.220)

2.7.6 2.35 Capacitor half-filled with dielectric

A plate capacitor is half filled with a dielectric of relative permittivity εr a) parallel to the
plates, b) perpendicular to the plates (see Figure 2.65). How does its capacitance change?

Figure 2.65: Stacking capacitances of capacitors with dielectrics.

Solution: The capacitance of a plate capacitor with a dielectric of relative permittivity εr
is given by

C = εr
ε0S

d
, (2.221)

where S is the area of each plate and d is the distance between the plates.
Capacitor with dielectric half longitudinally. Think of a capacitor as two capacitors in series,

see Figure 2.66.

68



Cd

Cb

Figure 2.66: Series connection of half capacitors with capacitances Cd and Cb, of which capacitor Cd
contains the dielectric.

The relation for the series composition of capacitors Cd and Cb is

1

C
=

1

Cd
+

1

Cb
, (2.222)

where the individual capacitances are according to (2.221)

Cd = εr
ε0S
d
2

= 2εr
ε0S

d
= 2εrC0, Cb =

ε0S
d
2

= 2C0, (2.223)

since the area S of the capacitors has remained the same and the plate spacing has been halved
d
2 . After substitution, we obtain the result:

1

C
=

1

2εrC0
+

1

2C0
=

1 + εr
2εrC0

, C =
2εr

1 + εr
C0. (2.224)

Capacitor with dielectric half across. We imagine the capacitor divided into two capacitors
connected in parallel, see Figure 2.67.

Cd Cb

Figure 2.67: Parallel connection of half capacitors with capacitances Cd and Cb, of which capacitor Cd
contains the dielectric.

The formula for the parallel addition of capacitors Cd and Cb is

C = Cd + Cb, (2.225)

where the individual capacitances are according to (2.221)

Cd = εr
ε0
S
2

d
=
εr
2

ε0S

d
=
εr
2
C0, Cb =

ε0
S
2

d
=

1

2
C0, (2.226)

since the plate spacing of the capacitors d remained the same and the area of the plates was
halved S

2 . After the substitution we get the result:

C =
εr
2
C0 +

1

2
C0 =

εr + 1

2
C0. (2.227)

Addendum: The example can also be computed “more by definition” by determining the
magnitude of the electric field E in the capacitor, integrating the voltage U and from the
definition of the capacitance C (similar to Example 2.36 in Section 2.7.7). Coming soon.
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2.7.7 2.36 Inhomogeneous dielectric capacitor

The space between the plates of a capacitor is filled with a dielectric whose permittivity varies
linearly from ε1 on one plate to ε2 on the other plate. Determine its capacitance.

Solution: Let’s work with relative permittivities instead of absolute permittivities, i.e., we
will use constants εr1 and εr2, where ε1 = εr1ε0, ε2 = εr2ε0. The relative permittivity function
εr(x) between the plates of the capacitor in the Cartesian coordinate x introduced as in Figure
2.68 looks as follows:

εr(x) = εr1 +
εr2 − εr1

d
x, (2.228)

see Figure 2.69. We obtain it by (either guessing and/or) solving equations εr(0) = εr1 and
εr(d) = εr2 for a general linear function εr(x) = ax+ b.

xO d

Figure 2.68: Cartesian coordinate x between the plates of the capacitor.

x

"r

"r2

"r1

O d

Figure 2.69: Function of relative permittivity εr(x).

The magnitude of the electric field E is reduced in a dielectric from field E0 in a vacuum as
E = 1

εr
E0. The voltage between the plates of a capacitor is obtained by definition as the work

of forces in the capacitor per unit charge:

U =
1

q

∫
l

~F · d~l =

∫
l

~E · d~l =

∫
l
E dl, (2.229)

In making the manipulations we have taken advantage of the fact that the only force acting in
the capacitor is the electric force ~F = q ~E and if we consider the path l along which we integrate
as a line segment perpendicularly connecting the plates of the capacitor, then the direction of
the electric field ~E and the direction of the line element d~l are the same and hence the scalar
product reduces to the product of the magnitudes of these vectors, ~E · d~l = E dl.

If we consider again the Cartesian coordinate as in Figure 2.68, then the line segment l is
given by the coordinate range x ∈ 〈0, d〉 and the line element is dl = dx. The actual calculation
of the voltage U is then as follows:

U =

∫ d

0

1

εr(x)
E0 dx =

∫ d

0

E0

εr1 + εr2−εr1
d x

dx = E0

[
d

εr2 − εr1
ln

(
εr1 +

εr2 − εr1
d

x

)]d
0

=
E0d

εr2 − εr1
ln
εr2
εr1

=
U0

εr2 − εr1
ln
εr2
εr1

, (2.230)
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where we have denoted the original voltage on the plate capacitor without dielectric as U0 = E0d.
When substituted into the formula for defining the capacitance C, we get

C =
Q

U
=

Q

U0

εr2 − εr1
ln εr2

εr1

=
εr2 − εr1

ln εr2
εr1

C0, (2.231)

where we have denoted the original capacitance of the capacitor without dielectric as C0 = Q
U0

.

Addendum: The example can also be computed as a series composition of infinite capaci-
tors, i.e., similarly (but more complicated and by integration) to Example 2.35 in Section 2.7.6.
Coming soon.

2.7.8 2.37 Energy of the capacitor

A plate capacitor filled with air has a capacitance of C0. It is connected to a voltage source
U0 and has energy stored on it W0. It is then immersed in oil of relative permittivity εr while
remaining connected to the voltage source. Its energy changes to W1. Finally, we disconnect it
from the source and remove it from the oil. It will have a voltage of U2 and an energy of W2.
Determine W1, U2, W2.

Solution: The energy W and charge Q on the capacitor are given by the following formulae

W =
1

2
CU2, Q = CU, (2.232)

where C is the capacitance of the capacitor and U is the voltage across the capacitor. The
initial energy and charge stored on the capacitor is

W0 =
1

2
C0U

2
0 , Q0 = C0U0. (2.233)

When immersed in oil with a relative permittivity of εr, the capacitance changes to C1 = εrC0,
the voltage remains the same as the capacitor is still connected to the source, i.e. U1 = U0.
Thus, the energy W1 and charge Q1 is

W1 =
1

2
C1U

2
1 =

1

2
εrC0U

2
0 = εrW0, Q1 = C1U1 = εrC0U0 = εrQ0. (2.234)

When disconnected from the source, the charge on the capacitor must remain constant, i.e.
Q2 = Q1. When removed from the oil, its capacitance returns to its original value, C2 = C0.
The resulting energy W2 and voltage on the capacitor U2 is

W2 =
1

2
C2U

2
2 =

1

2
ε2
rC0U

2
0 = ε2

rW0, U2 =
Q2

C2
=
Q1

C0
=
εrC0U0

C0
= εrU0. (2.235)
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Chapter 3

Stationary electric field

3.1 Formulae overview

• Resistance addition: The total resistance R [Ω] of series and parallel connected resistors
R1 [Ω] and R2 [Ω] is given by the following relations:

R = R1 +R2, resp.
1

R
=

1

R1
+

1

R2
. (3.1)

R1 R2

R1

R2

Figure 3.1: Resistors of resistances R1 and R2 connected in series (left) and parallel (right) respectively.

• Resistance of “cylindrical” conductor:

R = ρ
l

S
, (3.2)

where ρ [Ω.m] is the resistivity of the conductor material, l [m] is its length, and S [m2]
is its cross section.

S

l

I

Figure 3.2: The current through a cylindrical conductor of length l and cross-section S.

• Ohm’s law:
U = RI, (3.3)

where R [Ω] is the resistance (of the resistor, appliance, circuit, etc.), I [A] is the current
(flowing through the resistor, etc.), and U [V ] is the voltage (applied to the resistor, etc.;
or voltage drop).

• Battery internal resistance:
U = E −RiI, (3.4)
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where E [V ] is the electromotive voltage of the battery, Ri [Ω] is the internal resistance
of the battery, U [V ] is the terminal voltage across the battery, and I [A] is the current
through the battery. As current passes through the battery, there is a voltage drop across
the internal resistance and therefore the terminal voltage measured across the battery is
reduced by this drop compared to the electromotive voltage.

+

E Ri

U

I I

Figure 3.3: Battery with electromotive voltage E with internal resistance Ri and current flow I.

• Joule heating: The heat output generated at a resistor (appliance, etc.) of resistance
R [Ω] with current flowing through it I [A] is

Pheat = RI2. (3.5)

• Kirchhoff’s laws: Kirchhoff’s first law states that the sum of the currents flowing into
and out of a node is zero. Kirchhoff’s second law states that the sum of the voltages on
the sources along a loop must equal the sum of the voltage drops across the resistors in
the same loop. ∑

α

Iα = 0,
∑
α

Uα =
∑
β

RβIβ. (3.6)

For more details (mainly due to sign convention), see Section 3.6.

• Definition of current: Current is the charge flowing through a given location (a given
area) per unit time:

I =
dQ

dt
. (3.7)

Units: current I [A] = [C.s−1], charge Q [C], time t [s].

3.2 Resistance addition

3.2.1 3.4 Resistance addition I

In the circuit shown in Figure 3.4, a resistor R0 is given. Determine the resistance R1 so that
the input resistance between points A, B is again R0.

R1 R1

R1 R0

A

B

Figure 3.4: Circuit with resistors R0 and R1.

Solution: We are going to use the formulas for series and parallel connection of resistors
with resistance values R1 and R2. The total resistance R is then

R = R1 +R2, resp.
1

R
=

1

R1
+

1

R2
. (3.8)
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The total resistance between points A and B is

RAB = R1 +
1

1
R1

+ 1
R1+R0

=
3R2

1 + 2R1R0

2R1 +R0
, (3.9)

where Figure 3.5 shows the sequential stacking of resistors.

R1

R1 R0 +R1

A

B

(a) First serial composition.

R1

1
1

R1
+ 1

R0+R1

A

B

(b) Next parallel composi-
tion.

R1 +
1

1
R1

+ 1
R0+R1

A

B

(c) Final composition.

Figure 3.5: Sequential compounding of connected resistors in series and in parallel.

The requirement in the specification RAB = R0 implies

R1 =
R0√

3
. (3.10)

3.2.2 3.5 Resistance addition II

Determine the resistance between points A, B of the network in Figure 3.6. All resistances have
the same magnitude R.

A B

Figure 3.6: All resistors have the same resistance R.

Solution: We determine the total resistance RAB by successively adding the series and
parallel connected resistors. The formulas for the total resistance R of the series and parallel
connection of resistors with resistance values R1 and R2, respectively, are

R = R1 +R2, resp.
1

R
=

1

R1
+

1

R2
. (3.11)

In a resistor network, we denote the resistance values of specific groups of resistors as Ra,
Rb and Rc, see Figure 3.7.
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A B

Ra
Rb

Rc

Figure 3.7: We denote the total resistance of the circled resistors by Ra, Rb, and Rc

The resistors in group Ra are connected in series; group Rb is then formed by a resistor
connected in parallel to them, and Rc is obtained by connecting another resistor in series.
Using the formulas for resistance addition, we arrive at the relations:

Ra = 2R,
1

Rb
=

1

Ra
+

1

R
, Rc = Rb +R. (3.12)

The total resistance RAB is given by the parallel connection of two resistors of the values Rc
and one of the size R:

1

RAB
=

1

R
+

1

Rc
+

1

Rc
=

1

R
+

2

Rc
. (3.13)

After substitution and some manipulation, we get the result

RAB =
5

11
R. (3.14)

3.3 Resistance of conductors

3.3.1 3.1 Proportional conductors

On three equal length sections, the conductor cross section changes in the ratio S1 : S2 : S3 =
1 : 2 : 3. What will be the voltage drop on these sections?

Solution: The resistance R of a cylindrical conductor is given by

R = ρ
l

S
, (3.15)

where ρ is the resistivity of the conductor material, l is its length, and S is its cross section.
Thus, the resistances of the individual sections will be in inverse ratio than the ratios of the
cross sections: R1 : R2 : R3 = 6 : 3 : 2. The current through one conductor must be the same
everywhere, so from Ohm’s law we have the relation for the voltage drop across the sections

U1,2,3 = R1,2,3I, (3.16)

The voltage ratios are therefore the same as the resistance ratios, i.e. U1 : U2 : U3 = 6 : 3 : 2.

3.3.2 3.2 Tensioned wire

How does the resistance of a copper wire change if we stretch it so that it is extended by
α = 0, 1%?

75



Solution: The resistance R of a cylindrical wire is given by

R = ρ
l

S
, (3.17)

where ρ is the resistivity of the conductor material, l is its length, and S is its cross section. If
we stretch the wire by α = 0, 1%, its length increases to l′ = (1 + α)l. Since the volume of the
material from which the wire is made must remain the same, its cross-section must be reduced:

V = Sl = S′l′ −→ S′ = S
l

l′
=

S

1 + α
. (3.18)

The resistance of the conductor is then changed to

R′ = ρ
l′

S′
= ρ

l

S
(1 + α)2 = R(1 + α)2 ≈ R(1 + 2α), (3.19)

where we have neglected the term α2 in the last equation. That is, the resistance will change
by approximately 2α = 0, 2%.

3.3.3 3.3 Resistive cube

A cube with edge length a is positioned such that one corner lies at the origin of the coordinate
system and the whole cube lies in the octant determined by the positive directions of the axes.
The resistivity of the material varies linearly in the direction of axis x as ρ = ρ0(1 + x/x0).
Determine the resistance between the walls of the cube parallel to axes y, z and axes x, z.

x

y

z

a

a

a

Figure 3.8: Resistance cube.

Solution: We would like to use the formula for the resistance R of a cylindrical conductor:

R = ρ
l

S
, (3.20)

where ρ is the resistivity of the conductor material, l is its length, and S is its cross section.
However, the resistivity changes throughout of the conductor. So we must divide the cube into
suitably chosen parts and add their resistance using the relations for resistance addition.

Let us first consider the case of the resistance between the walls of the cube parallel to the
axes y, z. Here the current flows between the back and front walls, see Figure 3.9, and the
resistivity therefore varies along the conductor.
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x

y

z

I

dx

S = a2

Figure 3.9: Resistance cube.

We therefore divide the cube into thin plates of thickness dx perpendicular to the direction
of the current. In these plates, the resistivity is constant and we can calculate their small
resistance dR as

dR(x) = ρ(x)
dl

S
= ρ(x)

dx

a2
= ρ0

(
1 +

x

x0

)
dx

a2
, (3.21)

where we have substituted for the small conductor length dl = dx and the conductor cross
section S = a2. The plates are then all connected in series and we can use the formula for series
connection of resistors, which we generalize to the continuous case:

R = R1 +R2 −→ R =
∑
i

Ri −→ R =

∫
dR. (3.22)

The actual calculation then consists of integrating the resistances of all the plates that are at
coordinates x ∈ 〈0, a〉:

R =

∫
plates

dR =

∫ a

0
dR(x) =

ρ0

a2

∫ a

0
1 +

x

x0
dx =

ρ0

a2

(
a+

a2

2x0

)
. (3.23)

The procedure for determining the resistance of a cube between walls parallel to the axes x
and z will be similar. The current now flows between the left and right walls, see Figure 3.10,
and the resistivity varies across the conductor.

x

y

z

I

l = a
dS = a dx

Figure 3.10: Resistance cube.

So we divide the cube into thin plates parallel to the direction of the current. The plates are
placed parallel to each other and their total resistance will be given by the relation for parallel
connection of resistors:

1

R
=

1

R1
+

1

R2
−→ 1

R
=
∑
i

1

Ri
−→ 1

R
=

∫
d

(
1

R

)
, (3.24)
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where we have again generalized the standard formula for two resistors connected in parallel to
the continuous case1. The inverse of the resistance of a cylindrical conductor is

1

R
=

1

ρ

S

l
(3.25)

and its infinitesimal version is then

d

(
1

R

)
(x) =

1

ρ(x)

dS

l
=

1

ρ(x)

a dx

a
=

dx

ρ0

(
1 + x

x0

) , (3.26)

where the length of the conductor is now l = a and its small cross section is dS = a dx. Now
all that is left is to integrate over all plates as in the previous case:

1

R
=

∫
plates

d

(
1

R

)
=

∫ a

0
d

(
1

R

)
(x) =

1

ρ0

∫ a

0

dx

1 + x
x0

=
x0

ρ0
ln

(
1 +

a

x0

)
. (3.27)

The inverted value is then the result we are looking for:

R =
ρ0

x0

1

ln
(

1 + a
x0

) . (3.28)

3.3.4 3.8 Insulation in coaxial cable

A shielded coaxial cable of length l = 10m has a conductor radius R1 = 1mm and a shield
R2 = 10mm. The insulation is made of polystyrene with resistivity ρ = 1017 Ω.cm and dielectric
strength Emax = 250 kV.cm−1. Determine the maximum voltage between the conductor and
the shield, the leakage resistance and the current at this voltage.

I

r

O

R1

R2

Figure 3.11: Cylindrical insulation cross section.

Solution: Let us first calculate the leakage resistance of the coaxial cable. This will be the
total resistance of the conductor in the shape of a hollow cylinder, but where the current does
not flow along the cable but across between the inner and outer cylindrical surfaces. We would
like to use the formula for the resistance R of a cylindrical conductor according to the relations

R = ρ
l

S
, (3.29)

1In the case of continuous connection of parallel resistors, the resistance of each resistor needs to go to infinity
in the limit, i.e. its inverse is an infinitesimal quantity. Here we have a plate whose cross-section is infinitesimal,
so the resistance of this plate is infinitely large and its inverse is therefore an infinitesimal quantity suitable for
integration.
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where ρ is the resistivity of the conductor material, l is its length, and S is its cross section.
Here, however, the cross section of the conductor varies with the distance r from the axis of the
coaxial cable, S(r) = 2πr l. We must therefore divide the conductor into suitably chosen parts
whose resistivity, length and cross section will be constant, and then add resistances of these
parts.

Here, it is natural to divide the cylindrical insulation into thin cylindrical shells of radius r
thickness dr, where the cross-section of the conductor changes only negligibly2, see Figure 3.12.

dr

r

Figure 3.12: A thin cylindrical shell of thickness dr and resistance dR.

The small resistance dR of this cylindrical skin is

dR(r) = ρ
dl

S(r)
= ρ

dr

2πrl
. (3.30)

The individual small cylindrical resistors are then connected in series and we can use the formula
for series connection of resistors, which we generalize to the continuous case:

R = R1 +R2 −→ R =
∑
i

Ri −→ R =

∫
dR. (3.31)

The concrete calculation then consists of integrating the resistances of all the shells that are at
the coordinates r ∈ 〈R1, R2〉:

R =

∫ R2

R1

dR(r) =
ρ

2πl

∫ R2

R1

dr

r
=

ρ

2πl
ln
R2

R1
= 3, 66.1013 Ω. (3.32)

The dielectric strength Emax indicates to what maximum value of the electric field the
material will retain its insulating properties. In Example 2.30 (in Section 2.7.2), we derived the
magnitude of the electric field around a charged cylindrical conductor and the voltage between
radii R1 and R2 as:

E(r) =
Q

2πrlε0
, U =

Q

2πlε0
ln
R2

R1
, (3.33)

where Q is the total charge on the conductor and ε0 is the permittivity of the vacuum. But now
the capacitor is filled with polystyrene and so we must replace the permittivity of the vacuum
ε0 with the permittivity of the polystyrene ε (but this does not change the result at all). We
see that the electric field is inversely proportional to the distance from the cylinder axis, so the
largest magnitude will be in the immediate vicinity of the conductor and this must be less than

2To be precise, this will be a 2nd order change which will not manifest itself in the subsequent integration,
and we will therefore obtain an exact result.
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the dielectric strength E(R1) ≤ Emax. Now just substitute the voltage U for the charge Q using
the voltage U from (3.33),

Emax ≥ E(R1) =
Q

2πR1lε
=

U

R1 ln R2
R1

, (3.34)

and by expressing the voltage U we get the resulting maximum voltage at which the insulation
still insulates:

Umax = EmaxR1 ln
R2

R1

.
= 57, 6 kV. (3.35)

The current through the insulation at the maximum voltage Umax is simply from Ohm’s law:

I =
Umax
R

= 1, 57.10−9A = 1, 57nA. (3.36)

3.3.5 3.9 Leakage resistance of a spherical capacitor

Determine the leakage resistance of a spherical capacitor (R1 = 10 cm, R2 = 20 cm) when the
space between the electrodes is filled with oil with specific resistance ρ = 1, 0.1016 Ω.cm.

I

r

O

R1

R2

Figure 3.13: Through a spherical capacitor.

Solution: The solution is very similar to the first part of Example 3.8 in the previous section
3.3.4. Here we want to determine the total resistance of a hollow sphere shaped conductor where
the leakage current flows between the inner and outer spherical electrodes of the capacitor. We
would like to use the formula for the resistance R of a cylindrical conductor according to

R = ρ
l

S
, (3.37)

where ρ is the resistivity of the conductor material, l is its length, and S is its cross section.
Here, however, the cross section of the conductor varies with the distance r from the common
center of the spherical conductors, S(r) = 4πr2. We must therefore divide the conductor into
suitably chosen parts whose resistivity, length and cross section will be constant, and then add
the resistances of these parts.

We divide the spherical insulation into thin spherical shells of radius r and thickness dr,
where the cross-section of the conductor varies only negligibly3, see Figure 3.14.

3Same remark as in the previous example. This will be a 2nd order change in cross-section, which will not
show up in the subsequent integration, so we get the exact result.
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dr

r

Figure 3.14: A thin spherical shell of thickness dr and resistance dR.

The small resistance dR of this spherical shell is

dR = ρ
dl

S
= ρ

dr

4πr2
. (3.38)

The individual small spherical resistors are then connected in series and we can use the formula
for series connection of resistors, which we generalize to the continuous case:

R = R1 +R2 −→ R =
∑
i

Ri −→ R =

∫
dR. (3.39)

The concrete calculation then consists of integrating the resistances of all the shells that are at
coordinates r ∈ 〈R1, R2〉:

R =

∫ R2

R1

dR(r) =
ρ

4π

∫ R2

R1

dr

r2
=

ρ

4π

(
1

R1
− 1

R2

)
.
= 3, 0.1013 Ω. (3.40)

3.4 Ohm’s Law

3.4.1 3.6 Resistor cube

There is a resistor R in each edge of the cube. Determine the resulting resistance between two
opposite vertices of the cube.

Figure 3.15: Cube from the resistors at the edges.

Solution: In this example, we can no longer use the formulas for series and parallel resistor
connections. A cube with resistors in the edges cannot be decomposed into groups of resistors
connected in parallel or in series, which we then just put together (as we did, for example, in
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Example 3.5 in Section 3.2.2). To illustrate, consider the circuit diagram redrawn to be planar
in Figure 3.16.

Figure 3.16: Resistors in the edges of the cube drawn in the plane.

The strategy for determining the resistance will be as follows. From the symmetry we
determine the currents flowing on each resistor. We then use these to calculate the total voltage
drop U after passing through the resistor network using Ohm’s law. The total resistance of the
cube Rc will then be given again by Ohm’s law:

Rc =
U

I
. (3.41)

Due to the symmetry, the current I flowing into the “input” node of the cube is divided
into thirds I

3 and likewise the current I flowing out of the “output” node must be composed of
equal currents I

3 . At the remaining resistors, it must also be further divided in half at I
6 because

of the symmetry. The resulting distribution of currents through each edge is shown in Figure
3.18. The symmetries used are shown in Figure 3.17.

(a) Symmetry with respect to a discrete ro-
tation by multiples of the angle 120◦ ( 2π

3 rad)
about the solid diagonal.

(b) Symmetry of mirroring with respect to a
plane passing through the wall diagonal and
perpendicular to the given wall.

Figure 3.17: Symmetry of the cube justifying the division of the currents into thirds I
3 (left) and then

further into halves I
6 (right).
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Figure 3.18: Currents in the individual edges of the cube.

Now we just choose a path to get from the input node of the cube to the output node.
We calculate the voltage drops at the individual resistors and sum them4. The path can be
arbitrary, but in practice we choose the simplest possible path, e.g. as in Figure 3.19.

I

I

3

I

6

I

3

I

3

I

3

I

3

I

3

I

6

I

6

I

6

I

6

I

6

I

Figure 3.19: Path through the cube from the input node to the output node.

Then the total voltage drop is

U = U1 + U2 + U3 = R
I

3
+R

I

6
+R

I

3
=

5R

6
I = Rc I (3.42)

So the total resistance is Rc = 5
6R.

Addendum: After we have determined the currents through the resistors from the sym-
metry, we can also use the following “electrical trick” to calculate the total resistance. If we
have places in the circuit with the same potential level, we can connect them with a conduc-
tor without any current flowing through that conductor, and thus there is no change in the
currents anywhere in the circuit. We have this situation after the “first” resistors at the input
node and before the “last” resistors at the output node. Let us connect these locations with
two conductors as in Figure 3.20.

4If the path were such that we were going against the direction of the flowing current, then we would subtract
the corresponding drop.
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Figure 3.20: Cubes with resistors with connected circuit sites of the same potential level

.

Then we will have a circuit like the one in Figure 3.21, which is nothing but a series con-
nection of groups of resistors connected in parallel.

Figure 3.21: Circuit with points of the same potential level connected.

The total resistance is then calculated simply

Rc =
R

3
+
R

6
+
R

3
=

5R

6
. (3.43)

Addendum: What about the case where the symmetry arguments cannot be used? For
example, if we had general resistances R1, . . . , R12 in the edges of the cube? Then we have to
use Kirchhoff’s laws to determine the currents through each branch, see Section 3.6. We have
twelve unknown currents through each edge of the cube I1, . . . , I12. For each vertex of the cube,
we get the first Kirchhoff’s law of conservation of the inflowing and outflowing currents – so
there are eight equations in total, 7 of which are independent. The remaining five equations is
provided by the second Kirchhoff’s law for circuit loops – here, for example, the loops forming
the five walls of the cube (the sixth wall would give the dependent equation).

3.4.2 3.11 Voltage drops in the circuit

To what voltage does the capacitor C in Figure 3.22 charge if the terminal voltage between A,
B is equal to UAB?
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R1 R3

A B

R2 R4

C

Figure 3.22: What is the voltage across the capacitor C?

Solution: The voltage across the capacitor UC will be given by the potential difference
across the upper and lower capacitor leads, UC = ϕh − ϕd. These potentials are obtained by
subtracting the voltage drops U1, respectively U2, on the resistors R1, respectively R2, from the
potential ϕA at point A:

ϕh = ϕA − U1, ϕd = ϕA − U2. (3.44)

Then the voltage across the capacitor

UC = ϕh − ϕd = (ϕA − U1)− (ϕA − U2) = U2 − U1. (3.45)

The drops on the resistors are obtained simply from Ohm’s law, U = RI:

U1 = R1Ih, U2 = R2Id, (3.46)

where Ih and Id denote the current through the upper and lower branches of the circuit, re-
spectively. The currents through each branch are again calculated from Ohm’s law, I = U

R . If
there is a voltage on a branch UAB, then the current through that branch is simply given by
the total resistance of the branch. Here:

Ih =
UAB

R1 +R3
, Id =

UAB
R2 +R4

. (3.47)

Substituting (3.46) and (3.47) into (3.45) we get the result:

UC = R2
UAB

R2 +R4
−R1

UAB
R1 +R3

=
R2R3 −R1R4

(R1 +R3)(R2 +R4)
UAB. (3.48)

3.4.3 3.10 Damaged telegraph lines

A homogeneous telegraph line is damaged by being grounded by resistance R. Prove that the
current on the receiving apparatus side will be the smallest if the fault is in the middle of the
line (neglect the apparatus resistance).

E

αRl

+
R

(1 – α)Rl

Figure 3.23: A telegraph line of total resistance Rl is impaired by leakage resistance R.

Solution: The circuit diagram of a telegraph is shown in Figure 3.23. On the transmitting
side it is a source with a switch (telegraph key) and on the receiving side it is some form of
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signaling – a light bulb, buzzer, electromagnet, etc. A telegraph line of total resistance Rl is
damaged by leakage resistance R at α = x

l ∈ 〈0, 1〉, where x is the distance of the fault location
x from the transmitter and l is the total length of the line.

Let us denote the currents through each branch as follows: Itot – total current flowing
through the battery, Ileak – current flowing through the leakage resistor, Irec – current flowing
through the receiving device, see Figure 3.24.

E +

Itot Irec

Ileak

Figure 3.24: The currents in the various parts of the telegraph – Itot, Ileak and Irec.

We now calculate the current through the receiving part of the telegraph Irec depending on
the position of the fault α. The total current Itot is easily found from Ohm’s law, E = RtotItot
where Rtot is the total resistance connected to the telegraph source. We find the total resistance
by the rules for adding series and parallel resistors as

Rtot = αRl +
1

1
(1−α)Rl

+ 1
R

=
α(1− α)R2

l +RRl
(1− α)Rl +R

. (3.49)

The total current Itot is divided into the leakage current Ileak and the receiver current Irec:

Itot = Irec + Ileak, where Itot =
E
Rtot

=
(1− α)Rl +R

α(1− α)R2
l +RRl

E . (3.50)

We relate the currents Irec and Ileak to each other again using Ohm’s law, U = RI: the voltage
drops across the leakage resistor R and the line resistance at the receiver (1 − α)Rl must be
equal:

U = RIleak = (1− α)Rl Irec −→ Ileak =
(1− α)Rl

R
Irec. (3.51)

Substituting (3.51) into (3.50) gives the following equation for the current Irec:

(1− α)Rl +R

α(1− α)R2
l +RRl

E = Irec +
(1− α)Rl

R
Irec. (3.52)

By expressing Irec we have

Irec =
R

α(1− α)R2
l +RRl

E . (3.53)

We differentiate this result

dIrec
dα

= −
(1− 2α)R2

lR[
α(1− α)R2

l +RRl
]2 E (3.54)

and look for when the derivative is zero:

dIrec
dα

= 0 ⇔ α =
1

2
. (3.55)

Thus, the current through the receiver is extremal if the leakage resistance is at half of the line.
The signs of the first derivative around the extreme tell us that it is a minimum.

86



3.4.4 3.13 Branching current

The current I0 branches between the parallel resistors R1, R2 and then reconnects (Figure
3.25). Determine the currents I1, I2 flowing across these resistors and show that the current
distribution corresponds to the minimum of the dissipated heat power.

R1

R2

I1

I2

I0 I0

Figure 3.25: The current I0 branches into currents I1 and I2.

Solution: From Ohm’s law, U = RI, we can easily obtain the current ratios for the
individual branches. There must be the same voltage drop across both resistors:

U = R1I1 = R2I2 −→ I1

I2
=
R2

R1
, (3.56)

that is, the ratio of the currents in the branches is the inverse of the ratio of the resistances of
the individual branches. The sum of the currents I1 and I2 must give the total current I0:

I0 = I1 + I2. (3.57)

Equations (3.56) and (3.57) give the following expressions for the currents I1 and I2:

I1 =
R2

R1 +R2
I0, I2 =

R1

R1 +R2
I0. (3.58)

We show that the dissipated heat power dissipated at the resistors is smallest with this current
distribution. Consider the current split in a general way:

I1 = αI0, I2 = (1− α)I0, α ∈ 〈0, 1〉. (3.59)

The Joule heat is given by Pheat = RI2 and thus the total dissipated power would be

Pheat(α) = Pheat1 + Pheat2 = R1I
2
1 +R2I

2
2 = R1α

2I2
0 +R2(1− α)2I2

0 , (3.60)

Let’s look for an extremum in the variable α:

dPheat
dα

= 2 [αR1 −R2(1− α)] I2
0 = 2 [(R1 +R2)α−R2] I2

0 = 0 ⇔ α =
R2

R1 +R2
(3.61)

Thus, the currents where the power dissipation is extremal (the signs of the first derivative tell
us that it is a minimum) are

I1 = αI0 =
R2

R1 +R2
I0, I2 = (1− α)I0 =

R1

R1 +R2
I0. (3.62)

These are the same values as for the actual currents determined from Ohm’s law.

87



3.4.5 3.12 Battery internal resistance I

The internal resistance of the galvanic cell Ri is five times (k = 5) smaller than the external
resistance R, which closes the circuit. How many times will the terminal voltage U be less than
the electromotive voltage of the cell?

+

E Ri

R

U

Figure 3.26: The internal resistance Ri of the galvanic cell causes the terminal voltage U to be smaller
than the electromotive cell voltage E .

Solution: The terminal voltage U is reduced by the voltage drop across the internal
resistance of the cell compared to the electromotive voltage E :

U = E −RiI. (3.63)

The current through the circuit I is then given by Ohm’s law,

I =
E

R+Ri
, (3.64)

where the denominator is the total resistance in the circuit. Substituting the expression for the
current I into the equation for the terminal voltage, we get

U = E
(

1− Ri
R+Ri

)
= E R

R+Ri
. (3.65)

If the relationship between the resistance of the appliance and the internal resistance is Ri = 1
kR,

the relationship between U and E is

U =
R

R+Ri
E =

R

R+ R
k

E =
k

1 + k
E =

5

6
E . (3.66)

3.4.6 3.18 Battery internal resistance II

We have a battery of unknown electromotive voltage E and internal resistance Ri. If we connect
a resistor R1 = 30 Ω to it, current I1 = 125mA will flow; if we connect a resistor R2 = 40 Ω,
current I2 = 100mA will flow. Determine the E and Ri of the battery.

+

E Ri

R1;2
I1;2

U

Figure 3.27: The internal resistance Ri of the battery causes the terminal voltage U to decrease compared
to the electromotive cell voltage E .
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Solution: The terminal voltage U is reduced by the voltage drop across the internal
resistance of the cell compared to the electromotive voltage E :

U = E −RiI. (3.67)

This voltage is “consumed” at the connected resistors R1,2:

E −RiI1 = R1I1, E −RiI2 = R2I2. (3.68)

We can also say that the electromotive voltage E is dropped at the total resistance in the circuit
Ri +R1,2, which of course leads to the same equations:

E = (Ri +R1)I1, E = (Ri +R2)I2. (3.69)

Solving these equations for E and Ri, we arrive at the result:

E = (R2 −R1)
I1I2

I1 − I2
= 5V, Ri =

R2I2 −R1I1

I1 − I2
= 10 Ω. (3.70)

3.4.7 3.16 Voltmeter and ammeter

The instrument has a scale with N = 100 divisions and an internal resistance of Ri = 100 Ω.
When current I1 = 10µA passes through, it will indicate one notch on the scale. What ar-
rangement must we choose if we want to use the instrument as a voltmeter with a range up to
U0 = 100V and as an ammeter for currents up to I0 = 1A.

Solution: The maximum current through the instrument is apparently Imax = NI1 =
1mA. We must now choose such circuits that when measuring U0 = 100V or I0 = 1A, the
current flowing through the instrument is Imax.

Let us start with the voltmeter. Here we need to put a resistor Rs in front of the instrument
to limit the current flowing due to the connected voltage U0, see figure 3.28.

Rs

Imax

U0

Ri

Figure 3.28: Connecting a measuring instrument as a voltmeter.

We can easily calculate the required resistance from Ohm’s law:

U0 = (Rs +Ri)Imax −→ Rs =
U0

Imax
−Ri ≈

U0

Imax
= 100 kΩ, (3.71)

where in the conclusion we have neglected the internal resistance of the instrument Ri (its
magnitude is three orders of magnitude less than the magnitude of the series resistance Rs).

Let us now proceed to the ammeter. We must now connect a shunt resistor in parallel to
the instrument so that most of the current I0 is led outside the instrument, see Figure 3.29.

I0

Imax

Rp

Ri

Figure 3.29: Connecting the measuring instrument as an ammeter.
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Current flowing through the instrument is

Imax =
Rp

Rp +Ri
I0 (3.72)

(for derivation using Ohm’s law, see the first half of the solution to Example 3.13 in Section
3.4.4). The required shunt resistance is then

Rp =
Imax

I0 − Imax
Ri ≈

Imax
I0

Ri = 0, 1 Ω, (3.73)

where in the denominator we have neglected the current through the device Imax relative to the
measured current I0 (again, it is three orders of magnitude smaller).

3.5 Joule heat

3.5.1 3.14 Resistor sizing

For the network in Figure 3.30, all resistors are individually sized to P1 = 0, 5W with values
R1 = 100 Ω and R2 = 200 Ω. Determine the total resistance and the maximum allowable voltage
between points A, B.

R2 R1

R1 R1

R2

A

B

Figure 3.30: Resistor network with resistance values R1 = 100 Ω and R2 = 200 Ω.

Solution: We find the total resistance using the formulas for series and parallel connection
of resistors (see examples in section 3.2 for details):

RAB = R2 +
1

1
R2

+ 1
2R1

+R1 = 400 Ω. (3.74)

The power dissipation generated on a resistor of size R through which current I flows is
Pheat = RI2. Now let’s see which resistor in the circuit will be the most thermally stressed – it
will limit the maximum allowable voltage. The currents through the circuit are shown in Figure
3.31.

R2 R1

R1 R1

R2

A

B

I

2

I

2

I

I

Figure 3.31: Currents flowing through the circuit are shown.

Since the resistances on the two right branches are the same (R2 = 2R1), the current splits
in half in those branches. We can see that the resistor on the top left experiences the greatest
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thermal stress – it has the greater resistance R2 and more current flowing through it I. This
stress is therefore Pheat = R2I

2. We can easily determine the current I from the connected
voltage U and the total resistance RAB using Ohm’s law:

I =
U

RAB
. (3.75)

When substituted into the formula for Joule’s heat for a given resistor:

Pheat = R2I
2 = R2

U2

R2
AB

. (3.76)

This thermal stress must be less than the specified maximum value Pmax; from this condition
we simply express the maximum connected voltage:

Pheat ≤ Pmax −→ Umax = RAB

√
Pmax
R2

= 20V. (3.77)

3.5.2 3.15 Losses in powerline

A source of voltage U = 110V is to supply power P = 5 kW to a distance l = 5 km. What
must be the diameter of the copper wire so that the power losses in the network do not exceed
α = 10% of the transmitted power?

U

Rl

R

Figure 3.32: Losses in a line of resistance Rl with an appliance of resistance R connected.

Solution: The circuit is shown in Figure 3.32. Here we have a voltage source U followed by
a series connected line resistor Rl and an appliance of resistance R. The heat output generated
on the line Pl and on the appliance P are given by the Joule heating formula:

P = RI2, Pl = RlI
2. (3.78)

Our condition is that the losses in the line are less than a specified fraction of the transmitted
power (power at the appliance): Pl ≤ αP . Current I flowing through the line and the appliance
is given by Ohm’s law:

I =
U

R+Rl
. (3.79)

The fraction of power on the line and appliance at the limiting losses is given by (3.78):

1

α
=
P

Pl
=

RI2

RlI2
=

R

Rl
−→ R =

Rl
α
, (3.80)

where we have expressed the condition on the resistance of the appliance. Substituting for R
from (3.80) and for I from (3.79) into the expression for the power at the appliance P (3.78)
we get:

P = RI2 = R
U2

(R+Rl)2
=
Rl
α

U2

R2
l

(
1 + 1

α

)2 = α
U2

Rl(1 + α)2
. (3.81)
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Now we just express the maximum allowable line resistance Rl from the previous relation:

Rv =
αU2

P (1 + α)2
. (3.82)

Next, we express the resistance of the line Rl in terms of its dimensional parameters using the
formula for the resistance of a cylindrical conductor:

Rl = ρ
2l

S
= ρ

2l

π d
2

4

−→ d =

√
8ρ l

πRv
, (3.83)

where ρ is the resistivity of the conductor material, the length of the conductor is 2l since
the line is made up of two wires of length l, and we have expressed the cross-section of the
conductor using its diameter d, S = d2

4 . Substituting for Rl from (3.82) we get the condition
on the diameter of the conductor as

d ≥
√

8ρ lP

πα

1 + α

U
= 3, 27 cm, (3.84)

where we have substituted the given values and the value of copper resistivity ρCu = 1, 68.10−8 Ω.m
to obtain the numerical result.

3.6 Kirchhoff’s laws

We use Kirchhoff’s laws to find currents in more complex circuits with sources and resistors,
where Ohm’s law and resistance addition rules can no longer be simply applied.

Circuits consist of branches connected at nodes (where at least three branches meet). To
describe the currents in each branch of the circuit, we need to introduce a fundamental
direction of current in each branch, i.e. an arbitrarily chosen imaginary direction that allows
us to interpret at the end of the calculation where the actual current flows through the branch.
If the calculation gives us a positive current, it flows in the chosen positive direction; if it gives
us a negative current, it flows against the chosen positive direction.

The branches can form a closed loop. In this case, we introduce the so-called circling
direction, an arbitrarily chosen imaginary direction of passage through the loop. This direction
defines along the entire loop the “positive voltage direction”, against which we then define the
corresponding voltage gains and losses at the sources and resistors.

The first Kirchhoff’s law of nodes is the current continuity equation: the sum of the
currents flowing in and out of a node must be zero:∑

α

Iα = 0. (3.85)

In general, if we have n nodes, then the equations constructed for n−1 arbitrarily chosen nodes
will be independent. The sign convention is as follows: if the positive direction of the current
on a given branch points into a node, we write it with a plus sign; if it points away from a node,
we write it with a minus sign, see also Figure 3.33.

I

+I

I

−I

Figure 3.33: The sign convention for Kirchhoff’s first law for nodes.
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The second Kirchhoff’s law of loops states that potential gains and losses along a loop
in a circuit must add up to zero. That is, the sum of the electromotive voltages at the sources
must equal the sum of the voltage drops at the resistors along the loop:∑

α

Uα =
∑
β

RβIβ. (3.86)

From Kirchhoff’s first law we have n− 1 equations, and if we have m branches, i.e. m unknown
currents through these branches, then we are left with m− (n− 1) equations from Kirchhoff’s
second law. The sign convention is as follows: For voltage drops across resistors, if the
direction of circulation in a given loop agrees with the direction of current in a given branch,
then we write the corresponding drop with a positive sign, otherwise with a negative sign. For
electromotive source voltages, if the source is connected in such a way that the positive pole
points in the direction of circulation, then we write the voltage with a positive sign, otherwise
with a negative sign5. See Figure 3.34 for an illustration.

+RI −RI

II
R R

(a) Voltage drop across resistors.

+U −U

+

+U U

(b) Electromotive voltage sources.

Figure 3.34: The sign convention in Kirchhoff’s second law of loops.

3.6.1 3.7 Two-loop circuit

What current flows between points A, B in figure 3.35?

U1 U3

R3R1

+ +

R2

A

B

Figure 3.35: A circuit with two nodes, three branches, two sources, and three resistors.

Solution: Introduce the positive directions of the currents in each branch and the directions
of the circulating currents for the left and right loops in the circuit, for example, as in Figure
3.36. At the same time, we have named the currents in the left, middle, and right branches as
I1, I2 and I3, respectively.

5Warning! These conventions, of course, apply only to the second Kirchhoff’s law of the form (3.86), i.e. the
form where the sources are on one side of the equation and the losses on the other!
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+ +

A

BI1 I3

I2

Figure 3.36: Selected positive cuurent directions and circling directions.

Component values are given. Thus, the currents in each branch I1, I2, I3 are the unknowns.
Thus, we need to find three equations for these currents. The first Kirchhoff’s law for the nodes
A and B gives

I1 + I2 − I3 = 0, −I1 − I2 + I3 = 0. (3.87)

Here trivially the dependent equations come out, so we discard one of them. From the second
Kirchhoff’s law for loops, we get for the left and right loops

U1 = R1I1 −R2I2, −U3 = R2I2 +R3I3. (3.88)

If we wrote a third equation for the “outer loop” passing through the sources U1 and U3 and
the resistors R1 and R3 (where we would again choose the clockwise circling direction as in the
other loops):

U1 − U3 = R1I1 +R3I3, (3.89)

we see that it is of the form of the sum of the equations for the left and right loops, so it is not
independent (and we discard it).

Solving equations (3.87) and (3.88) we get

I2 = − R3U1 +R1U3

R1R2 +R1R3 +R2R3
, (3.90)

so the current actually flows from point A to point B. After inserting the specific values in the
assignment R1 = 50 Ω, R2 = 100 Ω, R3 = 80 Ω, U1 = 3V and U3 = 2V we get

I2 = −20mA. (3.91)

3.6.2 3.17 A moron plugging in batteries

Two lead-acid batteries have E1 = 12V , Ri1 = 0, 04 Ω, E2 = 6V , Ri2 = 0, 02 Ω. Some jerk
accidentally plugged them in side by side. What current will flow through the batteries and
what voltage will be at their terminals?

+

E1

Ri1 +

E2

Ri2
+

E1

Ri1

+

E2

Ri2

Figure 3.37: Some idiot accidentally wired the batteries side by side. One way or the other. Either way,
he’s a moron.
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Solution: Introduce a positive direction of current and circling in the loop as in Figure
3.38.

+

E1

Ri1 +

E2

Ri2
+

E1

Ri1

+

E2

Ri2

I I

Figure 3.38: Positive current and voltage directions (circling direction).

Then, according to Kirchhoff’s second law, for the left-hand circuit (batteries connected “in
agreement”) we have:

E1 + E2 = (Ri1 +Ri2)I −→ I =
E1 + E2

Ri1 +Ri2
= 300A. (3.92)

And for the right-hand wiring (batteries wired to “disagree”):

E1 − E2 = (Ri1 +Ri2)I −→ I =
E1 − E2

Ri1 +Ri2
= 100A. (3.93)

To get the terminal voltages on batteries U1 and U2, we just rearrange the terms in equations
(3.92) and (3.93) appropriately – we always add the electromotive voltage and the voltage drop
across the internal resistance. Then for the left-hand circuit we have:

E1 −Ri1I︸ ︷︷ ︸
U1

= −(E2 −Ri2I︸ ︷︷ ︸
U2

) = 0V. (3.94)

For the right-hand circuit:

E1 −Ri1I︸ ︷︷ ︸
U1

= −(−E2 −Ri2I︸ ︷︷ ︸
U2

) = 8V. (3.95)

Figure 3.39 plots the potentials in the circuits. The potential always decreases as it passes
through the resistor (in the direction of current), the battery causing either an increase or
decrease in potential depending on the orientation.
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12V

6V

potential

circuit
0V

(a) Batteries connected “consistently”. Zero
voltage at battery terminals.

potential

circuit

12V

8V

2V

0V

(b) Batteries connected “discordantly”. There
is a voltage of 8V at the battery terminals.

Figure 3.39: Potential plot in the circuits with differently wired batteries. The voltage across the batteries
is given by the potential difference across their terminals.

3.7 Current definition

3.7.1 3.19 Electron velocity in a wire

A current I = 1A flows through a wire of cross-section S = 10mm2. The electron concentration
is n = 2, 5.1028m−3. Determine the current density and the mean ordered electron velocity.

Solution: Electric current is defined as the charge flowing through a given area per unit
time:

I =
dQ

dt
. (3.96)

The amount of charge flowing through a surface S in a small amount of time dt is given by

dQ = ρ dV, (3.97)

where ρ is the bulk charge density of electrons in the conductor and dV is the volume of the
conductor from which electrons pass through a given imaginary cross section in time dt, see
Figure 3.40.

S
v

v

dV

v dt

v

Figure 3.40: Only the charges in volume dV will pass through the surface S in time dt.

Only charges at a distance less than ds = v dt will pass through surface S, so the volume
is dV = S vdt. For the charge density, ρ = ne holds, where e is the elementary electric charge.
The charge dQ then comes out as

dQ = ρ dV = neSvdt, (3.98)

96



and the current I is

I =
dQ

dt
=
neSvdt

dt
= neSv. (3.99)

Expressing the velocity v gives the result:

v =
I

neS
= 2, 5.10−5m.s−1. (3.100)

The current density is defined as the current per unit area, i.e.

j =
I

S
= 105A.m−2. (3.101)

3.7.2 3.20 Electrons in an accelerator

In an electron synchrotron, electrons orbit in a circular path of length o = 240m. There are a
total of N = 1011 electrons in the path, whose speed is practically equal to the speed of light.
What current flows through the accelerating path?

Solution: Electric current is defined as the charge flowing through a given location per unit
time:

I =
dQ

dt
. (3.102)

Let’s calculate the charge dQ passing through a given spot in the accelerator in a small amount
of time dt:

dQ = τ dl = τcdt, (3.103)

where we have denoted τ the longitudinal charge density of the electrons in the accelerator and
dl = c dt is the distance from which the electrons manage to pass through a given accelerator
site in time dt (c denotes the speed of light, i.e. the speed of the electrons). The charge density
τ is

τ = ne =
N

o
e, (3.104)

where n = N
o denotes the (number) length density of electrons in the accelerator and e is the

elementary electric charge. After substitution, the charge is

dQ =
N

o
e cdt (3.105)

and the current from the definition

I =
dQ

dt
=
N

o
ec

.
= 20mA, (3.106)

where we used the value of the speed of light c = 3.108m.s−1 and the magnitude of elementary
electric charge e = 1, 602.10−19C.

3.7.3 3.21 Van der Graaff current

In a van der Graaff accelerator, a belt with width s = 20 cm moves at v = 15m/s. The surface
charge of the belt induces a field of intensity E = 12 kV.cm−1 on both sides. What is the current
carried by the belt?

Solution: The electric field around a charged plane is given by the following relation (the
derivation of which can be found in Example 2.26 in Section 2.7.1):

E =
σ

2ε0
−→ σ = 2ε0E, (3.107)
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where σ is the areal charge density and ε0 is the permittivity of the vacuum. Electric current
is defined as the charge flowing through a given location per unit time:

I =
dQ

dt
. (3.108)

The charge dQ carried by a strip through a given location in a small amount of time dt is

dQ = σ dS = σ svdt = 2ε0E svdt, (3.109)

where dS = s vdt denotes the area of the belt that will pass through that location in time dt,
see Figure 3.41.

v

dS

v dt

s

Figure 3.41: The moving charged belt and the area dS that passes through that location in time dt.

The current is then by definition

I =
dQ

dt
= 2ε0Esv

.
= 63, 7µA, (3.110)

where we have used the value of the permittivity of the vacuum ε0 = 8, 854.10−12 F.m−1.
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Chapter 4

Stationary magnetic field

4.1 Relativity

4.1.1 4.1 Moving capacitor

How does the voltage U0 between the plates of a charged capacitor change, measured in a
laboratory system, if the capacitor starts moving at V = 0, 8c in a direction a) perpendicular
to the plates, b) parallel to the plates.

Solution: A capacitor in its rest frame (S) has the area of the plates S at a mutual distance
d and they are charged to a total charge Q and −Q, respectively – so the surface charge density
on the plates is σ = ±Q/S.

S

+σ −σ

d

Figure 4.1: Capacitor at rest.

The electric field between the plates of the capacitor is

E =
σ

ε0
, (4.1)

this expression is determined using Gauss’s law – see Appendix in Section 2.7.1 – this law is
valid for any state of motion of the charges, so the expression (4.1) remains valid for flying
capacitors with appropriately changed charge density σ, see below.

The voltage between the plates is then by definition

U =
1

q

∫
l

~F · d~l =

∫
l

~E · d~l =

∫
l
E dl = Ed, (4.2)

see again the appendix in section 2.7.1 for details.
If the capacitor in the system (S′) moves at a speed V perpendicular to its plates (see Figure

4.2),
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S

+σ −σ

d0

V

Figure 4.2: Capacitor moving in a direction perpendicular to its plates.

the Lorentz length contraction causes the plates to be at a new distance

d′ =
d

γ
=

√
1− V 2

c2
d. (4.3)

The area of the plates remains the same, S′ = S. The charge as a relativistic invariant also
remains the same Q′ = Q and consequently so does the charge density σ′ = Q′/S′ = Q/S = σ.
The electric field is therefore also the same E′ = σ′/ε0 = σ/ε0 = E and the voltage changes
due to the change in distance between the plates of the capacitor:

U ′ = E′d′ = E
d

γ
=
U

γ
=

√
1− V 2

c2
U. (4.4)

When the capacitor moves parallel to the plates at speed V (in the system (S′′)), the plates
shorten due to length contraction.

S00

+σ
00

−σ
00

d

V

Figure 4.3: Capacitor moving in the direction parallel to the plates.

Thus, their area S′′ = a′′b′′ changes from the original S = ab, where a, b are the original
dimensions of the plates of the capacitor and a′′, b′′ are the dimensions of the plates of the
moving capacitor. Due to length contraction, a′′ = a/γ (dimension in the direction of motion)
and b′′ = b (dimension perpendicular to the direction of motion) hold. For the surface S′′ we
get:

S′′ = a′′b′′ =
a

γ
b =

S

γ
=

√
1− V 2

c2
S. (4.5)

As a consequence, the charge density σ′′ and therefore the electric field strength between
the plates E′′ changes:

σ′′ =
Q

S′′
=
Q

S
γ = σγ =

σ√
1− V 2

c2

, E′′ =
σ′′

ε0
=

σ

ε0
γ = Eγ =

E√
1− V 2

c2

. (4.6)

The resulting voltage across the capacitor is

U ′′ = E′′d′′ = Edγ = Uγ =
U√

1− V 2

c2

. (4.7)
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4.1.2 4.2 Current density

In an accelerator, charges with proper (rest) density ρ′ = 10−4C · m−3 move at a velocity
v = 0, 8c in the direction of the axis x. What is the current density measured in the laboratory
system?

Solution: The charge density ρ is given by the amount of charge Q in a given volume V :

ρ =
Q

V
. (4.8)

Charge is a relativistic invariant, it is conserved during the transition between systems, Q′ = Q.
In contrast, the volume transforms due to Lorentz length contraction as

V =
V ′

γ
= V ′

√
1− v2

c2
, (4.9)

where V ′ is the intrinsic volume (in the rest frame) and V is the volume in the laboratory
frame. This transformation follows from the fact that the dimension in the direction of motion
is subject to contraction, see the following figure 4.4.

V
0

a
0

b
0

c
0

V

a =
a
0

γ

b = b
0

c = c
0

v

Figure 4.4: Volume and moving volume.

Thus, the charge density in a laboratory system ρ is

ρ =
Q

V
=
Q′

V ′
γ = ρ′γ =

ρ′√
1− v2

c2

. (4.10)

The current density is ~j = ρ~v or its magnitude j = ρ v. After substituting from (4.10) we have

j = ρ v = ρ′γ v =
ρ′v√
1− v2

c2

= 104A.m−2. (4.11)

4.1.3 4.4 and 4.5 Electric and magnetic field transformations

The electric and magnetic fields are given as Ex = Ey = Ez = 3 · 104 V · m−1, Bx = 0,
By = −Bz = 5 · 10−5 T . Find the coordinate system in which B = 0.

A current I = 100A flows through a straight conductor. Determine the electric and magnetic
fields ~E, ~B as they appear at a distance r = 10 cm from the conductor in a coordinate system
moving parallel to the conductor at a velocity V = 0, 8c.

Solution: Consider an inertial frame of reference (S) and let the frame of reference (S′)
move with respect to it uniformly with velocity V in the direction of the axis x. Let the
coordinate axes be oriented parallel to each other – not rotated with respect to each other.
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O

(S) (S0)

x

y

z

x0

y0

z0

O0

V

Figure 4.5: Inertial reference frames (S) and (S′).

Denote the electric field and magnetic field in (S) as ~E = (Ex, Ey, Ez) and ~B = (Bx, By, Bz)

and in the system (S′) as ~E′ = (E′x, E
′
y, E

′
z) and ~B′ = (B′x, B

′
y, B

′
z). The relations for the

transformation of the components of the vectors ~E, ~B and ~E′, ~B′ are then:

E′x = Ex, E′y = γ (Ey − βcBz) , E′z = γ (Ez + βcBy) ,

B′x = Bx, B′y = γ

(
By +

β

c
Ez

)
, B′z = γ

(
Bz −

β

c
Ey

)
, (4.12)

where

β =
V

c
, γ =

1√
1− V 2

c2

=
(
1− β2

)−1/2
. (4.13)

In first example we have ~E = (E,E,E), where we denote E = Ex = Ey = Ez (note that

here E is not the magnitude of the vector ~E, that is | ~E| =
√

3E), and ~B = (0, B,−B), where
we denote B = By = −Bz (again, B is not the magnitude of the vector ~B but | ~B| =

√
2B).

Substituting in the transformation formulas for magnetic field ~B′ (4.12), we get

B′x = 0, B′y = γ

(
B +

β

c
E

)
, B′z = γ

(
−B − β

c
E

)
. (4.14)

Equations B′y = B′z = 0 lead to the same condition on the velocity V and β, respectively:

β = −B
E
c
.
= −0, 5, V = −B

E
c2 .

= −0, 5 c
.
= 1, 5 · 108m.s−1, (4.15)

where we have used the approximate value c = 3 · 108m.s−1 for the speed of light.
In second example we have a (neutral) infinite conductor with a current I that generates

a magnetic field around it of magnitude

B =
µ0I

2πr
, (4.16)

where r is the perpendicular distance from the conductor. The direction of the magnetic field
~B is given by the right-hand rule. The magnetic field vectors are tangent to concentric circles
around the conductor, and if the thumb points in the direction of the current in the conductor,
the fingers point in the direction of the magnetic field vector.
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I

~B V

r ~E; ~B =?

~E0; ~B0
=?

Figure 4.6: The electric and magnetic fields around a (moving) conductor with current.

We now introduce the reference frames (S) and (S′) and the corresponding Cartesian coor-
dinates (x, y, z) and (x′, y′, z′) so that we can use the electric and magnetic field transformation
formulas (4.12). The system (S′) will move with velocity V in the direction of the axis x of the
system (S). We will put the axes x and x′ in the conductor and point the axes z and z′ to the
point where we want to know the electric and magnetic fields ~E′ and ~B′ in the system (S′). See
Figure 4.7 (or also Figure 4.6).

I

~B V

O; O0

x; x0

y; y0

z; z0

Figure 4.7: Introduction of reference frames (S) and (S′).

In the reference system (S) thus introduced, we have the following component expressions
for the electric field ~E and magnetic field ~B:

~E = 0, ~B = (0,−B, 0) =

(
0,−µ0I

2πr
, 0

)
. (4.17)

We simply plug these into the formulas (4.12):

E′x = 0, E′y = 0, E′z = γβcBy = −γβc µ0I

2πr
,

B′x = 0, B′y = γBy = −γ µ0I

2πr
, B′z = 0. (4.18)

The result is that in a moving system (S′) we measure a non-zero electric field E′ = γβc µ0I2πr
directed radially towards the conductor (or away from the conductor, for I < 0) in addition to
a stronger magnetic field of magnitude B′ = γ µ0I

2πr ( ~B′ = γ ~B). See Figure 4.8. Substituting
the given numerical values (the speed of light is considered c = 3.108m.s−1), we obtain B′ =
3.33.10−4 T and E′ = 8.104V.m−1.
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I

~B V

~B

I

~B V

~E0

~B0

Figure 4.8: Electric and magnetic fields in systems (S), respectively (S′) – ~E, ~B, respectively ~E′, ~B′.

4.2 Force acting on conductor with current

4.2.1 4.3 Rectangular loop in magnetic field

Determine the total force that a long straight conductor flowing with current I1 = 10A will
exert on a rectangular loop as shown in Figure 4.9 through which current I2 = 5A is flowing.

I1

I2

h

s

d

Figure 4.9: What force does an infinite conductor exert on a rectangular loop?

Solution: The small force d~F acting on a small section dl of a conductor with current I
that lies in a given magnetic field ~B is given by the Ampere formula

d~F = Id~l × ~B, (4.19)

where d~l = ~t dl and ~t is the unit tangent vector to the conductor at the location of the line
element dl. See Figure 4.10.
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I

dl

~t
~B

d~F

Figure 4.10: The small force d~F according to Ampere’s formula is d~F = Id~l × ~B.

The magnetic field ~B from an infinitely long straight conductor with current I has the
magnitude of

B =
µ0I

2πr
, (4.20)

where r is the distance from the conductor. The direction of the magnetic field vectors ~B is
given by the right hand rule – the thumb points in the direction of the current, the fingers point
in the direction of the magnetic field. In our case, the magnetic field points perpendicular to
the rectangular loop and into the paper, see Figure 4.11.

I

~B

Figure 4.11: Magnetic field from an infinite straight conductor with current.

We will divide the rectangular loop into individual sides, labeled l1, l2, l3, and l4 – see Figure
4.12 (a) – in each individual side the tangent vector ~t points in the same direction along the
whole segment, which will be useful for simplifying the integration of the force elements d~F
(4.19).
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I1
I2

l1

l2

l3

l4

(a) Divide a rectangular loop into four segments
l1, . . . , l4.

I1

I2

d~l

~B

d~F3

d~l

d~l

d~l

~B

~B

~B

d~F4

d~F1

d~F2

I2

I2

(b) Directions of forces d~Fi in each section of the
rectangular loop.

Figure 4.12: Divide the rectangular loop into individual sections li and the resulting directions of force
contributions d~Fi.

Figure 4.12 (b) shows the directions of the length elements d~l (or tangent vectors ~t, d~l = ~t dl),
the magnetic field vectors ~B and the resulting directions of the force elements d~F according to
Ampère’s formula (4.19) in each section of the rectangular loop.

The division of the loop into its individual parts ensured that in each of them the force d~F
is always pointing in the same direction, and to find the magnitude of the total force we need
integrate only the magnitudes of these contributions, i.e.

Fi =

∫
li

dFi, (4.21)

where Fi denotes the total force acting on each part of the loop1.
We now proceed to the actual calculation of the forces Fi. The magnitude of the force dFi

from the Ampère formula because of the perpendicularity of the vectors d~l and ~B is equal to

dFi = I2B dl. (4.22)

Next, we introduce the Cartesian coordinates r and z as shown in Figure 4.13. We choose the
origin of the coordinate r with respect to the form of the magnetic field (4.20).

1Warning, it is generally not true that

~F =

∫
l

d~F ⇒ F =

∫
l

dF.

Thus, the magnitude of the vector ~F can only be computed if all the contributions d~F point in the same direction
(which is satisfied in this case). In the general case, the vector integral cannot be avoided and the following holds

F =

∣∣∣∣∫
l

d~F

∣∣∣∣ .
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I1
I2

r

z

O

d d+ s

h

Figure 4.13: We introduce the Cartesian coordinates z and r and the coordinate position of the rectan-
gular loop.

In the coordinates thus introduced, the individual segments li are described as follows:

l1 ↔ r = d, z ∈ 〈0, h〉,
l2 ↔ r ∈ 〈d, d+ s〉, z = 0,

l3 ↔ r = d+ s, z ∈ 〈0, h〉,
l4 ↔ r ∈ 〈d, d+ s〉, z = h, (4.23)

We use all of the above ingredients to construct concrete integrals (4.21) with the following
result:

F1 =

∫ h

0
I2Bdz = I2

µ0I1

2πd

∫ h

0
dz =

µ0I1I2

2πd
h,

F2 = F4 =

∫ d+s

d
I2Bdr = I2

µ0I1

2π

∫ d+s

d

dr

r
=
µ0I1I2

2π
ln
d+ s

d
,

F3 =

∫ h

0
I2Bdz = I2

µ0I1

2π(d+ s)

∫ h

0
dz =

µ0I1I2

2π(d+ s)
h. (4.24)

The directions of the ~Fi forces can be seen in Figure 4.12 (b). We see that the forces ~F2 and ~F4

cancel each other out and the total force acting on the loop will be of magnitude F = F1 − F3

in the direction towards the wire with current I1 (since F1 > F3).

4.3 Biot-Savart Law

4.3.1 4.7 Magnetic field of circular and polygonal loops

Determine the magnetic field at the center of a loop carrying a current I in the shape of a circle,
equilateral triangle, square, rectangle, hexagon.

Solution: We determine the magnetic field ~B of a conductor with current I using the
Biot-Savart law:

~B =
µ0I

4π

∫
l

d~l × ~R

R3
, (4.25)

where d~l = ~t dl is the line element with the unit tangent vector ~t pointing in the direction of
the current I and ~R is the vector pointing from the conductor element dl to the point where we
are asking about the magnetic field ~B; also see Figure 4.14.
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I

dl

~t

d ~B =?

~R

Figure 4.14: Vectors d~l = ~t dl and ~R in the Biot-Savart law giving the magnetic field ~B from the
current-carrying conductor.

We can imagine that each section of the conductor dl contributes to the total magnetic field
~B by a small contribution d ~B of the form

d ~B =
µ0I

4π

d~l × ~R

R3
. (4.26)

The direction of this contribution is given by the direction of the vector product d~l × ~R – this
is perpendicular to the plane formed by the vectors d~l and ~R. If our problem is planar, i.e., if
the entire current loop and the point where we calculate the magnetic field ~B lie in the same
plane, then all contributions d ~B will be directed in the same direction (namely, perpendicular
to this common plane)2 – see Figure 4.16.

~t

~R

dl

d ~B

I

Figure 4.16: Planar problem.

This allows us to calculate the magnitude of the total magnetic field B as the integral of
the magnitudes of the individual contributions dB:

B =

∫
l
dB =

µ0I

4π

∫
l

|d~l × ~R|
R3

=
µ0I

4π

∫
l

sinαdl

R2
, (4.27)

2The sense of wrapping the current conductor around the point where we calculate the magnetic field ~B
must not change. This is because then the direction of the contribution d ~B will change to the opposite. It is
then necessary to divide the current loop into sections with the same sense of circling and subtract the resulting
partial magnetic fields accordingly, see schematic figure 4.15. Alternatively, the “full” vector integral (4.25) can
be computed directly.

I

~B =?

+
+ + + + + +

+
+
+

+

+
+

+ + + + + +

−

−
−

−

−
−−

−

−

−

Figure 4.15: Changing the sense of the circling changes the sign of the contribution dB to the total magnetic
field B (or switches the direction of the vector contribution d ~B).
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where α is the (generally variable) angle between the vectors d~l and ~R.
Let us now use the formula (4.27) to calculate the magnitude of the magnetic field B at the

centre of a circular loop carrying current I.

~B =?
I

Figure 4.17: Magnetic field ~B in the middle of a circular loop.

The vectors ~R, d~l = ~t dl and the angle α between them (and the resulting vector d ~B) are
plotted in Figure 4.18. The angle α = π

2 is constant. The magnitude of the vector ~R is also
constant and equal to the radius of the circle R = r.

I

~t

~R

d ~B

αα

dl

Figure 4.18: Vectors ~R, d~l = ~t dl (and the angle α between them) and d ~B.

Substituting these values into the formula (4.27) gives

B =
µ0I

4π

∫
l

sinαdl

R2
=
µ0I

4π

1

r2

∫
l
dl =

µ0I

4π

1

r2
2πr =

µ0I

2r
, (4.28)

where we have used the relation for the circumference of a circle
∫
l 1dl = 2πr.

To calculate the magnetic field ~B inside a polygon, we first determine the magnetic field
generated by a piece of straight wire (this must then be connected to a closed circuit to allow
a constant current I to flow) – see figure 4.19 with the situation and dimensions shown.

I

~B =?

r

θ1

θ2

a b

~θ2

Figure 4.19: Magnetic field ~B from a finite straight conductor.

The problem is again planar, so we can use the formula (4.27). This time it will be better
to write directly the vector expressions for d~l and ~R and use them to calculate the magnitude
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of the vector product |d~l× ~R| – so we will not work with the angle α. The vectors d~l = ~t dl and
~R (and also the angle α) for the current line are shown in Figure 4.20.

I

dl

α

~t

~R

Figure 4.20: Vectors ~R and d~l = ~t dl in the Biot-Savart law for a finite straight conductor.

Introduce Cartesian coordinates as in Figure 4.21 – the x axis is placed in the conductor,
the magnetic field location will lie on the y axis, and the z axis is chosen to give a right-handed
coordinate system.

I x

−a b

O
0

y

r

z

Figure 4.21: Cartesian coordinates around a conductor line segment.

In these coordinates we obviously have ~t = (1, 0, 0), dl = dx, ~R = (−x, r, 0). The vector
product d~l × ~R and its magnitude is

d~l × ~R = ~t× ~R dx = (0, 0, r)dx → |d~l × ~R| = rdx. (4.29)

The magnitude of R is |~R| =
√
x2 + r2 and the range of coordinates for integration over the

line segment is x ∈ 〈−a, b〉. The Biot-Savart law in this particular case then takes the form

B =
µ0I

4π

∫
l

|d~l × ~R|
R3

=
µ0I

4π

∫ b

−a

r dx

(r2 + x2)3/2
. (4.30)

We now use the familiar formula3∫
dx

(r2 + x2)3/2
=

x

r2
√
r2 + x2

(4.31)

in the relation (4.30) and we arrive at the result:

B =
µ0I

4π

[
x

r
√
r2 + x2

]b
−a

=
µ0I

4π

1

r

(
a√

r2 + a2
+

b√
r2 + b2

)
. (4.32)

3This integral can be calculated in a number of ways. One is to use the substitution cosα = − x√
r2+x2

–

that is, to actually go to the angle variable α from Figure 4.20. Then we have (after some manipulation)

sinαdα = r2

(r2+x2)3/2
dx and after substitution into the integral:

∫
1
r2

sinαdα = − 1
r2

cosα = x

r2
√
r2+x2

. And now

it is familiar.
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We can still introduce the angles θ1 and θ2 (and θ̃2, respectively) as in Figure 4.19 to write the
formula for magnetic field B using these angles:

B =
µ0I

4π

1

r
(cos θ1 − cos θ2) =

µ0I

4π

1

r

(
cos θ1 + cos θ̃2

)
. (4.33)

From this formula we can already easily calculate magnetic field of all sorts of current
formations:

• Infinitely long conductor: The limiting value is θ1 = θ̃2 = 0, substituting into (4.33)
the magnitude of the magnetic field at a distance r from the conductor is B = µ0I

2πr .

• Semi-infinite conductor: Here the angles are θ1 = 0, θ̃2 = θ2 = π/2 and hence B = µ0I
4πr .

We calculate the magnetic field from the following n-gon loops by always determining the
magnetic field from one side and multiplying by the number of sides (except for the rectangle,
where there are two non-equivalent types of sides):

• Rectangle:

a

b

~B =?

a

2

b

2

α

β

β

α

Figure 4.22: Magnetic field ~B at the centre of the rectangle.

We express the cosines of the angles in the rectangle using the side lengths as cosα =
a√

a2+b2
and cosβ = b√

a2+b2
:

Brectangle = 2Ba + 2Bb = 2
µ0I

4π

[
2

a
2 (cosα) +

2

b
2 (cosβ)

]
=

2µ0I

π

[
1

a

b√
a2 + b2

+
1

b

a√
a2 + b2

]
=

2µ0I
√
a2 + b2

πab
. (4.34)

• Square:

a

a

2

π

4

π

4

~B =?

Figure 4.23: Magnetic field ~B at the centre of the square.

Either we consider the square as a special case of a rectangle, b = a or easily determine
the necessary distances from the figure 4.23:

Bsquare = 4B1 = 4
µ0I

4π

2

a
2
(

cos
π

4

)
=

2
√

2µ0I

πa
. (4.35)
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• Equilateral triangle:

~B =?

π

6

π

6

a

a

2
p

3

Figure 4.24: Magnetic field ~B at the centre of the triangle.

The main thing to determine is the distance of the center of the triangle from its side – it

is one-third of the height, r = 1
3

√
3a
2 .

Btriangle = 3B1 = 3
µ0I

4π

2
√

3

a
2
(

cos
π

6

)
=

9µ0I

2πa
. (4.36)

• Hexagon:

~B =?

a
p

3a

2

π

3

π

3

Figure 4.25: Magnetic field ~B at the center of the hexagon.

In a hexagon, the distance r is just equal to the height of one of the triangles forming the

hexagon, r =
√

3a
2 .

Bhexagon = 6B1 = 6
µ0I

4π

2√
3a

2
(

cos
π

3

)
=

√
3µ0I

πa
. (4.37)

4.3.2 4.11 Bent wire

The infinite wire is bent according to the figure 4.26. Determine the magnetic field at the centre
of the semicircle.

~B =?

I

r

Figure 4.26: Bent wire with curren I.
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Solution: The magnetic field at the center of the semicircle will be half that of the whole
circle (see the first half of Example 4.7 (Section 4.3.1)):

Bhalfcircle =
1

2
Bcircle =

µ0I

4r
. (4.38)

The magnetic field at a distance r “at the edge” of the semi-infinite wire is half that of the
magnetic field of the entire infinite wire (see the second half of Example 4.7 (Section 4.3.1)):

Bhalfwire =
1

2
Bwire =

µ0I

4πr
. (4.39)

The whole problem is planar and hence all contributions to the magnetic field will be in the
same direction, namely perpendicular to the plane of the wire. For the total magnitude of the
magnetic field B then

B = 2Bhalfwire +Bhalfcircle = 2
µ0I

4πr
+
µ0I

4r
=
µ0I

4r

(
2

π
+ 1

)
. (4.40)

We determine the direction of the magnetic field from the right hand rule (the thumb points in
the direction of the current, the fingers point in the “direction of wrapping” of the magnetic field
lines around the wire). For the direction of current drawn here, the magnetic field is directed
into the paper.

Addendum: The example can also be solved by “trick”, by laying two equally shaped
wires across each other to effectively form a whole circle with current and two (whole) infinite
conductors with current. See the following figure 4.27.

~B =?

I

I

I

Figure 4.27: Doubled bent wire forming two infinite straight conductors and a circle with current.

The resulting magnetic field is then twice the original one, and we just need to know the
expressions for the whole circle and the infinite wire:

B =
1

2
(2Bwire +Bcircle) =

1

2

(
2
µ0I

2πr
+
µ0I

2r

)
=
µ0I

4r

(
2

π
+ 1

)
. (4.41)

4.3.3 4.10 Magnetic field on the axis of a square loop

A current I = 10A flows through a square loop with side a = 6m. Determine the magnetic
field at a point on the axis of the loop at a height h = 4m above the plane of the loop.
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~B =?

I

a

a

h

Figure 4.28: Magnetic field on the axis of a square loop with current.

Solution: In this case, we do not have a planar problem – the current loop and the
magnetic field determination point ~B do not lie in the same plane. We can, however, determine
the partial magnetic fields from each side of the square loop and then add these together.

From the symmetry of the problem (rotational symmetry about the square axis by multiples
of the angle π

2 ), we know that the resulting magnetic field ~B will point in the direction of
the square loop axis. We will therefore want to calculate the projections of the magnetic
field from each side of the square in the direction of its axis. Symmetry also says that these
projections are the same for each side of the square. The magnetic fields, their projections, and
the corresponding angles are shown in Figure 4.29.

~B1
~B2

2 ~Bp

α

α

β

12

Figure 4.29: Side view of a square loop with current. The magnetic fields from opposite sides of the
square ~B1 and ~B2 and their projections in the direction of the loop axis ~Bp are shown. The corresponding
sides of the square are marked with numbers (these are the sides that are perpendicular to the paper in
this figure). Side one has current flowing into the paper, side two out of the paper. The magnetic fields
~B1 and ~B2 are perpendicular to the planes formed by the sides and a point on the axis of the square.
The specific direction is given by the right-hand rule. Angle β = π

2 − α.

The magnitude of the total magnetic field B will therefore be B = 4Bp, where Bp is the
magnitude of the projection of the magnetic field contribution from one side of the square. We
now denotes the important distances and angles as: x, y, θ and α. These are marked in Figure
4.30. Next, we determine their expression using the given distances a and h. In the course
of the subsequent calculation of the total magnetic field ~B, we will gradually see where these
quantities are needed.
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I

h

θ

x

y

a

2

a

2

α

Figure 4.30: The important distances x and y and angles θ and α shown.

From the Pythagorean theorem, we can easily determine

x =

√
h2 +

(a
2

)2
=

√
h2 +

a2

4
, y =

√
x2 +

(a
2

)2
=

√
h2 + 2

(a
2

)2
=

√
h2 +

a2

2
. (4.42)

We express the angles θ and α from the corresponding triangles as

cos θ =
a
2

y
=

a

2
√
h2 + a2

2

, cosα =
a
2

x
=

a

2
√
h2 + a2

4

. (4.43)

To calculate the magnetic field from one side of the square B1, we use the formula derived
in Example 4.7 (Section 4.3.1) for the magnetic field of a line segment:

B =
µ0I

4π

1

r
(cos θ1 − cos θ2) =

µ0I

4π

1

r

(
cos θ1 + cos θ̃2

)
, (4.44)

where r is the perpendicular distance from the line segment, and see Figure 4.31 for the intro-
duction of angles θ1 and θ2 (respectively θ̃2).

I

r

θ1

θ2
~θ2

Figure 4.31: Distance r and angles θ1 and θ2 (respectively θ̃2) to determine the magnetic field from a
line segment.

Here, r = x, θ1 = θ̃2 = θ, after substitution (from (4.42) and (4.43)) it holds:

B1 =
µ0I

4π

2

x
cos θ =

µ0I

2π
· 1√

h2 + a2

4

· a

2
√
h2 + a2

2

.

The magnitude of the projection is Bp = B1 cosα (see Figure 4.29). For the expression for
the angle α, see (4.43). Now we put all the above information together:

B = 4Bp = 4B1
a

2
√
h2 + a2

4

= 4
µ0I

2π
· 1√

h2 + a2

4

· a

2
√
h2 + a2

2

· a

2
√
h2 + a2

4

. (4.45)
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After some manipulation, we get the result

B =
µ0I

2π

a2(
h2 + a2

4

)√
h2 + a2

2

=
µ0I

π

2
√

2 a2

(4h2 + a2)
√

2h2 + a2
. (4.46)

After plugging in the numerical values, we have B = 4, 94.10−7 T .

4.3.4 4.8 Triangle of wire

An equilateral triangle is spliced from a homogeneous wire. An electromotive voltage is applied
to the two vertices of the triangle. What will be the magnetic field at the centre of the triangle?

I

I

2 I

2

~B =?

Figure 4.32: Magnetic field at the center of the triangle.

Solution: The current flowing through each section of the triangle is indicated in Figure
4.32. The current flowing through two sides of the triangle must be half the current flowing
through one side because of the two sides having twice the total length and therefore twice the
resistance.

The magnetic field at the centre of the triangle could be found by calculating the contri-
butions from each side exactly using the Biot-Savart law and then summing these. Indeed,
we already know the specific expression for the magnetic field from one side of the triangle
from Example 4.7 (Section 4.3.1). But let us look at the calculation a little more generally.
Biot-Savart law

~B =
µ0I

4π

∫
l

d~l × ~R

R3
(4.47)

can be rewritten in a very simple form:

~B = I

(
µ0

4π

∫
l

d~l × ~R

R3

)
= I ~B(geometry). (4.48)

The resulting magnetic field is always linearly dependent on the current I flowing through it
and is further determined only by the geometry of the problem – the position and shape of the
current carrying conductor and the location of the magnetic field. This particular geometry
results in a constant coefficient ~B, which gives the value of the magnetic field per unit current.

Here the geometry of each side of the triangle is exactly the same – hence the coefficient ~B
– if we consider the current flowing in the same sense. We determine the actual direction of
magnetic field by the right-hand rule – see Figure 4.33; we express this direction by choosing
the appropriate sign for the value of the current.
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I
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2

r r

r

Figure 4.33: Directions and magnitudes of magnetic field from each side of the triangle are shown.

Now just add up the individual contributions (once again, we repeat that the opposite
direction of magnetic field is expressed by the sign of the current):

~B =

(
I − I

2
− I

2

)
~B = 0. (4.49)

4.3.5 4.9 Wire cubes

The cube is made of equal sections of wire. We connect voltage to two opposite vertices of the
cube. What will be the magnetic field at the centre of the cube?

~B =?

Figure 4.34: Magnetic field at the center of the cube.

Solution: This example is essentially a three-dimensional analogue of the previous example
4.8. The procedure will be very similar. We will determine the currents flowing through each
edge of the cube from symmetry – the currents are split into thirds or halves at the nodes (and
then joined again); see Example 3.6 (Section 3.4.1) for details. The resulting currents are shown
in Figure 4.35.
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~B =?
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3
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I

6
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6

I

6

I

6

I

Figure 4.35: Currents flowing through each edge of the cube – I
3 and I

6 .

Consider four parallel edges, the contributions to the magnetic field from these edges then
lie in one plane – the situation is shown in Figure 4.36. We determine the directions of the
contributions from the right-hand rule – the direction of magnetic field is perpendicular to the
plane formed by the edge and the center of the cube, and if the thumb points in the direction
of the current, then the fingers point in the direction of magnetic field.

To determine the magnitude of magnetic field specifically from the Biot-Savart law, we would
again only need the information that magnetic field is linearly dependent on current:

~B =
µ0I

4π

∫
l

d~l × ~R

R3
= I

(
µ0

4π

∫
l

d~l × ~R

R3

)
= I ~B(geometry) → B = IB, (4.50)

where the coefficient ~B gives the value of the magnetic field per unit current and is determined
purely by the geometry of the conductor and the location of the magnetic field. For all edges of
the cube the geometry is equivalent in the sense that the coefficient B is the same for all of them
(only its magnitude, the directions of the contributions are different and we had to determine
them in advance).

I

6

I

3

I

6

I

3

~B1

~B2

~B3

~B4

1 2

34

Figure 4.36: Magnetic fields from the four edges of the cube. Shows a section perpendicular to the
selected edges passing through the center of the cube. Currents flow through the edges “into the paper”.
The edges are numbered and have vectors ~Bi associated with them.

Here, specifically, the magnitudes of the magnetic field contributions Bi from the edges with
current I

3 are the same, B1 = B3, and so are the magnitudes of the contributions from the edges
with current I

6 , B2 = B4, (again, see Figure 4.36). The contributions then cancel each other out
due to them pointing in the opposite directions. Thus, the total magnetic field from parallel
edges is zero, and the magnetic field from all edges (consisting of three sets of parallel edges)
in the center of the cube is also zero.
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4.3.6 4.14 Three wires

Three parallel straight wires form the edges of a triangular equilateral prism, they are spaced
d = 10 cm apart, and each carries current I = 20A flowing in the same direction. Determine
the direction and magnitude of the magnetic field on the axis of the prism and on the axis of
one of the walls of the prism.

I

I

I

~B2

~B1

(a) Perspective view.

~B2

~B1

d

(b) Front view.

Figure 4.37: Magnetic field from three parallel wires.

Solution: The situation on the axis of the prism is simple. The prism has a discrete
rotational symmetry by multiples of 120◦ = 2π

3 – rotating it by these angles does not change
the physical situation (the position of the conductors and the currents in them), and therefore
the generated magnetic field must not change. Infinite straight conductors generate magnetic
fields lying in planes perpendicular to the conductor, the resultant magnetic fields from the
three conductors forming the prism must again lie in a plane perpendicular to the conductors.
However, the only vector perpendicular to the axis of the prism that does not change when
rotated by multiples of 120◦ is the zero vector. The magnetic field on the axis of the prism
is therefore zero. In Figure 4.38 we have shown the contributions to the magnetic field from
the individual conductors, but for the symmetry argument used above all that was needed was
that the vectors ~BA, ~BB, ~BC lie in a plane perpendicular to the axis of the prism and not their
particular direction and magnitude.

A

B

C

~BA

~BB

~BC

Figure 4.38: Magnetic fields on the axis of the prism from individual conductors in the plane perpendic-
ular to the current-carrying conductors (denoted here by A, B and C and their corresponding magnetic

fields ~BA, ~BB and ~BC). The magnetic field directions correspond to the current flowing through the
conductor in the direction “into the paper”.
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The situation on the wall axis of the prism is more complicated, see Figure 4.39. The
contributions from the wires marked as B and C are cancelled. Their magnitude is the same
since the wall axis lies at the same distance from the conductors forming this wall. Their
direction is given by the right-hand rule – if the thumb points in the direction of the current
flowing through the conductor, then the fingers point in the direction of the magnetic field. It
remains, then, to determine the contribution from the conductor A.

A

B

C

~BC

~BB
~BA

Figure 4.39: Magnetic fields on the wall axis from each conductor in the plane perpendicular to the
current-carrying conductors (here labeled A, B, and C and the corresponding magnetic fields ~BA, ~BB ,

and ~BC). The magnetic field directions correspond to currents flowing through the conductor in the
direction “into the paper”.

The direction of this contribution is again given by the right-hand rule. The magnitude is
given by the formula for the magnetic field from an infinitely long straight conductor:

B =
µ0I

2πr
, (4.51)

where r is the distance from the conductor. In our case, r =

√
d2 −

(
d
2

)2
=
√

3
2 d holds and thus

B =
µ0I√
3πd

. (4.52)

After substituting the numerical values, we have B = 4, 62.10−5 T .

4.4 Ampere’s Law

4.4.1 4.13 Pipe with electrical current

An electric current I flows through the walls of a hollow metal tube of inner and outer radii R1

and R2. What will be the magnetic field in the walls of the pipe?

I

R2 R1

Figure 4.40: Infinitely long pipe with current I.
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Solution: Let us first see what constraints are imposed by the symmetries of the problem
on the form of the magnetic field generated by the current in the pipe. These are primarily
rotational symmetry about the axis of the pipe and translational symmetry in the direction of
the pipe. We introduce cylindrical coordinates (r, ϕ, z) such that the axis z passes through the
pipe axis, see Figure 4.41. Then, due to rotational symmetry, the magnitude of the magnetic
field B must not depend on the coordinate ϕ. Due to translational symmetry, the magnitude
does not depend on the coordinate z. Thus, we have B = B(r).

z

r

'

O

Figure 4.41: Cylindrical coordinate (r, ϕ, z) in the pipe.

What will be the direction of magnetic field ~B? Imagine the pipe with current as a compo-
sition of infinitely many infinitely long infinitely thin conductors. The magnetic field generated
individually by these conductors is known – the magnetic field vectors always point tangentially
and the magnitude depends inversely proportional to the distance (B ∝ 1

r ). Consider a fixed but
arbitrary point P in space. This point uniquely defines a plane bisecting the pipe longitudinally
and passing through the point P . Now we can always take the two conductors in the pipe to be
opposite to this plane – see figure 4.42 – the conductors labeled A and B. For arbitrarily chosen
opposite pairs of conductors, the resulting contribution to the total magnetic field is always in
the tangential direction. Thus, even the total magnetic field at any point P is tangential.

A

B

~BA
~BB

~BA + ~BB

P

Figure 4.42: The direction of the contribution ~BA+ ~BB at point P to the total magnetic field ~B from the
opposite parts of the pipe (the conductors A and B and their magnetic fields ~BA and ~BB) is tangential.

We now know that the magnitude of the magnetic field depends only on the distance r from
the axis of the pipe, B = B(r), and the direction of this field is purely tangential. To calculate
the specific form of the magnitude of the magnetic field, B(r), we use Ampere’s law:∮

l

~B · d~l = µ0Iin, (4.53)

which relates the circulation of magnetic field ~B along a closed curve l with the total current
Iin enclosed in that curve. We choose the curve l as a circle of general radius r concentric with
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the axis of the pipe (axis z). A vector element of length d~l = ~t dl, where ~t is a unit tangent
vector to the curve l, points in the direction of magnetic field ~B, see Figure 4.43.

dl

~t

l

~B

Figure 4.43: Curve l for Ampere’s law. The line element d~l points in the direction of the magnetic field
~B.

For the left-hand side of Ampere’s law we get:∮
l

~B · d~l =

∮
l
B dl = B(r)

∮
l
dl = 2πrB(r), (4.54)

where we have used the following facts: for the collinear vectors ~B and d~l, ~B · d~l = B dl holds.
The circle has a constant distance r from the axis of the pipe and hence the magnetic field B(r)
is constant along the integration curve and can be drawn from the integral. Finally, we used
the relation for the length of the curve (here the circumference of the circle)

∫
l 1dl = 2πr.

The right-hand side of Ampere’s law requires the calculation of the current Iin enclosed
inside the curve l. We distinguish three cases. For r ≤ R1 the curve lies inside the pipe and
thus does not enclose any current, Iin = 0. For r ≥ R2 the whole pipe lies inside the curve and
the enveloping current is Iin = I. Finally, consider the case of R1 < r < R2. Let us calculate
the current density j in the pipe from the formula I = jS, where S is the cross section of the
conductor:

j =
I

S
=

I

π(R2
2 −R2

1)
. (4.55)

The current Iin enclosed in the loop is obtained by multiplying the current density j calculated
above by the conductor cross section in the loop l: S(r) = π(r2 −R2

1), see figure 4.44, i.e.

Iin(r) = jS(r) = I
r2 −R2

1

R2
2 −R2

1

. (4.56)

l

S(r)

R1

r

Figure 4.44: A section of the conductor S(r) enclosed in a curve l – a circle of radius r.

The current Iin(r) is shown in Figure 4.45.

122



rR1 R2

I

O

Iin(r)

Figure 4.45: Current magnitude Iin(r) enclosed in a circle l of radius r.

By comparing the left and right sides of Ampere’s law (4.54) and (4.56) (and the “trivial”
cases Iin for r < R1 and r > R2), we obtain the result (shown graphically in Figure 4.46):

B(r) =


0 r ≤ R1,
µ0I
2πr

r2−R2
1

R2
2−R2

1
R1 ≤ r ≤ R2,

µ0I
2πr R2 ≤ r.

(4.57)

r

B(r)

R1 R2
O

µ0I

2πR2

Figure 4.46: The magnitude of the magnetic field B(r) versus the distance r from the axis of the pipe.

Addendum: For the magnetic field of a solid conductor of radius R, we just need to put
R1 = 0 and R2 = R and get the result

B(r) =

{ µ0I
2π

r
R2 r ≤ R

µ0I
2πr r ≥ R

. (4.58)

This will come in handy in Example 4.12 (see the following section 4.4.2).
Addendum: Eventually there will be another justification of the direction of the magnetic

field in the pipe purely by symmetries and by studying what type of field symmetry the problem
admits at all. The fields that are rotationally symmetric are shown in Figure 4.47 (all linear
combinations of these fields are also rotationally symmetric).

(a) Radial vector field. (b) Tangential vector field. (c) Longitudinal vector field.

Figure 4.47: Vector fields respecting rotational symmetry about the axis z.
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4.4.2 4.12 Drilled hole

Inside a long conductor of circular cross-section of radius R = 5mm, a cylindrical cavity of
radius a = 0, 5mm is drilled, the axis of which passes parallel to the axis of the conductor at a
distance b = 3mm. A current I = 1A flows through the conductor. What will be the magnetic
field in the cavity?

b

R

a

Figure 4.48: A conductor with a drilled hole.

Solution: First, let’s use the principle of superposition. In a conductor with a drilled hole,
the current density is equal to

j =
I

S
=

I

π(R2 − a2)
, (4.59)

where S = π(R2 − a2) is the cross section of the conductor. We decompose this situation into
the following two “current configurations”. The first is a solid conductor without a drilled hole
with a total current of Ic = jSc = jπR2. The second is a current flowing in the opposite
direction through only a drilled hole of magnitude Id = jSd = jπa2. We consider the current
densities in both cases identical to (4.59). If we “interleave” (superpose) these two situations,
we obtain the original current configuration of the conductor with a current where no current
flows through the drilled hole. See Figure 4.49.

I = jS = jπ(R2
− a2)

= +

Ic = jSc = jπR2 Id = jSd = jπa2

Figure 4.49: A drilled-hole conductor can be thought of as a superposition of a solid conductor and a
conductor at the location of the drilled hole with current flowing in the opposite direction. The total
currents through the formations I, Ic and Id are given by the product of the constant current density j
and the cross sections of the respective formations S, Sc and Sd.

We now determine the magnetic fields from these two configurations, ~Bc and ~Bd, and add
their values to obtain the resulting magnetic field from the original configuration, ~B = ~Bc+ ~Bd.
We will use the result (4.58) in the appendix of Example 4.13 (see Section 4.4.1), which gives
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the result for the magnitude of the magnetic field inside the cylindrical conductor:

B(r) =
µ0I

2π

r

R2
, (4.60)

where I is the total current flowing through the conductor, R is its radius, and r is the distance
from its axis (r < R, considering only points inside the conductor). We, however, need the “full”
vector expression ~B(r), since the contributions ~Bc and ~Bd from each current configuration do
not generally point in the same direction, see Figure 4.50 (c).

~Bc

(a) Field ~Bc.

~Bd

(b) Field ~Bd.

~Bc

~Bd

(c) Field ~Bc and ~Bd.

Figure 4.50: Contributions to the total magnetic field from the solid conductor ~Bc (left) and from “reverse

current drilled hole” ~Bd (middle). On the right, the sum of ~Bc + ~Bd in one place

.

We know that the magnetic field vectors ~B from the solid conductor are tangential (see
Example 4.13 in Section 4.4.1), i.e., lying in a plane perpendicular to the cylinder and tangent
to the imaginary circles centered on the conductor axis (illustrated in the left and middle figures
4.50). The full vector expression for the magnitude and direction of the magnetic field can then
be written as follows:

~B =
µ0I

2π

~n× ~r
R2

, (4.61)

where ~n is the unit vector pointing in the direction of the current, and ~r is the vector connecting
the axis of a given conductor to the magnetic field location (verify that the magnitude of | ~B| is
the same as (4.60) and the vector product by the right hand rule gives the correct direction).

Thus, the vectors ~Bc and ~Bd have the expression

~Bc =
µ0jπR

2

2π

~nc × ~rc
R2

=
µ0j

2
~nc × ~rc, ~Bd =

µ0jπa
2

2π

~nd × ~rd
a2

=
µ0j

2
~nd × ~rd, (4.62)

where we have given specific values for the currents Ic and Id using the current density j.
Furthermore, the vectors ~nc and ~nd give the directions of the currents, so for example ~nc = −~nd
holds. Finally, the vector ~rc connects the solid conductor axis, and the vector ~rd connects the
“drilled conductor” axis, to the magnetic field location, see Figure 4.51.

~Bc

~Bd

~rc ~rd

~nc

~nd

Figure 4.51: Vectors ~rc, ~rd, ~nc and ~nd for the determination of the magnetic field vectors ~Bc and ~Bd.
The vector ~nc points in the direction “into the paper”, the vector ~nd points “out of the paper”.

125



We now introduce Cartesian coordinates as in Figure 4.52.

x

y

z

Figure 4.52: Cartesian coordinates (x, y, z) in the wire with the hole. The z axis points in the direction
“out of the paper”.

We write the vectors ~nc, ~nd, ~rc and ~rd in these coordinates. The direction of the current Ic
is in the negative direction of the axis z and hence ~nc = (0, 0,−1). The direction of current Id
is the opposite, so ~nd = (0, 0, 1). Next, consider an arbitrary point inside the drilled hole with
position vector ~r = (x, y, z). Then ~rc = ~r = (x, y, z) and ~rd = (x − b, y, z) hold. Substituting
these expressions into (4.62) we obtain:

~Bc =
µ0j

2
(y,−x, 0), ~Bd =

µ0j

2
(−y, x− b, 0). (4.63)

Adding them together gives the result:

~B = ~Bc + ~Bd =
µ0j

2
(0,−b, 0) =

µ0jb

2
(0,−1, 0). (4.64)

Thus, the magnetic field in the whole space of the cavity is constant! Its magnitude is B = µ0jb
2 ,

where we could still substitute j = I
π(R2−a2)

for the current density. After substituting specific

numerical values, we have B = 2, 42.10−5 T .

4.4.3 4.15 Solenoid

The solenoid has length L = 30 cm and diameter d = 6 cm. There are 5 turns wound on 1 cm
(n = 5 t./cm), the wire has a resistance of Ωm = 0, 01 Ω ·m−1 and is connected to E = 24V .
What will be the magnetic field inside the solenoid, the pressure on the wall and the power
consumed?

Figure 4.53: Solenoid.

Solution: If we know the formula for the magnitude of the magnetic field inside an infinitely
long solenoid, B = µ0nI (n is the density of turns, I is the current flowing through the solenoid),
the exercise is trivial. The total resistance of the wire is likely to be R = ΩmπdnL, where
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l = (πd)N is the total length of the wire and N = nL is the number of turns of the solenoid.
The current flowing through the solenoid is obtained from Ohm’s law I = E

R . The magnetic
field is therefore

B = µ0nI = µ0n
E

ΩmπdnL
=

µ0E
ΩmπdL

= 5, 33 . 10−2 T. (4.65)

The power consumed is given by Joule’s heat P = RI2 = E2
R :

P =
E2

ΩmπdnL
= 2037W. (4.66)

The wall pressure is given by the relation for the pressure of a surface current (current sheet),
where the magnetic fields from one side and the other are B1 and B2:

p =
1

2µ0

(
B2

1 −B2
2

)
. (4.67)

In the solenoid we have B1 = B inside and B2 = 0 outside. So the result is:

p =
B2

2µ0
=

1

2µ0

(
µ0E

ΩmπdL

)2

=
µ0E2

2(ΩmπdL)2
= 1132Pa. (4.68)

It can be shown that the pressure is exerted from inside the solenoid – so it tends to stretch
the coil, using, for example, Ampère’s formula for the force on a conductor with current d~F =
Id~l × ~B.

Now what follows is the derivation of the formula B = µ0nI. Let us first see what constraints
the cylindrical symmetry problem places on the possible shapes of the magnetic field ~B around
the solenoid. Let us introduce cylindrical coordinates (z, r, ϕ) such that the axis z is identical
to the axis of the solenoid, see Figure 4.54.

z

r
'

Figure 4.54: Cylindrical coordinates (z, r, ϕ) in the solenoid.

In general, the magnitude of the vector field of magnetic field B(z, r, ϕ) could depend on all
spatial variables. However, due to rotational symmetry about the axis, it cannot depend on ϕ
and due to translational symmetry along the axis, it cannot depend on z. Thus we are left with
only radial dependence, i.e. dependence on the distance from the solenoid axis, B(r).

Where will the vector ~B point? We show that the magnetic field is so-called longitudinal
– pointing in the direction of the solenoid axis. Let us take an arbitrary location and examine
the contributions to the magnetic field from two symmetrically placed coil turns, see Figure
4.55. Although we do not know the exact form of the magnetic field from the current loop, the
reflection symmetry about the plane of the circular loop implies that the magnetic fields from
one and the other current loop, ~B1 and ~B2, add up to a longitudinal (longitudinal, pointing in
the direction of the z axis) vector.
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1 2

~B2

~B1

~B

a a

Figure 4.55: Contributions ~B1 and ~B2 to the magnetic field from two symmetrically placed coil turns.
The approximate magnetic field lines from these individual coils are shown in grey.

We can now proceed to the actual determination of the magnetic field around the solenoid.
To do this, we use Ampere’s law ∮

l

~B · d~l = µ0Iin, (4.69)

which relates the circulation of magnetic field ~B along a closed curve l with the current Iin
encircled by this curve.

To determine the magnetic field of the solenoid, we choose a rectangular loop whose two
sides are perpendicular to the solenoid wall and whose other two sides are parallel to the solenoid
axis. Let “width” of the rectangle be s and the distances of the lower and upper sides from the
solenoid axis be r1 and r2. See Figures 4.56.

l

(a) Curve l in the solenoid for Ampere’s law.

l

s

r2

r1

(b) Curve dimensions.

Figure 4.56: Curve l in Ampere’s law.

There are N = ns turns trapped inside the curve l and hence the total current flowing
through the curve is Iin = Ins. We divide the integral over the whole rectangular loop into four
integrals over each side:∮

l

~B · d~l =

∫
left

~B · d~l +

∫
bottom

~B · d~l +

∫
right

~B · d~l +

∫
top

~B · d~l. (4.70)

l

dl~t

dl

~t

dl ~t

dl

~t

~B

Figure 4.57: Length elements dl and tangent vectors ~t in each side of the rectangular loop l.

The directions of the unit tangent vectors ~t from the elements d~l = ~t dl in each part of the
curve l are shown in Figure 4.57. The integrals over the left and right sides are zero due to the
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perpendicularity of the magnetic field vector ~B and the tangent vector to the curve ~t, ~B ·d~l = 0,
on the contrary, the scalar products under the integrals over the upper and lower sides give
~B · d~l = −B dl and B dl, respectively:∮

l

~B · d~l =

∫
bottom

B dl −
∫

top

B dl. (4.71)

The magnetic field depends only on the distance from the axis of the solenoid, B(r). The
segments of the upper and lower faces lie at constant values of the coordinate r. Thus the terms
under the integrals are constant and can be factored out:∮

l

~B · d~l = B(r1)

∫
bottom

dl −B(r2)

∫
top

dl = [B(r1)−B(r2)] s; (4.72)

we have used the relation
∫
dl = s (the length of the upper and lower segments is s). Substituting

the computed expressions for the circulation of magnetic field and the current enclosed in the
loop into Ampere’s law, we get:

[B(r1)−B(r2)] s = µ0Ins → B(r1)−B(r2) = µ0In. (4.73)

This equation implies that the magnetic field is constant inside and outside the solenoid and
varies by a constant value µ0nI. This fact is easiest to see if (4.73) is differentiated with respect
to r1, i.e., ∂

∂r1
(4.73), or by r2, ∂

∂r2
(4.73), with the result4:

dB(r1)

r1
= 0 → B(r1) = const.,

dB(r2)

r2
= 0 → B(r2) = const. (4.74)

Let us now introduce the labels Binside = B(r1) and Boutside = B(r2). Thus, it is valid

Binside −Boutside = µ0nI. (4.75)

The last step is to show that Boutside = 0. Let’s leave this for the addendum. Then it will
obviously be

Binside = µ0nI. (4.76)

Addendum: Let’s show that Boutside = 0. The general strategy will be as follows. Since it
is very difficult to calculate exactly the magnetic field outside the solenoid using the Biot-Savart
law5, we will try to get some upper bound for the magnitude of this field, Boutside ≤ Bbound. If
Bbound ≤ C

(r−r0)α holds for this estimate, where C > 0, α > 0, r0 are constants and r is the
distance from the solenoid axis, combining these inequalities gives the result that the exact
field must decrease with distance from the solenoid axis: Boutside ≤ C

(r−r0)α . But since we have
already established that the field outside the solenoid is constant, the only value of this field
consistent with its decay is zero6, Boutside = 0.

Let us find this estimate. We first estimate the magnitude of the magnetic field of a single
coil turn, Bturn. Let us take the Biot-Savart law and estimate:

Bturn =

∣∣∣∣∣µ0I

4π

∫
l

d~l × ~R

R3

∣∣∣∣∣ ≤ µ0I

4π

∫
l

|d~l × ~R|
R3

≤ µ0I

4π

∫
l

dl

R2
. (4.77)

4The same result can, of course, be obtained without derivation. The values r1 and r2 are completely in-
dependent of each other. For example, we can hold r2 fixed, then B(r1) = B(r2) + µ0nI = const. and vice
versa

5Also, this is why we have used Ampere’s law in this example.
6If the field outside the solenoid were not zero Boutside = B0 6= 0, we would always find a distance rv where

our estimate Boutside ≤ C
(r−r0)α

would be violated, specifically for rv > r0 +
(
C
B0

)1/α
.
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We used the estimates
∣∣∣∫ d ~B∣∣∣ ≤ ∫

dB and |~a × ~b| = |~a||~b| sinα ≤ |~a||~b|. Next, we need to

estimate the distance R between the parts of a coil turn and the magnetic field location, see
Figure 4.58.

zO

r

d

2

r0

p

z2 + r02

dl

R

~B =?

z

Figure 4.58: Distances required to estimate the magnetic field from a single turn.

Let the coil be located on the z-axis at a general coordinate value z, then we can estimate the

distance as follows: R ≥
√
z2 +

(
r − d

2

)2
– that is, we have reduced all distances to the distance

of the closest piece of the coil turn, again see Figure 4.58. Purely for simplicity of notation,
we introduce the distance r′ = r − d

2 as the distance from the solenoid wall: R ≥
√
z2 + r′2.

Putting all this info into our estimate and further manipulating:

Bturn ≤
µ0I

4π

∫
l

dl

R2
≤ µ0I

4π

∫
l

dl

z2 + r′2
=
µ0I

4π

1

z2 + r′2

∫
l
dl =

µ0Id

4

1

z2 + r′2
, (4.78)

where we have removed all constants from the integral and integrated
∫
dl = πd. The total

magnetic field Boutside is obtained by integration over all turns:

~Boutside =

∫
turns

~Bturn dN → Boutside ≤
∫

turns

Bturn dN =

∫ ∞
−∞

Bturn(z)ndz, (4.79)

where dN = ndz is the number of turns of a piece of coil of width dz. Again, we used the

estimate
∣∣∣∫ d ~B∣∣∣ ≤ ∫ dB. After substituting from (4.78):

Boutside ≤
∫ ∞
−∞

µ0Ind

4

1

z2 + r′2
dz =

µ0Ind

4

1

r′2

∫ ∞
−∞

dz

1 +
(
z
r′

)2 . (4.80)

By calculating the integral∫ ∞
−∞

dz

1 +
(
z
r′

)2 =
[
r′ arctg

( z
r′

)]∞
−∞

= πr′ (4.81)

we get the resulting estimate (upper bound):

Boutside ≤
µ0πInd

4

1

r′
=
C

r′
=

C

r − d
2

, (4.82)

where C = µ0πInd
4 . This implies, as mentioned at the beginning, that Boutside = 0.

4.5 Magnetic dipole

4.5.1 4.16 Earth’s magnetic dipole

The Earth’s magnetic field at the North Pole has an induction of magnitude B = 6, 20 · 10−5 T
and its vector points perpendicularly towards the Earth. Determine the magnitude of the
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Earth’s magnetic dipole moment and the current that would have to flow along the equator to
induce such a moment.

Solution: The magnetic field ~B from the magnetic dipole moment is given by the following
formula:

~B(~r) =
µ0

4π

(
3(~m · ~r)~r

r5
− ~m

r3

)
. (4.83)

This relation describes the magnetic field far from the flowing currents, where the dipole contri-
bution to the field dominates and the higher multipole moments are already negligible. Thus,
we imagine that the Earth’s magnetic field originates somewhere in the middle at its core, and
the location at the north pole is already far enough away for the dipole approximation to be
sufficiently accurate.

We now introduce Cartesian coordinates with the origin at the center of the Earth and
orient the axis z in the direction of the North Pole P , see Figure 4.59. The pole P thus has a
position vector ~rP = (0, 0, RZ).

x y

z

P

O

Figure 4.59: Cartesian coordinates with origin at the center of the Earth and axis z pointing in the
direction of the North Pole.

Thus, a magnetic field pointing perpendicular to the Earth is directed against the direction
of the position vector ~r. The formula (4.83) consists of two parts – the first part points in the
direction of the vector ~r and the second in the direction of ~m. For the resulting magnetic field
~B (which is of the form ~B = α~r + β ~m) to point in/against the direction ~r, the condition ~m ‖ ~r
is needed. Thus, for ~r = ~rP we have ~m = (0, 0,m). At the pole, the magnetic field ~B is then
equal to

~B(~rP ) =
µ0

4π

(
3mRZ
R5
Z

(0, 0, RZ)− 1

R3
Z

(0, 0,m)

)
=

2µ0m

4πR3
Z

(0, 0, 1). (4.84)

For m > 0, the vector ~B points away from the Earth and so ~m = (0, 0,−m) must be considered.
The value of the magnetic dipole moment m is obtained from the vector equation (4.84) by
calculating the magnitudes of the left and right sides:

B =
µ0m

2πR3
Z

→ m =
2πR3

ZB

µ0
. (4.85)

The additional question in the assignment, how much current I would have to flow along
the equator to induce the dipole moment m calculated above, makes little sense. For a circle
with a current of radius RZ , the formula (4.83) will not give the correct result, since the size of
the region with currents is on the order of the distance of that region to the north pole – the
dipole approximation will not be accurate. But we can calculate the exact result for a current
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flowing along the equator inducing a specified magnetic field, and compare it to the value of
the field that comes out if we plug the same current into the dipole field formula.

The magnitude of the magnetic field on the axis of a circular loop with a current I of radius
r and height h is

Bcircle =
µ0I

2

r2

(r2 + h2)3/2
; (4.86)

(can be determined from the Biot-Savart law). After inserting r = h = RZ we have

Bcircle =
µ0I

4
√

2RZ
. (4.87)

Thus, the current for a given magnetic field B is (for RZ = 6378 km)

I =
1

µ0
4
√

2BRZ = 1, 78.109A. (4.88)

A planar loop with current I encircling a surface S has a magnetic dipole moment m = IS;
in our case, S = πR2

Z . Substituting this relation into the left-hand formula in (4.85) and the
current calculated above, we obtain for the magnetic field at the pole in the dipole approximation

Bdip =
µ0IS

2πR3
Z

=
µ0I

2RZ
= 1, 75.10−3 T, (4.89)

which is substantially different from that given, thus confirming our suspicion that the second
part of the assignment makes little sense.

4.6 Lorentz force

4.6.1 4.6 Perpendicular fields

What resultant force acts on a charged particle moving at velocity v = E/B in mutually
perpendicular electric and magnetic fields such that the vectors ~E, ~B, and ~v form an orthogonal
right-handed system?

~v

~E

~B

Figure 4.60: A charged particle in mutually perpendicular fields.

Solution: The formula for the Lorentz force acting on a charged particle with charge q in
electric and magnetic fields ~E and ~B is as follows:

~FL = q
(
~E + ~v × ~B

)
= ~FE + ~FB. (4.90)

The magnitudes of the electric and magnetic forces FE and FB are equal because, due to
the perpendicularity of the vectors ~v and ~B, the following holds

FB = qvB = q
E

B
B = qE = FE . (4.91)
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For q > 0, the force ~FE points in the direction of the vector ~E. According to the right-hand
rule, we determine that the force ~FB = q ~v× ~B is directed against the direction of the vector ~E.
For q < 0 ditto just the other way around. The resulting force on the charged particle is then
zero, ~FL = 0.

~v

~E

~B

~FB

~FE

Figure 4.61: Directions of the electric and magnetic forces ~FE and ~FB for q > 0.

4.6.2 4.21 Circular motion in a magnetic field

A deuteron moves along a circle of radius r = 40 cm in a magnetic field B = 1, 5T . Determine
the velocity, energy, and orbital period of the deuteron.

Solution: We have “choice” to calculate the example relativistically or non-relativistically.
Let’s do both and compare the procedure and results. The magnetic part of the Lorentz force
acting on the particle is

~FB = q ~v × ~B. (4.92)

This force acts on the right-hand side of the relativistic, or non-relativistic, equation of motion:

d

dt
(m0γ~v) = ~FB,

d

dt
(m0~v) = ~FB; (4.93)

where we introduces factor γ = (1− v2

c2
)−1/2 and put c→ +∞ for the non-relativistic equation

(effectively γ = 1). The magnetic force plays the role of a centripetal force causing the circular
motion. What does this force look like in the relativistic case? The centripetal acceleration is a
purely kinematic quantity, so its expression does not change in relativity – ad = v2

r . The force
~FB acting at any instant perpendicular to the velocity ~v does not change its magnitude, i.e.
v = konst., and hence γ = konst., and we can manipulate the relativistic equation of motion in
the following way:

d

dt
(m0γ~v) = m0γ

d

dt
~v = m0γ~a = ~F . (4.94)

The acceleration in this equation is just the centripetal acceleration causing the circular motion,
so we see that the relativistic centripetal force is ~Fd = m0γ~ad. Now we can write the equations
relating the magnetic and centripetal forces:

qvB = m0γ
v2

r
=

m0v
2

r
√

1− v2

c2

, qvB = m0
v2

r
. (4.95)

From these equations we need only express the velocity v, and after some simple manipulations
we obtain

vr =
1√

1
c2

+
m2

0
r2q2B2

=
c√

1 +
(
m0c
qBr

)2
, vnr =

qBr

m0
, (4.96)
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where we have introduced the notation vr and vnr, respectively, for the relativistic and non-
relativistic results. For c → +∞, i.e., in the non-relativistic limit, the expression for vr tran-
sitions to vnr. Substituting the numerical values (mass of the deuteron md = 3, 343.10−27 kg,
speed of light c = 3.108m.s−1, elementary electric charge e = 1, 607.10−19C) we get

vr = 2, 871.107m.s−1, vnr = 2, 884.107m.s−1. (4.97)

We get essentially identical results – so the non-relativistic approximation is fine in this case
(factor β = v

c < 0, 1 and γ ≈ 1).
The kinetic energy is then relativistically and non-relativistically

EKr = (γ−1)m0c
2 = 1, 39.10−12 J = 8, 63MeV, EKnr =

1

2
m0v

2
nr = 1, 39.10−12 J = 8, 65MeV.

(4.98)
The orbit time is obtained from the simple kinematic relation

Tr =
2πr

vr
= 8, 75.10−8 s, Tnr =

2πr

vnr
= 8, 71.10−8 s. (4.99)

4.6.3 4.20 Motion in magnetic field along a helix

An electron flies into a homogeneous magnetic field with a velocity of v = 5.106m.s−1 and
starts moving along a helix of radius r = 5 cm and pitch s = 30 cm. Determine the magnitude
of the magnetic field.

s

Figure 4.62: Motion of a particle in a magnetic field along a helix.

Solution: The magnetic part of the Lorentz force acting on the particle is

~FB = q ~v × ~B. (4.100)

If we split the particle’s velocity vector ~v into a component perpendicular and parallel to the
magnetic field, ~v = ~v⊥ + ~v‖ (see Figure 4.63), we obtain an expression for the force ~FB and its
magnitude

~FB = q(~v⊥ + ~v‖)× ~B = q ~v⊥ × ~B, FB = qv⊥B. (4.101)
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~v

~v?

~vk

~B

Figure 4.63: Decomposition of the velocity ~v = ~v⊥ + ~v‖ into a direction perpendicular and parallel to

the magnetic field ~B.

The motion along the helix can be decomposed into circular motion at orbital velocity v⊥
and upward motion at velocity v‖. The magnetic force always acts perpendicular to the velocity
~v⊥ and therefore plays the role of centripetal force for the circular motion – hence:

qv⊥B = m
v2
⊥
r
. (4.102)

Expressing the magnetic field from the equation B we get

B =
mv⊥
qr

. (4.103)

Now we just need to find the relation for v⊥ in terms of v, s and r (the pitch s represents
the distance the particle travels in the “longitudinal” direction in one revolution of the circular
motion). Take one revolution of the helix and “unroll it” into the plane. This produces a
right-angled triangle with legs of sizes s and 2πr, see Figure 4.64.

~v?

~v

~vk

s

2πr

p

s2 + (2πr)2

α

Figure 4.64: Motion of a particle in a magnetic field along a helix.

From the similarity of the triangles, we get

v⊥
v

=
2πr√

s2 + (2πr)2
→ v⊥ =

v√
1 +

(
s

2πr

)2 . (4.104)

Substituting into (4.103) gives the result

B =
m

qr

v√
1 +

(
s

2πr

)2 =
mv

q
√
r2 +

(
s

2π

)2 . (4.105)

For specific numerical values (electron mass me = 9, 109.10−31 kg, elementary electric charge
e = 1, 602.10−19C) we have B = 4, 11.10−4 T .

135



Chapter 5

Electromagnetic field

5.1 Electromagnetic induction

5.1.1 5.2 Induction on rails

Two long perfectly conducting rails are spaced apart d = 0, 5m and connected by a resistor
R = 0, 2 Ω. A perfectly conducting rod slides along them at speed v = 4m.s−1. A magnetic field
B = 0, 5T is applied perpendicular to the plane of the rails. Determine the induced voltage, the
force required to maintain a constant velocity, and the mechanical and thermal power generated
in this device.

R
v

~Bd

Figure 5.1: Induction on rails.

Solution: Let’s use Faraday’s law of electromagnetic induction to determine the induced
voltage Eind:

Eind = −dΦ

dt
. (5.1)

We need to determine the magnetic field flux Φ, which is given by

Φ =

∫
S

~B · d~S, (5.2)

where S is the area bounded by the loop in which we want to determine the induced voltage.
In our case, we choose a rectangle bounded by rails, a bar, and a resistor; see Figure 5.2.

Sd

l0 + vt

Figure 5.2: Surface S for calculating the magnetic field flux Φ.
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The normal vector ~n to this rectangle points to the paper (ground) and is therefore parallel
to the specified magnetic field ~B. Given d~S = ~n dS, we get for the scalar product ~B ·d~S = BdS.
Moreover, the magnetic field ~B is constant everywhere in space and can be factored out from
the integral (5.2). Thus, the flux Φ calculation is

Φ =

∫
S

~B · d~S =

∫
S
B dS = B

∫
S
dS = BS, (5.3)

where S on the right-hand side denotes the area of the rectangle in Figure 5.2. Obviously
S = S(t) = (l0 + vt)d where l0 denotes the distance of the rod from the resistor at time t = 0 s.
We now differentiate the flux Φ with respect to time according to (5.1) and obtain the induced
voltage:

|Eind| =
dΦ

dt
= B

dS

dt
= Bvd. (5.4)

After substituting the given numerical values, we have Eind = 1V .
The heat output Pheat is given by

Pheat =
E2
ind

R
=

(Bvd)2

R
= 5W. (5.5)

This, by the law of conservation of energy, must equal the mechanical power Pmech supplied to
“equipment”. Thus Pmech = Pheat = 5W . This mechanical power is due to the force acting on
the rod, which is required to maintain a constant rod velocity. Valid Pmech = Fv, and hence

F = (Bd)2v
R = 1, 25N .

Addendum: The induced voltage and the force required to maintain a constant velocity can
also be calculated here using the Lorentz force (this procedure cannot be used if the magnetic
field is time-varying)

~FL = q
(
~E + ~v × ~B

) ~E=0
= q ~v × ~B. (5.6)

The free charges in the rod are forced to move at a velocity ~v. According to the right-hand rule,
we determine the direction of the Lorentz force ~FL acting on the charges in the bar (we consider
that the positive charges q > 0 form the conductivity of the bar, so as not to complicate the
discussion with additional signs):

~B

~B

~v

~FL

Figure 5.3: Lorentz force acting on the charges in the rod moving at ~v.

We now use the definition of voltage

U =
1

q

∫
l

~F · d~l. (5.7)

The voltage U in the circuit here is generated just by the effect of the Lorentz force ~FL acting
on the charges in the moving rod. We will therefore integrate along the rod from one rail to
the other. The Lorentz force ~FL points in the direction of the tangent vector ~t to the bar (see
Figure 5.4), so ~FL has the same direction as d~l = ~t dl and ~FL · d~l = FLdl holds.
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l

dl

~t

~FL

Figure 5.4: Integration curve l to determine the voltage U with the vectors ~FL and ~t marked.

Since the force FL = qvB (from (5.6) and the directions of vectors ~v and ~B in Figure 5.3)
is constant along the bar, we get

U =
1

q

∫
l

~FL · d~l =
1

q

∫
l
FLdl =

1

q
FL

∫
l
dl =

1

q
FLd = Bvd. (5.8)

Due to the induced voltage U , a current I starts to flow through the circuit, causing additional
movement of charges in the rod. Thus, the charges also move at a velocity ~vd in the direction
of the rod, which induces an additional Lorentz force acting against the direction of the rod
motion – according to the right hand rule, see Figure 5.5

~B
~B

~FL

~vdd

s

Figure 5.5: Additional Lorentz force due to the current I decelerating the rod.

The magnitude of this force is obtained using Ampère’s formula

d~F = Id~l × ~B, (5.9)

where d~F denotes the force on a small element of the rod dl. The formula (5.9) is derived
from the formula for the Lorentz force, so the direction of the force is the same as in the figure
above – the role of d~l is played by the velocity ~vd. Along the entire bar between the rails, the
contribution to the total force d~F is constant – d~l and ~B are always the same direction and
magnitude. The magnitude of this contribution is dF = IBdl (from the perpendicularity of
vectors d~l and ~B and formula (5.9)). The total magnitude of the force F is then

F =

∫
l
dF =

∫
l
IBdl = IB

∫
l
dl = IBd =

U

R
Bd =

(Bd)2v

R
. (5.10)

A force of the same magnitude but opposite orientation must then be applied to the bar to keep
it from slowing down.
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Note that it is generally not true that

F =

∫
dF. (5.11)

The total magnitude of the vector ~F can only be calculated in this way if all the contributions
d~F point in the same direction (which is satisfied in our case). In the general case, the vector
integral cannot be avoided and the following holds

F =

∣∣∣∣∫ d~F

∣∣∣∣ . (5.12)

5.1.2 5.1 Moving loop

A current flows through a long straight conductor I. Determine the magnetic flux through the
rectangular loop located as shown. If the loop moves away from the conductor at a speed of v
determine the induced voltage.

I

a1

a2

l
v

Figure 5.6: Rectangular loop moving in a magnetic field.

Solution: The magnetic field flux is given by

Φ =

∫
S

~B · d~S. (5.13)

The magnetic field ~B in this example is generated by an (infinitely) long straight conductor
with current I and its magnitude is

B =
µ0I

2πr
, (5.14)

where r is the distance from the conductor (this relation can be obtained from the integral
Ampere’s law or by using the Biot-Savart law). We determine the direction of the magnetic
field vectors ~B from the right hand rule – the thumb points in the direction of the current, the
fingers point in the direction of the magnetic field, i.e. ~B is perpendicular to the paper and
points into it, see Figure 5.7.
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I

~B

Figure 5.7: Direction of magnetic field ~B from an infinitely long straight conductor in the plane of the
loop.

The surface for the integral (5.13) is naturally chosen to be the rectangle bounded by a
rectangular loop. We choose the normal vector ~n to point to the paper. It holds that the
vectors ~B and d~S = ~n dS are parallel, and hence ~B · d~S = BdS. We introduce the Cartesian
coordinates r and z as shown in Figure 5.8.

r

z

O a1 + vt a2 + vt

l

S

Figure 5.8: Cartesian coordinates r and z.

We see that the rectangular loop is parameterized by the following coordinate ranges: r ∈
〈a1 + vt, a2 + vt〉 (the loop moves to the right at constant speed v) and z ∈ 〈0, h〉. The surface
element in Cartesian coordinates is simply dS = drdz. We have introduced the origin of the
coordinates and the coordinate name r so that the magnitude of the magnetic field expressed
in (r, z) has the same form as in (5.14). We can now construct the given surface integral and
calculate it:

Φ(t) =

∫
S
BdS =

∫ a2+vt

a1+vt

∫ l

0

µ0I

2πr
dzdr =

µ0I

2π

∫ a2+vt

a1+vt

dr

r

∫ l

0
dz =

µ0I

2π
ln

(
a2 + vt

a1 + vt

)
l (5.15)

The flux Φ in time t = 0 s is obtained by a simple substitution:

Φ(t = 0) =
µ0Il

2π
ln
a2

a1
. (5.16)

We calculate the induced voltage Eind from Faraday’s law of electromagnetic induction as the
time derivative of the magnetic flux Φ:

Eind(t) = −dΦ

dt
= −µ0Il

2π
· a1 + vt

a2 + vt
· v(a1 + vt)− (a2 + vt)v

(a1 + vt)2
=
µ0Il

2π

v(a2 − a1)

(a1 + vt)(a2 + vt)
. (5.17)
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And the voltage Eind at time zero:

Eind(t = 0) =
µ0Il

2π

v(a2 − a1)

a1a2
. (5.18)

Addendum: Just for illustration, we calculate the flux at time t = 0 s for the origin of the
coordinates located not on the wire but in the lower left corner of the loop:

O
x

y

a2 − a1

l

Figure 5.9: Introduce coordinates x and y with the origin in the lower left corner of the loop at time
t = 0 s.

In this case, the rectangle is at coordinates x ∈ 〈0, a2−a1〉 and y ∈ 〈0, l〉. The distance from
the wire is r = a1 + x. The integral for the flow Φ then looks like this:

Φ(t = 0) =

∫
S
BdS =

∫ a2−a1

0

∫ l

0

µ0I

2π(a1 + x)
dxdy. (5.19)

The result is of course the same as in the previous coordinates (substitution r = a1 + x). We
would calculate the flux Φ at arbitrary time by changing the integration limits: x ∈ 〈vt, a2 −
a1 + vt〉.

5.1.3 5.7 and 5.8 Rotating coils

A square loop with side a = 10 cm rotates in a homogeneous magnetic field B = 0, 2T about an
axis parallel to the plane of the square and perpendicular to the field with frequency 50Hz. At
instant t = 0 the loop lies in a plane perpendicular to the field. Determine the time dependence
of the induced voltage.

What is the maximum voltage that can be induced in a coil with N = 4000 turns of mean
radius R = 12 cm rotating with frequency f = 30Hz in an earth magnetic field of induction
B = 5 · 10−5 T?
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!

~B

!

~B

Figure 5.10: Rotating square loop and circular coil.

Solution: These exercises are almost identical and we will solve them both at once. First
we calculate the voltage induced on the simple loop, we will show how the situation changes for
N turns later.

We will use Faraday’s law of electromagnetic induction

Eind = −dΦ

dt
. (5.20)

Thus we need to calculate the magnetic field flux:

Φ =

∫
S

~B · d~S. (5.21)

Let us now look at the situation with the rotating loop in top view in Figure 5.11.

~n
α

ω

ω

~B

Figure 5.11: View of the rotating loop in top view.

We choose the surface S for integration as a square, or circle, whose boundary is the square
loop, or the circle loop. The normal vector then rotates with the loop and there is a time-varying
angle α(t) = α0+ωt between the magnetic field and the normal vector (for t = 0 we have α = α0

and hence the requirement of perpendicularity of the coil plane to the magnetic field direction
in the assignment leads to α0 = 0). The scalar product under the integral takes the form
~B ·d~S = ~B ·~n dS = B cosαdS = B cosωt dS. The magnetic field is constant everywhere and we
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can factor it out from the integral. Similarly, the angle α is constant everywhere on the surface
of integration. The flux calculation is therefore:

Φ =

∫
S

~B · d~S =

∫
S
B cosωt dS = B cosωt

∫
S
dS = BS cosωt. (5.22)

The induced voltage Eind is obtained by differentiation:

Eind = −dΦ

dt
= BS ω sinωt. (5.23)

For the square loop case we have S = a2, for the circular loop case S = πR2. How does the result
change if the coil consists of N turns? The individual turns of a coil winding are connected in
series, see illustration 5.12.

Figure 5.12: The turns wound on a coil are connected in series.

Thus, the voltages induced on each of the turns, E(i)
ind = −dΦ(i)/dt (where Φ(i) is the flux

through i-th turn), add up:

E(celk)
ind =

N∑
i=1

E(i)
ind = −

N∑
i=1

dΦ(i)

dt
. (5.24)

However, the turns are stacked on top of each other, so they share the same flux,

Φ(1) = Φ(2) = . . . = Φ(N) = Φ. (5.25)

The total voltage is then N -times the voltage on one turn:

E(celk)
ind = NE(1)

ind = NBS ω sinωt. (5.26)

The induced voltage has a harmonic waveform and its maximum value is given by the amplitude
of this oscillatory wave:

E(max)
ind = NBS ω. (5.27)

5.1.4 5.6 Homopolar generator

A metal disc of radius R = 10 cm rotates with frequency f = 60Hz about its axis in a homo-
geneous magnetic field B = 0, 2T perpendicular to the plane of the disc. Find the potential
difference between the centre and the edge of the disc. What will this difference be without the
magnetic field?
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U =?

~B

Figure 5.13: Homopolar generator.

Solution: In this case Faraday’s law of electromagnetic induction is not applicable . This
law, although very universal and encompassing several principles of voltage induction, can only
be used for circuits that consist of so-called thin conductors (they do not have to be physically
thin, only their length dimension must predominate over the other dimensions). It is necessary
to have a clearly defined boundary (formed by the circuit) of the surface through which we
calculate the magnetic flux. In our case, part of the circuit is formed by a metal disc, where
the boundary of the surface is not clearly given. In any case, whichever way we would choose
the surface, Faraday’s law would give here an erroneous result 0V .

We have to start directly from the definition of voltage

U =
1

q

∫
l

~F · d~l (5.28)

and integrate the forces acting on the charges in the rotating disk. These are twofold – the
centrifugal force and the magnetic Lorentz force:

|~Fo| = mω2r, ~FL = q~v × ~B. (5.29)

The velocities of the charges and the directions of the forces (the magnetic force for q > 0) are
shown in Figure 5.14:

!

~vv = !r

r

!

~B

~v

~B

~Fo

~FL

Figure 5.14: The left figure shows the speed of charges in the rotating disc. The right figure show the
directions of the forces acting on the charges.
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We choose the integration curve to be as simple as possible with one end at the center of
the disc and the other at the edge of the disc at the feed wire. Naturally, it suggesteds itself to
take a radial line from the center to the edge of the disc. If we introduce a radial coordinate
r – the distance from the center of the disc, then the curve is characterized by the coordinate
range r ∈ 〈0, R〉 and the line element is dl = dr. We assign a tangent vector ~t pointing radially
from the center to the line element, i.e., d~l = ~t dl. See Figure 5.15 for the situation.

l

dl

~t

!

~FL

~Fo

Figure 5.15: Integration curve l with the line element d~l and the directions of the forces ~FL and ~Fo.

Then the scalar product is ~F · d~l = ±Fdl – the positive sign for the centrifugal force and
the negative sign for the centripetal magnetic force. The voltage is then calculated as follows

U =
1

q

∫
l

~F · d~l = ±1

q

∫
l
Fdl = ±1

q

∫ R

0
F (r) dr (5.30)

and we get the specific expressions for the specific forces:

Uo =
1

q

∫ R

0
mω2r dr =

mω2

q

R2

2
, UL = −1

q

∫ R

0
qωBr dr = −ωBR

2

2
. (5.31)

Thus, for our chosen magnetic field direction ~B, the voltages induced by the centrifugal and
magnetic forces act against each other. Substituting the given numerical values and the mass
and charge of the electron me and e for m and q we have

|Uo| = 4, 04 · 10−9 V, |UL| = 0, 377V. (5.32)

Addendum: The voltage between the center and the outside of the disk does not depend
on the path along which we integrate. We show this by finding the potentials for the centrifugal
and magnetic force fields in the disk. These forces depend only on the distance from the center,
F (r), and therefore the potential will be a function of r, U(r) only (we use the letter U for the
potential to distinguish it from the voltage U). We choose the positive direction of the force
as pointing away from the centre of the disc. From condition F = −dU

dr we can easily find the
resulting potentials:

Uo = −1

2
mω2r2, UL =

1

2
qωBr2. (5.33)
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Since the voltage is defined as work per unit charge and the work is given by the difference of
the potentials at the starting and ending points, we have

Uo =
1

q
(Uo(0)− Uo(R)) , UL =

1

q
(UL(0)− UL(R)) ; (5.34)

these lead to the already calculated voltage values.

5.2 Inductance and mutual inductance

5.2.1 5.3 and 5.4 Inductance of a cylindrical coil

Determine the inductance and magnetic energy of a solenoid of radius R = 1 cm and length
l = 50 cm with n = 6 turns per 1 cm of length if current I = 1A flows through the turns.

Determine the inductance of a toroidal coil of small cross-section S = 1 cm2 with a radius of
the central circle r = 5 cm, with a total number of turns N = 100.

Figure 5.16: Cylindrical coil.

Solution:
The magnetic field inside an (infinitely) long solenoidal coil is B = µ0nI, where n is the

density of turns, n = N/l. The magnetic field vector points in the direction of the coil axis
according to the right-hand rule – the thumb points in the direction of the current flowing
through the coil, and the fingers point in the direction of the magnetic field (see Example 4.15
– section (4.4.3)).

~B

I

Figure 5.17: The direction of magnetic field is given by the right hand rule according to the direction of
current I.

The magnetic field flux Φ through one coil turn is

Φ =

∫
S

~B · d~S =

∫
S
B dS = B

∫
S
dS = BS = µ0nIS, (5.35)

where S is the disk surface bounded by the coil turn and we have taken advantage of the fact
that the magnetic field ~B inside the coil points perpendicular to the plane of the turn (i.e.,
it is parallel to the normal vector ~n to the surface S: ~B · d~S = ~B · ~n dS = BdS) and is also
homogeneous, so that it can be factored out from the integral. Also see Figure 5.18.
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~n

~B

S

Figure 5.18: Surface S, normal vector ~n and magnetic field vector ~B.

The inductance is then by definition NΦ = LI1:

L =
NΦ

I
= µ0nNS = µ0n

2(lS) = µ0n
2V ; (5.36)

in the result we used the volume of the coil V = lS.
For a toroidal coil of small cross-section we make the approximation that the magnetic field

inside the coil is homogeneous (in the following example we calculate the field inside the toroidal
coil exactly) and that its volume is approximately V = 2πrS.

5.2.2 5.5 Inductance of the toroidal coil

Determine the inductance of a toroidal coil of rectangular cross-section with inner radius R1 =
10 cm, outer radius R2 = 20 cm and height h = 5 cm when N = 1000 turns are wound on it.

1This relationship is called the static definition of inductance. It follows easily from the dynamic definition of
inductance – relating the change in current through a coil to the induced voltage across it:

E = Lİ.

The total induced voltage E is given by the sum of the induced voltages in the individual coil turns

E =

N∑
i=1

Ei =

N∑
i=1

dΦ(i)

dt
,

where we have omitted the sign for Faraday’s law, which is anyway given only by the choice of positive directions.
If the magnetic field fluxes through the individual coils are identical, Φ(i) = Φ we get a dynamic definition of
inductance of the form

N
dΦ

dt
= L

dI

dt
.

Integrating by time, we arrive at a static definition of inductance

NΦ = LI.
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R1

R2

h

R1 R2

Figure 5.19: Toroidal coil of rectangular cross-section.

Solution: The calculation will consist of three main parts. First, from the symmetry of
the problem we will determine the possible magnetic fields respecting this symmetry, then we
will determine the magnetic field inside the toroidal coil using Ampere’s law, and finally we will
calculate the magnetic flux through one turn. From the definition of inductance, NΦ = LI (see
footnote to the previous example for the origin of this relation), we can then easily write the
resulting inductance.

Let us now introduce cylindrical coordinates (r, ϕ, z) with the origin at the center of the
toroid and the axis z pointing in the direction of the toroid axis – see Figure 5.20.

z

r

'

Figure 5.20: Cylindrical coordinates (r, ϕ, z) in the toroidal coil.

The toroidal coil has continuous rotational symmetry about the z axis – we imagine that the
coils are very densely wound, and thus rotating them by any angle will not change the physical
situation. Thus, we replace the current flowing through the individual wires on the toroid shell
by a uniformly distributed sheet current.

Note: In reality, the toroidal coil would have only a discrete rotational symmetry of angle
2π/N (when wound uniformly) – and thus the magnetic field would have small variations as
the coordinate ϕ changes. Thus we use “an approximation” of very dense coil winding. From
now on, everything will be without any approximation.

A consequence of rotational symmetry is that the magnitude of the magnetic field does not
depend on the polar angle ϕ, i.e. B = B(r, z).
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Ampere’s law (in integral form)∮
l

~B · d~l = µ0

∫
S

~j · d~S = µ0Iin (5.37)

relates the circulation Γ of magnetic field along a closed curve and the total current Iin that
is encircled by this loop. It is very convenient to use it in cases where we have a symmetric
physical situation. We choose the curve for the left-hand side of Ampere’s law to be a circle of
radius r whose axis is the same as the axis of the toroid. The circle is placed at an arbitrary
height z inside the toroid, see Figure 5.21:

r

l

r

l

Figure 5.21: Curve l for Ampere’s law.

Ampere’s law allows us to determine only the tangential component ~Bt of the total magnetic
field, since it holds (see Figure 5.22 for the definitions of ~Bt, ~B⊥, d~l and ~t)

~B · d~l = ( ~B⊥ + ~Bt) · d~l = ~Bt · d~l = Bt dl. (5.38)

l

dl

~t

~B

l

dl

~t

~B

~B?

~Bt

Figure 5.22: Magnetic field vector ~B and its decomposition into tangential and normal directions. Line
element d~l = ~t dl, where ~t is the unit tangent vector to the curve l.

Note: In fact, the field in the toroid is purely tangential, i.e., ~B⊥ = 0, so using Ampere’s
law we determine the total magnetic field inside the toroid ~B = ~Bt – see the Addendum for
why the field is only tangential. At the same time, however, we are not interested in the normal
component of the magnetic field ~B⊥ for calculating the magnetic flux, as will be seen in the
following.

The left-hand side of Ampere’s law gives:∫
l

~B · d~l =

∫
l
Bt dl = Bt

∫
l
dl = 2πrBt, (5.39)
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since due to rotational symmetry the magnetic field is constant at a constant distance r from
the coil axis and at a constant height z. The loop l encircles all the turns of the toroid, the
total current enclosed in it is thus Iin = NI. The result is an expression for the tangential
component of the magnetic field as a function of position in the toroid:

2πrBt = µ0NI → Bt =
µ0NI

2πr
(5.40)

The magnetic field depends only on the distance from the axis of the toroid (coordinate r) and
does not depend on the vertical position in the toroid (coordinate z).

We now calculate the magnetic flux Φ through one turn of the coil:

Φ =

∫
S

~B · d~S. (5.41)

The surface of integration S is the rectangle forming the cross section of the turn. We manipulate
the scalar product ~B ·d~S, where d~S = ~n dS, ~n is the unit normal vector to the plate dS, similarly
to Ampère’s law, i.e. we decompose the magnetic field in perpendicular directions ~B = ~Bt+ ~B⊥,
and obtain

~B · d~S = ~B · ~n dS = ( ~Bt + ~B⊥) · ~n dS = ~Bt · ~n dS = Bt dS (5.42)

(we keep the notation ~B⊥ and ~Bt as shown in Figure 5.22, i.e. the vector ~Bt is parallel to the
normal vector ~n. For the relationships between the integration surface S, the normal vector ~n
and the decomposition ~B = ~Bt + ~B⊥, see Figure 5.23).

S

O

z

r

~Bt

~n

R1R2

h

~B

~B?

~Bt

S

~n

Figure 5.23: Integration surface S and vectors ~n and ~Bt perpendicular to it.

The rectangle whose boundary is one coil turn is given by the coordinate ranges r ∈ 〈R1, R2〉
and z ∈ 〈0, h〉. The surface element is in Cartesian coordinates dS = drdz. The actual
integration is straightforward after giving the expression for Bt obtained from Ampere’s law:

Φ =

∫
S
Bt dS =

∫ h

0

∫ R2

R1

µ0NI

2πr
dr dz =

µ0NI

2π

∫ h

0
dz

∫ R2

R1

dr

r
=
µ0NI

2π
h ln

R2

R1
. (5.43)

The inductance of the toroid is, by definition

L =
NΦ

I
=
µ0N

2h

2π
ln
R2

R1
. (5.44)

Addendum: Magnetic field direction. Or ~B⊥ = 0. Coming soon.
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5.2.3 5.9 Mutual inductance I

Two coils are inductively coupled by mutual inductance Lmut = 5H. How must the current in
the primary coil be varied to induce a constant voltage E = 1V in the secondary coil? Can it
be induced permanently in this way?

Solution: We start from the formulas defining inductance and mutual inductance relating
the changes in currents through each coil and the voltages induced on them:

E1 = L1İ1 + Lmutİ2, E2 = Lmutİ1 + L2İ2. (5.45)

The voltage induced on the secondary coil is given by the second of the equations, specifically
the voltage induced due to the change in current in the primary coil is given by the first term
of the right hand side:

E = Lmutİ1. (5.46)

We solve this simple differential equation.

İ1 =
E

Lmut
= const.

∫
dt
−−→ I1 =

E
Lmut

t+ I0, (5.47)

where I0 is the integration constant representing the current at time t = 0 s. The current in
the coil increases linearly without stopping, so we certainly cannot hold the voltage E constant
forever.

5.2.4 5.10 Mutual inductance II

The two coils have inductances L1 = 0, 2H, L2 = 0, 3H and mutual inductance Lmut = 0, 1H.
What will be the resulting inductance when these coils are connected in series?

Figure 5.24: Coils connected in series.

Solution: First, we introduce the positive directions. Let’s say the current flowing through
the coil is said to be positive if it flows from left to right. Additionally, we call the voltage
induced in the coil positive if we measure a positive pole on the left terminal of the coil and a
negative pole on the right. See Figure 5.25.

I+

+ −

U+

Figure 5.25: Positive direction of current and polarity of positively induced voltage.

If, at the moment when a positive voltage is induced on the coil, we connect a load to the
coil, the current flowing through the coil would be negative (according to the selected positive
current direction) – Figure 5.26.
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+ −

U+

I

I < 0

Figure 5.26: The positive induced voltage induces a negative current in the coil.

With the positive directions thus introduced, we obtain a dynamic definition of inductance
relating the change in current in the coil to the voltage induced in it of the form

E = Lİ, (5.48)

where the positive sign follows from Lenz’s law. It states that the induced voltage acts against
the change that caused it. Thus, if we have an increasing current flowing through a coil, a
positive voltage must be induced on the coil, which induces an additional current flowing in the
negative direction, thus weakening the increasing current that caused the induced voltage.

For the mutual inductance we have the relations (positive signs remain due to the previous
argument)

E1 = L1İ1 + Lmutİ2, E2 = Lmutİ1 + L2İ2; (5.49)

these relate the changes in currents through the individual coils to the voltages induced on the
individual coils.

The coils can be connected in two ways as shown in Figure 5.27. It shows the true directions
of the currents and only the selected positive directions of the induced voltages (i.e., the
polarity of the voltages in the figure serves only to indicate the positive direction, not to indicate
the true polarity of the induced voltages – the latter comes directly from the formulas for defining
mutual inductance, where we have carefully used Lenz’s law to determine the correct sign). In
the first case, the voltages are added, in the second, they are subtracted.

I1 = I I2 = I

+ − + −

I1 = I I2 = −I

+ − + −

Figure 5.27: Two ways of connecting coils in series.

The connected coils now behave as one large coil with current I. We can then determine
the total inductance Ltot of the connected coils using the relationship

Etot = Ltotİ . (5.50)
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In the first case, the voltages add Etot = E1 + E2 and the currents flow in a uniform direction
I1 = I2 = I; in the second case, we have a voltage difference Etot = E1 − E2 and opposing
currents flowing I1 = −I2 = I, see the previous figure 5.27. Substituting from the formulae for
mutual inductance (5.49) for the voltages E1 and E2:

E(1)
tot = E1 + E2 = (L1İ + Lmutİ) + (Lmutİ + L2İ) = (L1 + L2 + 2Lmut)İ = L

(1)
tot İ ,

E(2)
tot = E1 − E2 = (L1İ − Lmutİ)− (Lmutİ − L2İ) = (L1 + L2 − 2Lmut)İ = L

(2)
tot İ . (5.51)

The results for the total inductance by wiring method are then

L
(1)
tot = L1 + L2 + 2Lmut, L

(2)
tot = L1 + L2 − 2Lmut. (5.52)

5.3 LR and RC circuits

5.3.1 5.11 and 5.12 RC circuit

A capacitor of capacitance C = 0, 1µF with initial voltage U0 = 1000V is discharged through
resistor R = 10 Ω. In what time will the magnitude of the charge on the capacitor drop to the
level of one elementary charge?

A capacitor of capacitance C = 100µF is charged to a voltage U0 = 10 000V . We discharge it
through a resistor R = 1 kΩ. In what time can we touch the capacitor without danger?

Solution: The voltage across the capacitor and the current in the RC circuit as functions
of time are as follows:

U(t) = U0e
− t
RC , I(t) = I0e

− t
RC . (5.53)

The magnitude of the charge on the capacitor is from the definition of capacitance Q = CU
and hence is

Q(t) = CU0e
− t
RC (= Q0e

− t
RC ). (5.54)

Expressing the time from the relations for voltage (5.53) and charge (5.54) we have

t = −RC ln
U(t)

U0
= RC ln

U0

U(t)
, t = −RC ln

Q(t)

CU0
= RC ln

CU0

Q(t)
. (5.55)

In the first example, we have Q(te) = e and the resulting time is

te = RC ln
CU0

e
. (5.56)

In the second example, we need to choose the value of the (un)safe voltage Udeath to get a
particular result...

tdeath = RC ln
U0

Udeath
. (5.57)

5.3.2 5.13 Energy of the capacitor

Prove that the energy dissipated on the resistor during the discharge of the capacitor is just
equal to the energy that has been stored in the capacitor.

Solution: The voltage across the capacitor and the current in the RC circuit as functions
of time are as follows:

U(t) = U0e
− t
RC , I(t) = I0e

− t
RC . (5.58)
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The initial conditions are U(0) = U0 and I(0) = I0. The thermal power Pheat generated at the
resistor is given by the Joule heat Pheat = RI2. The power is the change in energy over time,
P = dE/dt and hence the energy is obtained by integrating the power with respect to time.
The discharge starts at time t = 0 s and formally, according to the relations for voltage and
current, never finishes. We therefore integrate for t ∈ 〈0,+∞〉:

W =

∫ +∞

0
Pheat dt =

∫ +∞

0
RI(t)2dt = RI2

0

∫ +∞

0
e−

2t
RC = RI2

0

[
−RC

2
e−

2t
RC

]+∞

0

=
1

2
C(RI0)2 =

1

2
CU2

0 . (5.59)

The result is indeed the energy originally stored in the electrostatic field in the capacitor.

5.3.3 5.14 LR circuit

The coil has resistance R = 100 Ω. If the leads of the coil are short-circuited while a steady
current is flowing through the coil, the current in the coil drops to one-tenth of its original value
in T = 0, 01 s. What is the inductance of the coil?

Solution: The current in the RL circuit and the voltage induced on the coil as functions of
time are as follows:

I(t) = I0e
−R
L
t, U(t) = U0e

−R
L
t. (5.60)

From the equation for the current, we express L:

L = − R t

ln I(t)
I0

=
R t

ln I0
I(t)

. (5.61)

According to the assignment I(T ) = αI0, where α = 1
10 . The result is therefore

L = −RT
lnα

. (5.62)

5.4 AC circuits

5.4.1 5.15 Battery charging

It takes Q = 20Ah (ampere hours) of steady current to charge a battery. How long will it take
to charge the battery with an alternating current of effective value Ief = 1A, which we rectify
with a full-wave rectifier?

Solution: The full-wave rectified AC current is obtained by flipping the negative half waves
to positive values (see Figure 5.28).

t

U=I

t

U=I

Figure 5.28: AC current and full-wave rectified current (voltage).
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A DC current of IDC = 1A would obviously charge the battery in tDC = Q/IDC = 20h.
An alternating current with an effective value of Ief = 1A has an amplitude of IAC =

√
2A

(see the Addendum for an explanation). Thus, it is sufficient to compare the magnitude of the
area (charge) under a single half-wave of full-wave rectified current with the area under a direct
current of the same duration (see Figure 5.29), and calculate the result using a “rule of three”.

1A

p

2A

I

t

Figure 5.29: Areas under direct current IDC = 1A and alternating current IAC =
√

2A.

The area under one half wave of a sine wave is

QAC =

∫ T/2

0
IAC sinωt dt = IAC

[
− 1

ω
cosωt

]T/2
0

=
IAC
ω

(
1− cos

ωT

2

)
=
IAC
ω

(1− cosπ) =
2IAC
ω

, (5.63)

We integrate over one half-wave, i.e., for times t ∈ 〈0, T/2〉, using ω = 2πf = 2π
T to get the

result. The area (charge) under constant current in time T/2 is

QDC = IDC
T

2
=
πIDC
ω

. (5.64)

The inverse relationship between the charging time and the charge transferred per half-period
holds:

QDC
QAC

=
tAC
tDC

, (5.65)

i.e. after the

tAC =
QDC
QAC

tDC =
IDC
IAC

π

2
tDC . (5.66)

For specific values of current IDC = 1A and IAC =
√

2A (i.e. Ief = 1A) we have

tAC =
π

2
√

2
tDC > tDC . (5.67)

Addendum: The effective value of the voltage and current is defined so that the mean
value of the AC voltage and current output can be calculated as the simple product of the
effective values, i.e., 〈P 〉 = UefIef .

The instantaneous power is given by the instantaneous values of voltage and current at the
load P (t) = U(t)I(t). The time-averaged power is defined as (for periodic voltage and current
waveforms with period T )

〈P 〉 =
1

T

∫ T

0
P (t) dt. (5.68)

For harmonic voltage and current waveforms,

U(t) = U0 cosωt, I(t) = I0 cosωt, (5.69)
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(U0 and I0 are the amplitudes of this voltage and current), we get the time-averaged power 〈P 〉

〈P 〉 =
1

T

∫ T

0
U0I0 cos2 ωt dt =

1

2
U0I0. (5.70)

If we now define the effective values of the voltage and current

Uef =
U0√

2
, Ief =

I0√
2
, (5.71)

we can write 〈P 〉 = UefIef = RI2
ef = U2

ef/R.
If the voltage and current are phase shifted with respect to each other, i.e. have, for example,

the prescriptions
U(t) = U0 cosωt, I(t) = I0 cos(ωt+ ϕ0), (5.72)

then the mean power value comes out

〈P 〉 =
1

T

∫ T

0
U0I0 cosωt cos(ωt+ ϕ0)dt =

1

2
U0I0 cosϕ0 = UefIef cosϕ0. (5.73)

5.4.2 5.20 Appliance

Consider an appliance of real impedance R that consumes power P = 60W at an effective

voltage U
(0)
ef = 120V . We want to operate this appliance at the same power at the effective

voltage Uef = 240V in the network f = 50Hz. What inductance or capacitance would we need
to put in series?

???

U(t) = U0 cosωt

R

Figure 5.30: What inductance or capacitance do we need to put in series?

Solution: Here we apply the method of so-called phasors to the solution. We assign a
complex number (phasor) Â = A0e

iϕ0 to a quantity that has a harmonic waveform in time
A0 cos(ωt + ϕ0). In the circuit, we consider the voltage U(t) = U0 cosωt and, in general, the
phase-shifted current I(t) = I0 cos(ωt+ϕ0) and the associated phasors Û = U0 and Î = I0e

iϕ0 .
We can now define impedance Z as a complex number

Z =
Û

Î
. (5.74)

For a resistor in series with resistance R, a capacitor with capacitance C, and a coil with
inductance L, the impedance is equal to

Z = R+ iωL+
1

iωC
(5.75)

(in the case of an omitted capacitor, the term 1
iωC is omitted).
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For the instantaneous power over time t we have the relation P (t) = U(t)I(t). Averaging
this power over time of one period we get the relation for the mean power

〈P 〉 =
1

2
U0I0 cosϕ0 = UefIef cosϕ0, (5.76)

(see the appendix for Example 5.15 – Section 5.4.1). We can further modify this expression in
the language of phasors

〈P 〉 = UefIef cosϕ0 = Re (Ûef Îef ) = Re
U2
ef

Z
= U2

ef Re
1

Z
, (5.77)

where Ûef = Uef and Îef = Iefe
iϕ0 . Thus, we need to calculate the real part of the inverse of

the impedance (which is also called the admittance). In the case of a series capacitor, we have

1

Z
=

1

R+ 1
iωC

=
iωC

iωRC + 1
· 1− iωRC

1− iωRC
=

1

1 + ω2R2C2
(ω2RC2 + iωC), (5.78)

The power on the load is therefore

〈P 〉 = U2
ef

ω2RC2

1 + ω2R2C2
. (5.79)

For a series inductance, we get

1

Z
=

1

R+ iωL
· R− iωL
R− iωL

=
1

R2 + ω2L2
(R− iωL) (5.80)

and for the power we have the relation

〈P 〉 = U2
ef

R

R2 + ω2L2
. (5.81)

For the case where there is only an ohmic load in the circuit, we get “ordinary” expression for
the power

〈P 〉 =
U2
ef

R
. (5.82)

From this expression we can easily express the resistance of the appliance R using the originally

connected effective voltage U
(0)
ef :

R =
U

(0)2
ef

〈P 〉
. (5.83)

Substituting this expression for resistance R into the formulas for power with a capacitor (5.79)
or inductor (5.81), we can express the required capacitance or inductance. After a bit of
calculation, we get the results:

C =
〈P 〉
ω

1

U
(0)
ef

√
U2
ef − U

(0) 2
ef

= 7, 68µF,

L =
1

ω〈P 〉
U

(0)
ef

√
U2
ef − U

(0) 2
ef = 1, 32H. (5.84)
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