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Showcase � Schwarzschild black hole

Josef Schmidt Raytracing in Schwarzschild spacetime



Showcase � accretion disc
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Showcase � Einstein's ring
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Raytracing method

Josef Schmidt Raytracing in Schwarzschild spacetime



Raytracing method

Camera generates rays for

each pixel of image.

Rays are propagated through

spacetime.

Intersections with object in

the scene (spacetime) are

calculated.

Resulting pixel color is

obtained by projecting

textures on objects.
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Camera

Camera parameters: image resolution
(width x height), size of projection
plane and distance from focal point

Camera located at point P with
coordinates (rP , θP , ϕP)

Lorentz tetrad (eµi )
3

i=0
at P

i.e. gµνe
µ
i e

ν
j = ηij

e.g. (eµ(t), e
µ
(r), e

µ
(θ), e

µ
(ϕ))

Tetrad can be rotated with R ∈ SO(3)
(rotating camera) or boosted (camera

moving with velocity ~V )

Direction ~n = (nx , ny , nz) leading to
null vector
uµ = αeµ(t) + nxe

µ
(r) + nye

µ
(θ) + nze

(µ)
(ϕ),

α determined by gµνu
µuν = 0
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Geometry

Sphere of in�nite radius � representing stars very far from

black hole

Plane intersecting singularity � representing plane of accretion

disc around black hole

Not yet implemented:

"Centered" cylinder � simulating non-zero width of accretion
disc
"Centered" spheres with �nite radius � e.g. surface of neutron
star
General surface f (~r) = 0, or even non-static f (~r , t) = 0
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Textures

Image �les

Textures from Hubble Space Telescope � hubblesite.org

e.g. Carina nebula
Size 29566x14321px ≈ 432Mpx (1211 MB RAM)

Procedural textures: pixel color determined by function f (u, v)
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Projections

2D textures has to be projected on objects in the scene

Examples:

Plane: a�ne transformation
Sphere: azimuthal or cylindrical projections; practically:
celestial sphere is covered by cylindrically projected texture
around equator and two azimuthally projected textures on poles
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Ray propagation

Schwarzschild metric in equatorial plane (θ = π/2)

ds2 = −
(
1− rS

r

)
dt2 − dr2

1− rS
r

+ r2dφ2

Let's denote xµ(λ) = (t(λ), r(λ), θ(λ) = π
2
, φ(λ))

Denoting dxµ

dλ = ẋµ = uµ we get the normalization condition

gµνu
µuν = 0 = −

(
1− rS

r

)
ṫ2 − 1

1− rS
r

ṙ2 − r2φ̇2.
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Killing vectors and constants of motion

If ξµ is Killing vector, the quantity ξµuµ is a constant of

geodesic motion.

For Killing vector ∂t and ∂φ we get the following expressions

ut = gttu
t = −

(
1− rS

r

)
ṫ ≡ −E , uφ = gφφu

φ = r2φ̇ ≡ L

Substituting back into normalization condition we get the

radial equation

ṙ2 = E 2 −
(
1− rS

r

) L2

r2
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Reparametrizing dr
dλ = dr

dt
dt
dλ = dr

dt
E

1− rS
r

and introducing

dimensionless variables:

inverse radial coordinate: ζ = rS
r ,

impact parameter: l = L
ErS

,

dimeonsionless parametrization: σ = Eλ
rS
;

we get

ζ ′ = ±ζ2
√
1− (1− ζ)l2ζ2 and φ′ = lζ2,

where prime denotes di�erentiation w.r.t. σ

Combining the above equations we obtain �rst order

di�erential equation for function φ(ζ)

dζ

dφ
= ±

√
q2 − ζ2(1− ζ),

where inverse impact parameter q = 1/l has been introduced.
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Equation for φ(ζ)

dζ

dφ
= ±

√
q2 − ζ2(1− ζ) = ±

√
P(ζ)

Solutions are symmetric around radial turning points given by

P(ζ) = 0

Solution can be written as

φ(ζa, ζb) =

∫ ζb

ζa

dζ√
q2 − ζ2(1− ζ)

,

which can be expressed using incomplete elliptic integrals or

simply evaluated numerically.

Josef Schmidt Raytracing in Schwarzschild spacetime



Cubic polynomial P(ζ) = q2 − ζ2(1− ζ)

Ray behaviour depends on properties of P(ζ) (and value of q).

Minimum located at ζmin = 2
3
, i.e. at r = 3

2
rS = 3M: photon

sphere

Depending on q <=> qcrit =
2

3
√
3
we have 2, 1 or 0 roots for

ζ > 0.
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Types of rays

Di�erent types of rays depending on r <> 3M, q <> qcrit and ur <> 0.
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Bending of light rays

Bending of light rays for Q = 1.85, Q = 6.75, Q = 9.85 and Q = 14.3,

where q = qcrit(1− e−Q).
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Technical info

Implemented in C++ � 2700 lines of code

Parallelized with OpenMP

Performance on Intel Quad Core 3.3GHz � rendering time:

4K resolution: ≈ 6 s
FullHD resolution: ≈ 1.5 s
(g++ compiler with -O3 �ag)
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What is next to be implemented?

Doppler shift

Brightness of images

Subhorizon Lorentz camera tetrads

Horizon crossing coordinates

Retarded time, Shapiro delay

Point stars

"Full" raytracer (Minkowski space)

More geometries

Reissner-Nordström spacetime (charged black hole)
Kerr spacetime (rotating black hole)
wormhole spacetime

Postprocessing e�ects

GPU acceleration
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Thank you

for your

attention
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