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Quantum aspects of beyond-Standard-model theories
with extended gauge symmetries

Praha 2017 Helena Kolešová
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Universita Karlova
Matematicko-fyzikálńı fakulta
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Abstrakt: Standardńı model částicové fyziky je úspěšný v mnoha ohledech, v rámci
této teorie však nelze vysvětlit např́ıklad nenulové hmoty neutrin anebo pozorováńı
tzv. temné hmoty. V této práci studujeme r̊uzná rozš́ı̌reńı standardńıho modelu,
která zahrnuj́ı výše zmı́něné jevy, a hledáme možnosti, jak tyto teorie experimentálně
testovat. Je-li standarńı model doplněn o daľśı skalárńı pole, lze vysvětlit malé hmoty
neutrin a rovněž zavést částici, která by mohla tvořit temnou hmotu, tzv. axion. Tuto
tř́ıdu model̊u je možné testovat mimo jiné na urychlovač́ıch. Dále studujeme specifické
modely sjednoceńı kalibračńıch interakćı s kalibračńı grupou SU(5)× U(1) a SO(10),
které předpov́ıdaj́ı rozpad protonu, a naš́ım hlavńım výsledkem je výpočet př́ıslušných
větv́ıćıch poměr̊u.

Abstract:

Although the Standard Model of particle interactions is successful in many respects,
there are several observations concerning, e.g., non-zero neutrino masses or the presence
of the so-called dark matter, which suggest that this scheme has to be extended. In
this thesis we study different beyond-Standard-Model theories which could help us to
understand the above mentioned phenomena and we also try to find the way in which
these models can be experimentally tested. First, Standard Model is extended by scalar
fields in order to accommodate small Majorana neutrino masses together with a dark
matter candidate called axion. These scenarios can be probed, for instance, by collider
experiments. Second, particular unified models based on the SU(5) × U(1) and the
SO(10) gauge groups are studied, and the potentially measurable partial proton decay
rates are computed.
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Chapter 1

Introduction

At the beginning of this chapter, the goals of this thesis are set, the scope of the
subsequent part is then to help the reader to orient himself in this text. The content
of the individual chapters is described in Section 1.2 and our notation and conventions
are presented in Section 1.3.

1.1 Motivation and goals

The description of the elementary particles and their interactions in the context of the
so-called Standard Model (SM) of particle physics was well established and, recently,
the discovery of the Higgs boson at the Large Hadron Collider (LHC) in CERN con-
firmed experimentally the existence of the last missing piece of this model. Neverthe-
less, there are several reasons why to believe that the SM is not a complete description
of the world at the microscopic scales. The observation of the so-called dark matter
or the issue of the baryon-antibaryon asymmetry in our Universe indisputably call for
explanation, besides, physicists would like to find the order in the setting of the SM
parameters and to explain, e.g., the smallness of neutrino masses.

This thesis is based on the original research papers [1–4], attached to this work as
Appendices B-E. The common goal of all these articles is to provide realistic extensions
of the SM which address the deficiencies of this model. To that end, two qualitatively
different strategies are followed, hence, this thesis will be divided into two parts. In
the articles [1,2] the bottom-up approach is used when we try to explain the smallness
of neutrino masses together with the origin of the dark matter by adding minimum
number of extra fields to the SM. On the other hand, [3,4] use the top-down approach of
the so-called unified theories where the extended gauge symmetry dictates the structure
of the extra fields and predicts relations between the SM parameters as well as new
interactions among the SM fields.

Another goal of this thesis is to find experimental predictions of the proposed
models, which allow to confirm or disprove these scenarios in future. This concerns,
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e.g., possible collider signatures of the extra fields or the process of proton decay in
case of the unified models.

A link between the two parts of this thesis is provided also by the following model-
independent way in which the effects beyond the SM can be looked for. The Appelquist-
Carazzone theorem [5] says that at low energies the effects of heavy fields with mass
∼ Λ should be negligible and go to zero when Λ→∞. The decoupling of these heavy
fields then leads to higher-dimensional operators suppressed by a certain power of Λ
and the expansion

L = Ld=4 +
1

Λ

∑
k

Cd=5
k Od=5

k +
1

Λ2

∑
k

Cd=6
k Od=6

k + . . . (1.1)

can be considered. Since the SM as the low-energy theory has to be recovered, the first
term includes the renormalizable SM Lagrangian. The subsequent higher-dimensional
terms contain all possible operators Ok that can be build from the SM fields respecting
the SM gauge symmetries. The dimensionless parameters Ck are usually called Wilson
coefficients.

Let us note that there is no reason why the accidental global symmetries of the
renormalizable SM Lagrangian corresponding to the baryon and lepton number con-
servation should be respected by the higher-dimensional terms in (1.1). Indeed, we will
see that there is exactly one independent d = 5 term in (1.1) and this operator violates
the lepton number. It also provides the Majorana neutrino masses and the possible
renormalizable realizations of this operator will lead us to SM extensions studied in [1]
and [2].

Similarly, some of the d = 6 operators induce baryon number violation and trigger
the process of proton decay. We will see that such operators arise within the framework
of unified theories which are considered in [3] and [4].

1.2 Organization of the text

As suggested above, the results of this thesis can be divided into two parts and this
logic is followed by the organization of the text. Part I sets the scene for the description
of the results in [1] and [2], whereas Part II introduces the works [3] and [4].

As our starting point, the Standard Model of particle physics is briefly described in
Chapter 2. Part I is then opened by Chapter 3 where some of the shortcomings of the
SM are mentioned. Furthermore, in Chapter 4 different solutions to the problem of the
small neutrino masses are given, some of them are later incorporated in the particular
models studied in articles [1] and [2] as described in Chapter 5. In this chapter also
the axion as the well-established candidate for the dark matter particle is introduced
since it is another important ingredient for the studies [1] and [2].
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The second part of this thesis is devoted to unified theories. The study of the
theories with baryon number violation is motivated in Chapter 6 where also the ex-
perimental search for the proton decay is briefly described. Furthermore, an overview
of the existing unification models based on the SU(5) and the SO(10) gauge group is
given in Chapter 7. Finally, specific models are introduced in Chapter 8 where also the
second part of our results is presented.

The methods for studying the proposed models are mentioned for each case sepa-
rately in Sections 5.2, 5.3, 8.1 and 8.2. Our main results and their possible applications
are summarized in Chapter 9 which also contains the outlook for the future work.

Technical issues were left to Appendix A and the Appendices B-E consist of the
attached articles [1–4]. In Appendix F we include the co-authorship statement by Ste-
fano Bertolini, the senior author of [1] and [2]. Similar statement by Michal Malinský,
the senior author of [3] and [4], will be included in the supervisor’s evaluation of this
thesis.

1.3 Conventions and notation

Unless stated otherwise, the natural system of units with ~ = c = 1 is used. Numerical
values of the observable quantities can be converted into ordinary units by means of

1 MeV−1 ≈ 197 fm (1.2)

or

1 MeV−1 ≈ 6.58× 10−22 s. (1.3)

Furthermore, the flat metric is defined by

gµν = gµν = diag(+1,−1,−1,−1). (1.4)

For the reader’s convenience we recall here also the definition of the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.5)

Unless specified otherwise, summation over repeated Greek and Latin indices is always
understood.

Other conventions are explained straight in the text, in particular, the notation
concerning the Standard Model fields and couplings is set in Chapter 2. Following
acronyms are used throughout this thesis.
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SM Standard Model
EW electro-weak
VEV vacuum expectation value
LHC Large Hadron Collider
C discrete symmetry corresponding to particle-antiparticle conjugation
P discrete symmetry corresponding to the change of sign in the spatial

coordinates
B baryon number
L lepton number
Q electric charge
TL3 third component of the weak isospin
Y hypercharge (the normalization where Q = TL3 + Y is used)
VPMNS Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix (assigned as V

in Section 3.1, V D
PMNS and VM

PMNS distinguished in Section 3.1.4)
VCKM Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix
Ωx fraction of the total energy density corresponding to x (see Appendix A.3)
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Chapter 2

Standard Model in a nutshell

To set the notation we recall here the field content and the Lagrangian of the SM
corresponding to the original formulation of Glashow, Weinberg and Salam [6–8]. In
Section 2.4 we mention several experimental tests and theoretical consistency checks
which indicate the validity of this theory for a wide range of energy scales.

2.1 The field content

The gauge group of the SM is SU(3)c × SU(2)L × U(1)Y where c, L and Y stand for
color, left and hypercharge, respectively, and the matter fields are accommodated in
the following multiplets with respect to individual gauge group factors:

L =

(
ν
e

)
L

= (1, 2,−1
2), eR = (1, 1,−1), (2.1)

Q =

(
u
d

)
L

= (3, 2,+1
6), uR = (3, 1,+2

3), dR = (3, 1,−1
3).

The first and second row correspond to leptons (charged leptons e and neutrinos ν)
and quarks (up-type u and down-type d), respectively, and all these fields occur in
three copies in the nature, forming three generations (families) of fermions. As shown
in Appendix A.1, instead of the right-handed fields, one can work with the left-handed
conjugated fields:

(ec)L = (1, 1,+1), (uc)L = (3̄, 1,−2
3), (dc)L = (3̄, 1,+1

3). (2.2)

The gauge bosons corresponding to the three gauge group factors, respectively, will
be denoted as

Gµ = (8, 1, 0), Wµ = (1, 3, 0), Bµ = (1, 1, 0), (2.3)
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and, finally, the scalar sector consists of a single multiplet

H =

(
H+

H0

)
= (1, 2,+1

2), (2.4)

usually called the Higgs doublet.

2.2 The Lagrangian

Now we can write down the individual pieces of the SM Lagrangian

L = Lgauge + LY − V (2.5)

where Lgauge consists of the gauge-kinetic forms for the SM matter fermions, the Higgs
doublet and the gauge fields, LY describes the Yukawa interactions of the fermions
with the Higgs field and V is the scalar potential.

The derivative terms and the gauge interactions of the fermions read

Lgauge 3 iLjγµDµLj+iQjγµD
µQj+ieRjγµD

µeRj+iuRjγµD
µuRj+idRjγµD

µdRj (2.6)

where it is summed over the generation index j = 1, 2, 3 and

Dµ = ∂µ − ig3G
µ
aT

c
a − ig2W

µ
a T

L
a − ig1Y B

µ.

Here g1, g2 and g3 are U(1)Y , SU(2)L and SU(3)c couplings, respectively, Y is the
hypercharge of the given particle and T ca and TLa are the generators of SU(3)c and
SU(2)L in the given representation:

T ca =

{
λa
2 for SU(3)c triplets,

0 for SU(3)c singlets,
TLa =

{
σa
2 for SU(2)L doublets,

0 for SU(2)L singlets,

with σa and λa being Pauli (1.5) and Gell-Mann matrices, respectively.

Below (A.6) we explain that (2.6) would have the same form also if it is rewritten
using the left-handed conjugated fields (2.2) instead of the right-handed fields. The
situation is, however, more complicated for the Yukawa Lagrangian

−LY = Y e
jk(e

c)TLjCH
†Lk + Y d

jk(d
c)TLjCH

†Qk − Y u
jk(u

c)TLjCH
T iσ2Qk + h.c. (2.7)

= (Y e†)jkLjHeRk + (Y d†)jkQjHdRk + (Y u†)jkQjiσ2H
∗uRk + h.c. (2.8)

where Y f for f = e, d, u are general complex 3 × 3 matrices. In fact, the “h.c.” term
at the first line corresponds to the terms explicitly written on the second line, which is
also the reason why the conjugate transpose of the Yukawa couplings appear in (2.8).
Although the notation (2.8) using the right-handed fields is more usual, we will stick to
the form (2.7) since this one is used in the literature like [9] which is the key reference
for our proton decay studies.
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The scalar potential
V = −µ2H†H + λ(H†H)2

is minimized by

〈H0〉 = v =
µ√
2λ

(2.9)

and without loss of generality v can be chosen real. After inserting this vacuum expec-
tation value (VEV) into the gauge-kinetic form for the Higgs doublet

Lgauge 3 (DµH)†DµH, DµH =

(
∂µ − ig2W

µ
a

σa
2
− ig1

1

2
Bµ

)
H (2.10)

one finds that the charged weak gauge bosons

W±µ =
1√
2

(Wµ1 ∓Wµ2) (2.11)

acquire mass

m2
W =

1

2
g2v

2.

The experimental value mW = 80.4 GeV together with the weak coupling measurement
then yield v = 174 GeV.1 For the neutral massive gauge boson one gets

Zµ = cos θWW
µ
3 − sin θWB

µ (2.12)

where the so-called weak mixing angle θW satisfies

sin θW =
g1√
g2

1 + g2
2

. (2.13)

The mass of the Z-boson determined from (2.10) reads

mZ =
mW

cos θW
. (2.14)

Finally, the linear combination of the neutral gauge bosons orthogonal to (2.12) corre-
sponds to the SM photon and remains massless.

The SU(3)c × SU(2)L × U(1)Y gauge group is, hence, broken to SU(3)c × U(1)Q
where the electric charge Q of a given particle can be computed from the third com-
ponent of the weak isospin TL3 and the hypercharge Y as

Q = TL3 + Y (2.15)

The last piece of the Lagrangian (2.5) missing is the kinetic term for the gauge
fields

Lgauge 3 −
1

4
GaµνG

µν
a −

1

4
WaµνW

µν
a −

1

4
BµνB

µν (2.16)

1Let us note that this value is influenced by the definition (2.9), sometimes also the convention
〈H0〉 = v√

2
is used, in that case m2

W = 1
4
g2v

2 and v = 246 GeV.
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where
Aµνa = ∂µAνa − ∂νAµa + gfabcA

µ
aA

µ
b

for Aa = Ga,Wa, B. Here g are the corresponding gauge couplings g3, g2, g1, respec-
tively, and fabc are the structure constants of the given gauge group factor, i.e., the
generators satisfy

[Ta, Tb] = ifabcTc .

In particular, fabc = 0 for the Abelian U(1)Y corresponding to the gauge field Bµ.

2.3 Quark mixing

Due to the spontaneous symmetry breaking (2.9) the Yukawa interactions (2.7) gener-
ate also the Dirac mass terms for the charged leptons and quarks

LY 3 vY e
jk(e

c)TLjCeLk + vY d
jk(d

c)TLjCdLk + vY u
jk(u

c)TLjCuLk + h.c.

In order to obtain states with definite mass, the Yukawa couplings can be diagonalized
by so-called biunitary transformation (A.7)

Y e
diag = ETCYeE,

Y d
diag = DT

CY
dD, (2.17)

Y u
diag = UTCY

uU

which corresponds to the change of basis in the field generation space

eLa = (E†)ajeLj , eRa = (E†C)ajeRj , (2.18)

dLa = (D†)ajdLj , dRa = (D†C)ajdRj , (2.19)

uLa = (U †)ajuLj , uRa = (U †C)ajuRj . (2.20)

We use the same symbols for the fields corresponding to the “interaction” and ”mass”
basis, and these two will be distinguished by the choice of indices from the middle and
the beginning of the alphabet, respectively.

Such a change of basis does not influence the interactions of the fermions with the
Z-boson or the photon, however, it plays an important role for the charged currents
mediated by the W boson. Indeed, rewriting the gauge interactions in (2.6) in terms
of the physical fields W± (2.11) one obtains

Lgauge 3
g2√

2

(
uLjγ

µW+
µ dLj + dLjγ

µW−µ uLj + νLjγ
µW+

µ eLj + eLjγ
µW−µ νLj

)
. (2.21)

The change of basis for the charged leptons (2.18) does not influence the form of
these interactions since one can rotate the massless neutrino fields in an arbitrary way,
hence, compensate for the rotation in the charged lepton generation space. On the
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other hand, using the physical quark fields denoted by the indices from the beginning
of the alphabet in (2.19), (2.20) one obtains

Lgauge 3
g2√

2
uLa(U

†)ajγ
µW+

µ DjbdLb + h.c. =
g2√

2
(U †D)abuLaγ

µW+
µ dLb + h.c. (2.22)

The resulting charged-current interactions of the quarks are then in general not flavour
diagonal. In case of two generations of quarks the 2 × 2 unitary matrix U †D can be
parametrized by a single angle (usually called the Cabibbo angle nowadays since it
was N. Cabibbo [10] who first assumed the emergence of a mixing angle in the quark
interactions), when the three unphysical phases are absorbed in the redefinition of the
quark fields.

On the other hand, it was pointed out by Kobayashi and Maskawa [11] that in the
case of three generations of quarks, the mixing matrix can not be made real in this
way which, in turn, induces CP violation in the charged currents (2.22). Indeed, one
can choose to make, e.g., the first row and the first column of the 3 × 3 matrix U †D
real by redefining the phases of the fields uLa and dLb (see, e.g., [12] for a detailed
construction) which in fact corresponds to the ambiguity in U and D matrices (A.8).
Such a redefinition, however, leads to absorbing only 5 phases whereas a general unitary
3× 3 unitary matrix is parametrized by 6 phases (together with 3 angles).

In conclusion, the so-called Cabibbo-Kobayashi-Maskawa (CKM) matrix satisfies

U †D = K1VCKMK2 (2.23)

where K1 and K2 are diagonal unitary matrices containing 3 and 2 phases, respectively,
and can be parametrized in a “standard” way [13] as

VCKM =

 1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ13

0 1 0
−s13e

iδ13 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


=

 c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

 . (2.24)

Here sij ≡ sin θij , cij ≡ cos θij with θ12 ∼ 13◦, θ13 ∼ 0.2◦, θ23 ∼ 2.4◦, and δ13 ∼ 1.2 rad
[14]. Let us note that with the parametrization (2.24) it is not true that the first column
and the first row of VCKM is real as it was the case with the original parametrization
of Kobayashi and Maskawa. The advantage of the standard parametrization of the
CKM matrix is that the imaginary part of (2.24) is of the order of 10−3 which indeed
corresponds to the magnitude of the CP violation in the quark sector determined by
the Jarlskog invariant.

2.4 The triumph of the Standard Model

In this Section, we would like to stress that the SM is an extremely successful theory
which poses strong constraints on possible physics beyond the SM.
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SM well describes the physics at the energy scales stretching over many orders of
magnitude: from the eV scale of the atomic physics up to the LHC energy scales in
the 10 TeV ballpark no hints for new physics were observed. At the same time, the SM
is tested with an extraordinary precision, e.g., the anomalous magnetic moment of the
muon is measured with a relative uncertainty of about 10−9 which is compatible with
the calculation where the QED contributions up to five loops and EW contributions
up to two loops are included (see, e.g., the review [15]).

It is also remarkable how the predictions of the SM theory were often ahead of the
experimental observations. For instance, in order to explain the CP violation in the
weak interactions, Kobayashi and Maskawa suggested the third generation of matter
fields in 1973 [11] when not even all the fermions from the second generation were
observed experimentally. The need for the last missing piece of the second generation
of fermions was even more pronounced2: besides the fact that a theory without the
fourth quark could not explain the absence of the flavour-changing neutral currents (as
pointed out by Glashow, Iliopoulos and Maiani [17]), complete families of fermions are
needed in order to get a consistent theory with anomaly-free gauge symmetry.

Let us now discuss the problem of anomalies in the SM in more depth. It is
interesting to turn around the requirement of the anomaly-free theory: if the SM
fermion content is assumed, it can be shown (see, e.g., Section 22.4 of [18]) that the
hypercharge of the five multiplets (2.1) can be determined when the cancellation of all
the gauge anomalies (including the gravitational one) is assumed. The quantization of
the electric charge of the SM chiral fermions can be explained in this way.

On the other hand, the global symmetries of the SM Lagrangian can be anomalous
which also brings interesting implications. It was demonstrated by Adler, Bell and
Jackiw [19,20] that the observed decay rate for the π0 → γγ process can be explained
by an anomalous chiral symmetry in the quark sector. Furthermore, the choice of the
SM gauge group, together with the field content mentioned in Section 2.1, induces ac-
cidental global symmetries of the renormalizable Lagrangian which correspond to the
conservation of the total lepton number L and baryon number B. Since these symme-
tries are anomalous, non-perturbative instanton processes can break B and L, however,
such effects are very small in the present conditions and no lepton- or baryon-number-
violating decays were observed (only upper bounds on the corresponding branching
ratios are determined experimentally [14]). Interestingly, the global symmetry corre-
sponding to the difference of the baryon and lepton numbers is anomaly-free in the
SM.3

Also the particular choice of the SM scalar sector was supported by several obser-

2To such an extent that S. Glashow promised to eat his hat if the so-called charm quark was not
found [16].

3Moreover, U(1)B−L can be gauged if the corresponding gauge bosons couple to extra fermions
which are singlets with respect to the SM gauge group (see Section 22.4 of [18]), in particular, e.g., if
a right-handed neutrino per fermion family is added. If, in addition, Dirac neutrinos are assumed, the
hypercharge Y of the matter fields (2.1) is not uniquely determined by the requirement of anomaly-free
theory since the hypercharge values Y + ε(B − L) give non-anomalous solution for any ε.

18



vations even before the 2012 LHC discovery of a boson with mass 125 GeV [21–23],
zero spin and positive parity [24], whose couplings to the other SM fields seem to be
proportional to their masses [25].

First of all, the absence of the flavour-changing neutral currents already mentioned
above is related to the scalar sector of the SM. Since the Yukawa couplings of the
SM Higgs field (2.7) as well as the couplings of the neutral gauge bosons are diagonal
in the generation space, the processes like b → sγ should be forbidden at the tree
level and, hence, suppressed. We have seen in Section 2.3 that the quark interactions
with the W boson are not flavour-diagonal, hence, the transitions like b → sγ can be
generated at the loop level. The corresponding rare hadron decays (like B → Kµ+µ−,
see, e.g., [26] for a review) were indeed observed, and the branching ratios obey the
SM predictions posing strong constraints on the possible physics beyond the SM [27].
Contrarily, for massless neutrinos the lepton interactions with the W boson are flavour
diagonal, hence, processes like µ→ eγ should be forbidden to all orders of perturbation
theory. Indeed, the lepton-flavour-violating decays were not observed4 and experiments
constrain the corresponding branching ratios from above only [14].

Furthermore, the doublet nature of the only SM scalar field (2.4) implies the famous
relation between the W and Z masses (2.14) which can be used as a consistency check
of the SM spontaneous symmetry breaking pattern. If one defines

ρ ≡
m2
W

m2
Z cos2 θW

,

then the SM predicts ρ = 1 at the tree level. If, however, other scalar fields with
hypercharges Yr and VEVs vr are added and if these fields are accommodated in the
representation of SU(2)L with the highest weight Tr, then according to [12]

ρ =

∑
r |vr|2

[
Tr (Tr + 1)− Y 2

r

]
2
∑

r |vr|2Y 2
r

. (2.25)

This means that any number of scalar doublets with hypercharge ±1
2 can be added

to the SM preserving ρ = 1 at the tree level; however, the measurement of ρ ∼ 1
constraints strongly other possible scalar representations.

In conclusion, SM is a mathematically consistent theory which is highly predictive,
and a large number of its implications was confirmed experimentally. There are no
discrepancies with the SM observed at colliders and in most of other terrestrial exper-
iments. On the other hand, we will see in the next chapter that there are few “dark
clouds” over the successful SM sky, in particular due to the cosmological observations
and the phenomenon of neutrino oscillations.

4We will see in Sectionn 3.1 that neutrinos were proved to have tiny masses and the so-called neutrino
oscillations violate the individual family lepton numbers. The neutrino mixing also implies that the
processes like µ → eγ are possible at the one-loop level, however, the decay rates are suppressed by
powers of the mν/mW ratio [28] and for mν ∼ 1 eV the predicted branching ratios are far from the
reach of current experiments.
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Beyond the Standard Model
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Chapter 3

Problems of the Standard Model

Although the SM is an extremely successful theory, there are several experimental
hints showing that the original Glashow-Weinberg-Salam model has to be extended.
First, the non-vanishing mass of at least two neutrino species is an unquestionable
fact nowadays as described in Section 3.1. Furthermore, the cosmological observations
strongly indicate the existence of the so-called dark matter and the dominance of
baryons over the antibaryons in our Universe. Neither of these phenomena can be
explained within the SM as shown in Sections 3.2 and 3.3.

In Section 3.4 we describe the strong CP problem which is connected to the “unnat-
ural” smallness of the SM parameter θ encoding the amount of the CP violation in the
strong interactions. A note on the question of naturalness is in order here. As defined
by t’Hooft [29], a physical parameter is allowed to be very small only if its replacement
by zero would increase the symmetry of the system. The smallness of the parameter
is then not spoiled by the quantum corrections at higher orders of the perturbation
theory. For instance, the small electron Yukawa coupling is “natural”, since its zero
value would imply an additional chiral symmetry. The smallness of the parameter θ is,
however, not natural in this sense.

Let us further note that often the so-called hierarchy problem is mentioned as one of
the important problems of the SM, nevertheless, it will not be discussed here in detail.
It is in fact another incarnation of the naturalness problem mentioned above: the Higgs
mass at the EW scale is considered to be unnatural [29] since corrections to this mass
of the order of the Planck scale (or other high scale present in the model) are claimed
to be expected. The mechanisms, how to protect the Higgs mass by extra symmetry
(like supersymmetry) were developed, or the possibility that in fact no fundamental
scalars exist and the Higgs scalar is a composite particle was suggested. The new
physics protecting the Higgs mass was, however, expected to be roughly at the TeV
scale which is now disfavoured by the LHC searches.
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3.1 Neutrino masses

In the original formulation of the SM given in Chapter 2 only left-handed neutrinos were
present and these fields were assumed to be massless. Such assumption was, however,
disproved recently as shown in Section 3.1.2. In order to describe the experiments which
proved the neutrinos to be massive, the notion of neutrino oscillation is introduced in
Section 3.1.1. Other experiments which intend to determine neutrino properties are
then described in Sections 3.1.3 and 3.1.5. For the sake of this discussion the formalism
concerning the neutrino mass terms and mixing is introduced in Section 3.1.4.

3.1.1 Neutrino oscillations

As in the case of quarks (see Section 2.3), the presence of the mass term for neutrinos
implies the mixing in the lepton sector, i.e., the neutrino types να, α = e, µ, τ produced
in weak interactions together with the corresponding lepton do not coincide with their
mass eigenstates1. For the sake of the present discussion, it is enough to assume that
the left-handed neutrino states with a given flavour α are combined from the mass
eigenstates νa as

|να〉 = V ∗αa |νa〉 . (3.1)

Here V is a unitary matrix2 and we will distinguish between the flavour and mass
eigenstates by the choice of indices from the Greek and Latin alphabet, respectively.
Describing the evolution of the state (3.1) within the quantum mechanics as in [30,31],
one gets

|ν(t)〉 = V ∗αae
−iEat |νa〉

and the probability amplitude of detecting the neutrino at the time t as a flavour state
|νβ〉 reads

Aνα→νβ (t) = 〈νβ|ν(t)〉 = VβbV
∗
αae
−iEat 〈νb|νa〉 = VβaV

∗
αae
−iEat. (3.2)

Let us consider the simple case of two-flavour oscillations where one can assume

V =

(
cos θ sin θ
− sin θ cos θ

)
.

In this case

Pν1→ν2(t) = |Aν1→ν2(t)|2 = sin2 2θ sin2 (E2 − E1)t

2
≈ sin2 2θ sin2 ∆m2t

4E

1The detailed explanation of the notation and of the emergence of the neutrino mixing matrix in
the Lagrangian will be given in Section 3.1.4.

2We define (3.1) using V ∗ since then the identification of V with the so-called PMNS matrix will
be straightforward – see Section 3.1.4.
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with ∆m2 = m2
2 −m2

1. The last relation is based on

Ea =
√
p2
a +m2

a ≈ pa +
m2
a

2pa
≈ pa +

m2
a

2Ea

which holds for relativistic neutrinos and it was also assumed that the three-momentum
of the mass eigenstates is equal: pa ≡ p ≈ E. If also the approximation t ≈ L is used,
then one gets the dependence on the distance L travelled by neutrinos

Pν1→ν2(L) ≈ sin2 2θ sin2

(
π
L

Losc

)
, (3.3)

where

Losc =
4πE

∆m2
≈ 4π× 197 MeV fm

MeV

eV2

(
E

MeV

)(
eV2

∆m2

)
≈ 2.48 m

(
E

MeV

)(
eV2

∆m2

)
(3.4)

and (1.2) was used to reconstruct the metric units. In order to observe the sinusoidal
dependence of the probability (3.3) on L, it is convenient if the experiment is set in such
a way that L ∼ Losc. Moreover, the neutrinos are not produced and detected in one
point, and if the path resolution is not good enough, the oscillations are averaged out.
Similarly, good resolution in neutrino energy is needed to observe neutrino oscillations.

Interestingly, the measured neutrino oscillations can be approximately described
by the two-flavour oscillations as will be shown below, hence, the explicit formula
for three-flavour oscillations will not be given here. At the same time, the formula
(3.3) corresponds to the oscillations in vacuum which will be enough for the order-of-
magnitude estimates, although for precise determination of the oscillation parameters
the matter effects have to be taken into consideration. The reader is referred, e.g., to
the review [32] for a deeper account of these issues.

3.1.2 Oscillation experiments

Let us now briefly mention some of the oscillation experiments which led to determining
the neutrino mass differences and mixing angles. We shall follow in this listing mainly
the reference [32].

The first hint in favour of the existence of neutrino oscillations was the deficit in
the flux of solar neutrinos observed by Davis et. al. [33] in the Homestake gold mine
in the US. The spectrum of the electron neutrinos produced in the nuclear reactions in
the Sun was predicted by the solar model [34], however, just around the third of the
expected neutrino number was detected in the chlorine detector of Davis recording the
37Cl νe → 37Ar e interactions. As we describe below, it was later confirmed that this
was indeed due to νe → νµ, ντ oscillations which can be effectively described by formula
(3.3), unfortunately, solar neutrinos are produced in a large region, hence, averaging
over L in (3.4)

Pνe→νµ,ντ ≈
1

2
sin2 2θsol
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is obtained. Consequently, it was hard to prove that the deficit in the solar neutrino
flux was indeed caused by the neutrino oscillations.

The situation for so-called atmospheric neutrinos is much more favourable. These
neutrinos are created in the upper part of the Earth’s atmosphere where charged pions
are produced due to the cosmic rays and decay later as

π+ → µ+νµ, π− → µ−ν̄µ.

Neither muons are stable and the decays

µ− → e−ν̄eνµ, µ+ → e+νeν̄µ

imply the νµ : νe flux ratio to be approximately 2 : 1. Moreover, since the cosmic
rays are assumed to be isotropic, one expects the up-going and down-going flux of
neutrinos to be approximately equal. The Super-Kamiokande (SK) experiment in the
Kamioka mine in Japan is detecting these atmospheric neutrinos using the charged-
current interaction νlN → lN ′ with the nucleons in the water-Čerenkov detector and
the type and direction of the final state leptons can be determined. Such measurements
confirmed the expected behaviour for the electron neutrinos, however, the flux of muon
neutrinos was strongly dependent on the direction. This dependence could be well
fitted using the assumption of νµ → ντ oscillations with ∆m2

atm ∼ 10−3 eV2 [35] and
it was also the first strong evidence for the neutrino oscillations. Let us note that in
a sense the experimentalists were lucky since the atmospheric neutrino setting L ∼
10 km − 10 000 km and E ∼ 1 GeV is well suited for observation of ∆m2

atm according
to formula (3.4).3

The recent SK data together with data of other experiments like IceCube DeepCore
located near the South Pole suggest4 (see [36] and references therein)

∆m2
atm ≈ 2.5× 10−3 eV2, sin2 θatm ≈ 0.5. (3.5)

Another milestone in the history of oscillation experiments was the first observation
of the solar neutrino appearance by the SNO experiment [37] (located in the Creighton
Mine in Sudbury, Ontario, Canada) which, similarly as SK, is a water-Čerenkov detec-
tor, however, it uses the heavy water for the neutrino detection. The crucial improve-
ment is brought by the deuteron interactions: comparing the rates of the processes
νe d → p p e and νe,µ,τ d → νe,µ,τ p n, both the νe and νµ,τ flux could be measured by

3More precisely, Losc ∼ 1000 km for atmospheric neutrinos with energy ∼ 1 GeV, hence, in principle
the first oscillation dip should be observed. In SK the energy resolution was not good enough, so rather
the transition from Pνµ→νµ ≈ 1 for the down-going neutrinos to Pνµ→νµ ≈ 1

2
for up-going neutrinos

was observed. However, even the shape of this function gave a good enough evidence for neutrino
oscillations.

4The precise values of the atmospheric mixing parameters depend on so-called neutrino mass hi-
erarchy, however, we postpone introducing this notion below the formula (3.6) and give here the
approximate values for ∆m2

atm and sin2 θatm which hold for both neutrino hierarchies.
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SNO, confirming that indeed, the deficit of νe observed by Davis can be explained by
the flavour neutrino oscillations.

The director of the SNO experiment, Arthur B. McDonald, together with the leader
of the SK experiment Takaaki Kajita, were awarded the 2015 Nobel Prize in Physics
“for the discovery of neutrino oscillations, which shows that neutrinos have mass”.

The solar neutrino experiments, however, do not have good enough sensitivity to
∆msol and the determination of this quantity was based on the so-called reactor ex-
periments. Here the ν̄e are produced in nuclear reactors usually few kilometres (or
∼ 100 km in case of the KamLAND experiment in Japan) distant from a detector
which uses the ν̄ep → e+n interaction to detect the neutrinos and to determine their
energy. Observing the neutrinos with energies ∼ 2 − 10 MeV, such experiments are
sensitive to ∆m2 ∼ 10−5 eV2 (the formula (3.3) has the same form for antineutrinos
as for neutrinos in the two-flavour case). The best fit using the data of the reactor
experiment KamLAND and the solar neutrino experiments reads [36]

∆m2
sol = 7.4× 10−5 eV2, sin2 θsol = 0.3.

When studying the full problem of three-neutrino oscillations, the 3× 3 matrix V
present in (3.1) can be parametrized by three angles θ12, θ23, θ13 and one CP violating
phase δ in a similar way as the CKM matrix (2.24). One finds out that

θatm = θ23, ∆m2
atm = |∆m2

23|, θsol = θ12, ∆m2
sol = ∆m2

12 (3.6)

where ∆m2
ij = m2

j −m2
i and the two-flavour description of the oscillation experiments

is allowed by the assumption θ13 → 0 and |∆m2
23| � ∆m2

12. The quantities θ13, δ and
sgn(∆m2

23) remain to be discussed.

The sign of ∆m2
23 is still unknown, hence, two different scenarios are possible:

either m1,m2 < m3 which is usually called the normal hierarchy of neutrino masses or
m3 < m1,m2 corresponding to the so-called inverted hierarchy.

The non-zero value of θ13 was observed by the Daya Bay Reactor Neutrino Experi-
ment [38] in China and other experiments like Double Chooz [39] in France which detect
reactor ν̄e and are composed of a near detector needed in order to reduce systematic
errors and a far detector in the distance of L ∼ 1 km from the reactor corresponding
to the first atmospheric oscillation dip. The precise best fit value [36] again depends
on the neutrino mass hierarchy, for both of them approximately

sin2 θ13 ≈ 0.02. (3.7)

The last type of experiments we didn’t mention, yet, are the so-called long-baseline
experiments like T2K using the accelerator νµ from decays of charged pions and kaons
which are produced by a proton beam hitting a fixed target. In T2K (Tokai to Kamioka)
in Japan such νµ travel around L ∼ 300 km to the SK detector and the observation
of the appearance of νe in this neutrino beam was in fact the first hint of a possibly
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non-zero θ13 [40]. Future ambition of this experiment is the measurement of the CP
violating phase δ, which is also a goal of another long-baseline experiment NOνA [41]
in Fermilab, US. To achieve this, the measurements of the ν̄µ beam will be compared
with the νµ results and using this method the NOνA experiment can also have the
potential to determine the neutrino mass hierarchy.

3.1.3 Direct measurements of neutrino masses

Unfortunately, the oscillation experiments can not determine all the neutrino proper-
ties, one of them is the absolute scale of the neutrino masses. In principle, the non-zero
neutrino masses could be observed directly as described below; recent status of such
measurements is summarized, e.g., in [42].

An exceptional occasion to determine the neutrino masses is a collapse of supernova:
in 1987 a core-collapse supernova SN1987a in the Large Magellanic Cloud emitted a
total energy of 3× 1046 J, 99% of this energy was released by neutrinos which travelled
the distance of about 165 000 lyr to the Earth and were detected by three independent
neutrino detectors Kamiokande II in Japan, IMB in the US, and at Baksan in Russia.
By comparison with the time when the particles at speed of light were detected one
could conclude mν . 6 eV [43, 44]. However, since the expected rate for galactic core-
collapse supernovae is 2-3 per century, this does not seem to be a practical way in
which the neutrino masses can be determined.

More conventionally, neutrino masses could be directly determined by measuring
the electron energy spectrum in the beta decay experiments. The maximum energy
available for the electron in the n→ e−p+ν̄e interaction depends on the effective mass
of the electron (anti)neutrino

m2
νe =

3∑
a=1

|V1a|2m2
a

where V was introduced in (3.1). Up to now only upper limits on this mass were deter-
mined by the Mainz Neutrino Mass Experiment [45] and the Troitsk experiment [46]:
mνe . 2 eV. Currently, the beta decay experiment KATRIN is starting its operation [47]
with expected sensitivity to the electron (anti)neutrino masses as low as 0.2 eV.

However, the strongest upper bound on the neutrino masses nowadays comes from
cosmology. The measurement of the anisotropies in the cosmic microwave background
by the Planck experiment suggests [48]

3∑
a=1

ma ≤ 0.23 eV (3.8)

(if the Λ-cold-dark-matter cosmological model is correct).
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3.1.4 Interlude: Mixing of Dirac and Majorana neutrinos

Another open question about the neutrino properties is whether they are Dirac or
Majorana particles. In order to explain how to look for the answer we introduce here
the formalism concerning the neutrino masses and add also further details on neutrino
mixing.

It was shown in Section 2.3 that although in the initial Lagrangian (2.6) the charged
leptons need not correspond to the mass eigenstates, the rotation to the charged lepton
mass basis does not change the shape of the Lagrangian, since it can be always absorbed
into the rotation in the massless neutrinos. This is, however, not true when the neutrino
masses do not vanish.

If neutrinos are Dirac particles, the situation is analogous to the case of quarks.
The Yukawa Lagrangian (2.7) is supplemented by

− LY 3 −Y ν
αβ(νc)TLαCH

T iσ2Lβ + h.c. = Y ν†
αβLαiσ2H

∗νRβ + h.c. (3.9)

which after inserting the VEV (2.9) implies

− LY 3 vY ν
αβ(νc)TLαCνLβ + h.c. (3.10)

The general complex 3 × 3 matrix Y ν can be again diagonalized by the biunitary
transformation (A.7)

Y ν
diag = NT

CY
νN (3.11)

and the mass eigenstates correspond to

νLa = (N †)aανLα, νRa = (N †C)aανRα. (3.12)

Following the usual notation used in the description of neutrino oscillations (3.1) we
distinguish the flavour and mass eigenstates by the choice of indices from the Greek
and Latin alphabet, respectively. Let us stress that, historically, the neutrino types
να, α = e, µ, τ are denoted by the charged lepton which accompanies their production
or detection induced by the weak charged currents (3.16), i.e., they correspond to
the “flavour” eigenstates contrary to the case of quarks where the fields u, c, t etc.
correspond to the mass eigenstates.

Let us note that in order to obtain ∼ eV neutrino masses from (3.10), Y ν ∼ 10−11

is needed which is usually considered as weird when compared to the size of other
Yukawa couplings in the SM (although strictly speaking even such Yukawa couplings
are natural in the t’Hooft sense).

The mass matrix diagonalization is slightly different if neutrinos are Majorana
particles. Although the Majorana mass term for left-handed neutrinos (which are part
of an SU(2)L doublet) can not be written in the Lagrangian in a renormalizable and
at the same time SU(2)L invariant way, we will see in Chapter 4 that there are several
extensions of the SM where effectively the Majorana mass term

1

2
Mν
αβν

T
αLCνβL + h.c. (3.13)
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is obtained. An important implication of the Majorana nature of the neutrinos is
then the lepton number violation. Let us further stress that in the case of Majorana
neutrinos, the right-handed neutrinos need not be introduced.

Mν in (3.13) is a symmetric matrix, hence, according to (A.10) there exists a
unitary matrix N such that

Mν
diag = NTMνN (3.14)

where Mν
diag is a real non-negative diagonal matrix and

νLa = (N †)aανLα. (3.15)

Formally, the change of basis (3.12) and (3.15) affects the charged-current La-
grangian (2.21) in the same way, hence, together with (2.18) one obtains both in Dirac
and Majorana case5

Lgauge 3
g2√

2
eLa(E

†)aαγ
µW−µ NαbνLb + h.c. =

g2√
2

(E†N)abeLaγ
µW−µ νLb + h.c. (3.16)

In the Dirac case, one can perform identical analysis as for the CKM matrix in Sec-
tion 2.3 finding that

E†N = K3V
D

PMNSK4 (3.17)

where K3 and K4 are diagonal unitary matrices containing 3 and 2 phases, respectively,
and the unitary matrix V D

PMNS can be parametrized by three angles and one phase in
the same way as the CKM matrix (2.24). The subscript PMNS refers to the names of
physicists who first considered the neutrino oscillations (see Section 3.1.1): Pontecorvo
[49], Maki, Nakagawa, and Sakata [50].

On the other hand, in the case of the Majorana mass term (3.13), the phases of
the physical neutrino fields can not be freely redefined when the masses are required
to be real (this also corresponds to the fact that the diagonalization (3.14) uniquely
determines the phases in N , see Corollary 3 in Appendix A.2). Consequently,

E†N = K3V
M

PMNS (3.18)

where again K3 is a diagonal unitary matrix containing 3 phases. VM
PMNS then includes

the so-called Majorana phases α21, α31 and can be parametrized as [14]

VM
PMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 1 0 0

0 ei
α21
2 0

0 0 ei
α31
2

 .

(3.19)
The first factor is, similarly as in (2.24), a product of the matrices corresponding to the
2-3, 1-3 and 1-2 rotations, respectively, and can be used to parametrize V D

PMNS. The

5Let us stress that the convention here is different than in the quark sector where the CKM matrix
was defined by the Lagrangian term (2.22) containing W+

µ .
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CP violation in the neutrino sector is determined by the value of the phase δ (together
with the Majorana phases).

Let us note that often the basis is chosen so that E = 1 in (3.17) or (3.18), hence,
the charged lepton flavour eigenstates coincide with mass eigenstates, and the mass
basis for left-handed neutrinos can be defined as

νLa = (V †PMNS)aανLα (3.20)

where the generic symbol VPMNS is used for both VM
PMNS and V D

PMNS.

Let us now return to the key relation for explaining the phenomenon of neutrino
oscillations (3.1). If we realize that the production of the state |να〉 is due to the
h.c. term in (3.16), then using the relation for the field να (3.20), the formula (3.1)
containing V ∗PMNS is obtained, hence, the matrix V can be identified with VPMNS. The
oscillation experiments are, however, not sensitive to the Majorana phases in (3.19) [51],
hence, other experiments have to be devised in order to determine weather the neutrinos
are Majorana or Dirac particles.

3.1.5 Dirac or Majorana?

We have now prepared all the tools to describe the strategy, how to determine if the
neutrinos are Dirac or Majorana particles.

The lepton-number violating process of the neutrinoless double beta decay

A
ZX→ A

Z+2X e−e− (3.21)

depicted at the nucleon level in Figure 3.1 could prove the Majorana nature of the
neutrinos and this interaction is searched for in experiments which are so numerous
that we better choose to cite, e.g., the review [52] for reference.

The interaction similar to (3.21) where also two antineutrinos are emitted (corre-
sponding to a Feynman diagram where, in contrast to Figure (3.1), the antineutrinos
do not merge in the Majorana mass term but become outgoing particles) is called
double beta decay and is preferred over the single beta decay by some nuclei such as
76
32Ge (76

33As is heavier than 76
32Ge, whereas in the decay to 76

34Se the energy of ∼ 2 MeV
is released). Observing the decays of such nuclei, it is searched for a peak in electron
energy which would correspond to the situation when no neutrinos are emitted.

The difficulty of this task lies in the fact that the decay width for the process (3.21)
is proportional to the neutrino mass, more precisely to the quantity |〈mee〉|2 where6

〈mee〉 ≡
3∑

a=1

(VM
PMNS)2

1ama (3.22)

6Let us note that, e.g., in [32] it is claimed that 〈mee〉 corresponds to the element Mν
11 of the

Majorana mass matrix (3.13), however, more precisely 〈mee〉 = (Mν
11)∗ in accordance with the formula

(3.14).
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Figure 3.1: Feynman diagram describing the leading order contribution to the neutri-
noless double beta decay (3.21).

as can be seen by observing the vertices in Figure 3.1. The quantity (3.22) is sensitive
to the Majorana phases in (3.19) and constraining the value of (3.22) also allows to
set the limits on the absolute scale of neutrino masses. Bearing in mind the nuclear
matrix element uncertainties, the recent bound determined by the neutrinoless double
beta decay experiments is around |〈mee〉| . 0.5 eV [52].

3.2 Dark matter

Another phenomenon which can not be explained within the context of the SM is
the problem of the so-called dark matter. Some of the observational evidence for
dark matter will be listed here following mainly the reference [53] (and partly also the
reviews [54–57]). One of the dark matter candidates, the axion, will be studied later
in Section 5.1.

The discrepancy between the observed luminous matter distribution and the indi-
rectly determined gravitational potential was first noticed in the galaxy clusters [58,59]
where, on one hand, the total luminosity L can be measured and, on the other hand,
the virial theorem can be used to determine the total mass M . This theorem relates
the (internal) kinetic and potential energy of a system in a state of equilibrium as

2T + V = 0, T =
1

2
M〈v2〉, V = −1

2
GM2

〈
1
r

〉
where 〈v〉 is the mean (mass weighted) square velocity relative to the center of mass and
〈1r 〉 is the mean inverse separation. The virial theorem applies at least approximately
to spherical clusters like the one in the Coma constellation and observation of several
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such clusters usually implies

M

L
∼ (200− 300)h

M�
L�

where h is the Hubble constant in the units of 100 km s−1 Mpc−1 (A.13) and M�, L�
is the mass and luminosity of the Sun. This result suggests that a large fraction of the
matter is non-luminous.

Another hint for the presence of the extra non-luminous matter was given by the
observation of the rotation curves of the type “Sc” spiral galaxies. Most of the luminous
matter in galaxies is concentrated near the center of the galaxy, hence, the velocities
of the stars in the outer parts were expected to follow the Kepler law, v ∝ r−

1
2 .

On the other hand, the observation of 21 different galaxies led V. Rubin [60] to the
conclusion that: “Most rotation curves are rising slowly even at the farthest measured
point. Neither the high nor low luminosity Sc galaxies have falling rotation curves.
Sc galaxies of all luminosities must have significant mass located beyond the optical
image.”

The two kinds of observations mentioned above lead to a rough estimate [53]
ΩM ∼ 0.15 for the fraction of the critical density of the Universe due to non-relativistic
matter (A.16) (we will see that it is considerably improved by modern methods). It is
known that most of this matter is non-luminous, i.e., not forming the ordinary stars
or luminous gases. It still could be, however, formed by ordinary “baryonic” matter
(nuclei and electrons) in non-luminous gases, black holes, neutron starts etc. The X-ray
luminosity of clusters of galaxies partly shows that this is not the case (only the colli-
sions of ordinary baryonic particles can produce the X-rays, see Section 1.9.B of [53]),
however, we will mention here another kind of proof that the “dark matter” is not
formed by baryons, based on the formation of the light elements in the early Universe.

Roughly 100 s after the Big bang the Universe consisted of free protons, neutrons
and electrons in the thermal equilibrium with the photons (the neutrinos were already
decoupled from the thermal bath) and the temperature was low enough that the for-
mation of deuterium 2D (consisting of one proton and one neutron) could start. Later,
also heavier nuclei 3He, 4He, 6Li, 7Li were composed and the key input determining
the amount of these elements produced is the ratio of the neutron and proton num-
ber density before the synthesis of deuterium started. For a detailed description of
this so-called cosmological nucleosynthesis, careful consideration of the thermal his-
tory of the Universe is necessary (see, e.g., the Section 3.2 in [53]), however, the rule of
thumb is that the higher the nucleon density was, the earlier the nucleosynthesis began,
hence, the less time there was for neutrons to decay into protons. Consequently, the
measurement of the element abundance in the Universe allows to determine

η ≡ nB
nγ
∼ 6× 10−10 (3.23)

where nB and nγ are the baryon and photon densities at the time of nucleosynthe-
sis, respectively. The present value of the cosmic microwave background temperature
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(i.e. the present photon density) then allows to compute the nucleon density fraction
ΩBh

2 ∼ 0.02 [53] which is definitely inconsistent with the assumption that all the
non-relativistic matter in the Universe is formed by the baryonic matter.

There is further evidence for the dark matter such as the effect of gravitational
lensing, which allows even to visualize the dark matter in the galaxy clusters, however,
let us proceed straight to the most precise quantitative results which can be nowadays
determined by examining the anisotropies in the cosmic microwave background. The
results of the Planck experiment [48] suggest

ΩM = 0.31, ΩMh
2 = 0.14, ΩBh

2 = 0.02, ⇒ ΩDMh
2 = 0.12. (3.24)

Let us also note that the simulations of the structure formation in the Universe
revealed that this dark matter had to be “cold”, i.e., non-relativistic, when it decoupled
from the thermal bath, which excludes neutrinos as a dominant component of the dark
matter. Consequently, no SM particle can form the dark matter which is another
motivation for the theories beyond the SM.

Different models for dark matter particles were proposed, one of the most popular
options assumes certain supersymmetric partners of the neutral SM particles as the
dark matter candidates. However, we refer the reader to reviews like [53–57] for general
discussion of dark matter models and to Section 5.1 for a particular example of the
dark matter candidate called axion.

3.3 Baryon-antibaryon asymmetry of the Universe

There is another contradiction with the expectations based on the SM which is con-
nected to the cosmological observations and we will again follow the reference [53] in
its discussion.

As explained in the previous section, the abundance of the light elements formed
in the process of cosmological nucleosynthesis suggests that the ratio of baryon and
photon number density obeyed (3.23) at the time of nucleosynthesis. On the other
hand, if the amount of quarks and antiquarks before their annihilation (which took
part before the nucleosynthesis) is assumed to be equal, then the thermal evolution
would imply the leftover baryon to photon ratio to be much smaller. For this reason,
initial asymmetry

nB − nB̄
nγ

∼ η

has to be assumed, however, can not be explained within the SM.

In [61] A. Sakharov specified three conditions which are necessary for a theory to
explain this asymmetry from the first principles:

1. Baryon number violation.
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2. Violation of C and CP symmetries.

3. The Universe must at some time depart from a state of the thermal equilibrium.

The second condition is satisfied already in the SM (see Chapter 2): the Lagrangian
of weak interactions violates both C and P symmetries, and the CP violation is induced
by the non-zero phase δ13 in the CKM matrix (2.24).

On the other hand, the baryon number B is conserved perturbatively in the SM
(the Lagrangian exhibits the U(1)B symmetry) as discussed in Section 2.4. However,
even in the SM the baryon number is violated due to instanton processes. While at low
temperatures these effects are highly suppressed, they could play an important role in
the early Universe. Although there is a strong evidence that the net baryon number can
not be produced in this way (see, e.g., Section 3.3 in [53] and references therein), the
instanton processes can convert the baryon number density into lepton number density
and vice versa. For this reason the explanation of the baryon-antibaryon asymmetry
can be provided by the so-called leptogenesis [62] responsible for the net lepton number
production. Also L is conserved in the SM, however, addition of, e.g., right-handed
neutrinos with Majorana masses can provide a source of the lepton number violation
necessary for the leptogenesis mechanism to work.7

Finally, the Universe is pulled from the state of the thermal equilibrium due to its
expansion – this corresponds to the so-called “freeze-out” of the particle species from
the thermal bath, which enables, e.g., the above mentioned mechanism of leptogenesis.
Another explanation of the baryon-antibaryon asymmetry of the Universe is the so-
called electroweak baryogenesis (see, e.g., [63] for a review) which assumes the departure
from the thermal equilibrium due to the electroweak phase transition which is assumed
to be first order. Also in this case, however, extra fileds have to be added to the SM
for the phase transition to be strong enough.

An attempt to incorporate the mechanism of the electroweak baryogenesis in a
particular model beyond the SM can be found in [1]. Moreover, the problem of the
baryon-antibaryon asymmetry of the Universe can be considered as one of the motiva-
tions for building models incorporating baryon or lepton number violation in general.

3.4 Strong CP problem

In (2.6) the kinetic term for the gluon fields is present, however, in principle also a
term of the form

L 3 θ g2
3

32π2
εµνρσG

µνGρσ (3.25)

7In fact, it can be shown (see Section 3.3 in [53]) that violation of B − L is necessary in order to
explain non-zero net baryon number of the Universe. B − L is indeed violated in the heavy neutrino
decays substantial for the leptogenesis mechanism, but, e.g., not in the processes involving the GUT
scale leptoquarks in some of the unified theories (see Chapter 6).
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could be included with θ being a dimensionless constant. As discussed, e.g., in Sec-
tion 23.6 of [18], although this term is a total derivative irrelevant at the perturbative
level, it can lead to CP violating phenomena in the low-energy non-perturbative regime
of QCD. In particular, the electric dipole moment of the neutron

dN ∼ 10−16|θ|e cm

is implied. Since, however, dN . 10−25e cm is constrained by experiments [14], the
value of |θ| . 10−9 is required and the so-called strong CP problem refers to the
question, how to explain this extreme smallness.

To be more precise, the parameter θ in (3.25) can be shifted due to a redefinition
of the quark fields with flavour f and mass mf :

qf → eiαfγ5qf , ⇒ θ → θ + 2
∑
f

αf , mf → e2iαfmf

and, hence, the physically observable quantity subject to the above experimental re-
strictions is in fact

θ̄ = θ − arg
∏
f

mf . (3.26)

This also suggests a simple solution of the strong CP problem: if any of the quark
fields is massless, then the parameter θ can be always absorbed in the redefinition
of the corresponding field. The current data, however, show that all the quarks are
massive and the strong CP problem persists. One of its possible solutions was suggested
by Peccei and Quinn [64,65] and will be described in Section 5.1.
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Chapter 4

Neutrino masses in simple SM
extensions

In this chapter we recall several ways in which small neutrino masses can be explained,
some of these mechanisms will be then employed in specific models studied in this
thesis. In Section 4.1, the d = 5 operator providing the Majorana neutrino masses is
introduced and its renormalizable realisations then lead to different SM extensions as
described in Section 4.2. The options relevant for our further studies are detailed in
Sections 4.3-4.5.

4.1 The Weinberg operator

It was argued in Section 3.1 that although in the original formulation of the SM neutri-
nos were assumed to be massless, there is a strong experimental evidence for non-zero
neutrino masses at the scale of 10−1 eV: the lower bound on the (heaviest) neutrino
mass is given by the atmospheric mass difference (3.5) determined by the oscillation
experiments whereas the upper bound comes from cosmology (3.8). In this section we
will show how the presence of a high energy scale where new physics emerges can give
a clue to the extreme smallness of neutrino masses.

If we stick to the field content of the minimal Standard Model, only the Majorana
mass term for neutrinos can be introduced. As pointed out in Appendix A.1, this would
mean that neutrinos are neutral particles, which is true in the low energy broken
phase of the SM – the neutrinos are electrically neutral and colorless. However, if
the full SU(3)c × SU(2)L × U(1)Y theory is considered, the neutrinos are part of
an SU(2)L doublet with hypercharge −1

2 and the simple Majorana mass term can
not be introduced at the renormalizable level. Remarkably, the only 5-dimensional
operator in expansion (1.1) that can be built from the SM fields (originally introduced
by Weinberg [66]) gives rise to the neutrino Majorana mass term after spontaneous

37



symmetry breaking:

Ld=5 =
Cνjk
2M

(LTj iσ2H)C(HT iσ2Lk) + h.c. (4.1)

Here Cν is a symmetric matrix in the generation space with j, k assigning the corre-
sponding indices, the transpose of the Higgs and lepton doublets H, L and the matrix
iσ2 is due to the SU(2)L structure and for the lepton doublet L the transpose corre-
sponds also to the Lorentz structure similarly as the C matrix. After the VEV insertion
(2.9), the term (4.1) implies

Mν = Cν
v2

M
(4.2)

for the Majorana mass matrix (3.13), hence, if Cν ∼ O(1) is assumed, the neutrino
data suggest M ∼ 1013−14 GeV determining the scale where new physics has to emerge,
since the effective description by (4.1) breaks down.

Let us emphasize that the operator (4.1) carries the lepton number L = 2 and
similarly B − L = −2 where B is the baryon number, hence, breaks these accidental
symmetries of the SM (see Section 2.4). This is why this effective operator can not be
built in the SM even at the loop level, and a source of L violation has to be added in
order to get a renormalizable realisation of this operator. Recall also that L (or B)
and B−L violation is well motivated by the problem of baryon-antibaryon asymmetry
of the Universe mentioned in Section 3.3.

4.2 Renormalizable realizations of the Weinberg operator

Different ways in which the Weinberg operator (4.1) can be “opened” will be described
here together with the basic properties of the corresponding models as summarized,
e.g., in [67]. The scenarios which will play an important role for the core of this text
will be detailed in the following sections.

4.2.1 Tree level realizations

At the tree level, there are two non-equivalent ways in which the 4 fields involved in
the interaction (4.1) can be paired as depicted in Figure 4.1.

Fermionic mediators: type I and type III seesaw mechanism

First, one can construct a vertex out ofH, L and a third particle with Y = 0 which must
be a fermion in order to get a Lorentz-invariant structure. This option corresponds
to the diagram on the l.h.s. of Figure 4.1. Since 2 ⊗ 2 = 1 ⊕ 3 holds for SU(2)
representations, the mediator can be a singlet or a triplet with respect to the SU(2)L
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gauge group, and the SU(2)L singlet with Y = 0 can be readily identified with the
right-handed neutrino νR. The extra interactions in the Lagrangian then read

yRL
T iσ2HCν

c
R + h.c. or y∆L

T iσ2σH∆c
F + h.c. (4.3)

where yR and y∆ contain the coupling constants (the flavour-space dimensionality of
these matrices depend on the details of the model), ∆F is an SU(2)L triplet and
the boldface marks the vector nature of the given symbol. The first option in (4.3)
corresponds to the neutrino Dirac mass term (3.9).1 In order to conserve the fermion
currents in the left diagram in Figure 4.1, Majorana mass terms

1

2
mRν

T
RCνR + h.c. or

1

2
m∆F

∆T
FC∆F + h.c. (4.4)

have to be introduced. Here mR and m∆F
are matrices with flavour-space dimension-

ality again depending on the details of the model. In any case, the larger |mR| or
|m∆F

| is, the lighter the active neutrinos are as will be shown explicitly in Section 4.3
for the singlet case. For this reason, the mechanisms of this kind are called seesaw
mechanisms, and the variant with a fermionic singlet νR originally studied by [68–70]
is usually denoted as its type I. The case with the fermionic triplet mediator is usually
called type III seesaw mechanism, and we refer the reader to the original study [71] for
the details.

Let us note that if we assign the lepton number +1 to νR (or ∆F ), then the terms
(4.3) conserve the lepton number, whereas (4.4) breaks it by 2 units. Alternatively,
the lepton number of νR (or ∆F ) could vanish and (4.4) would conserve the lepton
number, however, then (4.3) would break it. In short, there is no possible assignment
of the lepton number allowing the L conservation within such models.

Let us further note that since only the neutrino mass differences are so far deter-
mined experimentally, it is still possible that one of the active neutrinos is massless,
hence, only 2 copies of right-handed neutrinos or scalar triplets are required by the
neutrino data.

Scalar mediator: type II seesaw mechanism

The other option how to open the operator (4.1) is to build a vertex out of two Higgs
doublets H and two lepton doublets L as shown on the right diagram of Figure 4.1. In
this case the mediator must be a scalar particle with hypercharge +1. Although one
would naively expect again both singlet and triplet variant of SU(2)L representations,
here the interaction of two left-handed neutrinos with TL3 = +1

2 must be included,
hence, only the option with the triplet field ∆ containing the TL3 = −1 component is
possible.

Also in this case the smallness of the neutrino masses is linked to the large mass of
∆; however, the detailed description of the key terms in the Lagrangian is postponed

1In order to get precisely the Dirac mass we also write νcR in (4.3) instead of νR.
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Figure 4.1: Different options how the Weinberg operator (4.1) can be built in a renor-
malizable way at the tree level. In the left diagram the mediator is a right-handed
neutrino νR or a fermionic SU(2)L triplet ∆F , which corresponds to the type I and
type III seesaw mechanism, respectively; the former variant will be further studied in
Section 4.3. On the right-hand side, the scalar SU(2)L triplet ∆ induces the type II
seesaw mechanism detailed in Section 4.4.

to Section 4.4. At this stage let us only note that models of this kind were first studied
in combination with type I seesaw [72] usually motivated by an embedding of the SM
to some bigger gauge group [73, 74] and are referred to as type II seesaw mechanism
nowadays.

It is also already clear from the right diagram in Figure 4.1 that the interaction
of ∆ either with the two lepton doublets or with the Higgs doublets does violate the
lepton number (depending on the value of L assigned to ∆).

4.2.2 Loop diagrams

Finally, the Weinberg operator (4.1) can be build at the loop level, however, as we
explain above, new fields providing lepton-number-violating interactions have to be
added into the model. In this case the smallness of neutrino masses is partly due to
the loop suppression and, hence, the extra fields need not to be as heavy as in the case
of the seesaw mechanism above.

At the one loop level, a realization of the Weinberg operator was proposed by A.
Zee [75] and requires adding a second Higgs doublet and an SU(2)L singlet scalar h−

with electric charge −1. It can be seen on the left diagram of Figure 4.2 that the
interactions of the latter field are the source of the lepton number violation.

At two loops, A. Zee and K. S. Babu [76,77] independently proposed a model with
extra SU(2)L singlet scalars h− and k−− with electric charges −1 and −2 allowing for
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Figure 4.2: Sample of loop realization of the Weinberg operator (4.1). One-loop di-
agram on the left-hand side corresponds to the Zee mechanism where at least two
different Higgs doublets (denoted by indices α, β, γ) are necessary. It will be shown
in Section 4.5.1 that α 6= β is required by the vertex structure. The right diagram
describes the Zee-Babu mechanism detailed in Section 4.5.2.

the right diagram in Figure 4.2.

These two models will be detailed in Section 4.5.

4.3 Type I seesaw mechanism

Let us now study the details of the model including the Majorana fermion νR which
was introduced in the previous section.

As we explained above, only 2 right-handed neutrinos are required by the experi-
mental data, on the other hand, the B−L local symmetry is anomaly free and can be
gauged if there is a right-handed neutrino for each family (see also Section 2.4). We
will be interested in models with extended gauge symmetries in Part II and addition
of three right-handed neutrinos will be considered, however, the general case when n
species of the left-handed neutrinos are accompanied by n right-handed neutrinos will
be assumed similarly as in the reference [30].

Although in the simple type I seesaw mechanism the Majorana mass term (A.4)
for the left-handed neutrinos is absent, let us include it in order to obtain a formula
applicable also to more complicated theories (such as those where type I and type II
seesaw mechanisms are combined):

Lmass 3
1

2
νTLCMLνL + h.c.

with ML being n × n symmetric matrix and νL denotes the n-dimensional vector of
the left-handed neutrinos. Furthermore, the Dirac mass term is included in (4.3) after
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the VEV insertion (2.9)

Lmass 3 νTLCMD(νc)L + h.c. =
1

2

[
νTLCMD(νc)L + (νc)TLCM

T
DνL

]
+ h.c.

where MD is an n × n matrix and also νc has to be understood as an n-dimensional
vector. Finally, the Majorana mass term for the right-handed neutrinos (4.4) can
be rewritten using the properties of the particle-antiparticle conjugation given in Ap-
pendix A.1 as

Lmass 3
1

2
νTRCM

†
RνR+h.c. =

1

2

[
νTRCM

†
RνR + (νR)cTCMR(νR)c

]
=

1

2
(νc)TLCMR(νc)L+h.c.

with MR being a symmetric n × n matrix.2 In summary, the general neutrino mass
term can be written in a compact form

Lmass 3
1

2

(
νTL (νc)TL

)
C
(
ML MD

MT
D MR

)(
νL

(νc)L

)
+ h.c. (4.5)

Let us now consider the regime when3

|ML| � |MD| � |MR|. (4.6)

The 2n × 2n mass matrix in (4.5) can be then diagonalized using a unitary transfor-
mation which is given by

U =

(
1 ρ
−ρ† 1

)
(4.7)

up to O(ρ2) corrections (U †U = 1 +O(ρ2), and ρ is considered to be a small pertur-
bation). Indeed,

UT
(
ML MD

MT
D MR

)
U =

(
ML − ρ∗MT

D −MDρ
† + ρ∗MRρ

† MLρ− ρ∗MT
Dρ+MD − ρ∗MR

ρTML − ρTMDρ
† +MT

D −MRρ
† ρTMLρ+MT

Dρ+ ρTMD +MR

)
.

Applying (4.6), one can neglect the first two terms in the off-diagonal entries and the
choice

ρ∗ = MDM
−1
R (4.8)

gives (after neglecting also the first three terms in the lower right corner):

UT
(
ML MD

MT
D MR

)
U ≈

(
Mν 0
0 MR

)
,

with
Mν = ML −MDM

−1
R MT

D. (4.9)

2We apologize for slightly changing the notation with respect to (4.4), however, this notation leads
to the assignment of neutrino mass matrix mostly used in literature.

3This setting can be motivated, e.g., in case of combined type I and type II seesaw where ML is tiny
as a result of the type II seesaw mechanism, MD is assumed to lie at the EW scale for O(1) Yukawa
couplings and MR is determined by the high scale of the new physics.
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Let us note that if the EW-scale MD is assumed in the simplest type I seesaw case with
ML = 0, then MR ∼ 1013 GeV is expected in order to get Mν ∼ eV which corresponds
to the estimate below (4.2).

The n× n symmetric matrices Mν and MR can be further diagonalized in a usual
way (A.10)

UTν M
νUν = Mν

diag, UTRMRUR = Mdiag
R

in order to obtain 2n massive Majorana particles. The form of the transformation U
(4.7) and (4.8) then implies that the n light states are composed mostly of the original
νL fields with an admixture of states (νc)L being proportional to |MR|−1|MD|, and
similarly the n heavy states are mostly composed of (νc)L.

Let us stress that the 2n×2n neutrino mass matrix present in the general Dirac+Majorana
mass term (4.5) is fully diagonalized by the 2n× 2n unitary matrix

UD+M =

(
Uν 0
0 UR

)
U. (4.10)

The PMNS matrix then corresponds to the upper left n × n block of (4.10) which in
general need not be unitary.

4.4 Type II seesaw mechanism

In order to find a formula for the neutrino masses induced by the right diagram in Fig-
ure 4.1, one has to specify the Lagrangian of the theory, namely, the Yukawa couplings
of the scalar triplet ∆ and the scalar potential. It will be convenient to denote

∆ =
1√
2
∆ · σ =

(
∆+
√

2
∆++

∆0 −∆+
√

2

)

where ∆ = (∆1,∆2,∆3), and the states with definite TL3 and electric charge read

∆++ =
1√
2

(∆1 − i∆2), ∆+ = ∆3, ∆0 =
1√
2

(∆1 + i∆2)

similarly as for the W bosons in the SM (2.11) which are also part of an SU(2)L triplet
(with vanishing hypercharge in contrast to Y = 1 for ∆).

The Yukawa coupling to lepton doublets can be then written as

− LY 3
1

2
Y ∆
jkL

T
j Ciσ2∆Lk + h.c. (4.11)

which generates a (symmetric) Majorana mass matrix Mν for left-handed neutrinos if
the neutral component of ∆ acquires a VEV:

〈∆0〉 = v∆ ⇒ Mν = v∆Y
∆. (4.12)
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The reason for the smallness of the neutrino masses is now hidden in the minimiza-
tion of the scalar potential as sketched below. Let us consider, e.g., the scalar potential
used in the recent reappraisal of the type II seesaw mechanism [78]:

V =−m2
HH

†H +
λ

4
(H†H)2 +M2

∆Tr(∆†∆) + µ(HT iσ2∆†H + h.c.) + λ1(H†H)Tr(∆†∆)

+ λ2

[
Tr(∆†∆)

]2
+ λ3Tr(∆

†∆∆†∆) + λ4H
†∆∆†H (4.13)

where H is the usual Higgs doublet with 〈H0〉 = v and the term proportional to µ is the
one responsible for the trilinear scalar interaction in the right diagram in Figure 4.1.
One of the minimization conditions for the scalar potential above is then

M2
∆ =

µv2

v∆
− (λ1 + λ4)v2 − 2(λ2 + λ3)v2

∆ (4.14)

and the masses of the charged scalars read

m2
∆++ =

µv2

v∆
− 2λ3v

2
∆ − λ4v

2, m2
S+ =

µv2

v∆
+ 2µv∆ −

λ4

2
(v2 + 2v2

∆).

Here

S+ =
1√

v2 + v2
∆

(v∆+ −
√

2v∆H
+) (4.15)

and the orthogonal combination is the massless Goldstone boson.

Assuming that the dimensionful parameters M∆, µ correspond to some new physics
scale, one can apply the limit M∆, µ� v to (4.14) getting

v∆ ≈
µv2

M2
∆

∼ O(
v2

M∆
). (4.16)

Consequently, v∆ � v. In this approximation, the mixing of the SM scalars with the
components of ∆ can be neglected as can be seen, e.g., in (4.15) and the masses of all
three components become approximately equal:

m2
∆++ ≈ m2

∆+ ≈ m2
∆0 ≈

µv2

v∆
≈M2

∆. (4.17)

In conclusion, (4.12) together with (4.16) and (4.17) shows that, again, the suppression
of neutrino masses is due to a large energy scale which corresponds to the mass of the
scalar triplet. Similarly as in the type I seesaw case, if Y ∆ ∼ O(1), M∆ is in the
ballpark of some 1013−14 GeV.
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4.5 Loop generation of neutrino masses

4.5.1 Zee model

Let us specify the Lagrangian supporting the left diagram in Figure 4.2 and, subse-
quently, evaluate the neutrino masses within this model originally introduced by A.
Zee [75].

The trilinear coupling of the two Higgs doublets and the SU(2)L singlet scalar h−

arises from a term

V 3 µαβHT
α iσ2Hβh

− (4.18)

where the nature of the SU(2)L structure containing the antisymmetric iσ2 implies
that µαβ = −µβα. This is also the reason why the extra Higgs doublet had to be
included in the theory. The most general Yukawa couplings for the leptons then read

LY 3 fjkLTj Ciσ2Lkh
+ + Y e

αijLieRjHα + h.c. (4.19)

where i, j are the generation indices and f is an antisymmetric matrix due to an extra
antisymmetric SU(2)L contraction on top of the usual Lorenz structure present, e.g.,
in the Majorana mass term. In general

〈H0
1 〉 = v1, 〈H0

2 〉 = v2

with the only constraint v2
1 + v2

2 = v2 required in order to reproduce the correct weak
boson masses. When switching to the mass basis for the scalar fields, for the most
general case (4.19) the Yukawa interactions of the observed Higgs boson (corresponding
to one of the mass eigenstates) may not be proportional to the fermion masses and even
need not be diagonal in the lepton flavour space. This is a common feature of the two-
Higgs-doublet models (see, e.g., the review [79]), however, as we explain in Section 2.4,
the presence of the lepton-flavour-violating interactions is constrained experimentally.
The simplest solution in this context is to introduce an extra global symmetry of the
model as, e.g., in [80] which allows only one of the Higgs doublets to couple to the
leptons. If, for instance,

Y e
α = 0 for α = 2 (4.20)

in (4.19) then the charged lepton masses me
i are determined by Y e

1 only.

For such a setting it is simple to approximate the contribution of the left diagram in
Figure 4.2 to the Majorana neutrino mass matrix Mν

ij . Since β = γ = 1 in this diagram

due to (4.20) the product of all the relevant couplings reads fij

(
mej
v1

)2
µ12 if we work

in a basis where Y e
1 is diagonal, hence, (Y e

1 )jj are proportional to the charged lepton
masses me

j . If the contribution of the symmetric diagram is added, one concludes

Mν
ij ∝ fijµ12

me2
j −me2

i

v2
1

. (4.21)
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The full formula for the neutrino masses includes the factors coming from the loop
integration and, of course, the suppression due to the potentially large masses of h−

and the second Higgs doublet. Regardless of the absolute size of Mν
ij , one can con-

clude, however, that the neutrino mass matrix of the form (4.21) is excluded by the
experimental data. Indeed, Mν in (4.21) has all the diagonal elements equal to zero, in
particular, it is traceless. As explained, e.g., in [81] such a matrix can not accommodate
the oscillation data.

Of course, the situation becomes more complicated when the condition (4.20) is
relaxed, and viable models were suggested [82, 83] featuring an interesting interplay
between the neutrino data and the constraints implied by the absence of the lepton-
flavour-violating interactions.

4.5.2 Zee-Babu model

Apart from the h− scalar introduced above, also a doubly charged scalar k−− is included
in this model in order to enable the right diagram in Figure 4.2. The Yukawa couplings
of the leptons read

LY 3 fjkLTj Ciσ2Lkh
+ + Y e

ijLieRjH + gije
T
RiCeRjk

++ + h.c. (4.22)

where i, j are the flavour indices, f is again antisymmetric whereas g is symmetric in
the flavour space; moreover, the scalar potential has to be extended by a term

V 3 µ(h−)2k++ + h.c. (4.23)

In the limit mh,mk � me
a where me

a are the charged lepton masses, the full formula
for the Majorana neutrino mass matrix Mν reads [84]:

Mν
ij = 16µIfiam

e
ag
∗
abm

e
bfjb. (4.24)

Here the loop integration gives

I =
1

(16π2)2

1

M2

π2

3
Ĩ(r), M ≡ max(mh,mk), r ≡

m2
k

m2
h

and the function Ĩ(r) is close to 1 for a wide range of r:

Ĩ(r) =

{
1 + 3

π2 (log2 r − 1) for r � 1,
1 for r → 0.

The smallness of the neutrino masses (4.24) has several sources in this case. First, the
couplings f and g can not be O(1) since the corresponding interactions induce processes
like µ− → e−γ, µ− → e−e−e+ or violate the charged current universality (f mimics the
charged current interactions, however, the couplings can differ for individual flavours
contrary to the case of the weak interactions). As summarized in [84], the constraints
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on different entries of f, g vary, however, |f |, |g| . 10−2 − 10−1 is a generic value if
mh,mk ∼ 1 TeV. Furthermore, the two-loop integration brings another suppression,
hence, indeed, the new physics scale should be as low as M,µ ∼ 1 TeV to ensure
realistic neutrino masses. This simple estimate is supported also by the numerical
analysis of [84].

4.6 Probing the origin of neutrino masses at the LHC

In previous section we explained that extra scalars at the TeV scale can be expected
in case of Zee-Babu model which opens the possibility to test the models for neutrino
mass generation at colliders. Inspired by Chapter 9 of the review [85], also the collider
signatures of the tree-level mechanisms for neutrino mass generation will be considered
here showing that for particular parameter settings even these scenarios could be tested
at the LHC.

Let us note that the models of neutrino mass generation can be revealed also due to
lepton-flavour-violating interactions which are suppressed in the SM (see Section 2.4).

Type I seesaw

As estimated below (4.9), MR ∼ 1013 GeV is expected if MD is at the EW scale,
i.e., if the Dirac neutrino Yukawa couplings (3.9) satisfy Y ν ∼ O(1). On the other
hand, in the setting with MR ∼ 1 TeV the correct neutrino masses can be achieved if
Y ν ∼ 10−5 (it is interesting to compare this value with Y ν ∼ 10−11 in case of purely
Dirac neutrinos). In such a case the kinematics allows the right-handed neutrinos to be,
in principle, produced at the LHC, however, the production rate is suppressed by the
νL− νR mixing which, according to Section 4.3, is proportional to |MD|/|MR| ∼ 10−6.
Consequently, the right-handed neutrinos in the type I seesaw model can not provide
any distinguishing collider signatures by themselves.

Nevertheless, as we will show in Part II of this thesis, within the framework of
theories with extended gauge symmetries the right-handed neutrino masses can be
connected to the breaking scale of gauge symmetries like U(1)B−L or SU(2)R (the
counterpart of SU(2)L in left-right symmetric models). Consequently, TeV-scale right-
handed neutrinos can be accompanied by gauge bosons like Z ′ or WR at the same scale.
These gauge bosons can be then observable in the channels

qq̄′ →W±R → e±a νR,

qq̄ → Z ′ → νRνR

where ea is a charged lepton of the a-th family. For the decay νR → e±aW
∓ the

probability to produce the positive- or negative-charge lepton is the same due to the
Majorana nature of νR, hence, the production of WR or Z ′ can be accompanied with
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the same-sign dileptons without missing transverse energy. Moreover, νR can be long-
lived enough to provide displaced vertices in the detectors. In this way the type I
seesaw could be revealed by the LHC, for quantitative discussion see [85].

Type II seesaw

Also the extra scalars which support the type II seesaw mechanism can have masses at
the TeV scale for particular settings of the model parameters. The most spectacular
collider signature is then provided by the doubly charged scalar ∆++ which decays into
a pair of same-sign leptons if v∆ . 10−4 GeV. The branching ratios for the different
combinations of the final state lepton flavours are then connected with the neutrino
data due to (4.11) and strongly distinguish, e.g., the normal and inverted hierarchy of
neutrino masses.

On the other hand v∆ . 1 GeV is constrained by the measurement of the ρ param-
eter (2.25) and for the range 10−4 GeV . v∆ . 1 GeV, ∆++ decays predominantly to
a pair of W bosons providing also observable signal at the LHC. We again refer to [85]
for quantitative results.

Type III seesaw

As will be discussed in Section 7.1.7, the type III seesaw mechanism is well motivated,
e.g., in the models based on the SU(5) gauge group, moreover, the gauge unification
constraints predict the fermionic triplet ∆F to be below the TeV scale in such models.
The processes

qq̄′ →W±∗ → ∆±F∆0
F

qq̄ → Z∗/γ∗ → ∆+
F∆−F

are then available at the LHC and the decays of the ∆F components lead again to
multi-lepton states. However, the difference in the kinematics allows to distinguish
these signals from the analogous type II seesaw signatures. As for the type I seesaw
case, displaced vertices may occur due to small couplings of ∆F to the SM fields.

Zee-Babu model

As we explained in Section 4.5.2, TeV scale scalars occur also in the setting with
the neutrino masses generated at the two-loop level. The most spectacular collider
signature is due to the decay of the doubly charged k++ scalar, where the branching
ratios depend on the couplings gij (4.22) which, in turn, determine the neutrino mass
matrix (4.24). The collider signatures are, hence, related to the neutrino properties in
a straightforward way and, e.g., the normal and the inverted neutrino mass hierarchies
could be distinguished or the CP violating phase δ could be predicted based on these
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branching ratios. A detailed numerical analysis which takes into account the current
neutrino data and also the constraints on the Zee-Babu model parameters from the
lepton-flavour-violating processes is available in [84].
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Chapter 5

Scalar extensions of the Standard
Model with neutrino-axion
interconnection

In this chapter the bottom-up approach to building the models beyond SM is applied
when the deficiencies of the SM mentioned in Chapter 3 are addressed by extending
the SM as little as possible. The well-known axion solution to the strong CP problem
which provides also a dark matter candidate is described in Section 5.1. This scheme is
further extended in order to incorporate also the (small) neutrino masses as explained
in Sections 5.2 and 5.3 which serve as an introduction to the full articles [1] and [2]
attached to this thesis as Appendices B and C, respectively.

5.1 Axion phenomenology

In Section 3.4 we discussed the so-called strong CP problem connected to the extreme
smallness of the coupling θ (3.25). We also explained that if one of the quarks was
massless, it would be possible to set θ = 0 using the freedom in the redefinition

q → eiαγ5q (5.1)

of the massless quark which implies θ → θ + 2α. It was shown by R. Peccei and H.
Quinn [64,65], that there is another option how to use the transformation (5.1) to zero
out θ. If at least one of the quark masses is induced by the spontaneous symmetry
breaking, i.e., by a VEV of a scalar field, then the shift (5.1) can correspond to an extra
chiral U(1) symmetry of the Lagrangian. This symmetry is nowadays usually called
Peccei-Quinn symmetry and, e.g., a toy model of [64] with only one quark flavour and
a singlet scalar ϕ including the Yukawa term

LY 3 y qLqRϕ+ h.c.
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is invariant with respect to the U(1)PQ transformations ϕ→ e−2iαϕ and (5.1). It was
shown in [64] that if we assign 〈ϕ〉 ≡ eiβλ, then the minimization of the full potential
yields

arg
[
y ei(θ+β)

]
= 0

which in turn implies the physical parameter θ̄ (3.26) equal to zero when the quark
fields are rotated in such a way that real quark masses are obtained.

Also in the context of the full SM the parameter θ̄ can be dynamically set to zero if
the U(1)PQ symmetry is introduced. The quark masses arise due to the non-zero VEV
of the Higgs field anyway, however, in (2.7) H and H∗ couple to the up- and down-
type quarks, respectively. Since the up- and down-type quarks transform with respect
to U(1)PQ in the same way, a second Higgs doublet has to be included in order to
obtain Yukawa couplings invariant with respect to the PQ symmetry. One of the Higgs
doublets, usually denoted as Hu then couples to the up quarks whereas Hd couples to
the down quarks. Both Hu and Hd are charged with respect to U(1)PQ, hence, this
symmetry is spontaneously broken by their vacuum expectation values. Since U(1)PQ
is already broken by the non-perturbative effects, the spontaneous symmetry breaking
induces a pseudo-Goldstone boson with a small mass as pointed out by S. Weinberg
and F. Wilczek [86,87].

It can be shown (see, e.g., the reviews [88, 89]) that if the scalars φi with the PQ
charges Xi and VEVs vi exist in the theory, then the decay constant and the mass of
this so-called axion are given by

f2
a =

∑
i

X2
i v

2
i , ma = mπ

fπ
fa

√
z

1 + z

∑
i

X
(q)
i (5.2)

where mπ and fπ are the pion mass and decay constants, z = mu
md

is the ratio of the

up- and down-quark masses and X
(q)
i ≡ XR

i − XL
i is the PQ charge of the quark qi

(X
R/L
i corresponds to the PQ charge of the right/left-handed quark component). The

couplings of the axion to the matter fields and photons are then proportional to ma

(or, equivalently, inversely proportional to the decay constant fa). Unfortunately, with
fa at the EW scale, the axion mass is ma ∼ O(100 keV) and its couplings are too
strong, hence, the original Weinberg-Wilczek axion was quickly excluded even by the
laboratory experiments [90].

If, however, a large PQ symmetry breaking scale is introduced, axions may become
much lighter due to (5.2) and practically “invisible”. Two options are mostly considered
in the literature:

1. Either the ordinary quarks are assumed to be neural with respect to the U(1)PQ
symmetry and only an extra heavy quark Q transforms as in (5.1). One ordinary
Higgs doublet (neutral with respect to U(1)PQ) is then sufficient, on the other
hand, an extra discrete symmetry has to be introduced in order to forbid the
hard mass term for Q and a weak singlet scalar σ has to be included. This scalar
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interacts through the Yukawa coupling with the heavy quark Q only and its VEV
can be made, in principle, arbitrarily large enabling fa ∼ 〈σ〉 to be phenomeno-
logically viable. This scheme was considered by Kim, Shifman, Vainshtein, and
Zakharov [91, 92] and the “KSVZ” axion has no tree level couplings to the SM
leptons and the c, t, s, b quarks, however, the tree-level coupling to u and d
quarks is induced due to the small mixing of the axion with π0.

2. Similarly, the “DFSZ” axion occurs in a scheme first considered by Dine, Fischler,
Srednicki and Zhitnitsky [93, 94]. Here, like in the Weinberg-Wilczek scenario,
the two Higgs doublets Hu and Hd charged with respect to the U(1)PQ couple to
the ordinary quarks, however, the PQ symmetry is at the same time broken by
an extra singlet scalar σ which couples to Hu, Hd through the scalar potential.
The VEV of σ is again assumed to be much larger than the EW scale, hence,
fa ∼ 〈σ〉 holds as in the KSVZ case according to (5.2).

The above models are constrained by several astrophysical and cosmological obser-
vations. First, the weakness of the axion interactions with the ordinary matter enables
these particles to carry out the energy from the stellar cores and, hence, to modify the
evolution of the stars. The observed properties of the Sun and other stars at different
stages of the stellar evolution then constrain gaee, gaNN and Caγγ , i.e., the couplings of
axions to electrons, nucleons and photons, respectively. Since the electron-axion cou-
pling is loop-suppressed in the case of the KSVZ axion, the translation of the bounds
on gaee to the limits on fa differ for the KSVZ and DFSZ models (see, e.g., the re-
views [88,89] and references therein). On the other hand, the most stringent bound on
fa nowadays comes from the supernovae explosions limiting mainly the gaNN coupling.
This coupling is determined by the axion-π0 mixing which is comparable in the KSVZ
and DFSZ cases1 and the observation of the SN1987a supernova (already mentioned
in Section 3.1.3 as a source of information on neutrino properties) yields the common
bound [89]

fa & 109 GeV (5.3)

corresponding to ma . 10−3 eV.

Moreover, the lifetime of the axion with mass ma . 24 eV is longer than the age
of the Universe, hence, it can provide an explanation of the dark matter problem
mentioned in Section 3.2. If the thermal production of axions is assumed (for ma &
10−3 eV, there is a period in the history of the early Universe when axions were in
thermal equilibrium with the plasma), these particles would contribute to the hot dark
matter with the critical density fraction [89]

Ωa,th h
2 ∼ 10−2ma

eV
.

1More precisely, there is also a contribution to gaNN due to tree-level couplings of axion to the
SM quarks which differ for the KSVZ and DFSZ axion, however, the two components of gaNN are
comparable and gaNN is of the same order of magnitude for the KSVZ and DFSZ cases.
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The hot dark matter option is, however, unfavoured by the structure formation mecha-
nism as pointed out in Section 3.2; moreover, the thermal axions could form a significant
part of the dark matter only if ma ∼ 10 eV which is not compatible with the bound
(5.3).

On the other hand, there is also a non-thermal mechanism for cosmological axion
production first described in [95–97]. It can be shown that the axion mass depends
strongly on the temperature and ma → 0 in the early Universe when the temperature
was much greater than the QCD scale. No particular value of θ̄ (3.26) was then chosen
by the dynamics due to the shift symmetry of the axion field. Only when ma became
comparable to the Universe expansion rate H (A.12), θ̄ began to roll towards θ̄ = 0 and
oscillated around this value. These oscillations provided axion energy density which
again depends on the (zero-temperature) axion mass and

Ωa,non-th . O(1) for fa . 1012 GeV. (5.4)

Consequently, the values fa & 1012 GeV are excluded, although several theoretical
uncertainties enter this estimate (see, e.g., [89]).

The relic axions are nowadays searched for in the so-called microwave cavity halo-
scopes where the primordial axions should convert to microwave photons due to a
strong magnetic field, and there are other experiments which can constrain the axion
coupling to the photons. However, up to now the bounds (5.3) and (5.4) were not
considerably improved and we refer the reader, e.g., to recent reviews [98, 99] for the
future prospects of such experiments.

5.2 Massive neutrinos and invisible axion minimally con-
nected

We have seen in Chapter 4 that the neutrino masses can be explained by an extension of
the scalar sector of the SM only, namely, the weak triplet ∆ induced the type II seesaw
mechanism, and also the loop generation of the light neutrino masses was allowed by
addition of extra scalars. In all these settings, however, there occurred an a priory
unknown dimensionful parameter which could be determined only by the requirement
of the realistic neutrino masses. Indeed, µ in the scalar potential of the type II seesaw
(4.13) determined the neutrino masses through (4.12) and (4.16), similarly, µ12 from
(4.18) in the Zee model occurs in (4.21) and µ from (4.23) sets the scale for neutrino
masses within the Zee-Babu model by (4.24).

In [1], on the other hand, the corresponding trilinear couplings were replaced by
quartic interactions with a singlet scalar field σ acquiring a VEV, and the neutrino
sector was then related to the properties of σ. Moreover, the PQ symmetry was in-
troduced and σ was identified with the scalar field responsible for the PQ symmetry
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breaking in the DFSZ scheme described in the previous section. This gave rise to re-
alistic models incorporating small neutrino masses, solution to the strong CP problem
and a dark matter candidate.

Let us note that other attempts to link the PQ symmetry and the massive neutrinos
can be found in the literature (see [1] for the list of references) and, in particular, the
simplest version of the Zee model extended by the axion was studied in [100, 101].
However, this scenario is excluded because of the wrong prediction on neutrino mixing
as in the original Zee model (see Section 4.5.1), hence, in [1] we considered the variant
of the Zee model proposed by Babu and Julio [83]. This model allows for realistic
neutrino mixing and can be extended by the invisible axion, moreover, a second Higgs
doublet needed to introduce the PQ symmetry is present in this model anyway. Also
the type II seesaw and Zee-Babu models were considered in [1], and when these models
were extended by a second Higgs doublet and a scalar singlet σ, scenarios with neutrino-
axion interconnection were obtained.

The masses of the extra scalars (apart from σ) were assumed to lie close to the
EW scale providing the possibility to test the proposed scenarios at colliders (see Sec-
tion 4.6). Such setting requires extremely small values of some of the dimensionless
scalar couplings, which is, however, natural in the t’Hooft sense (see the beginning of
Chapter 3) since extra Poincaré symmetry corresponding to the decoupling of the σ
field is introduced when the ultraweak scalar couplings are set exactly to zero.

Let us add that the presence of extra light scalars can also open the possibility
of the electroweak baryogenesis [63] as shortly discussed in [1], however, a detailed
study is needed to confirm if this solution to the issue of the baryon asymmetry of the
Universe (see Section 3.3) is indeed applicable within the framework of the proposed
models.

Technically, there were several tasks to be done in order to determine whether the
models under consideration are viable or not and, in particular, following issues were
addressed by the author of this thesis. First, the assignment of the PQ charges had to be
figured out and it was revealed that, e.g., in case of the Zee-Babu model different options
are possible for different choices of the terms in the scalar potential. Furthermore, the
scalar spectrum had to be studied and since the scalar couplings were present also
in the formulas for neutrino masses, the consistency with the neutrino data had to
be checked. Finally, the predictions for the lepton-flavour-violating processes and the
collider signatures of the extra scalars were studied confirming that the proposed models
indeed comply with the current data.

5.3 Neutrino-axion-dilaton interconnection

The “axionized” type II seesaw model introduced above was further studied in [2] start-
ing with the classically scale-invariant setting, i.e., without any dimensionful couplings
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present in the model. Similarly as in [102], the PQ scale was then dynamically gen-
erated through the Coleman-Weinberg mechanism [103] which also implied the EW
symmetry breaking. The hierarchy between the PQ and the EW scales can be ensured
by the smallness of certain scalar couplings, which can be again considered as natural
in the t’Hooft sense since the zero values of these couplings implied the shift symmetry
of the σ scalar. The spontaneous breaking of this shift symmetry by the VEV of σ also
gives rise to a light pseudo-Goldstone boson called dilaton which is mainly formed by
the real part of the field σ.

Due to the decreased number of free parameters in the scalar potential, this setting
is even more constrained than the one of [1]. If the current measurements of the Higgs
boson properties at the LHC are taken into account and also the boundedness of the
scalar potential is required for the energies up to the Planck scale, only certain values
of, e.g., tanβ (the ratio of the VEVs of the two Higgs doublets) are allowed.

In order to determine such constraints, again the scalar spectrum had to be studied
together with the implications for the neutrino masses. Furthermore, the renormaliza-
tion group equations for the scalar couplings had to be specified and solved, which was
the main contribution of the author of this thesis.
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Part II

Unified Theories
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Chapter 6

Do protons decay?

Since baryon number B is conserved in the SM Lagrangian (see Chapter 2), proton as
the lightest baryon should be stable and, indeed, the proton decay is neither observed
in nature nor in specially designed experiments (see Section 6.3).

On the other hand, there are several reasons why to expect the baryon num-
ber non-conservation. As we already mentioned in Section 2.4, even in the SM the
baryon number is violated due to the instanton processes, yet the predicted proton
decay rate is extremely small [104]. More importantly, the explanation of the baryon-
antibaryon asymmetry of the Universe requires baryon number violation as explained
in Section 3.3.

As we will see in the following section, in the expansion (1.1) the baryon-number-
violating operators occur at the d = 6 level and we will inspect the implications of such
operators for the proton decay. Let us anticipate that the unified theories which will
be the subject of Chapters 7 and 8, may provide possible renormalizable realisation of
the operators responsible for the proton decay.

6.1 d = 6 effective operators

In Section 4.1 we introduced the only independent d = 5 operator which can be con-
structed from SM fields (4.1), and we also explored some of the implications of the
presence of this operator, in particular, the Majorana nature and the (tiny) mass of
the neutrinos accompanied by the lepton number violation. Furthermore, we tried to
find the renormalizable realizations of this operator in Section 4.2. Here, we would like
to pursue a similar path for the d = 6 operators, although full consideration of all these
operators is far beyond the scope of this text.

As derived in [105], there is in total 64 = 15 + 19 + 30 independent d = 6 oper-
ators where the sum corresponds to the contributions containing 0, 2 and 4 fermion
fields, respectively. Let us note that determining this number is not an easy task since
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seemingly different operators can be converted into each other by means of, e.g., Fierz
transformations or equations of motion. The d = 6 operators introduce wide range of
processes suppressed or absent in the SM, let us, e.g., mention that certain d = 6 oper-
ators containing 2 fermion fields induce the electric dipole moment of the electron [106].
Here, we will concentrate on the class of operators which violate the baryon number,
hence, can contribute to the proton decay.

The 5 independent operators of this kind were first identified in [107] (correcting
the earlier considerations [66] and [108]):

O
(1)
abcd = εjklεαβ

(
dTRajCuRbk

) (
QTLclαCLLdβ

)
, (6.1)

O
(2)
abcd = εjklεαβ

(
QTLajαCQLbkβ

) (
uTRclCeRd

)
, (6.2)

O
(3)
abcd = εjklεαβεγδ

(
QTLajαCQLbkβ

) (
QTLclγCLLdδ

)
, (6.3)

O
(4)
abcd = εjkl(σAε)αβ · (σAε)γδ

(
QTLajαCQLbkβ

) (
QTLclγCLLdδ

)
, (6.4)

O
(5)
abcd = εjkl

(
dTRajCuRbk

) (
uTRclCeRd

)
(6.5)

where εαβ ≡ (iσ2)αβ and εjkl are the totally antisymmetric tensors in two and three
dimensions with α, β, γ, δ and j, k, l denoting the SU(2)L and colour indices, respec-
tively. Furthermore, a, b, c, d are the indices in the generation space of the SM fermions
(2.1).

Interestingly, all the operators O(1)−(5) conserve the B−L quantum number, which
implies that the proton decay induced by these operators corresponds at the parton
level to the interaction

q q → q̄ l̄ (6.6)

where the relevant combinations of the initial quarks are either u d or uu due to the
proton quark content, the final antiquark can be ū, d̄ or s̄ for kinematical reasons
and the final antilepton is either an antineutrino, e+, or possibly µ+ if kinematically
allowed.

Let us now try to identify the fields which could be integrated out from a renor-
malizable theory in order to obtain these operators. Taking into account the quantum
numbers of the fields in each bracket of (6.1)-(6.5), it is straightforward to identify the
scalar fields which can mediate the interactions described by these effective operators.
As stated in [66], the operators O(1), O(2), O(3), and O(5) can arise due to the exchange
of a scalar field

T = (3, 1,−1
3) (6.7)

and all these operators may induce the decay of the proton. Furthermore, the interac-
tion O(4) can be mediated by a (3, 3,−1

3) scalar, and the linear combination [107]

Õ
(5)
abcd ≡ O

(5)
cbad −O

(5)
cabd = εjkl

(
uTRajCuRbk

) (
dTRclCeRd

)
(assigned as an independent operator O(6) in [66]) allows for the mediation by a
(3, 1,−4

3) scalar. In O(4) and Õ(5), however, the contraction of the initial quark fields
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is antisymmetric in the generation indices, hence, these operators can not mediate any
sizeable proton decay.

Furthermore, the operators O(1) and O(2) can be obtained also by integrating out
a vector field as can be seen when the Fierz identity

(ψ1Lψ2R)(ψ3Rψ4L) =
1

2
(ψ1Lγ

µψ4L)(ψ3Rψ2R)

is applied (recall that ψTC = ψc and that (ψR)c = (ψc)L as derived in Appendix A.1).1

Since we will be later interested in the vector-mediated proton decay, let us put these
transformed operators explicitly as in [9]2

OI = k2
1εjklεαβ

(
ucLajγ

µQLakα

) (
ecLbγµQLblβ

)
, (6.8)

OII = k2
1εjklεαβ

(
ucLajγ

µQLakα

) (
dcLblγµLLbβ

)
, (6.9)

OIII = k2
2εjklεαβ

(
dcLajγ

µQLakα

) (
ucLblγµLLbβ

)
. (6.10)

Here the notation (2.2) with left-handed conjugated fields instead of the right-handed
fields was used, and the flavour structure where it is summed over the generation
indices a, b in each bracket corresponds to the assumption that these operators arise
from integrating out a heavy vector bosons. The operator OI comes from the Fierz
transformation of O(2) whereas OII and OIII are different incarnations of O(1). Let us
also note that, strictly speaking, the operators (6.8)-(6.10) do not formally fit in the
expansion (1.1) since they already do include the dimension M−2 couplings k2

1 and k2
2,

their meaning will become clear in a moment.

When the quantum numbers of the fields in brackets are again inspected, one finds
that the vector bosons

Xµ = (3̄, 2,+5
6), X ′µ = (3̄, 2,−1

6) (6.11)

could mediate the interactions OI−II , and OIII , respectively. For this reason also
the same coupling is used for operators OI and OII and if one assumes that in the
renormalizable theory the vector bosons (6.11) correspond to a gauge group with a
gauge coupling gG, after integrating out such heavy vector bosons one gets

k1 =
gG√
2MX

, k2 =
gG√
2MX′

. (6.12)

1Operators of the type (ψ1Rψ2L)(ψ3Rψ4L) can not be translated into contractions containing γ-
matrices when applying the Fierz transformations, hence, the interactions O(3)−(6) can not be mediated
by vector currents.

2In this reference an extra operator OIV including the right-handed neutrino νR occurs, however, we
will not consider this operator here since in the models relevant for this text the seesaw mechanism is
used and νR (or more precisely the mass eigenstate formed mostly by νR) is too heavy to be produced
in the proton decay.
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uR
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L

dc
Luc

L

Q L

dc
L uc

L

Q L

T X X'

Figure 6.1: Three different renormalizable realization of the operator O(1) (6.1). The
quark fields are intentionally assigned as right-handed fields in the first diagram or
as left-handed conjugated fields in the other two diagrams since this corresponds also
to the notation used for writing the operator (6.1) and its Fierz transformed versions
(6.9) and (6.10), respectively. The quantum numbers of the mediators T (6.7), and
X, X ′ (6.11) can be easily derived from the structure of the corresponding effective
operators. The orientation of the Feynman diagrams corresponds to (6.6), i.e., to the
way in which the proton decay can be mediated.

We will see in Section 6.3 that the experimental (non-)observation of the proton decay
constraints the masses of X, X ′ to satisfy MX , MX′ & 1016 GeV. Furthermore, in
Chapter 7 these vector bosons will be recognized as an integral component of unification
models.

In order to summarize the above results we show as an example the possible “open-
ings” of the operator O(1) in Figure 6.1.

6.2 Partial proton decay rates

Since the proton decay rates will be computed for particular models considered in this
text (see Chapter 8), explicit formulas for the partial rates induced by the d = 6 vector-
mediated operators will be given here. Let us stress that these formulas can be derived
using the effective description (6.8)-(6.10) only, the full high-energy theory enters here
through the couplings (6.12) and the flavour structure of the operators. Furthermore,
if higher precision is required then also the coefficients describing the running of the
operator from the GUT scale down to the EW scale enter the proton decay formulas.

The interaction (6.6) translates into

p → meson + antilepton, (6.13)

at the hadron level and more than one operator among (6.8)-(6.10) can contribute
to the process of this type with a given final state. Also the flavour structure of the
operators (6.8)-(6.10) plays an important role: similarly as in case of the SM gauge
interactions, these operators are written in the so-called interaction basis, where the
contractions in each bracket are flavour diagonal. In this basis, however, the mass
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matrices are in general not diagonal and after their diagonalization (2.17) and (3.11)
or (3.14) non-trivial flavour structure emerges.

Consequently, the partial proton decay rates read [9]:

Γ(p→ π0e+
β ) =

mp

16πf2
π

A2
L|α|2(1 +D + F )2

{∣∣c(eβ, dC)
∣∣2 +

∣∣c(eCβ , d)
∣∣2} , (6.14)

Γ(p→ ηe+
β ) =

(m2
p −m2

η)
2

48πm3
pf

2
π

A2
L|α|2(1 +D − 3F )2

{∣∣c(eβ, dC)
∣∣2 +

∣∣c(eCβ , d)
∣∣2} ,

(6.15)

Γ(p→ K0e+
β ) =

(m2
p −m2

K)2

8πm3
pf

2
π

A2
L|α|2

[
1 +

mp

mB
(D − F )

]2

(6.16)

×
{∣∣c(eβ, sC)

∣∣2+
∣∣c(eCβ , s)∣∣2} ,

Γ(p→ π+ν) =
mp

8πf2
π

A2
L|α|2(1 +D + F )2

3∑
l=1

∣∣c(νl, d, dC)
∣∣2 , (6.17)

Γ(p→ K+ν) =
(m2

p −m2
K)2

8πm3
pf

2
π

A2
L|α|2 (6.18)

×
3∑
l=1

∣∣∣∣ 2mp

3mB
D c(νl, d, s

C)+

[
1 +

mp

3mB
(D + 3F )

]
c(νl, s, d

C)

∣∣∣∣2,
where mp, mη and mK denote the proton, η and kaon mass, respectively, mB is an
average baryon mass (mB ≈ mΣ ≈ mΛ), fπ is the pion decay constant, |α|, D and F are
the parameters of the chiral Lagrangian, and AL takes into account the renormalization
from the EW scale to 1 GeV (see, e.g., [9] for the values of these parameters). Index
β assigns the the charged lepton flavour and it is summed over neutrino flavour index
l since the flavour of the neutrino in the final state is not determined in experiments
(for similar reasons it is summed also over the charged lepton chiralities which gives
rise to the incoherent sum in (6.14)-(6.16)). The flavour structure of the operators
(6.8)-(6.10) when switching to the mass basis using the relations (2.17) and (3.11) or
(3.14) determines the coefficients

c(eα, d
C
β ) = k2

1(U †CU)11(D†CE)βα + k2
2(D†CU)β1(U †CE)1α, (6.19)

c(eCα , dβ) = k2
1[(U †CU)11(E†CD)αβ + (U †CD)1β(E†CU)α1], (6.20)

c(νl, dα, d
C
β )=k2

1(U †CD)1α(D†CN)βl+k
2
2(D†CD)βα(U †CN)1l, (6.21)

where k1 and k2 are the effective couplings (6.12).

Let us stress that the unitary matrices U, D, E, N are partially determined by the
low-energy constraints on the CKM (2.23) and PMNS (3.17), (3.18) matrices, however,
UC , DC , EC are completely unknown.

Let us also note that in case of more precise studies, one has to take into account
also the renormalization of the operators (6.8)-(6.10) from the GUT scale to the EW
scale as described in [4] attached to this thesis as Appendix E.
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6.3 Experiments searching for the proton decay

In the beginning of this chapter we mentioned several reasons why violation of the
baryon number can be expected. Consequently, experiments were searching for the
baryon-number-violating processes since 1950’s (for the full historical overview see, e.g.,
[9]), with negative results up to now. Only the lower limits on the proton lifetime are,
hence, determined experimentally, and we will concentrate here on the measurements
giving the strongest bounds nowadays. Moreover, some of the planned experiments
will be mentioned.

When giving recent bounds on the partial proton decay widths, we should refer
back to Section 3.1.2 where the Super-Kamiokande (SK) experiment was presented
since, besides the neutrino oscillations, this water-Čerenkov detector also searches for
the proton decay. The “golden” channel for this kind of detectors is p → π0e+ since,
apart from the Čerenkov ring produced by the positron, also two photon rings can
be observed since the neutral pion decays mostly via π0 → γγ. The bound on the
corresponding partial proton lifetime presented at the Moriond 2015 conference [109]
(the results published in [110] give slightly lower bound) reads

τ(p→ π0e+) ≡ τp
BR(p→ π0e+)

≥ 1.4× 1034 y. (6.22)

Also for the p→ K+ν̄ channel the world’s best limit is given by the SK experiment
[111]

τ(p→ K+ν̄) ≥ 5.9× 1033 y. (6.23)

The two bounds (6.22) and (6.23) are usually the most “dangerous” constraints for the
unified models (for the full list of bounds on partial proton lifetimes see, e.g., [9], the
updated values are given, e.g., in [110], [111]).

The successor of the SK experiment is planned to be the water-Čerenkov detector
Hyper-Kamiokande (HK) to be placed in the neighbouring mine in Kamioka and de-
signed to be about 20× larger than the SK, i.e., to consist of about 1 Mton of water.
If no signal will be detected in 20 years of the data taking, the bounds

τ(p→ π0e+)HK ≥ 2× 1035 y, τ(p→ K+ν̄)HK ≥ 3× 1034 y (6.24)

are expected [112].

For the observation of the p → K+ν̄ channel the so-called Liquid Argon Time
Projection Chamber (LAr TPC) technique is better suited and should be used for the
planned experiment DUNE. Here a detector containing some 40 kton of liquid argon is
planned to be built in a distance of about 1 300 km from Fermilab in order to serve also
as a long-baseline neutrino experiment (see Section 3.1.2). The partial proton lifetime
limit can be then improved up to

τ(p→ K+ν̄)DUNE ≥ 6× 1034 y (6.25)
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after 20 years of data taking [113].

Let us note that the constraint τp & 1034 y yields, due to the approximate behaviour
of the amplitudes (6.14)-(6.18),

Γ ∼
g4
G

M4
X(′)

m5
p (6.26)

the value already mentioned in the end of the Section 6.1:

MX ,MX′ & 1016 GeV (6.27)

(recall that τp ∼ Γ−1 and the ordinary units are resurrected using the formula (1.3)).
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Chapter 7

Properties of selected unified
theories

In the previous chapter we inspected the effects of baryon number violation as one of
the well-motivated steps beyond the SM. Here we consider the so-called Grand Unified
Theories (GUTs) where the gauge group is a simple Lie group and show that the baryon
number is indeed violated at the renormalizable level in such theories.

In the subsequent sections we describe the main features of the canonical GUTs
based on the SU(5) and SO(10) gauge groups. Furthermore, since the article [3] deals
with the SU(5)×U(1) gauge group, we introduce also this “flipped SU(5)” unification
although it is a “partial”, not “grand” unification. The particular unification models
will be then discussed in the following chapter.

Let us note that we narrow our discussion to non-supersymmetric unified theories,
since our main results concern models without supersymmetry. Besides, the TeV-scale
superpartners (i.e., bosonic or fermionic counterparts of the SM fermions or bosons,
respectively) were not observed by the LHC which constrains considerably the usual
scenarios of the low-scale supersymmetry. Moreover, the superpartner mass spectrum,
which is an important low-energy input for the supersymmetric unifications, is un-
known, making, e.g., the accurate predictions of the partial proton decay widths within
these models impossible.

7.1 SU(5): a prototype GUT

The first published GUT model was based on the SU(5) gauge group [114] and also
due to its simplicity we believe (like the author of [67]) that it deserves to be referred to
as a “prototype” GUT. The main features of GUTs will be explained on the example
of SU(5) similarly as in [67, 115], before that, the historical background for the first
formulation of this model will be described.
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In the early 1970’s, the Yang-Mills theories [116] were slowly becoming a key concept
of particle physics and it was explained also in [114] “how attractive it is for strong,
weak and electromagnetic interactions to spring from a gauge theory based on the
group SU(3)× SU(2)× U(1)”.

However, the authors of [114] were disturbed by the fact that the electromagnetic
and weak interactions were not truly unified – there were still two independent coupling
constants. Moreover, the observed quantization of the electric charge could not be
explained by the existing theory1. The solution of both these problems would be to
describe electroweak interactions by a single simple gauge group (or a direct product of
isomorphic simple factors). It was argued that if strong interactions were left aside and
only the electromagnetic and weak interactions were unified, in any conceivable scheme,
the generator of the electric charge did not admit fractional charges. Consequently, it
was searched for an algebra that contains all SU(3) × SU(2) × U(1) as a subalgebra
and is simple or a direct product of isomorphic simple factors. Considering different
possible algebras of rank at least 4, the authors “present a series of hypotheses and
speculations leading inescapably to the conclusion that SU(5) is the gauge group of
the world.”

Indeed, SU(5) is the minimal solution of the problem above, and if fermions of one
generation are grouped into the 5̄ and 10 representations, the theory is anomaly free.
On the other hand, this theory gives several predictions that seemed to be correct back
in 1974, but are in contradiction with the current measurements as will be summarized
in Section 7.1.6. In order to get a phenomenologically viable model, several extensions
of the minimal Georgi-Glashow model [114] have been proposed as described in Sec-
tion 7.1.7, however, the problems of the SU(5) unifications present a good motivation
for more complicated models based on the SO(10) gauge symmetry (see Section 7.2),
and also for the flipped SU(5) unification (see Section 7.3).

7.1.1 Group structure

SU(5) is the Lie group of special (with determinant equal to 1) unitary 5× 5 matrices,
and the corresponding su(5) Lie algebra consists of hermitian traceless 5× 5 matrices.
The generators Ta, a = 1, . . . , 24 of the su(5) algebra may be chosen in a way suggesting
the embedding of its su(3)c × su(2)L × u(1)Y subalgebra: the first eight generators
correspond to the su(3)c subalgebra, other three form the su(2)L subalgebra, and T24

corresponds to the SM hypercharge generator Y . Let us note that the normalization
of the generators in the fundamental representation is conveniently fixed as

Tr[TaTb] =
1

2
δab, (7.1)

1We discussed in Section 2.4 that the quantization of the electric charge can be explained if anomaly-
free SM gauge symmetry is required. On the other hand, we explained in the footnote at the end of
the same section that if, e.g., Dirac neutrino masses are introduced and right-handed neutrinos are
added to the theory, then the hypercharge assignment is not unique any more.
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and we will see later that, in order to accommodate the SM particles with correct

hypercharge in the SU(5) multiplets, this normalization corresponds to T24 =
√

3
5Y .

Explicitly, the generators of the su(5) in the fundamental representation read

T1−8 =

(
1
2λ1−8 02×3

03×2 02×2

)
T9−11 =

(
03×3 02×3

03×2
1
2σ1−3

)

T24 =

√
3

5


−1

3 0 0 0 0
0 −1

3 0 0 0
0 0 −1

3 0 0
0 0 0 1

2 0
0 0 0 0 1

2

 =

√
3

5
Y (7.2)

where λj and σj are the Gell-Mann and Pauli matrices, respectively, and the dimen-
sionality of the zero blocks is indicated by the subscript.

The remaining generators of the su(5) algebra are the generalization of the σ1 and
σ2 Pauli matrices:

T12 =
1

2


03×3

1 0
0 0
0 0

1 0 0
0 0 0

02×2

 T13 =
1

2


03×3

−i 0
0 0
0 0

i 0 0
0 0 0

02×2

 , (7.3)

the other 10 generators have analogous shape with nonzero entries at other 5 positions
in the upper right and the lower left submatrices. More precisely (T14,15)ij 6= 0 for
(i, j) ∈ {(1, 5), (5, 1)}, (T16,17)ij 6= 0 for (i, j) ∈ {(2, 4), (4, 2)}, etc.

With this choice, the Cartan generators are the diagonal matrices T3, T8, T11,
and T24. The weights of the fundamental 5-dimensional representation suggest that it
decomposes under the SM subalgebra as

5 = (3, 1,−1
3)⊕ (1, 2, 1

2) (7.4)

where we indicate the transformation properties with respect to SU(3)c (determined
by the T3, T8 eigenvalues), SU(2)L (corresponding to the T11 Cartan generator) and

Y =
√

5
3T24, respectively. Looking at these SM quantum numbers, the latter multiplet

may accommodate the SM Higgs doublet.

Similarly, we find that the weights of the complex conjugate representation trans-
form under the SM subalgebra as

5̄ = (3̄, 1, 1
3)⊕ (1, 2̄,−1

2). (7.5)

Here the SM quantum numbers reveal that the anti-triplet of the right-handed down-
type antiquarks and the doublet of the left-handed SM leptons (the representation 2̄
of SU(2) is equivalent to 2) may reside in the 5̄F fermionic representation.

69



The tensor product of two fundamental representations gives

5⊗ 5 = 10a ⊕ 15s (7.6)

where the antisymmetric part decomposes under the SM subalgebra as

10 = (3, 2, 1
6)⊕ (3̄, 1,−2

3)⊕ (1, 1, 1). (7.7)

Consequently, fermionic 10F may accommodate the SU(2)L doublet of left-handed
quarks, the color anti-triplet of right-handed up-type quarks, and the right-handed
positron.

When looking for realistic models of fermion masses also the relations

10⊗ 10 = 5s ⊕ 45a ⊕ 50s (7.8)

10⊗ 5 = 5⊕ 45 (7.9)

become useful.

7.1.2 Gauge fields

If the SU(5) gauge bosons corresponding to the 24 generators Ta are denoted as Aµa ,
then according to the definition (7.2) Aµ1−8 = Gµ1−8 are the SM gluons, Aµ9−11 = Wµ

1−3

are the gauge fields corresponding to the SU(2)L and Aµ24 = Bµ corresponds to the
U(1)Y . For the sake of definiteness the gauge fields Aµ12−23 corresponding to the gen-
erators (7.3) will be considered here in more detail.

Similarly as for Wµ
1,2 in the SM, one finds that Aµ12−23 are not eigenvectors of the

Cartan generators T11 and T24 which determine the weak isospin and the hypercharge
quantum numbers, respectively. Indeed, since, e.g.,

[T24, T12] = −5

6
i

√
3

5
T13, [T24, T13] =

5

6
i

√
3

5
T12

and similarly

[T11, T12] = − i
2
T13, [T11, T13] =

i

2
T12,

one finds that both T24 and T11 are diagonalized if we choose the basis containing the
fields

(Xu
1 )µ =

1√
2

(Aµ12 + iAµ13) , (Xu∗
1 )µ =

1√
2

(Aµ12 − iA
µ
13) (7.10)

corresponding to the generators 1√
2

(T12 − iT13), 1√
2

(T12 + iT13), respectively. The

weak isospin and the hypercharge of Xu
1 read +1

2 and +5
6 , respectively, hence, this

gauge boson carries the electric charge +4
3 . Similarly, one finds that

(Xd
1 )µ =

1√
2

(Aµ14 + iAµ15) (7.11)
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is a field with the weak isospin −1
2 and the hypercharge +5

6 , hence, the electric charge
+1

3 . If Xu
2,3 and Xd

2,3 are defined in analogous manner, one easily finds that Xu
1−3 and

Xd
1−3 transform as an SU(3)c anti-triplet and each pair of Xu

i and Xd
i forms a weak

doublet

Xµ
i =

(
Xu
i

Xd
i

)µ
= (3̄i, 2,+

5
6). (7.12)

The vector boson Xµ is, hence, exactly the one identified as the mediator of the ef-
fective operators OI , OII (6.8), (6.9) and we will see in the following section that its
interactions with the matter fields indeed induce the proton decay.

In order to summarize the definitions given above in one formula, one can rewrite

24∑
a=1

AµaTa =
1√
2


1√
2

∑8
a=1Gaλa −

√
2
15B

Xu∗
1 Xd∗

1

Xu∗
2 Xd∗

2

Xu∗
3 Xd∗

3

Xu
1 Xu

2 Xu
3

Xd
1 Xd

2 Xd
3

1√
2

∑3
a=1Waσa +

√
3
10B


µ

. (7.13)

Let us also note that if we identify g5T24A
µ
24 = g1Y B

µ in the covariant derivative
where g5 and g1 are the unified and the SM hypercharge gauge couplings, respectively,

according to the formula (7.2) we obtain g1 =
√

3
5g5 at the GUT scale. On the other

hand, the SU(3) and SU(2) SM couplings satisfy g3 = g2 = g5 at the GUT scale,
hence, one obtains a firm prediction for the weak mixing angle (2.13)

sin2 θW (MG) =
g2

1(MG)

g2
1(MG) + g2

2(MG)
=

3

8
. (7.14)

7.1.3 Matter fields

As we describe in Section 7.1.1, the decomposition of the SU(5) representations under
the SM algebra suggests naturally how to accommodate the SM matter fields. Usu-
ally, the 5 and 5̄ representations are written as vectors with upper and lower indices,
respectively, whereas the 10 is represented by an antisymmetric matrix with two upper
indices. Moreover, for writing the Lagrangian in a compact form, it will be convenient
to use the notation described in Appendix A.1 where only the left-handed fermionic
fields are used. Using the lower indices to denote the three colors we get:

5̄F ≡ ψ =


dc1
dc2
dc3
e
−ν


L

10F ≡ χ =


0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0


L

. (7.15)

Let us note that the relative minus sign between e and νL fields is due to the fact that
eL and νL transform as an SU(2)L antidoublet within the 5̄ representation of SU(5)
(7.5).

71



It follows from (2.6) and (A.6) that the gauge-kinetic form which reproduces the
correct SM gauge interactions can be written as

Lgauge 3 iψγµDµψ + iTr[χγµD
µχ] (7.16)

where

Dµψ = (∂µ − ig5

∑
a

AµaTa)ψ,

Dµχ = ∂µχ− ig5

∑
a

Aµa(Ta χ+ χT Ta ).

and Aµa are the SU(5) gauge bosons. Notice that the action of the SU(5) generators
on the matrix χ follows the fact that 10ij is obtained from the tensor product of two
fundamental representations (7.6).

Apart from the SM gauge interactions, the gauge-kinetic form (7.16) gives rise to
extra interactions mediated by the gauge bosons Xu

j , Xd
j (7.10), (7.11):

Lgauge 3
g√
2

[
(Xu

j )µ
(
dcjγµe+ ecγµdj + εjklulγµu

c
k

)
+(Xd

j )µ
(
−dcjγµν − ecγµuj + εjkldlγµu

c
k

)]
+ h.c.

=
g√
2

[
dcjγµX

µT
j iσ2L+ ecγµX

µT
j iσ2Qj + εjklQl

T
Xµ
j γµu

c
k

]
+ h.c. (7.17)

where we suppressed the subscript L since all the fields involved are left-handed, j, k, l
are color indices, and Xµ

j is the weak doublet of gauge bosons defined in (7.12). On the
third line, the iσ2 matrix and the transpositions refer to the SU(2)L structure of the
expressions. Let us emphasize that these interactions induce the OI and OII effective
operators (6.8), (6.9) if Xµ is integrated out (e.g., the combination of the first and the
third term on the third line lead to the interaction depicted on the second diagram
of Figure 6.1 corresponding to the “opening” of the operator OI). Consequently, the
extra gauge bosons have to be very heavy in order to avoid the quick proton decay as
already stated by (6.27).

7.1.4 Scalar sector

In order to provide masses for the Xu and Xd gauge bosons, a scalar field with a VEV
breaking the SU(5) symmetry down to the SM gauge symmetry is needed. On the
other hand, the rank of SU(5) is equal to 4 which holds also for the SM gauge group,
hence, the VEV should not reduce the rank. The following statement then explains
the choice of the SU(5) scalar sector.

Proposition 1. Let G, G′ be Lie groups and let the gauge symmetry G be spontaneously
broken to G′ by a VEV of the adjoint representation of G. Then the rank of G′ is equal
to the rank of G.
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Proof. The linear space of the adjoint representation can be formed by the genera-
tors of the Lie group G. Since these generators are Hermitian, the VEV of the adjoint
representation can be always brought to the diagonal form by a unitary transformation
U , hence, can be rewritten as UDU † where D is a diagonal matrix.

Moreover, let the basis be chosen so that the Cartan generators Hi (i = 1, 2 . . . , n,
where n is the rank of G) are diagonal. Also in the set {UHiU

†}i=1,2...,n, all the matrices
commute, hence, this corresponds to another choice of Cartan generators. Since the
generators of G act on the adjoint representation via commutator, the relation[

UHiU
†, UDU †

]
= U [Hi, D]U † = 0, ∀i = 1, 2 . . . , n

proves the proposition.

�

Consequently, the 24-dimensional adjoint representation of the SU(5) is usually in-
cluded in the scalar sector of the SU(5) unifications:

24H ≡ Σ =

24∑
a=1

ΣaTa 〈Σ24〉 = VG, 〈Σa〉 = 0 ∀a 6= 24.

As the action of the i-th generator of the adjoint representation on 〈Σ〉 reads

Ti(〈Σ〉) = [Ti, 〈Σ〉] = VG[Ti, T24],

the SM subalgebra annihilates 〈Σ〉, whereas the generators T12−23 act on this state non-
trivially, which justifies the desired pattern of the spontaneous symmetry breaking.

The properly normalized2 gauge-kinetic form for the scalar Σ reads

Lgauge 3 Tr
[
(DµΣ)†DµΣ

]
where

DµΣ =

24∑
b=1

∂µΣbTb − ig5

24∑
a,b=1

AµaΣb[Ta, Tb]

with Aµa being the (real) gauge fields corresponding to the SU(5) gauge group. Us-

ing the defining relation for the structure constants [Ta, Tb] = i
∑

c f
su(5)
abc Tc and the

normalization (7.1), we obtain after spontaneous symmetry breaking

Lgauge 3
1

2
g2

5V
2
G

24∑
a,c,d=1

f
su(5)
a 24 c f

su(5)
d 24 cA

µ
aAdµ.

2For the individual real scalar fields Σa one has to obtain Lgauge 3 1
2
∂µΣa∂

µΣa, which is ensured
by the normalization (7.1) of the SU(5) generators.
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Consequently, after rewriting the real Aµ12−23 fields in terms of the complex (Xu
i )µ and

(Xd
i )µ fields (7.10), (7.11), these acquire equal masses

M2
Xu = M2

Xd ≡MX =
5

12
g2

5V
2
G.

Recall that the experimental limit (6.27) applies to this mass which sets the SU(5)
symmetry breaking scale to ∼ 1016 GeV.

Moreover, we have to arrange for the SM symmetry breaking at the EW scale and
as already explained in Section 7.1.1 the SM Higgs doublet can be accomodated in the
fundamental representation of the SU(5) (7.4):

5H ≡ Φ =


T1

T2

T3

H+

H0

 .

The field T = (3, 1,−1
3) can be identified with the scalar (6.7) which could mediate the

proton decay, and it, indeed, does induce this process due to its Yukawa couplings (see
(7.18) below). For this reason, T is assumed to be very heavy compared to the 125 GeV
SM Higgs boson which shares the same multiplet. The problem of separating these two
masses in a natural way is sometimes called the doublet-triplet splitting problem.

We do not specify here the exact shape of the scalar potential since it is not nec-
essary for a general discussion, nevertheless, this information will be supplied for the
particular models studied in this thesis.

7.1.5 Yukawa interactions

At this stage it is possible to explain why the unified models usually predict certain
relations between fermion masses. The Yukawa part of the minimal SU(5) Lagrangian
reads:

LY = Y ψ
ab(ψia)

TCχijb Φ†j + Y χ
abεijklm(χija )TCχklb Φm + h.c. (7.18)

where ε is the totally-antisymmetric tensor in 5 dimensions, i, j, k, l,m and a, b are the
SU(5) and generation indices, respectively, and the transposition and the C matrix
refer to the Lorentz structure of the expression (see Appendix A.1). After performing
the SU(5) contractions and inserting the VEV 〈H0〉 = v, one finds

LY 3
[
Y ψ
ab

(
(dca)

TCdb + eTaCe
c
b

)
+ 4Y χ

ab

(
uTaCu

c
b + (uca)

TCub
)]
v + h.c.+ . . .

where we again suppress the subscript L for the left-handed fermions, as well as the
color indices. Using the relation (A.2), it is easy to show that (uca)

TCub = uTb Cu
c
a,
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hence, only the symmetric part of Y χ contributes to LY . According to our definition
of the Yukawa couplings in the SM (2.7) then

Y u = (Y u)T =
1

8
Y χ (7.19)

and this relation is important, e.g., for the computation of the proton decay rate.
Indeed, U = UC can be chosen in relation (2.17) due to (A.10), hence, the flavour
dependent coefficients (6.19)-(6.21) entering the partial decay rates simplify consider-
ably [117].

Similarly, one also gets
Y d = (Y e)T = Y ψ. (7.20)

Consequently, the masses of the charged leptons and the corresponding down-type
quarks are predicted to be identical at the GUT scale.

7.1.6 Problems of the minimal SU(5) unification

In the above description of the simplest Georgi-Glashow model we mentioned some of its
predictions concerning the correlation among the SM parameters. Unfortunately, not
all these relations comply with the current measurements as discussed in this section.

1. Gauge coupling unification. Except for the superheavy gauge bosons and the ex-
tra Higgs triplet, both with masses at the GUT scale, the Georgi-Glashow model
does not contain any extra fields, hence, the running of the couplings corresponds
to that in the SM. The predicted value of the weak mixing angle at the GUT scale
(7.14) then suggests the value of about 0.20 at the electroweak scale. Although
this was in accordance with the first rough measurements in the 1970’s, current
experimental data give the value of 0.23 with a good precision [14]. This issue
is sometimes rephrased as the problem of the exact unification of the gauge cou-
plings: although in the 1970’s, the three SM gauge couplings seemed to coalesce
in one point at a high energy scale (and actually it was one of the motivations for
GUTs), this is no longer the case with the more accurate measurements of the
gauge couplings at low energies. Let us mention as a curiosity that if TeV-scale
superpartners are included in the running, this problem disappears. This was one
of the motivations for supersymmetric unifications, however, we won’t elaborate
on them here for reasons mentioned at the beginning of this chapter.

2. Massless neutrinos. Another issue is that in the fermionic multiplets of the
Georgi-Glashow model (7.15) only the left-handed neutrinos are present, hence,
neutrinos turn out to be massless. Their masses may be introduced via extra
SU(5) singlets of right-handed neutrinos, however, in that case no predictions of
their properties are possible. Moreover, similarly as in SM, if the neutrinos are
assumed to be Dirac particles, then the Yukawa couplings present in the Dirac
neutrino mass term would be very small compared to other Yukawa couplings,
which calls for justification.
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3. Equal masses for down-type quarks and charged leptons. Taking into account the
running from the GUT scale, this equality does approximately hold for the third
family, which in the late 1970’s was considered as a successful and promising
prediction of the SU(5) unifications. However, later measurements of fermion
masses from all three families together with the updated computation of their
running from the EW scale to the GUT scale [118] reveal serious incompatibility
with formulae like (7.20).

7.1.7 Realistic extensions of the Georgie-Glashow model

Let us briefly discuss several realistic models based on the SU(5) gauge group in order
to explain how the problems listed in the previous section could be overcome.

It was pointed out already in [119] that the third problem of the wrong relations for
the fermion masses can be avoided by adding a 45-dimensional scalar representation
(recall the relations (7.8) and (7.9) which suggest that 45H can form similar Yukawa
terms as 5H). Alternatively, by introducing non-renormalizable operators the same
goal may be achieved [120].

Furthermore, most of the mechanisms for the generation of small neutrino masses
described in Chapter 4 are also applicable in the context of the SU(5) unifications. The
minimal option (considered, e.g., in [121]) is an addition of the right-handed neutrinos
providing the type I seesaw mechanism described in Section 4.3. On the other hand,
adding the 15-dimensional scalar representation (7.6) containing the (1, 3,+1) multi-
plet called ∆ in Section 4.4 provides the type-II-seesaw neutrino mass contribution.
Such models were studied in the non-renormalizable case [122] as well as in the case of
renormalizable models supplemented by the 45H representation [123] . Similarly, the
combination of type I and type III seesaw using the 24-dimensional fermionic repre-
sentation, which contains both the weak singlet νR and the triplet ∆F introduced in
(4.3), was studied either in the non-renormalizable [124] or in the renormalizable [125]
versions. Finally, even the Zee mechanism described in Section 4.5.1 can be applied
in the framework of the SU(5) unification [126] when 10H containing the weak singlet
scalar h+ and the 45H containing the second Higgs doublet are added.

In summary, addition of extra fields is necessary for any realistic extension of the
Georgi-Glashow model, and this also helps to overcome the first problem mentioned
in Section 7.1.6. If some of the additional fields acquire masses below the GUT scale,
exact unification may be achieved for certain settings which considerably constrains
the parameter space of this kind of models.

7.2 SO(10)

Given the problems of the simplest SU(5) GUT listed in Section 7.1.6 and the gen-
eral complexity of the realistic extensions of the Georgi-Glashow model mentioned
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in Section 7.1.7, it is natural to look for another simple gauge group which may
serve the purposes of the gauge unification. The next-to-minimal GUTs are based on
the SO(10) gauge group which was first suggested in published form by Fritzsch and
Minkowski [127] (although they admit that “after completion of this article [they] were
informed that the SO(10) model has also been considered by Georgi and Glashow”3).
In [127], SO(10) unification is presented only as one way among many others in which
to group the 16 fermions of the SM (with the extra νR) in (one or more) multiplets
of a simple group, however, it is concluded that only the SO(10) and SU(5) models
are anomaly-free. The beauty of the models based on the SO(10) gauge group lies
exactly in the fact that the whole family of the fermions can be accommodated in the
16-dimensional spinor representation of the SO(10) as will be shown in Section 7.2.1.

The rank of the SO(10) group is equal to 5, hence, the symmetry breaking is
usually more complicated (see Section 7.2.4). On the other hand, as we have shown in
Section 4.1 the smallness of neutrino masses often calls for new physics at the energy
scale of the order of ∼ 1013 GeV. The presence of the intermediate breaking scales is
hence welcome. This holds also because the fields with masses below the unification
scale can help with addressing the issue of the exact unification in a natural way.

Furthermore, we show in Section 7.2.5 that the Yukawa sector of the SO(10) unifi-
cations can be rather constrained even if multiple scalar representations are included,
hence, one can have a good grip on the flavour-dependent coefficients (6.19)-(6.21)
present in the partial proton decay rates.

Due to the complexity of the SO(10) unifications we do not attempt here to study
all the variants in such a depth as those based on the SU(5) gauge group, for more
details on the group theory see, e.g., [128], for the other aspects [67] or [115]. The
references studying the phenomenology of different SO(10) models will be given in
Section 7.2.4 and a particular model based on the SO(10) gauge group will be detailed
in Section 8.2.

7.2.1 Group structure

The special orthogonal group SO(n) consists of the orthogonal matrices in n-dimensional
vector space with determinant equal to +1, and the so(n) algebra can be generated by
n(n−1)

2 independent purely imaginary antisymmetric n×n matrices. For our purposes,
however, it will not be necessary to specify the 45 generators of the so(10) algebra, we
will concentrate on the SO(10) representations and their decomposition with respect
to the SO(10) subgroups following mainly the references [128] and [129].

There are two different subgroups of SO(10) of rank 5, namely, the SU(5)× U(1)
and SO(6) × SO(4) = SU(4) × SU(2) × SU(2). The decomposition with respect to
the latter “Pati-Salam” subgroup will be handy since it can give an insight into the

3H. Georgi should have mentioned the SO(10) model in a talk given at the APS meeting at William
and Mary College in 1974.
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quark-lepton unification and the left-right symmetry within the SO(10) unification,
whereas the former subgroup will be used to identify the SM multiplets within the
SO(10) representations, relying on the detailed study of SU(5) above. Let us not
that the SU(5) × U(1) subgroup can be embedded to SO(10) in two non-equivalent
ways [130], either the SU(5) contains the SM hypercharge generator as in case of the
Georgi-Glashow model, or the hypercharge can be a combination of the SU(5) and U(1)
generators. The latter case corresponds to the so-called flipped SU(5) subgroup, and
the former embedding will be used for the decomposition of the SO(10) representations.

The defining 10-dimensional representation of the SO(10) is real (as any other
defining representation of SO(n) since −T ∗a = Ta for purely imaginary generators),
and can be decomposed with respect to the SU(5) subgroup as

10 = 5⊕ 5̄. (7.21)

Consequently, two copies of the SM-Higgs-like scalar fields can be accommodated in
this representation. The tensor product

10⊗ 10 = 1s ⊕ 45a ⊕ 54s (7.22)

contains the adjoint representation and also the 54-dimensional representation which
will play a role in the SO(10) symmetry breaking; however, let us first consider two
special representations of SO(10) which can not be constructed by any tensor product,
namely, the 16 and 16 spinor representations. For SO(4n+2) the spinor representations
denoted as D2n+1 and D2n are complex and can be decomposed with respect to the
SU(2n+ 1) subgroup as [128]

D2n+1 =
n∑
j=0

[2j + 1] D2n =
n∑
j=0

[2j]

where [k] is a representation corresponding to antisymmetric tensor product of k defin-
ing representations of SU(2n + 1). Recalling that [k] = [2n + 1 − k] holds for the
SU(2n+ 1) representations, in case of n = 2 then

16 ≡ D5 = 5 + 10 + 1, 16 ≡ D4 = 1 + 10 + 5̄. (7.23)

This means that both the matter multiplets (7.15) can be accommodated in the 16-
dimensional representation together with a singlet field corresponding to νR, hence,
the whole family of the SM fermions occupies a single multiplet in the case of SO(10).
The content of the tensor products

16⊗ 16 = 1⊕ 45⊕ 210 (7.24)

16⊗ 16 = 10s ⊕ 120a ⊕ 126s (7.25)

will be useful for the construction of the Lagrangian, as well as the following decom-
position with respect to the SU(5) subgroup

120 = 5⊕ 5̄⊕ 10⊕ 10⊕ 45⊕ 45, (7.26)

126 = 1⊕ 5̄⊕ 10⊕ 15⊕ 45⊕ 50. (7.27)
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In order to explore the gauge boson structure, it will be instructive to decompose
the adjoint representation of the SO(10) with respect to the SU(4)C×SU(2)L×SU(2)R
subgroup:

45 = (15, 1, 1)⊕ (1, 3, 1)⊕ (1, 1, 3)⊕ (6, 2, 2). (7.28)

Moreover, in order to identify the SM multiplets, the embedding SU(3)c × U(1)Y ⊂
SU(4)C × SU(2)R has to be specified. One finds that

SU(3)c × U(1)B−L ⊂ SU(4)C (7.29)

where B −L denotes the difference of the baryon and lepton numbers (more precisely,

the corresponding canonically normalized generator of SU(4)C is
√

3
8(B − L)). The

SM hypercharge is then a combination of B−L and the diagonal generator of SU(2)R:

Y = TR3 +
1

2
(B − L). (7.30)

The decomposition of the SU(4)C multiplets with respect to the SU(3)c × U(1)B−L
subgroup can be found, e.g., in [129]:

15 = (8, 0)⊕ (3,+4
3)⊕ (3̄,−4

3)⊕ (1, 0), 6 = (3,−2
3)⊕ (3̄,+2

3). (7.31)

The decomposition with respect to the SU(4)C × SU(2)L × SU(2)R subgroup of
the 54- and 210- dimensional representations present in the tensor products (7.22) and
(7.24), respectively, will be useful when inspecting the symmetry breaking chains and
can be found also in [129]:

54 = (1, 1, 1)⊕ (1, 3, 3)⊕ (20, 1, 1)⊕ (6, 2, 2), (7.32)

210 = (1, 1, 1)⊕ (15, 1, 1)⊕ (6, 2, 2)⊕ (15, 1, 3)⊕ (15, 3, 1)⊕ (10, 2, 2)⊕ (10, 2, 2).
(7.33)

7.2.2 Gauge fields

In order to describe the SO(10) gauge fields, let us decode the individual terms in the
decomposition (7.28). Using the formula (7.31), one finds

(15, 1, 1) = (8, 1, 0)⊕ (3, 1,+2
3)⊕ (3̄, 1,−2

3)⊕ (1, 1, 0) (7.34)

where the multiplets are denoted by the SU(4)C×SU(2)L×SU(2)R and SM quantum
numbers on the left- and right-handed side of the equation, respectively. The embed-
ding (7.29) suggests that the first term corresponds to the SM gluons and the last term
accommodates the neutral gauge field corresponding to the B − L symmetry. On top
of that, the leptoquark gauge field with quantum numbers (3, 1,+2

3) and its conjugate
occur in unifications including the SU(4)C gauge group which were first studied by
Pati and Salam [131]. These fields do not induce proton decay, however, they lead
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to other non-observed interactions such as K0
L → µ±e∓ which constrains the mass of

these vector bosons to be at least of the order of 106 GeV in the generic case [132].

The second and the third terms in (7.28) can be identified with the SU(2)L and
SU(2)R gauge fields, respectively. It is worth noting here that introducing the left-right
symmetry [133,134] is an appealing way, in which to pair the right-handed SM matter
fields into the SU(2)R doublets in the same fashion as the left-handed ones are paired
into doublets of SU(2)L. However, also the SU(2)R gauge bosons have to acquire large
masses in order to comply with the experimental constraints. Nowadays, the collider
searches or, e.g., the constraints from the neutral kaon mixing require the masses of
SU(2)R gauge bosons to be at least few TeV [135].

Finally, (7.31) implies the decomposition

(6, 2, 2) = (3, 2,+1
6)⊕ (3, 2,−5

6)⊕ (3̄, 2,+5
6)⊕ (3̄, 2,−1

6), (7.35)

where again the SU(4)C × SU(2)L × SU(2)R and SM quantum numbers are given on
the left- and right-hand side, respectively. Hence, both the gauge boson multiplets
mediating the proton decay (6.11) are present in SO(10) unifications.

7.2.3 Matter fields

As already suggested below (7.23), the whole family of the SM fermions (including also
the right-handed neutrino) can be accommodated in the spinor representation of the
SO(10) denoted by 16F .

When rewriting the gauge interactions of 16F using the SM matter fields, one finds
that both (3̄, 2,+5

6) and (3̄, 2,−1
6) gauge bosons from (7.35) imply baryon number vi-

olation via terms of analogous form as in the SU(5) unification (7.17) and the flipped
SU(5) unification (7.56), respectively. Moreover, other beyond-standard-model inter-
actions are induced by SU(2)R and SU(4)C gauge bosons as already mentioned in the
previous section. Since, however, the SU(2)R and SU(4)C breaking scales are typically
rather large in the context of the SO(10) unifications (see, e.g., [136]), i.e., well above
the experimental limits ∼ 1 TeV and ∼ 1000 TeV mentioned in the previous section,
corresponding interactions will not constrain the models discussed here, hence, their
explicit form will not be needed.

7.2.4 Symmetry breaking patterns

In this section the spontaneous breaking of the SO(10) gauge symmetry to the SM will
be considered, whereas the breaking of the SM gauge group and the consequent fermion
masses will be studied in the following section. There are multiple options for the
SO(10) → SM symmetry breaking chains usually including one or more intermediate
breaking scales. Here we will concentrate mainly on listing the possibilities for the first
step of the symmetry breaking and the full chains will be given later for the selected
models only (see Section 8.2).
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Our approach will be to identify the SO(10) representations which contain SM
singlets, hence, can be used for the SO(10) symmetry breaking. The quantum numbers
of the multiplets containing these singlets with respect to the various SO(10) subgroups
will then suggest the possible symmetry breaking patterns. However, for an exhaustive
mathematical discussion we refer the reader, e.g., to Chapter 24 of [128].

The smallest representation containing a SM singlet is apparently 16H which de-
composes under the SU(5) subgroup as (7.23), hence, the only SM singlet contained
in 16H is also an SU(5) singlet which suggests that 16H triggers the intermediate
SU(5) symmetry stage. Similarly, the 126-dimensional representation (7.27) contains
an SU(5) singlet and no other SM singlets (recall that among the SU(5) represen-
tations up to dimension 75 only the 1-, 24- and 75-dimensional ones contain a SM
singlet). However, for non-supersymmetric scenarios the gauge unification constraints
exclude the SU(5) model as pointed out in Section 7.1.6, hence, the

SO(10)
〈16H〉 / 〈126H〉−−−−−−−−−→ SU(5) (7.36)

breaking is not phenomenologically viable. For this reason, we will concentrate on the
symmetry breaking without the SU(5) intermediate stage in the following.

The decomposition of the SO(10) adjoint representation under the SU(4)C×SU(2)L×
SU(2)R (7.28) suggests that also 45H can trigger the SO(10) symmetry breaking. It
was found in Section 7.2.2 that the SM hypercharge gauge field resides in the (15, 1, 1)
submultiplet (7.34), the corresponding SM singlet is, hence, neutral with respect to
the SU(2)R and also U(1)B−L due to (7.30). On the other hand, the SM singlet
corresponding to the electrically neutral SU(2)R gauge field contained in the (1, 1, 3)
submultiplet is neutral with respect to SU(4)C . This all suggests that both variants

SO(10)
〈45H〉−−−→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L (7.37)

SO(10)
〈45H〉−−−→ SU(4)C × SU(2)L × U(1)R (7.38)

are possible depending on the vacuum structure. Actually, the thorough study of the
possible vacuum settings shows that also the SU(5)×U(1) intermediate stage may be
triggered by 〈45H〉 (see Section 8.2), however, it can be shown that this option is not
phenomenologically interesting.

Furthermore, the 54-dimensional representation is decomposed under the SU(4)C×
SU(2)L × SU(2)R subgroup as (7.32) and it is easy to check that only the first term
contains a SM singlet. This implies

SO(10)
〈54H〉−−−→ SU(4)C × SU(2)L × SU(2)R. (7.39)

Next, let us mention as a curiosity that the one-step breaking

SO(10)
〈144H〉−−−−→ SM (7.40)
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is an option [137,138] where no other scalar representations are needed, however, extra
matter fermions have to be added in order to accommodate realistic fermion masses.

We will stop our search for the SM singlets with the 210-dimensional representation
(7.33). The (15, 1, 1) term contains the SM singlet similarly as in the case of the 45H
and of course (1, 1, 1) is a SM singlet, hence, the two variants

SO(10)
〈210H〉−−−−→ SU(4)C × SU(2)L × SU(2)R, (7.41)

SO(10)
〈210H〉−−−−→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L (7.42)

emerge. As in the case of 45H also the SU(5)× U(1) symmetry stage can be reached
by a particular vacuum structure.

Let us note that for the phenomenologically viable options (7.37)-(7.42) (apart from
the one triggered by 144H), the U(1)B−L subgroup is preserved and either 16H or 126H
has to be added in order to break this symmetry. Broken B − L then usually allows
for right-handed neutrino Majorana masses as will be discussed in the next section,
hence, specific value of 〈16H〉 or 〈126H〉 is necessary in order to provide realistic active
neutrino masses through the type I seesaw mechanism (see Section 4.3). For a recent
analysis of such phenomenology constraints combined with the requirement of the exact
gauge coupling unification see, e.g., [136]. Also the options how to further break the
symmetries (7.37)-(7.42) are listed in this article and references therein.

On the other hand, in [136] the so-called extended survival hypothesis [139] was
assumed, i.e., only the scalars responsible for the spontaneous symmetry breaking at
lower scales did not acquire unification scale masses. The dedicated study of the scalar
potential may, however, show that this assumption is not fulfilled (if, for instance, a
pseudo-Goldstone mode corresponding to an accidentally enhanced global symmetry
appears) and the analysis of the phenomenology constraints becomes more complex.
The case with 54H was studied in great detail, e.g., in [140], in [141] the case with
210H was scrutinized and [142] studied the phenomenology of both these variants. The
option with 45H was discarded, e.g., by the reference [143] where the 54H case was
favoured. The reasons for abandoning the 45H option and its recent revival will be
described in Section 8.2.

7.2.5 Yukawa couplings

Since all the SM fermions are accommodated in the 16-dimensional representation of
SO(10), the SM Higgs field has to be part of a representation present in the scalar prod-
uct (7.25). The 10-dimensional scalar field can be in principle either real or complex,
although the former option does not lead to a realistic fermion spectrum [144]. In the
latter case, both 10H and 10∗H can couple independently to the SM fermions, however,
the extra Yukawa coupling is usually avoided by introducing the Peccei-Quinn symme-
try (see Section 5.1 for general discussion of this symmetry and [144] for its implemen-
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tation in the SO(10) unifications). The Yukawa Lagrangian then reads schematically

LY = Y1016F 16F 10H + Y12016F 16F 120H + Y12616F 16F 126H (7.43)

where
Y10 = Y T

10, Y120 = −Y T
120, Y126 = Y T

126 (7.44)

are matrices in the flavour space.

Let us note that the decomposition of the 10- and 126-dimensional representations
with respect to the SU(5) subgroup (7.21) and (7.27) suggest that these representations
can accommodate two different copies of the SM Higgs doublets (recall that 5H and 45H
was used for Yukawa couplings in the SU(5) unifications), the corresponding VEVs will
be denoted as vu10/126 and vd10/126. Similarly, the 120-dimensional representation (7.26)
contains four Higgs-like fields, which can acquire different VEVs. Consequently, after
the spontaneous symmetry breaking the Dirac mass terms for the up- and down-quarks,
neutrinos and charged leptons contain the mass matrices [145]

Mu = vu10Y10 + vu120Y120 + vu126Y126, (7.45)

Md = vd10Y10 + vd120Y120 + vd126Y126, (7.46)

MD = vu10Y10 + vD120Y120 − 3vu126Y126, (7.47)

Me = v10Y
d

10 + ve120Y120 − 3vd126Y126, (7.48)

respectively.

Clearly, at least two non-zero Yukawa matrices (7.44) will be needed: in case when
all the mass matrices (7.45)-(7.48) are proportional to a single matrix, the quark mixing
can not be accommodated (U = D would hold for the rotation matrices in (2.17) which
implies VCKM = 1 in (2.23)).

Furthermore, if no extra fine-tuning is at play, the Dirac neutrino mass matrix
(7.47) would imply the neutrino masses of the similar magnitude as for the other SM
fermions. On the other hand, if large Majorana masses of the right-handed neutrinos
are introduced, this problem is naturally solved thanks to the type I seesaw mechanism
described in Section 4.3.

As already anticipated in the previous section, the right-handed neutrino masses
are usually connected to the B − L breaking scale determined by the VEV of the
16H or 126H . Namely, in case of 16H these Majorana masses can be generated at
the two-loop level as will be shown in Section 8.1, however, as explained immediately
afterwards, this is not phenomenologically viable. Another option is then to introduce
non-renormalizable d = 5 operators if only 16H is present.

On the other hand, the SU(5) singlets of the right-handed neutrinos in 16F (7.23)
can couple to the SU(5) singlet in 126H (7.27) through the third term in (7.43), hence,
the VEV direction of 126H assigned as vR126 can induce the right-handed neutrino masses
at the tree level. This setting provides correlations among different fermion sectors and
is usually preferred in recent studies.
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The scalar 126H also contains the weak triplet ∆ with an induced VEV as in the
type II seesaw mechanism described in Section 4.4 (recall that the 15-dimensional
representation of the SU(5) contained in (7.27) allowed the type II seesaw mechanism
within the SU(5) unifications as shown in Section 7.1.7). Consequently, the matrices
entering the (generalized) type I seesaw formula (4.9) besides MD (7.47) read

MR = vR126Y126, (7.49)

ML = vL126Y126. (7.50)

if 〈∆〉 = vL126 is assigned.

In summary, the most economic choice of the Higgs sector which could accommodate
realistic fermion masses corresponds to combination of 126H and either 10H or 120H .
Recent numerical analyses [145,146] show that such scenarios are highly constrained by
the relations (7.45)-(7.49) (the dominance of the type I seesaw mechanism is assumed
for the fits): for the 126H + 10H scalar content only the case of the normal neutrino
mass hierarchy can be fitted and for the option 126H + 120H no consistent fits exist at
all.

Let us note that if the scalar content 10H + 126H is chosen, then both the up-
and down-quark mass matrices (7.45) and (7.46) are symmetric due to (7.44), which
implies U = UC and D = DC in the formula (2.17) and firm predictions for the flavour
structure of the proton partial decay rates (6.14)-(6.18) can be obtained.

7.3 Flipped SU(5)

Interestingly, the SU(5) × U(1) subgroup embedded in the SO(10) in the “flipped”
way (see Section 7.2.1) can be used as a gauge group by itself preserving the features of
the full SO(10) unification which enabled to avoid the problems of the standard SU(5)
model mentioned in Section 7.1.6. The unifications based on the SU(5)×U(1)X gauge
group were first studied in [130,147,148] and their basic structure will be described here
omitting some of the details which are analogous to the case of the ordinary SU(5). A
particular flipped SU(5) model will be later studied in Section 8.1.

7.3.1 Group structure

The key difference with respect to the ordinary SU(5) unifications consists in the
embedding of the SM hypercharge:

Y =
1

5

(
X −

√
5

3
T24

)
(7.51)

where T24 is again one of the SU(5) generators (7.2) and the X charge corresponds to
the U(1)X group factor.
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This means that the U(1)Y is not a subgroup of SU(5), hence, only the SU(3)c and
SU(2)L couplings have to meet at one point, and the problem of the exact unification,
mentioned as the first point in Section 7.1.6, disappears.

7.3.2 Gauge fields

Obviously, the hypercharge gauge field Bµ does not correspond to the T24 generator of
SU(5) as in (7.13), but there are two orthogonal combinations of Aµ24 and the U(1)X
gauge field, one of them being Bµ and the other one a neutral gauge field with mass
at the unification scale.

For the following discussion, however, only the mediator of the baryon number
violation analogous to Xµ present in the ordinary SU(5) will be important. In case of
the flipped SU(5), (7.12) is replaced by

X ′µ =

(
X ′u

X ′d

)µ
= (3̄, 2,−1

6) (7.52)

due to the relation (7.51), i.e., the electric charges of X ′u and X ′d read +1
3 and −2

3 ,
respectively. Let us note that this is exactly the gauge boson identified by the “opening”
of the d = 6 operator OIII (6.10).

7.3.3 Matter fields

The different definition of the SM hypercharge (7.51) changes also the field content
of the matter multiplets (7.15). Namely, if one defines the SU(5) × U(1)X charges of
these multiplets as4

10F ≡ (10,+1), 5̄F ≡ (5̄,−3) (7.53)

the last term in the decomposition (7.7) obtains, according to the formula (7.51),
the quantum numbers of the right-handed neutrino which, subsequently, becomes an
inevitable element of the theory solving partly the second problem mentioned in Sec-
tion 7.1.6 (we will describe how to explain the smallness of neutrino masses within the
flipped SU(5) models in Section 7.3.5). On the other hand, in order to accommodate
the right-handed electron, an extra SU(5) singlet

1F ≡ (1,+5) = (ec)L (7.54)

has to be added. At the same time, the right-handed up-type quarks move to the
5̄F multiplet, whereas the right-handed down-type quarks become part of the 10F

4This definition together with (7.54) is the only non-anomalous way, in which the U(1)X charges
can be assigned and it also corresponds to the decomposition of the fermionic multiplet 16F in SO(10)
under the maximal subgroup SU(5)× U(1).
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multiplet. In summary, the alternative embedding of the SM hypercharge induces a
flip

(ec)L ↔ (νc)L (dc)L ↔ (uc)L (7.55)

in formula (7.15).

This flip influences, e.g., the gauge interactions of the fermions arising from a term
analogous to (7.16). Recalling (7.52), the formula (7.17) is replaced by

Lgauge 3
g√
2

[
(X ′uj )µ

(
ucjγµe+ νcγµdj + εjklulγµd

c
k

)
+(X ′dj )µ

(
−ucjγµν − νcγµuj + εjkldlγµd

c
k

)]
+ h.c.

=
g√
2

[
ucjγµX

′µT
j iσ2L+ νcγµX

′µT
j iσ2Qj + εjklQl

T
X ′µj γµd

c
k

]
+ h.c. (7.56)

in case of the flipped SU(5). As in the SU(5) case, the first and the third terms on
the third line show that the operator OIII (6.10) can be obtained by integrating out
the vector boson X ′µ (see the third diagram in Figure 6.1).

Also these interactions induce proton decay, hence, as in the ordinary SU(5) case,
X ′µ is assumed to be very heavy.

7.3.4 Scalar sector and Yukawa couplings

The SM Higgs field can be again accommodated in the fundamental representation of
the SU(5) if we define

5H ≡ (5,−2).

This choice of the U(1)X charge also allows the Yukawa couplings of 5H with the
fermion fields (7.53) with an analogous structure as in the case of the ordinary SU(5)
(7.18), however, the flip (7.55) transforms the formulas (7.19), (7.20) into

Y d = (Y d)T , Y u = (Y νD)T . (7.57)

The first formula suggests that D = DC in (2.17) which, again, allows to simplify
the coefficients (6.19)-(6.21) and sometimes even to get partial proton decay rates
independent of the flavour structure of the particular model [117].

The second equality in (7.57) relates the masses of the up-type quarks with the
Dirac neutrino masses. This is in no contradiction with the observed masses if type I
seesaw mechanism is employed and the right-handed neutrinos acquire large masses,
hence, also the third problem mentioned in Section 7.1.6 can be addressed.

For completeness, let us add that the charged lepton Yukawa couplings are inde-
pendent of the other parameters since they arrise from the term

LY 3 Y 1
ab5̄Fai1Fb5

i
H
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where i and a, b are the SU(5) and generation indices, respectively, and the Lorentz
structure is suppressed for simplicity.

Finally, the single-step SU(5) × U(1)X → SU(3)c × SU(2)L × U(1)Y symmetry
breaking can be triggered by

10H ≡ (10,+1), 〈1045
H 〉 = VG

where ij = 45 denotes the SU(5) indices (recall the matrix notation (7.15)). Notice
that the SU(5) × U(1)X quantum numbers of 10H coincide with those of 10F (7.53),
hence, the 1045

H field corresponds to the right-handed neutrino entry, which shows that
〈1045

H 〉, indeed, preserves the SM gauge group.

7.3.5 Neutrino mass generation

In the literature, mostly the supersymmetric flipped SU(5) models are studied because
of the motivation from the string theory (see, e.g., [149] for a review). In that case the
neutrino mass matrix is extended with fermionic partners of the singlet scalar fields,
for further details, we refer the reader to studies like [150].

In the non-supersymmetric case, it was suggested, e.g., in [151] that the VEV of
an extra scalar could provide the right-handed neutrino masses. Indeed, recalling the
formula (7.8), one way in which the Majorana masses of the right-handed neutrinos
can be generated is to introduce a scalar multiplet

50H ≡ (50,−2), 〈50H〉 = Vν

together with an extra term in the Yukawa Lagrangian

LY 3 Y 50
ab 10ijFa10klFb50Hijkl.

In the last expression the Lorentz structure is again suppressed for simplicity, i, j, k, l
and a, b are SU(5) and generation indices, respectively. This term then provides the
right-handed neutrino masses proportional to Y 50Vν . Let us note, however, that in
such a scenario, the (symmetric) Y 50 matrix is not correlated with other parameters of
the model and, hence, the neutrino data do not considerably constrain the parameter
space.

An alternative way in which the right-handed neutrino masses can be introduced
within the framework of the flipped SU(5) models will be presented in Section 8.1.
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Chapter 8

Phenomenology of specific
unified models

8.1 Witten’s mechanism in the flipped SU(5) scenario

This section serves as an introduction to the full article [3] attached to this thesis as
Appendix D. The motivation and inspiration for this work is described and several
properties of the model under consideration are linked to the theory part of this thesis
including the translation of the notation used in [3]. Finally, the main results are
discussed.

It was explained in Section 7.3 that in the flipped SU(5) unifications the right-
handed neutrinos are an integral part of the model, however, in order to introduce their
Majorana masses (and, hence, to enable the type I seesaw mechanism described in Sec-
tion 4.3) by means of the usual Higgs mechanism, a scalar 50-dimensional representa-
tion of SU(5) has to be introduced. On the other hand, in [3] the right-handed neutrino
masses were generated in an alternative way inspired by the Witten’s idea [152].

In the original work [152] the neutrino masses were analysed in the context of a
model based on the SO(10) gauge symmetry spontaneously broken to SU(5) by the
VEV of a 16-dimensional scalar representation. On top of that, the 10-dimensional
scalar representation contained the SM Higgs field responsible for the fermion masses.
Witten observed that instead of introducing the 126-dimensional scalar which could
provide the Majorana masses for the right-handed neutrinos at the tree level (see
Section 7.2.5), the action of this representation can be mimicked by other fields which
couple to the right-handed neutrinos (namely, the scalar 10 and the gauge 45 can be
combined as 10⊗ 45⊗ 45 3 126). The Majorna masses are then built at the loop level
as shown in Figure 8.1.

Unfortunately, it was later shown that the symmetry breaking chain (7.36) is not
consistent with the gauge coupling unification in most of the non-supersymmetric sce-
narios, hence, in realistic models the VEV of the 16-dimensional representation deter-
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νR νR

16F /10F 16F /10F 16F /10F 16F /10F

16H  /  10H‹ › ‹ ›

16H  /  10H‹ › ‹ ›

10H /5H

16H /10H

45G /24G 45G /24G

Figure 8.1: “Witten’s loop” both in the original context of SO(10) unification [152]
and in the flipped SU(5) model [3]. The first/second representation assigning the lines
in this Feynman diagram correspond to these two implementations, respectively. Let
us note that also the crossed diagrams contribute to the right-handed neutrino masses.

mining the size of the right-handed neutrino Majorana masses lies at an intermediate
scale usually few orders of magnitude below the GUT scale. In this case the masses of
the right-handed neutrinos are too low to produce small enough active neutrino masses
in a generic case with O(1) Yukawa couplings.

On the other hand, if only the subgroup SU(5) × U(1)X of the SO(10) (studied
in Section 7.3) is considered as the unified gauge group, the unification constraints
are weakened, while very similar two-loop diagram can be built with the 5-, 10- and
24-dimensional representations of SU(5) replacing the 10-, 16- and 45-dimensional rep-
resentations of SO(10), respectively (see Figure 8.1). In the flipped SU(5) case 〈10H〉
at the GUT scale is consistent with the phenomenological constraints and realistic
neutrino masses are obtained.

Combining the type I seesaw formula (4.9) (with ML = 0) and the relation between
the up-quark and Dirac neutrino Yukawa couplings in the flipped SU(5) unifications
(7.57), one finds that the light-neutrino mass matrix is related to the up-quark mass
matrix Mu as

Mν = −MT
uM

−1
R Mu.

Here the notation of the Section 4.3 is used, the notation employed in [3] corresponds
to the translation Mν → mLL, MR →MM

ν . At the same time, the contribution of the
loop diagram generating the mass matrix MR can be evaluated using the parameters
of the model. Consequently, Mν can be in principle determined as well as the unitary
matrix N (denoted as Uν in the article [3]) used for the diagonalization of Mν as in
(3.14). This provides an extra information about the flavour structure of the model
on top of the low energy constraints given by the fermion masses and the CKM and
PMNS matrices (2.23), (3.18). Also the flavour-dependent coefficients (6.19)-(6.21)
and, hence, the partial proton decay rates are then constrained as was shown both
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analytically and numerically (see Section III of Appendix D, the author of this thesis
contributed to the analytical estimates and to the numerical results presented in the
Figures 4-7). The predictions for the potentially observable decay channels p → π0e+

and p→ π0µ+ are then the main results of this article.

Let us note that after the publication of our results, we have found out that the
basic structure of the Witten’s loop in the flipped SU(5) context has already been
considered in the context of string models [153].

8.2 Minimal SO(10)

As shown in Section 7.2.4, the SO(10) gauge symmetry can be broken by the scalar
45-dimensional adjoint representation, and the rank of the gauge group has to be then
further reduced. The viability of such schemes was shown only recently as described
in Section 8.2.1 and we analysed one of the variants of this minimal SO(10) model in
the article [4] attached to this thesis as Appendix E. The methods used in this article
together with the main results are summarized in Section 8.2.2.

8.2.1 SO(10) broken by 45H revived

It was found in Section 7.2.4 that the SM singlets reside in the following submultiplets
of 45H denoted by the SU(3)c × SU(2)L × SU(2)R × U(1)B−L quantum numbers and
acquiring the VEVs named in accordance with [4] as

〈(1, 1, 1, 0)45〉 ≡ ωBL, 〈(1, 1, 3, 0)45〉 ≡ ωR. (8.1)

The symmetry breaking options (7.37), (7.38) were found by simple inspection of the
structure of the 45H submultiplets, on the other hand, a deeper analysis reveals that
for particular VEV settings the following subgroups can be obtained:

ωR = 0, ωBL 6= 0 : SU(3)c × SU(2)L × SU(2)R × U(1)B−L, (8.2)

ωR 6= 0, ωBL = 0 : SU(4)C × SU(2)L × U(1)R, (8.3)

ωR 6= 0, ωBL 6= 0 : SU(3)c × SU(2)L × U(1)R × U(1)B−L, (8.4)

ωR = ωBL 6= 0 : standard SU(5)× U(1), (8.5)

ωR = −ωBL 6= 0 : flipped SU(5)× U(1)X . (8.6)

This means that only the settings with ωR � ωBL or ωBL � ωR are phenomenologically
viable as they do not contain the SU(5) symmetry stage disfavoured by the unification
constraints (see Section 7.2.4).

Regardless of the further symmetry breaking, it was observed in [143, 154], that
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only the settings with1

− 2 <
ωBL
ωR

< −1

2
(8.7)

resembling the case (8.6) support the minimum of the tree-level scalar potential (see,
e.g., the tree level formulas (7) and (8) in Appendix E). This observation led to aban-
doning the minimal schemes with only the 45H scalar being responsible for the SO(10)
breaking.

Surprisingly, about 30 years later, it was found out [155] that the constraint (8.7)
is released when quantum corrections are taken into account. In [4] an example of
the one-loop formulas for the scalar masses is given showing that the loop corrections
may easily ensure positive values of the scalar masses even if (8.7) is not satisfied (see
the formulas (10), (11) in Appendix E). Moreover, the viability of the settings with
ωR � ωBL or ωBL � ωR was ultimately demonstrated in the recent paper [156] where
most of the important one-loop contributions to the effective potential were computed.

Consequently, the revived minimal SO(10) settings with the Higgs sector consisting
of 45H ⊕ 16H or 45H ⊕ 126H were further studied (in this discussion we neglect the
SM symmetry breaking which can be ensured, e.g., by adding a 10H as shown in
Section 7.2.5). In particular, the issue of the neutrino masses within these models
had to be solved, since assuming the extended survival hypothesis2 the unification
constraints suggest the B−L breaking scale below 1012 GeV or 1010 GeV for the Higgs
sector containing 16H or 126H , respectively [136].

As explained in Section 8.1, in case with 〈16H〉 well below the unification scale the
right-handed neutrino masses induced by the Witten’s mechanism are too low to pro-
vide realistic active neutrino masses in the generic case of O(1) Yukawa couplings. The
same problem occurs if the d = 5 effective operator containing 16H is introduced; more-
over, in such a non-renormalizable scheme a number of new unconstrained parameters
emerges.

On the other hand, using the 126H representation, the right-handed neutrino masses
can be introduced at the tree level and such a setting provides interesting correlations
among the different fermion sectors as shown in Section 7.2.5. In [4] the VEV of the
SU(5) singlet field contained in 126H (assigned as vR126 in Section 7.2.5) is named

〈(1, 1, 3,+2)126〉 ≡ σ (8.8)

where the SU(3)c × SU(2)L × SU(2)R × U(1)B−L quantum numbers are specified.
Unfortunately, the value |σ| . 1010 GeV setting the scale of the right-handed neutrino
masses (7.49) again implies too heavy left-handed neutrinos if O(1) Yukawa couplings
are assumed. However, it was shown in [157] that when the minimal survival hypothesis

1In the papers [143, 154] an extra Z2 symmetry of the scalar potential was considered yielding
the relation −1 < ωBL

ωR
< − 2

3
, however, we refer here to the result obtained for the scalar potential

considered in [4].
2Recall that this means that only the scalars responsible for the spontaneous symmetry breaking

on lower scales do not acquire the unification scale masses as discussed in Section 7.2.4.
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is abandoned and the full parameter space of the model is considered, settings with
the B−L breaking scale in the ballpark of |σ| ∼ 1013 GeV are reachable. Namely, the
structure of the one-loop beta functions for the gauge coupling running revealed that
this is achieved, for instance, if a scalar field with the SM quantum numbers (6, 3,+1

3)
or (8, 2,+1

2) becomes light.

In order to obtain reliable quantitative predictions3, however, a two-loop analysis
of the unification constraints has to be performed. Let us note that computation at
such a precision level has a good sense in the context of the SO(10) broken by 45H
due to, e.g., the vanishing contribution of the leading Plack-scale correction described
by the d = 5 effective operator of the form [159]

1

MPl
Tr (FµνF

µνHG) . (8.9)

Here Fµν is the unified gauge field strength tensor and HG is a scalar field acquiring
the VEV at the GUT scale. In our case HG = 45H and (8.9) vanishes thanks to the an-
tisymmetric nature of the 45-dimensional representation of SO(10) (7.22). Otherwise,
this type of operator induces the uncertainty in the matching of the gauge couplings
with the size comparable or even greater than the error coming from neglecting the
two-loop contributions to the beta functions making the efforts of going beyond the
one-loop precision level pointless [158].

The two-loop analysis of the light octet case was performed in [160] and the one-
loop results were shifted in such a way that the points in the parameter space which
would survive also the Hyper-Kamiokande bound on the proton lifetime (6.24) suggest
the mass of the (8, 2,+1

2) scalar to be at or below ∼ 20 TeV, i.e., potentially within the
reach of the LHC (see Figure 1 in Appendix E). The light sextet case was subsequently
analysed in [4] as described in the following section.

8.2.2 Two-loop analysis of the minimal SO(10) with a light sextet
scalar

It was shown already in [155] that in the case of the light (6, 3,+1
3) scalar, the setting

with ωBL � |ωR| is preferred. Consequently, according to (8.2), the first symmetry
breaking step is

SO(10)
µ2−→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L ≡ G′

with the matching scale conveniently defined as

µ2 = g ωBL. (8.10)

3In particular, the errors in the proton lifetime estimates within approximately one order of mag-
nitude are desirable since only then the next generation of experiments improving the limits (6.22) to
(6.24) can distinguish among different models (see [158] for further details).
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where g is a sample value of the unified coupling at the GUT scale. Let us note that
small shifts in the matching scale have a minor effect, since the so-called threshold
corrections will be taken into account as described below. The full symmetry breaking
chain depends on the hierarchy of the VEVs |σ| and |ωR|, namely

|σ| > |ωR| : G′
µ1−→ SM (8.11)

|σ| < |ωR| : G′
µ′1−→ SU(3)c × SU(2)L × U(1)R × U(1)B−L

µ1−→ SM (8.12)

where the matching scales are chosen as

µ1 = g|σ|, µ′1 = g|ωR|. (8.13)

Let us now summarize the necessary ingredients for the full two-loop analysis of
the gauge coupling running and list the needed theoretical tools.

As anticipated, two-loop renormalization group equations (i.e., two-loop beta func-
tions) have to be used for the gauge coupling running. This is rather straightforward
in the case without multiple abelian group factors, since the relevant formulas for the
two-loop beta functions are readily available [161]. If more than one U(1) factor is
contained in the gauge group, like in (8.12), the U(1) mixing has to be taken into
account [162–164] and instead of just two gauge couplings gR, gBL, the 2 × 2 matrix
of couplings has to be considered. Since this topic is not so widely described in the
literature, we include our notes on the gauge coupling running in the theories with
multiple U(1) gauge group factors in Appendix A.4. The details of the beta function
computation for our model are given in Section IV.A.2 of Appendix E.

Furthermore, the two-loop running has to be accompanied with the one-loop match-
ing [165, 166] at each symmetry breaking scale which takes into account the splitting
of the heavy particle spectrum. For this reason the full scalar spectrum has to be
computed (the formulas for the scalar masses in the minimal SO(10) model are given
in [157]) and again the case with multiple abelian group factors requires special at-
tention as described in Appendix A.4. The matching conditions for the model under
consideration are explicitly given in Section IV.A.3 of Appendix E.

Finally, the one-loop evolution of the effective four-fermion baryon-number-violating
operators (6.8)-(6.10) has to be included [167,168] and the resulting coefficients entering
the proton decay rates are computed in Section IV.B.1 of Appendix E.

All the above ingredients were incorporated by the author of this thesis into a nu-
merical analysis where the parameter space of the minimal SO(10) model with light
scalar sextet was scanned and only the points with non-tachyonic spectrum and exact
unification of the gauge couplings were accepted. Furthermore, long-enough proton life-
time (i.e., high-enough SO(10) breaking scale ωBL) and high-enough seesaw scale were
required, getting again a picture shifted with respect to the result of the one-loop anal-
ysis in [157]. Namely, only few points survive the requirement |σ| > 1012 GeV together
with Hyper-Kamiokande bound on proton lifetime (6.24); if, moreover, |σ| > 1013 GeV
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is enforced, all the surviving points can be excluded by the Hyper-Kamiokande exper-
iment as depicted in Figure 5 of Appendix E.

Consequently, only the light-octet case may remain viable if the Hyper-Kamiokande
does not observe the proton decay.
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Chapter 9

Conclusions and outlook

In this thesis, different scenarios beyond the SM were studied, their compatibility with
the current experimental data was tested and the possible ways in which some of these
schemes can be distinguished by future experiments were suggested. In particular, we
considered two unified models based on the SO(10) and SU(5) × U(1) gauge groups
(see Chapter 8), and also models linking the smallness of neutrino masses with the
axion particle which provides a dark matter candidate together with a solution to the
strong CP problem (see Chapter 5).

The latter class of models was analysed in [1] and [2] attached to this thesis as
Appendices B and C. The scalar extensions of the SM in which the peculiar axion-
neutrino interconnection was attainable in a simple manner were shown to feature
several testable predictions. Namely, besides other features characteristic for the
DFSZ model, in the current setup the axion entertains tiny couplings to the neu-
trinos; moreover, the extra scalars can be observed at colliders or mediate specific
lepton-flavour-violating processes. In addition, a light pseudo-Goldstone boson called
dilaton is present in the scenario considered in [2]. At the same time, all the proposed
models comply with all the experimental constraints including, for instance, the Higgs
boson properties.

On the other hand, the predictions of the unified models are usually related to the
process of the proton decay. To this end, the main result of the article [3] attached to
this thesis as Appendix D involved the correlations among the different partial proton
decay rates. Such firm predictions were allowed by the constrained structure of the
model where the right-handed neutrino masses were generated via a two-loop diagram
within the context of the so-called flipped SU(5) unification.

Furthermore, we resumed the previous studies of a model based on the SO(10)
gauge group broken by the adjoint representation. This minimal setting was only
recently proved to be viable since the one-loop effective potential had to be considered
in order to show that the scalar spectrum can be non-tachyonic along the potentially
viable symmetry breaking chains. Subsequently, the study of the unification constraints
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determining the seesaw scale revealed that realistic masses of the active neutrinos
can be attained in minimally fine-tuned schemes with either a color octet or a color
sextet scalar accidentally light. A quantitative statement, however, requires a detailed
two-loop analysis of the gauge-coupling running which was performed for the sextet
case in [4] attached to this thesis as Appendix E. It was revealed that if the Hyper-
Kamiokande experiment does not observe the proton decay, the parameter space will
shrink in such a way that no points with the seesaw scale above 1013 GeV will be left.
The model featuring a light color octet would be favoured in that case and it was shown
in previous articles that this scalar could be within the reach of the LHC.

Let us note that the predictions of the proton decay rates made in the two articles on
the unified models above could help to distinguish among different unified scenarios if
the proton decay was observed by experiments like the Hyper-Kamiokande. Moreover,
we would like to stress that the recent analyses [158] and [169] showed that the flipped
SU(5) unification and the models based on the SO(10) gauge group broken by the
adjoint representation are especially stable with respect to the effects of the Planck-
suppressed operators which means that our predictions should not be significantly
affected by the unknown physics at the Planck scale.

On the other hand, there are still several open questions concerning the models
studied in this thesis. One of our aims is to incorporate also a solution to the problem
of the baryon-antibaryon asymmetry of the Universe into the models with the neutrino-
axion interconnection. At the same time, these models could be even more predictive
if embedded into the framework of a theory with an extended gauge symmetry.
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Appendix A

Miscellaneous technical details

A.1 Dirac, Majorana and Weyl spinors

The usual 4-component spinors will be mostly used in this text, however, in some cases
the Weyl notation becomes useful; its basic features will be described here following
mainly the reference [30].

Although the chirality operator γ5 can be used as a dynamical variable only in the
case of massless fields when it is proportional to the helicity operator [170], one can
anyway define the chirality projector operators

PL =
1− γ5

2
, PR =

1 + γ5

2

and then act on a 4-component spinor ψ to get

ψL ≡ PLψ, ψR ≡ PRψ.

This decomposition is invariant with respect to any proper Lorenz transformation [170]
and when the Weyl representation of the gamma matrices is used, then ψL and ψR can
be represented by 2-component spinors.

Moreover, one can use the particle-antiparticle conjugation operator Ĉ in order to
switch between left-handed and right-handed fermions. Indeed, if ψ is a solution of
Dirac equation with positive energy, then

Ĉ(ψ) ≡ ψc = Cψ
T

(A.1)

is a solution with negative energy where C is a matrix satisfying

C† = CT = C−1 = −C, CγµC
−1 = −γTµ , (A.2)

C = iγ2γ0 in the standard representation of gamma matrices. Using these relations,
one easily finds

Ĉ(PLψ) ≡ (ψL)c = (ψc)R ≡ PRĈ(ψ), Ĉ(PRψ) ≡ (ψR)c = (ψc)L ≡ PLĈ(ψ),
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which also means that instead of ψL and ψR one can use ψL and (ψc)L as the two
independent components of ψ (each carrying two degrees of freedom).

Since the mass term in the Dirac Lagrangian reads

− Lmass 3 mψψ = m
(
ψLψR + ψRψL

)
(A.3)

both the components ψL and ψR (or equivalently ψL and (ψc)L) are needed to build
a massive fermion. If these components are truly independent, then ψ = ψL + ψR is
called a Dirac spinor. On the other hand, for the so-called Majorana spinor

ψ = ψL + η(ψL)c

where η = eiφ is an arbitrary phase factor; hence, ψR = η(ψL)c and ψc = η∗ψ. The
Majorana fermions are then equivalent to their antiparticles which also implies that
they must be neutral fields.1 The Majorana mass term for n fermion species (flavors)
reads

− Lmass 3
1

2

n∑
i,j=1

Mijψ
T
iLCψjL + h.c. (A.4)

Let us note that since ψi and ψj are anti-commuting fermion operators, the relation
(A.2) implies that the matrix M is symmetric.

If one needs to rewrite a Lagrangian in terms of ψL and (ψc)L, the following relations
can be also derived from (A.1) and (A.2):

ψRψL = ((ψc)L)T CψL (A.5)

ψRγ
µψR = −(ψc)Lγ

µ(ψc)L. (A.6)

Let us note that the relation (A.6) implies that the terms iψRγ
µDµψR and i(ψc)Lγ

µDµ(ψc)L
in Lagrangian are equivalent when the integration by parts is taken into account, pro-
vided that the two fields (ψc)L and ψR reside in complex conjugate representations
whose generators are related by Ta → −T ∗a = −T Ta .

A.2 Matrix Diagonalization

To fix the notations, let us recall here the well-known result widely used in particle
physics.

Proposition 2. Let Y be a complex matrix. Then there exist unitary matrices U and
UC such that

UTCY U = Ydiag (A.7)

1We will see in Section 4.2 that this does not mean that the field must occupy a singlet representation
of a non-abelian gauge group, one can build a Majorana mass term for any real representation as well.
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where Ydiag is a diagonal matrix with real non-negative entries. If these entries are
non-zero and non-degenerate, then the matrices U and UC are defined uniquely up to
a simultaneous transformation

U → UP, UC → UCP
∗ (A.8)

with P being a diagonal unitary matrix.

Proof. Since Y †Y is a Hermitian matrix, it may be diagonalized by a unitary matrix
U as U †Y †Y U = Y 2

diag and the entries of Y 2
diag are real non-negative. The columns of U

are formed by the orthonormal eigenvectors of Y †Y which are in case of non-degenerate
eigenvalues defined up to a phase factor, hence the first relation in (A.8) is proved.

Let us define Ydiag =
√
Y 2

diag. If (Ydiag)ii 6= 0 ∀i, we put

U∗C = Y UY −1
diag. (A.9)

Since U †CUC = Y −1
diagU

TY TY ∗U∗Y −1
diag = 1, UC is unitary and

UTCY U = Y −1
diagU

†Y †Y U = Ydiag.

If one plugs U → UP into (A.9), the second relation in (A.8) is obtained realizing that
the diagonal matrices Y −1

diag and P commute.

In case
(
Y 2

diag

)
ii

= 0 for some i, we observe that (A.7) implies

UTCY Y
†U∗C = Y 2

diag,

hence columns of U∗C are constructed by the eigenvectors of Y Y †. However, in this
way UC is determined up to the transformations U∗C → U∗C P̃ with P̃ being a diagonal
unitary matrix in general independent of P , hence P̃ must be fixed by the requirements
(UTCY U)ii ∈ R and (UTCY U)ii ≥ 0.2

�

Corollary 3. Let S be a symmetric complex matrix. Then there exists a unitary matrix
V such that

V TSV = Sdiag (A.10)

where Sdiag is a diagonal matrix with real non-negative entries. If these entries are
non-zero and non-degenerate, then V is defined uniquely up to redefinition V → V P̃
where P̃ is a diagonal matrix with entries equal to ±1.

2Of course, this (more complicated) construction of UC could be used also in the case of (Ydiag)ii 6= 0
∀i. However, in case of degenerate non-zero eigenvalues, the ambiguity in UC amounts to multiplication
by a unitary matrix (instead of a mere phase) and UTCY U need not be diagonal any more.
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Proof. According to Proposition 2, we can find U and UC so that

Sdiag = UTCSU = STdiag = UTSTUC = UTSUC .

Consequently, U †S†SU = U †CS
†SUC = S2

diag i.e. both U and UC are composed of the

eigenvectors of S†S and, hence, they may differ only by the multiplication by a unitary
diagonal matrix from the right: U = UCP . If we choose V ≡ UP−1/2 = UCP

1/2, then

V TSV = P 1/2UTCSUP
−1/2 = P 1/2SdiagP

−1/2 = Sdiag.

It is also clear that the redefinition V → V P̃ with P̃ being general diagonal unitary
matrix would not preserve the reality of the entries of Sdiag, P̃ 2 = 1 has to be satisfied,
which proves the second part of the statement (and corresponds to the ambiguity in
the definition of P 1/2 above).

�

A.3 Friedmann-Lemâıtre-Robertson-Walker metric

In order to elucidate the notation used in the cosmological considerations, the so-called
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric describing homogeneous and
isotropic universe will be introduced here. The definition from [53] will be followed,
however, with the opposite sign convention for the flat metric (1.4).

There are three different options for the 3-dimensional homogeneous isotropic space:
the three-dimensional flat (Euclidean) space, a spherical surface in a four-dimensional
Euclidean space, and a hyperspherical surface in four-dimensional pseudo-Euclidean
space. For these three cases the FLRW metric can be then defined as

gij = −a(t)2

(
δij +K

xixj

1−Kx2

)
, gi0 = 0, g00 = 1 (A.11)

where

K =


+1 spherical
−1 hyperspherical
0 Euclidean

and the boldface corresponds to the 3-vector nature of the symbol.

It is convenient to introduce the expansion rate

H(t) =
ȧ(t)

a(t)
, (A.12)

its value observed today at the Earth is usually called the Hubble constant:

H0 ≡ H(t0), h ≡ H0

100 km s−1 Mpc−1 . (A.13)
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The value of H0 enters many astronomical measurements, however, was not determined
with a good precision3, hence, many results of the cosmological observations are given
as the multiples of (the powers of) h.

Furthermore, the Einstein field equations for the metric (A.11) and the proper
energy density and pressure ρ(t) and p(t) imply

ȧ2 +K =
8πGρa2

3
, (A.14)

ρ̇ = −3ȧ

a
(ρ+ p) (A.15)

where the second equation expresses just the energy conservation law whereas the
first equation is the fundamental Friedmann equation governing the expansion of the
Universe. The different options for the faith of the universe are analysed e.g. in
Section 1.5 of [53], here we restrict ourselves to defining the critical density

ρ0,crit ≡
3H2

0

8πG
,

and stating that according to the equation (A.14) the constant K equals +1, 0 or -1 if
the present density ρ0 is greater than, equal to or less than ρ0,crit. The different contri-
butions to the present energy density are the vacuum energy, and the non-relativistic
and relativistic matter which corresponds to the fractions

ΩΛ ≡
ρV 0

ρ0,crit
, ΩM ≡

ρM0

ρ0,crit
, ΩR ≡

ρR0

ρ0,crit
, (A.16)

respectively. Moreover, if

ΩK ≡ −
K

a2
0H

2
0

is defined, then
ΩΛ + ΩM + ΩR + ΩK = 1.

A.4 Theories with multiple U(1) gauge group factors

Since the problem of the two-loop gauge coupling running in the theories with multiple
U(1) gauge group factors is not so often discussed in the literature, we include here the
notes based on [162,164]. The formulas from these articles were applied in [4] attached
to this thesis as Appendix E, although sometimes a more convenient form of these
relations was used as shown in the following.

3Let us note that the evolution of a(t) with time in the FLRW Universe can be determined by
observing the light coming to us from distant stars. It can be shown that if the light with frequency ν1
was emitted at time t1, then the observed frequency ν0 at time t0 on Earth satisfies ν0

ν1
≡ 1+z = a(t1)

a(t0)
.

Since the decrease in frequencies, i.e. the redshift, is observed, a(t) is an increasing function of time
suggesting that our universe is expanding. The fractional increase in wavelengths can be then expanded
using the Hubble constant as z = H0(t0 − t1) + . . . .
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A.4.1 Two-loop running

The two-loop renormalization group equations given in [162] will be rewritten here in a
more suitable way which also suggests the form of the threshold corrections discussed
in the next section.

Let us consider a theory with N abelian gauge bosons Aµa , n fermions ψk and m
scalars φl and let us choose such a basis that the gauge interactions are diagonal in
the space of the fermion and scalar species. The charge of the k-th fermion (or scalar)
with respect to the a-th U(1) factor can be then denoted by Qak and

L = −1

4
F bµνF

bµν + iψ̄kγµ(∂µ − igabQakA
µ
b )ψk + (∂µ − igabQal Abµ)φl(∂µ − igabQal A

µ
b )φl∗.

Here the basis for the gauge fields was chosen so that the kinetic term is diagonal in
the space of the individual U(1) factors, hence the gauge couplings become N × N
matrices. With this choice of basis there is still freedom in transformations

Aµa → OabA
µ
b , gab → gac(O

T )cb (A.17)

where O is an orthogonal matrix; thus, the N2 entries of gab are unphysical and the
matrix g may be always assumed to be triangular.

According to [162] the evolution equation for the matrix of the Abelian couplings
g reads

dgab
dt

= gacβcb. (A.18)

It is convenient to introduce the “reduced” coupling Grb := Qargab, i.e. the coupling of
the r-th fermion to the gauge boson Aµb (and similarly for scalars). Then [162]

βab = β
(1)
ab + β

(2)
ab (A.19)

β
(1)
ab =

1

8π

{
4

3
κfGfaGfb +

1

3
ηsGsaGsb

}
β

(2)
ab =

1

8π

{
−

2κf
(4π)2

Tr[GfaGfbY Y
†] +

4

(4π)2

[
κf
(
GfaGfbG

2
fc +GfaGfbg

2
qC2(Fq)

)
+ηs

(
GsaGsbG

2
sc +GsaGsbg

2
qC2(Sq)

)]}
where κf = 1, 1

2 for Dirac and Weyl fermions, respectively, and, similarly, ηs = 1, 1
2 for

complex and real scalars. It is summed over all the repeated indices, including, e.g.,
q that numbers the non-abelian couplings or c. Let us note that the terms in β(1) are
the one-loop contributions whereas β(2) corresponds to two-loop corrections. It is also
convenient to denote

βab =
1

8π
gcaγcdgdb.

If we realize that

GfaGfb ≡
∑
f

GfaGfb =
∑
f,c,d

QcfgcaQ
d
fgdb = gca(∆γ)cdgdb
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it is trivial to compute the coefficients γcd. In particular,

γ
(1)
cd =

4

3

∑
f

κfQ
c
fQ

d
f +

1

3

∑
s

ηsQ
c
sQ

d
s

and similarly for γ
(2)
cd . Here the term GfaGfbG

2
fe might seem confusing, let us evaluate

it as an example in the case of N = 2:

GfaGfbG
2
fe ≡

∑
f

GfaGfb

2∑
e=1

G2
fe =

∑
f

2∑
c,d=1

QcfgcaQ
d
fgdb

2∑
e=1

(

2∑
h=1

gheQ
h
f )2

=
2∑

c,d=1

gcagdb
∑
f

QcfQ
d
f

[
(Q1

f )2(g2
11 + g2

12) + (Q2
f )2(g2

21 + g2
22) + 2Q1

fQ
2
f (g11g21 + g12g22)

]
where the last sum over fermions is exactly the contribution to γcd. If the compact
notation with ξr = 1 for Dirac fermions and complex scalars and ξr = 1

2 for Weyl
fermions and real scalars is introduced, then in case of N = 2

γ
(2)
cd =

1

(4π)2

−∑
f

2κfQ
c
fQ

d
fTr[Y Y †]+

∑
r

4ξrQ
c
rQ

d
r

[
(Q1

r)
2(g2

11 + g2
12) + (Q2

r)
2(g2

21 + g2
22) + 2Q1

rQ
2
r(g11g21 + g12g22) +

∑
q

g2
qC2(Rq)

]}

where the r runs over both scalars and fermions of the theory and q runs over the
non-abelian gauge group factors.

It is important to note that due to the invariance (A.17), the same amount of
information is contained in the combination gacgbc ≡ (ggT )ab as in the matrix gab on
its own (and of course also the β-function is invariant under the transformation (A.17)).
The evolution equation for this combination is

dgacgbc
dt

= gadβdcgbc + gacgbfβfc =
1

8π
(gadgbcgrdgscγrs + gacgbfgrfgscγrs)

=
1

4π
(ggT )arγrs(gg

T )sb (A.20)

where in the last equality we used that both ggT and γ are symmetric matrices. For
any invertible matrix A one obtains

dA−1

dt
= −A−1 dA

dt
A−1

(which can be derived by rewriting A−1 = A−1AA−1 and applying the Leibnitz rule)
hence

d(ggT )−1

dt
= − 1

4π
γ. (A.21)
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We conclude that for solving equation (A.20) it is convenient to rewrite the coefficients
γ in terms of the elements of the matrix ggT instead of g

γ
(2)
cd =

1

(4π)2

−∑
f

2κfQ
c
fQ

d
fTr[Y Y †] +

∑
r

4ξrQ
c
rQ

d
r

∑
hj

Qhr (ggT )hjQ
j
r +

∑
q

g2
qC2(Rq)


and this approach was used for other beta functions in [164]. Moreover, as already
anticipated, the equation (A.21) explains the form of the threshold corrections below.

Let us note that the equation (A.21) corresponds to equation (29) in Appendix E
with the coefficients a = γ(1) and biαi + c = 4πγ(2).

A.4.2 Threshold corrections

Let us assume that the U(1)N symmetry considered above is broken to U(1)Ñ symmetry
(Ñ < N) at a certain scale µ. Let the generators (U(1) charges) of the two theories
satisfy

Q̃ = PQ (A.22)

where P is an Ñ ×N matrix obeying PP T = 1. Rewriting the relations (33) and (34)
from [164] in the current notation one obtains

(g̃g̃T )−1(µ) = P
[
(ggT )−1(µ)− Λ(µ)

]
P T (A.23)

where

Λab(µ) =
1

8π2

(
4

3
κFQ

a
FQ

b
F log

MF

µ
+

1

3
ηSQ

a
SQ

b
S log

MS

µ

)
. (A.24)

In the last equation it is summed over all the fermions F and scalars S that are
integrated out at the scale µ. Let us note that thanks to the relation (A.22) the
formulas (A.23) and (A.24) may be rewritten as

(g̃g̃T )−1(µ) = P
[
(ggT )−1(µ)

]
P T − Λ̃(µ),

Λ̃ab(µ) =
1

8π2

(
4

3
κF Q̃

a
F Q̃

b
F log

MF

µ
+

1

3
ηSQ̃

a
SQ̃

b
S log

MS

µ

)
.

These equations were used in the Section IV.A.3 of Appendix E, generalized for the
case when the higher symmetry group contains also non-abelian factors.

120



Appendix B

Full article: Massive neutrinos
and invisible axion minimally
connected

See [1] for the full article.
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Appendix C

Full article:
Neutrino-axion-dilaton
interconnection

See [2] for the full article.
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Appendix D

Full article: Witten’s mechanism
in the flipped SU(5) unification

See [3] for the full article.
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Appendix E

Full article: Proton lifetime in
the minimal SO(10) GUT and its
implications for the LHC

See [4] for the full article.
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