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1 Mean values

Let f : R → R be a real function of one variable, f = f(x). Its mean value in the interval ⟨x1, x2⟩
is defined as the integral

⟨f⟩⟨x1,x2⟩ :=
1

x2 − x1

∫ x2

x1

f(x)dx. (1)

The mean value over the entire R is defined by the limit transition

⟨f⟩ ≡ ⟨f⟩⟨−∞,∞⟩ = lim
x′→∞

⟨f⟩⟨−x′,x′⟩ ≡ lim
x′→∞

1

2x′

∫ x′

−x′
f(x)dx. (2)

If f is periodic with period L, we can calculate its mean value ⟨f⟩ as an integral over any interval
of length L, so for any x′ ∈ R we have

⟨f⟩ = ⟨f⟩⟨x′,x′+L⟩ =
1

L

∫ x′+L

x′
f(x)dx. (3)

x′ is typically chosen to make the calculation as simple as possible.

Exercise 1.1. Calculate ⟨cos(ωt)⟩, ⟨sin(ωt)⟩, ⟨cos2(ωt)⟩, and ⟨sin2(ωt)⟩.

Solution: Consider first the function f(t) = cos(ωt). It is a periodic function with period L = 2π
ω .

Its mean value is thus calculated as

⟨cos(ωt)⟩ = ω

2π

∫ 2π
ω

0

cos(ωt)dt =
1

2π
[sin(ωt)]

2π
ω
0 = 0. (4)

The case ⟨sin(ωt)⟩ is very similar:

⟨sin(ωt)⟩ = ω

2π

∫ 2π
ω

0

sin(ωt)dt =
1

2π
[− cos(ωt)]

2π
ω
0 = 0. (5)

For the next case, using the trick for calculating the square of cosine, we get

⟨cos2(ωt)⟩ = ω

2π

∫ 2π
ω

0

cos2(ωt)dt =
ω

4π

∫ 2π
ω

0

(1 + cos(2ωt))dt

=
ω

4π
[t− 1

2ω
sin(2ωt)]

2π
ω
0 =

1

2
.

(6)
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This is not so surprising, since we are actually calculating the mean value of the constant function
1
2 plus the mean value of the function cos(2ωt) over two periods, which is zero from the previous
part.

In other words, generally ⟨f+g⟩ = ⟨f⟩+ ⟨g⟩ (if all mean values are finite). Therefore, it suffices
to take the equality cos2(ωt) + sin2(ωt) = 1, from which it immediately follows

⟨cos2(ωt)⟩+ ⟨sin2(ωt)⟩ = ⟨1⟩ = 1. (7)

From the previous result, we easily obtain ⟨sin2(ωt)⟩ = 1
2 .

2 Complex Numbers

A complex number z ∈ C is understood to be an object in the form z = a+ ib, where a, b ∈ R.
The symbol i is called the complex unit. We define i2 = −1. If z′ = c + id, we define addition
and multiplication intuitively and in agreement with the usual rules:

z + z′ = (a+ ib) + (c+ id) := (a+ c) + i(b+ d), zz′ = (a+ ib)(c+ id) := (ac− bd) + i(ad+ bc).

If z = a+ ib, we write a = Re z (real part) and b = Im z (imaginary part). If Re z = 0, we say
that z is purely imaginary. We write 0 ≡ 0 + i0.

The complex conjugate z̄ of a number z is defined as z̄ = a − ib. It holds that zz′ = z̄z̄′.
The magnitude |z| of a complex number is defined as |z| =

√
a2 + b2. It holds that |z| =

√
zz̄.

How do we define division of complex numbers? Let z, z′ ∈ C and z′ ̸= 0. We define it using the
formal ”fraction expansion”.

z

z′
=

z

z′
z̄′

z̄′
:=

zz̄′

|z′|2
. (8)

The operations on the right-hand side make sense because for z′ ̸= 0, |z′| > 0 and we simply
multiply the complex number zz̄′ by the real number |z′|−2. The equations hold

Re(z) =
z + z̄

2
, Im(z) =

z − z̄

2i
. (9)

Now we would like to define the complex exponential, i.e., the complex number ez for every
z ∈ C. If z = a+ ib, we define

ez = ea+ib := ea(cos b+ i sin b) (10)

The complex exponential can (see mathematical analysis) be defined by a power series. For a = 0,
this relationship is called the Euler’s formula. It holds that |ez| = ea.

Every z ∈ C can be written in the polar form z = |z|eiφ, where φ ∈ R is the solution of the
equations

cos(φ) =
Re z

|z|
, sin(φ) =

Im z

|z|
. (11)

φ is called the argument of the complex number and is uniquely determined up to the addition
of an integer multiple of 2π. The geometric meaning of this notation can easily be obtained by
representing complex numbers in the Gaussian plane, where the real and imaginary parts are
plotted on the Cartesian axes: Geometrically, the addition of complex numbers corresponds to
the addition of vectors in the plane. Multiplication can also be easily interpreted. If z = |z|eiφ
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Re z

Im z

z = a+ ib = |z|eiϕ

a

b

0

ϕ

|z|

Figure 1: Gaussian plane

and z′ = |z′|eiφ′
, we get zz′ = |z||z′|ei(φ+φ′), thus a number whose magnitude is the product of

magnitudes and the argument is the sum of angles.

Multiplying by eiφ, for example, corresponds to rotating the complex number in the Gaussian
plane

by an angle φ.

It is often useful to write trigonometric functions using complex exponentials. From Euler’s
formula, we obtain the relationships

cos(φ) = Re(eiφ) =
cos(φ) + i sin(φ)

2
, sin(φ) = Im(eiφ) =

cos(φ)− i sin(φ)

2i
(12)

Using these relationships, we can define cos(z) and sin(z) for any z ∈ C.

Exercise 2.1. Find the real and imaginary part of the number

w =
a+ ib

c+ id
(13)

Solution: Dividing by a complex number is carried out by formally expanding the fraction and
subsequent adjustment:

w =
a+ ib

c+ id

c− id

c− id
=

(ac+ bd) + i(bc− ad)

c2 + d2
. (14)

From here it is easy to see that

Re(w) =
ac+ bd

c2 + d2
, Im(w) =

bc− ad

c2 + d2
. (15)

Exercise 2.2. Show that ez = ez̄, specifically eib = e−ib.

Solution: For a complex number z = a+ ib, we have ez = ea+ib = ea(cos b+ i sin b) and thus

ez = ea(cos b− i sin b) = eae−ib = ea−ib = ez̄. (16)

Choosing a = 0 we obtain the given special case.

Exercise 2.3. Calculate Re[(C − iD)eiΩt], where C,D,Ωt ∈ R.
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Solution: Using Euler’s formula

(C − iD)eiΩt = (C − iD)(cos(Ωt) + i sin(Ωt))

= (C cos(Ωt) +D sin(Ωt)) + i(C sin(Ωt)−D cos(Ωt)).
(17)

Hence, Re[(C − iD)eiΩt] = C cos(Ωt) +D sin(Ωt).

*Exercise 2.4. Prove the validity of the relations Re(iz) = − Im(z) and Im(iz) = Re(z) for each
z ∈ C.

Using them, prove the validity of the identity cos(x) = sin(x+ π
2 ) for all x ∈ R.

Solution: Considering z = a+ ib, then Re z = a and Im z = b. For iz = −b+ ia it follows that
Re(iz) = −b and Im(iz) = a. Clearly, then

Re z = a = Im(iz), Im z = b = −Re(iz). (18)

The trigonometric identity is then obtained as

cosx = Re(eix) = Im(ieix) = Im(ei
π
2 eix) = Im(ei(x+

π
2 )) = sin

(
x+

π

2

)
, (19)

where we wrote i = ei
π
2 .

Exercise 2.5. Derive the formulas for sines and cosines of sum and difference of angles using the
trivial identity

eiαeiβ = ei(α+β). (20)

Solution: Rewrite the left side using Euler’s formula and expand:

eiαeiβ = (cosα+ i sinα)(cosβ + i sinβ)

= (cosα cosβ − sinα sinβ) + i(sinα cosβ + cosα sinβ).
(21)

By comparing the real and imaginary part with the right side cos(α+ β) + i sin(α+ β) we obtain
the desired formulas. The formula for the difference is easily obtained by substituting −β for β.

*Exercise 2.6. Derive the formulas for products of sines and cosines by modifying the expression

eiα + eiβ = ei
α
2 ei

β
2 (ei

α−β
2 + ei

β−α
2 ). (22)

Solution: This time we start by modifying the right side. We easily notice that it can be written
as

2ei
α+β

2 cos
α− β

2
= 2 cos

α+ β

2
cos

α− β

2
+ i2 sin

α+ β

2
cos

α− β

2
(23)

Comparing with the left side (cosα+ cosβ) + i(sinα+ sinβ) we obtain the result.

*Exercise 2.7. Prove the validity of the relations

sin(ix) = i sinh(x), cos(ix) = cosh(x), sinh(ix) = i sin(x), cosh(ix) = cos(x). (24)
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Solution: All relations are proved in the same way, we will prove just two of them. We have
(from the definition of complex sines and cosines)

sin(ix) =
ei(ix) − e−i(ix)

2i
=
e−x − ex

2i

i

i
= i

ex − e−x

2
= i sinhx. (25)

cosh(ix) =
eix + e−ix

2
= cosx. (26)

Here we used the definition of the complex hyperbolic cosine cosh(z) = ez+e−z

2 . Notice that
generally cosh(iz) = cos(z) and sinh(iz) = i sin(z).

Exercise 2.8. Consider the expression c1e
iωt + c2e

−iωt, where c1, c2 ∈ C and ωt ∈ R. What are
the conditions on the constants c1 and c2 for the expression to be real for all t ∈ R.

Solution: It must hold that Im(c1e
iωt + c2e

−iωt) = 0. This occurs if the expression is equal to
its complex conjugate. Thus, we get

c1e
iωt + c2e

−iωt = c̄1e
−iωt + c̄2e

iωt. (27)

This can be rearranged into the equation

(c1 − c̄2)e
iωt = (c2 − c̄1)e

−iωt. (28)

By choosing t = 0 we get c1 − c̄2 = c2 − c̄1 and by choosing t = π
2ω we get the equation c1 − c̄2 =

−(c2 − c̄1). This immediately implies that both sides of the equation must be zero and thus
necessarily c2 = c̄1. It is easy to see that this is also a sufficient condition, because then

c1e
iωt + c̄1e

−iωt = 2Re(c1e
iωt) ∈ R. (29)

Exercise 2.9. The solution to the harmonic oscillator equation can be written in equivalent forms
as

x(t) = A cos(ωt+ φ) = A sin(ωt+ ϕ) = a cos(ωt) + b sin(ωt) = ceiωt + c̄e−iωt. (30)

Find the relationship between the constants A, ω, φ, ϕ, a, b, and c.

Solution: The relationship between φ and ϕ is obtained easily from the already proven identity
cos(x) = sin(x+ π

2 ). Hence ϕ = φ+ π
2 . Using sum-to-product formulas, we get

A cos(ωt+ φ) = A(cos(ωt) cos(φ)− sin(ωt) sin(φ)) = A cos(φ) cos(ωt)−A sin(φ) sin(ωt). (31)

Thus, we have a = A cos(φ) and b = −A sin(φ). Notice that for each a, b ∈ R, we can find A and φ
satisfying this relationship. Finally, using the representation of sines and cosines through complex
exponentials:

a cos(ωt) + b sin(ωt) = a
eiωt + e−iωt

2
+ b

eiωt − e−iωt

2i

=
1

2
(a− ib)eiωt +

1

2
(a+ ib)e−iωt.

(32)

We see that c = 1
2 (a − ib). For each complex number c ∈ C, we can find a, b ∈ R satisfying this

relationship. And we are done.

*Exercise 2.10. ”Prove” Euler’s formula using the differential identity

d

dx
eλx = λeλx (33)
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Solution: Consider the complex function of real variable f(x) = cos(x) + i sin(x). Its derivative
by components f ′(x) = − sin(x) + i cos(x) = if(x). It holds f(0) = 1. But the same ordinary
first-order differential equation with the same initial conditions is solved by the function eix. From
the uniqueness

eix = f(x) = cos(x) + i sin(x) (34)

for all x ∈ R, and we have proved.

*Exercise 2.11. Write the functions cos2(x), cos3(x), and generally cosn(x), n ∈ N, using only
the functions cos(kx), k ∈ N0.

Solution: Using Euler’s formula, we get

cos2(x) =
(eix + e−ix

2

)2
=

1

4
(e2ix + 2eixe−ix + e−2ix) =

1

4
(2 + 2 cos(2x)) =

1 + cos(2x)

2
. (35)

For the third power, it is very similar, we get

cos3(x) =
(eix + e−ix

2

)3
=

1

8
(e3ix + 3e2ixe−ix + 3eixe−2ix + e−3ix)

=
1

8
(2 cos(3x) + 6 cos(x)) =

3 cos(x) + cos(3x)

4

(36)

For a general n ∈ N, using the binomial theorem, we get

cosn(x) =
(eix + e−ix

2

)n
=

1

2n

n∑
k=0

(
n

k

)
(eix)k(e−ix)n−k =

1

2n

n∑
k=0

(
n

k

)
ei(2k−n)x (37)

Now it is advantageous to distinguish between odd and even n. For odd n, the sum has an even
number of terms, and we can split it into two sums:

1

2n

( ⌊n
2 ⌋∑

k=0

(
n

k

)
ei(2k−n)x +

n∑
k=⌊n

2 ⌋+1

(
n

k

)
ei(2k−n)x

)
(38)

In the second sum, we perform a substitution of the summation index to q = n − k and use the
symmetry of binomial coefficients

(
n
k

)
=
(
n

n−k
)
. The second sum can thus be rewritten as

⌊n
2 ⌋∑

q=0

(
n

q

)
e−i(2q−n)x (39)

We see that it differs from the first sum only by the sign in the exponent. Using Euler’s formulas,
we thus obtain the formula

cosn(x) =
1

2n−1

⌊n
2 ⌋∑

k=0

(
n

q

)
cos((n− 2k)x) (40)

For even n, the situation is similar except that the sum splits into three terms:

1

2n

( n
2 −1∑
k=0

(
n

k

)
ei(2k−n)x +

(
n

n/2

)
+

n∑
k=n

2 +1

(
n

k

)
ei(2k−n)x

)
(41)
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By substituting the summation index in the third term and using Euler’s formula, we finally get
the formula

cosn(x) =
1

2n−1

(1
2

(
n

n/2

)
+

n
2 −1∑
k=0

(
n

k

)
cos((n− 2k)x)

)
. (42)

Notice that the last term is half compared to substituting k = n/2 into the sum on the right.

*Exercise 2.12. Sum the series
N∑
m=0

cosmx (43)

Solution: Using the linearity of the function Re, we can write

N∑
m=0

cosmx = Re

[
n∑

m=0

eimx

]
= Re

[
N∑
m=0

(eix)m

]
(44)

Now, simply use the well-known formula for the sum of a geometric series
∑N
m=0 a

m = aN+1−1
a−1 for

a = eix. This expression can further be modified as

aN+1 − 1

a− 1
= a

N
2
a

N+1
2 − a−

N+1
2

a1/2 − a−1/2
= ei

N
2 x
ei

N+1
2 x − e−i

N+1
2 x

ei
x
2 − e−i

x
2

= ei
N
2 x

sin(N+1
2 x)

sin x
2

. (45)

After substituting into the formula above, we thus obtain

N∑
m=0

cosmx =
sin(N+1

2 x)

sin x
2

Re
[
ei

N
2 x
]
=

sin(N+1
2 x)

sin x
2

cos
N

2
x. (46)

Exercise 2.13. Calculate the definite integrals∫ +∞

0

e−ax cos bx dx,

∫ +∞

0

e−ax sin bx dx. (47)

*Calculate also the corresponding indefinite integrals (primitive functions).

Solution: The second integral is multiplied by the complex unit and added to the first one. From
the linearity of the integral, we then get one integral of the complex exponential:∫

e−ax cos bx dx+ i

∫
e−ax sin bx dx =

∫
e−ax(cos bx+ i sin bx)dx =

∫
e−(a−ib)xdx. (48)

This can be easily calculated using the standard formula.∫
e−(a−ib)xdx = − 1

a− ib
e−(a−ib)x + C, (49)

where C ∈ C is some complex constant. For the definite integral, we get∫ +∞

0

e−(a−ib)xdx =

[
− 1

a− ib
e−(a−ib)x

]+∞

0

= − 1

a− ib
= − a+ ib

a2 + b2
. (50)
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By comparing the real and imaginary parts, we obtain the sought integrals:∫ +∞

0

e−ax cos bx dx = − a

a2 + b2
,

∫ +∞

0

e−ax sin bx dx = − b

a2 + b2
. (51)

For indefinite integrals, we proceed with the modifications∫
e−(a−ib)xdx = − 1

a− ib
e−(a−ib)x + C = − a+ ib

a2 + b2
e−ax(cos(bx) + i sin(bx)) + C. (52)

Writing C = C1 + iC2, by comparing the real and imaginary parts, we get the sought integrals:∫
e−ax cos bx dx = − e−ax

a2 + b2
(a cos(bx)− b sin(bx)) + C1, (53)

∫
e−ax sin bx dx = − e−ax

a2 + b2
(a sin(bx) + b cos(bx)) + C2. (54)

3 Small Oscillations and the Mode Method

Exercise 3.1. Construct the potential for longitudinal and transverse oscillations of weights on
springs as in the figure. The length of the unstretched springs is a0.

mk k

a a

Find the forms of these potentials in the approximation of small oscillations.

Solution: First, consider the longitudinal oscillations of the weight. I introduce a coordinate x
describing the displacement of the weight from the equilibrium position to the right:

xO

a+ x a− x

The potential energy of a spring always has the form 1
2 stiffness(length−rest length)2. The potential

of longitudinal oscillations is the sum of the potential energies (as functions of displacement x) of
both springs: U(x) = U1(x) = U2(x). Here U1(x) =

1
2k(a + x − a0)

2 and U2 = 1
2k(a − x − a0)

2

thus

U(x) =
1

2
k(a+ x− a0)

2 +
1

2
k(a− x− a0)

2. (55)

Let us recall what is meant by ”the approximation of small oscillations”. Generally, for a system
with n degrees of freedom, we introduce coordinates (x1, . . . , xn) describing the displacement from
the equilibrium position. Writing x⃗ = (x1, . . . , xn) ∈ Rn, we find the potential function U = U(x⃗).
The potential in the approximation of small oscillations is

Us.o.(x⃗) =
1

2

n∑
i,j=1

Uijxixj , Uij =
∂2U

∂xi∂xj

∣∣∣
x⃗=0

. (56)
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Here we have n = 1 and x1 ≡ x. The matrix U is of size 1× 1 and its only element is given by the
second derivative of the function U = U(x) at the point x = 0. We have

U ′(x) = k(a+ x− a0)− k(a− x+ a0), U ′′(x) = 2k, U ′′(0) = 2k. (57)

It is always advantageous to verify that the first partial derivatives of U at x⃗ = 0 are zero and
therefore, that the point x⃗ = 0 is indeed an equilibrium position! Here U ′(0) = k(a− a0)− k(a−
a0) = 0. The matrix U thus has the form

U =
(
U ′′(0)

)
=
(
2k
)
. (58)

Substituting into the relation for the potential of small oscillations, we get Us.o.(x⃗) = kx2.

Now consider the transverse oscillations:

x

O

√
x2 + a2

a

x

The lengths of both springs for a given displacement are identical, thus U1(x) = U2(x) =
1
2k(

√
x2 + a2−

a0)
2. Thus, we have U(x) = k(

√
x2 + a2 − a0)

2 = k(x2 + a2 + a20 − 2a0
√
x2 + a2). Therefore

U ′(x) = k

(
2x− 2a0

x√
x2 + a2

)
, U ′′(x) = 2k

[
1− a0

(
1√

x2 + a2
+ x

(
1√

x2 + a2

)′
)]

(59)

After substitution, U ′′(0) = 2k(1 − a0
a ) and Us.o.(x) = k(1 − a0

a )x
2. Note that for a = a0,

U ′′(0) = 0, and thus Us.o.(x) ≡ 0. Despite this, U = U(x) at x = 0 has a sharp local minimum!
The approximation of small oscillations has its limits.

Exercise 3.2. Construct the equations of motion for longitudinal oscillations of the system in the
figure. The length of the unstretched springs is a0.

mk k km

a a a

Find their solution by the mode method.

Solution: We introduce displacement coordinates (x1, x2) as in the figure:

x1 x2O1 O2

a+ x1 a− x1 + x2 a− x2

9



The potential is thus given by the equation

U(x⃗) =
1

2
k(a+ x1 − a0)

2 +
1

2
k(a− x1 + x2 − a0)

2 +
1

2
k(a− x2 − a0)

2. (60)

Partial derivatives give:

∂U

∂x1
= k(a+ x1 − a0)− k(a− x1 + x2 − a0) = 2kx1 − kx2, (61)

∂U

∂x2
= k(a− x1 + x2 − a0)− k(a− x2 − a0) = −kx1 + 2kx2. (62)

From here, we easily construct the matrix of second derivatives at the point x⃗ = 0:

U =

(
2k −k
−k 2k

)
. (63)

Both weights have mass m and thus we easily see that the matrix of kinetic energy T has the form

T =

(
m 0
0 m

)
. (64)

The equations of motion (small oscillations problem) for the displacement vector x⃗ = x⃗(t) are given

by the matrix equation T¨⃗x+ Ux⃗ = 0. Substitution gives(
0
0

)
=

(
m 0
0 m

)(
ẍ1
ẍ2

)
+

(
2k −k
−k 2k

)(
x1
x2

)
=

(
mẍ1 + 2kx1 − kx2
mẍ2 − kx1 + 2kx2

)
. (65)

The mode method works as follows. It asserts that the general solution to the equations of motion
is a superposition of harmonic motions (modes) in the

form x⃗(t) = Aa⃗ cos(ωt+φ), where ω (the natural frequency of the mode) is one of the solutions
to the secular equation

det(U− ω2T) = 0 (66)

And the vector a⃗ corresponding to the natural frequency ω is obtained by solving the system of
linear equations (U− ω2T)⃗a = 0. In our case, we get the secular equation in the form

0 = det

(
2k −mω2 −k

−k 2k −mω2

)
= (2k −mω2)2 − k2 = m2ω4 − 4kmω2 + 3k2. (67)

This is a quadratic equation for ω2, which has two solutions:

ω2 =
k(2± 1)

m
(68)

The natural frequencies of the modes are thus

ω1 =

√
k

m
, ω2 =

√
3k

m
. (69)

Vectors of amplitude ratios a⃗ = (a1, a2)
T are obtained by solving linear equations (U−ω2T)⃗a = 0.

For the first mode:(
0
0

)
= (U− ω2

1T)⃗a =

(
2k −m k

m −k
−k 2k −m k

m

)(
a1
a2

)
=

(
k −k
−k k

)(
a1
a2

)
. (70)
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We are thus looking for the kernel vector and by equivalent modifications, we get(
k −k
−k k

)
∼
(

1 −1
−1 1

)
∼
(
1 −1
0 0

)
. (71)

The solution to this system is any nonzero vector satisfying a1 = a2, it is advantageous to choose
the simplest, for example, a⃗ = (1, 1)T . The first mode thus corresponds to the weights oscillating
in phase!

For the second mode, we similarly get the system(
0
0

)
= (U− ω2

2T)⃗a =

(
2k −m 3k

m −k
−k 2k −m 3k

m

)(
a1
a2

)
=

(
−k −k
−k −k

)(
a1
a2

)
. (72)

Again, by equivalent modifications(
−k −k
−k −k

)
∼
(
k k
k k

)
∼
(
1 1
1 1

)
∼
(
1 1
0 0

)
. (73)

Its solution is any vector satisfying a1 = −a2, so we choose a⃗ = (1,−1)T . The second mode is
thus counter-phase oscillation of the two weights. In conclusion, the most general solution to the
problem is given by the superposition of modes, i.e., the sum

x⃗(t) = A1

(
1
1

)
cos

(√
k

m
t+ φ1

)
+A2

(
1
−1

)
cos

(√
3k

m
t+ φ2

)
, (74)

where the constants A1, A2, φ1, φ2 ∈ R must be obtained from the initial conditions.

Exercise 3.3. Consider the same case as above, only for transverse oscillations.

Solution: We introduce coordinates x⃗ = (x1, x2) as in the figure:

x1
x2

a a a

√
a2 + x2

1

√
a2 + (x2 − x1)2√

a2 + x2
2

We find the potential from the known lengths of the springs:

U(x⃗) =
1

2
k

(√
a2 + x21 − a0

)2

+
1

2
k
(√

a2 + (x2 − x1)2 − a0

)2
+

1

2
k

(√
a2 + x22 − a0

)2

. (75)

Before calculating the partial derivatives, it is advantageous to regroup the terms slightly:

U(x⃗) =
1

2
k
(
x21+(x2−x1)2+x22−2a0{

√
a2 + x21+

√
a2 + (x2 − x1)2+

√
a2 + x22}+constants

)
. (76)

From here, we relatively easily get

∂U

∂x1
= k

[
x1 − (x2 − x1)− a0

(
x1√
a2 + x21

+
−(x2 − x1)√
a2 + (x2 − x1)2

)]
, (77)

∂U

∂x2
= k

[
(x2 − x1) + 2x2 − a0

(
(x2 − x1)√

a2 + (x2 − x1)2
+

2x2√
a2 + x22

)]
. (78)
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Now we need to derive cleverly and directly substitute x⃗ = 0, which ensures that we do not have
to derive the square roots again. We get

U11 =
∂2U

∂x21

∣∣∣
x⃗=0

= 2k
(
1− a0

a

)
, U12 = −k

(
1− a0

a

)
. (79)

From the symmetry of the partial derivatives U21 = U12 and from the symmetry of the problem
U22 = U11, thus

U =

(
2k′ −k′
−k′ 2k′

)
, k′ = k

(
1− a0

a

)
. (80)

The matrix U is thus exactly the same as in the previous example, just replace k with k′. Since the
matrix of kinetic energy T is exactly the same, we can confidently use the result of the previous
exercise.

Exercise 3.4. Find the potential of a spring pendulum (see figure) in the approximation of small
oscillations. The pendulum can perform two-dimensional motion in the vertical plane.

m

k a ~g

Solution: First, let us show that a, the length of the spring in the equilibrium position, can be
found and expressed using constants g, k, and m. Let the rest length of the spring be a0 and
introduce coordinates x, y relative to the pendulum’s suspension:

m

k
~g

y

x

The potential energy has the form U(x, y) = 1
2k
(√

x2 + y2 − a0

)2
−mgy. We seek the minimum

(x0, y0):

0 =
∂U

∂x

∣∣∣
(x0,y0)

= k

(√
x20 + y20 − a0

)
x0√
x20 + y20

(81)

0 =
∂U

∂y

∣∣∣
(x0,y0)

= k

(√
x20 + y20 − a0

)
y0√
x20 + y20

−mg (82)

(83)

The first equation can occur for
√
x20 + y20 = a0, but that excludes the validity of the second

equation. Thus, it must be x0 = 0 and the second equation gives us

k(y0 − a0)−mg = 0. (84)
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That is, of course, the condition of the balance of elastic and gravitational forces, from where
a ≡ y0 = m

k g + a0. Now back to the problem of small oscillations. We introduce coordinates
(x1, x2) as in the figure:

m

~g

x2

x1

√
(a+ x2)2 + x2

1

The potential is given by the sum of the elastic and gravitational potential energy:

U(x⃗) =
1

2
k

(√
(a+ x2)2 + x21 − a0

)2

−mg(a+ x2)

=
1

2

(
k(x22 + x21 − 2a0

√
(a+ x2)2 + x21

)
+ (ka−mg)x2 + constants

(85)

Partial derivatives are thus

∂U

∂x1
= k

(
x1 − a0

x1√
(a+ x2)2 + x21

)
, (86)

∂U

∂x2
= k

(
x2 − a0

a+ x2√
(a+ x2)2 + x21

)
+ ka−mg. (87)

The second derivatives are

a bit more complicated because we cannot avoid further derivation of the square root by x2.
We obtain

U11 =
∂2U

∂x21

∣∣∣
x⃗=0

= k
(
1− a0

a

)
, (88)

U12 =
∂2U

∂x1∂x2

∣∣∣
x⃗=0

= 0, (89)

U22 =
∂2U

∂x22

∣∣∣
x⃗=0

= k. (90)

We see that the term from the gravitational force completely disappeared. The matrix of potential
energy is diagonal. The resulting potential of small oscillations has the form

Us.o.(x⃗) =
1

2
k
(
1− a0

a

)
x21 +

1

2
kx22. (91)

Thanks to the diagonality of the matrix U, the equations of motion are independent:

mẍ1 + k
(
1− a0

a

)
x1 = 0, mẍ2 + kx2 = 0. (92)

Thus, this system has two modes – one corresponds to oscillations in the horizontal direction x1

with frequency
√

k
m (1− a0

a ) and the other to oscillations in the vertical direction x2 with frequency

13



√
k
m . Horizontal oscillation corresponds to transverse oscillations relative to the spring and vertical

corresponds to longitudinal oscillations. This explains the form of the presence (effective) stiffness
k′ = k(1− a0

a ) and k in the angular frequencies.

*Exercise 3.5. Find the potential of a spring pendulum (see figure) in the approximation of small
oscillations. The pendulum can perform two-dimensional motion in the vertical plane.

m

kx kx

ky

ky

a a

a

a

Solution: We introduce coordinates (x, y) as in the figure:

xO

y

√
x2 + (a− y)2

√
x2 + (a+ y)2

√
(a+ x)2 + y2

√
(a− x)2 + y2

The potential energy is obtained from a bit of Pythagorean theorems:

U(x⃗) =
1

2
kx

((√
(a+ x)2 + y2 − a0x

)2
+
(√

(a− x)2 + y2 − a0x

)2)
+

1

2
ky

((√
x2 + (a− y)2 − a0y

)2
+
(√

x+ (a+ y)2 − a0y

)2)
=

1

2
kx

(
2x2 + 2y2 − 2a0x

(√
(a+ x)2 + y2 +

√
(a− x)2 + y2

))
+

1

2
ky

(
2y2 + 2x2 − 2a0y

(√
(a+ y)2 + x2 +

√
(a− y)2 + x2

))
+ constants.

(93)

Deriving U with respect to x gives us

∂U

∂x
= kx

[
2x− a0x

(
a+ x√

(a+ x)2 + y2
+

a− x√
(a− x)2 + y2

)]

+ ky

[
2x− a0y

(
x√

(a+ y)2 + x2
+

x√
((a− y)2 + x2

)]
.

(94)

Now we need to proceed cleverly. When further deriving partially with respect to x, we notice
that the ugly terms in the first row are composite functions that differ only by swapping x for −x.

14



When deriving and substituting x⃗ = 0, they necessarily cancel out. In the second row, we do not
need to derive the square roots, because we are anyway substituting x = 0. The calculation is thus
not as terrible:

U11 =
∂2U

∂x2

∣∣∣
x⃗=0

= 2kx + 2ky

(
1− a0x

a

)
. (95)

From the symmetry of the problem, U22 is obtained by swapping x and y:

U22 =
∂2U

∂y2

∣∣∣
x⃗=0

= 2ky + 2kx

(
1− a0y

a

)
. (96)

The remaining task is to calculate the mixed term. The partial derivatives of the ugly terms in the
first row give zero, because the result will be proportional to y, and in the second row, they cancel
out, because they are again composite functions, differing only by swapping y and −y. Thus we
get U12 = 0.

The resulting matrix U is again diagonal, and the equations of motion are thus independent
harmonic oscillator equations in the horizontal and vertical directions:

mẍ+
[
2kx + 2ky

(
1− a0x

a

)]
x = 0, mÿ +

[
2ky + 2kx

(
1− a0y

a

)]
y = 0. (97)

From the forms of the angular frequencies of individual modes, we also see that for horizontal
oscillations (equation for x), the horizontal springs are longitudinally oscillating and the vertical
ones are transversely oscillating, for vertical oscillations (equation for y) it is vice versa.

Exercise 3.6. Find the solution of the equations of motion of the following system by the mode
method. Only longitudinal motion is allowed. Assume that a is the rest length of the spring.

M
m mk k

a a

Is the found solution complete? ”Where did the error occur”?

Solution: We introduce coordinates as in the figure:

x1 x2 x3O1 O2 O3

a− x1 + x2 a− x2 + x3

Now we have x⃗ = (x1, x2, x3) and the potential has the form

U(x⃗) =
1

2
k(a− x1 + x2 − a)2 +

1

2
k(a− x2 + x3 − a)2

=
1

2
k(x21 + 2x22 + x23 − 2x1x2 − 2x2x3) + constants.

(98)

The potential in the approximation of small oscillations is obtained by second partial derivatives
and can easily be considered to exactly match the quadratic form above, thus

Us.o.(x⃗) =
1

2

3∑
i,j=1

Uijxixj =
1

2
k(x21 + 2x22 + x23 − 2x1x2 − 2x2x3). (99)
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We can also write Us.o.(x⃗) =
1
2 x⃗

TUx⃗, where x⃗ = (I1, I2) and

U =

 k −k 0
−k 2k −k
0 −k k

 . (100)

The masses of the weights are m, M , and m thus the matrix T is

T =

m 0 0
0 M 0
0 0 m

 . (101)

Now, we need to solve the secular equation det(U− ω2T) = 0, which gives

0 = det

k −mω2 −k 0
−k 2k −Mω2 −k
0 −k k −mω2

 = (k −mω2)2(2k −Mω2)− 2k2(k −mω2)

= (k −mω2)
[
(k −mω2)(2k −Mω2)− 2k2

]
= ω2(k −mω2)(mMω2 − k(M + 2m)).

(102)

This equation has three solutions for ω2, which are easy to find, let’s denote them:

ω0 = 0, ω1 =

√
k

m
, ω2 =

√
k(M + 2m)

mM
. (103)

Now we must solve the equations (U− ω2T)⃗a = 0 to get the amplitude ratio vectors.

(i) ω = 0. We seek the vector a⃗ = (a1, a2, a3) solving the system of equations0
0
0

 =

 k −k 0
−k 2k −k
0 −k k

a1a2
a3

 =

 k(a1 − a2)
k(2a1 − a1 − a3)

k(a3 − a2)

 , (104)

by equivalent modifications k −k 0
−k 2k −k
0 −k k

 ∼

 1 −1 0
−1 2 −1
0 −1 1

 ∼

1 −1 0
0 1 −1
0 0 0

 . (105)

We obtain the condition a1 = a2 = a3 and a suitable candidate is thus a⃗ = (1, 1, 1)T . In this
mode, the weights do not oscillate at all.

(ii) ω =
√
k/m. We solve the system0
0
0

 =

 0 −k 0
−k k(2− M

m ) −k
0 −k 0

a1a2
a3

 =

 −ka2
−ka1 + k(2− M

m )a2 − ka3
−ka2

 , (106)

by equivalent modifications 0 −k 0
−k k(2− M

m ) −k
0 −k 0

 ∼

 0 1 0
−1 2− M

m −1
0 1 0

 ∼

0 1 0
1 0 1
0 0 0

 . (107)

The solution is a2 = 0 and a1 = −a3. We choose, for example, a⃗ = (1, 0,−1). The middle
weight does not oscillate and the outer weights oscillate in opposite directions with angular

frequency
√

k
m .
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(iii) ω =
√

k(M+2m)
mM . We solve the system0

0
0

 =

− 2m
M k −k 0
−k −M

m k −k
0 −k − 2m

M k

a1a2
a3

 =

 −k( 2mM a1 + a2)
−k(a1 + M

m a2 + a3)
−k( 2mM a3 + a2),

 , (108)

by equivalent modifications− 2m
M k −k 0
−k −M

m k −k
0 −k − 2m

M k

 ∼

 2m
M 1 0
1 M

m 1
0 1 2m

M

 ∼

1 M
2m 0

0 M
2m 1

0 0 0

 . (109)

Thus, it must be a1 = − M
2ma2 and a3 = − M

2ma2. We may choose a2 = 1 and thus a⃗ =

(− M
2m , 1,−

M
2m )T . The middle weight oscillates and the outer weights oscillate in the same

direction opposite to the middle one.

Is

the solution complete? The root ω = 0 is in fact double and thus admits one more linearly
independent solution (see general theory of differential equations) in the form x⃗(t) := Aa⃗t cos(ωt+
φ). Here we have ω = 0 and thus we get x⃗(t) = A cos(φ)⃗at, where we already found a⃗ = (1, 1, 1)T .
But this corresponds to the simultaneous uniform linear motion of all three weights!

The error thus occurred because the matrix U is not positively definite – the point (0, 0, 0) is
not a stable equilibrium position. Strictly speaking, the method of small oscillations cannot be
used.

Exercise 3.7. Consider the general solution of the motion of the system in the form

x⃗(t) =

(
x1(t)
x2(t)

)
= A1

(
1
1

)
cos(ω1t+ φ1) +A2

(
1
−1

)
cos(ω2t+ φ2). (110)

Find the specific solution for the initial conditions

x1(0) = A ̸= 0, x2(0) = 0, ẋ1(0) = 0, ẋ2(0) = 0. (111)

Solution: Deriving x⃗, we get

˙⃗x(t) =

(
ẋ1(t)
ẋ2(t)

)
= A1ω1

(
−1
−1

)
sin(ω1t+ φ1) +A2ω2

(
−1
1

)
sin(ω2t+ φ2). (112)

Substituting the initial conditions then gives us equations(
A
0

)
=

(
A1 cosφ1 +A2 cosφ2

A1 cosφ1 −A2 cosφ2

)
,

(
0
0

)
=

(
−A1ω1 sinφ1 −A2ω2 sinφ2

−A1ω1 sinφ1 +A2ω2 sinφ2

)
. (113)

This is a system of four equations for four unknowns. By adding and subtracting equations, we
get

A1 sinφ1 = A2 sinφ2 = 0, A1 cosφ1 = A2 cosφ2 =
A

2
. (114)

Since A ̸= 0, the second set of equations immediately ensures that A1, A2 ̸= 0 and thus from the
first set of equations, φ1, φ2 ∈ {0, π}. From the second set of equations, for φi = 0, we have
Ai =

A
2 , for φi = π, then Ai = −A

2 . Since cos(x) = − cos(x + π), these solutions are equivalent,
and we can choose φ1 = φ2 = 0 and A1 = A2 = A/2. The unique solution satisfying the initial
conditions is thus

x⃗(t) = A/2

(
1
1

)
cos(ω1t) +A/2

(
1
−1

)
cos(ω2t). (115)
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*Exercise 3.8. Find the current flow in the circuit in the figure:

Solution: We label the currents and their positive directions in the branches, the directions of
circulation in the left and right loops, and the voltages across the elements as in the figures:

I1 I2

I3

UC1

UL1 UL2

UC2 UC3

The voltage across the capacitor and the inductor is given by the equations

UC =
Q

C
, UL = Lİ. (116)

By deriving the equation for the voltage across the capacitor with respect to time, we get U̇C = I
C .

Viewing capacitors and inductors as voltage sources in the circuit, then the sign convention is as
follows: if the direction of circulation of a given loop agrees with the direction of the current in the
respective branch, then we add a minus to the formulas for the voltages (if it disagrees, we leave
a plus). Thus, for the left, respectively, right loop, we get from the second Kirchhoff’s law:

−UC1 − UC2 − UL1 = 0, UC2 − UC3 − UL2 = 0. (117)

After deriving these equations with respect to time and substituting for the individual voltages
(and multiplying by minus one):

1

C
I1 −

1

C
I3 − LÏ1 = 0, − 1

C
I3 +

1

C
I2 + LÏ2 = 0. (118)

After substituting for I3 from the first Kirchhoff’s law for currents, I1 = I2 + I3, we get the final
set of differential equations for the currents flowing through each inductor:

0 = LÏ1 +
2

C
I1 −

1

C
I2 (119)

0 = LÏ2 −
1

C
I1 +

2

C
I2. (120)

We can write this system of equations in matrix form as T ¨⃗
I + UI⃗ = 0, where I⃗ = (I1, I2) and

T =

(
L 0
0 L

)
, U =

1

C

(
2 −1
−1 2

)
. (121)

But this is the same system of equations as in Exercise 3.2, only here m = L and k = 1
C . We

already know that the general solution is in the form

I⃗(t) = A1

(
1
1

)
cos

(√
1

LC
t+ φ1

)
+A2

(
1
−1

)
cos

(√
3

LC
t+ φ2

)
. (122)
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The inductance of the inductors here plays the role of inertia mass – resistance of

the inductors to changes in current; the reciprocal value of the capacitance plays the role of
stiffness – the smaller the value of the capacitor’s capacitance, the faster its voltage changes for a
given current and thus faster it causes changes in current in the circuit.

4 String Vibrations and Fourier Series

Exercise 4.1. If we shorten a string by ∆l = 10cm, its frequency increases to α = 1.5 times its
original value. Calculate the length of the string L. Assume that the tension in the string remains
the same.

Solution: A string with fixed ends of length L at points z = 0 and z = L has a solution in the
form of a superposition of modes:

ψ(z, t) =
∞∑
m=1

Am sin(kmz) sin(ωmt+ φm). (123)

The relation between k and ω is given by the dispersion relation ω =
√

T0

ρ0
k and the m-th wave

number satisfies km = πm
L . ρ0 is the linear density of the string and T0 its tension. The frequency

f is related to the angular frequency as ω = 2πf .

Let f ′ be the new frequency and L′ the new length of the string. So we have f ′ = αf and
L′ = L−∆l. According to the dispersion relation (if we do not change the tension or the material

of the string), the ratio of ω and k (in any but the same mode) must remain constant: ω
k = ω′

k′ .
Substituting, we get the equation

fL = f ′L′ = αf · (L−∆l). (124)

From here, we can easily express L as L = α
α−1∆l = 3∆l = 30cm.

Exercise 4.2. A piano string L = 1m long with a diameter d = 0.5mm emits the fundamental
tone C with a frequency f = 256Hz. The volumetric density of this string is ρ = 9g/cm3. What
is the tension T0 in the string?

Solution: The wave number of the fundamental tone is k1 = π
L . The linear density is obtained

by multiplying the volumetric density by the cross section of the string, i.e., ρ0 = 1
4πd

2ρ. From

the dispersion relation ω =
√

T0

ρ0
k thus

T0 =
ω2

k2
ρ0 = 4ρ0f

2L2 = πd2ρf2L2 = 3.14 · (5 · 10−4)2 · 9000 · 2562 ≈ 459.2N. (125)

This is therefore the force exerted by a weight of approximately 46kg! There are about 230 strings
in a piano.

Exercise 4.3. Find the forms of modes for a string of length L (stretched from z ∈ [0, L]) for free
ends. Assume a solution in the form of a mode (standing wave) ψ(z, t) = X(z) cos(ωt+ φ). Write
the general solution as a superposition of these modes. Is there something missing in the solution?
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Solution: The function ψ must satisfy the wave equation:

∂2ψ

∂t2
=
T0
ρ0

∂2ψ

∂z2
(126)

The free end condition is defined as

∂ψ

∂z
(0, t) =

∂ψ

∂z
(L, t) = 0. (127)

Substituting the ansatz into the wave equation immediately yields(
X ′′(z) +

ρ0
T0
ω2X(z)

)
cos(ωt+ φ0) = 0. (128)

Let the wave number k > 0 be k2 = ρ0
T0
ω2 (thus obtaining the dispersion relation); requiring the

previous equation to be satisfied at all times, we get an ordinary differential equation

X ′′(z) + k2X(z) = 0. (129)

This is the equation of a harmonic oscillator (in variable z). Write its solution, for example, in the
form

X(z) = a cos kz + b sin kz. (130)

The resulting function ψ(z, t) = X(z) cos(ωt+φ) must be substituted into the boundary condition.
Easily ∂ψ

∂z = X ′(z) cos(ωt+φ). The initial conditions thus give equations X ′(0) = 0 and X ′(L) = 0.
We have X ′(z) = −ak sin kz + bk cos kz.

The condition X ′(0) = 0 gives bk = 0 and thus b = 0. The condition X ′(L) = 0 then gives
a sin kL = 0 and for a nontrivial solution thus kL ∈ {mπ}m∈N (we only consider natural number
multiples, since the constant kL > 0). The wave number must satisfy k = km = mπ

L , m ∈ N. The
resulting form of the m-th mode is thus Xm(z) = Am cos kmz.

The resulting function ψ(z, t) is given by the superposition of these modes (do not forget that
ω is different for each value of the wave number and given by the dispersion relation):

ψ(z, t) =

∞∑
m=1

Am cos
(mπ
L
z
)
cos

(√
T0
ρ0

mπ

L
t+ φm

)
. (131)

Which solution did we forget? Since the string has both ends free, it can, in addition to vibrations,
perform uniform linear motion as a whole: ψ(z, t) = x0+v0t. This solution is not in the form of the
assumed solution form, so it could not come out. If we took the method of separation of variables
more generally, where we assume a solution of the form ψ(z, t) = X(z)T (t) (thus generalizing
the form of the time function), we would get a solution including uniform motion. The complete
solution (and now truly complete) of the wave equation with the given boundary conditions is thus

ψ(z, t) = x0 + v0t+

∞∑
m=1

Am cos
(mπ
L
z
)
cos

(√
T0
ρ0

mπ

L
t+ φm

)
. (132)

*Exercise 4.4. The same assignment as the previous example with the difference that now con-
sider one end fixed and the other free.
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Solution: The procedure is completely analogous to the previous example. Only the boundary
conditions and thus the requirements for the form of the function X(z) = a cos kz + b sin kz differ.
WLOG (without loss of generality) consider the left end (at z = 0) fixed and the right end (at
z = L) free, i.e.,

ψ(0, t) = 0,
∂ψ(L, t)

∂z
= 0, (133)

that is, for the function X(z): X(0) = 0 and ∂X(L)
∂z = 0. The condition X(0) = 0 gives a = 0

and then from ∂X(L)
∂z = 0 we have b cos kL = 0. If we require a non-trivial solution, b ̸= 0 and

cos kL = 0, hence kL = π
2 +mπ, m ∈ N0 (kL > 0 hence m ≥ 0). The permissible wave numbers

are thus of the form km = (π2 +mπ) 1
L . The resulting solution is again given by the superposition

of individual modes:

ψ(z, t) =

+∞∑
m=0

Am sin kmz cos(ωmt+ φm), (134)

where km = (π2 +mπ) 1
L and ωm =

√
T0

ρ0
km.

Exercise 4.5. Calculate the Fourier series of the following functions f with period 2L:

a) Square wave

L0 z

f(z)

−L

A

−A

b) *Sawtooth wave

L0 z

f(z)

−L

A

Solution: If f : R → R is a periodic function with period 2L, its Fourier series is a function fF
given by the relation

fF (z) =
a0
2

+

∞∑
m=1

am cos
(mπz

L

)
+ bm sin

(mπz
L

)
, (135)

where the coefficients am and bm are given by the relations

am =
1

L

∫ L

−L
f(z) cos

(mπz
L

)
dz, m ∈ N0, bm =

1

L

∫ L

−L
f(z) sin

(mπz
L

)
dz, m ∈ N. (136)

If the function f is even, bm = 0 and if it is odd, am = 0.
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a) Square wave: the function f is obviously odd, so it suffices to calculate the coefficients bm. We
have

bm =
1

L

∫ L

−L
f(z) sin

(mπz
L

)
dz =

2

L

∫ L

0

A sin
(mπz

L

)
dz =

2A

L

[
− L

mπ
cos
(mπz

L

)]L
0

=
2A

mπ

[
− cos

(mπz
L

)]L
0
=

2A

mπ
(1− cosmπ).

(137)

Finally, we can distinguish between even and odd m. For even m, 1 − cosmπ = 0 and thus
bm = 0. It suffices to consider odd m, thus m = 2k − 1, k ∈ N, then 1− cosmπ = 2. We get

b2k−1 =
4A

(2k − 1)π
. (138)

The resulting Fourier series of function f is thus

fF (z) =

∞∑
k=1

4A

(2k − 1)π
sin

(
(2k − 1)πz

L

)
. (139)

b) Sawtooth wave: the function f is even. It suffices to calculate the coefficients am. For m > 0
we get

am =
1

L

∫ L

−L
f(z) cos

(mπz
L

)
dz =

2

L

∫ L

0

f(z) cos
(mπz

L

)
dz =

2

L

∫ L

0

A
(
1− z

L

)
cos
(mπz

L

)
dz

=
2

L

[
A
(
1− z

L

) L

mπ
sin
(mπz

L

)]L
0

+
2

L

∫ L

0

A

L

L

mπ
sin
(mπz

L

)
dz

=
2A

mπL

∫ L

0

sin
(mπz

L

)
dz =

2A

(mπ)2

[
− cos

(mπz
L

)]L
0
.

(140)

We are in the same situation as in the previous example – only odd m = 2k− 1 contribute and
thus

a2k−1 =
4A

(2k − 1)2π2
. (141)

We must not forget about a0, which is obtained by the integral

a0 =
2

L

∫ L

0

A
(
1− z

L

)
dz =

2

L

[
A

(
z − z2

2L

)]L
0

=
2A

L

(
L− L2

2L

)
= A. (142)

The Fourier series of the sawtooth wave is thus

fF (z) =
A

2
+

∞∑
k=1

4A

(2k − 1)2π2
cos

(
(2k − 1)πz

L

)
. (143)

Exercise 4.6. Consider a string with fixed ends. Find a specific solution for its motion if you
make it vibrate so that at time t = 0 it is at rest and has the form1 ψ(z, 0) = A, where A is a
constant.

1Strictly speaking, ψ at time t = 0 does not satisfy the boundary conditions. One can imagine that at both ends
the function describing the string drops very sharply to 0.
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Solution: The solution of a standing wave with fixed ends has the form

ψ(z, t) =

∞∑
m=1

Am sin(kmz) sin(ωmt+ φm). (144)

Let f(z) = ψ(z, 0) be the function f : [0, L] → R specifying the initial shape of the string, and
g(z) = ∂ψ

∂t (z, 0) the initial speed of the string. Substituting the solution, we get equations:

f(z) =

∞∑
m=1

Am sinφm sin
(mπz

L

)
, (145)

g(z) =

∞∑
m=1

Amωm cosφm sin
(mπz

L

)
. (146)

To solve these conditions, it is necessary to find the constants Am and φm. We see that the right
sides resemble the Fourier series of an odd periodic function. It suffices to find a unique odd
extension of the function f , a function f̄ : R → R satisfying:

(i) f̄ is periodic with period 2L;

(ii) f̄ is odd;

(iii) f̄ restricted to the interval [0, L] gives the function f .

If we find the coefficients fm of the Fourier development of the function f̄(z) =
∑+∞
m=1 fm sin

(
mπz
L

)
,

by comparing coefficients we get

fm = Am sinφm, m ∈ N. (147)

Similarly, we find the odd extension ḡ of the function g and if we denote gm the coefficients of its
Fourier development, we obtain relations

gm = Amωm cosφm, m ∈ N. (148)

Let’s solve this system in this case. According to the task, we have f(z) = A for all z ∈ [0, L] and
g(z) = 0 for all z ∈ L. We see that as an odd extension f̄ we get a rectangular wave from the
previous example and g ≡ 0 (and thus gm = 0). We thus obtain a system of equations:

0 = A2k sinφ2k, k ∈ N, (149)

4A

(2k − 1)π
= A2k−1 sinφ2k−1, k ∈ N, (150)

0 = Amωm cosφm, m ∈ N. (151)

Therefore, I can choose A2k = 0, k ∈ N and φ2k arbitrarily. Since necessarily A2k−1 ̸= 0, I get from
the last set of equations cosφ2k−1 = 0. Hence, φ2k−1 ∈ {π2 + nπ}n∈Z. We can choose φ2k−1 = π

2 ,
because in any case sinφ2k−1 ∈ {−1, 1} and we would just have to hide the sign in the amplitude.
From the remaining equation, thus

A2k−1 =
4A

(2k − 1)π
. (152)

The resulting solution of the wave equation with this initial condition is thus

ψ(z, t) =

∞∑
k=1

4A

(2k − 1)π
sin

(
(2k − 1)πz

L

)
sin(ω2k−1t). (153)
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Exercise 4.7. Consider a string with fixed ends. Find a specific solution for its motion if at time
t = 0 it is in equilibrium position and you strike it with a hammer so that a segment of the string
of length ∆z centered at L/2 is given a speed v0.

Solution: Using the notation from the previous example, we have f(z) ≡ 0 and g(z) (and its
odd extension ḡ(z)) has the form

L0 z

v0

−v0

∆z
g(z)ḡ(z)

L
2

We must therefore find the Fourier series of the odd extension ḡ of the function g. The development
coefficients gm are

gm =
2

L

∫ L

0

g(z) sin
(mπz

L

)
. (154)

Into the integral, obviously, only the section [L−∆z
2 , L+∆z

2 ] will contribute. We get the integral

gm =
2v0
L

∫ L+∆z
2

L−∆z
2

sin
(mπz

L

)
dz =

2v0
L

[
− L

mπ
cos
(mπz

L

)]L+∆z
2

L−∆z
2

=
2v0
mπ

(
cos

(
mπ

2
− mπ∆z

2L

)
− cos

(
mπ

2
+
mπ∆z

2L

))
.

(155)

Now it is still advantageous to use the sum formula in the form:

cos(α− β)− cos(α+ β) = 2 sin(α) sin(β), α =
mπ

2
, β =

mπ∆z

2L
. (156)

Hence, we get a simplified expression for gm:

gm =
4v0
mπ

sin
(mπ

2

)
sin

(
mπ∆z

2L

)
. (157)

We see that for even m we again get g2k = 0. For odd m = 2k− 1, we must solve what sin (2k−1)π
2

gives. For odd k ∈ {1, 3, 5, . . . } we get sin π
2 = 1 and for even k we get sin 3π

2 = −1. We can

therefore write sin (2k−1)π
2 = (−1)k−1. Hence

g2k−1 =
4v0

(2k − 1)π
(−1)k−1 sin

(
(2k − 1)π∆z

2L

)
. (158)

By comparing coefficients, we therefore obtain a system of equations

0 = Am sinφm, (159)

0 = A2kω2k cosφ2k, (160)

g2k−1 = A2k−1ω2k−1 cosφ2k−1. (161)
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I can therefore choose A2k = 0 and φ2k arbitrarily. We can choose φ2k−1 = 0, which ensures
cosφ2k−1 = 1 and the remaining set of equations then determines A2k−1 = g2k−1

ω2k−1
. We thus get

the resulting function

ψ(z, t) =

∞∑
k=1

4v0(−1)k−1

(2k − 1)πω2k−1
sin

(
(2k − 1)π∆z

2L

)
sin

(
(2k − 1)πz

L

)
sinω2k−1t. (162)

*Exercise 4.8. Initial problem for a string with free ends. Modify the procedure for finding a
specific solution from given initial conditions for a string of length L with free ends. The general
solution from the method of separation of variables might, for example, take the form

ψ(z, t) = z0 + v0t+

+∞∑
m=1

Am cos kmz sin(ωmt+ φm), where km =
mπ

L
and ωm =

√
T0
ρ0
km.

Solution: Substitute the above solution into the initial conditions ψ(z, 0) = f(z) and ∂ψ(z,0)
∂t =

g(z):

ψ(z, 0) = z0 +

+∞∑
m=1

(Am sinφm) cos kmz = f(z),

∂ψ(z, 0)

∂t
= v0 +

+∞∑
m=1

(Amωm cosφm) cos kmz = g(z). (163)

These are the equations for the unknowns Am, φm, z0, and v0. We see that we would need to
decompose the functions f and g into a superposition of cosines and a constant term. But exactly
this looks like the Fourier series of an even function! So, it suffices to consider even extensions of
functions f , g, let’s denote them again f̄ , ḡ, with properties:

(i) f̄ , ḡ are periodic with period 2L;

(ii) f̄ , ḡ are even;

(iii) f̄ , ḡ restricted to the interval [0, L] give the function f , g.

Their Fourier series are thus of the form

f(z) =
f0
2

+

+∞∑
m=1

fm cos
mπz

L
, g(z) =

g0
2

+

+∞∑
m=1

gm cos
mπz

L
, (164)

where

fm =
2

L

∫ L

0

f(z) cos
mπz

L
dz, gm =

2

L

∫ L

0

g(z) cos
mπz

L
dz, m ∈ N0. (165)

Substituting these developments into the initial conditions and comparing the series term by term,
we get equations

z0 =
f0
2
, Am sinφm = fm (m ∈ N), v0 =

g0
2
, Amωm cosφm = gm (m ∈ N). (166)

Solving for Am and φm, we get

Am =

√
f2m +

g2m
ω2
m

, sinφm =
fm
Am

, cosφm =
gm

Amωm
. (167)
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The angle φm ∈ [0, 2π) is uniquely determined by its sine and cosine values. The resulting specific
solution for motion is then in the form

ψ(z, t) =
f0
2

+
g0
2
t+

+∞∑
m=1

√
f2m +

g2m
ω2
m

cos kmz sin(ωmt+ φm). (168)

5 traveling and Standing Waves

Exercise 5.1. Two tuning forks emit 20 beats in 10 seconds. One tuning fork has a frequency
f = 256Hz. What is the frequency of the second tuning fork?

Solution: Our ear hears the superposition of two harmonic waves. For simplicity, assume they
have the same amplitude. Thus, x1(t) = A cos(ω1t+ φ1) and x2(t) = A cos(ω2t+ φ2). Then

x(t) = x1(t) + x2(t) = A (cos(ω1t+ φ1) + cos(ω2t+ φ))

= 2A cos

(
(ω1 + ω2)t+ φ1 + φ2

2

)
cos

(
(ω1 − ω2)t+ φ1 − φ2

2

)
.

(169)

The result is thus the product of two functions – oscillation with the average frequency fp =
f1+f2

2

and oscillation with the frequency fm = f1−f2
2 . This ”slow oscillation” modulates the amplitude

of the ”fast oscillations” twice per its period, see the figure. The frequency of beats fr is therefore
double compared to fm! fr = f1 − f2.

Since we do not know which tuning fork is tuned to a higher frequency, we have two possibilities:

f ′ = f ± fr. (170)

We have fr = 2Hz, and the second tuning fork therefore has 254 or 258 Hertz.

Exercise 5.2. What is the amplitude, period, phase velocity, and wavelength of a wave, expressed
in SI units by the equation

ψ(z, t) = 4 · 10−2 sin(2π(8t+ 5z)). (171)

Solution: The amplitude is the numerical factor before the harmonic function, thus A = 4 ·
10−2m = 4 cm. The period is the time it takes for a complete wave to pass a given point (z =
const). It can thus be directly obtained from the relation 2π8T = 2π. Hence, T = 1/8 s. Of
course, we also have 2πf = ω = 2π8 s−1 and T = 1/f .

To determine the phase velocity, let’s fix the phase value φ(z, t) = 2π(8t+ 5z) = φ0 = const. I
see that z can be expressed as a function of time: z(t) = 1

2π5 (φ0 − 2π8t). A place with a constant
phase thus moves uniformly linearly (in this case in the opposite direction of the z axis) with a
phase velocity v = ω

k = 2π8
2π5 m · s−1 = 8

5 m · s−1.

The wavelength is the distance traveled by any place with a constant phase over a period, thus
λ = v · T = ω

k · 2π
ω = 2π

k . Here the wave number is k = 2π5m−1, from which λ = 1
5 m = 20 cm.

Exercise 5.3. The superposition of two traveling waves traveling in the same direction is a traveling
wave. Show that the sum

A1 cos(ωt− kz + φ1) +A2 cos(ωt− kz + φ2) (172)

can be written as A cos(ωt− kz + φ). Determine the values of A and φ.
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Solution: Using the linearity of the Re function, we can rewrite the sum as

A1 cos(ωt− kz + φ1) +A2 cos(ωt− kz + φ2) = Re
[
(A1e

iφ1 +A2e
iφ2)ei(ωt−kz)

]
. (173)

The complex number A1e
iφ1 +A2e

iφ2 thus needs to be written in polar form Aeiφ. Then we get

Re
[
Aei(ωt−kz+φ)

]
= A cos(ωt− kz + φ). (174)

Determine the constants A and φ. We have

A2 = |A1e
iφ1 +A2e

iφ2 |2 = (A1e
iφ1 +A2e

iφ2)(A1e
−iφ1 +A2e

−iφ2)

= A2
1 +A2

2 +A1A2(e
i(φ1−φ2) + e−i(φ1−φ2))

= A2
1 +A2

2 + 2A1A2 cos(φ1 − φ2).

(175)

The argument φ is then determined by solving equations

cosφ =
Re[Aeiφ]

|Aeiφ|
=

Re
[
A1e

iφ1 +A2e
iφ2
]

A
=
A1 cosφ1 +A2 cosφ2

A
, (176)

sinφ =
Im[Aeiφ]

|Aeiφ|
=

Im
[
A1e

iφ1 +A2e
iφ2
]

A
=
A1 sinφ1 +A2 sinφ2

A
. (177)

Exercise 5.4. The superposition of two oppositely traveling traveling waves is a standing wave.
Show that the sum

A cos(ωt− kz + φ1) +A cos(ωt+ kz + φ2) (178)

is of the form X(z) cos(ωt+φ). Determine the form of function X(z) and the value of constant φ.

Solution: This is a simple application of the sum formula

cosα+ cosβ = 2 cos

(
α− β

2

)
cos

(
α+ β

2

)
. (179)

Here we have α = ωt+ kz + φ2, β = ωt− kz + φ1, hence we get

2A cos

(
kz +

φ2 − φ1

2

)
cos

(
ωt+

φ2 + φ1

2

)
. (180)

Hence, we get φ = (φ1 + φ2)/2 and the function X(z) has the form

X(z) = 2A cos

(
kz +

φ2 − φ1

2

)
. (181)

Exercise 5.5. Two sources on the z axis at z = −d and z = d oscillate according to the law
x1(t) = x2(t) = A cos(ωt) and emit waves in both directions. Determine the traveling waves from
each source and discuss the character of their superposition.

27



Solution: The beginning of the string can thus be considered as a source that oscillates with the
time dependence x(t) = A cos(ωt+φ). A traveling wave ψ(z, t) = x(t− z

v ) will thus be created on
the string. Here thus

ψ(z, t) = A cos
(
ω
(
t− z

v

)
+ φ

)
= A cos(ωt− kz + φ), (182)

where k = ω
v . The energy flux S is given by the relation

S = −T ∂ψ
∂t

∂ψ

∂z
= TωkA2 sin2(ωt− kz + φ). (183)

Substituting for the wave number from the dispersion relation, we get S =
√
Tρ · ω2A2 sin2(ωt −

kz + φ). The quantity Z =
√
Tρ is called impedance. Hence,

⟨S⟩ = Zω2A2⟨sin2(ωt− kz + φ)⟩. (184)

We have calculated that ⟨sin2(ωt)⟩ = 1
2 . The time average of a periodic function over its period

cannot depend (by definition) on the phase shift. If g(t) = f(t+ φ), we have

⟨g⟩ = 1

T

∫ a+T

a

f(t+ φ)dt =
1

T

∫ a+φ+T

a+φ

f(t)dt = ⟨f⟩. (185)

Hence,

⟨S⟩ = 1

2
Zω2A2 = 2π2f2A2Z = 2 · 9, 85 · 104 · 10−4 ·

√
400 · 10−2 ≈ 39, 5W. (186)

Exercise 5.6. Show that the energy flux vector on a string over which two oppositely traveling
traveling waves propagate is equal to the sum of the fluxes corresponding to the individual waves.
Hint: Consider d’Alembert’s solution and show that the interference term in this case vanishes.

Solution: We need to calculate the energy flux for a wave of the form ψ(z, t) = ψ1(z, t)+ψ2(z, t),

where ψ1(z, t) = F (z − vt), ψ2(z, t) = G(z + vt), and v = ω
k =

√
T
ρ is the phase velocity given by

the material and tension of the string. The calculation by substitution into the definition of flux
then gives

S(z, t) = −T ∂ψ
∂t

∂ψ

∂z
= −T ∂(ψ1 + ψ2)

∂t

∂(ψ1 + ψ2)

∂z
=

= −T ∂ψ1

∂t

∂ψ1

∂z
− T

∂ψ2

∂t

∂ψ2

∂z
− T

(
∂ψ1

∂t

∂ψ2

∂z
+
∂ψ2

∂t

∂ψ1

∂z

)
= S1(z, t) + S2(z, t)− T

(
∂ψ1

∂t

∂ψ2

∂z
+
∂ψ2

∂t

∂ψ1

∂z

)
. (187)

Direct substitution verifies that the interference term vanishes:

∂ψ1

∂t

∂ψ2

∂z
+
∂ψ2

∂t

∂ψ1

∂z
= −vF ′(z − vt)G′(z + vt) + vG′(z + vt)F ′(z − vt) = 0. (188)

Therefore, S(z, t) = S1(z, t) + S2(z, t).

Exercise 5.7. Two harmonic traveling waves travel in the same direction on a string in super-
position. They have the same wavelength and angular frequency. If the intensity (time-averaged
energy flux) of each wave is I, what must be the phase difference between these waves for the
resulting intensity to be 0, I, 2I, 4I?
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Solution: Above, we calculated that the intensity I = ⟨S⟩ for a harmonic traveling wave ψ(z, t) =
A cos(ωt− kz + φ) comes out as I = 1

2Zω
2A2.

Thus, we have two traveling waves ψ1(z, t) = A1 cos(ωt− kz + φ1) and ψ2(z, t) = A2 cos(ωt−
kz + φ2). The condition is I1 = I2 = I, from which immediately A1 = A2. Their superposition is
again a traveling wave. Using sum formulas, it turns out

ψ(z, t) = 2A cos
φ2 − φ1

2
cos

(
ωt− kz +

φ1 + φ2

2

)
. (189)

The resulting intensity is to be α · I, hence we get the equation

α · 1
2
Zω2A2 =

1

2
Zω2

(
2A cos

φ1 − φ2

2

)2

. (190)

A lot of terms immediately cancel out, and we get the relation

α = 4 cos2
φ1 − φ2

2
. (191)

Let ∆φ = φ1 −φ2. Now we just need to find the individual solutions. The phase shift ∆φ suffices
to search in the interval [0, 2π) (and thus ∆φ

2 ∈ [0, π)). We obtain successively:

(i) α = 0. Destructive interference. We solve 0 = cos2(∆φ/2). From here, ∆φ = π.

(ii) α = 1. We solve 1/4 = cos2(∆φ/2). Thus, we need to satisfy cos(∆φ/2) = ±1/2. This
happens for ∆φ/2 ∈ {π3 ,

2π
3 }, hence ∆φ ∈ { 2π

3 ,
4π
3 }.

(iii) α = 2. We solve 1/2 = cos2(∆φ/2) and hence the equation cos(∆φ/2) = ±
√
2
2 . This happens

for ∆φ/2 ∈ {π4 ,
3π
4 }. Thus, ∆φ ∈ {π2 ,

3π
2 }.

(iv) α = 4. Constructive interference. We solve 1 = cos2(∆φ/2), i.e., cos(∆φ/2) = ±1, which
gives ∆φ = 0.

6 Wave packets, uncertainty relations, group velocity

Exercise 6.1. Find the form of the wave packet f(t) for a spectrum shaped B(ω) = 0 and

A(ω) =

{
A0 for ω ∈ [ω0 − ∆ω

2 , ω0 +
∆ω
2 ],

0 otherwise .
(192)

Show how the spectrum width ∆ω is related to the duration of the packet ∆t defined here as the
distance between the first zero points of the amplitude envelope of the wave packet.

Solution: The source of the wave packet is given by its spectral functions A(ω) and B(ω) through
a continuous Fourier transform:

f(t) =

∫ ∞

0

A(ω) cosωt+B(ω) sinωt dω. (193)

Functions A(ω) and B(ω) can be recovered from the function f by

A(ω) =
1

π

∫ ∞

−∞
f(t) cosωt dt, B(ω) =

1

π

∫ ∞

−∞
f(t) sinωt dt. (194)
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Here we compute the integral

f(t) =

∫ ∞

0

A(ω) cosωt dω =

∫ ω0+
∆ω
2

ω0−∆ω
2

A0 cosωt dω

= A0
1

t
[sinωt]

ω0+
∆ω
2

ω0−∆ω
2

=
A0

t

[
sin

(
ω0 +

∆ω

2

)
t− sin

(
ω0 −

∆ω

2

)
t

]
=

2A0

t
cosω0t sin

∆ω · t
2

= A0∆ω
sin ∆ω·t

2
∆ω·t
2

cosω0t.

(195)

Resulting time evolution of the signal see figure.

t

x(t)

t+t−

A∆ω

The resulting traveling wave in a non-dispersive medium would then be ψ(z, t) = f(t − z
v ). The

width of the wave packet ∆t is obtained as the distance of the first zeros of the amplitude envelope

A0∆ω
sin ∆ω·t

2
∆ω·t

2

, thus ∆t = t+ − t−, where t± are the solutions of the equation sin ∆ω·t±
2 = 0, i.e.,

∆ω·t±
2 = ±π. Hence, t± = ± 2π

∆ω and from this

∆ω ·∆t = 4π. (196)

Exercise 6.2. Consider a rectangular pulse f(t) of the form

f(t) =

{
A0 for ω ∈ [−∆t

2 ,
∆t
2 ],

0 otherwise .
(197)

Find its spectrum. Show how the pulse duration ∆t is related to the width of its frequency
spectrum ∆ω, here defined as the first zero of the frequency spectrum.
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Solution: Similar to Fourier series, it is easy to see that for even functions B(ω) = 0 and for
odd A(ω) = 0. The given function f is even, so it suffices to calculate A(ω):

A(ω) =
1

π

∫ ∞

−∞
f(t) cosωt dt =

2

π

∫ ∞

0

f(t) cosωt dt =
2

π

∫ ∆t
2

0

A0cosωt dt

=
2A0

πω
[sinωt]

∆t
2

0 =
A0

π

sin ∆t ω
2

∆t ω
2

.

(198)

The first zero of the spectral function thus occurs at point ω0, where sin ∆t ω0

2 = 0, i.e., for
∆t ω0

2 = π. Since here ∆ω = ω0, we obtain the relation

∆t ·∆ω = 2π. (199)

*Exercise 6.3. Consider damped oscillation f(t) in the form

f(t) =

{
0 for t < 0,
e−αt cos(ω0t) otherwise .

(200)

Find its spectrum.

Solution: The result is obtained by direct calculation, i.e.,

A(ω) =
1

π

∫ ∞

−∞
f(t) cosωt dt =

1

π

∫ ∞

0

e−αt cosω0t cosωt dt

=
1

2π

∫ ∞

0

e−αt
(
cos(ω + ω0)t+ cos(ω − ω0)t

)
dt

(201)

Now we use the results of exercise 2.13, where we found∫ ∞

0

e−ax cos bx dx =
a

a2 + b2
. (202)

Substituting into this formula, we get

A(ω) =
1

2π

(
α

α2 + (ω + ω0)2
+

α

α2 + (ω − ω0)2

)
. (203)

For the second spectral function, a similar calculation yields

B(ω) =
1

π

∫ ∞

−∞
f(t) sinωt dt =

1

π

∫ ∞

0

e−αt sinωt cosω0t dt

=
1

2π

∫ ∞

0

e−αt
(
sin(ω + ω0)t− sin(ω − ω0)t

)
dt

=
1

2π

(
ω + ω0

α2 + (ω + ω0)2
− ω − ω0

α2 + (ω − ω0)2

)
.

(204)

Exercise 6.4. Wi-Fi covers a frequency range of 20 MHz (channel width). Estimate its transmis-
sion speed. Use the uncertainty relation.
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Solution: We imagine the Wi-Fi signal as sending wave packets, which we can generate with the
given frequency range. Thus, we know the spectrum width ∆ω = 2π∆f . The duration of the wave
packet ∆t satisfies the uncertainty relation ∆ω ·∆t ≥ π. This gives us a lower estimate for ∆t,
i.e.,

∆t ≥ π

∆ω
. (205)

Sending data using the Wi-Fi signal is imagined as sending packets at regular time intervals, where
sending = 1 and not sending = 0. To be clearly distinguishable, the shortest interval with which
we can transmit them is ∆t. See figure:

∆t

1 0 1 1

In one second, therefore, we can transmit at most N = 1
∆t bits. Thus, we get an upper estimate

of the transmission speed N = 1
∆t ≤

∆ω
π = 2∆f = 40 · 106 b/s = 40Mbit/s.

*Exercise 6.5. Estimate the maximum frequency of trill ftr of two tones separated by a semitone
depending on the frequency of one of the tones in the trill f . Use the uncertainty relation. Why
is trilling not performed on a tuba?

Solution: Trilling, i.e., the rapid alternating playing of two close tones, at a frequency ftr can
be imagined as alternately sending two wave packets. Assume that both tones sound for the same
duration. The time width of both packets will then be ∆t = 1

2ftr
. See figure:

∆t

The spectrum of each packet will have a maximum around the respective angular frequencies of
the tones ω1 and ω2. Both spectra will have a minimum width given by the uncertainty relations
∆ω ≥ π

∆t . The resulting spectral function is their superposition:
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ωω1 ω2

∆ω ∆ω

The condition for distinguishing both tones will be that the spectral ”peaks” do not overlap,
which gives us the condition ω2 − ω1 ≥ ∆ω. Overall, we get an estimate ω2 − ω1 ≥ 2πftr. In
terms of frequencies, then f2 − f1 ≥ ftr. The higher frequency is a semitone higher. Considering
well-tempered tuning, then f2 = 12

√
2 · f1. The resulting estimate is thus

ftr ≤ (
12
√
2− 1)f1. (206)

For information, we have 12
√
2 ≈ 1.06 and thus approximately ftr ≤ 0.06 · f1. The fundamental

tone of the tuba is typically around 32Hz. The maximum frequency of trill on a tuba is then
approximately 1.9 Hz!

Exercise 6.6. A linear dispersion relation is of the form ω = vk, where v = const. Such a medium
is called non-dispersive. Determine the phase and group velocity.

Solution: The phase velocity vφ is obtained from the dispersion relation

ω = ω(k) by vφ(k) =
ω(k)
k . The group velocity vg then by the derivative with respect to the

wave number vg(k) =
dω
dk (k). Here, thus vφ = vg = v.

Exercise 6.7. Determine the phase and group velocity for electromagnetic waves in plasma. This
medium is described by the dispersion relation ω2 = ω2

min + c2k2. Is the phase or group velocity
greater than the speed of light? What does this mean?

Solution: We have

vφ(k) =
ω

k
=

1

k

√
ω2
min + c2k2 =

√
c2 +

(ωmin
k

)2
= c ·

√
1 +

(ωmin
ck

)2
> c. (207)

The group velocity then

vg(k) =
dω

dk
=

c2k√
ω2
min + c2k2

= c · 1√
1 + (ωmin

ck )2
< c. (208)

The magnitude of the phase velocity can be greater than c without any problems – this would
correspond to the propagation speed of a monochromatic wave with constant amplitude – which
does not carry any information. Conversely, the group velocity – the speed of propagation of wave
packets – is less than the speed of light.

Exercise 6.8. Consider light in a material with a refractive index n, which is defined as n = c
vφ

.

The refractive index in the material for a simple electron model is described as

n(ω) = 1 +
α

ω2
0 − ω2

,

where α > 0 and we consider only ω < ω0. Determine the group velocity and show that it is less
than the speed of light.
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Solution: From the definition of the refractive index, we get the phase velocity as

vφ(ω) =
c

n(ω)
. (209)

Also, we know that the phase velocity is given by vφ = ω/k. We can thus easily express the
dispersion relation k = k(ω) as

k(ω) =
ω

vφ
=
n(ω)

c
ω. (210)

This inverse form (as opposed to ω = ω(k)) is preferred since we have the function of refractive
index n(ω) as a function of angular frequency ω. Then, we need to calculate the inverse of the
group velocity (to be able to derive the inverse function):

1

vg(ω)
=

1
dω
dk

=
dk(ω)

dω
. (211)

From this, we get
1

vg
=
dk

dω
=

1

c

(
n(ω) + ω

dn(ω)

dω

)
. (212)

In our specific case, dndω = 2αω
(ω2

0−ω2)2
, thus

dk

dω
(ω) =

1

c

(
1 +

α(ω2
0 + ω2)

(ω2
0 − ω2)2

)
>

1

c
. (213)

Substituting, we obtain the final expression for the group velocity vg as a function of ω:

vg(ω) =
c

1 +
α(ω2

0+ω
2)

(ω2
0−ω2)2

< c. (214)

Exercise 6.9. Show that for light in a medium with refractive index n(λ0), where λ0 is the
wavelength of light in vacuum, it holds

1

vg
=

1

vφ
− λ0

c

dn

dλ0
. (215)

Solution: The wavelength of light in vacuum is λ0 = 2π
k0
, where k0 is the wave number in vacuum

given by the dispersion relation ω = ck0. We can thus express the wavelength using the angular
frequency ω as λ0 = 2πc

ω . With this substitution, we get the refractive index function from variable
ω: n(λ0(ω)) = n( 2πcω ).

From the previous example, we know

1

vg
=
dk

dω
=

1

c

(
n(ω) + ω

dn(ω)

dω

)
. (216)

The first term on the right side is 1
vφ

= n
c . In the second term, we express ω as a function of

vacuum wavelength ω = 2πc
λ0

and must now derive the refractive index function as a composite
function:

dn

dω
=

dn

dλ0

dλ0
dω

=
dn

dλ0

d

dω

(
2πc

ω

)
= −2πc

ω2

dn

dλ0
. (217)

Substituting these results, we obtain the sought relation

1

vg
=

1

vφ
− λ0

c

dn

dλ0
. (218)
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7 Reflections

*Exercise 7.1. Derive the telegraph equations for the voltage and current waves u(z, t) and i(z, t)
on a homogeneous transmission line in the form

−∂u
∂z

= Ri+ L
∂i

∂t
, − ∂i

∂z
= Gu+ C

∂u

∂t
, (219)

where L is the inductance per unit length of the line, [L] = H.m−1, C is the capacitance, [C]
= F.m−1, R is the resistance, [R] = Ω.m−1, and G is the conductance per unit length, [G] =
Ω−1.m−1. Derive the equations by analyzing the equivalent circuit of a segment of line length ∆z:

L∆zR∆z

1
G∆z C ∆z

∆z

u(z, t) u(z + ∆z, t)

i(z, t) i(z + ∆z, t)

Solution: When the chosen direction of current leads to a voltage drop across the resistor and
inductor, we thus obtain the following equation:

u(z +∆z, t) = u(z, t)−R∆z · i(z, t)− L∆z · ∂i
∂t

(z, t). (220)

Dividing by ∆z and rearranging, we obtain

u(z +∆z, t)− u(z, t)

∆z
= −R · i(z, t)− L · ∂i

∂t
(z, t). (221)

Taking the limit as ∆z → 0 gives us the desired equation. Similarly, a decrease in current occurs,
where part G∆z ·u(z+∆z, t) leaks through the leakage resistance and C∆z · ∂u∂t (z+∆z, t) charges
the capacitor. Thus, we obtain the equation

i(z +∆z, t) = i(z, t)−G∆z · u(z +∆z, t)− C∆z · ∂u
∂t

(z +∆z, t). (222)

Dividing by ∆z, we get

i(z +∆z, t)− i(z, t)

∆z
= −G · u(z +∆z, t)− C · ∂u

∂t
(z +∆z, t). (223)

Thus, taking the limit as ∆z → 0 gives us the second equation.

Exercise 7.2. Consider an ideal homogeneous line, where R = G = 0. Show that the telegraph
equations yield wave equations for the functions u(z, t) and i(z, t). Find the d’Alembert solution
satisfying the original telegraph equations.

Hint #1: Consider an ansatz in the form of d’Alembert solutions

u(z, t) = F (z − vt) +G(z + vt), i(z, t) = α1F (z − vt) + α2G(z + vt). (224)

Hint #2: Substitute the d’Alembert solution for u into the telegraph equations and solve for i.

Note: The proportionality coefficient between the voltage and current wave is called the
impedance Z.
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Solution: The telegraph equations for an ideal line now take the form

−∂u
∂z

= L
∂i

∂t
, − ∂i

∂z
= C

∂u

∂t
. (225)

Partially differentiate the first equation with respect to z and substitute from the second equation:

∂2u

∂z2
= −L ∂

∂t

(
∂i

∂z

)
= LC

∂2u

∂t2
. (226)

This is indeed the wave equation for u in the form

∂2u

∂t2
= v2

∂2u

∂z2
, (227)

where v = 1√
LC

. By a similar method, we obtain the wave equation for current i: differentiate the

second equation with respect to z and substitute from the first:

∂2i

∂z2
= −C ∂

∂t

(
∂u

∂z

)
= LC

∂2i

∂t2
→ ∂2i

∂t2
=

1

LC

∂2i

∂z2
. (228)

Hint #1: These equations have a general solution in the d’Alembert form, for voltage u(z, t) =
F (z − vt) + G(z + vt) for any twice differentiable functions F,G : R → R. The resulting wave
equations turned out independent for functions u and i, but the original telegraph equations u
and i bind them together! Therefore, we cannot simply take any d’Alembert solution for i! The
solution for i is found by solving the telegraph equations after substituting the found form of u:

∂i

∂t
= − 1

L

(
F ′(z − vt) +G′(z + vt)

)
, (229)

∂i

∂z
=

√
C

L

(
F ′(z − vt)−G′(z + vt)

)
. (230)

The second equation is easily solved by integrating with respect to z, yielding

i(z, t) =

√
C

L

(
F (z − vt)−G(z + vt)

)
+ i0(t). (231)

Upon substituting into the first equation, we obtain d
dt i0(t) = 0, from which we see that except for

a constant current value i0 = const., which is uninteresting, we therefore choose i0 = 0, i must be
in the form

i(z, t) =

√
C

L

(
F (z − vt)−G(z + vt)

)
. (232)

We see that the impedance is given by the relationship Z = U
I =

√
L
C . Note, the left-traveling

current wave has the opposite sign! The resulting forms of voltage and current waves on the
telegraphic line are thus

u(z, t) = F (z−vt)+G(z+vt), i(z, t) =
1

Z
F (z−vt)− 1

Z
G(z+vt), v =

1√
LC

, Z =

√
L

C
. (233)

Hint #2: If we substitute the prescribed ansatze into the telegraph equations, we get:

−F ′(z − vt)−G′(z + vt) = L
(
α1(−v)F ′(z − vt) + α2vG

′(z + vt)
)
,

−
(
α1F

′(z − vt) + α2G
′(z + vt)

)
= C

(
(−v)F ′(z − vt) + vG′(z + vt)

)
. (234)
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After adjusting

0 =
(
1− α1vL

)
F ′(z − vt) +

(
1 + α2vL

)
G′(z + vt),

0 =
(
α1 − vC

)
F ′(z − vt) +

(
α2 + vC

)
G′(z + vt). (235)

For general waves, F ′(x) and G′(x) are linearly independent functions, so for their linear combi-
nation to equal zero, the corresponding coefficients standing by them must equal zero, leading to
conditions for the constants α1 and α2:

1

vL
= α1 = vC, − 1

vL
= α2 = −vC. (236)

After substituting v = 1√
LC

, we consistently get α1 = 1
Z =

√
C
L = −α2. Thus, the same result as

in the first guide.

Exercise 7.3. A homogeneous transmission line with impedance Z is terminated with a shunt
resistor of size Rs. Find the reflection coefficient R for the voltage waves arriving along the line.
Discuss the special cases Rs = 0 (short circuit), Rs = +∞ (disconnected resistor) and R = 0
(nothing is reflected). Use harmonic traveling waves.

Solution: The transmission line is therefore terminated as follows:

Z Rs

i(z, t)

u(z, t)

We consider the harmonic incident ud and reflected ur voltage waves of forms:

ud(z, t) = ei(ωt−kz), ur(z, t) = Rei(ωt+kz), (237)

where R ∈ C is the reflection coefficient encoding the change in amplitude of the reflected wave
(and possibly phase shift, if it comes out complex; R = |R|eiφ). The corresponding incident id and
reflected ir current waves according to the results of the previous exercise are

id(z, t) =
ud(z, t)

Z
=

1

Z
ei(ωt−kz), ir(z, t) = −ur(z, t)

Z
= − 1

Z
Rei(ωt+kz). (238)

The function of the total voltage and current on the line then is u(z, t) = ud(z, t) + ur(z, t) and
i(z, t) = id(z, t)+ir(z, t). Consider the termination of the line at z = 0. The boundary condition of
this termination is simply given by Ohm’s law – the voltage drop on the terminating resistor is given
by the product of its resistance Rs and the current flowing through it: u(0, t) = Rs i(0, t), ∀t ∈ R.
After substituting the forms of individual waves:

eiωt +Reiωt = Rs

(
1

Z
eiωt − 1

Z
Reiωt

)
. (239)

We can cancel out the exponentials and have 1 + R = Rs

Z (1 − R). From this equation, we easily
express the resulting reflection coefficient

R =
Rs − Z

Rs + Z
. (240)
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For a short circuit (Rs = 0), we immediately get R = −1, and for a disconnected resistor (Rs =

+∞), it makes sense to write the reflection coefficient in the form R =
1− Z

Rs

1+ Z
Rs

and thus then R = 1.

The condition for R = 0 is Rs = Z – thus, it is necessary to terminate the line with a shunt resistor
of the same size as the impedance of the given line.

Exercise 7.4. A homogeneous transmission line with impedance Z1 = 50Ω is connected to a
line with impedance Z2 = 100Ω. Find the transmission and reflection coefficients for voltage and
current waves coming from the first line to the second. If a pulse with an amplitude of 15V hits
the interface, what will be the amplitude of the transmitted and reflected waves?

Guide: Set up the appropriate connection conditions. Use harmonic traveling waves.

Solution: We proceed similarly as in the previous example. Now, however, we need to describe
the voltage and current on two different lines, let’s denote them u1,2 and i1,2.

Z1 Z2u1(z, t) u2(z, t)

i1(z, t) i2(z, t)

Then on the left line, we have the incident and reflected wave, hence u1 = ud+ur and i1 = id+ ir,
on the right line we have the transmitted wave, u2 = up and i2 = ip. The forms of individual
voltage and current waves are then

ud(z, t) = ei(ωt−k1z), ur(z, t) = Rei(ωt+k1z), up(z, t) = P ei(ωt−k2z), (241)

id(z, t) =
1

Z1
ei(ωt−k1z), ir(z, t) = − 1

Z1
Rei(ωt+k1z), ip(z, t) =

1

Z2
P ei(ωt−k2z), (242)

where we introduced the reflection coefficient R and the transmission coefficient P and further the
wave numbers on individual lines k1 and k2. The coefficients P and R are determined from the
conditions of connection at the interface, let’s place it at z = 0. At the interface, nothing special
happens. The current and voltage at z = 0 must therefore continuously follow:

u1(0, t) = u2(0, t), i1(0, t) = i2(0, t). (243)

After substituting the forms of individual waves, we obtain equations

(1 +R)eiωt = Peiωt,
1

Z1
(1−R)eiωt =

1

Z2
Peiωt. (244)

From the continuity of voltage, we have 1 +R = P , from the equation for currents 1−R = Z1

Z2
P .

Solving these equations, we get

R =
Z2 − Z1

Z2 + Z1
, P =

2Z2

Z2 + Z1
. (245)

For the given values, we therefore have R = (100− 50)/(100 + 50) = 1/3 and thus P = 4/3. The
amplitudes of the transmitted and reflected waves will therefore be 20V and 5V .
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Exercise 7.5. A homogeneous transmission line with impedance Z1 = 50Ω is connected to a line
with impedance Z2 = 100Ω in the following two ways:

Z1 Z2Rs Z1 Z2Rb

Find the transmission and reflection coefficients for voltage waves for these two situations. Un-
der what conditions does no reflection occur? Use harmonic traveling waves. Write down the
connection conditions and solve them.

Solution: The difference compared to

the previous task is only in the conditions of connection. Here, a step change in current or
voltage may occur. The voltage and current waves will look exactly the same as in the previous
task.

Consider the first of the cases. Here, the voltage at the interface is continuous, but part of the
current leaks through the shunt resistor:

u1(0, t) = u2(0, t), i1(0, t) = i2(0, t) + is(t), (246)

where the shunt current is(t) is given by Ohm’s law is(t) =
u1,2(0,t)
Rs

– in the fraction we can
choose either u1 or u2, since these are equal at the point of connection; and since u2 has a simpler
expression than u1, let’s choose the shunt current in the form is = u2

Rs
. After substituting the

forms of waves from the previous example, we get equations

1 +R = P,
1

Z1
(1−R) =

1

Z2
P +

1

Rs
P. (247)

We adjust the second equation to the form 1 − R = Z1(
1
Z2

+ 1
Rs

)P . Solving them gives us the
coefficients

R =
Rs(Z2 − Z1)− Z1Z2

Z1Z2 +RsZ1 +RsZ2
, P =

2Z2Rs
Z1Z2 +RsZ1 +RsZ2

. (248)

If we require R = 0, then we get the condition Rs(Z2 − Z1) = Z1Z2, i.e., Rs =
Z1Z2

Z2−Z1
. Physically

only Rs > 0 is possible, and thus, to eliminate reflections in this connection of two lines, it is
necessary that Z2 > Z1. Therefore, to eliminate reflections for the given impedance values, we
must choose Rs =

50·100
100−50 = 100Ω.

Now consider the second case. Here, the currents are continuous, but the voltage has a jump
due to the voltage drop on the lateral resistor Rb:

u1(0, t) = u2(0, t) + ub(t), i1(0, t) = i2(0, t), (249)

where the voltage drop ub is expressed using Ohm’s law ub(t) = Rb i1,2(0, t) – from the continuity
of current at the point of connection, it again does not matter whether we use function i1 or i2,
we choose again for a simpler form i2. Substitute into the conditions of connection the forms of
voltage and current waves:

1 +R = P +Rb
1

Z2
P,

1

Z1
− 1

Z1
R =

1

Z2
P. (250)
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After adjustment, we have equations 1 +R = (1+ Rb

Z2
)P , 1−R = Z1

Z2
P . Solving them gives us the

coefficients

R =
Z2 − Z1 +Rb
Z1 + Z2 +Rb

, P =
2Z2

Z1 + Z2 +Rb
. (251)

Conditions for the disappearance of reflections, R = 0, leads to the size of the lateral resistor
Rb = Z1 − Z2. Again, from the requirement Rb > 0, it follows that in this configuration, we can
eliminate reflections only for lines satisfying Z1 > Z2. For the given impedance values, therefore,
this configuration cannot be used.

Exercise 7.6. Consider three media interconnected through two interfaces, one at z = 0 and the
other at z = L. Let’s denote the amplitude transmission and reflection coefficients as Tij and Rij
representing the transmission and reflection coefficients when transitioning from the i-th to the
j-th medium. The wave numbers in the individual media are k1, k2, k3. Consider a harmonic
incident wave of the form Aei(ωt−k1z). Find the total reflection coefficient R ∈ C, i.e., the total
reflected wave of the form ARei(ωt+k1z) = A|R|ei(ωt+k1z+φ) resulting from an infinite superposition
of reflected waves between two interfaces. Require the continuity of phase functions of individual
waves at the interfaces.

At the end, specialize the result, considering the relations 1 +Rij = Tij and Rij = −Rji.

Solution: Here we have directly given the amplitude transmission and reflection coefficients
at individual interfaces. What remains is to consider what continuity of phase functions at the
interface means. For simplicity, consider one interface at z = L between media with wave numbers
k1 and k2. Considering an incident, reflected, and transmitted wave of the forms

ψd(z, t) = ei(ωt−k1z+ϕd), ψr(z, t) = R12e
i(ωt+k1z+ϕr), ψp(z, t) = T12e

i(ωt−k2z+ϕp), (252)

where we consider general phase shifts ϕd, ϕr, and ϕp in individual waves. The phase functions of
individual waves are thus in the form

φd(z, t) = ωt− k1z + ϕd, φr(z, t) = ωt+ k1z + ϕr, φp(z, t) = ωt− k2z + ϕp. (253)

The requirement of continuity of these phases upon reflection and transmission at coordinate z = L
leads to requirements

φd(L, t) = φr(L, t), φd(L, t) = φp(L, t), (254)

ωt− k1L+ ϕd = ωt+ k1L+ ϕr, ωt− k1L+ ϕd = ωt− k2L+ ϕp. (255)

From these relations, we can easily express the phase shifts of the reflected and transmitted waves:

ϕr = ϕd − 2k1L, ϕp = ϕd + (k2 − k1)L. (256)

Upon reflection away from z = 0, there are phase shifts in the reflected and transmitted waves!
These need to be added at each reflection or transmission, as we will see later. On the other hand,
for z = 0, nothing needs to be resolved, as ϕr = ϕd and ϕp = ϕd – the phase shifts remain the
same as for the incident wave.

We could also have started from the fact that nothing special happens for the interface at z = 0
(i.e., we do not need to deal with phase) and introduce a substitution z′ = z + L to move the
interface to z′ = L, then we would have

ψd(z, t) = ei(ωt−k1z) = ei(ωt−k1z
′+k1L), (257)

ψr(z, t) = R12 e
i(ωt+k1z) = R12 e

i(ωt+k1z
′−k1L) = R12 e

−2ik2Lei(ωt−k1z
′+k1L), (258)

ψp(z, t) = T12 e
i(ωt−k2z) = T12 e

i(ωt−k2z′−k2L) = T12 e
i(k2−k1)Lei(ωt−k1z

′+k1L), (259)
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where in the last adjustment for the reflected and transmitted wave, we factored out the phase
shift compared to the incident wave.

Proceed to solving the task with two interfaces. Let A = 1 for simplicity, saving us writing.

Now denote ψ
(n)
r (z, t) the wave that reflected back into the first medium and reflected exactly n

times at the second interface. See the figure:

ψd

1

1st interface 2nd interface

... ...

ψ
(0)
r

ψ
(1)
r

ψ
(2)
r

ψ
(n)
r

...

...
...

...

...

ψ′

ψ′′

ψ′′′

The individual waves are obtained by accounting for the respective amplitude coefficients at indi-
vidual interfaces and adding a phase ∆φ = −2k2L for each reflection at the second interface. We
have

ψ(0)
r (z, t) = R12 e

i(ωt+k1z). (260)

The wave ψ
(1)
r (z, t), which reflects exactly once at the second interface, is obtained from the wave

transmitted through the first interface ψ′(z, t) = T12 e
i(ωt−k2z), by reflection from the second

interface ψ′′(z, t) = R23T12 e
i(ωt+k2z−2k2L) and finally by passing back through the first interface,

thus
ψ(1)
r (z, t) = T21R23T12 e

i(ωt+k1z−2k2L). (261)

Continuing similarly, to obtain ψ
(2)
r (z, t), we take the wave ψ′′(z, t), reflect it to the right from

the first interface (getting wave ψ′′′(z, t) = R21R23T12e
i(ωt−k2z−2k2L)), reflect it from the second

interface (adding R23e
−2ik2L), and let it pass back into the first medium (adding T21). We get

ψ(2)
r (z, t) = T21R21R

2
23T12 e

i(ωt+k1z−4k2L). (262)

From here, we can deduce a general formula – for each ”inner reflection,” an additional factor
R21R23e

−2ik2L is added. We get

ψ(n)
r (z, t) = T21R

n−1
21 Rn23T12 e

i(ωt+k1z−2nk2L). (263)

To obtain the total reflected wave ψr(z, t), we must sum the individual contributions, ψr(z, t) =∑+∞
k=0 ψ

(k)
r (z, t). We thus get a series

ψr(z, t) = ψ(0)
r (z, t) +

+∞∑
k=1

ψ(k)
r (z, t) =

[
R12 +

T21T12
R21

∞∑
k=1

(
R21R23e

−2ik2L
)k]

ei(ωt+k1z). (264)

The expression in square brackets is the sought total reflection coefficient R. We greatly simplify
the expression by summing the geometric series using the formula

∑+∞
k=1 x

k = (
∑+∞
k=0 x

k) − 1 =
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1
1−x − 1 = x

1−x for x = R21R23e
−2ik2L:

R = R12 +
T21T12
R21

R21R23e
−2ik2L

1−R21R23e−2ik2L
= R12 +

T21T12R23e
−2ik2L

1−R21R23e−2ik2L
. (265)

Considering at the end the relations R21 = −R12, T12 = 1+R12, T21 = 1−R12 we get an expression
for the total reflection coefficient R only dependent on the reflectivities at the individual interfaces
R12 and R23:

R = R12 +
(1−R2

12)R23e
−2ik2L

1 +R12R23e−2ik2L
=

R12 +R23e
−2ik2L

1 +R12R23e−2ik2L
. (266)

*Exercise 7.7. Find the total transmission coefficient T ∈ C, i.e., the total transmitted wave
ATei(ωt−k3z) for the situation described in the previous exercise.

Solution: The solution process will be very similar to the previous example. We already know

how phase behaves during transmission and reflection at the interface at z = L. Now denote ψ
(n)
p

the wave that transmitted into the third medium, but on its way reflected exactly n times at the
second interface, see the figure:

ψd

1

1st interface 2nd interface

... ...

...

...
...

...
...

ψ′

ψ′′

ψ′′′

ψ
(0)
p

ψ
(1)
p

ψ
(2)
p

ψ
(k)
p

The wave ψ
(0)
p (z, t) is created from the wave ψ′(z, t) = T12 e

i(ωt−k2z) (see previous example) by
passing through the second interface:

ψ(0)
p (z, t) = T23T12e

i(k3−k2)Lei(ωt−k3z), (267)

where, in addition to the amplitude coefficient T23, we also added the phase shift ∆φ = (k3−k2)L
for passing through the interface at z = L (see the first part of the previous example). Similarly,

we obtain the wave ψ
(1)
p (z, t) from the wave ψ′′′(z, t) = R21R23T12e

i(ωt−k2z−2k2L):

ψ(1)
p (z, t) = T23R21R23T12e

−2ik2Lei(k3−k2)Lei(ωt−k3z). (268)

Each subsequent transmitted wave will have one more reflection on the internal sides of the inter-
faces, hence

ψ(2)
p (z, t) = T23R

2
21R

2
23T12(e

−2ik2L)2ei(k3−k2)Lei(ωt−k3z). (269)

We can easily deduce the expression for the k-th transmitted wave

ψ(k)
p (z, t) = T23R

k
21R

k
23T12(e

−2ik2L)kei(k3−k2)Lei(ωt−k3z). (270)
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Now, to obtain the total transmitted wave ψp(z, t),

we must sum the individual contributions:

ψp(z, t) =

+∞∑
k=0

ψ(k)
p (z, t) =

[
T12T23e

i(k3−k2)L
+∞∑
k=0

(
R21R23e

−2ik2L
)k]

ei(ωt−k3z). (271)

The expression in square brackets is our sought total transmission coefficient T . We simplify the
expression again by summing an infinite geometric series,

∑+∞
k=0 x

k = 1
1−x for x = R21R23e

−2ik2L,
hence

T =
T12T23e

i(k3−k2)L

1−R21R23e−2ik2L
. (272)

Considering at the end R21 = −R12, T12 = 1 +R12, and T23 = 1 +R23 we get

T =
(1 +R12)(1 +R23)e

i(k3−k2)L

1 +R12R23e−2ik2L
. (273)

Exercise 7.8. A transition matrix D is given. Find the transmission P and reflection R coefficients
for a wave coming from the first (left) medium into the second (right) one.

Solution: The transfer matrix D ∈ C2,2 is defined by the equation(
A1R

A1L

)
= D

(
A2R

A2L

)
, (274)

where A1R and A1L are the amplitudes of harmonic traveling waves moving to the right (respec-
tively, to the left) in the medium to the left of the interface, A2R and A2L similarly to the right of
the interface, see the figure.

ψ1R

A1L

ψ1L

A2R

ψ2R

ψ2L

A2L

A1R

The matrix D would be obtained by solving the conditions of wave function connection at the
interface. To find P and R, consider A1R = 1, A1L = R, A2R = P , and A2L = 0:

1

ψd

R

ψr

P
ψt

∅

Thus, we get (
1
R

)
= D

(
P
0

)
, (275)

Let’s denote the known elements of the matrix D as

D =

(
d11 d12
d21 d22

)
. (276)
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By substituting into the matrix equation, we thus get a system of equations

1 = d11P, R = d21P. (277)

From here, P = 1/d11 and R = d21/d11.

Exercise 7.9. Given are the transmission and reflection coefficients, T and R, for a wave coming
from the first to the second medium, and coefficients T ′ and R′ for a wave coming from the second
medium to the first. Find the corresponding form of the transfer matrix D. Specialize the form of
this matrix assuming that

R′ = −R and 1 +R = T (and 1 +R′ = T ′).

Solution: The coefficients T , R, T ′, and R′ determine the amplitudes of waves in the following
two situations:

1

ψd

R

ψr

T
ψt

∅

∅

T ′

ψt

R′

ψr

ψd

1

That is, from the definition of the transfer matrix D (see the previous example), we have matrix
equations (

1
R

)
= D

(
T
0

)
,

(
0
T ′

)
= D

(
R′

1

)
. (278)

Expanding into components (with the same notation for matrix elements as in the previous exam-
ple), we get

1 = d11T 0 = d11R
′ + d12

R = d21T T ′ = d21R
′ + d22. (279)

From the left set of equations, we easily find d11 = 1
T , d21 = R

T , by substituting into the right

equations we immediately have d12 = −R′

T and d22 = T ′ − RR′

T = TT ′−RR′

T . Overall,

D =
1

T

(
1 −R′

R TT ′ −RR′

)
. (280)

For relations R′ = −R, T = 1 +R and T ′ = 1 +R′ = 1−R, we get

D =
1

1 +R

(
1 R
R 1

)
. (281)

Exercise 7.10. Consider the interface defined in exercise 7.6. Write the transfer matrices for
each interface by analyzing the reflections of harmonic waves at each interface using the result of
exercise 7.9. Assemble these matrices and using the result of example 7.8 verify that the total
reflection coefficient R for two interfaces comes out the same as in exercise 7.6.
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Solution: Finding the transfer matrix D1 for the interface at z = 0 is easy. Here, there are no
phase shifts, and it suffices to directly use the result of the previous exercise and just substitute
the correct amplitude coefficients:

D1 =
1

T12

(
1 −R21

R12 T12T21 −R12R21

)
. (282)

For the interface at z = L, we must remember that the requirement for phase continuity implies an
additional phase shift upon reflection or passage through this interface. In the first part of exercise
7.6, we derived that for an incoming wave from the left on the second interface, the reflection adds
a phase e−2ik2L and the passage ei(k3−k2)L. Thus, the coefficients R and T here take the form

R = R23e
−2ik2L, T = T23e

i(k3−k2)L. (283)

We still need to determine the forms of coefficients R′ and T ′ for a wave incoming on the second
interface from the right. Again, these will not be merely the amplitude coefficients R32 and T32,
but it is necessary to add phases for reflection, respectively, passage, at the interface z = L. Let
us briefly perform the same analysis as in the first part of example 7.6. Considering an incoming
wave from the right on the second interface and reflected and passed wave forms

ψd(z, t) = ei(ωt+k3z), ψr(z, t) = R32e
i(ωt−k3z+ϕr), ψp(z, t) = T32e

i(ωt+k2z+ϕp), (284)

The requirement for phase function continuity of these waves upon reflection and passage at the
coordinate z = L leads to the requirements

φd(L, t) = φr(L, t), φd(L, t) = φp(L, t), (285)

ωt+ k3L = ωt− k3L+ ϕr, ωt+ k3L = ωt+ k2L+ ϕp. (286)

From these relations, we easily express the phase shifts of the reflected and passed wave:

ϕr = 2k3L, ϕp = (k3 − k2)L. (287)

The reflection and transmission coefficients for a wave incoming from the right thus are

R′ = R32e
2ik3L, T ′ = T32e

i(k3−k2)L. (288)

The transfer matrix for the second interface then has the form (again according to the result of
exercise 7.9):

D2 =
1

T23ei(k3−k2)L

(
1 −R32e

2ik3L

R23e
−2ik2L (T23T32 −R23R32)e

2i(k3−k2)L

)
. (289)

We obtain the overall transfer matrix by multiplying the individual matrices, D = D1D2

and according to the result of exercise 7.8 the total reflection coefficient R = d21
d11

. Thus, we do
not need to calculate all elements of the matrix D, but only two:

d11 =
1

T12T23ei(k3−k2)L
[
1−R21R23e

−2ik2L
]
,

d21 =
1

T12T23ei(k3−k2)L
[
R12 +R23e

−2ik2L(T12T21 −R12R21)
]
. (290)

Upon substituting into the relationship for R and making a minor adjustment:

R =
d21
d11

=
R12(1−R21R23e

−2ik2L) +R23T12T21e
−2ik2L

1−R21R23e−2ik2L
= R12 +

R23T12T21e
−2ik2L

1−R21R23e−2ik2L
. (291)

And that is precisely the result of example 7.6.

*Exercise 7.11. The same as in the previous exercise but for the overall transmission coefficient
T .
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Solution: We have already found the transfer matrices for individual interfaces in the previous
exercise. According to exercise 7.8, the transmission coefficient is given by the relation T = 1

d11
.

We have already calculated this matrix element in the previous example. Thus, we have

T =
1

d11
=

T12T23e
i(k3−k2)L

1−R21R23e−2ik2L
. (292)

And that is precisely the result of exercise 7.7.

*Exercise 7.12. Consider connecting two strings with the same tension at z = L. The transfer
matrix is

D =
1

2

(
(1 + k2

k1
)ei(k1−k2)L (1− k2

k1
)ei(k1+k2)L

(1− k2
k1
)e−i(k1+k2)L (1 + k2

k1
)e−i(k1−k2)L

)
. (293)

Find the transition matrix for two interfaces of three strings. The interfaces are at z = 0 and
z = L. Find the overall reflection coefficient R.

Solution: If D1 and D2 are the transfer matrices at the two interfaces, we obtain the transfer
matrix from the first to the third interface by simply multiplying, thus D = D1D2. Here, we have

D1 =
1

2

(
1 + k2

k1
1− k2

k1

1− k2
k1

1 + k2
k1

)
, D2 =

1

2

(
(1 + k3

k2
)ei(k2−k3)L (1− k3

k2
)ei(k2+k3)L

(1− k3
k2
)e−i(k2+k3)L (1 + k3

k2
)e−i(k2−k3)L

)
. (294)

To compute R, we need to know only d11 and d21. We get

d11 =
1

4

[(
1 +

k2
k1

)(
1 +

k3
k2

)
ei(k2−k3)L +

(
1− k2

k1

)(
1− k3

k2

)
e−i(k2+k3)L

]
=

1

4
ei(k2−k3)L

k1 + k2
k1

k2 + k3
k2

(
1 +

k1 − k2
k1 + k2

k2 − k3
k2 + k3

e−2ik2L

)
.

(295)

For the coefficient d21, we get

d21 =
1

4

[(
1− k2

k1

)(
1 +

k3
k2

)
ei(k2−k3)L +

(
1 +

k2
k1

)(
1− k3

k2

)
e−i(k2+k3)L

]
=

1

4
ei(k2−k3)L

k1 + k2
k1

k2 + k3
k2

(
k1 − k2
k1 + k2

+
k2 − k3
k2 + k3

e−2ik2L

)
. (296)

Dividing both expressions thus provides a formula in the form

R =
d21
d11

=
k1−k2
k1+k2

+ k2−k3
k2+k3

e−2ik2L

1 + k1−k2
k1+k2

k2−k3
k2+k3

e−2ik2L
. (297)

Noticing that if we denote Rij =
ki−kj
ki+kj

(which exactly comes out for connecting strings with the

same tension), we get the result of example 7.6.

8 Waves in Space

Exercise 8.1. Show that a harmonic traveling plane wave of form ψ(r⃗, t) = Aei(ωt−k⃗·r⃗), where

A ∈ C, k⃗ = kn⃗, |n⃗| = 1 and k > 0, satisfies the three-dimensional wave equation assuming a certain
dispersion relation is met. Find this relation.
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Solution: The three-dimensional wave equation for the function ψ = ψ(r⃗, t) is

∂2ψ

∂t2
= v2∆ψ ≡ v2

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
, (298)

where v = const. Substituting into the left side, we get

∂2ψ(r⃗, t)

∂t2
= −ω2Aei(ωt−k⃗·r⃗) = −ω2ψ(r⃗, t). (299)

On the right side, we have the sum of three second derivatives. It suffices to calculate one of them,
the rest we can guess2:

∂2ψ(r⃗, t)

∂x2
= −k2xAei(ωt−k⃗·r⃗), thus

∂2ψ(r⃗, t)

∂x2i
= −k2iAei(ωt−k⃗·r⃗) = −k2i ψ(r⃗, t). (300)

Substituting into the wave equation thus leads to

ω2 = v2(k2x + k2y + k2z) = v2 |⃗k|2 = v2k2. (301)

We obtain a dispersion relation in the form ω = vk. Therefore, if ω and |⃗k| satisfy the resulting
dispersion relation, the given wave is a solution to the 3D wave equation.

Exercise 8.2. Find the dispersion relation of the wave equation forms

∂2ψ

∂t2
= v2∆ψ − ω2

0ψ,
∂2ψ

∂t2
= v2∆ψ − α∆(∆ψ). (302)

for a

harmonic traveling plane wave.

Solution: We proceed as in the previous example. In the first case, the right side after substi-

tution modifies to −(v2k2 + ω2
0)Ae

i(ωt−k⃗·r⃗). The dispersion relation is thus

ω2 = v2k2 + ω2
0 . (303)

In the second case, on the right side, we get −(v2k2 + αk4)Aei(ωt−k⃗·r⃗), since ∆(∆ψ) = −k2∆ψ =
(−k2)2ψ. The dispersion relation gives

ω2 = v2k2 + αk4. (304)

Exercise 8.3. Show that a traveling plane wave of form ψ(r⃗, t) = F (n⃗ · r⃗ − vt), where |n⃗| = 1
and F : R → R is an arbitrary twice differentiable function, satisfies the three-dimensional wave
equation.

2Or we can calculate it properly:

∂ψ

∂xi
=
∂(−ik⃗ · r⃗)

∂xi
Aei(ωt−k⃗·r⃗) = −ikiAei(ωt−k⃗·r⃗),

∂k⃗ · r⃗
∂xi

=
3∑

j=1

∂kjxj

∂xi
=

3∑
j=1

kjδji = ki.

Then

∆ψ =
3∑

i=1

∂2ψ

∂x2i
=

3∑
i=1

∂

∂xi

(
∂ψ

∂xi

)
=

3∑
i=1

(−iki)2Aei(ωt−k⃗·r⃗) = −|⃗k|2ψ.
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Solution: We again simply verify by substitution into the wave equation. The left side of the
equation gives:

∂2ψ

∂t2
(r⃗, t) = v2F ′′(n⃗ · r⃗ − vt). (305)

On the right side, analogously as in example 8.1 (thus using ∂n⃗·r⃗
∂xi

= ni):

v2∆ψ(r⃗, t) = v2(n2x + n2y + n2z)F
′′(n⃗ · r⃗ − vt). (306)

But |n⃗| = 1, which gives the sought result.

*Exercise 8.4. Show that a spherical wave of form ψ(r⃗, t) = 1
r e
i(ωt−kr) satisfies the wave equation

assuming a linear dispersion relation ω = vk.

Solution: In the lecture, you wrote down Laplace’s operator for a function that depends only on
the distance r from the origin (this simpler approach is at the end of this solution). We’ll try the
”infantry method” in Cartesian coordinates. The most difficult task is to calculate the Laplacian
applied to a scalar function φ(r⃗) = 1

r e
−ikr. This function is the product of functions f(r⃗) = 1

r and
g(r⃗) = e−ikr. Generally, the rule applies

∆(fg) = div grad(fg) = div(f grad g + g grad f) = f∆g + g∆f + 2(grad f) · (grad g). (307)

In exercises on electricity and magnetism, you calculated that grad(rα) = α rα−2r⃗. Hence easily

grad f = −r−3r⃗. (308)

Substituting into ∆ = div grad and using the formula for the divergence of a product of a scalar
and a vector field (div(fF⃗ ) = f div F⃗ + (grad f) · F⃗ ), we get

∆f = −div(r−3r⃗) = −(grad r−3) · r⃗ − r−3 div r⃗ =
3

r5
r⃗ · r⃗ − 3

r3
= 0. (309)

The calculation for

g is similar, resulting in

grad g = −ike−ikr grad r = −ik 1
r
e−ikr r⃗. (310)

Applying divergence then

∆g = − ik grad

(
1

r
e−ikr

)
· r⃗ − ik

1

r
e−ikr div r⃗

= − ik

(
−r−3r⃗e−ikr + r−1(−ik)1

r
e−ikr r⃗

)
· r⃗ − ik

3

r
e−ikr

= − k2e−ikr − 2ik

r
e−ikr.

(311)

After substitution, we get in total

∆φ = f∆g + 2(grad f) · (grad g) + g∆f =
1

r

(
−k2e−ikr − 2ik

r
e−ikr

)
+ 2(−r−3r⃗) · (−ik 1

r
e−ikr r⃗) = −k2φ(r⃗).

(312)
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The wave function is of form ψ(r⃗, t) = eiωtφ(r⃗). Substituting into the wave equation, we get

−ω2eiωtφ(r⃗) = −v2k2eiωtφ(r⃗). (313)

Using the dispersion relation, we thus see that the given spherical wave satisfies the wave equation.

If we start from knowing the form of Laplace’s operator for a function dependent only on the
radial coordinate φ(r):

∆φ(r) =
d2φ

dr2
+

2

r

dφ

dr
, (314)

then it suffices to simply calculate

dφ

dr
= − 1

r2
e−ikr − ik

1

r
e−ikr,

d2φ

dr2
=

2

r3
e−ikr + ik

2

r2
e−ikr − k2

1

r
e−ikr. (315)

Then after substituting, it easily comes out

∆φ = −k2 1
r
e−ikr = −k2φ(r). (316)

Exercise 8.5. Superposition of spatial waves. Consider two plane traveling harmonic waves with
the same wavelength λ and different amplitudes, between whose directions of propagation there
is an angle ∆φ. Consider a plane screen that is perpendicular to the ”average direction” of
propagation of these waves. Find the intensity profile (i.e., the temporal mean value of the square)
of the resulting superposition on the screen. Determine the distance ∆y between interference
maxima.

Solution: We thus consider two waves of form

ψ1(r⃗, t) = A1 cos(ωt− k n⃗1 · r⃗), ψ2(r⃗, t) = A2 cos(ωt− k n⃗2 · r⃗), (317)

where n⃗1 · n⃗2 = cos∆φ. It is advantageous to solve the problem

in coordinates where both directional vectors lie in the plane z = 0, and the screen is the plane
x = 0. See the figure:

y

x

~n1

~n2

~n∆ϕ

In these coordinates, we have

n⃗1 =

(
cos

∆φ

2
, sin

∆φ

2
, 0

)
, n⃗2 =

(
cos

∆φ

2
,− sin

∆φ

2
, 0

)
. (318)
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We are also interested in the value of superposition only on the screen, thus for r⃗ = (0, y, z). We
get

ψ(r⃗ = (0, y, z), t) = ψ1(r⃗ = (0, y, z), t) + ψ2(r⃗ = (0, y, z), t)

= A1 cos

(
ωt− ky sin

∆φ

2

)
+A2 cos

(
ωt+ ky sin

∆φ

2

)
. (319)

The intensity of the wave is given by the temporal mean value of the square of the wave,
I = ⟨ψ2⟩. After substituting

I = A2
1

〈
cos2(ωt+ . . .)

〉
+A2

2

〈
cos2(ωt+ . . .)

〉
+ 2A1A2

〈
cos

(
ωt− ky sin

∆φ

2

)
cos

(
ωt+ ky sin

∆φ

2

)〉
=

1

2
A2

1 +
1

2
A2

2 +A1A2

〈
cos (2ωt) + cos

(
2ky sin

∆φ

2

)〉
=

1

2
A2

1 +
1

2
A2

2 +A1A2 cos

(
2ky sin

∆φ

2

)
,

(320)

where we used the sum formula cos a cos b = 1
2 (cos(a+ b) + cos(a− b)). Thus, the intensity

changes ”harmonically” along the y axis and remains constant along the z axis – we have thus
obtained a series of interference fringes on the screen. The distance of these fringes is determined
by finding the positions of individual interference maxima ym and then ∆y = ym+1 − ym. The
positions of interference maxima ym are given by

cos

(
2kym sin

∆φ

2

)
= 1 ⇔ 2kym sin

∆φ

2
= 2πm, ⇔ ym =

πm

k sin ∆φ
2

=
mλ

2 sin ∆φ
2

, m ∈ Z.

(321)
The distance between adjacent maxima on the screen is thus ∆y = λ

2 sin ∆φ
2

. For a small angle ∆φ,

we can write ∆y ≈ λ
∆φ .

Exercise 8.6. Consider a plane interface between two transparent media with refractive indices
n1 and n2. Consider an incident and a transmitted traveling harmonic wave. The wave vectors k⃗1
and k⃗2 lie in the plane perpendicular to the plane of the interface

and form an angle ϑ1, resp. ϑ2 with the normal vector. Based on the condition k⃗1∥ = k⃗2∥ (this
condition results from the continuity condition of the tangential components of the electric field at
the interface, E⃗1∥ = E⃗2∥), derive Snell’s law of refraction.

Solution: For the purpose of this task, we draw a similar figure as before, hence

y

x

~k1

~n

~k2ϑ1
ϑ2

ϑ1
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We can thus express the wave vectors using the introduced angles as

k⃗1 = k1(cosϑ1, sinϑ1, 0), k⃗2 = k2(cosϑ2, sinϑ2, 0). (322)

The components of the wave vectors parallel to the interface are thus very simple, k⃗1∥ =

(0, k1 sinϑ1, 0) and k⃗2∥ = (0, k2 sinϑ2, 0). Hence, we get the condition k1 sinϑ1 = k2 sinϑ2. The

refractive index is given by the ratio of the speed of light and phase velocity, thus ni =
c
vi

= cki
ω .

From here, we get the well-known Snell’s law of refraction:

n1 sinϑ1 = n2 sinϑ2. (323)

Considering n1 > n2 (the second medium is optically less dense), we get the relation for the second
angle sinϑ2 = n1

n2
sinϑ1. For a sufficiently large angle ϑ1, a situation occurs where the right side is

greater than one and ϑ2 cannot be found. This means that no traveling wave propagates into the
second medium (total internal reflection occurs). The critical angle ϑc is thus given by sinϑc =

n2

n1
.

Exercise 8.7. We have the same setting as in the previous task. Now consider the interface of
these two media: a transparent medium with refractive index n and the ionosphere with plasma
frequency ωp. Derive the corresponding law of refraction.

Solution: We slightly modify the approach from the previous example. There we derived the
condition k1 sinϑ1 = k2 sinϑ2. Now, however, we have the ionosphere on one side, which we
consider as plasma; its dispersion relation is thus ω2 = ω2

p + c2k2. For simplicity, let’s consider
only ω > ωp, so that the transmitted wave can propagate in the ionosphere. The wave numbers in
the respective media can thus be expressed as

k1 =
ω

c
n, k2 =

√
ω2 − ω2

p

c
. (324)

After substitution, we get the law of refraction in the form

n sinϑ1 =

√
1−

(ωp
ω

)2
sinϑ2. (325)

The refractive index is always n ≥ 1 and the square root on the right side
√

1− (ωp/ω)2 ≤ 1.
Expressing the sine of the second angle: sinϑ2 = n√

1−(ωp/ω)2
sinϑ1, we can again explore the limit

of the angle ϑ1, at which ϑ2 = π
2 ;

which is given by

sinϑc =
1

n

√
1−

(ωp
ω

)2
. (326)

Exercise 8.8. Show that an electromagnetic standing wave of form

E⃗ = (A cosωt cos kz, 0, 0), B⃗ =

(
0,

1

c
A sinωt sin kz, 0

)
, (327)

where ω = ck, satisfies Maxwell’s equations in vacuum. Determine the density of electric and
magnetic energy and the Poynting vector.
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Solution: Vacuum Maxwell’s equations (without charges and currents) are

div E⃗ = 0, div B⃗ = 0, rot E⃗ = −∂B⃗
∂t
, rot B⃗ =

1

c2
∂E⃗

∂t
. (328)

The first two equations are trivially satisfied:

div E⃗ =
∂Ex
∂x

= 0, div B⃗ =
∂By
∂y

= 0. (329)

In the second set of equations, we get

rot E⃗ =

(
0,
∂Ex
∂z

,−∂Ex
∂y

)
= (0,−Ak cosωt sin kz, 0), (330)

rot B⃗ =

(
−∂By
∂z

, 0,
∂By
∂x

)
=

(
−1

c
kA sinωt cos kz, 0, 0

)
, (331)

−∂B⃗
∂t

=

(
0,−1

c
ωA cosωt sin kz, 0

)
, (332)

1

c2
∂E⃗

∂t
=

(
− 1

c2
ωA sinωt cos kz, 0, 0

)
. (333)

We see that Maxwell’s equations are indeed satisfied, provided that ω = ck. The densities of
electric and magnetic fields are given by

wE =
1

2
ϵ0E

2, wB =
1

2µ0
B2. (334)

After substitution, we get

wE =
1

2
ϵ0A

2 cos2 ωt cos2 kz, wB =
1

2µ0c2
A sin2 ωt sin2 kz =

1

2
ϵ0A sin2 ωt sin2 kz. (335)

We can easily substitute into the formula for the Poynting vector:

S⃗ =
1

µ0
E⃗ × B⃗ =

(
0, 0,

1

µ0c
A2 cosωt sinωt cos kz sin kz

)
=

(
0, 0,

A2

4µ0c
sin 2ωt sin 2kz

)
.

(336)

Exercise 8.9. Larmor formula. Show that by integrating the Poynting vector S⃗ of the radiation
field E⃗rad from an accelerated charge,

E⃗rad(r⃗, t) = − 1

4πε0

q

c2
a⃗⊥(tr)

r
,

over a sphere of radius r you get Larmor’s formula for the total radiated power P of the electro-
magnetic wave,

P (t, r) =
µ0q

2

6πc
a2(tr).

The retarded time tr is tr = t− r
c . Poynting’s vector is S⃗ = 1

µ0
E⃗ × B⃗ =

√
ε0
µ0
E2 n⃗, where n⃗ is the

direction of propagation perpendicular to the imagined sphere.
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Solution: See lecture notes section 6.3.6.

Exercise 8.10. Consider a waveguide of rectangular cross-section a = 5 cm and b = 10 cm. What
is the lowest frequency f0 that an electromagnetic wave can have to pass through the waveguide
without attenuation. Calculate the phase and group velocity (as a multiple of c), whose frequency
is f = 5

4f0. What is the highest mode m0 that can be excited for the propagating wave of this
frequency? For a wave with frequency f = 4

5f0, determine the distance at which the amplitude of
the wave decreases by a factor of e.

Solution: A rectangular waveguide is an infinite tube of rectangular cross-section as in the figure:

y

x z

b

a

O

The walls are made of perfectly conducting material. Solving Maxwell’s equations with boundary
conditions, where we assume E⃗ depends only on (y, z, t), the electric field inside E⃗ = (Ex, 0, 0),
where Ex = Ex(y, z, t) is a superposition of modes in the form

Ex(y, z, t) = E0 sin
(mπy

b

)
ei(ωt−kz), (337)

where constants ω, k, and m ∈ N satisfy the dispersion relation

ω2 =
(mπc

b

)2
+ c2k2. (338)

We see that for a givenm, this equation has a real solution for wave number k only for ω > ωmin(m),
where ωmin(m) =

mπc
b . The lowest value is obtained for m = 1, which is the lowest of the angular

frequencies that anything can propagate through the waveguide without attenuation, ω0 = πc
b .

From there f0 = ω0

2π = c
2b . In our case,

f0 =
3.108

2 · 0, 1
Hz = 1, 5GHz. (339)

The phase velocity is given by the ratio vφ = ω/k. Hence,

vφ(k) = c

√
1 +

m2ω2
0

k2c2
. (340)

We need to express vφ = vφ(ω), so we substitute k from the dispersion relation on the right side:

vφ(ω) = c

√
1 +

m2ω2
0

ω2 −m2ω2
0

= c

√
ω2

ω2 −m2ω2
0

=
c√

1−
(
mω0

ω

)2 . (341)

We need to find the value of phase velocity for ω = 5
4ω0, thus f = 1, 875GHz. Since fmin(m) =

m · 1, 5GHz, only the lowest mode m = 1 can be excited and we get

vφ

(
5

4
ω0

)
=

5

3
c. (342)

53



The group velocity as a function of k is obtained by differentiating the dispersion relation with
respect to k, resulting in

vg(k) =
c√

1 +
ω2

0m
2

c2k2

. (343)

After substituting k from the dispersion relation, we get the group velocity as a function of ω with
exactly the inverse dependence as the phase velocity:

vg(ω) = c

√
ω2 −m2ω2

0

ω2
= c

√
1−

(
m
ω0

ω

)2 m=1
=

3

5
c. (344)

We have also answered the question of the highest mode that can be excited – only the first one.
If the frequency ω < ωmin(m), then no real k satisfying the dispersion relation can be found. The
ansatz k = −iκ leads to ω2 = m2ω2

0 − c2κ2, where κ then appears in the exponentially damped
standing wave not propagating through the waveguide:

Ex(y, z, t) = E0 sin
(mπy

b

)
eiωte−κz. (345)

After expressing from the dispersion relation, the coefficient κ comes out as

κ =
1

c

√
m2ω2

0 − ω2. (346)

The least attenuation occurs for m = 1, here we have ω = 3
5ω0 and thus κ = 3ω0

5c = 6πf0
5c . We solve

the task e−κz = e−1, hence κz = 1. From which z = κ−1 = 5c
6πf0

≈ 5
3π · 10−1m ≈ 5 cm.

9 Polarization

Exercise 9.1. How does the intensity of circularly polarized light change after passing through a
polarizer?

Solution: A traveling electromagnetic wave propagating in the direction of the z axis generally
has an electric component in complexified form (at a given location z = z0) of the form

E⃗(t) = Ex0 x⃗ e
i(ωt+φ1) + Ey0 y⃗ e

i(ωt+φ2) =

(
Ex0e

iφ1

Ey0e
iφ2

)
eiωt =

ˆ⃗
E eiωt, (347)

where x⃗ and y⃗ denote unit vectors in the directions of axes x and y.

The orientation of the polarizer is determined by the axis of transmission described by the unit
direction vector n⃗. If E⃗in is the incident wave and E⃗out is the transmitted wave, the waves are
related as

E⃗out = (E⃗in · n⃗) n⃗. (348)

This can be simply rewritten in the language of the corresponding complex vectors
ˆ⃗
Ein and

ˆ⃗
Eout,

we get
ˆ⃗
Eout = Pn⃗

ˆ⃗
Ein, (349)

where Pn⃗ is the matrix of the projector onto the axis in the direction n⃗. Explicitly for n⃗ = (nx, ny)
we get

Pn⃗ =

(
n2x nxny
nxny n2y

)
. (350)
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The intensity of the electric field is given by the formula

I =

√
ε

µ
⟨E⃗2⟩ = 1

2

√
ε

µ

(
E2
x0 + E2

y0

)
=

1

2

√
ε

µ

(
|Ê1|2 + |Ê2|2

)
, (351)

where
ˆ⃗
E = (Ê1, Ê2)

T . Typically when calculating intensity, we will not write the factor
√

ε
µ , so we

will consider the relationship I = ⟨E⃗2⟩, which corresponds only to a change in the units in which
intensity is measured.

Here, the incoming light is circularly polarized, characterized by the conditions Ex0 = Ey0 = E0

and φ1 − φ2 = ±π
2 . Now, let’s divide the calculation depending on whether we want to calculate

the example ”vectorially” or ”matrix-wise”:

Vectorially: Circularly polarized light can be written

E⃗in = E0x⃗ cos(ωt+ φ) + E0y⃗ cos(ωt+ φ± π
2 ) = E0x⃗ cos(ωt+ φ)∓ E0y⃗ sin(ωt+ φ). (352)

The input intensity then is

Iin = ⟨E⃗2⟩ = 1

2
E2

0 +
1

2
E2

0 = E2
0 . (353)

BÚNO (without loss of generality) we can consider the direction of transmission of the polarizer
in the direction n⃗ = x⃗ = (1, 0)T . Thus, the action of the linear polarizer will be

E⃗out = (E⃗in · x⃗) x⃗ = E0 x⃗ cos(ωt+ φ). (354)

We easily compute the output intensity

Iout = ⟨E⃗2
out⟩ =

1

2
E2

0 =
1

2
Iin. (355)

Matrix-wise: For circularly polarized light, the vector
ˆ⃗
Ein has the form

ˆ⃗
Ein = E0e

iφ

(
1

e±i
π
2

)
= E0e

iφ

(
1
±i

)
∼ E0

(
1
±i

)
, (356)

where in the last modification we eliminated the common phase, which does not affect the polar-
ization state. We see that the intensity of the incoming wave is simply

Iin =
1

2

(
|Ê1|2 + |Ê2|2

)
=

1

2
(E2

0 + E2
0) = E2

0 . (357)

BÚNO we can consider the direction of transmission of the polarizer in the direction n⃗ = x⃗ =
(1, 0)T . Then the projector takes the form

Pn⃗ =

(
1 0
0 0

)
. (358)

The light behind the polarizer
ˆ⃗
Eout thus

ˆ⃗
Eout = Pn⃗

ˆ⃗
Ein = E0

(
1
0

)
. (359)

Therefore, the output intensity is

Iout =
1

2

(
|Ê1|2 + |Ê2|2

)
=

1

2
E2

0 =
1

2
Iin. (360)

Exercise 9.2. How does the intensity of unpolarized light change after passing through a linear
polarizer?
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Solution: Completely unpolarized light of intensity Iin can be imagined, for example, as a lin-
early polarized wave, the direction of which n⃗ = n⃗(t) changes completely randomly in time. Let
θ(t) be the angle formed by the direction n⃗ with the axis of transmission of the linear polarizer.
According to Malus’s law, the instantaneous intensity of the transmitted wave is

Iout(t) = Iin cos
2 θ(t). (361)

The device measuring the intensity Iout(t), however, cannot measure instantaneous intensity (light
changes its polarization too quickly), but only its average value over the measurement time of the
device troz:

Iout = Iin⟨cos2 θ(t)⟩troz (362)

Since θ(t) changes completely randomly, every angle is represented completely uniformly. The time
average can be replaced by the average over angles:

Iout = Iin · 1

2π

∫ 2π

0

cos2 θ dθ =
1

2
Iin. (363)

Exercise 9.3. Consider linearly polarized light E⃗ = E0 x⃗ cosωt. Place N polarizers in its path,
each with the axis of transmission rotated by π

2N compared to the previous one (and the first
compared to the plane of the incident light). What will be the intensity of the transmitted light
for N = 1, N = 2, and general N ∈ N? What is the limit for N → +∞?

Solution: In the lecture, you derived that if light linearly polarized in the direction n⃗1 hits a
linear polarizer with the axis of transmission n⃗2, the input and output intensity are related by
Malus’s law :

Iout = Iin cos
2 θ, (364)

where θ is the angle formed by vectors n⃗1 and n⃗2. The intensity of the original wave is I0 = ⟨E⃗2⟩ =
1
2E

2
0 .

(i) For N = 1 there is one rotation by an angle π
2 . The resulting intensity is I

(1)
out = I0 cos

2 π
2 = 0.

(ii) For N = 2 there are two rotations by an angle π
4 . The resulting intensity is given by

I
(2)
out =

(
I0 cos

2 π
4

)
cos2 π4 =

1

4
I0. (365)

(iii) For general N ∈ N there are N rotations by an angle π
2N . The resulting intensity is thus

I
(N)
out = I0 cos

2N
(
π
2N

)
. (366)

It holds3 limk→+∞ cosk
(
π
k

)
= 1 and therefore limN→+∞ I

(N)
out = I0.

3This limit can be calculated for example as follows:

lim
k→+∞

cosk
(
π
k

)
= lim

k→+∞
exp

(
π

ln cos π
k

π
k

.
)

Now it suffices to show that limx→0
ln cos x

x
= 0. Using l’Hospital’s rule

lim
x→0

ln cosx

x
= lim

x→0
−

sinx

cosx
= 0.
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Exercise 9.4. Consider generally elliptically polarized light. Place in its path a polarizer with the
axis of transmission n⃗ = x⃗+y⃗√

2
. Show that for the intensity of the transmitted light the following

holds

Iout =
1

2
(Ix + Iy) + Ixy, (367)

where Iout = ⟨E2
out⟩, Ix = ⟨E2

x⟩, Iy = ⟨E2
y⟩, Ixy = ⟨ExEy⟩.

Solution: Due to the definitions of the individual intensities, it pays off to work with the general
expression for the electric

field in the xy plane and not to detail it into the respective harmonic waves.

Vectorially: Generally, elliptically polarized light has the form E⃗ = Exx⃗+Ey y⃗. After passing
through the polarizer, we get

E⃗out = (E⃗ · n⃗) n⃗ =

(
Ex√
2
+
Ey√
2

)
n⃗, (368)

since x⃗ · n⃗ = y⃗ · n⃗ = 1
2 . The resulting intensity is then

Iout = ⟨E⃗2
out⟩ =

〈(
Ex + Ey√

2

)2

n⃗2

〉
=

1

2
⟨E2

x + E2
y + 2ExEy⟩ =

1

2
(Ix + Iy) + Ixy. (369)

Matrix-wise: Generally, elliptically polarized light has the form

E⃗ =

(
Ex
Ey

)
. (370)

The projector onto the axis n⃗ has the form

Pn⃗ =

(
n2x nxny
nxny n2y

)
=

1

2

(
1 1
1 1

)
. (371)

After passing through the polarizer, we therefore get

E⃗out = Pn⃗E⃗ =
1

2

(
Ex + Ey
Ex + Ey

)
. (372)

The resulting intensity is then

Iout = ⟨E⃗2
out⟩ =

〈
2
1

4
(Ex + Ey)

2

〉
=

1

2
⟨E2

x + E2
y + 2ExEy⟩ =

1

2
(Ix + Iy) + Ixy. (373)

Exercise 9.5. The refractive indices of crystalline quartz for light with a vacuum wavelength
λ0 = 500 nm are n1 = 1.544 and n2 = 1.553. Determine the minimum thickness of a quarter-wave
plate made of this material.

Solution: If we have two perpendicular directions n⃗1 and n⃗2 such that light in the crystal prop-
agates with refractive index n1 in the first direction and with n2 in the second, we can write the
incoming wave in the form

E⃗in = E1n⃗1e
i(ωt+φ1) + E2n⃗2e

i(ωt+φ2). (374)
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Through a plate of thickness d, the phases in the individual waves change by k1d, resp. k2d, to a
wave of the form

E⃗out = E1n⃗1e
i(ωt+φ1−k1d) + E2n⃗2e

i(ωt+φ2−k2d). (375)

The phase difference δφ changes upon passage to φ1 − φ2 +∆φ, where ∆φ = (k2 − k1)d. For the

study of polarization, the specific values of phases are irrelevant, so the electric field vector E⃗out
can be written as

E⃗out = E1n⃗1e
i(ωt+φ1+∆φ) + E2n⃗2e

i(ωt+φ2) (376)

(we added the phase +k2d to both exponentials). We have the dispersion relation k = n
c ω and for

vacuum k0 = ω
c and k0 = 2π

λ0
and thus ∆φ = (n2 − n1)

ω
c d = 2π

λ0
(n2 − n1)d. Choosing directions so

that n2 > n1, we thus get ∆φ > 0 and it is added to the wave in the direction n⃗1.

A quarter-wave plate is supposed to shift the phase by a quarter of a wavelength, hence ∆φ = π
2 .

We thus solve the equation
π

2
=

2π

λ0
(n2 − n1)d. (377)

From this, d = λ0

4(n2−n1)
= 5·10−7

4·9·10−3 ≈ 0.014 mm.

Exercise 9.6. Write the matrix D∆φ for a wave plate with axis n⃗1 = x⃗+y⃗√
2

(and perpendicular

direction n⃗2 = x⃗−y⃗√
2
).

Solution: Since the wave plate only adds a phase ∆φ to the component of the wave in the
direction n⃗1 (i.e., the axis corresponding to the smaller refractive index), the matrix of the wave
plate is given by

D∆φ = ei∆φPn⃗1
+ Pn⃗2

. (378)

The matrix of the projector onto a general axis n⃗ = (nx, ny)
T is of the form

Pn⃗ =

(
n2x nxny
nxny n2y

)
(379)

and thus for directions n⃗1 and n⃗2 we specifically get

Pn⃗1
=

1

2

(
1 1
1 1

)
, Pn⃗2

=
1

2

(
1 −1
−1 1

)
. (380)

Substituting into the above-mentioned relationship thus gives us

D∆φ =
1

2

(
ei∆φ + 1 ei∆φ − 1
ei∆φ − 1 ei∆φ + 1

)
= ei

∆φ
2

(
cos ∆φ

2 i sin ∆φ
2

i sin ∆ varphi
2 cos ∆φ

2

)
. (381)

Note that in terms of polarization, we can forget about the complex unit in front of the matrix –
it changes the phase of both components equally, hence it is irrelevant, so the resulting D∆φ can
be written as:

D∆φ ∼
(
cos ∆φ

2 i sin ∆φ
2

i sin ∆φ
2 cos ∆φ

2

)
. (382)

Exercise 9.7. Consider linearly polarized light E⃗ = E0x⃗ cos(ωt). Place in its path a half-wave
plate with axis oriented in the direction n⃗ = x⃗+y⃗√

2
. What will be the polarization state of the light

after passing through the plate? How does the intensity change?
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Solution: Vectorially: Since the electric field of the incoming light is not decomposed in the
direction of the wave plate’s axis n⃗ = x⃗+y⃗√

2
(and perpendicular x⃗−y⃗√

2
), we cannot simply add a

phase π as the action of the wave plate. First, we must decompose the incoming light into these
directions, i.e., we would like to find the following coefficients of the linear combination α and β:

x⃗ = α
x⃗+ y⃗√

2
+ β

x⃗− y⃗√
2
. (383)

After rewriting (
1− α√

2
− β√

2

)
x⃗+

(
β√
2
− α√

2

)
y⃗ = 0 (384)

Vectors x⃗ and y⃗ are linearly independent, so the brackets must be zero, thus α = β = 1√
2
.

Alternatively, we can rewrite without calculation: x⃗ = 1
2 (x⃗+ x⃗+ y⃗ − y⃗) = 1√

2

(
x⃗+y⃗√

2
+ x⃗−y⃗√

2

)
. The

incoming light can thus be written in the form

E⃗ =
E0√
2

x⃗+ y⃗√
2

cosωt+
E0√
2

x⃗− y⃗√
2

cosωt. (385)

The action of the wave plate is now trivially performed:

E⃗out =
E0√
2

x⃗+ y⃗√
2

cos(ωt+ π) +
E0√
2

x⃗− y⃗√
2

cosωt, (386)

adding a phase π to the electric field in the direction x⃗+y⃗√
2
. Using the formula cos(x+π) = − cosx,

we can write

E⃗out = −E0√
2

x⃗+ y⃗√
2

cosωt+
E0√
2

x⃗− y⃗√
2

cosωt = −E0y⃗ cosωt ∼ E0y⃗ cosωt. (387)

(after the last modification, we shifted the overall phase by π to get rid of the minus sign, this
modification does not change the polarization state). After passing through the wave plate, you
get linearly polarized light with the plane of polarization in the direction of the y⃗ axis, thus rotated
by 90◦ compared to the original! Moreover, it has the same amplitude as the original light, so
there was no loss of intensity (unlike in example 9.3)!

Matrix-wise4: It suffices to substitute ∆φ = π from the previous example to get the matrix

Dπ =

(
cos π2 i sin π

2
i sin π

2 cos π2

)
=

(
0 i
i 0

)
∼
(
0 1
1 0

)
, (388)

where in the last equation, we multiplied the matrix by the complex unit eiπ = −i (overall phase
does not change the polarization state) to find the simplest form of the matrix Dπ. Our input light

has the polarization vector
ˆ⃗
E = (E0, 0)

T . The transmitted wave thus

ˆ⃗
Eout = Dπ

(
E0

0

)
=

(
0
E0

)
→ E⃗out = E0y⃗ cosωt. (389)

We found out that the transmitted wave is linearly polarized with the plane of polarization in the
direction of the y⃗ axis, thus rotated by 90◦ compared to the original! Moreover, it has the same
amplitude as the original light, so there was no loss of intensity (unlike in example 9.3)!

4Here, the solution seems much shorter than the vectorial approach, but it’s because we have already pre-
calculated everything in example 9.6.
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Exercise 9.8. A circular polarizer is a linear polarizer followed by a quarter-wave plate with axes
rotated by π/4 relative to the axis of transmission of the linear polarizer. Show that depending on
the choice of axes in the wave plate, we obtain either a left-handed or a right-handed circular po-
larizer, which converts any light coming from the side of the linear polarizer into the corresponding
circularly polarized light.

Show that left-handed polarized light propagating from the side of the wave plate is absorbed
in the right-handed polarizer.

Solution: Let’s choose, BÚNO, the axis of the linear polarizer in the direction x⃗. The quarter-
wave plate can then be oriented either with its axis in the direction x⃗+y⃗√

2
(and perpendicular x⃗−y⃗√

2
)

or vice versa, i.e., with its axis in the direction x⃗−y⃗√
2

(and perpendicular x⃗+y⃗√
2
). Depending on the

choice of orientation, therefore, the axis of the quarter-wave plate forms an angle ±π
4 with the x

axis.

Vectorially: From example 9.7, we know that the light entering the wave plate can be written
in the form

E⃗in =
E0√
2

x⃗+ y⃗√
2

cosωt+
E0√
2

x⃗− y⃗√
2

cosωt. (390)

The quarter

-wave plate adds a phase shift π
4 to the wave in the corresponding direction. Adding a phase

in the component x⃗−y⃗√
2

can also be written as subtracting a phase in the component x⃗+y⃗√
2
. We can

thus write the action of the wave plate for both options as

E⃗out =
E0√
2

x⃗+ y⃗√
2

cos(ωt± π
2 ) +

E0√
2

x⃗− y⃗√
2

cosωt, (391)

where the signs in the phase shift ±π
2 correspond to the sign of the angle of the wave plate’s axis

±π
2 . Using the formula cos(x± π

2 ) = ∓ sinx, we can write

E⃗out = ∓E0√
2

x⃗+ y⃗√
2

sinωt+
E0√
2

x⃗− y⃗√
2

cosωt, (392)

which is clearly circularly polarized light (has the same amplitude in both directions and one has
a sine and the other a cosine). Which of them is left-handed and which is right-handed? Plotting

the electric field vector E⃗out in the xy plane at a small positive time ωt = +ε:

y

x

y

~E(t)
z

cos ε

+ sin ε

− sin ε

~x+~y√
2

~x−~y√
2

In a small positive time, the electric field vector almost entirely points in the direction x⃗−y⃗√
2

and

depending on the sign at sinωt, points slightly towards/away from the direction x⃗+y⃗√
2
. We thus
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see that for a positive sign, E⃗ rotates counter-clockwise, thus it is left-handed polarized light, and
for a negative sign, it rotates clockwise, thus it is right-handed polarized light. The right-handed
polarizer is thus the one where the wave plate had its axis oriented in the direction x⃗+y⃗√

2
, and the

left-handed one in the direction x⃗−y⃗√
2
.

It remains to send left-handed polarized light into the right-handed polarizer from the other
side. Take as the input light

E⃗in =
E0√
2

x⃗+ y⃗√
2

sinωt+
E0√
2

x⃗− y⃗√
2

cosωt (393)

and send it into the reversed right-handed polarizer, so first it hits the quarter-wave plate and then
the linear polarizer. It is important to realize that reversing the wave plate changes the direction
of its axis! Thus, the reversed right-handed polarizer has a wave plate with its axis in the direction
x⃗−y⃗√

2
. Light after passing through this plate will be

E⃗out =
E0√
2

x⃗+ y⃗√
2

sinωt− E0√
2

x⃗− y⃗√
2

sinωt = E0y⃗ sinωt (394)

(using again cos(x + π
2 ) = − sinx), which is linearly polarized light in the direction y⃗ and it will

be fully absorbed in the linear polarizer with the axis of transmission x⃗.

Matrix-wise: For the quarter-wave plate with axis n⃗+ = x⃗+y⃗√
2
, we have already derived the

corresponding matrix D∆φ in exercise 9.6. Just substitute ∆φ = π
2 :

Dπ
2 ,n⃗+

=

(
cos π4 i sin π

4
i sin π

4 cos π4

)
=

√
2

2

(
1 i
i 1

)
. (395)

If the wave plate has its axis oriented in the direction n⃗− = x⃗−y⃗√
2

(which is perpendicular to the

direction n⃗+ = x⃗+y⃗√
2
), we must swap the matrices Pn⃗1

and Pn⃗2
in the solution of example 9.6, thus:

Dπ
2 ,n⃗− =

1

2

(
1 + ei

π
2 1− ei

π
2

1− ei
π
2 1 + ei

π
2

)
= . . . = ei

π
4

(
cos π4 −i sin π

4
−i sin π

4 cos π4

)
∼

√
2

2

(
1 −i
−i 1

)
. (396)

We can thus generally write

Dπ
2 ,n⃗± =

√
2

2

(
1 ±i
±i 1

)
. (397)

The light entering the plate has the polarization vector
ˆ⃗
Ein = (E0, 0)

T . Behind the wave plate, we
then get light

ˆ⃗
Eout = Dπ

2 ,n⃗±
ˆ⃗
Ein =

√
2

2

(
1 ±i
±i 1

)(
E0

0

)
=
E0√
2

(
1
±i

)
=
E0√
2

(
1

e±i
π
2

)
. (398)

Both components have the same amplitude and are phase-shifted by ±π
2 – thus, in both cases, it

is circularly polarized light. Left-handedness/right-handedness is decided by rewriting in vector
form

E⃗out =
E0√
2

(
x⃗ eiωt + y⃗ ei(ωt±

π
2 )
)
Re
=

E0√
2

(
x⃗ cosωt+ y⃗ cos(ωt± π

2 )︸ ︷︷ ︸
∓ sinωt

)
. (399)

The direction of rotation of the electric field is illustrated in the following figure:
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y

x

y

~E(t)

z

cos ε

+ sin ε

− sin ε

For + sinωt (and thus the axis of the wave plate n⃗− = x⃗−y⃗√
2
), we have rotation counter-clockwise,

thus it is left-handed polarized light. For − sinωt (axis n⃗+ = x⃗+y⃗√
2
), it is rotation clockwise –

right-handed polarized light.

Now, send left-handed polarized light, i.e., with the input vector

ˆ⃗
Ein = E0

(
1

e−i
π
2

)
= E0

(
1
−i

)
(400)

into the reversed right-handed polarizer (i.e., the one where the wave plate had its axis in the
direction n⃗+). Reversing, of course, changes the order of optical elements – first, light hits the
wave plate and then the linear polarizer. Reversing also means that the axis of the wave plate
changes direction to n⃗−! The action of the reversed right-handed polarizer is thus

ˆ⃗
Eout = Px⃗Dπ

2 ,n⃗−
ˆ⃗
Ein =

E0√
2

(
1 0
0 0

)(
1 −i
−i 1

)(
1
−i

)
=
E0√
2

(
1 0
0 0

)(
0

−2i

)
=

(
0
0

)
. (401)

Nothing thus passes through.

Exercise 9.9. Linearly polarized light with intensity I0 enters an optical device in the direction
x⃗. Determine the electric field (and name the respective polarization states) and the intensity of
light after each of the optical elements in the following device, consisting of the following optical
elements in sequence:

1.) polarizer with axis n⃗ = x⃗+y⃗√
2
;

2.) half-wave plate with axis n⃗ = y⃗;

3.) polarizer with axis y⃗;

4.) quarter-wave plate with axis n⃗ = x⃗−y⃗√
2
.

Solution: Vectorially: The incoming light has an electric field of the form E⃗0 = E0x⃗ cosωt, its
intensity is I0 = ⟨E⃗2

0⟩ = 1
2E

2
0 . After passing through the linear polarizer, we obtain the field

E⃗1 = (E⃗ · n⃗) n⃗ = E0

(
x⃗ · x⃗+y⃗√

2

) x⃗+ y⃗√
2

cosωt =
E0√
2

x⃗+ y⃗√
2

cosωt, (402)

thus linearly polarized light with the plane of polarization in the direction x⃗+y⃗√
2
. The intensity is

then I1 = ⟨E⃗2
1⟩ =

E2
0

2
1
2 = 1

2I0. Next, the light encounters a wave plate with axis n⃗ = y⃗, the field

E⃗1 is expanded as

E⃗1 =
E0

2
x⃗ cosωt+

E0

2
y⃗ cosωt (403)

62



and then add a phase π (half-wave plate) to the component in the direction y⃗:

E⃗2 =
E0

2
x⃗ cosωt+

E0

2
y⃗ cos(ωt+ π)︸ ︷︷ ︸

− cosωt

=
E0√
2

x⃗− y⃗√
2

cosωt. (404)

After the wave plate, we have linearly polarized light with the plane of polarization given by the

directional vector x⃗−y⃗√
2
. Its intensity is I2 = ⟨E⃗2

2⟩ =
E2

0

2
1
2 = I1 – the wave plate does not change

the intensity. The polarizer with transmission axis n⃗ = y⃗ simply annihilates the electric field
component in the direction x⃗:

E⃗3 = (E⃗2 · y⃗) y⃗ = −E0

2
y⃗ cosωt ∼ E0

2
y⃗ cosωt (405)

(we removed the minus sign because it represents just a total phase shift of π). The intensity is

I3 = ⟨E⃗2
3⟩ =

E2
0

4
1
2 = 1

4I0. Finally, the light passes through a quarter-wave plate with axis n⃗ = x⃗−y⃗√
2
.

We must first express the field E⃗3 in

directions x⃗−y⃗√
2

and (perpendicular to it) x⃗+y⃗√
2
. We perform a similar calculation as in example

9.7 and get y⃗ = 1
2 (y⃗ + y⃗ + x⃗− x⃗) = 1√

2

(
x⃗+y⃗√

2
− x⃗−y⃗√

2

)
, thus

E⃗3 =
E0

2
√
2

x⃗+ y⃗√
2

cosωt− E0

2
√
2

x⃗− y⃗√
2

cosωt. (406)

The quarter-wave plate adds a phase π
2 to the part of the wave in the direction x⃗−y⃗√

2
:

E⃗4 =
E0

2
√
2

x⃗+ y⃗√
2

cosωt− E0

2
√
2

x⃗− y⃗√
2

cos
(
ωt+ π

2

)︸ ︷︷ ︸
− sinωt

=
E0

2
√
2

(
x⃗+ y⃗√

2
cosωt+

y⃗ − x⃗√
2

sinωt

)
. (407)

Clearly, it is circularly polarized light. The direction of rotation (clockwise/anticlockwise) is de-
termined by the direction of rotation of the electric field:

y

x

y

~E(t)

z

cos ε

+ sin ε

~x+~y√
2

~y−~x√
2

The electric field vector rotates counterclockwise, thus it is left-hand circularly polarized light. Its

intensity is I4 = ⟨E⃗2
4⟩ =

E2
0

8

(
1
2 + 1

2

)
= 1

4I0 (again, the wave plate does not change the intensity).

Matrix-wise: The incoming light has a polarization vector of the form

ˆ⃗
E0 = E0

(
1
0

)
(408)
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and the incoming intensity is I0 = 1
2

(
E2

0 + 02
)
= 1

2E
2
0 . The polarizer with the transmission axis

in the direction x⃗+y⃗√
2

acts through a projector

ˆ⃗
E1 = P x⃗+y⃗√

2

ˆ⃗
E0 =

1

2

(
1 1
1 1

)(
E0

0

)
=

1

2

(
E0

E0

)
=

E0

2
√
2

(
1√
2
1√
2

)
. (409)

After the polarizer, the light is linearly polarized with the plane of polarization in the direction
x⃗+y⃗√

2
. The intensity is I1 = 1

2
1
4

(
E2

0 + E2
0

)
= 1

2I0. The half-wave plate acts further as

ˆ⃗
E2 = Dπ,y⃗

ˆ⃗
E1 =

[
eiπPy⃗ + Px⃗

] ˆ⃗
E1 =

[
eiπ
(
0 0
0 1

)
+

(
1 0
0 0

)](
1
2E0
1
2E0

)
=

(
1 0
0 −1

)(
1
2E0
1
2E0

)
=

1

2

(
E0

−E0

)
.

(410)
The intensity after passing through the plate I2 = 1

2

(
1
4E

2
0 + 1

4E
2
0

)
= 1

2I0 – the wave plate does not
change the intensity. Again, there is no phase shift between the components of the polarization

vector
ˆ⃗
E2, thus it is linearly polarized light this time with the plane of polarization in the direction

x⃗−y⃗√
2
. (we can write

ˆ⃗
E2 = E0

2
√
2
( 1√

2
,− 1√

2
)T ).

The polarizer with transmission axis n⃗ = y⃗ acts as follows

ˆ⃗
E3 = Py⃗

ˆ⃗
E2 =

(
0 0
0 1

)(
E0

2

−E0

2

)
=

(
0

−E0

2

)
∼ E0

2

(
0
1

)
. (411)

Again, it is linearly polarized light with the plane of polarization in the direction y⃗ with intensity

I3 = 1
2

(
02 +

E2
0

4

)
= 1

4I0.

In the last step, we have a quarter-wave plate with axis n⃗ = x⃗−y⃗√
2
. The complementary direction

is thus n⃗′ = x⃗+y⃗√
2
. Its matrix is given by the relation Dπ

2
= ei

π
2 Pn⃗ + Pn⃗′ . Explicitly

Dπ
2 ,n⃗

= ei
π
2
1

2

(
1 −1
−1 1

)
+

1

2

(
1 1
1 1

)
=

1

2

(
1 + i 1− i
1− i 1 + i

)
=

1√
2

(
1+i√

2
1−i√

2
1−i√

2
1+i√

2

)
(412)

=
1√
2

(
ei

π
4 e−i

π
4

e−i
π
4 ei

π
4

)
=

1√
2
ei

π
4

(
1 −i
−i 1

)
∼ 1√

2

(
1 −i
−i 1

)
.

The resulting light then is

ˆ⃗
E4 = Dπ

2 ,n⃗
ˆ⃗
E3 =

1√
2

(
1 −i
−i 1

)(
0
E0

2

)
=

E0

2
√
2

(
−i
1

)
=

E0

2
√
2

(
e−i

π
2

1

)
. (413)

There is a phase difference of π
2 between the components of the electric field (with the same

amplitude), thus it is circularly polarized light. By expressing in vector notation

E⃗4 =
E0

2
√
2

(
x⃗ ei(ωt−

π
2 ) + y⃗ eiωt

)
Re
=

E0

2
√
2

(
x⃗ cos(ωt− π

2 )︸ ︷︷ ︸
sinωt

+y⃗ cosωt
)

(414)

we can easily determine the sense of rotation of the electric field:
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y

x

y

~E(t)

z

cos ε

+ sin ε

~x

~y

It is left-hand circularly polarized light, as the electric field vector rotates counterclockwise in the

xy plane. The resulting intensity is I4 = 1
2
E2

0

8 (1 + 1) = 1
4I0 – the wave plate again does not change

the intensity.

*Exercise 9.10. What values of the Stokes parameters P1, P2, and P3 correspond to linearly,
respectively, circularly polarized light. Plot the results.

Solution: The Stokes parameters for the electric field E⃗(t) = (Ex(t), Ey(t)) are given by the
following expressions:

P1 =
⟨E2

x⟩ − ⟨E2
y⟩

⟨E2
x⟩+ ⟨E2

y⟩
, P2 =

⟨2ExEy⟩
⟨E2

x⟩+ ⟨E2
y⟩
, P3 =

⟨2Ex(ωt− π
2 )Ey⟩

⟨E2
x⟩+ ⟨E2

y⟩
. (415)

Consider light linearly polarized in the direction n⃗, thus E⃗(t) = E0n⃗ cosωt. From this

Ex(t) = E0nx cosωt, Ey(t) = E0ny cosωt. (416)

From this, we

find that

⟨E2
x⟩ = E2

0n
2
x⟨cos2 ωt⟩ =

1

2
E2

0n
2
x, ⟨E2

y⟩ =
1

2
E2

0n
2
y. (417)

For calculating P2, we need the mean value

⟨2ExEy⟩ = ⟨2E2
0nxny cos

2 ωt⟩ = E2
0nxny. (418)

Finally, for calculating P3, we need the mean value〈
2Ex(ωt− π

2 )Ey
〉
= 2

〈
E2

0nxny cosωt cos(ωt− π
2 )
〉

= 2E2
0nxny⟨cosωt sinωt⟩

= E2
0nxny⟨sin 2ωt⟩ = 0.

(419)

Substituting into the Stokes parameters, we get

P1 = n2x − n2y, P2 = 2nxny, P3 = 0. (420)

If we let nx = cos θ and ny = sin θ, then P1 = cos 2θ, P2 = sin 2θ, P3 = 0. In the space of Stokes
parameters (P1, P2, P3), we thus get a unit circle in the plane P3 = 0. Note that a given point
on the circle corresponds to exactly two directions n⃗ and −n⃗, so the Stokes parameters uniquely
determine the plane of polarization of the given light!
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Circularly polarized light is given, for example, by the vector E⃗(t) = E0(cosωt,± sinωt). Hence

⟨E2
x⟩ = ⟨E2

0 cos
2 ωt⟩ = 1

2
E2

0 = ⟨E2
0 sin

2 ωt⟩ = ⟨E2
y⟩. (421)

For calculating P2, we need the mean value

⟨2ExEy⟩ = ±E2
0⟨cosωt sinωt⟩ = 0. (422)

Finally, for calculating P3, we need to compute〈
2Ex(ωt− π

2 )Ey
〉
= ±2E2

0⟨sin2 ωt⟩ = ±E2
0 . (423)

Substituting into the Stokes parameters, we thus get P1 = 0, P2 = 0, and P3 = ±1. Circularly
polarized light thus corresponds to the poles of a sphere with radius 1.

*Exercise 9.11. The light hitting a linear polarizer is a mixture of linearly polarized and unpo-
larized light. If you rotate the polarizer by 60◦ compared to the orientation with the maximum
transmitted intensity, you get half the intensity. Determine the ratio of intensities of unpolarized
and linearly polarized light in the mixture.

Solution: The

intensity of the incoming light Id is the sum Id = Ip + In, where Ip is the intensity of linearly
polarized light and In is the intensity of unpolarized light. The interference term can be neglected
since it is a superposition of incoherent waves. Depending on the angle θ to the plane of linearly
polarized light, the transmitted light intensity Io(θ) = Ip cos

2 θ + 1
2In (according to Malus’s law

and example 9.2). The transmitted intensity is greatest for θ = 0. From the condition, we have
the equation Io(0) = 2Io(±π

3 ). Substituting

Ip +
1

2
In = 2

(
1

4
Ip +

1

2
In

)
=

1

2
Ip + In. (424)

From this Ip = In – the mixture contains equal proportions of linearly polarized and unpolarized
light.

*Exercise 9.12. The direction of polarization of linearly polarized light changes rapidly (much
faster than the resolving time of the measuring device) between the following two states: n⃗ =
(cos θ0,± sin θ0), where θ0 <

π
2 . Calculate the Stokes parameters. Determine the degree of polar-

ization |P⃗ | = |(P1, P2, P3)| depending on θ0.

Solution: We thus have an electric field, in which the following two states E⃗+ and E⃗− rapidly
alternate:

E⃗±(t) = E0

(
cos θ0
± sin θ0

)
cosωt. (425)

The mean values of the electric field components over the resolution time of the device will be given
by the arithmetic mean of the mean values over the period of the two states mentioned above, thus
schematically

⟨E2⟩tres =
1

2

(
⟨E+2⟩T + ⟨E−2⟩T

)
. (426)

Specifically then

⟨E2
x⟩tres =

1

2

(
⟨E+

x
2⟩T + ⟨E−

x
2⟩T
)
=

1

2

(
cos2 θ0

1

2
+ cos2 θ0

1

2

)
=

1

2
cos2 θ0. (427)
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A completely identical calculation gives ⟨E2
y⟩ = 1

2 sin
2 θ0. For the mixed terms, we get

⟨2ExEy⟩tres =
1

2

(
⟨2E+

x E
+
y ⟩T + ⟨2E−

x E
−
y ⟩T

)
=

1

2

(
2E2

0 cos θ0 sin θ0⟨cos2 ωt⟩T − 2E2
0 cos θ0 sin θ0⟨cos2 ωt⟩T

)
= 0. (428)

The last mean value needed for calculating P3 is

⟨2Ex(ωt− π
2 )Ey⟩ =

1

2

(
2E2

0 cos θ0 sin θ0⟨sinωt cosωt⟩T − 2E2
0 cos θ0 sin θ0⟨sinωt cosωt⟩T

)
= 0.

(429)

Overall, we get
P1 = cos2 θ0 − sin2 θ0 = cos 2θ0, P2 = 0, P3 = 0. (430)

We see that the Stokes parameters come out similar to light polarized in the direction of the x⃗ or
y⃗ axis, but the vector P⃗ = (P1, P2, P3) does not lie on the unit sphere because |P⃗ | = | cos 2θ0|. The
degree of polarization thus decreases with increasing angle θ0, until for θ0 = π

4 , we get |P⃗ | = 0,
corresponding to unpolarized light (then it increases again, because for θ0 = π

2 we get linearly
polarized light in the direction of the y⃗ axis).

10 Interference

*Exercise 10.1 (Fabry-Pérot etalon). Consider the result of exercise 7.5, i.e., the total reflection
coefficient at two interfaces

R =
R12 +R23e

−2ik2L

1 +R12R23e−2ik2L
, (431)

where R12 and R23 are the reflection coefficients of individual interfaces, k2 is the wave number
in the medium between the interfaces, and L is the distance between the interfaces. Now consider
that the interfaces are formed by the same semi-transparent mirrors, i.e., R12 = R23 = r. Find
the relationship between the wavelength λ and the distance between mirrors L, at which the total
reflectivity R = |R2| is zero.

Solution: After substitution, we solve the equation

0 =
r(1 + e−2ik2L)

1 + r2e−2ik2L
. (432)

Since the denominator is always different from zero and considering r ̸= 0, we obtain a simple
condition 1 + e−2ik2L = 0. From this, we get the equation

−2k2L ∈ {π + 2nπ | n ∈ Z} (433)

This gives us the condition k2L ∈ {−π
2 + nπ | n ∈ Z}. Since we have k2L > 0, we obtain

k2L ∈ {π
2
+ nπ | n ∈ N0} (434)

Now, we just use the relationship between the wave number and wavelength, thus k2 = 2π
λ . After

substitution, therefore

L
2π

λ
∈ {π

2
+ nπ | n ∈ N0} (435)
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After dividing the equation by 2π, we get the final relationship

L

λ
∈ {2n− 1

4
| n ∈ N}. (436)

Exercise 10.2 (Glass wedge). Flat surfaces of a glass wedge with a refractive index n = 1.5 form
a very small angle φ = 0.1′. Light of wavelength λ = 500nm falls perpendicularly on the wedge.
Calculate the distance between interference fringes.

Guide: Find the angle between the emerging rays and use the result of example 8.5.

Solution: The light falls perpendicularly on the base. We draw a picture:

ϕ

ϕ

ϕ′

ϕ− ϕ′

2ϕ− ϕ′

ϕ′′

We obtain the angles of deviation from the normals with a bit of trigonometry. For example, the
angle φ̄ of deviation from the perpendicular to the base is obtained by the sum of angles in the
triangle:

π = φ+ (
π

2
− φ′) + (

π

2
− φ̄). (437)

From this, φ̄ = φ−φ′. Similarly for the second angle 2φ−φ′. Since we assume all angles are very
small, we approximately use Snell’s law of refraction:

sin(φ) = n sin(φ′), sin(φ′′) = n sin(2φ− φ′). (438)

Since all angles are very small, we can use the approximation sin(x) ≈ x everywhere. Thus, we get

φ = nφ′, φ′′ = n(2φ− φ′). (439)

From this, φ′′ = (2n− 1)φ. The total angle formed by the reflected rays is then approximately

∆φ = φ+ φ′′ = 2nφ. (440)

In example 8.5, we found that the distance between interference maxima on the screen (perpen-
dicular to the direction of both rays) is given by

∆y =
λ

∆φ
=

λ

2nφ
=

500 · 10−9

2 · 3
2 · 1

600 · π
180

=
18 · 10−3

π
m ≈ 5.73mm. (441)
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*Exercise 10.3 (Air wedge). An air wedge is bounded by two perfectly flat glass plates with a
refractive index n = 1.5, which form a very small angle φ. This angle is given by the fact that a
strip of aluminum foil of thickness d = 0.02mm was inserted at a distance L = 10cm from their
touching edges. Sodium light (λ = 589nm) falls perpendicularly on the wedge layer. Determine
the distance between the interference fringes in a) reflected and b) transmitted light.

Solution: For situation a) we have the following picture:

ϕ

ϕ1

ϕ1

ϕ2

ϕ2

ϕ̂

Consider a more general situation of angle φ1. Notice that the twice-refracted light is parallel to
the original one. We only need to determine the angle φ2. This is again a bit of trigonometry.
The angle φ̂ which the ray falling on the lower prism forms with the perpendicular satisfies the
equation

φ+ (
π

2
− φ1) + (

π

2
+ φ̂) = π, (442)

from which φ̂ = φ1 − φ. The angle φ2 then satisfies the equation

φ+ (
π

2
− φ2) + (

π

2
− φ̂) = π. (443)

Thus, φ2 = φ− φ̂ = 2φ− φ1. The total angle between both rays is therefore

∆φ = φ1 + φ2 = 2φ. (444)

We see that the distance between interference maxima ∆y = λ
2φ does not depend on n nor on the

angle of incidence ϑ1 at all!

For situation b) we have a slightly modified picture:
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ϕ

ϕ1

ϕ1

ϕ2

ϕ̂

ϕ̂

ϕ3

ϕ3

So, we just need to determine the angle φ3 under which the twice-reflected ray falls on the lower
prism. We easily obtain it from the equation

φ+ (
π

2
+ φ2) + (

π

2
− φ3) = π, (445)

thus φ3 = φ+ φ2 = 3φ− φ1. The resulting angle between two rays is ∆φ = φ̂+ φ3 = 2φ.

Exercise 10.4 (Soap Film Alias Interference on a Thin Layer). You have a planar soap film of
thickness d with a refractive index n. If you observe the reflection of light at an angle ϑ on the soap
film, due to constructive interference for a certain wavelength of light λ, you see the film colored.
Find the condition for constructive interference for the parameters (d, ϑ, λ, n).

Solution: We must calculate the difference in so-called optical paths traveled by both rays. The
optical path is the phase change along the actual traveled distance ℓ. For a planar traveling wave,
this is simply kℓ, where k is the wave number of the given medium. In our case, we compare two
rays in the figure:

d

yϑ

ϑ′

x

ϑ
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Therefore, we compare the optical paths from the location marked by the dashed line to the location
marked by the dot. The wave number for propagation in air is given by k = 2π

λ , the wave number
in a medium with refractive index n is its multiple nk.

The actual trajectory traveled by one reflected ray is denoted as y. This can be calculated from
the right-angled triangle, with y being the opposite side:

y = 2x sin(ϑ). (446)

The distance x can be obtained from the right-angled triangle with opposite and adjacent sides d
and x, thus

x = d tg(ϑ′) = d
sin(ϑ′)√

1− sin2(ϑ′)
= d

1
n sin(ϑ)√

1− 1
n2 sin

2(ϑ)
= d

sin(ϑ)√
n2 − sin2(ϑ)

(447)

Together, we obtain the expression for y in the form

y =
2d sin2(ϑ)√
n2 − sin2(ϑ)

(448)

The optical path for the first ray is then

φ1 =
2π

λ
y + π. (449)

It’s easy to forget about the π term. The first wave reflects at the air-soap interface, where the
reflection coefficient is R = 1−n

1+n < 0. The reflected wave thus gains an additional phase of π simply
by reflecting.

On the other hand, the distance y′ traveled by the second of the rays is given by twice the
hypotenuse of both triangles:

y′ = 2
d

cos(ϑ′)
=

2dn√
n2 − sin2(ϑ)

(450)

The optical path traveled by the second ray is thus

φ2 = nky′ =
2dn2

n2 − sin2(ϑ)
(451)

The sought difference in optical paths ∆φ = φ2 − φ1 is then

∆φ =
4πd

λ

(n2 − sin2(ϑ))√
n2 − sin2(ϑ))

− π =
4πd

λ

√
n2 − sin2(ϑ)− π. (452)

Constructive interference of both lights occurs for ∆φ = 2mπ, m ∈ Z. We thus get the condition

4πd

λ

√
n2 − sin2(ϑ) = (2m+ 1)π, m ∈ Z. (453)

Why does the bubble appear colored due to constructive interference? If n, d, and ϑ are given (we
look at the plane of the bubble at some angle), in the light, components with wavelength λ given
by the relation predominate:

λ =
4d

2m+ 1

√
n2 − sin2(ϑ). (454)
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11 Diffraction

Exercise 11.1. What is the highest order maximum you can observe in green light with a wave-
length of λ = 550nm for a diffraction grating with 5000 grooves per 1cm?

Solution: Let d be the distance between adjacent grooves on the grating. The angle θm, under
which we observe the m-th order maximum on the screen, is given by the relationship

sin θm = m
λ

d
. (455)

From this, we get the condition for the maximum order of the maximum in the form mλ
d < 1, thus

m <
d

λ
. (456)

The groove density in our case n = 5.105 m−1. The distance between adjacent grooves is then
d = 1/n, and we obtain the condition

m <
1

nλ
=

1

550 · 5 · 10−4
=

1

2,75 · 10−1
≈ 3,6. (457)

From this, we see that we observe maxima of at most the third order.

Exercise 11.2. Can the spectra of the 1. and 2. order and the spectra of the 2. and 3. order,
generated on a diffraction grating when illuminated with white light consisting of wavelengths
400–700 nm, overlap?

Solution: The distance of the m-th maximum from the axis of the diffraction grating depends
on the wavelength by the relationship ym(λ) = mLλ

d . We first address the condition whether the
situation y1(λ1) ≥ y2(λ0), where λ0 = 400 nm and λ1 = 700 nm, can occur. After substitution, we
get the requirement

1
Lλ1
d

≥ 2
Lλ0
d
, (458)

from which the condition λ1 ≥ 2λ0 arises. For the given values, this cannot occur, and the first
and second spectrum never overlap. For the second and third maximum, we get the inequality

λ1 ≥ 3

2
λ0, (459)

which the mentioned wavelengths satisfy. Thus, the 2nd and 3rd order spectra can overlap.
Whether they actually will depends on the parameters of the diffraction grating (the 2nd and
3rd order spectrum may not be visible at all).

*Exercise 11.3. A diffraction grating has 500 grooves per 1 mm. Calculate the so-called disper-
sion, i.e., the quantity dθ

dλ , near green light (λ = 500 nm) for the first and second order.

Solution: For the grating, the angular dependence of the m-th order maximum is given by the
relationship sin θm = mλ

d . Hence, θm(λ) = arcsin(mλ
d ). The dispersion for the m-th order is

obtained by differentiation:

dθm
dλ

(λ) =
1√

1− (mλd )2
· m
d

=
m√

d2 −m2λ2
. (460)
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The groove density n in this case is n = 5·105 m−1. Hence d = 20·10−7 m. The wavelength is
λ = 5·10−7 m. The number under the square root is thus

d2 −m2λ2 = (400− 25m2) · 10−14. (461)

For m = 1 and m = 2, we thus get

dθ1
dλ

(λ) =
1√
375

· 107 m−1 ≈ 5,16·10−5 m−1,
dθ2
dλ

(λ) =
2√
300

· 107 m−1 ≈ 11,5·10−5 m−1. (462)

Exercise 11.4. Yellow light emitted by sodium atoms is dominated by the so-called sodium
doublet, whose wavelengths are λ1 = 589,0 nm and λ2 = 589,6 nm. What is the minimum number
of grooves/slots on the grating required to distinguish these two wavelengths in the first-order
spectrum?

Solution: Let us denote the angles under which we observe the first-order maxima for both
wavelengths as θ1 and θ2. The approximate relationship holds

θ1 =
λ1
d
, θ2 =

λ2
d
. (463)

For a diffraction grating, the widths of diffraction maxima (the distance between the first zeros of
intensity around the maximum) are given by

δθ =
2λ

Nd
, (464)

where N is the total number of grooves on the diffraction grating. To be able to distinguish the
spectra of both wavelengths, both halves of the widths must ”fit” between the two maxima. We
thus get the relationship

1

d
(λ2 − λ1) = θ2 − θ1 ≥ 1

2

(
δθ(λ1) + δθ(λ2)

)
=

1

Nd
(λ2 + λ1). (465)

From this, we can express the constant N as

N ≥ λ2 + λ1
λ2 − λ1

=
589,6 + 589,0

0,6
≈ 1964,3. (466)

Thus, the grating must contain at least 1965 grooves.

Exercise 11.5. Place a hair with diameter d in the path of a laser beam with a wavelength of
λ = 632,8 nm. On a screen at a distance of L = 6 m, you observe diffraction maxima at a distance
of ∆l = 3 cm. What is the diameter of the hair?

Solution: According to Babinet’s principle, the interference pattern for a hair is the same as for
a finite-sized slit of width d. For a slit of finite width d, it turns out the same as for two thin slits
d apart. The distance between adjacent maxima is thus

∆l ≈ L ·∆θ = L
λ

d
. (467)

From this, we can express d as a function of the remaining variables and get

d =
Lλ

∆l
=

6 · 632, 8 · 10−9

3 · 10−2
m = 2 · 632,8 · 10−7 m = 126µm. (468)

Exercise 11.6 (Diffraction pattern of a rectangular slit). Find the diffraction pattern (intensity
distribution on the screen)

of a rectangular slit of dimensions a, b.
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Solution: When a plane wave of the electric field (in the direction of the z axis) hits a barrier

with an opening B, the intensity of the electric field E⃗ = E⃗(x, y) on the parallel screen at a
perpendicular distance L is given by the Fraunhofer integral

E⃗(x, y) =
E⃗0

R
ei(ωt−kR)

∫
B

ei
k
R (xX+yY )dXdY, (469)

where to the right is the area integral over the area of the opening B and R = R(x, y) =√
L2 + x2 + y2. See figure:

X

Y

x

y

Z, z

B

R

(x, y)

L

In this example, B is a rectangle with the center at (X,Y ) = (0, 0) with sides a and b. The area
integral in this case is very simple, we have to calculate∫

B

ei
k
R (xX+yY )dXdY =

(∫ a
2

− a
2

ei
kx
R XdX

)(∫ b
2

− b
2

ei
ky
R Y dY

)
. (470)

Both integrals give a similar result, let’s compute just one of them:∫ a
2

− a
2

ei
kx
R XdX =

R

ikx

(
ei

kx
R

a
2 − e−i

kx
R

a
2

)
=

2R

kx
sin

(
kx

R

a

2

)
. (471)

The resulting electric field is then after substitution

E⃗(x, y) = E⃗0e
i(ωt−kR) ab

R

sin
(
kxa
2R

)
kxa
2R

sin
(
kyb
2R

)
kyb
2R

. (472)

The intensity I = I(x, y) is the time average of the square (real part) of this field:

I(x, y) =
〈
Re[E⃗(x, y)]2

〉
=
E2

0a
2b2

2R2

(
sin(kxa2R )

kxa
2R

)2(
sin(kyb2R )

kyb
2R

)2

. (473)

The result can be expressed using two angles defined by the relationships sin θx = x
R and sin θy = y

R .
Then we get

I(x, y) =
E2

0a
2b2

2R2

(
sin(ka2 sin θx)

ka
2 sin θx

)2(
sin(kb2 sin θy)

kb
2 sin θy

)2

. (474)
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For the intensity distribution on the x axis, we can substitute y = 0 (or calculate limy→0) with the
result

I(x) =
E2

0a
2b2

2R2

(
sin(ka2 sin θx)

ka
2 sin θx

)2

. (475)

The distribution of this intensity (in the variable sin θx) is illustrated in the following figure:

sin θx

I

0 λ
a

2λ
a− 2λ

a
−λ
a

3λ
a− 3λ

a

Exercise 11.7 (Diffraction pattern of two slits). Find the diffraction pattern of two slits of width
D, whose centers are at a distance d.

Solution: We examine a one-dimensional problem, i.e., the intensity distribution depending on
x on the slice y = 0. We get the result by modifying the previous calculation.

X

Y

x

y

Z, z

d

D

D

Let’s first compute separately the electric fields from individual slits E⃗±(x). These differ from the
electric field of one slit by shifting the limits in the integral over X. Compared to the previous
example, we thus calculate:∫ ± d

2+
D
2

± d
2−

D
2

ei
kx
R XdX =

R

ikx
e±i

kx
R

d
2

(
ei

kx
R

D
2 − e−i

kx
R

D
2

)
=
D

2
e±ik

d
2 sin θ sin(

1
2kD sin θ)

1
2kD sin θ

, (476)
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where now R(x) =
√
L2 + x2 and sin θ = x

R . The second integral for y = 0 yields
∫ b

2

− b
2

dY = b.

Thus, we have

E⃗±(x) = E⃗0
bD

2R
ei(ωt−kR)e±i

1
2kd sin θ

sin( 12kD sin θ)
1
2kD sin θ

. (477)

The resulting electric field is the superposition of these two, we get

E⃗(x) = E⃗+(x) + E⃗−(x) = E⃗0
bD

R
ei(ωt−kR) cos

(
1

2
kd sin θ

)
sin( 12kD sin θ)

1
2kD sin θ

. (478)

The intensity distribution is easily calculated as

I(x) =
〈
Re[E⃗(x, y)]2

〉
=
E2

0b
2D2

2R2
cos2

(
1

2
kd sin θ

)
·
(
sin( 12kD sin θ)

1
2kD sin θ

)2

. (479)

The intensity distribution on the x axis for d = D
5 has this form (in gray is for comparison the

intensity of one slit of width D):

sin θ

I

0 λ
D

2λ
D− 2λ

D
− λ
D

3λ
D− 3λ

D

*Exercise 11.8 (Diffraction pattern of a circular aperture). Compose the diffraction integral for
a circular aperture of diameter D. Write the result using the Bessel function Jn(x), whose integral
definition is

Jn(x) =
1

2π

∫ π

−π
ei(x sin(u)−nu)du. (480)

Hint: Introduce polar coordinates in both the screen and barrier planes. Realize that the result
cannot depend on the value of the polar angle in the screen plane and set it to a suitable constant.
Integrate first over the angular variable. Use the recursive relation

d

dx
[xnJn(x)] = xnJn−1(x) (481)

for n = 1.

Solution: Let’s denote (r, φ) polar coordinates in the screen and (ρ, ϕ) in the barrier plane. We
have

x = r cosφ, y = r sinφ, X = ρ cosϕ, Y = ρ sinϕ. (482)
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X

Y

x

y

Z, z

r

ϕ

(x, y)

(X,Y )

ρ

φ

Notice that R =
√
L2 + x2 + y2 =

√
L2 + r2. We must not forget about the change in the area

element, we have dS = dXdY = ρ dρ dϕ. We set φ = π
2 and thus substitute x = 0 and y = r,

Y = ρ sinϕ. The diffraction integral then has the form

E⃗(r) =
E⃗

R
ei(ωt−kR)

∫
B

ei
k
R rρ sinϕρ dρ dϕ︸ ︷︷ ︸

f(r)

. (483)

The integral over the aperture f(r) itself is specifically written as:

f(r) :=

∫ D
2

0

ρ

∫ π

−π
ei

k
R rρ sinϕdϕ dρ. (484)

The inner angular integral is, except for a factor of 2π, precisely the Bessel function J0 evaluated
at krρ

R , thus we get

f(r) = 2π

∫ D
2

0

ρ J0

(
krρ

R

)
dρ. (485)

Now we introduce the substitution u = krρ
R and get

f(r) =
2πR2

k2r2

∫ krD
2R

0

uJ0(u) du. (486)

From the recursive relation above, however, we know that uJ0(u) =
d
du [uJ1(u)]. Then easily

f(r) =
2πR2

k2r2
[uJ1(u)]

krD
2R
0 =

2πR2

k2r2
krD

2R
J1

(
krD

2R

)
=
πRD

kr
J1

(
krD

2R

)
. (487)

Notice that the function f(r) is real. Therefore, the resulting intensity is trivially obtained as

I(r) =
〈
Re[E⃗(r)]2

〉
=

E2
0

2R2
f(r)2 =

E2
0π

2D2

2k2r2
J1

(
1

2
kD sin θ

)2

=
E2

0π
2D4

8R2

(
J1(

1
2kD sin θ)

1
2kD sin θ

)2

=
2E2

0S
2

R2

(
J1(

1
2kD sin θ)

1
2kD sin θ

)2

,

(488)
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where we have again defined angle θ this time by the relationship sin θ = r
R and S = 1

4πD
2 is the

area of the circular aperture. The intensity distribution then has the following form (in gray is for
comparison the intensity for a slit of width D), α ≈ 1, 22:

sin θ

I

0 λ
D

2λ
D− 2λ

D
− λ
D

3λ
D− 3λ

D
α λ
D
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