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1 Mean values

Let f: R — R be a real function of one variable, f = f(z). Its mean value in the interval (z1,z2)
is defined as the integral

g ” Fade. (1)

T2 — X1

The mean value over the entire R is defined by the limit transition

z’ —00

If f is periodic with period L, we can calculate its mean value (f) as an integral over any interval
of length L, so for any z’ € R we have

x' +L
) =Dty = [, Ha)da, 3)

2’ is typically chosen to make the calculation as simple as possible.

Exercise 1.1. Calculate (cos(wt)), (sin(wt)), (cos?(wt)), and (sin®(wt)).

Solution: Consider first the function f(t) = cos(wt). It is a periodic function with period L = 2Z.
Its mean value is thus calculated as

o

£&T

(cos(wt)) = 22 /0 ) cos(wt)dt = %[sin(wt)]o =0. (4)

s ™

ely

The case (sin(wt)) is very similar:

2m

w 1 2
(sin(wt)) = % /0 sin(wt)dt = [ cos(wt)|g® = 0. (5)
For the next case, using the trick for calculating the square of cosine, we get
2 w [ 2 w [T
(cos®(wt)) = — cos®(wt)dt = — (1 + cos(2wt))dt
2 Jo ar Jo (6)
w 1 . 2z 1
= E[t — % Sln(2wt)]0 = 5
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This is not so surprising, since we are actually calculating the mean value of the constant function
% plus the mean value of the function cos(2wt) over two periods, which is zero from the previous
part.

In other words, generally (f+g) = (f) +(g) (if all mean values are finite). Therefore, it suffices
to take the equality cos?(wt) + sin®(wt) = 1, from which it immediately follows

(cos?(wt)) + (sin®(wt)) = (1) = 1. (7)

N

From the previous result, we easily obtain (sin®(wt)) =

2 Complex Numbers

A complex number z € C is understood to be an object in the form z = a + ib, where a,b € R.
The symbol i is called the complex unit. We define i? = —1. If 2’ = ¢ + id, we define addition
and multiplication intuitively and in agreement with the usual rules:

z+2 =(a+ib)+ (c+id) :== (a+c)+i(b+d), 22" = (a+ib)(c+id):= (ac— bd) + i(ad + bc).

If z = a + ib, we write a = Re z (real part) and b = Im z (imaginary part). If Rez = 0, we say
that z is purely imaginary. We write 0 = 0 + 40.

The complex conjugate z of a number z is defined as z = a — ib. It holds that zz/ = zZ'.
The magnitude |z| of a complex number is defined as |z| = Va2 + b2. It holds that |z| = /2.
How do we define division of complex numbers? Let z,2’ € C and 2’ # 0. We define it using the
formal " fraction expansion”.

z zZ 2z

Z =22 .= 8
2! 2 3 |Z"2 ( )

The operations on the right-hand side make sense because for 2/ # 0, |2/| > 0 and we simply
multiply the complex number 2%’ by the real number |2’|~2. The equations hold

Re(z) = % Tm(z) = Z;ZZ 9)

Now we would like to define the complex exponential, i.e., the complex number e* for every
z € C. If z=a + ib, we define

e* = e .= % (cos b + isin b) (10)

The complex exponential can (see mathematical analysis) be defined by a power series. For a = 0,
this relationship is called the Euler’s formula. It holds that |e*| = e®.

Every z € C can be written in the polar form z = |z|e!?, where ¢ € R is the solution of the

equations

cos(ie) = 72 sin(y) = T (11)
 is called the argument of the complex number and is uniquely determined up to the addition
of an integer multiple of 2. The geometric meaning of this notation can easily be obtained by
representing complex numbers in the Gaussian plane, where the real and imaginary parts are
plotted on the Cartesian axes: Geometrically, the addition of complex numbers corresponds to
the addition of vectors in the plane. Multiplication can also be easily interpreted. If z = |z|e’¥

E



Figure 1: Gaussian plane

and 2/ = |2/[e", we get 22" = |z]||e/(?*¥") | thus a number whose magnitude is the product of
magnitudes and the argument is the sum of angles.

Multiplying by €%, for example, corresponds to rotating the complex number in the Gaussian
plane

by an angle ¢.

It is often useful to write trigonometric functions using complex exponentials. From Euler’s
formula, we obtain the relationships

cos(p) + isin(ep)

g 7 cos(p) — isin(ep) (12)

cos(¢) = Re(e'?) = %

sin(p) = Im(e*?) =

Using these relationships, we can define cos(z) and sin(z) for any z € C.
Exercise 2.1. Find the real and imaginary part of the number

a+ b
YT (13)

Solution: Dividing by a complex number is carried out by formally expanding the fraction and
subsequent adjustment:

a+ibc—id  (ac+bd)+i(bc — ad)

= = . 14
c+ide—id c2 + d? (14)
From here it is easy to see that
ac + bd bc — ad

Exercise 2.2. Show that e = e?, specifically e = e,

Solution: For a complex number z = a + ib, we have e* = e**% = ¢%(cosb + isinb) and thus
% = e%(cosb —isinb) = ee "t = 47 = &7, (16)
Choosing a = 0 we obtain the given special case.

Exercise 2.3. Calculate Re[(C —iD)e®*], where C, D, Qt € R.



Solution: Using Euler’s formula
(C —iD)e™™ = (C' — iD)(cos(t) + isin(Qt))
= (C cos(Q2t) + Dsin(Qt)) + i(C'sin(Qt) — D cos(€2t)).
Hence, Re[(C — iD)e®¥] = C cos(2t) + D sin(€2t).

*Exercise 2.4. Prove the validity of the relations Re(iz) = —Im(z) and Im(iz) = Re(z) for each
zeC.

Using them, prove the validity of the identity cos(x) = sin(x + §) for all z € R.

Solution: Considering z = a + ib, then Rez = a and Im z = b. For iz = —b + ia it follows that
Re(iz) = —b and Im(iz) = a. Clearly, then

Rez = a =Im(iz), Imz = b= —Re(iz). (18)
The trigonometric identity is then obtained as
cosz = Re(e’) = Im(ie"") = Tm(e'Z ™) = Im(e'*3)) = sin (x + g) ) (19)

. U
where we wrote i = e'2.

Exercise 2.5. Derive the formulas for sines and cosines of sum and difference of angles using the
trivial identity
eleeif = eilath), (20)

Solution: Rewrite the left side using Euler’s formula and expand:

ee'® = (cosa + isin o) (cos B + isin f)

= (cosacos f — sinasin ) + i(sin v cos 8 + cos asin f3).

(21)

By comparing the real and imaginary part with the right side cos(a + ) + i sin(a + 3) we obtain
the desired formulas. The formula for the difference is easily obtained by substituting —g3 for 3.

*Exercise 2.6. Derive the formulas for products of sines and cosines by modifying the expression

e e = ei%eig(eiagﬁ +etT® )- (22)

Solution: This time we start by modifying the right side. We easily notice that it can be written

as

atB a—p a+p a—p a—l—ﬁco a—f

2¢"72 cos 5 = 2 cos 5 08— + i2sin 5 5 —5 (23)
Comparing with the left side (cos a + cos 8) + i(sin o + sin ) we obtain the result.
*Exercise 2.7. Prove the validity of the relations
sin(iz) = isinh(x), cos(iz) = cosh(zx), sinh(iz) = isin(z), cosh(iz) = cos(x). (24)



Solution: All relations are proved in the same way, we will prove just two of them. We have
(from the definition of complex sines and cosines)

i(ix) _ ,—i(ix) —x _ T T _ ,—x
sin(iz) = & 2; = > ¢ %:ie 26 — isinhz. (25)
cosh(iz) = % = COS . (26)
Here we used the definition of the complex hyperbolic cosine cosh(z) = % Notice that

generally cosh(iz) = cos(z) and sinh(iz) = isin(z).

Exercise 2.8. Consider the expression c;e™? + cpe™™?, where ¢1,c2 € C and wt € R. What are
the conditions on the constants ¢; and ¢ for the expression to be real for all ¢ € R.

Solution: It must hold that Im(c;e™? 4 coe~™?!) = 0. This occurs if the expression is equal to
its complex conjugate. Thus, we get

c1e™t 4 coeT ™t = gre T 4 Epe™. (27)

This can be rearranged into the equation
(c1 — G2)e™t = (cy — ¢1)e ™", (28)
By choosing ¢ = 0 we get ¢; — ¢2 = c2 — ¢1 and by choosing ¢ = 57> we get the equation ¢; — ¢ =

—(cg — ). This immediately implies that both sides of the equation must be zero and thus
necessarily co = ¢;. It is easy to see that this is also a sufficient condition, because then

Cleiwt =+ éle—iwt =9 Re(cleiwt) cR. (29)

Exercise 2.9. The solution to the harmonic oscillator equation can be written in equivalent forms
as
z(t) = Acos(wt + ) = Asin(wt + ¢) = acos(wt) + bsin(wt) = ce™* + ce ™!, (30)

Find the relationship between the constants A, w, ¢, ¢, a, b, and c.

Solution: The relationship between ¢ and ¢ is obtained easily from the already proven identity
cos(x) = sin(x + §). Hence ¢ = ¢ + %. Using sum-to-product formulas, we get

A cos(wt + @) = A(cos(wt) cos(p) — sin(wt) sin(p)) = A cos(p) cos(wt) — Asin(p) sin(wt).  (31)

Thus, we have a = A cos(p) and b = —Asin(p). Notice that for each a,b € R, we can find A and ¢
satisfying this relationship. Finally, using the representation of sines and cosines through complex
exponentials:

wwt —iwt wwt _ ,—iwt
acos(wt) + bsin(wt) = as te b€ ‘
= i(a — ib)eth —+ 5((1 + 'L‘b)@iiu)t.

We see that ¢ = %(a —ib). For each complex number ¢ € C, we can find a,b € R satisfying this
relationship. And we are done.

*Exercise 2.10. "Prove” Euler’s formula using the differential identity

%e“ = AeM (33)



Solution: Consider the complex function of real variable f(z) = cos(z) + isin(x). Its derivative
by components f'(x) = —sin(x) 4+ icos(x) = if(x). It holds f(0) = 1. But the same ordinary
first-order differential equation with the same initial conditions is solved by the function e**. From

the uniqueness _
e = f(x) = cos(x) + isin(x) (34)

for all z € R, and we have proved.

*Exercise 2.11. Write the functions cos?(x), cos®(z), and generally cos™(z), n € N, using only
the functions cos(kz), k € Ny.

Solution: Using Euler’s formula, we get

ix —ix 1 ) . ) . 1 1 2
cos?(z) = (¢)2 = (¥ 4 2e"e T 4 e72) = —(2 4 2c0s8(27)) = M. (35)
2 4 4 2
For the third power, it is very similar, we get
COS3(£L') _ e’ +e )3 — *(63”“ 4 362116—11 =+ 362336—211 4 6—311)

= é(2 cos(3z) + 6cos(z)) = 3 cos(z) Icos(?)x)

For a general n € N, using the binomial theorem, we get

n

n _ e + e LI i = n ix\k(,—iz\n—Fk __ i n i(2k—n)x
cos"(z) = ( 5 ) = o 2 (k) (™) (e™™)" " = 5n Z <k>e (37)

k=0

Now it is advantageous to distinguish between odd and even n. For odd n, the sum has an even
number of terms, and we can split it into two sums:

L5) n
2% ( 22: <Z> ei(Zk:fn)a: + Z (Z) ei(2k7n)z) (38)
k=0

k=g +1

In the second sum, we perform a substitution of the summation index to ¢ = n — k and use the
symmetry of binomial coefficients (Z) = (nf k) The second sum can thus be rewritten as

Lz)

Z (n) o—i(2q—n)z (39)

q=0 4

We see that it differs from the first sum only by the sign in the exponent. Using Euler’s formulas,
we thus obtain the formula

cos” (&) = 2 (Z) cos((n — 2k)z) (40)

k=0
For even n, the situation is similar except that the sum splits into three terms:

n_]

FEQ R B0 w

k=0 k=2+1



By substituting the summation index in the third term and using Euler’s formula, we finally get

the formula B
n_

cos™(z) = 27%1(% (nT/L2> + 2:1 <Z) cos((n — 2k)z)). (42)

k=0

Notice that the last term is half compared to substituting & = n/2 into the sum on the right.

*Exercise 2.12. Sum the series

N
Z cos mzx (43)
m=0

Solution: Using the linearity of the function Re, we can write

n N
Z eimw Z (eix)m‘| (44)
m=0

m=0

= Re

N
E cosmx = Re
m=0

aNtig

Now, vsimply use the well-known formula for the sum of a geometric series 27]::0 a™ = 4——— for
a = e"*. This expression can further be modified as
e vgeit T —emitarr o sin(NEly)
=a?2 =e'2 — — =e'2f—=Z (45)
a—1 al/?2 — q=1/2 e's —e7i2 sin £
After substituting into the formula above, we thus obtain
N . N+1  (N+1
sin(S=—=x , sin(~—5—=x N
Z cosmz = (721) Re [BZ%I} = (72z) Ccos —. (46)
sin 5 sin 5 2
m=0 2 2
Exercise 2.13. Calculate the definite integrals
+o0 +oo
/ e cos bx dz, / e”“sinbx dx. (47)
0 0

*Calculate also the corresponding indefinite integrals (primitive functions).

Solution: The second integral is multiplied by the complex unit and added to the first one. From
the linearity of the integral, we then get one integral of the complex exponential:

/e_“‘” cosbr dx + 1 / e"ginbx dr = /e_‘”“'(cos bx + isinbx)dx = /e_(“_ib)l'dw. (48)
This can be easily calculated using the standard formula.

) 1 .
7(afzb)a:d — _ —(a—ib)z C 49
/ e r=——e +C, (49)

where C' € C is some complex constant. For the definite integral, we get

oo , 1 R 1 a+ib
7(a71b)a:d — | _ —(a—ib)x J—— = — . 50
/0 ¢ v { a—ib* 0 a—ib a? + b? (50)




By comparing the real and imaginary parts, we obtain the sought integrals:

+oo a +o0 b
/0 e " cosbrdr = e /0 e “sinbrdr = R (51)
For indefinite integrals, we proceed with the modifications
, 1 A b
/ ey = - e 0 = f%e*”(cos(bx) +isin(ba)) +C.  (52)

Writing C' = C1 + ¢Cy, by comparing the real and imaginary parts, we get the sought integrals:

—axr

/e_‘“” cosbr dr = — acos(bxr) — bsin(bx)) + Cy, (53)

67(
a? 4 b2

—ax

/ =97 sin b dar — —ajiw(a sin(bz) + beos(be)) + Ca. (54)

3 Small Oscillations and the Mode Method

Exercise 3.1. Construct the potential for longitudinal and transverse oscillations of weights on
springs as in the figure. The length of the unstretched springs is ag.

a a
ikﬁmkg

Find the forms of these potentials in the approximation of small oscillations.

Solution: First, consider the longitudinal oscillations of the weight. I introduce a coordinate x
describing the displacement of the weight from the equilibrium position to the right:

a+x a—x

O T

The potential energy of a spring always has the form %stiffness(lengthfrest length)2. The potential
of longitudinal oscillations is the sum of the potential energies (as functions of displacement x) of
both springs: U(z) = Ui (x) = Us(x). Here Uy(z) = 1k(a + z — ap)? and Uz = k(a — z — ag)?
thus ] ]

U(z) = §k(a+m—a0)2+§k(a—m—ao)2. (55)

Let us recall what is meant by ”the approximation of small oscillations”. Generally, for a system
with n degrees of freedom, we introduce coordinates (z1, ..., ;) describing the displacement from
the equilibrium position. Writing & = (x1,...,z,) € R”, we find the potential function U = U(Z).
The potential in the approximation of small oscillations is

02U

8x¢6‘xj f:O' (56)

L _1l<
US,O.(I') = 5 Z Uijxixj, ]Uij =

4,J=1



Here we have n = 1 and 7 = . The matrix U is of size 1 x 1 and its only element is given by the
second derivative of the function U = U(z) at the point z = 0. We have

U'(z) =k(a+x—ag) — kla—z+ag), U'(z) =2k U"(0)=2k. (57)

It is always advantageous to verify that the first partial derivatives of U at & = 0 are zero and
therefore, that the point & = 0 is indeed an equilibrium position! Here U’(0) = k(a — ag) — k(a —
ap) = 0. The matrix U thus has the form

U = (U"(0)) = (2k). (58)

Substituting into the relation for the potential of small oscillations, we get Us ., (Z) = ka?.

Now consider the transverse oscillations:

Va2 +a?

The lengths of both springs for a given displacement are identical, thus U (z) = Uz (z) = $k(V2? + a?—

ap)?. Thus, we have U(z) = k(vVx2 + a2 — ag)? = k(2? + a® + a} — 2a9V22 + a?). Therefore

U'(z) = k (295 - 2a0\/xfﬁ> , U"(z) =2k [1 — ag (\/ﬁ o (\/ﬁ))] (59)

After substitution, U”(0) = 2k(1 — %) and U, (z) = k(1 — %)z?. Note that for a = a,
U”(0) = 0, and thus Us, (z) = 0. Despite this, U = U(x) at x = 0 has a sharp local minimum!
The approximation of small oscillations has its limits.

Exercise 3.2. Construct the equations of motion for longitudinal oscillations of the system in the
figure. The length of the unstretched springs is ag.

a a a
ikimkimkg

Find their solution by the mode method.

Solution: We introduce displacement coordinates (x1,z2) as in the figure:

a-+x1 a— X1+ 2Ty a— T2

01 z1 Oz €2



The potential is thus given by the equation
. 1 5 1 5 1 9
U(z) = ik(a—i—xl —ap)” + Ek(a—ml +x2 —ag)” + ik(a—xg —ap)”. (60)

Partial derivatives give:

STU =k(a+x1 —ag) — k(a — 21 + 22 — ag) = 2kxy — ko, (61)

1

oU

o = k(a —x1 + 22 — ap) — k(a — 22 — ag) = —kx1 + 2kxs. (62)
2

From here, we easily construct the matrix of second derivatives at the point & = 0:

o= (% ) )

Both weights have mass m and thus we easily see that the matrix of kinetic energy T has the form

T = (Tg 7?1) . (64)

The equations of motion (small oscillations problem) for the displacement vector & = #(t) are given
by the matrix equation TZ + Uz = 0. Substitution gives

0 _[(m 0 (.Ell + 2k —k r1\ mil + 2]@%1 — kxg (65)
0/ 0 m "EQ -k 2k i) o mi'g — k.%'1 + 2]{7{,62 ’
The mode method works as follows. It asserts that the general solution to the equations of motion

is a superposition of harmonic motions (modes) in the

form Z(t) = Ad cos(wt+ ), where w (the natural frequency of the mode) is one of the solutions
to the secular equation
det(U — w?T) =0 (66)

And the vector @ corresponding to the natural frequency w is obtained by solving the system of
linear equations (U — w?T)a@ = 0. In our case, we get the secular equation in the form

— 2k — mw? —k _ 22 2 _ 2 4 2 2
Odet( _k 2k_mw2>(2kmw) — k% = m w® — dkmw* + 3k°. (67)

This is a quadratic equation for w?, which has two solutions:

EPRLCEDY) (68)

m

The natural frequencies of the modes are thus

[k 3k
w1 = —, W2 = i (69)
m m

Vectors of amplitude ratios @ = (a1, az)” are obtained by solving linear equations (U — w?T)a@ = 0.
For the first mode:

(8) = (U~-wiT)d = (2k :,T% ok —]:n,’f) <Z;> = <_kk kk) (Z;) (70)

10



We are thus looking for the kernel vector and by equivalent modifications, we get

(& )~ )~6 9) ™

The solution to this system is any nonzero vector satisfying a; = as, it is advantageous to choose
the simplest, for example, @ = (1,1)7. The first mode thus corresponds to the weights oscillating
in phase!

For the second mode, we similarly get the system

(0) = @-wma= (T, h ) ()= ) (1)

Again, by equivalent modifications

(S ) ~G)~G1)~6 o) (73)

Its solution is any vector satisfying a; = —as, so we choose @ = (1,—1)7. The second mode is
thus counter-phase oscillation of the two weights. In conclusion, the most general solution to the
problem is given by the superposition of modes, i.e., the sum

#(t) = Ay G) cos (@t + <p1> Ay (11> cos <\/ft 4 ¢2> , (74)

where the constants Ay, As, 1, 2 € R must be obtained from the initial conditions.

Exercise 3.3. Consider the same case as above, only for transverse oscillations.

Solution: We introduce coordinates & = (21, 2) as in the figure:

a? + (zg — 21)?

We find the potential from the known lengths of the springs:

1 29 2 1 2
U(f)—2k<\/a2+x%—ao) ok (Vo T @) —ao) 4 ok (,/azmg_a()) ()

Before calculating the partial derivatives, it is advantageous to regroup the terms slightly:

1
U(Z) = ik(mf—i—(xg—xl)z—i—xg—&zo{ a? + z2+\/a? + (z3 — x1)%+1/a® + 23} +constants). (76)

From here, we relatively easily get

aU k [.’171 — (1‘2 — LL‘l) — Qg ( 1 —(3?2 _ $1) >‘| 5 (77)

— +
O0x1 \/a2+x% \/a2—|—(x2—x1)2

oUu (o —x1) 219

— =k |(zo —x1) + 222 — @ + 78
i [( 2= 21) + 202 — 2y ( T 2 ”%) (79)

11



Now we need to derive cleverly and directly substitute & = 0, which ensures that we do not have
to derive the square roots again. We get

02U

UH:Tx%

o= H (1= )0 D=k (1) (19

From the symmetry of the partial derivatives Us; = Uyo and from the symmetry of the problem

MQQ = UH, thus
(2K K ; aop
U_<_k, 2k,>, k _k(1—;). (80)

The matrix U is thus exactly the same as in the previous example, just replace k with k’. Since the
matrix of kinetic energy T is exactly the same, we can confidently use the result of the previous
exercise.

Exercise 3.4. Find the potential of a spring pendulum (see figure) in the approximation of small
oscillations. The pendulum can perform two-dimensional motion in the vertical plane.

k a lgj’

Solution: First, let us show that a, the length of the spring in the equilibrium position, can be
found and expressed using constants g, k, and m. Let the rest length of the spring be ay and
introduce coordinates x,y relative to the pendulum’s suspension:

X

2
The potential energy has the form U(z,y) = %k (\/xQ +y2 — a0> — mgy. We seek the minimum
(z0,Y0):

3U Zo

0= 22 =k (/22 + 2a> 81
0z (z0,y0) < 0% 0 Vg + i (1)
oUu Yo

0= — =k +\/22+ 2—a)—m 82
By (z0,y0) ( 0" Y 0 \/ l‘g + y% g ( )

(83)

The first equation can occur for /22 +y2 = ag, but that excludes the validity of the second
equation. Thus, it must be zg = 0 and the second equation gives us

k(yo — ag) —mg = 0. (84)

12



That is, of course, the condition of the balance of elastic and gravitational forces, from where
a = yo = 79+ ap. Now back to the problem of small oscillations. We introduce coordinates
(21, x2) as in the figure:

The potential is given by the sum of the elastic and gravitational potential energy:

U(Z) = %k (y/(a +x9)2 + 22 — a0>2 —mg(a + x3)

(85)
1
== (k(:r% + 22 — 2a04/(a + z2)2 + x%) + (ka — mg)xs + constants

2

Partial derivatives are thus

aUk(xlao ( 7 ) (86)

Oxq a+x2)? + 22

ai:k T2 — ag ot T + ka — myg. (87)
Oxg (a+x2)% + 22

The second derivatives are

a bit more complicated because we cannot avoid further derivation of the square root by xs.
We obtain

62U ap
= —k(1=-22
U 9x3 lz=0 F ( a ) ’ (88)
0%U
U2 = 011019 |3=0 0, (89)
0*U
227 922 lz=o (90)

We see that the term from the gravitational force completely disappeared. The matrix of potential
energy is diagonal. The resulting potential of small oscillations has the form

- 1 ao 1
Us.o. (-T) = §k (]- - ;) .’ﬂ% + ikl'g (91)
Thanks to the diagonality of the matrix U, the equations of motion are independent:
mi+k (1= %) a1 =0, mi+ kez =0, (92)

Thus, this system has two modes — one corresponds to oscillations in the horizontal direction xq
with frequency 4/ % (1 — %) and the other to oscillations in the vertical direction x5 with frequency

13



1/ % Horizontal oscillation corresponds to transverse oscillations relative to the spring and vertical
corresponds to longitudinal oscillations. This explains the form of the presence (effective) stiffness
k' = k(1 — %) and k in the angular frequencies.

*Exercise 3.5. Find the potential of a spring pendulum (see figure) in the approximation of small
oscillations. The pendulum can perform two-dimensional motion in the vertical plane.

Solution: We introduce coordinates (z,y) as in the figure:

The potential energy is obtained from a bit of Pythagorean theorems:

U(z) = lkx (( (a+2x)2+y?— a0w)2 + (\/(a —1)2+y? — a0I>

2

2

+%/<;y (( x2+(a—y)2—a0y)2+( $+(“+y)2_“0”)2> (93)
_ %kw (23&2 + 2y — 2aq, (\/(aJrﬂf)2 +y?+/(a —2)? “/2))

1
+ §kjy (2y2 + 22% — 2aq, (\/(a +y)2+224+(a—y)?+ x2)> + constants.

Deriving U with respect to = gives us

8£_k 97 — g a+x i a—1x
oz v 0z Vat2?+y?  Ja-o2+i?

(94)

+ ky

e (\/(a+y)2+x2 ' \/((a—y)2+9«“2>

Now we need to proceed cleverly. When further deriving partially with respect to x, we notice
that the ugly terms in the first row are composite functions that differ only by swapping x for —z.
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When deriving and substituting Z = 0, they necessarily cancel out. In the second row, we do not
need to derive the square roots, because we are anyway substituting x = 0. The calculation is thus
not as terrible:

0?U

Az
U= S| =2k +2k, (1-22). 95
N O P +2hy a (95)
From the symmetry of the problem, Uz, is obtained by swapping = and y:
0*U ag
U :—) — 2% 21%(——?/). 96
27 992 =0 vt a (96)

The remaining task is to calculate the mixed term. The partial derivatives of the ugly terms in the
first row give zero, because the result will be proportional to y, and in the second row, they cancel
out, because they are again composite functions, differing only by swapping y and —y. Thus we
get Ulg =0.

The resulting matrix U is again diagonal, and the equations of motion are thus independent
harmonic oscillator equations in the horizontal and vertical directions:

mi + |2k, + 2k, (1- ‘%)} v=0,  mj+ |2y + 2k, (1- %ﬂ y = 0. (97)

From the forms of the angular frequencies of individual modes, we also see that for horizontal
oscillations (equation for z), the horizontal springs are longitudinally oscillating and the vertical
ones are transversely oscillating, for vertical oscillations (equation for y) it is vice versa.

Exercise 3.6. Find the solution of the equations of motion of the following system by the mode
method. Only longitudinal motion is allowed. Assume that a is the rest length of the spring.

Is the found solution complete? ”Where did the error occur”?

Solution: We introduce coordinates as in the figure:

a—T1+T2 a—2Ty+ T3
<«——pat———»

9, 2102’031

1 X

Now we have & = (z1, z2, z3) and the potential has the form

2

1 1
UZ) = —k(a —x1 + 13 — a)® + §k(a — o+ 23— a)

2 (98)

1
= ik(x% + 225 4 22 — 22129 — 22923) + constants.

The potential in the approximation of small oscillations is obtained by second partial derivatives
and can easily be considered to exactly match the quadratic form above, thus

3
1 1
Us.o. () = 3 E U,jzx; = §k(x% + 222 + 22 — 22129 — 22073). (99)

ij=1
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We can also write Us , (%) = %i‘TUf, where & = (I, I) and

k -k 0
U= -k 26 —k]. (100)
0 -k k

The masses of the weights are m, M, and m thus the matrix T is

m 0 0
T=|10 M 0]. (101)
0 0 m

Now, we need to solve the secular equation det(U — w?T) = 0, which gives

k — mw? —k 0
0= det —k 2k — Mw? —k = (k — mw?)?(2k — Mw?) — 2k*(k — mw?)
0 —k k — mw? (102)

= (k — mw?) [(k — mw?)(2k — Mw?) — 2k?] = w*(k — mw?)(mMw? — k(M + 2m)).

This equation has three solutions for w?, which are easy to find, let’s denote them:

|k [k(M +2
wO—O w1 = Wy = + m (103)

Now we must solve the equations (U — w?T)a@ = 0 to get the amplitude ratio vectors.

(i)

w = 0. We seek the vector @ = (a1, as,as) solving the system of equations

0 Eo—k 0\ [m k(a1 — az2)
0 = —k 2k —k a9 = k;(2a1 —a; — a3) 5 (104)
0 0 —k k as k’(a3 — Cl2)

by equivalent modifications
k -k O 1 -1 0 1 -1 0
-k 2k -k|]~|-1 2 —-1|~|0 1 -—-1]{. (105)
0 -k k 0 -1 1 0 0 0

We obtain the condition a; = as = a3 and a suitable candidate is thus @ = (1,1,1)7. In this
mode, the weights do not oscillate at all.

w = /k/m. We solve the system

0 0 —k 0 aq —k‘ag
0l =(-k k2-2) —k||az]|=|-kar +k2—Y)ay —kas |, (106)
0 0 —k 0 as —k‘ag

by equivalent modifications

0 —k 0 0 1 0 010
—k k2-2) k| ~|-1 2-2 _1]~|1 0 1]. (107)
0 —k 0 0 1 0 0 0 O

The solution is ag = 0 and a; = —as. We choose, for example, @ = (1,0, —1). The middle

weight does not oscillate and the outer weights oscillate in opposite directions with angular

frequency 4/ % .
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_ . [k(M+2m)

(iil) w . We solve the system

mM
0 —2mp —k 0 a; —k(32a; + as)
ol=( -k -Yp —k az | = | —k(a1 + 2ay +a3) |, (108)
0 0 -k -2k ) \as —k(3Fas + az),

by equivalent modifications

2m 2m M
-2k -k 0 = 1 0 1 = 0
M M
B EVN & TSNt BN ‘g (109)
2m 2m

0 -k =37k 0 1 57 0 0 0
Thus, it must be a; = *%QQ and ag = *%02. We may choose as = 1 and thus @ =
(—%, 1, —%)T. The middle weight oscillates and the outer weights oscillate in the same

direction opposite to the middle one.

Is

the solution complete? The root w = 0 is in fact double and thus admits one more linearly
independent solution (see general theory of differential equations) in the form Z(t) := Adt cos(wt +
). Here we have w = 0 and thus we get #(t) = A cos(p)at, where we already found @ = (1,1,1)7.
But this corresponds to the simultaneous uniform linear motion of all three weights!

The error thus occurred because the matrix U is not positively definite — the point (0,0,0) is
not a stable equilibrium position. Strictly speaking, the method of small oscillations cannot be
used.

Exercise 3.7. Consider the general solution of the motion of the system in the form

Z(t) = n(t)) _ Ay 1 cos(wit + 1) + As 1 cos(wat + ©2). (110)
Find the specific solution for the initial conditions

56‘1(0) =A 75 0, .132(0) = 0, .131(0) = O, .132(0) =0. (111)

Solution: Deriving Z, we get

. r1(t -1\ . -1\ .

Z(t) = xl( ) = Ajw; sin(wit + ¢1) + Aswe sin(wat + ©2). (112)

X2 (t) -1 1

Substituting the initial conditions then gives us equations

A\  [Ajcospr + Ajcospr 0\ [—Ajw;sing; — Asws sin pa (113)

0) \Aicospy —Ascospsy )’ \0)  \—Ajwising; + Aswasings )
This is a system of four equations for four unknowns. By adding and subtracting equations, we
get

. . A
A1 Sm pq = A2 SN Yo = 0, A1 COs 1 = A2 COS Yo = 5 (114)

Since A # 0, the second set of equations immediately ensures that A;, Ao # 0 and thus from the
first set of equations, ¢1,¢2 € {0,7}. From the second set of equations, for ¢; = 0, we have
A; = %, for p; = 7, then A; = f% Since cos(z) = — cos(x 4 7), these solutions are equivalent,

and we can choose ¢1 = w2 = 0 and A7 = Ay = A/2. The unique solution satisfying the initial
conditions is thus

F(t) = A)2 G) cos(wit) + A/2 (_11> cos(wat). (115)
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*Exercise 3.8. Find the current flow in the circuit in the figure:

11
I —

Solution: We label the currents and their positive directions in the branches, the directions of
circulation in the left and right loops, and the voltages across the elements as in the figures:

I Iy
> > Ur1 UL

LAl Al [7T]
T T o o] o
The voltage across the capacitor and the inductor is given by the equations

Uc = 9, Uy =LI. (116)
C
By deriving the equation for the voltage across the capacitor with respect to time, we get Uc = é
Viewing capacitors and inductors as voltage sources in the circuit, then the sign convention is as
follows: if the direction of circulation of a given loop agrees with the direction of the current in the
respective branch, then we add a minus to the formulas for the voltages (if it disagrees, we leave
a plus). Thus, for the left, respectively, right loop, we get from the second Kirchhoft’s law:

~Uc1 —Uc2 —Ur1 =0, Uca —Ucsz —Urz =0. (117)

After deriving these equations with respect to time and substituting for the individual voltages
(and multiplying by minus one):
L A LI A A (118)
ol ot 1 =0, ot ol 2 =0.

After substituting for I3 from the first Kirchhoff’s law for currents, Iy = Iy + I3, we get the final
set of differential equations for the currents flowing through each inductor:

" 1 2
=Ll — =1 —I5. 12
0 27 G 1+ ol (120)

We can write this system of equations in matrix form as TI +UI = 0, where I = (I,1I) and

L 0 1 /72 -1
r= (2 %) u=1(% 7). -
But this is the same system of equations as in Exercise only here m = L and k = % We
already know that the general solution is in the form

It) = A G) cos (@t + Lp1> + Ap (11> cos (@t + <p2> . (122)
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The inductance of the inductors here plays the role of inertia mass — resistance of

the inductors to changes in current; the reciprocal value of the capacitance plays the role of
stiffness — the smaller the value of the capacitor’s capacitance, the faster its voltage changes for a
given current and thus faster it causes changes in current in the circuit.

4 String Vibrations and Fourier Series

Exercise 4.1. If we shorten a string by Al = 10¢m, its frequency increases to o = 1.5 times its
original value. Calculate the length of the string L. Assume that the tension in the string remains
the same.

Solution: A string with fixed ends of length L at points z = 0 and z = L has a solution in the
form of a superposition of modes:

Y(z,t) = Z Apy sin(kp 2) sin(wpmt + ©m)- (123)

m=1

The relation between k and w is given by the dispersion relation w = 4/ %k and the m-th wave
number satisfies k,, = 7. pg is the linear density of the string and Tp its tension. The frequency

f is related to the angular frequency as w = 27 f.

Let f’ be the new frequency and L’ the new length of the string. So we have f’ = af and
L' = L — Al. According to the dispersion relation (if we do not change the tension or the material
of the string), the ratio of w and % (in any but the same mode) must remain constant: % = %

Substituting, we get the equation
fL=fL =af - (L-Al. (124)
From here, we can easily express L as L = —%5 Al = 3Al = 30cm.

Exercise 4.2. A piano string L = 1m long with a diameter d = 0.5mm emits the fundamental
tone C with a frequency f = 256 Hz. The volumetric density of this string is p = 9g/cm?. What
is the tension Ty in the string?

Solution: The wave number of the fundamental tone is k; = % The linear density is obtained
by multiplying the volumetric density by the cross section of the string, i.e., pp = %ﬂ'd2p. From

the dispersion relation w = %k thus

2
Ty = %po = dpo f2L? = nd?pf?L* = 3.14- (5-107*)2 - 9000 - 2562 ~ 459.2N. (125)

This is therefore the force exerted by a weight of approximately 46kg! There are about 230 strings
in a piano.

Exercise 4.3. Find the forms of modes for a string of length L (stretched from z € [0, L]) for free
ends. Assume a solution in the form of a mode (standing wave) ¥(z,t) = X (z) cos(wt + ). Write
the general solution as a superposition of these modes. Is there something missing in the solution?
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Solution: The function ¥ must satisfy the wave equation:

02 Ty 02
v _Toow (126)
otz po 022
The free end condition is defined as
oy oY
—(0,t) = —(L,t) = 0. 127
Substituting the ansatz into the wave equation immediately yields
<X”(z) + ;OwQX(z)> cos(wt + ¢g) = 0. (128)
0

Let the wave number k > 0 be k? = %‘;oﬂ (thus obtaining the dispersion relation); requiring the
previous equation to be satisfied at all times, we get an ordinary differential equation

X"(2) + k*X(2) = 0. (129)

This is the equation of a harmonic oscillator (in variable z). Write its solution, for example, in the
form

X (2) = acoskz + bsinkz. (130)

The resulting function ¢ (z,t) = X (z) cos(wt+ ) must be substituted into the boundary condition.
Easily g—z = X'(z) cos(wt+¢). The initial conditions thus give equations X'(0) = 0 and X'(L) = 0.
We have X'(z) = —aksinkz + bk cos kz.

The condition X’(0) = 0 gives bk = 0 and thus b = 0. The condition X'(L) = 0 then gives
asinkL = 0 and for a nontrivial solution thus kL € {mn}en (we only consider natural number
multiples, since the constant kL > 0). The wave number must satisfy k = k,, = 4=, m € N. The
resulting form of the m-th mode is thus X,,(z) = A, cos k2.

The resulting function v (z,t) is given by the superposition of these modes (do not forget that
w is different for each value of the wave number and given by the dispersion relation):

_ > mm To mm
W(z,t) = mZ:lAm cos (TZ) cos ( %Tt + <pm> . (131)

Which solution did we forget? Since the string has both ends free, it can, in addition to vibrations,
perform uniform linear motion as a whole: t¥(z,t) = xg+vot. This solution is not in the form of the
assumed solution form, so it could not come out. If we took the method of separation of variables
more generally, where we assume a solution of the form (z,t) = X (2)T(t) (thus generalizing
the form of the time function), we would get a solution including uniform motion. The complete
solution (and now truly complete) of the wave equation with the given boundary conditions is thus

> mm To mm
)= t A, (—) omry, o). 132
o) =t + 5 o (25 cos(./po LI ) (132)

*Exercise 4.4. The same assignment as the previous example with the difference that now con-
sider one end fixed and the other free.
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Solution: The procedure is completely analogous to the previous example. Only the boundary
conditions and thus the requirements for the form of the function X (z) = acos kz + bsin kz differ.
WLOG (without loss of generality) consider the left end (at z = 0) fixed and the right end (at
z = L) free, i.e.,

(L, 1)
0,t) =0 ——— =0 133
1/}( Y ) K 8Z ) ( )
that is, for the function X(z): X(0) = 0 and % = 0. The condition X(0) = 0 gives a = 0
and then from O)gi(f) = 0 we have bcoskL = 0. If we require a non-trivial solution, b # 0 and

coskL = 0, hence kL = § +mm, m € Ny (kL > 0 hence m > 0). The permissible wave numbers
are thus of the form &, = (§ + mﬂ)%. The resulting solution is again given by the superposition

of individual modes: .

Y(z2,t) = Z A sin ki, z cos(wimt + ©m), (134)
m=0
where &y, = (3 4+ mm)+ and wy, = %km-

Exercise 4.5. Calculate the Fourier series of the following functions f with period 2L:

a) Square wave

A

| e

X*L 0 NL ?
— —A
b) *Sawtooth wave
A
f(2)

Lo Tz

Solution: If f: R — R is a periodic function with period 2L, its Fourier series is a function fg
given by the relation

fr(z) = % + mZ:l A, COS (?) + by, sin (?) , (135)
where the coefficients a,, and b,, are given by the relations

1 [E mmnz 1 [E . [mTz
Gy = Z/—L f(2) cos (T) dz, m €Ny, b, = Z/—L f(2)sin (T) dz, m € N. (136)

If the function f is even, b,, = 0 and if it is odd, a,, = 0.
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a) Square wave: the function f is obviously odd, so it suffices to calculate the coefficients b,,. We

have
/ f(z sin mﬂz)d = E/OLAsin(mgz) dz = 224 {n{jﬂcos (mgz)}L

L au 0 (137)
—[ cos( T )} = —(1 — cosmm).

mm 0 mm

bm

Finally, we can distinguish between even and odd m. For even m, 1 — cosmm = 0 and thus
b, = 0. It suffices to consider odd m, thus m = 2k — 1, k € N, then 1 — cosmm = 2. We get

4A

T (138)

bop—1 =

The resulting Fourier series of function f is thus

= 44 2k — 1)
fr( :sz—u sm(( L) > (139)

k=1

b) Sawtooth wave: the function f is even. It suffices to calculate the coefficients a,,. For m > 0

we get
)dz E/OLA<1—z>cos(mgz>dz

am:z/ f(z COb /f COb -
= % {A (1z>%sin<mgz)]o +i/OL21ﬂf;TSin(mzz) dz

=g [, o ()= s e ()]

We are in the same situation as in the previous example — only odd m = 2k — 1 contribute and
thus

(140)

4A
(2k — 1)272°
We must not forget about ag, which is obtained by the integral

7/ -2 dz_i[A(z—QZZﬂL—Zf(L—QL;):A. (142)

agp—1 = (141)

The Fourier series of the sawtooth wave is thus

+§ %_1 os((%Ll)m>. (143)

Exercise 4.6. Consider a string with fixed ends. Find a specific solution for its motion if you
make it vibrate so that at time ¢ = 0 it is at rest and has the forrrﬂ ¥(z,0) = A, where A is a
constant.

1Strictly speaking, 1 at time ¢ = 0 does not satisfy the boundary conditions. One can imagine that at both ends
the function describing the string drops very sharply to 0.
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Solution: The solution of a standing wave with fixed ends has the form

U(z,t) = Z Ay sin(ky, 2) sin(wmt + ©m)- (144)
m=1
Let f(z) = 1¢(z,0) be the function f : [0,L] — R specifying the initial shape of the string, and
g(z) = %(2, 0) the initial speed of the string. Substituting the solution, we get equations:

f(z)= i Ay, sin @y, sin (m;rz) , (145)
m=1

g(z) = i Ay Wi, €OS @, SIN (mgz) (146)
m=1

To solve these conditions, it is necessary to find the constants A4,, and ¢,,. We see that the right
sides resemble the Fourier series of an odd periodic function. It suffices to find a unique odd
extension of the function f, a function f : R — R satisfying:

(i) f is periodic with period 2L;
(ii) f is odd;
(iii) f restricted to the interval [0, L] gives the function f.

If we find the coefficients f,,, of the Fourier development of the function f(z) = :rnozol fm sin (mf z ),
by comparing coeflicients we get
fm = Apsing,,, meN. (147)

Similarly, we find the odd extension g of the function g and if we denote g,, the coefficients of its
Fourier development, we obtain relations

m = Amwm cos pm, m € N. (148)

Let’s solve this system in this case. According to the task, we have f(z) = A for all z € [0, L] and
g(z) = 0 for all z € L. We see that as an odd extension f we get a rectangular wave from the
previous example and g = 0 (and thus g,, = 0). We thus obtain a system of equations:

0 = Ay sin Ok, ke N, (149)

4A .
m = AQk_l S Yok—1, k S N, (150)
0= ApWm cos@,,, meN. (151)

Therefore, I can choose Agp, = 0, k € N and oy, arbitrarily. Since necessarily Asg_1 # 0, I get from
the last set of equations cos por—1 = 0. Hence, por_1 € {g + n7tnez. We can choose a1 = 5
because in any case sin pax_1 € {—1,1} and we would just have to hide the sign in the amplitude.
From the remaining equation, thus

4A
Aoy = ———. 152
T 2k — D (152)
The resulting solution of the wave equation with this initial condition is thus
o

4A . ((2k—1Dmz\ .
t) = 3 3 _1t). 153
T S )
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Exercise 4.7. Consider a string with fixed ends. Find a specific solution for its motion if at time
t = 0 it is in equilibrium position and you strike it with a hammer so that a segment of the string
of length Az centered at L/2 is given a speed vg.

Solution: Using the notation from the previous example, we have f(z) = 0 and g(z) (and its
odd extension g(z)) has the form

We must therefore find the Fourier series of the odd extension g of the function g. The development
coefficients g,, are

2 L
Im = Z/o g(z) sin (m;er) . (154)
Into the integral, obviously, only the section [L_TAZ7 L+TAZ] will contribute. We get the integral
L+Az L+Az
2vg z (mTl'Z) d 2vp [ L (mﬁzﬂ 2
Im = — sin z=— |———cos
L L-Oz L L mm L LAz (155)
2vg mr  mrAz mm . mrAz
=—|cos|—————]—cos| —+———)].
mm 2 2L 2 2L
Now it is still advantageous to use the sum formula in the form:
A
cos(a — B) — cos(a + B) = 2sin(a) sin(B), a= ?, B = m;rL : (156)
Hence, we get a simplified expression for g,:
4vg mm mmrAz
m = —— sin ( —— ) si . 157
= e (757 ) s (75°) 57)
We see that for even m we again get gor, = 0. For odd m = 2k — 1, we must solve what sin @
gives. For odd k € {1,3,5,...} we get sin§ = 1 and for even k we get Sin%’r = —1. We can

therefore write sin @ = (—1)¥=1. Hence

G2k—1 = (2];1+()1)7T(—1)l€71 sin <(2]€_22)7TAZ> : (158)

By comparing coefficients, we therefore obtain a system of equations

0= A, singn,, (159)
0 = Aopwoy, cOS Yoy, (160)
g2k—1 = Aoj_1Wak_1 COS Pap_1. (161)
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I can therefore choose Asr = 0 and g arbitrarily. We can choose g1 = 0, which ensures
cos porp—1 = 1 and the remaining set of equations then determines Agp_; = %=1, We thus get

W2k —1
the resulting function

oo _1)k-1 _ _
P(z,t) = ; (ini(l);)w%_l sin <(2k ZE)WAZ) sin <(2k Ll)wz) sin wap_1t. (162)

*Exercise 4.8. Initial problem for a string with free ends. Modify the procedure for finding a
specific solution from given initial conditions for a string of length L with free ends. The general
solution from the method of separation of variables might, for example, take the form

+oo
T
P(z,t) = 2o + vot + Z A cos bz sin(wpmt + o), where ky,, = T and Wy, = —Ok‘m.
el L Po

Solution: Substitute the above solution into the initial conditions #(z,0) = f(z) and % =

9(2):
+oo
BE0) = 20+ S (A sin o) cosknz = £(2),
m=1
+o0o
w =y + Z (Apwm, cos o) cos kyz = g(2). (163)
m=1

These are the equations for the unknowns A,,, ¢©m, 20, and vg. We see that we would need to
decompose the functions f and ¢ into a superposition of cosines and a constant term. But exactly
this looks like the Fourier series of an even function! So, it suffices to consider even extensions of
functions f, g, let’s denote them again f, g, with properties:

(i) f, g are periodic with period 2L;
(ii) f, g are even;
(iii) f, g restricted to the interval [0, L] give the function f, g.

Their Fourier series are thus of the form

fo = mmnz go = mmnz
f(z):5+ meCOS 7 g(z)=5+ ngcos 7 (164)
m=1 m=1

where

2 (L 2 (L
fm:Z/O f(Z)COSmgzdz, gmzz/o g(Z)COSmm

Substituting these developments into the initial conditions and comparing the series term by term,
we get equations

_
27

Solving for A,, and ¢,,, we get

/ 2
A =4[ 2+ %’ sin ., = I‘Z—m, COS Py = Ag’rZ) ) (167)
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dz, meN,. (165)

go

20 Apsing, = fr (meN), v =3 AW €OS @, = g (m € N). (166)




The angle ¢,,, € [0,27) is uniquely determined by its sine and cosine values. The resulting specific
solution for motion is then in the form

P(z,t) = = —|— —t + Z ZI €08 k2 Sin(wmt + ©m)- (168)
T

m

5 traveling and Standing Waves

Exercise 5.1. Two tuning forks emit 20 beats in 10 seconds. One tuning fork has a frequency
f =256Hz. What is the frequency of the second tuning fork?

Solution: Our ear hears the superposition of two harmonic waves. For simplicity, assume they
have the same amplitude. Thus, x;1(t) = Acos(wit + ¢1) and zo(t) = A cos(wat + p2). Then

x(t) = x1(t) + x2(t) = A (cos(wit + 1) + cos(wat + ¢))

<(W1+wQ)t+s01+<p2)Cos<(w1wz)t+<p1g02>. (169)

=2A
cos 5 5

The result is thus the product of two functions — oscillation with the average frequency f, = ibai} 1+f 2
and oscillation with the frequency f,, = hotfe t5+2. This "slow oscillation” modulates the amphtude
of the ”fast oscillations” twice per its perlod, see the figure. The frequency of beats f;. is therefore
double compared to f.,! f. = f1 — fo.

Since we do not know which tuning fork is tuned to a higher frequency, we have two possibilities:

fr=rfr=+f (170)
We have f, =2 Hz, and the second tuning fork therefore has 254 or 258 Hertz.

Exercise 5.2. What is the amplitude, period, phase velocity, and wavelength of a wave, expressed
in ST units by the equation
P(z,t) = 4- 10" sin (27 (8t + 52)). (171)

Solution: The amplitude is the numerical factor before the harmonic function, thus A = 4 -
10=2m = 4cm. The period is the time it takes for a complete wave to pass a given point (z =
const). It can thus be directly obtained from the relation 2787 = 27. Hence, T = 1/8s. Of
course, we also have 27 f = w = 278s 1 and T' = 1/f.

To determine the phase velocity, let’s fix the phase value ¢(z,t) = 27(8t + 5z) = ¢ = const. I
see that z can be expressed as a function of time: z(t) = ﬁ(g@o — 278t). A place with a constant
phase thus moves uniformly linearly (in this case in the opposite direction of the z axis) with a

w __ 278 -1 8 -1

phase velocity v= ¢ =5=m-s" =¢m-s

The wavelength is the distance traveled by any place with a constant phase over a period, thus
A=v-T=2%" %’r = 27” Here the wave number is k = 2r5m ™!, from which A\ = %m =20cm.

Exercise 5.3. The superposition of two traveling waves traveling in the same direction is a traveling
wave. Show that the sum

Aj cos(wt — kz + 1) + A cos(wt — kz + p2) (172)

can be written as A cos(wt — kz 4+ ¢). Determine the values of A and .
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Solution: Using the linearity of the Re function, we can rewrite the sum as
Aj cos(wt — kz + ¢1) + Az cos(wt — kz + ¢2) = Re [(Alew1 + Agei“"")ei(“tsz)} . (173)
The complex number A;e’?* 4+ Aze?? thus needs to be written in polar form Ae?. Then we get
Re [Aei(“t_sz”P)} = Acos(wt — kz + ). (174)

Determine the constants A and ¢. We have

A? = |A1€l¢l + Agei@2|2 = (Aleiwl =+ A26i¢2)(14167it‘01 + Azeiiwg)
_ A% +A§ +A1A2(ei(9@1—tpz) +e_i(W1—LP2)) (175)
= A? + A2 4+ 24, A5 cos(p1 — o).

The argument ¢ is then determined by solving equations

Re[Ae’?]  Re [A1er + Agele2] ~ Ajcos 1 + Aj cos o

[Aeie] A A ’ (176)

cosp =

Im[Ae™?]  Im [Arer + Ageie?] _ Apsing; + Agsing,
] A = A ‘

singp = (177)

Exercise 5.4. The superposition of two oppositely traveling traveling waves is a standing wave.
Show that the sum
Acos(wt — kz + ¢1) + Acos(wt + kz + ©2) (178)

is of the form X (z) cos(wt + ¢). Determine the form of function X (z) and the value of constant ¢.

Solution: This is a simple application of the sum formula

cosa + cos 3 = 2cos (a;ﬁ) cos(a;5>. (179)
Here we have o = wt + kz + 2, 8 = wt — kz + 1, hence we get
2A cos <kz + ('02;901> cos (wt + 22 ; wl) . (180)

Hence, we get ¢ = (p1 + ¢2)/2 and the function X (z) has the form

X (z) = 2Acos <kz + <,02;<p1> . (181)

Exercise 5.5. Two sources on the z axis at z = —d and z = d oscillate according to the law
x1(t) = x2(t) = Acos(wt) and emit waves in both directions. Determine the traveling waves from
each source and discuss the character of their superposition.
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Solution: The beginning of the string can thus be considered as a source that oscillates with the
time dependence x(t) = Acos(wt + ). A traveling wave ¥(z,t) = x(t — £) will thus be created on
the string. Here thus

z
Y (z,t) = Acos (w (t — ;) + <p) = Acos(wt — kz + ), (182)
where k = . The energy flux S is given by the relation
Y 0y 2 2
= 7% kA -~ . 1
S 5 92 wkA® sin(wt — kz + @) (183)

Substituting for the wave number from the dispersion relation, we get S = /Tp - w?A? sin’ (wt —
kz + ). The quantity Z = \/Tp is called impedance. Hence,

(S) = Zw? A2 (sin’*(wt — kz + ). (184)

We have calculated that (sin®(wt)) = 3. The time average of a periodic function over its period
cannot depend (by definition) on the phase shift. If g(t) = f(t + ¢), we have

1 a+T 1 a+e+T
W=7 [ ferod=g [ T swa=. (185)
a a+p
Hence,
1
(S) = 5ZoﬂA2 =212 f2A%Z =2-9,85-10" - 107* - V400 - 10-2 ~ 39, 5. (186)

Exercise 5.6. Show that the energy flux vector on a string over which two oppositely traveling
traveling waves propagate is equal to the sum of the fluxes corresponding to the individual waves.
Hint: Consider d’Alembert’s solution and show that the interference term in this case vanishes.

Solution: We need to calculate the energy flux for a wave of the form ¢ (z,t) = ¥1(z,t) +w2(z, t),

where vy (z,t) = F(z —vt), a(2,t) = G(z +vt),and v = ¢ = \/é is the phase velocity given by
the material and tension of the string. The calculation by substitution into the definition of flux
then gives

Sty = 70000 _ _p O+ ) 01 +4)

ot 0z ot 0z
:Sl(z,t)+52(z,t)—T<agzla;f+a(;i28(;il). (187)

Direct substitution verifies that the interference term vanishes:
%% + %% = —vF'(z — vt)G'(z + vt) + vG (2 + vt) F'(z — vt) = 0. (188)

Therefore, S(z,t) = S1(z,t) + Sa2(z,t).

Exercise 5.7. Two harmonic traveling waves travel in the same direction on a string in super-
position. They have the same wavelength and angular frequency. If the intensity (time-averaged
energy flux) of each wave is I, what must be the phase difference between these waves for the
resulting intensity to be 0, I, 21, 417
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Solution: Above, we calculated that the intensity I = (S) for a harmonic traveling wave ¥ (z,t) =
Acos(wt — kz + ) comes out as I = £ Zw?A2.

Thus, we have two traveling waves ¥ (z,t) = A; cos(wt — kz + 1) and 15(z,t) = As cos(wt —
kz + p2). The condition is Iy = Iy = I, from which immediately A; = Ay. Their superposition is
again a traveling wave. Using sum formulas, it turns out

¥(z,t) = 2Acos 22 ; L cos (wt — ket 2 ‘;@2> . (189)
The resulting intensity is to be a - I, hence we get the equation
1 1 —p2\?
0 ~Zw?A? = ~Zw? (24cos L2 P2 (190)
2 2 2

A lot of terms immediately cancel out, and we get the relation

a = 4 cos? w (191)

Let Ay = 1 — 2. Now we just need to find the individual solutions. The phase shift Ay suffices
to search in the interval [0,27) (and thus % € [0,7)). We obtain successively:

(i) a = 0. Destructive interference. We solve 0 = cos?(Agp/2). From here, Ay = 7.

(i) @ = 1. We solve 1/4 = cos?*(Ap/2). Thus, we need to satisfy cos(A¢/2) = 41/2. This

happens for Ap/2 € {3, 25}, hence Ap € {3, 4T}

(iii) a = 2. We solve 1/2 = cos?(Ayp/2) and hence the equation cos(Ap/2) = :I:g. This happens

for Ap/2 € {%,38}. Thus, Ap € {5,371}

(iv) a = 4. Constructive interference. We solve 1 = cos?(Ag/2), i.e., cos(Ap/2) = +1, which
gives Ap = 0.

6 Wave packets, uncertainty relations, group velocity

Exercise 6.1. Find the form of the wave packet f(t) for a spectrum shaped B(w) = 0 and

| Ao forwe[wof%,woJr%],
Alw) = { 0  otherwise . (192)

Show how the spectrum width Aw is related to the duration of the packet At defined here as the
distance between the first zero points of the amplitude envelope of the wave packet.

Solution: The source of the wave packet is given by its spectral functions A(w) and B(w) through
a continuous Fourier transform:

f@) = / A(w) coswt + B(w) sin wt dw. (193)
0
Functions A(w) and B(w) can be recovered from the function f by

Aw) = %/700 f(t) coswt dt, B(w) = %/700 f(t) sinwt dt. (194)
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Here we compute the integral

oo wo+42
ft) = / A(w) coswt dw = / Ap cos wt dw
0 w

Aw
0— 5"
Aw A Aw A
= Ag— [smwt]wﬁﬁ 20 [sm ( + 2) t — sin (wo — ;) t}
ot (195)
0 L Aw-t
= + cos wot sin
gin Aw-t Aw t
= AgAw—+—=— cos wyt.

2

Resulting time evolution of the signal see figure.

A NN /\/\/\/\/\,\v\/\ (\ /\/\A/\[\ NNAN A -
AP L e

The resulting traveling wave in a non-dispersive medium would then be 1(z,t) = f(t — Z). The
width of the wave packet At is obtained as the distance of the first zeros of the amplitude envelope

AkosmAT thus At =t — ¢t_, where t1+ are the solutions of the equation sin % =0, i.e.,
Aw% = :|:7r. Hence, t4 = :l:% and from this
Aw - At = 4. (196)
Exercise 6.2. Consider a rectangular pulse f(¢) of the form
[ Ay forwe -5 41,
() = { 0  otherwise . (197)

Find its spectrum. Show how the pulse duration At is related to the width of its frequency
spectrum Aw, here defined as the first zero of the frequency spectrum.
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Solution: Similar to Fourier series, it is easy to see that for even functions B(w) = 0 and for

odd A(w) = 0. The given function f is even, so it suffices to calculate A(w):

At

1 [~ 2 [ 2 [=
Alw) = ;/ f(t) coswt dt = ;/ f(t) coswt dt = - Apcoswt dt
—oo 0 0
240 . . at Apsin %
= —_— t 2 - 4
bt = 2

The first zero of the spectral function thus occurs at point wgy, where sin

At wo

520 = m. Since here Aw = wp, we obtain the relation

At - Aw = 2.

*Exercise 6.3. Consider damped oscillation f(¢) in the form

f(t):{ 07 for t < 0,

e~ cos(wot) otherwise .

Find its spectrum.

Solution: The result is obtained by direct calculation, i.e.,

Aw)

1 [ 1 [
— / f{t)coswtdt = — / e~ cos wyt cos wt dt
i 0 i 0

1 o0
= o e~ (cos(w + wo )t + cos(w — wo)t) dt
T Jo

Now we use the results of exercise [2.13] where we found

/0 e cosbxdr = ﬁ.

Substituting into this formula, we get

For the second spectral function, a similar calculation yields

1 [ 1 [
Bw) = — f(t)sinwtdt = — e~ sin wt cos wot dt
T™J_so ™ Jo
1 o0

= — e " (sin(w + wo)t — sin(w — wo)t) dt
2T 0

1 w ~+ wop w — wo
S 2m\a2+ (wHw)? a2+ (w—w)?)

At wo

2

(198)

= 0, i.e., for

(199)

(200)

(201)

(202)

(203)

(204)

Exercise 6.4. Wi-Fi covers a frequency range of 20 MHz (channel width). Estimate its transmis-

sion speed. Use the uncertainty relation.
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Solution: We imagine the Wi-Fi signal as sending wave packets, which we can generate with the
given frequency range. Thus, we know the spectrum width Aw = 27 A f. The duration of the wave
packet At satisfies the uncertainty relation Aw - At > 7. This gives us a lower estimate for At,
ie.,
™

At > AL (205)
Sending data using the Wi-Fi signal is imagined as sending packets at regular time intervals, where
sending = 1 and not sending = 0. To be clearly distinguishable, the shortest interval with which
we can transmit them is At. See figure:

1 0 1 1
—» —» —»
-
At

In one second, therefore, we can transmit at most N = Ait bits. Thus, we get an upper estimate
of the transmission speed N = & < 22 = 2Af = 40-10%b/s = 40 Mbit /s.

*Exercise 6.5. Estimate the maximum frequency of trill f;, of two tones separated by a semitone
depending on the frequency of one of the tones in the trill f. Use the uncertainty relation. Why
is trilling not performed on a tuba?

Solution: Trilling, i.e., the rapid alternating playing of two close tones, at a frequency f;. can
be imagined as alternately sending two wave packets. Assume that both tones sound for the same
duration. The time width of both packets will then be At = ﬁ See figure:

—»

00 |

The spectrum of each packet will have a maximum around the respective angular frequencies of
the tones wy and ws. Both spectra will have a minimum width given by the uncertainty relations
Aw > 7. The resulting spectral function is their superposition:
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The condition for distinguishing both tones will be that the spectral ”"peaks” do not overlap,
which gives us the condition wy — w; > Aw. Overall, we get an estimate ws — wy > 27 fy-. In
terms of frequencies, then fo — fi > fi. The higher frequency is a semitone higher. Considering
well-tempered tuning, then fo = ¥/2- fi. The resulting estimate is thus

for (V2 -1)f1. (206)

For information, we have /2 ~ 1.06 and thus approximately f;» < 0.06 - f;. The fundamental
tone of the tuba is typically around 32Hz. The maximum frequency of trill on a tuba is then
approximately 1.9 Hz!

Exercise 6.6. A linear dispersion relation is of the form w = vk, where v = const. Such a medium
is called non-dispersive. Determine the phase and group velocity.

Solution: The phase velocity v, is obtained from the dispersion relation

w = w(k) by vy(k) = % The group velocity vy then by the derivative with respect to the

wave number vy(k) = % (k). Here, thus v, = vy = v.

Exercise 6.7. Determine the phase and group velocity for electromagnetic waves in plasma. This
medium is described by the dispersion relation w? = w? .+ c?k2. Is the phase or group velocity

greater than the speed of light? What does this mean?

min

Solution: We have

1 min 2 min 2
vw(k:):%:%\/wﬁlin+02k2:\/02+(wk ) :c-\/1+(wck) > c. (207)

The group velocity then

dw A2k

(k) ! -
v = ——— = —— c.
T W T e T e

The magnitude of the phase velocity can be greater than ¢ without any problems — this would
correspond to the propagation speed of a monochromatic wave with constant amplitude — which
does not carry any information. Conversely, the group velocity — the speed of propagation of wave
packets — is less than the speed of light.

(208)

(6]

Exercise 6.8. Consider light in a material with a refractive index n, which is defined as n = _=.
%}
The refractive index in the material for a simple electron model is described as
o
nw)=14+ ————,
(w) wi — w?

where a > 0 and we consider only w < wg. Determine the group velocity and show that it is less
than the speed of light.
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Solution: From the definition of the refractive index, we get the phase velocity as

Vp(w) = : (209)

Also, we know that the phase velocity is given by v, = w/k. We can thus easily express the
dispersion relation k = k(w) as

k(lw)=—= w. 210

@)= =" (210)

This inverse form (as opposed to w = w(k)) is preferred since we have the function of refractive

index n(w) as a function of angular frequency w. Then, we need to calculate the inverse of the
group velocity (to be able to derive the inverse function):

1 1 dk
— == @), (211)
vg(w) da dw
From this, we get
1 dk 1 dn(w)
T ) 212
vy dw ¢ <n(w) T dw ) (212)
In our specific case, 9% = —29%__ thug
dw (wg—w?)
dk 1 a(wg + w?) 1
— =14 = - 213
dw(w) c ( + (w3 — w?)? - (213)
Substituting, we obtain the final expression for the group velocity v, as a function of w:
c
vg(w) = aie < ¢ (214)
1+ 2t
(""0_0J )

Exercise 6.9. Show that for light in a medium with refractive index n(\g), where Ag is the
wavelength of light in vacuum, it holds

S o1 _foom (215)

Solution: The wavelength of light in vacuum is \y = i—g, where kg is the wave number in vacuum

given by the dispersion relation w = cky. We can thus express the wavelength using the angular

frequency w as \g = % With this substitution, we get the refractive index function from variable

w: n(Xo(w)) = n(Z<).

From the previous example, we know

1 dk 1 dn(w)
- A 216
vy dw ¢ <n(w) T dw ) (216)
The first term on the right side is vi = 2. In the second term, we express w as a function of
®
vacuum wavelength w = 2}\—”06 and must now derive the refractive index function as a composite
function:
dn _dn dh dn d (2mnc\  27mc dn (217)
do  dho dw  dhodw \ w ] w2 d)\
Substituting these results, we obtain the sought relation
1 1 Ao d
S _fodn (218)



7 Reflections

*Exercise 7.1. Derive the telegraph equations for the voltage and current waves u(z,t) and i(z,t)
on a homogeneous transmission line in the form

ou , 0i 0i ou

where L is the inductance per unit length of the line, [L] = H.m~!, C is the capacitance, [C]
= F.m~! R is the resistance, [R] = Q.m™!, and G is the conductance per unit length, [G] =
Q~1.m™!. Derive the equations by analyzing the equivalent circuit of a segment of line length Az:

i(2,1) i(z + Az, t)
— > RAz LAz —

r————

—CAz: | u(z+ Az t)

| 2 DR

Solution: When the chosen direction of current leads to a voltage drop across the resistor and
inductor, we thus obtain the following equation:

u(z + Az, t) = u(z,t) — RAz - i(z,t) — LAz - %(z, t). (220)
Dividing by Az and rearranging, we obtain
u(z + Az, t) —u(z,t) ) oi
A =—R-i(z,t)— L at(z,t). (221)

Taking the limit as Az — 0 gives us the desired equation. Similarly, a decrease in current occurs,
where part GAz - u(z + Az, t) leaks through the leakage resistance and CAz - %(z + Az, t) charges
the capacitor. Thus, we obtain the equation

i(z+ Az, t) =i(2,t) — GAz - u(z + Az, t) — CAz - %(2 + Az, t). (222)
Dividing by Az, we get
i(z+ Az, t) —i(z,t) ou
A =—-G - u(z+Azt)—-C- E(z + Az, t). (223)

Thus, taking the limit as Az — 0 gives us the second equation.

Exercise 7.2. Consider an ideal homogeneous line, where R = G = 0. Show that the telegraph
equations yield wave equations for the functions u(z,t) and i(z,t). Find the d’Alembert solution
satisfying the original telegraph equations.

Hint #1: Consider an ansatz in the form of d’Alembert solutions
u(z,t) = F(z —vt) + G(z + vt), i(z,t) = a1 F(z — vt) + aaG(z + vt). (224)

Hint #2: Substitute the d’Alembert solution for u into the telegraph equations and solve for 1.

Note: The proportionality coefficient between the voltage and current wave is called the
impedance Z.

35



Solution: The telegraph equations for an ideal line now take the form

ou i 0i ou
—— =L, —— =C—. 225
0z ot 0z ot (225)
Partially differentiate the first equation with respect to z and substitute from the second equation:

0%u o (0i 0%u

This is indeed the wave equation for w in the form
0%u 5, 0%u
- =P,
ot? 02?2
where v = \/% By a similar method, we obtain the wave equation for current i: differentiate the
second equation with respect to z and substitute from the first:

Fi_ 0 (o 0% P 1 on
022 ot \odz) ot? o2 LC 9z2°

(227)

(228)

Hint #1: These equations have a general solution in the d’Alembert form, for voltage u(z,t) =
F(z —vt) + G(z + vt) for any twice differentiable functions F,G : R — R. The resulting wave
equations turned out independent for functions u and ¢, but the original telegraph equations u
and ¢ bind them together! Therefore, we cannot simply take any d’Alembert solution for i! The
solution for ¢ is found by solving the telegraph equations after substituting the found form of u:

87/ 1 / !/
5= —Z(F(z—vt)-i-G(z—&-vt)), (229)
i c, ., /
o, =\ 7 (F'(z = vt) = G'(z +ut)). (230)

The second equation is easily solved by integrating with respect to z, yielding

C
i(z,t) = W/Z(F(z —vt) — G(z 4 vt)) +io(t). (231)
Upon substituting into the first equation, we obtain %io(t) = 0, from which we see that except for
a constant current value iy = const., which is uninteresting, we therefore choose iy = 0, ¢ must be
in the form

i(z,t) = \E(F(z —vt) — G(z + vt)). (232)

We see that the impedance is given by the relationship Z = % = ,/%. Note, the left-traveling

current wave has the opposite sign! The resulting forms of voltage and current waves on the
telegraphic line are thus

u(z,t) = F(z—vt)+G(z+vt), i(z,t) = %F(zfvt)—%G(ervt), v= \/%, Z =1/ % (233)
Hint #2: If we substitute the prescribed ansatze into the telegraph equations, we get:
—F'(z —vt) = G'(z 4+ vt) = L(a1(—v)F'(z — vt) + asvG' (2 + vt)),
— (1 F'(z — vt) + aaG'(z + vt)) = C((—v)F'(z — vt) + vG' (2 + vt)). (234)
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After adjusting

0= (1-aLl)F'(z—vt) + (1 + azvL)G (2 + vt),
0= (a1 —vO)F'(z — vt) + (s + vC) G (2 + vt). (235)
For general waves, F'(x) and G'(z) are linearly independent functions, so for their linear combi-

nation to equal zero, the corresponding coefficients standing by them must equal zero, leading to
conditions for the constants oy and as:

1 1
P e vC, T 02= —vC. (236)

After substituting v = V%T’ we consistently get a; = % = \/% = —ap. Thus, the same result as
in the first guide.

Exercise 7.3. A homogeneous transmission line with impedance Z is terminated with a shunt
resistor of size Rs. Find the reflection coefficient R for the voltage waves arriving along the line.
Discuss the special cases Ry = 0 (short circuit), Ry = +oo (disconnected resistor) and R = 0
(nothing is reflected). Use harmonic traveling waves.

Solution: The transmission line is therefore terminated as follows:

i(z,t)

Z |u(z,t) | |Rs

We consider the harmonic incident ug and reflected w, voltage waves of forms:
ug(z,t) = elwt=k2) up(z,t) = Rei(withz) (237)

where R € C is the reflection coefficient encoding the change in amplitude of the reflected wave
(and possibly phase shift, if it comes out complex; R = |R|e*?). The corresponding incident i4 and
reflected 4, current waves according to the results of the previous exercise are

oo t) = Ud(;, t) _ %ei(wtsz), i (2 1) = 7’“7’(;7 t) _ 7%Rei(wt+kz). (238)
The function of the total voltage and current on the line then is u(z,t) = ug(z,t) + u,(z,t) and
i(z,t) = iq(z,t)+1ir(2,t). Consider the termination of the line at z = 0. The boundary condition of
this termination is simply given by Ohm’s law — the voltage drop on the terminating resistor is given
by the product of its resistance Ry and the current flowing through it: u(0,t) = Rs4(0,t), Vi € R.
After substituting the forms of individual waves:

) ) 1 . 1 .
ezwt 4 Rezwt — Rg <Zezwt _ ZRezwt> . (239)

We can cancel out the exponentials and have 1 + R = I}“ (1 — R). From this equation, we easily

express the resulting reflection coefficient

R, -7

R = .
Rs+ 7

(240)
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For a short circuit (Rs = 0), we immediately get R = —1, and for a disconnected resistor (Rs =

. . . . . 1-£
+00), it makes sense to write the reflection coefficient in the form R = T £+ and thus then R = 1.
The condition for R = 0is Ry = Z — thus, it is necessary to terminate the line with a shunt resistor
of the same size as the impedance of the given line.

Exercise 7.4. A homogeneous transmission line with impedance Z; = 502 is connected to a
line with impedance Zs = 100 ). Find the transmission and reflection coefficients for voltage and
current waves coming from the first line to the second. If a pulse with an amplitude of 15V hits
the interface, what will be the amplitude of the transmitted and reflected waves?

Guide: Set up the appropriate connection conditions. Use harmonic traveling waves.

Solution: We proceed similarly as in the previous example. Now, however, we need to describe
the voltage and current on two different lines, let’s denote them u; o and 4 o.

il(Z,t) iQ(Z,t)

— T

Zl ul(z,t) ’LLQ(Z,t) ZQ

Then on the left line, we have the incident and reflected wave, hence u; = ug +u, and iy = ig+1,,
on the right line we have the transmitted wave, us = u, and i3 = i,. The forms of individual
voltage and current waves are then

uq(z,t) = ei(Wt_klz)a ur(z,t) = Rei(wt+k1z)7 up(zvt) = Pei(wt—kzz)’ (241)
ia(z,t) = L it in(2,t) = _ 1 peiterthiz) ip(z,t) = L peitwt=k22) (242)
9 Zl 9 T 9 Zl ) P ’ Z2 9

where we introduced the reflection coefficient R and the transmission coefficient P and further the
wave numbers on individual lines k1 and ks. The coefficients P and R are determined from the
conditions of connection at the interface, let’s place it at z = 0. At the interface, nothing special
happens. The current and voltage at z = 0 must therefore continuously follow:

ul(O,t) = ’LLQ(O,t), zl((),t) = 12(07?5) (243)
After substituting the forms of individual waves, we obtain equations

1

4 , 1 , .
(1+ R)e™" = Pe™',  —(1— R)e™! = — Pe™". (244)
Z1 2
From the continuity of voltage, we have 1 + R = P, from the equation for currents 1 — R = %P.
Solving these equations, we get
Zy— 74 275
R=———, =—-— 245
Zy+ 7y Zy + 7y (245)

For the given values, we therefore have R = (100 — 50)/(100 4+ 50) = 1/3 and thus P = 4/3. The
amplitudes of the transmitted and reflected waves will therefore be 20V and 5V.
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Exercise 7.5. A homogeneous transmission line with impedance Z; = 502 is connected to a line
with impedance Z; = 1002 in the following two ways:

° PP

T

A R, Zo A Ry Za

Find the transmission and reflection coefficients for voltage waves for these two situations. Un-
der what conditions does no reflection occur? Use harmonic traveling waves. Write down the
connection conditions and solve them.

Solution: The difference compared to

the previous task is only in the conditions of connection. Here, a step change in current or
voltage may occur. The voltage and current waves will look exactly the same as in the previous
task.

Consider the first of the cases. Here, the voltage at the interface is continuous, but part of the
current leaks through the shunt resistor:

ul(oat) = u2(07t)a Zl(ovt) = 7’2(07t) + is(t)a (246)
where the shunt current is(¢) is given by Ohm’s law is(t) = ul%(o’t) — in the fraction we can
choose either u; or us, since these are equal at the point of connection; and since us has a simpler

expression than u, let’s choose the shunt current in the form i, = 7*. After substituting the
forms of waves from the previous example, we get equations

1 1 1
1+R=P, —(1-R)=—-——P+ —P. 247
+ ? Zl( ) Z2 +RS ( )

We adjust the second equation to the form 1 — R = Z1(Z% + %)P. Solving them gives us the
coefficients
 R(Zy—Z1) — Z1Zy P 27Z5R;

- Z1Zy+ R Zy + R 2o’ - Z1Zy+ RsZy+ R Zy
If we require R = 0, then we get the condition Rs(Zy — Z1) = Z1Z5, i.e., Rs = % Physically
only Ry > 0 is possible, and thus, to eliminate reflections in this connection of two lines, it is
necessary that Zy > Z;. Therefore, to eliminate reflections for the given impedance values, we

must choose R, = 15006£0500 =1009.

(248)

Now consider the second case. Here, the currents are continuous, but the voltage has a jump
due to the voltage drop on the lateral resistor Ry:

ul(oa t) = U2 (Oa t) + ub(t)7 il(ov t) =1 (07 t)? (249)

where the voltage drop u is expressed using Ohm’s law wuy(t) = Ry 41,2(0,¢) — from the continuity
of current at the point of connection, it again does not matter whether we use function iy or is,
we choose again for a simpler form 7. Substitute into the conditions of connection the forms of
voltage and current waves:

1 1 1 1
1 =P —P, ——_—R=_P 2
+R + Ry 0 77 R Z (250)
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After adjustment, we have equations 1 + R = (1 + %)P, 1-R= %P. Solving them gives us the

coefficients
Zy — Z1+ Ry 27,

Z1+Zy+ Ry’ i+ Zy+ Ry
Conditions for the disappearance of reflections, R = 0, leads to the size of the lateral resistor
Ry, = Z1 — Z5. Again, from the requirement R, > 0, it follows that in this configuration, we can
eliminate reflections only for lines satisfying Z; > Zs. For the given impedance values, therefore,
this configuration cannot be used.

R= (251)

Exercise 7.6. Consider three media interconnected through two interfaces, one at z = 0 and the
other at z = L. Let’s denote the amplitude transmission and reflection coefficients as T;; and R;;
representing the transmission and reflection coefficients when transitioning from the i-th to the
j-th medium. The wave numbers in the individual media are ki, ko, k3. Consider a harmonic
incident wave of the form Ae'“'=%12)  Find the total reflection coefficient R € C, i.e., the total
reflected wave of the form ARe!@t+k12) — A|R|e!(«wt+k12+¢) resulting from an infinite superposition
of reflected waves between two interfaces. Require the continuity of phase functions of individual
waves at the interfaces.

At the end, specialize the result, considering the relations 1 + R;; = Tj; and R;; = —Rj;.

Solution: Here we have directly given the amplitude transmission and reflection coefficients
at individual interfaces. What remains is to consider what continuity of phase functions at the
interface means. For simplicity, consider one interface at z = L between media with wave numbers
k1 and ko. Considering an incident, reflected, and transmitted wave of the forms

’(/Jd(zﬂf) _ ei(wt—k1z+¢d)’ ¢T<Zat) _ R12ei(wt+k12+¢r)’ wp(z’t) _ Tmei(wt—/’czz+qﬁp)7 (252)

where we consider general phase shifts ¢4, ¢, and ¢, in individual waves. The phase functions of
individual waves are thus in the form

vd(z,t) = wt — k12 + ¢g, or(z,t) =wt + k12 + ¢y, 0p(2,t) = wt — kaz + ¢p. (253)

The requirement of continuity of these phases upon reflection and transmission at coordinate z = L
leads to requirements

@d(Lat) = @T'(lﬂt)a @d(Lat) = @p([ﬁt)a (254)
wt — k1 L+ ¢g = wt + ki L+ ¢, wt — k1L + ¢qg = wt — ko L + ¢y (255)

From these relations, we can easily express the phase shifts of the reflected and transmitted waves:
¢r = ¢a — 2k1 L, ¢p = ¢a + (k2 — k1) L. (256)

Upon reflection away from z = 0, there are phase shifts in the reflected and transmitted waves!
These need to be added at each reflection or transmission, as we will see later. On the other hand,
for z = 0, nothing needs to be resolved, as ¢, = ¢4 and ¢, = ¢4 — the phase shifts remain the
same as for the incident wave.

We could also have started from the fact that nothing special happens for the interface at z =0
(i.e., we do not need to deal with phase) and introduce a substitution z’ = z + L to move the
interface to 2/ = L, then we would have

Ya(z,t) = elWthz) = gilwt=kiz"+h L) (257)
,l/)’)"(zgt) — R12 ei(wt+k1z) — R12 ei(wt+klz,7k1L) — R12 efQikQLei(wtfklztkle), (258)
wp(z’t) =T ei(wt—kzz) =T ei(wt—kzz’_kgL) =Ty ei(’fg—kl)Lei(wt—kplZ/J’_k'lL)7 (259)
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where in the last adjustment for the reflected and transmitted wave, we factored out the phase
shift compared to the incident wave.
Proceed to solving the task with two interfaces. Let A = 1 for simplicity, saving us writing.

Now denote wf«n)(z, t) the wave that reflected back into the first medium and reflected exactly n
times at the second interface. See the figure:

15t interface ond jnterface
1 (4
P —]— —
d 7/17(‘0) -
w(l) - ,(/}//

r 1/}///

(2) D

r C . N

) ' L

The individual waves are obtained by accounting for the respective amplitude coefficients at indi-
vidual interfaces and adding a phase Ay = —2ky L for each reflection at the second interface. We
have

VO (2, 1) = Ryg ! @iHk12), (260)

The wave wﬁl) (z,t), which reflects exactly once at the second interface, is obtained from the wave
transmitted through the first interface ¢/(z,t) = Tipe*@!=*22) by reflection from the second
interface ¢ (z,t) = RogTio e!@!Hk22=2k2L) and finally by passing back through the first interface,
thus

1/)5”(27 t) = T21R23T12 ei(wt+k12_2k2[’). (261)

Continuing similarly, to obtain wﬁz)(z,t), we take the wave ¢"(z,1), reflect it to the right from
the first interface (getting wave 1" (z,t) = Ry RozThge! @ —*22=2k2L)) "reflect it from the second
interface (adding Roze~2%2L) and let it pass back into the first medium (adding 75;). We get

¢£2)(2a t) = T21R21R53T12 elwithkiz—dka L) (262)

From here, we can deduce a general formula — for each ”inner reflection,” an additional factor
Ro1 Roge~2%2L is added. We get

i (2,t) = Toy Ry ' Ry Ty €' @HHhaz—2nkal) (263)

To obtain the total reflected wave 1,.(z,t), we must sum the individual contributions, ¥,.(z,t) =

;:OB gk)(z,t). We thus get a series

+oo (')
15, T} —2i k i(w z
’(/)T-(Z,t) _ 111}7(“0)(271;) + Z'I/J,,(ak)(z7t) — R12 + % Z (R21R23€ 2 kzL) e (wt+kq ) (264)
k=1 k=1

The expression in square brackets is the sought total reflection coefficient R. We greatly simplify

the expression by summing the geometric series using the formula Ez:{ k= (Z:ﬁ% k) -1 =
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iz 1= ﬁ for x = R21R23€72lk2[l:

—2ikoL —2iksL
T51Tiy  RoyiRgze ™2 Riv 4 T51ThoRoze™ "2
Ro1 1 — RoqRoze—2ik=L

R=Ris+ (265)

2 - .
1 — Roy Ryze™2ikal

Considering at the end the relations Ry = —R12, Th2 = 14+ R12, 151 = 1— Ry we get an expression
for the total reflection coefficient R only dependent on the reflectivities at the individual interfaces
ng and R231

1 — R2.\Roae—2tk2L R Roae—2ik2L
R= Ryt 1) Roe "7 Ry o+ Roge 72 (266)
14 RyaRoge2ik2L 14 RyaRoge=2ik2L

*Exercise 7.7. Find the total transmission coefficient T' € C, i.e., the total transmitted wave
ATe"wt=k32) for the situation described in the previous exercise.

Solution: The solution process will be very similar to the previous example. We already know
how phase behaves during transmission and reflection at the interface at z = L. Now denote 1/)]5,")
the wave that transmitted into the third medium, but on its way reflected exactly n times at the

second interface, see the figure:

18Y interface ond jnterface

0

Pa - Y
-
’(/]/// 1()1)
c D) 1()2)
J
‘ NN
Up

The wave w,()o)(z, t) is created from the wave 9/(z,t) = Tip e'“t=#22) (see previous example) by
passing through the second interface:

w}go)(z’t) — T'23T12€i(lcg*kz)Lei(wtfkgz)7 (267)

where, in addition to the amplitude coefficient Th3, we also added the phase shift A = (k3 — ko)L
for passing through the interface at z = L (see the first part of the previous example). Similarly,

we obtain the wave d},(,l)(z, t) from the wave ¢ (z,t) = Roq RosTypet(wi—kaz—2kaL).
SV (2,) = Tog Roy RosTige™ 2kal ks k)L gilwi=hs ), (268)

Each subsequent transmitted wave will have one more reflection on the internal sides of the inter-

faces, hence ' , 4
wz()Q) (Z, t) _ T23R§1R§3T12(e—Zlk‘gL)Qel(kg—kg)Lel(wt—kgz) . (269)

We can easily deduce the expression for the k-th transmitted wave

wz()k) (Z7 t) _ T23R12<:1R/5:3T12(e—QikgL)kei(kg—kg)Lei(wt—kgz) ) (270)
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Now, to obtain the total transmitted wave 1,(z, 1),

we must sum the individual contributions:

+00 too
1/’;7(2, t) _ Z 1/),(;k) (27 t) _ T12T236i(]€3—/€2)L Z (R21R236—2ik2L)k ei(wt—kgz). (271)
k=0 k=0

The expression in square brackets is our sought total transmission coefficient 7. We simplify the

expression again by summing an infinite geometric series, 37 %0 2% = 1= for & = Ry Raze =221,
hence (s o) L
TyoTazei (ks =k
1 — Roy Ryze2ikak
Considering at the end Roy = —Ry9, T2 = 1 4+ Ry2, and T3 = 1 + Ro3 we get
1+ Ry2)(1 4 Roz)eilha—ka)L
p— R0+ Rx)e (273)

1+ R12R236_2ik2[’

Exercise 7.8. A transition matrix D is given. Find the transmission P and reflection R coefficients
for a wave coming from the first (left) medium into the second (right) one.

Solution: The transfer matrix D € C?2 is defined by the equation

AR AZR)
-D , 274
(A1L> <A2L (274)
where A1g and A;p are the amplitudes of harmonic traveling waves moving to the right (respec-

tively, to the left) in the medium to the left of the interface, Asr and Asy, similarly to the right of
the interface, see the figure.

Air Asp
V1R Yar
AlL A2L
1L Yar,

The matrix I would be obtained by solving the conditions of wave function connection at the
interface. To find P and R, consider A1g =1, A1, = R, Asg = P, and Ay, = 0:

B S B
Ya Py
A %
r 0

Thus, we get

(5)-2()

Let’s denote the known elements of the matrix D as
diyr dio
D= . 276
<d21 d22> (276)
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By substituting into the matrix equation, we thus get a system of equations
1=d P, R=dxP. (277)
From here, P= 1/d11 and R = dgl/dll.

Exercise 7.9. Given are the transmission and reflection coefficients, T and R, for a wave coming
from the first to the second medium, and coefficients 77 and R’ for a wave coming from the second
medium to the first. Find the corresponding form of the transfer matrix . Specialize the form of
this matrix assuming that

R =—Rand1+R=T (and 1+ R =T").

Solution: The coefficients T', R, T’, and R’ determine the amplitudes of waves in the following
two situations:

wd wt @ wr
R T 1
<+ <+ <+ <+
wr @ wt ¢d

That is, from the definition of the transfer matrix D (see the previous example), we have matrix

equations
(5-2() )

Expanding into components (with the same notation for matrix elements as in the previous exam-
ple), we get

1=di1T 0=dnR +di
R=dnT T' = doy R + dop. (279)

From the left set of equations, we easily find dy; = %, do1 = %, by substituting into the right

equations we immediately have djp = —R% and dog =T — RTR/ %. Overall,
1 /1 —-R
=7 (R T - RR') ' (280)
For relations R = —R, T=1+Rand T" =1+ R' =1 — R, we get
1 1 R
D=— .
Y ( " 1) (281)

Exercise 7.10. Consider the interface defined in exercise [[L6l Write the transfer matrices for
each interface by analyzing the reflections of harmonic waves at each interface using the result of
exercise [7.9] Assemble these matrices and using the result of example [7.8] verify that the total
reflection coefficient R for two interfaces comes out the same as in exercise [Z.6]
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Solution: Finding the transfer matrix D; for the interface at z = 0 is easy. Here, there are no
phase shifts, and it suffices to directly use the result of the previous exercise and just substitute
the correct amplitude coefficients:

1 ]' _R21
Dr =7 : 282
T T, (Ru T19T; — R12R21) (282)

For the interface at z = L, we must remember that the requirement for phase continuity implies an
additional phase shift upon reflection or passage through this interface. In the first part of exercise
we derived that for an incoming wave from the left on the second interface, the reflection adds
a phase e2%2L and the passage e!*s=%2)L' Thus, the coefficients R and T here take the form

R = R236_2“€2L, T = T23€i(k3_k2)L. (283)
We still need to determine the forms of coefficients R’ and T" for a wave incoming on the second
interface from the right. Again, these will not be merely the amplitude coefficients R3o and T3,
but it is necessary to add phases for reflection, respectively, passage, at the interface z = L. Let

us briefly perform the same analysis as in the first part of example [7.6] Considering an incoming
wave from the right on the second interface and reflected and passed wave forms

Ya(z,t) = e'@ithaz), Pr(2,t) = Rage!@ihaztor) Yp(2,t) = Type!(@Wtthazton) - (984)

The requirement for phase function continuity of these waves upon reflection and passage at the
coordinate z = L leads to the requirements

pa(L,t) = ¢r(L,1), pa(L,t) = ¢p(L,1), (285)
wt + k3L = wt — ksL + ¢, wt+ ksl =wt + koL + ¢p. (286)

From these relations, we easily express the phase shifts of the reflected and passed wave:
¢r = 2ksL, ¢p = (k3 — k2) L. (287)

The reflection and transmission coefficients for a wave incoming from the right thus are
R = Rgye®™sl T = Type!Fs =)L, (288)

The transfer matrix for the second interface then has the form (again according to the result of

exercise :
_ 1 1 —Rpe?ihsl
Dy = Tyacitha—Fa)L <R2362ik2L (TosTss — Ry Ras)e®ks—h2)L ) - (289)
We obtain the overall transfer matrix by multiplying the individual matrices, D = DDy

and according to the result of exercise the total reflection coefficient R = %. Thus, we do
not need to calculate all elements of the matrix I, but only two:

1 —2iky L
din = TyoTozet(ka—kz)L [1 — FarRase ’ ] ’
1 —2i
dar = TroTozei(ks—k2)L [Rl? + Rase 225 (T2 Ty — R12R21)} : (290)

Upon substituting into the relationship for R and making a minor adjustment:

n— day _ Ri2(1 — Roj Roge™2%2L) 4 RosTyoTo e~ 2th2L — Ry + Ro3T1o Ty e 2ik2L
di 1 — Roy Roze~2ik2L 2T 1 — Ryi Ryse2ikal

And that is precisely the result of example

(291)

*Exercise 7.11. The same as in the previous exercise but for the overall transmission coefficient
T.
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Solution: We have already found the transfer matrices for individual interfaces in the previous
exercise. According to exercise the transmission coefficient is given by the relation T = Til‘
We have already calculated this matrix element in the previous example. Thus, we have

1 Ti5Tpze’ ks k)L
~ di1 1 — RojRoge2ik2L”

(292)

And that is precisely the result of exercise [7.7}
*Exercise 7.12. Consider connecting two strings with the same tension at z = L. The transfer

matrix is
D— 1 < (1 + ’I%z)ei(kl—kz)L (1 _ %)ei(kl-&-kg)L )

= 1 ) ) 2
2 (1= %)6—1(k1+k2)L (14 %)e—z(kl—kg)L (293)

Find the transition matrix for two interfaces of three strings. The interfaces are at z = 0 and
z = L. Find the overall reflection coefficient R.

Solution: If D; and Dy are the transfer matrices at the two interfaces, we obtain the transfer
matrix from the first to the third interface by simply multiplying, thus D = D;D5. Here, we have

ks | _ ke ks gi(ha—ks)L _ haygilkaths)L
b= L(ITE IR py o L (e R e )
2 1_ﬁ 1+ﬁ 3 2 (1_i)8_l(k2+k3)L (1_‘_]@72)6—1(162—]{53)[4

To compute R, we need to know only dy; and do;. We get

1 ko k3 ith.— ko ks\ _,;
d — 1 va 1 o Z(k)g k‘g)L 1 _ e 1 _ o Z(k2+k3)L
11 4[< Jrkl)( +k2>e + iy s e

_ lei(kr;ﬁ)L k1 + ko ko + k3 (1 ki — kg kg — k3 B_Qik2L) '
4 kl ]i)2 k1 + k2 k2 + kS

(295)

For the coefficient da;, we get

1 ks K3\ itka—ks)L ks K3\ —i(koths)L
= (1= 22) (14 28 eitkaha 1+2) (1= 2ks
da1 4[( k1> ( +k2>e + +k1 T ) €

_ lei(kQ_kC")L ky + ko ko + k3 (kl —ko ko — ks e—2ik2L) .
4 kl kg ]{11 —+ ]CQ :ZCQ + k’g

(296)

Dividing both expressions thus provides a formula in the form

ki1—ko ko—k3 ,—2ikoL
Ao Tk T ke tks © (297)
di1 1+ k1—ko ko—k3 672ik2L'
ki+ko ko+ks

Noticing that if we denote R;; = Ilz:kj (which exactly comes out for connecting strings with the
i TRj

same tension), we get the result of example [7.6

8 Waves in Space

Exercise 8.1. Show that a harmonic traveling plane wave of form ¢(7,t) = Aei(‘“t_E'F), where
A€ C, k=kn, || =1and k > 0, satisfies the three-dimensional wave equation assuming a certain
dispersion relation is met. Find this relation.
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The three-dimensional wave equation for the function v = ¥(7,t) is

Solution:
Py Py P
—— =AY =0 == F — + — |, 298
g~ UAv=v (6x2 T2 e (298)
where v = const. Substituting into the left side, we get
O?Y(7t T
P(yt) — 2 Aeiwt—k) _ _w2w(,’77 £). (299)
ot2
On the right side, we have the sum of three second derivatives. It suffices to calculate one of them,
the rest we can gues
(7, t) 2 4 i(wt—k7 (7, t) 2 4 i(wt—F-7 2. (=
W = —k‘er (wt )7 thuS 871‘3 = _kz Ae (wt ) = _kiw(r,t). (300)

Substituting into the wave equation thus leads to
(301)

w? = v (k2 + kg +k2) = 0|k = v2k2.

We obtain a dispersion relation in the form w = vk. Therefore, if w and |E| satisfy the resulting

dispersion relation, the given wave is a solution to the 3D wave equation.

Exercise 8.2. Find the dispersion relation of the wave equation forms
2 2
oY =2 AP — Wiy, %TZ} =02 A — aA(AY). (302)

ot?

for a
harmonic traveling plane wave.

Solution: We proceed as in the previous example. In the first case, the right side after substi-
tution modifies to —(v2k? + wg)Ae’@!=F7) The dispersion relation is thus
(303)

w? =02k + Wl

In the second case, on the right side, we get —(v2k2 + ak?) Ae!@t=F™ since A(AY) = —k2Atp =
(304)

(—k?)2¢. The dispersion relation gives
w? = k% + ak?.

Exercise 8.3. Show that a traveling plane wave of form (7, t) = F(ii - ¥ — vt), where |7i] = 1
and F : R — R is an arbitrary twice differentiable function, satisfies the three-dimensional wave

equation.

20r we can calculate it properly:
OY =ik ) i , e I, |
7:7141@115 kT)Z*kiAMWt k-T) — Dt RV R kid: = ki
ox; ox; € ! € ’ ox; J; ox; ng 77

Th
en 3 82¢’ o 81/1 3 ) (oot c » .
2= 25 = D () - B F - i
i i=1 """ v i=1
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Solution: We again simply verify by substitution into the wave equation. The left side of the
equation gives:

%Y, Lo
W(r, t) = V2F" (i - 7 — vt). (305)
On the right side, analogously as in example (thus using %Z’f =ny):
VAY(T, ) = v (n} +nl +n2)F" (i - 7 — vt). (306)

But |77] = 1, which gives the sought result.

lei(wt—kr)

*Exercise 8.4. Show that a spherical wave of form ¢ (7,t) = +

assuming a linear dispersion relation w = vk.

satisfies the wave equation

Solution: In the lecture, you wrote down Laplace’s operator for a function that depends only on
the distance r from the origin (this simpler approach is at the end of this solution). We’ll try the
“infantry method” in Cartesian coordinates. The most difficult task is to calculate the Laplacian
applied to a scalar function ¢(7) = e~ This function is the product of functions f(7) = 1 and
g(7) = e~"". Generally, the rule applies

A(fg) = divgrad(fg) = div(fegradg + ggrad f) = fAg+ gAf + 2(grad f) - (gradg).  (307)
In exercises on electricity and magnetism, you calculated that grad(r®) = ar®~27. Hence easily
grad f = —r 37 (308)

Substituting into A = div grad and using the formula for the divergence of a product of a scalar
and a vector field (div(fF) = fdivF + (grad f) - F'), we get

Af = —div(r=37) = —(gradr=3) - 7 —r 3 divi = %F. 7 — 5= 0. (309)
The calculation for
g is similar, resulting in
. 1 ]
grad g = —ike " gradr = —ik‘;e—mrﬁ (310)
Applying divergence then
. 1 —ikr > 1 —ikr q: =
Ag = —ikgrad € -T—zk;e div 7
. -3z, —ikr -1 . —ikr = = o3 —ikr
= —ik | —r""Fe +r (—zk);e 7)-r— zk;e (311)
— _ k_2€—ikr _ %e—ikr
" .
After substitution, we get in total
1 2 _—ikr 2ik —ikr
Ap = fAg+2(grad f) - (gradg) + gAf = = | —k"e ——e
" " (312)

+2(—r737) - (fik%e*“"F) = —k%p(7).
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The wave function is of form (7, t) = e™*p(7). Substituting into the wave equation, we get
—w26iwt(p(f> — _U2k26iwt<p(,r~f)' (313)

Using the dispersion relation, we thus see that the given spherical wave satisfies the wave equation.

If we start from knowing the form of Laplace’s operator for a function dependent only on the
radial coordinate o(r):

d’¢  2dy
A = —+ ——F 314
#(r) dr? = rdr’ (314)
then it suffices to simply calculate
de Uik 0l ke d*¢ 2 ke 2 ke 2l _ipr
% = —ﬁ — Zk’;e 3 W = F,)e +Zk"f'726 —k ;6 . (315)
Then after substituting, it easily comes out
2l ipr 2
Ap=—k“-e = —k“p(r). (316)
r

Exercise 8.5. Superposition of spatial waves. Consider two plane traveling harmonic waves with
the same wavelength A\ and different amplitudes, between whose directions of propagation there
is an angle Ap. Consider a plane screen that is perpendicular to the ”average direction” of
propagation of these waves. Find the intensity profile (i.e., the temporal mean value of the square)
of the resulting superposition on the screen. Determine the distance Ay between interference
maxima.

Solution: We thus consider two waves of form
P1(7yt) = Ay cos(wt — kiy - T7), a(7F,t) = Ag cos(wt — kil - ), (317)

where 7i; - fia = cos Ap. It is advantageous to solve the problem

in coordinates where both directional vectors lie in the plane z = 0, and the screen is the plane
x = 0. See the figure:

Y

A
1

777777 [ A(‘D R »
T
M2
In these coordinates, we have
A A A A
= (cos 7('07sin 2('070) , My = (cos Tw,—sin ;70) ) (318)
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We are also interested in the value of superposition only on the screen, thus for ¥ = (0,y,z). We
get

1/)(77: (Ov y,Z),t) - %(77: (ana Z)at) + 1/)2(7?: (Oa Y, Z)at)
= A cos (wt — kysin A;) + As cos (wt + kysin A;) . (319)

The intensity of the wave is given by the temporal mean value of the square of the wave,
I = (¥?). After substituting

A A
I = A7 (cos®(wt +...)) + A3 (cos®(wt +...)) + 241 4y <cos (wt — kysin 24,0) cos (wt + ky sin 2@)>

= %A% + %AE + A1 Ay <cos (2wt) + cos <2kysin A;D>> = %A% + %A% + Ay Ay cos <2kysin A;a) ’
(320)

where we used the sum formula cosacosb = 1 (cos(a+b)+ cos(a—b)). Thus, the intensity
changes "harmonically” along the y axis and remains constant along the z axis — we have thus
obtained a series of interference fringes on the screen. The distance of these fringes is determined
by finding the positions of individual interference maxima ¥, and then Ay = 4,41 — ym. The
positions of interference maxima y,, are given by

A<p> Ap ™m mA
cos | 2kypysin— | =1 & 2ky,sin— =2mm, <& = = , meZ.
( Ym 2 Yrm 2 Ym = fsin % 2sin &2
(321)
The distance between adjacent maxima on the screen is thus Ay = Z,Smﬁ For a small angle Ay,
2

we can write Ay &~ ﬁ'

Exercise 8.6. Consider a plane interface between two transparent media with refractive indices
ny and no. Consider an incident and a transmitted traveling harmonic wave. The wave vectors k;
and ks lie in the plane perpendicular to the plane of the interface

and form an angle 11, resp. 95 with the normal vector. Based on the condition I_z:w = E2H (this
condition results from the continuity condition of the tangential components of the electric field at
the interface, Ey| = Ey)), derive Snell’s law of refraction.

Solution: For the purpose of this task, we draw a similar figure as before, hence
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We can thus express the wave vectors using the introduced angles as

El = ]Cl (COS 191, sin 1917 O), E2 = kg (COS 192, sin 192, O) (322)

The components of the wave vectors parallel to the interface are thus very simple, ElH =
(0, k1 sin¥1,0) and EQH = (0, k2 sin¥2,0). Hence, we get the condition k; sint; = kg sindy. The

refractive index is given by the ratio of the speed of light and phase velocity, thus n; = U% = %
From here, we get the well-known Snell’s law of refraction:
ny sindy = ng sinYs. (323)

Considering n1 > ng (the second medium is optically less dense), we get the relation for the second

angle sin 1y = Z—; sin ;. For a sufficiently large angle v, a situation occurs where the right side is

greater than one and 5 cannot be found. This means that no traveling wave propagates into the
na

second medium (total internal reflection occurs). The critical angle . is thus given by sinJ. = 2.

Exercise 8.7. We have the same setting as in the previous task. Now consider the interface of
these two media: a transparent medium with refractive index n and the ionosphere with plasma
frequency wp. Derive the corresponding law of refraction.

Solution: We slightly modify the approach from the previous example. There we derived the
condition kysint; = kosints. Now, however, we have the ionosphere on one side, which we
consider as plasma; its dispersion relation is thus w? = w? + ¢*k*. For simplicity, let’s consider
only w > wy, so that the transmitted wave can propagate in the ionosphere. The wave numbers in
the respective media can thus be expressed as

W2 — w2
k=20, k=t (324)
& C

After substitution, we get the law of refraction in the form
W 2
nsind; = 4/1 — (l) sin do. (325)
w

The refractive index is always n > 1 and the square root on the right side /1 — (wp/w)? < 1.
Expressing the sine of the second angle: sin; = ——-——sin);, we can again explore the limit

1—(wp/w)
of the angle 1, at which ¥J2 = 7;
which is given by

1 2
sinde = —/1 — (ﬂ) . (326)
n w
Exercise 8.8. Show that an electromagnetic standing wave of form

— — 1
E = (Acoswtcoskz,0,0), B= (O, EAsinwt sin kz,O) , (327)

where w = ck, satisfies Maxwell’s equations in vacuum. Determine the density of electric and
magnetic energy and the Poynting vector.
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Solution: Vacuum Maxwell’s equations (without charges and currents) are

. - . 0B - 10E
divE =0, divB =0, mth—E7 rothcﬁa. (328)
The first two equations are trivially satisfied:
- O0F, - 0B
divE = o 0, divB = a—yy =0. (329)
In the second set of equations, we get
- o0E, OFE, )
rot K = (0, 9. oy ) = (0, —Ak coswt sin kz, 0), (330)
- 0B OB 1
rotB=—-——2,0,—2 ) = | —=kAsinwtcoskz,0,0 |, (331)
0z oz c
B 1
_9B _ (O, ——wAcoswtsinkz, 0) , (332)
ot c
1 OE 1
Cﬁa = <—C2WA sin wt cos kZ,0,0) . (333)

We see that Maxwell’s equations are indeed satisfied, provided that w = ck. The densities of
electric and magnetic fields are given by

1 1
= —¢E? = — DB 334
wp = 560E°, wp S0 (334)
After substitution, we get
1 1
wg = —egA% cos® wtcos® kz, wp = ——= Asin® wtsin? kz = —epAsin® wt sin? kz. (335)
2 202 2

We can easily substitute into the formula for the Poynting vector:

I D 1
S=—FExB= (0,0, —— A? cos wt sin wt cos kz sin kz)
c

Ho Ho (336)

A2
= (0, 0, —— sin 2wt sin 2kz> .
4,uoc

Exercise 8.9. Larmor formula. Show that by integrating the Poynting vector S of the radiation
field E,.q from an accelerated charge,

— R 1 q C_iJ_(t )
Eraa(rt) = Cdmeg 2 1 -

)

over a sphere of radius r you get Larmor’s formula for the total radiated power P of the electro-
magnetic wave,

2
Hoq
P(t,r) = o a*(t,).

The retarded time ¢, is ¢, =t — £. Poynting’s vector is S = I%OE_" x B = %Ez 71, where 7 is the

direction of propagation perpendicular to the imagined sphere.
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Solution: See lecture notes section 6.3.6.

Exercise 8.10. Consider a waveguide of rectangular cross-section ¢ = 5c¢m and b = 10cm. What
is the lowest frequency fy that an electromagnetic wave can have to pass through the waveguide
without attenuation. Calculate the phase and group velocity (as a multiple of ¢), whose frequency
is f=1% 2 fo. What is the highest mode my that can be excited for the propagating wave of this
frequency? For a wave with frequency f = 2 fo, determine the distance at which the amplitude of
the wave decreases by a factor of e.

Solution: A rectangular waveguide is an infinite tube of rectangular cross-section as in the figure:
A / <

0] b Ty

T

The walls are made of perfectly conducting material. Solving Maxwell’s equations Wlth boundary
conditions, where we assume E depends only on (y, z,t), the electric field inside E = (E,,0,0),
where E, = E,(y, z,t) is a superposition of modes in the form

Eu(y, 2,t) = Eysin (%) eilwt=hz), (337)
where constants w, k, and m € N satisfy the dispersion relation

W? = (m;c)Q + k2, (338)

We see that for a given m, this equation has a real solution for wave number k only for w > Wiin(m),
where Winm) = 5. The lowest value is obtained for m = 1, which is the lowest of the angular

frequencies that anythlng can propagate through the Wavegmde without attenuation, wy = 7°.
From there fo = 52 = 7. In our case,
3.108
= Hz = 1,5 GHz. 339
fO 9. 0’ 1 Z ; Z ( )

The phase velocity is given by the ratio v, = w/k. Hence,

m2w?
We need to express v, = v,(w), so we substitute k from the dispersion relation on the right side:

—c\[1+ "j;g N — \/7% (341)

We need to find the value of phase velocity for w = %wo, thus f = 1,875 GHz. Since fuinm) =
m - 1,5 GHz, only the lowest mode m = 1 can be excited and we get

Uy <Zw0> = gc. (342)
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The group velocity as a function of k is obtained by differentiating the dispersion relation with

respect to k, resulting in
c

/ w2m?
1+ c%k:2

After substituting k from the dispersion relation, we get the group velocity as a function of w with
exactly the inverse dependence as the phase velocity:

2 _ m2w2 2, .3
vg(w)ZC\/MTWOZC\/l—(mwO) =t =C (344)

vg(k) = (343)

w w

We have also answered the question of the highest mode that can be excited — only the first one.

If the frequency w < wpin(m), then no real k satisfying the dispersion relation can be found. The

ansatz k = —ir leads to w? = m2w? — ¢?k?, where x then appears in the exponentially damped

standing wave not propagating through the waveguide:
E.(y,z,t) = Epsin (?) eiwte=rz, (345)

After expressing from the dispersion relation, the coefficient x comes out as

1
= —y/m2w? — w2. 346
= oyfming —w (346)

The least attenuation occurs for m = 1, here we have w = %wo and thus kK = 3’5% = %. We solve
the task e ** = e~ !, hence kz = 1. From which z = k! = 6;?‘}0 R 3% -107'm ~ 5 cm.

9 Polarization

Exercise 9.1. How does the intensity of circularly polarized light change after passing through a
polarizer?

Solution: A traveling electromagnetic wave propagating in the direction of the z axis generally
has an electric component in complexified form (at a given location z = zj) of the form

) . ip1 . 5
E(t) _ Ezofez(thrtpl) + EyO g»ez(wt+<pz) _ (§j221¢2> et — Eelwt, (347)

where & and ¥ denote unit vectors in the directions of axes x and y.

The orientation of the polarizer is determined by the axis of transmission described by the unit
direction vector 7. If E;, is the incident wave and FE,,; is the transmitted wave, the waves are
related as

—

Eou = (Eyy, - 1) 7. (348)

This can be simply rewritten in the language of the corresponding complex vectors E;, and Eouh
we get

= o

Eout = P'FiEina (349)
where P is the matrix of the projector onto the axis in the direction 7. Explicitly for @ = (ns,ny)
we get

2
[ nz ngny
Ps; = (nﬂzu ni ) . (350)

54



The intensity of the electric field is given by the formula

_542_152 2_}£A2 A2
I—\/;<E>—2\/;(Ewo+Eyo)—2\/;(|El| 1B, (351)

where E = (El, EQ)T. Typically when calculating intensity, we will not write the factor \/% , SO we
will consider the relationship I = <E2>, which corresponds only to a change in the units in which
intensity is measured.

Here, the incoming light is circularly polarized, characterized by the conditions Fyo = Eyo = Ey
and p1 — w2 = =5. Now, let’s divide the calculation depending on whether we want to calculate
the example ”vectorially” or "matrix-wise”:

Vectorially: Circularly polarized light can be written

—

Ein = EoZ cos(wt + @) + Egycos(wt + ¢ £ §) = Eoi cos(wt + o) F Eoifsin(wt + ©). (352)
The input intensity then is
1 1

Iy = (E?) = §E§ + §E§ = Eg. (353)

BUNO (without loss of generality) we can consider the direction of transmission of the polarizer
in the direction 7 = Z = (1,0)”. Thus, the action of the linear polarizer will be

—

Eouw = (Eiy - &) T = Eo @ cos(wt + ). (354)

We easily compute the output intensity

. 1 1
Towt = (E2,,) = 5Eg = §Im. (355)

Matrix-wise: For circularly polarized light, the vector E;, has the form

2, . 1 - 1 1
Ein = Eoeu’a (eiig> = Eoew (:l:l) ~ EO (il) s (356)

where in the last modification we eliminated the common phase, which does not affect the polar-
ization state. We see that the intensity of the incoming wave is simply

1 A A 1
I, = 3 (|El|2 + \E2|2) = §(ES + Ej) = E3. (357)

BUNO we can consider the direction of transmission of the polarizer in the direction 7 = & =
(1,0)T. Then the projector takes the form

By = <é 8) | (358)

The light behind the polarizer Eout thus
Eyu =PiE;, = Eo (é) : (359)

Therefore, the output intensity is

1, ) 1 1
Lot = 5 (\E1|2 T |E2|2) = 3B} = SIin. (360)

Exercise 9.2. How does the intensity of unpolarized light change after passing through a linear
polarizer?
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Solution: Completely unpolarized light of intensity I;, can be imagined, for example, as a lin-
early polarized wave, the direction of which 7% = 7i(t) changes completely randomly in time. Let
0(t) be the angle formed by the direction 7 with the axis of transmission of the linear polarizer.
According to Malus’s law, the instantaneous intensity of the transmitted wave is

Tout(t) = Iy, cos? (t). (361)

The device measuring the intensity I, (t), however, cannot measure instantaneous intensity (light
changes its polarization too quickly), but only its average value over the measurement time of the
device t,,,:

Towt = Iin <COS2 9(t)> (362)

troz

Since 6(t) changes completely randomly, every angle is represented completely uniformly. The time
average can be replaced by the average over angles:

Lyt = I - / % cos20df = ~1, (363)
out — Lin 27‘( o —2 m-

Exercise 9.3. Consider linearly polarized light E = FEy Z coswt. Place N polarizers in its path,
each with the axis of transmission rotated by 55 compared to the previous one (and the first
compared to the plane of the incident light). What will be the intensity of the transmitted light
for N =1, N =2, and general N € N? What is the limit for N — +00?

Solution: In the lecture, you derived that if light linearly polarized in the direction #; hits a
linear polarizer with the axis of transmission 75, the input and output intensity are related by
Malus’s law:

Tut = Iin cos? 60, (364)

where 6 is the angle formed by vectors 71 and 7i. The intensity of the original wave is Iy = (Eg) =
152,
(i) For N = 1 there is one rotation by an angle 7. The resulting intensity is I, 511)1: = Iycos® 5 = 0.

(ii) For N = 2 there are two rotations by an angle 7. The resulting intensity is given by

out —

1
% = (Iocos® T) cos® T = ZIO. (365)

(iii) For general N € N there are N rotations by an angle 5%. The resulting intensity is thus

N 2N
I8 = Iy cos®™ (). (366)
3|1 k(m ; (N)
It hold limy,—, 400 cos® () =1 and therefore limy 4o I5yy = lo-
3This limit can be calculated for example as follows:
. k _ . Incos T
ok ()= o (27 E)

Incosz

Now it suffices to show that lim,_,q -

= 0. Using "'Hospital’s rule

. Incosx . sinz
lim = lim —
z—0 x z—0 cosx

=0.
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Exercise 9.4. Consider generally elliptically polarized light. Place in its path a polarizer with the
axis of transmission 77 = L\J/%y Show that for the intensity of the transmitted light the following

holds !
Iout = 5(132 + Iy) + Ia:ya (367)

where I, = (E2,,), I, =(E?), I, = (Eg), I, = (EE,).

Solution: Due to the definitions of the individual intensities, it pays off to work with the general
expression for the electric

field in the zy plane and not to detail it into the respective harmonic waves.

Vectorially: Generally, elliptically polarized light has the form E=E, i+ E,y. After passing
through the polarizer, we get

= = E E
Eop=(E-n)n = z+y>ﬁ, 368
== (T2 o (365)

since #-n=vy 1= % The resulting intensity is then

. E,+E,\°_ 1 1
I = (E2,,) = < (“ﬁy) n2> = 5<E; + E2+2E,E,) = 5+ 1y) + Loy, (369)

Matrix-wise: Generally, elliptically polarized light has the form

E= (g;) . (370)

The projector onto the axis 77 has the form
nZ  ngny 1/1 1
P = (nxny nf; =501 1) (371)

After passing through the polarizer, we therefore get

= o g 1(E+E,
Eou =PzE = 3 <Ez n Ey) . (372)
The resulting intensity is then
2 1 2 Lo 2 1
Tout = <Eout> = 2Z(Er + Ey) = §<Em + Ey + QEIEy> = i(Ix + Iy) + Iry- (373)

Exercise 9.5. The refractive indices of crystalline quartz for light with a vacuum wavelength
Ao = 500nm are n; = 1.544 and ny = 1.553. Determine the minimum thickness of a quarter-wave
plate made of this material.

Solution: If we have two perpendicular directions 77; and 7is such that light in the crystal prop-
agates with refractive index n; in the first direction and with ny in the second, we can write the
incoming wave in the form

—

Eiy = Eyiig ' @1H01) 4 Byfipet(@ites), (374)
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Through a plate of thickness d, the phases in the individual waves change by kid, resp. kod, to a
wave of the form
Epu = Eyigef@tter—kid) 4 pogei(witea—kod) (375)

The phase difference d¢ changes upon passage to 1 — w2 + Ap, where Ay = (kg — k1)d. For the
study of polarization, the specific values of phases are irrelevant, so the electric field vector E,,;
can be written as

Eout ER o ei(wt+¢1+A¢) + Egﬁgei(“t""f’?) (376)
(we added the phase +kad to both exponentials). We have the dispersion relation k¥ = %w and for
vacuum kg = ¢ and ko = 2—” and thus Ap = (ng —ny1)9d = Q—Z(ng —ny)d. Choosing directions so

that no > nq, we thus get A<p > 0 and it is added to the wave in the direction 7.

A quarter-wave plate is supposed to shift the phase by a quarter of a wavelength, hence Ay = 7.

We thus solve the equation
T 2w

= —nq)d. 377
5 " N ~(n2 —n1) (377)
From this, d = 4(n:‘3m) = 45_"&?;3 ~ 0.014 mm.
Exercise 9.6. Write the matrix D, for a wave plate with axis 7; = 5\4/;7 (and perpendicular

direction 715 = %)

Solution: Since the wave plate only adds a phase Ay to the component of the wave in the
direction 7 (i.e., the axis corresponding to the smaller refractive index), the matrix of the wave
plate is given by

DAW = €iA<p]P>ﬁl + Pﬁz. (378)

The matrix of the projector onto a general axis @ = (n, ny)T is of the form

2
Py = ( N ”13}9> (379)

NgNy Ny

and thus for directions 7i; and 7io we specifically get

1/1 1 1/1 -1

Substituting into the above-mentioned relationship thus gives us

1 (B¢ 41 etv —1 Ay cos &8 isin 82
DA@ =5 (em¢ 1 el +1 —e'2 isin A 1;2%7-phi oS Aﬁ%; (381)
Note that in terms of polarization, we can forget about the complex unit in front of the matrix —

it changes the phase of both components equally, hence it is irrelevant, so the resulting IDa,, can
be written as:

Ap Ap
cos 22 isin
Day, ~ 2 382
Ao <z sin —%“’ cos —A"’ > (382)

Exercise 9.7. Consider linearly polarized light E = EyZcos(wt). Place in its path a half-wave
plate with axis oriented in the direction 7 = % What will be the polarization state of the light
after passing through the plate? How does the intensity change?
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Solution: Vectorially: Since the electric field of the incoming light is not decomposed in the
direction of the wave plate’s axis 7 = L\%y (and perpendicular %), we cannot simply add a

phase 7 as the action of the wave plate. First, we must decompose the incoming light into these
directions, i.e., we would like to find the following coefficients of the linear combination a and f:

+p Y (383)

After rewriting

Vectors & and g are linearly independent, so the brackets must be zero, thus o = g = %

Alternatively, we can rewrite without calculation: = 3(Z+ Z+ 7 — ¢) = % (fjg + f\;g) The

incoming light can thus be written in the form

. FEyT+9 Ey 22—y
F=———coswt+ — cos wt. 385
V2 V3 V2 V32 (359
The action of the wave plate is now trivially performed:
= FEoZ+y Ey & — 9§
E,u = — cos(wt+m) + — coswt, 386
adding a phase 7 to the electric field in the direction fi\/gj Using the formula cos(x +7) = — cos z,
we can write
_, EyZ+y EyZ—1vy
Ey e = _ Loty wt + —2 . coswt = —FEyijcoswt ~ Eyijcoswt. (387)

(after the last modification, we shifted the overall phase by 7 to get rid of the minus sign, this
modification does not change the polarization state). After passing through the wave plate, you
get linearly polarized light with the plane of polarization in the direction of the ¥ axis, thus rotated
by 90° compared to the original! Moreover, it has the same amplitude as the original light, so
there was no loss of intensity (unlike in example [9.3))!

Matrix—wiseﬁ It suffices to substitute Ay = 7w from the previous example to get the matrix

_(cosg ising) _ (0 ) (0 1
D”_<isin’2T cosg)_<i 0) (1 0)° (388)

where in the last equation, we multiplied the matrix by the complex unit ¢‘™ = —i (overall phase
does not change the polarization state) to find the simplest form of the matrix D,. Our input light

has the polarization vector E = (Ey,0)”. The transmitted wave thus

Eput =D Eo\ _ (0 —  Euu = Eyjjcoswt. (389)
0 Ey

We found out that the transmitted wave is linearly polarized with the plane of polarization in the
direction of the ¥ axis, thus rotated by 90° compared to the original! Moreover, it has the same
amplitude as the original light, so there was no loss of intensity (unlike in example [9.3)!

4Here, the solution seems much shorter than the vectorial approach, but it’s because we have already pre-
calculated everything in example @

59



Exercise 9.8. A circular polarizer is a linear polarizer followed by a quarter-wave plate with axes
rotated by /4 relative to the axis of transmission of the linear polarizer. Show that depending on
the choice of axes in the wave plate, we obtain either a left-handed or a right-handed circular po-
larizer, which converts any light coming from the side of the linear polarizer into the corresponding
circularly polarized light.

Show that left-handed polarized light propagating from the side of the wave plate is absorbed
in the right-handed polarizer.

Solution: Let’s choose, BUNO, the axis of the linear polarizer in the direction Z. The quarter-
wave plate can then be oriented either with its axis in the direction x\'/gy (and perpendicular %)
f\;; (and perpendicular fi\/g) Depending on the
choice of orientation, therefore, the axis of the quarter-wave plate forms an angle &7 with the z

axis.

or vice versa, i.e., with its axis in the direction

Vectorially: From example[9.7} we know that the light entering the wave plate can be written
in the form

Ein:@f+gcoswt+@f_gcoswt. (390)
V2 V2 V2 V2
The quarter

-wave plate adds a phase shift 7 to the wave in the corresponding direction. Adding a phase
in the component f;f can also be written as subtracting a phase in the component % . We can

thus write the action of the wave plate for both options as

E

Ey 4§ EoZ—y
= — cos(wt+ %)+ —
V2 V2 W3+ 5 V2
where the signs in the phase shift &5 correspond to the sign of the angle of the wave plate’s axis
+7. Using the formula cos(z £+ §) = Fsinz, we can write

coswt, (391)

— Ey ¥+ g . Ey T — g
Eout =F— sinwt + —
RRVCRNG Vi V2
which is clearly circularly polarized light (has the same amplitude in both directions and one has
a sine and the other a cosine). Which of them is left-handed and which is right-handed? Plotting

the electric field vector Eout in the zy plane at a small positive time wt = +e¢:

cos wt, (392)

Y

In a small positive time, the electric field vector almost entirely points in the direction % and

depending on the sign at sinwt, points slightly towards/away from the direction fi\/g . We thus
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see that for a positive sign, E rotates counter-clockwise, thus it is left-handed polarized light, and
for a negative sign, it rotates clockwise, thus it is right-handed polarized light. The right-handed
polarizer is thus the one where the wave plate had its axis oriented in the direction “"\%y, and the
left-handed one in the direction i;\/g .

It remains to send left-handed polarized light into the right-handed polarizer from the other
side. Take as the input light

— EO T + si

wt —|— — cos wt (393)

IR \f \f
and send it into the reversed right-handed polarizer, so first it hits the quarter-wave plate and then
the linear polarizer. It is important to realize that reversing the wave plate changes the direction
of its axis! Thus, the reversed right-handed polarizer has a wave plate with its axis in the direction
T—\;%’ Light after passing through this plate will be

= EyZ+9 . EyZ -y . L.
FEou = —=——sinwt — — sinwt = Eyisin wt 394
t 2 3 NG oY (394)
(using again cos(z + §) = —sinx), which is linearly polarized light in the direction i and it will

be fully absorbed in the linear polarizer with the axis of transmission .

Matrix-wise: For the quarter-wave plate with axis 7, = fj/lg, we have already derived the
corresponding matrix D, in exercise @ Just substitute Ap = 5:

T T 3 .
D%,ﬁ+ _ (COS %T ZSlnré) _ g (1 i) . (395)

isin g  cos ] 1
If the wave plate has its axis oriented in the direction 7i_ = % (which is perpendicular to the
direction iy = %) we must swap the matrices Py, and Py, in the solution of example thus:
L (14e2 1—e'2 = 5T —isinZ 21 —i
Dz 7z == + ei; ei; =...=¢f [ 4. %11;4 ~ £ . ‘). (396)
2 2\1—¢€'2 14¢€'2 —isiny  cos g 2 \— 1
We can thus generally write
V2 (1 i
Dgac =5\ 1) (397)

The light entering the plate has the polarization vector E;, = (Eo,0)T. Behind the wave plate, we
then get light

-, S V2 (1 40\ (E)\ _ Eo (1 Ey (1
Eout =Dz 7, Ein = - (:ti 1) (O) Vo) (j:z) =5 (eiig>‘ (398)

Both components have the same amplitude and are phase-shifted by +7 — thus, in both cases, it
is circularly polarized light. Left-handedness/right-handedness is decided by rewriting in vector
form

- E e Bo [, R
B.o— 0 (-. wt | geilwtts )) e 7%(m coswt + 7 cos(wt + g)) (399)
| ——

V2

Fsinwt

The direction of rotation of the electric field is illustrated in the following figure:
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For +sinwt (and thus the axis of the wave plate i = f;\/g), we have rotation counter-clockwise,
thus it is left-handed polarized light. For —sinwt (axis f4 = fi\/g), it is rotation clockwise —

right-handed polarized light.
Now, send left-handed polarized light, i.e., with the input vector

Ein = Ep (e—1i72’> = Eo <_12) (400)

into the reversed right-handed polarizer (i.e., the one where the wave plate had its axis in the
direction 7i4). Reversing, of course, changes the order of optical elements — first, light hits the
wave plate and then the linear polarizer. Reversing also means that the axis of the wave plate
changes direction to 7i_! The action of the reversed right-handed polarizer is thus

bemnnne -0 (4 ()50 D(5)-()

Nothing thus passes through.

Exercise 9.9. Linearly polarized light with intensity Iy enters an optical device in the direction
Z. Determine the electric field (and name the respective polarization states) and the intensity of
light after each of the optical elements in the following device, consisting of the following optical
elements in sequence:

T4y,
)

1.) polarizer with axis 77 =

S

half-wave plate with axis 7 = /;

polarizer with axis ¥/;

r—

quarter-wave plate with axis 7 = 73

<y

)
2.)
3.)
4)

Solution: Vectorially: The incoming light has an electric field of the form Ey = EyZ coswt, its
intensity is Iy = (E3) = %Eg . After passing through the linear polarizer, we obtain the field

2 e By Z+7

Ei=(F-n)i=F (xz"'y) coswt = —

1 ( ) 0 72 \/5 \/5\/5
T+y

thus linearly polarized light with the plane of polarization in the direction 73 The intensity is

cos wt, (402)

i 2
then I} = (E?) = %% = 11o. Next, the light encounters a wave plate with axis i = , the field
E, is expanded as

n 0 -

E
E| = — Zcos wt + ?Og'cos wt (403)
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and then add a phase 7 (half-wave plate) to the component in the direction ¥:
EyZ—7vy

V2 V2

= Ep

E
Ey = 2Fcoswt + —2ijcos(wt + m) =
2 g YW )

cos wt. (404)

— coswt

After the wave plate, we have linearly polarized light with the plane of polarization given by the

4. Tts intensity is I> = (E3) = Bl

directional vector = I; — the wave plate does not change

—;

the intensity. The polarizer with transmission axis 7 = ¢ simply annihilates the electric field

component in the direction

—

., E E
Es=(Ey-§)y= —7037005 wt ~ 70:&'005 wt (405)

(we removed the minus sign because it represents just a total phase shift of 7). The intensity is

F—g
V2

I3 = <E3> - B é = %Io. Finally, the light passes through a quarter-wave plate with axis 77 =

We must first express the field Eg in

directions % and (perpendicular to 1t)

andgetgj'z%(ﬂ'—l—gj—i—f—f) \1[([ f) thus

= Ey :E'—i—y Eo Z—y
3= —=—7= Coswt — —=

22 V2 2V2 V2

The quarter-wave plate adds a phase 7 to the part of the wave in the direction 7

T+

. We perform a similar calculation as in example

coS Wt. (406)

_ Ey 2+ Ey 77—y Ey <:E+27 y—T . >
FEy= ———Fcoswt — cos (wt + = — coswt + sinwt | . (407
YT o2 V2 22 V2 %(,_)/ 2v2 \ V2 V2 (407)
— sin wt

Clearly, it is circularly polarized light. The direction of rotation (clockwise/anticlockwise) is de-
termined by the direction of rotation of the electric field:

Y
<\+Sin€

cos e

The electric field vector rotates counterclockwise, thus it is left-hand circularly polarized light. Its
2
% (% + l) = i[o (again, the wave plate does not change the intensity).

intensity is Iy = (E2) = L
Matrix-wise: The incoming light has a polarization vector of the form

By = Eo (é) (408)

63



and the incoming intensity is Iy = % (Eg + 02) = %Eg The polarizer with the transmission axis

in the direction fi\/g acts through a projector

> s 1(1 1\ (E)\ _1(E Ey (5
Fy =Pz By = - == =— 2. 4
=reho= (1) (5) -2 (B) -9 (3 9
After the polarizer, the light is linearly polarized with the plane of polarization in the direction
1
2

f%f . The intensity is I} = $1 (EZ + EZ) = 1Iy. The half-wave plate acts further as

5 o p _itp o mplp | (0 0 10 1B\ (1 0 1B\ 1( E
Ez—Dﬂ,yEl—[e IP’y—i-IF’m]El—[e (O 1 + 0 0 ;EO ={y 4 ;Eo =5 g,
(410)

The intensity after passing through the plate I = % (iES + iEg) = %Io — the wave plate does not
change the intensity. Again, there is no phase shift between the components of the polarization

vector Eg, thus it is linearly polarized light this time with the plane of polarization in the direction

Ty T
. (we can write Fy =
V2 ( 2

Eo(l 1)T)

2V2\V2) T V2

The polarizer with transmission axis 7 = ¢ acts as follows

5 5 0 0 Eo 0 Ey (0
Bornie () (B)-(5)-20)

Again, it is linearly polarized light with the plane of polarization in the direction ¥ with intensity
_1(p2 B3\ _1

Iy =% (02 + 58) = 115,
In the last step, we have a quarter-wave plate with axis 7 = f\;g The complementary direction

is thus ' = fi\/g . Its matrix is given by the relation Dz = e'2Ps 4 Py, Explicitly

TS VA B A S S AN 4 B A B AN N -
Dg’ﬁ_e22<— 1>+2<1 1>_2<1—z’ 1+i>_ﬁ<1¢§ Nt (412)
_ L et e L a1 =i L1 i
T a\eit i )T R - 1) T s\ 1)
The resulting light then is

= = 1 1 —1 0 EO —1 EO (37@%
Ey =Dz 5E3 = — . = — = — . 413
oeb () ) () mas ()

jus

There is a phase difference of 7 between the components of the electric field (with the same
amplitude), thus it is circularly polarized light. By expressing in vector notation

—
<.

S

—_
Ju
-+
N

—

E, ) x X e Eo /., _
B, = 2 (fel(wt—é) + g‘aWt) Be 20 (x cos(wt — 5) +¥ COSWt) (414)
Qﬁ ——

22

sin wt

we can easily determine the sense of rotation of the electric field:
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It is left-hand circularly polarized light, as the electric field vector rotates counterclockwise in the
2
zy plane. The resulting intensity is Iy = 15 (1+1)= ifo — the wave plate again does not change

2738
the intensity.

*Exercise 9.10. What values of the Stokes parameters P;, P5, and P3 correspond to linearly,
respectively, circularly polarized light. Plot the results.

Solution: The Stokes parameters for the electric field E(t) = (E(t), Ey(t)) are given by the
following expressions:

E2) — (E; 2E,FE 2E,(wt — Z)E
Pl _ < z> < g>, P2 — <2 xT y>2 , P3 — < (;J 2)2 y> (415)
(EZ) + (E) (EZ) + (E7) (EZ) + (E7)
Consider light linearly polarized in the direction 7, thus E (t) = Epfi coswt. From this
E.(t) = Eon, coswt, E,(t) = Egny cos wt. (416)
From this, we
find that 1 1
(E%) = E2n2(cos® wt) = iEgni, (E§> = §E3n§ (417)
For calculating P>, we need the mean value
(2E,E,) = (2E2n,n, cos® wt) = E3n,n,,. (418)

Finally, for calculating Ps, we need the mean value

(2E,(wt — Z)Ey) = 2 (Ejngny coswt cos(wt — 3))
= 2Egn,n, (cos wt sin wt) (419)

= Egngny(sin 2wt) = 0.
Substituting into the Stokes parameters, we get

— 2 2
Py =ng —ng,

P2 = 2nxny, P3 =0. (420)

If we let n, = cos@ and n, = sin6, then P, = cos26, P, = sin26, P; = 0. In the space of Stokes
parameters (Pp, Po, P3), we thus get a unit circle in the plane P; = 0. Note that a given point
on the circle corresponds to exactly two directions 7 and —7i, so the Stokes parameters uniquely
determine the plane of polarization of the given light!
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Circularly polarized light is given, for example, by the vector E (t) = Eo(coswt, £sinwt). Hence
1
(E2%) = (E3 cos® wt) = §Eg = (Ej sin® wt) = (E}). (421)
For calculating P,, we need the mean value
(2E,E,) = +F{coswtsinwt) = 0. (422)
Finally, for calculating P3, we need to compute

(2B, (wt — Z)E,) = £2E] (sin® wt) = £E;. (423)

Substituting into the Stokes parameters, we thus get P, = 0, P, = 0, and P; = 1. Circularly
polarized light thus corresponds to the poles of a sphere with radius 1.

*Exercise 9.11. The light hitting a linear polarizer is a mixture of linearly polarized and unpo-
larized light. If you rotate the polarizer by 60° compared to the orientation with the maximum
transmitted intensity, you get half the intensity. Determine the ratio of intensities of unpolarized
and linearly polarized light in the mixture.

Solution: The

intensity of the incoming light Iy is the sum I; = I, 4+ I,,, where I, is the intensity of linearly
polarized light and I,, is the intensity of unpolarized light. The interference term can be neglected
since it is a superposition of incoherent waves. Depending on the angle 6 to the plane of linearly
polarized light, the transmitted light intensity I,(6) = I, cos># + 1I,, (according to Malus’s law
and example . The transmitted intensity is greatest for 8 = 0. From the condition, we have
the equation I,(0) = 2[,(£7%). Substituting

1 1 1 1
I, =2-I,+=-1, | ==-I,+1,. 424
<‘4 p + 2 ) 2 p + ( )

L
p + 2

From this I, = I, — the mixture contains equal proportions of linearly polarized and unpolarized
light.

*Exercise 9.12. The direction of polarization of linearly polarized light changes rapidly (much
faster than the resolving time of the measuring device) between the following two states: 7@ =
(cos by, £sinby), where 6y < 7. Calculate the Stokes parameters. Determine the degree of polar-

ization | P| = |(Py, P», Ps)| depending on 6.

Solution: We thus have an electric field, in which the following two states Et and E~ rapidly
alternate:

S cos by

E*(t) = Ey <:|: sin 90> cos wt. (425)
The mean values of the electric field components over the resolution time of the device will be given
by the arithmetic mean of the mean values over the period of the two states mentioned above, thus
schematically

(Bt = 5 (B +(E7%)1) . (426)

N | =

tres

Specifically then

1 1 1
<0082 0o 3 + cos? 6y 2) =3 cos? . (427)



A completely identical calculation gives <E§> = %sin2 0. For the mixed terms, we get

(2B, Ey): (REFE;)r+ (2B, E, )1)

1
res 9
1 2 . 2 2 : 2
B (2E3 cos b sin 0y (cos® wt)p — 2E§ cos O sin Oy (cos® wt) 1) = 0. (428)

The last mean value needed for calculating Pj is

1
(2B, (wt — 5)Ey) = 3 (2E5 cos 0 sin 0 (sin wt cos wt) — 2E§ cos O sin Oy (sin wt coswt)r) = 0.
(429)

Overall, we get
Py = cos? 0y — sin? 0y = cos 26, P, =0, P; =0. (430)

We see that the Stokes parameters come out similar to light polarized in the direction of the & or
7 axis, but the vector P = (Py, P2, P3) does not lie on the unit sphere because |P| = | cos 26,|. The
degree of polarization thus decreases with increasing angle 6, until for 6y = 7, we get |I3| =0,
corresponding to unpolarized light (then it increases again, because for 6y = 7 we get linearly
polarized light in the direction of the ¥ axis).

10 Interference

*Exercise 10.1 (Fabry-Pérot etalon). Consider the result of exercise 7.5, i.e., the total reflection
coefficient at two interfaces )

_ Rip + Ryge 22l

1+ RigRyze 2kl
where Ri5 and Ra3 are the reflection coefficients of individual interfaces, ks is the wave number
in the medium between the interfaces, and L is the distance between the interfaces. Now consider
that the interfaces are formed by the same semi-transparent mirrors, i.e., Rio = Ro3 = r. Find
the relationship between the wavelength A and the distance between mirrors L, at which the total
reflectivity R = |R?| is zero.

(431)

Solution: After substitution, we solve the equation

(1 + e~2k2D)

0= 1+ r2e-2ikaL

(432)

Since the denominator is always different from zero and considering r # 0, we obtain a simple
condition 1 + e~%%*2L = (. From this, we get the equation

—2koL € {m + 2n7 | n € Z} (433)

This gives us the condition koL € {—F +n7 [ n € Z}. Since we have kL > 0, we obtain
koL € {g +nm | n € No} (434)

Now, we just use the relationship between the wave number and wavelength, thus ky = 27” After
substitution, therefore

2
L; G{g+n7r|n€No} (435)
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After dividing the equation by 27, we get the final relationship

£€{2n71
A 4

|n € N}. (436)

Exercise 10.2 (Glass wedge). Flat surfaces of a glass wedge with a refractive index n = 1.5 form
a very small angle ¢ = 0.1’. Light of wavelength A = 500nm falls perpendicularly on the wedge.
Calculate the distance between interference fringes.

Guide: Find the angle between the emerging rays and use the result of example 8.5.

Solution: The light falls perpendicularly on the base. We draw a picture:

We obtain the angles of deviation from the normals with a bit of trigonometry. For example, the
angle @ of deviation from the perpendicular to the base is obtained by the sum of angles in the
triangle:

m=p+ (G —¢)+ (G- ). (437)

From this, ¢ = ¢ — ¢’. Similarly for the second angle 2¢ — ¢’. Since we assume all angles are very
small, we approximately use Snell’s law of refraction:

sin(¢) = nsin(y’), sin(¢”) = nsin(2p — ). (438)
Since all angles are very small, we can use the approximation sin(z) ~ = everywhere. Thus, we get
p=n¢', ¢"=n2p—¢"). (439)

From this, ¢” = (2n — 1)¢. The total angle formed by the reflected rays is then approximately
Ap =9+ ¢" =2np. (440)

In example 8.5, we found that the distance between interference maxima on the screen (perpen-
dicular to the direction of both rays) is given by

A A 500 - 10~° 181073
Ay = Ao "o 5. 3.1 . = m = 5.73mm. (441)
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*Exercise 10.3 (Air wedge). An air wedge is bounded by two perfectly flat glass plates with a
refractive index n = 1.5, which form a very small angle ¢. This angle is given by the fact that a
strip of aluminum foil of thickness d = 0.02mm was inserted at a distance L = 10c¢m from their
touching edges. Sodium light (A = 589nm) falls perpendicularly on the wedge layer. Determine
the distance between the interference fringes in a) reflected and b) transmitted light.

Solution: For situation a) we have the following picture:

P1

Consider a more general situation of angle ;. Notice that the twice-refracted light is parallel to
the original one. We only need to determine the angle 5. This is again a bit of trigonometry.
The angle ¢ which the ray falling on the lower prism forms with the perpendicular satisfies the
equation

<p+(g—<p1)+(g+¢)=m (442)

from which ¢ = ¢; — ¢. The angle @5 then satisfies the equation
™

pr(5—w2) (5 -9 =m (443)

|

Thus, po = ¢ — @ = 2 — 1. The total angle between both rays is therefore
Ap = 1+ @2 = 2. (444)

We see that the distance between interference maxima Ay = ﬁ does not depend on n nor on the
angle of incidence ¥ at all!

For situation b) we have a slightly modified picture:
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So, we just need to determine the angle 3 under which the twice-reflected ray falls on the lower
prism. We easily obtain it from the equation

<P+(g+902)+(g—s03) =, (445)

thus p3 = ¢ + w2 = 3¢ — 1. The resulting angle between two rays is Ay = ¢ + p3 = 2¢.

Exercise 10.4 (Soap Film Alias Interference on a Thin Layer). You have a planar soap film of
thickness d with a refractive index n. If you observe the reflection of light at an angle ¥ on the soap
film, due to constructive interference for a certain wavelength of light A, you see the film colored.
Find the condition for constructive interference for the parameters (d, 9, A, n).

Solution: We must calculate the difference in so-called optical paths traveled by both rays. The
optical path is the phase change along the actual traveled distance £. For a planar traveling wave,
this is simply k¢, where k is the wave number of the given medium. In our case, we compare two
rays in the figure:
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Therefore, we compare the optical paths from the location marked by the dashed line to the location
marked by the dot. The wave number for propagation in air is given by k = 27”7 the wave number
in a medium with refractive index n is its multiple nk.

The actual trajectory traveled by one reflected ray is denoted as y. This can be calculated from
the right-angled triangle, with y being the opposite side:

y = 2z sin(d9). (446)

The distance x can be obtained from the right-angled triangle with opposite and adjacent sides d
and z, thus

in (v’ L sin(v in(
v = dtg() =d—20) 4, ws® _,  sin(d) (447)
Ji-sin?@) 1 ki) y/n2 - sin?(9)
Together, we obtain the expression for y in the form
2d sin® (¥
Y= sin“(9) (448)
n2 — sin?(9)
The optical path for the first ray is then
2
o1 = Tﬂy +. (449)
It’s easy to forget about the 7 term. The first wave reflects at the air-soap interface, where the
reflection coeflicient is R = ;—Z < 0. The reflected wave thus gains an additional phase of 7 simply

by reflecting.

On the other hand, the distance y’ traveled by the second of the rays is given by twice the
hypotenuse of both triangles:

d 2d
y =2 = o (450)

n2 — sin® ()

The optical path traveled by the second ray is thus

2dn?
=nky = ——5— 451
72 A sin?(¥)) (451)
The sought difference in optical paths Ap = @y — 1 is then
Ard (n? —sin®(¥ Ard
A¢:LM_W:L n2—sin2(19)—7r. (452)

A A

n2 — sin’(19))
Constructive interference of both lights occurs for Ay = 2mm, m € Z. We thus get the condition

i

3 n2 —sin?(9) = (2m + 1)w, m € Z. (453)

Why does the bubble appear colored due to constructive interference? If n, d, and ¥ are given (we
look at the plane of the bubble at some angle), in the light, components with wavelength A given

by the relation predominate:

4d
- 2 _ gin?
A= o L1V T sin (9. (454)
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11 Diffraction

Exercise 11.1. What is the highest order maximum you can observe in green light with a wave-
length of A = 550nm for a diffraction grating with 5000 grooves per lcm?

Solution: Let d be the distance between adjacent grooves on the grating. The angle 6,,, under
which we observe the m-th order maximum on the screen, is given by the relationship

A
sin 6, = m. (455)
From this, we get the condition for the maximum order of the maximum in the form m% < 1, thus
d
< —. 456
m< (456)

The groove density in our case n = 5.105m™1.

d = 1/n, and we obtain the condition

The distance between adjacent grooves is then

1 1
<= - ~ 3,6. 457
TSN T 550.5-10-4  275-10-1 (457)

From this, we see that we observe maxima of at most the third order.

Exercise 11.2. Can the spectra of the 1. and 2. order and the spectra of the 2. and 3. order,
generated on a diffraction grating when illuminated with white light consisting of wavelengths
400-700 nm, overlap?

Solution: The distance of the m-th maximum from the axis of the diffraction grating depends
on the wavelength by the relationship y,,(\) = m%’\. We first address the condition whether the
situation yq (A1) > y2(No), where A\g = 400 nm and A\ = 700 nm, can occur. After substitution, we

get the requirement
L) L)
1— >2——, 458
d — d (458)
from which the condition A\; > 2\ arises. For the given values, this cannot occur, and the first
and second spectrum never overlap. For the second and third maximum, we get the inequality

3
>\1 2 5)‘0, (459)

which the mentioned wavelengths satisfy. Thus, the 2nd and 3rd order spectra can overlap.
Whether they actually will depends on the parameters of the diffraction grating (the 2nd and
3rd order spectrum may not be visible at all).

*Exercise 11.3. A diffraction grating has 500 grooves per 1 mm. Calculate the so-called disper-

sion, i.e., the quantity %, near green light (A = 500 nm) for the first and second order.

Solution: For the grating, the angular dependence of the m-th order maximum is given by the
A A

relationship sin@,, = m%. Hence, 0,,(\) = arcsin(m%). The dispersion for the m-th order is
obtained by differentiation:

db,, 1 m m

_— = Y = Y, 4



The groove density n in this case is n = 5-10°m~!. Hence d = 20-10~"m. The wavelength is
A = 5-107"m. The number under the square root is thus

d? —m?\? = (400 — 25m?) - 10714, (461)
For m =1 and m = 2, we thus get

d(gl 1 d92 2

— N =——-10"m ' ~51610°m™}, —=(\)=—=-10"m ' ~11,5:10°m~*. (462
Exercise 11.4. Yellow light emitted by sodium atoms is dominated by the so-called sodium
doublet, whose wavelengths are A\ = 589,0 nm and Ay = 589,6 nm. What is the minimum number
of grooves/slots on the grating required to distinguish these two wavelengths in the first-order
spectrum?

Solution: Let us denote the angles under which we observe the first-order maxima for both
wavelengths as 6 and 6;. The approximate relationship holds
A1 A2
0 =—, Oy = —.
' T
For a diffraction grating, the widths of diffraction maxima (the distance between the first zeros of
intensity around the maximum) are given by

(463)

2\
00 = —, 464
Nd (464)
where N is the total number of grooves on the diffraction grating. To be able to distinguish the
spectra of both wavelengths, both halves of the widths must ”fit” between the two maxima. We

thus get the relationship
1 1 1

From this, we can express the constant N as
N> A2+ A1 _ 589,6 + 589,0
T A — N 0,6

Thus, the grating must contain at least 1965 grooves.

~ 1964,3. (466)

Exercise 11.5. Place a hair with diameter d in the path of a laser beam with a wavelength of
A =632,8 nm. On a screen at a distance of L = 6 m, you observe diffraction maxima at a distance
of Al =3 cm. What is the diameter of the hair?

Solution: According to Babinet’s principle, the interference pattern for a hair is the same as for
a finite-sized slit of width d. For a slit of finite width d, it turns out the same as for two thin slits
d apart. The distance between adjacent maxima is thus

Al~ L Af= L%. (467)

From this, we can express d as a function of the remaining variables and get

J_ LA _6-632.8.107°

Al 3-10-2
Exercise 11.6 (Diffraction pattern of a rectangular slit). Find the diffraction pattern (intensity
distribution on the screen)

m=2-632,8-10""m = 126 ym. (468)

of a rectangular slit of dimensions a, b.
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Solution: When a plane wave of the electric field (in the direction of the z axis) hits a barrier
with an opening B, the intensity of the electric field E = E(x,y) on the parallel screen at a
perpendicular distance L is given by the Fraunhofer integral

R
where to the right is the area integral over the area of the opening B and R = R(z,y) =

v/ L? + x2 4+ y2. See figure:

- B, . -
E(x,y) = —Oe’(“t_kR)/ elﬁ(mXerY)dXdY, (469)
B

2’ 2/

/X . =g /4 x
e

<
7 :
B

v

\

N
N

In this example, B is a rectangle with the center at (X,Y’) = (0,0) with sides a and b. The area
integral in this case is very simple, we have to calculate

a b
/ cREX ) gy gy = (/ ei%’XdX> (/ ei’“’é’YdY) (470)
B - -3

%
Both integrals give a similar result, let’s compute just one of them:

2 i kz x R i kz a _;kza 2R . kx a
i dX:—(l e 2):7 =2
/_;e R 7 e R e 'R L (471)
The resulting electric field is then after substitution

: kyb

) — i absin () s (5
E(x,y) = Ege'@ kR)ﬁ k(jR TR (472)

2R 2R

The intensity I = I(z,y) is the time average of the square (real part) of this field:

2,202 [ sin(kzae 2 sin (kb ?
I(x,y)=<Re[E(x7y)]2>=E;RQb ( ,f;”) < ,Sjﬁ) : (473)

2R 2R
The result can be expressed using two angles defined by the relationships sin, = % and sinf, = £.
Then we get
2 2
E2 219 . @ . 01: . @ . 9
() = 5a°b SIHIS 5 .sm ) smlgb2 'sm ) . (474)
2R? L sin 0, 2 sin 6,
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For the intensity distribution on the z axis, we can substitute y = 0 (or calculate lim,_,() with the
result

2
H() = E2a2h? <sin( ka sin(%))

2R? %“ sin @,

(475)

The distribution of this intensity (in the variable sinf,,) is illustrated in the following figure:

I
A
T T T 0 T T T >
33X 22 A A 2\ 3) sin 0,
a a a a a a

Exercise 11.7 (Diffraction pattern of two slits). Find the diffraction pattern of two slits of width
D, whose centers are at a distance d.

Solution: We examine a one-dimensional problem, i.e., the intensity distribution depending on

x on the slice y = 0. We get the result by modifying the previous calculation.
Y
A Y
A

5 | %

Let’s first compute separately the electric fields from individual slits Ei (z). These differ from the

electric field of one slit by shifting the limits in the integral over X. Compared to the previous
example, we thus calculate:

s}

+i+2
o R _ked [ ;ka
/ 6ZRXdX: eizR2<€zR

1 .
—i%%) _ Beiikg sing SIN(zKDsin )
+d-D ikx

= 2 476
2 1kDsin6 (476)
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b
where now R(z) = v L? 4+ 2? and sinf = %. The second integral for y = 0 yields [?, dY = b.
2
Thus, we have

. ~ bD . o sin(2kD sin 6)
E = Fo— i(wt—kR) Fizkdsin6 2 AT7
=) = Fogpe ‘ IkDsin6 )
The resulting electric field is the superposition of these two, we get
- - - =~ bD 1 in(1kDsinf
E(w) = By (2) + B (x) = By e cos <2kdsin 9) w. (478)
The intensity distribution is easily calculated as
. E2b2D? 1 sin(LkDsin0)\ >
_ 2\ _ £o 2 ; 2

The intensity distribution on the z axis for d = % has this form (in gray is for comparison the
intensity of one slit of width D):

I
A
T T T 0 T T T >
33X 22 A A 22 3\ sin 6
D D D D D

*Exercise 11.8 (Diffraction pattern of a circular aperture). Compose the diffraction integral for
a circular aperture of diameter D. Write the result using the Bessel function J,,(z), whose integral
definition is L g

Jn(z) / et@sin(w)=nu) gy, (480)

zﬂ .

Hint: Introduce polar coordinates in both the screen and barrier planes. Realize that the result

cannot depend on the value of the polar angle in the screen plane and set it to a suitable constant.
Integrate first over the angular variable. Use the recursive relation

L @) = " @) (481)

for n = 1.

Solution: Let’s denote (r, ) polar coordinates in the screen and (p, @) in the barrier plane. We
have

T =T Cosp, y =1 sinp, X = pcoso, Y = psin¢. (482)
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A
A

(X,Y)
(z,9)

Notice that R = /L2 + 22 + y2 = VL2 + r2. We must not forget about the change in the area
element, we have dS = dXdY = pdpdp. We set ¢ = 7 and thus substitute z = 0 and y = r,
Y = psin¢. The diffraction integral then has the form

. E, ks
E(r) = Ze“=k0 /B R dp dgp (483)

f(r)

The integral over the aperture f(r) itself is specifically written as:

f(r) = / T / " oo gy (484)
0 —T

The inner angular integral is, except for a factor of 27, precisely the Bessel function Jy evaluated

at k—;{’, thus we get .
z kr
sy =2 [ o (R”) ap. (185)
0
Now we introduce the substitution u = k% and get
2rR? [ oW

f(r) = e u Jo(u) du. (486)

From the recursive relation above, however, we know that u Jo(u) = - [u J (u)]. Then easily
21 R? erd 27 R? krD krD TRD krD
- = = . 4
) k2r2 [ui(w)lo k2r2 2R "'\ 2R kr 1 2R (487)

Notice that the function f(r) is real. Therefore, the resulting intensity is trivially obtained as

2 1 . 2
110) = (RelB ) = b 1072 = S L% g, (Qupsing) = Bl (DakD0))

T 2R? 2k2r2 8R2 LkDsing
 2E2S? (Ji(3kDsin6)\’
- R? 1kDsing ’

(488)

7



where we have again defined angle ¢ this time by the relationship sin = 7 and S = itz is the
area of the circular aperture. The intensity distribution then has the following form (in gray is for
comparison the intensity for a slit of width D), o = 1,22:

e

22 3\ sin 0
D
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