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Katedra fyziky
Jacobs University Bremen (JUB)
Department of Physics and Earth Sciences
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Kĺıčová slova: zobecněná geometrie, teorie strun, sigma modely, membrány.

Abstrakt

Strunová teorie stále z̊ustává nadějným kandidátem na sjednoceńı teorie gravitace a kvan-
tové teorie pole. Jej́ı d̊uležitou součást́ı je relativistický popis pohybu v́ıcerozměrných objekt̊u
nazývaných membrány (př́ıpadně p-brány) v zakřiveném prostoročase. Ten je na úrovni kla-
sické teorie pole popsán funkcionálem akce extremalizuj́ıćım objem variety vytnuté š́ı̌ŕıćı se
membránou. Tuto a souvisej́ıćı polńı teorie souhrnně nazýváme membránové sigma modely.

Diferenciálńı geometrie představuje d̊uležitý matematický nástroj při studiu strunové teorie.
Ukazuje se, že strunová a membránová pozad́ı lze výhodně popsat pomoćı objekt̊u defino-
vaných na direktńım součtu tečného a kotečného fibrovaného prostoru k prostoročasové varietě.
Studiem tohoto objektu se zabývá tzv. zobecněná geometrie. Jej́ı ned́ılnou součást́ı je teorie
Leibnizových algebroid̊u, vektorových fibrovaných prostor̊u, jejichž moduly hladkých řez̊u jsou
vybaveny Leibnizovou algebrou. Speciálńımi př́ıpady Leibnizových algebroid̊u jsou známěǰśı
Lieovy a Courantovy algebroidy.

Tato práce je rozdělena do dvou hlavńıch část́ı. V prvńı rekapitulujeme základy teorie Leib-
nizových algebroid̊u, zobecněné geometrie, rozš́ı̌rené zobecněné geomerie a Nambu-Poissonových
struktur. Ćılem je poskytnout čtenáři ucelený základ matematické teorie použité v publiko-
vaných pracech, text je kombinaćı známých i nových výsledk̊u. Důraz je kladen předevš́ım na
pojem zobecněné metriky a př́ıslušných ortogonálńıch transformaćı, jenž posloužily jako základ
našeho výzkumu. Druhou hlavńı část́ı je př́ıloha tvořená čtyřmi články už́ıvaj́ıćımi zobecněnou
geometrii na vybrané partie teorie strun a membrán. Práce jsou otǐstěny ve stejné podobě, v
jaké byly publikovány.
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Abstract

String theory still remains one of the promising candidates for a unification of the theory
of gravity and quantum field theory. One of its essential parts is relativistic description of
moving multi-dimensional objects called membranes (or p-branes) in a curved spacetime. On
the classical field theory level, they are described by an action functional extremalising the
volume of a manifold swept by a propagating membrane. This and related field theories are
collectively called membrane sigma models.

Differential geometry is an important mathematical tool in the study of string theory. It
turns out that string and membrane backgrounds can be conveniently described using objects
defined on a direct sum of tangent and cotangent bundles of the spacetime manifold. Mathe-
matical field studying such object is called generalized geometry. Its integral part is the theory
of Leibniz algebroids, vector bundles with a Leibniz algebra bracket on its module of smooth
sections. Special cases of Leibniz algebroids are better known Lie and Courant algebroids.

This thesis is divided into two main parts. In the first one, we review the foundations of the
theory of Leibniz algebroids, generalized geometry, extended generalized geometry, and Nambu-
Poisson structures. The main aim is to provide the reader with a consistent introduction to
the mathematics used in the published papers. The text is a combination both of well known
results and new ones. We emphasize the notion of a generalized metric and of corresponding
orthogonal transformations, which laid the groundwork of our research. The second main part
consists of four attached papers using generalized geometry to treat selected topics in string
and membrane theory. The articles are presented in the same form as they were published.
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R ...................................................................................................... field of real numbers
M ................................................................................ smooth finite-dimensional manifold
C∞(M) ........................................................ module of smooth real-valued functions on M
Xp(M) ................................................................... module of smooth p-vector fields on M
Ωp(M) ............................................................ module of smooth differential p-forms on M
Ω•(M) ................................................................................... whole exterior algebra of M
T qp (M) ............................................................................... module of tensors of type (p, q)
T (M) ....................................................................................... whole tensor algebra of M
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Γ(E) ...................................... module of smooth global sections of vector bundle E over M
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Xp(E) ........................ module of global smooth sections of ΛpE, similarly for Ωp(E), T qp (E)
A := B ....................................................... expression B is used to define the expression A
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Hom(E,E′) ..... smooth vector bundle morphisms from E to E′ over the identity on the base
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Aut(E) ......................................... subset of End(E) consisting of fiber-wise bijective maps
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Chapter 1

Introduction

After more then forty years of history, string theory still stands as one of the most promising
attempts to unify the gravitational and quantum physics. Originating as a quantum theory of
one-dimensional strings moving in the space-time, it evolved throughout the years to include
fermionic particles (superstring theory) and extended objects such as D-branes, membranes
or p-branes. It also grew into a challenging and sophisticated theory. An effort of a single
person to review the string theory is as difficult as to ask a crab living on a Normandy beach
to describe the Atlantic Ocean. As a welcome side-effect, string theory fueled the development
in various, old and new, areas of mathematics. In particular, attempting to be a theory of
gravity, it pushed forward many areas of differential geometry.

Quite recently, one such mathematical theory rose to prominence as a useful tool in string
theory. It was pioneered in early 2000s, as it appeared in three subsequent papers [43–45]
of Nigel Hitchin and in the Ph.D. thesis [39] of his student Marco Gualtieri. In a nutshell,
generalized geometry is a detailed study of the geometry of the generalized tangent bundle
TM ⊕ T ∗M . Such a vector bundle has a surprisingly rich structure, in particular it possesses
a canonical indefinite metric and a bracket operation. This allows one to describe various
geometrical objects in a new intrinsic way. Note that Hitchin already recognized the possible
applications of generalized geometry in string theory and commented on this several times in
the above cited papers.

It turned out that certain symmetries of string theory can be naturally explained in terms
of generalized geometry. For example, string T -duality can be viewed as an orthogonal trans-
formation, see [22,38,86], following the work of P. Bouwknegt et al. [14,16,17]. Recently there
has been found a way to describe D-branes as Dirac structures, isotropic and involutive sub-
bundles of E, see [4–6]. For a nice overview of further interesting applications in physics and
string theory see [64]. There are also ways to proceed in the opposite direction, constructing
field theories out of generalized geometry mathematical objects. Besides the very well-known
Poisson sigma models [54,83] , there exist Courant sigma models [55,82] using the AKSZ mech-
anism to construct actions from a given Courant algebroid, Dirac sigma models [68, 69] and
Nambu sigma models [18,59,84]. Suitable modifications of generalized geometry can be useful
in string related physics. For applications in M-theory, see the work of Hull [52] and Berman
et al. in [8–10]. A nice modification of generalized geometry was used to describe supergravity
effective actions in [24,25]. Finally, note that generalized geometry is closely related to recently
very popular modification of field theory, called double field theory. See the works of C.M.
Hull, B. Zwiebach and O. Hohm [47,50,51], and especially the recent review paper [48].
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By membrane sigma models we mean various field actions emanating from the bosonic part
of Polyakov-like action for membrane as introduced by Howe-Tucker in [49] and for string case
independently in [28] and [19], and named after Polyakov who used it to quantize strings in [79].
We focus in particular on its gauge-fixed version, which can be related to its dual version, non-
topological Nambu sigma model as defined in [59]. A need to find a suitable mathematics
underlying these field actions leads to a necessity to extend the tools of standard generalized
geometry to more general vector bundles. Driven by this desire we refer to results of our work
and consequently also of this thesis as to geometry of membrane sigma models.

1.1 Organization

This thesis is divided in two major parts.

The first half is an attempt to bring up a consistent introduction to the mathematics used
in the papers. The intention is to give definitions and derive important properties in detail
as well as enough examples to illustrate sometimes quite abstract theory. The main idea is
to provide a self-contained text with a minimal necessity to refer to external literature, which
inevitably leads to a rephrasing of old and well known results. We will stress new contributions
where needed.

The second half consists of four published papers which use these mathematical tools to
describe and develop several aspects of membrane sigma model theory. These papers are
attached in the exactly same form as they were published in the journals. All of them were
published as joint work with both my supervisors.

1.2 Overview of the theoretical introduction

Let us briefly summarize the content of the following chapters. This section is intended to be
main navigation guide for the reader.

Chapter 2 brings up a quick review of elementary properties of Leibniz algebroids. We
could take the liberty to disregard the chronological order in which this theory appeared in
mathematical world. Generalizations usually develop from more elementary objects, but it is
sometimes simpler to provide the original structures as special examples of the more general
ones.

This is why we start with a general definition of Leibniz algebroids in Section 2.1. The
basic and the most important example is the (higher) Dorfman bracket. Further, an induced
Lie derivative on the tensor algebra of Leibniz algebroid is introduced.

A known subclass of Leibniz algebroids are those with a skew-symmetric bracket, denoted
as Lie algebroids. They are described in Section 2.2. Most importantly, a Lie algebroid induces
an analogue of the exterior differential on the module of its differential forms, allowing for a
Cartan calculus on the exterior algebra. In fact, this exterior differential contains the same data
as the original Lie algebroid, and can be used as its equivalent definition. The exterior algebra
of multivectors on the Lie algebroid bundle can be equipped with an analogue of Schouten-
Nijenhuis bracket, turning it into a Gerstenhaber algebra. This observation is essential for the
definition of Lie bialgebroid.

A need of understanding Lie bialgebroids underpins the subject of Section 2.3, Leibniz
algebroids with an invariant fiber-wise metric called Courant algebroids. They first appeared
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in the form of their most important example, the Dorfman bracket with an appropriate anchor
and pairing. Finding a suitable set of axioms for this new type of algebroid proved necessary to
define a double of Lie bialgebroid. We present this as one of the examples of Courant algebroids.

The second chapter is concluded by Section 2.4 dealing with linear connections on Leibniz
algebroids, and related notions of torsion and curvature. For Lie algebroids, this is pretty
straightforward and essentially it can be defined just by mimicking the ordinary theory of
linear connections. For Courant and general Leibniz algebroids, this is more involved task.
We present a new way how to approach this using a concept of local Leibniz algebroids. For
Courant algebroids, one recovers the known definitions of torsion operator. To the best of our
knowledge a working way how to define a curvature operator is presented, as well as a Ricci
tensor and scalar. We explain this on the example which uses the Dorfman bracket.

Chapter 3 contains an introduction to the geometry of the generalized tangent bundle,
usually called a generalized geometry. This thesis covers only a little portion of this wide
branch of mathematics suitable for our needs. These are the reasons why we have completely
omitted the original backbone of generalized geometry - generalized complex structures.

In Section 3.1 we study an orthogonal group of the direct sum of a vector space and its
dual equipped with a natural pairing. Its Lie algebra can conveniently be described in terms of
tensors. This also allows one to construct important special examples of orthogonal maps. We
present a very useful simple ways of block matrix decompositions. Although almost trivial at
first glance, this observation allows one to prove some quite complicated relations later. Since
the natural pairing does not have a definite quadratic form, it allows for isotropic subspaces.
This is a subject of Section 3.2. Examples of maximally isotropic subspaces are presented.

Everything can be without any issues generalized from vector spaces to vector bundles,
replacing linear maps with vector bundle morphism, et cetera. One can consider a more general
group of transformations preserving the fiber-wise pairing on generalized tangent bundle. We
call this group the extended orthogonal group. Its corresponding Lie algebra can be shown to
be a semi-direct product of the ordinary (fiber-wise) orthogonal Lie algebra and the Lie algebra
of vector fields. This is what Section 3.3 is about.

The generalized tangent bundle has a canonical Courant algebroid structure, defined by the
Dorfman bracket. It is natural to examine the Lie algebra of its derivations and the group of its
automorphisms. This was one of the main reasons why generalized geometry and the Dorfman
bracket came to prominence in string theory. We study these structures in Section 3.4 and
Section 3.5. One can also find an explicit formula integrating the Dorfman bracket derivation
to obtain a Dorfman bracket automorphism. To our belief this was not worked out in such
detail before. It happens that some orthogonal maps do not preserve the bracket, and can be
used to ”twist” it, to define different (yet isomorphic) Courant algebroids. This defines a class
of twisted Dorfman brackets, introduced in Section 3.6.

Dirac structures are maximally isotropic subbundles of the generalized tangent bundle which
are involutive under Dorfman bracket. They constitute a way how to describe presymplectic
and Poisson manifolds in terms of generalized geometry. They are described in Section 3.7.

For the purposes of applications of generalized geometry in string theory, the most important
concept is the one of a generalized metric. It can be defined in several ways, where some of
them make sense in a more general setting then others. In Section 3.8 we discuss all these
possibilities and show when they are equivalent. The orthogonal group acts naturally on the
space of generalized metrics. We examine the consequences and properties of this action in
Section 3.9. In particular, we show that Seiberg-Witten open-closed relations can be interpreted
in this way.
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Having a fiber-wise metric, we may study its algebra of Killing sections. This is done in
Section 3.10. We give an explicit way to integrate these infinitesimal symmetries to actual
generalized metric isometries. A generalized metric is by definition positive definite. We can
modify some of its definitions to include also the indefinite case. This up brings certain issues
discussed in Section 3.11. Finally, to any generalized metric we may naturally assign a Courant
algebroid metric compatible connection, called a generalized Bismut connection. Its various
forms are shown in Section 3.12, and its scalar curvature is calculated.

Chapter 4 is to be considered as the most important of this thesis. Its main idea is to
extend the concepts of generalized geometry to a higher generalized tangent bundle suitable for
applications in membrane theory. This effort poses interesting problems to deal with. First note
that there is no natural fiber-wise metric present. Instead, one can use a pairing with values
in differential forms. However, its orthogonal group structure becomes quite complicated and
depends on the rank of involved vector bundles. We examine this in Section 4.1. In particular,
a set of examples of Dirac structures with respect to this pairing is very limited.

On the other hand, the Dorfman bracket generalizes into a bracket of very similar properties.
We investigate its algebra of derivations and its group of automorphisms in detail in Section
4.2.

A next important step is to define an extended version of the generalized metric. For
these reasons, we start with a description of a way how to use a manifold metric to induce a
fiberwise metric on higher wedge powers of the tangent and cotangent bundle. There are several
consequences following from the construction. In particular, one can calculate its signature out
of the signature of the original metric. Moreover, for Killing equations and metric compatible
connections, it is important to examine the way how Lie and covariant derivatives of the induced
metric can be calculated using Lie and covariant derivatives of the original manifold metric.
Finally, we derive a very important formula proving the relation of their determinants. All of
this can be found in Section 4.3.

We proceed to the actual definition of a generalized metric in Section 4.4. Similarly to the
ordinary generalized metric, one can express it either in terms of a metric and a differential
form, or in terms of dual fields. One can show that in this extended case, one of the dual fields
is not automatically a multivector, and the two dual fiberwise metrics are not induced from
each other. Finally, we generalize the open-closed relations as a particular transformation of
the generalized metric.

As we have already noted, there is no useful orthogonal group to encode the open-closed
relations as an example of an orthogonal transformation. However, there is a natural pairing on
the ”doubled” vector bundle, produced from the original one by adding (in the sense of a direct
sum) its dual bundle. In this ”doubled formalism”, as we call it, one can define a generalized
metric in the usual sense. The membrane open-closed relations can be now easily encoded as
an orthogonal transformation of a relevant generalized metric. The doubled formalism is a
subject of Section 4.5.

Having now a larger vector bundle with working orthogonal structure, we would like to find
a suitable integrability conditions for its subbundles. One such Leibniz algebroid is examined
in Section 4.6. We show how closed differential forms and Nambu-Poisson structures can be
realized as Dirac structures of this Leibniz algebroid. We conclude by showing how its bracket
can be twisted by a certain orthogonal map, obtaining a twist similar to the one of Dorfman
bracket.

One of the reasons to use the induced metric in the definition of generalized metric is the
fact that Killing equations are easy to solve in this case, as we show in Section 4.7. It also
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allows us to find a simple example of a generalized metric compatible connection. We show
how to interpret this connection in the doubled formalism and we calculate its scalar curvature
in Section 4.8.

The final Chapter 5 of this thesis is devoted to a natural generalization of Poisson manifolds
called Nambu-Poisson structures. In Section 5.1 we present and prove various equivalent ways
how to express the fundamental identity for a Nambu-Poisson tensor. Interestingly, it can be
shown that an algebraic part of the fundamental identity not only forces its decomposability,
but also its complete skew-symmetricity of this tensor. Similarly to the ordinary Poisson case,
Nambu-Poisson structures can be realized as certain involutive subbundles with respect to the
Dorfman bracket. This interpretation allows one to easily define a twisted Nambu-Poisson
structure. This and one quite interesting related observation are contained in Section 5.2.

Finally, in Section 5.3, we examine in detail the construction of the Nambu-Poisson structure
induced diffeomorphism called a Seiberg-Witten map. It involves the flows of time-dependent
vector fields which are for the sake of clarity recalled there.

1.3 Guide to attached papers

The second part of this thesis consists of four attached papers. All of them are available for
download at arXiv.org archive, three of them can be openly accessed directly through the
respective journals. Papers are presented here in their original form, exactly as they were
published. We sometimes refer to equations in the theoretical introduction of this thesis to link
the introduced mathematical theory with its applications in the papers.

The first attached paper is p-Brane Actions and Higher Roytenberg Brackets [61].

A main subject of this paper is a study of Nambu sigma model proposed in [59, 84]. We
modify its action slightly to include a twist with a B-field. Using relations (4.49 - 4.51), its
equivalence to a p-brane sigma model action is shown. We introduce a slightly modified higher
analogue of Courant algebroid bracket (2.36) which we call in accordance with [42] a higher
Roytenberg bracket. We use the results of [32] to show that the Poisson algebra of generalized
charges of the Nambu sigma model closes and it can be described by the higher Roytenberg
bracket. This generalizes the results [2, 42]. Next, we turned our attention to the topological
Nambu sigma model. It can be viewed as a system with constrains. We have proved that a
consistency of the constrains with time evolution forces the tensor Π defining the sigma model
to be a Nambu-Poisson tensor. See Chapter 5 of this thesis for details. Using the Darboux
coordinates of Theorem 5.1.2 we were able to explicitly solve the equations of motion. We
have concluded the paper by showing that coefficients of the generalized Wess-Zumino term
produced out of topological Nambu sigma model are exactly the structure functions of the
higher Roytenberg bracket.

On the Generalized Geometry Origin of Noncommutative Gauge Theory [60].

Idea of this paper was to use the tools of generalized geometry to explain and simplify certain
steps derived originally in [58], [62] and [63]. A main observation was that different factoriza-
tions of the generalized metric correspond to Seiberg-Witten open closed relations (3.119). For
the first time we interpret this as an orthogonal transformation (3.17) of a generalized metric,
see Section 3.9 of this thesis. Moreover, also adding a fluctuation F to the B-field background
can be interpreted as an orthogonal transformation (3.16). These two transformation do not
commute (this is in fact a direct consequence of Lemma 3.1.2). This immediately leads to the
correct definition of non-commutative versions of the respective fields. We were able to use
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this formalism to quickly re-derive the identities essential for the equivalence of classical DBI
action and its semi-classically noncommutative counterpart.

The third of the appended papers is Extended generalized geometry and a DBI-type
effective action for branes ending on branes [56].

In this article, our intentions were to generalize the approach taken in the previous paper [60]
to simplify the calculations in [59] leading to the proposal of a p-brane generalization of DBI
effective action. To reach this goal, we were able to explain the p-brane open-closed relations
(4.56 - 4.59) in terms of the factorization of the generalized metric (4.47). Higher generalized
tangent bundle does not possess a canonical orthogonal group structure (it does for p = 1).
This was the reason why we have approached this through the addition of its dual. See Section
4.5 of this thesis for details. Using the extended generalized geometry, we were able to show
the equivalence of respective DBI actions very quickly.

Moreover, using the doubled formalism, we could define an analogue of a so called back-
ground independent gauge. Reason for this name comes from the famous paper [85], and it is
related to the actual background independence of the corresponding non-commutative Yang-
Mills action. For p = 1, this corresponds to the choice θ = B−1 in (3.119). We generalize this
idea to p ≥ 1 including also the case of a degenerate 2-form B for p = 1. A choice of suit-
able Nambu-Poisson tensor Π singles out particular directions on the p′-brane, which we call
noncommutative directions. This allows us to derive a generalization of a double scaling limit,
see [85], introducing an infinitesimal parameter ε into DBI action. Calculating an expansion of
DBI in the first order of ε yields a possible generalization of a matrix model.

This lead us to the writing of the short paper Nambu-Poisson Gauge Theory [57].

The letter follows the ideas for p = 1 published in [76]. Nambu-Poisson theory gauge theory
was originally invented in [46] as en effective theory on a M5-brane for a large longitudinal
C-field in M-theory. Our idea was to start from scratch without any reference to M -theory and
branes. We define covariant coordinates to be functions of space-time coordinates transforming
in a prescribed way under gauge transformations parametrized by a (p− 1)-form, using a pre-
scribed (p+1)-ary Nambu-Poisson bracket. Following [62,63], we use the covariant coordinates
to define a Nambu-Poisson gauge field and a corresponding Nambu-Poisson field strength. The
second part of this paper is devoted to an explicit construction of covariant coordinates using
the Seiberg-Witten map described in this thesis in Section 5.3. We propose a simple Yang-Mills
action for this gauge theory and relate it to the DBI action expansion obtained in the above
described paper [56].

1.4 Conventions

The main aim of this section is to introduce a notation used throughout this entire work.
We always work with a finite-dimensional smooth second-countable Hausforff manifold, which
we usually denote as M and its dimension as n. For implications of this definition, I would
recommend an excellent book [71]. In particular, one can use the existence of a partition of
unity and its implications. We consider all objects to be real, in particular all vector spaces,
vector bundles, bilinear forms, etc.

Now, let us clarify our index notations. We reserve the small Latin letters (i, j, k etc.)
to label the components corresponding to a set of local coordinates (y1, . . . , yn) on M , or
sometimes to some local frame field on M . We reserve small Greek letters (α, β, γ, etc.) to
label the components with respect to some local basis of the module of smooth sections of a
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vector bundle E. We use the capital Latin letters (I, J,K etc.) to denote the strictly ordered
multi-indices, that is I = (i1, . . . , ip) for some p ∈ N, where 1 ≤ i1 < · · · < ip ≤ n. Particular
value of p should be clear from the context. We always hold to the Einstein summation
convention, where repeated indices (one upper, one lower) are assumed to be summed over
their respective ranges. For example, vIwI stands for the sum

∑
1≤i1<···<ip≤n v

(i1...ip)w(i1...ip).

If (y1, . . . , yn) are local coordinates on M , by ∂i we denote the corresponding partial deriva-
tives and coordinate vector fields. By dyI and ∂I we denote the wedge products of coordinate
1-forms and vector fields:

dyI = dyi1 ∧ . . . ∧ dyip , ∂I = ∂i1 ∧ . . . ∂ip . (1.1)

By definition, dyI and ∂I form a local basis of Ωp(M) and Xp(M) respectively.

We will often use a generalized Kronecker symbol. We define it as follows

δ
j1...jp
i1...ip

=





+1 both p-indices are strictly ordered and one is an even permutation of the other,
−1 both p-indices are strictly ordered and one is an odd permutaion of the other,

0 in all other cases.

It is defined so that (dyJ)I = δJI . A Levi-Civita symbol εi1...ip can be then defined as εi1...ip =

δ1...p
i1...ip

.

Let E,E′ be two vector bundles overM . By Hom(E,E′) we mean a module of smooth vector
bundle morphisms from E to E′ over the identity map IdM . Under our assumptions on M ,
Hom(E,E′) coincides with the module of C∞(M)-linear maps from Γ(E) to Γ(E′), and we will
thus never distinguish between the vector bundle morphisms and the induced maps of sections.
We define End(E) := Hom(E,E), and Aut(E) := {F ∈ End(E), F is fiber-wise bijective}.

Now, let p ≥ 0 be a fixed integer, and C ∈ Ωp+1(M) be a differential (p + 1)-form on M .
This induces a vector bundle morphism C[ : Xp(M)→ Ω1(M) defined as

C[(Q
J∂J) := QJCiJdy

i, (1.2)

for all Q = QJ∂J ∈ Xp(M), and CiJ = C(∂i, ∂j1 . . . , ∂jp). It is straightforward to check that C[
is a well-defined C∞(M)-linear map of sections (all indices are properly contracted). At each
point m ∈ M , C[ thus defines a linear map from ΛpTmM to T ∗mM , with the corresponding
matrix (C[|m)i,J ≡ [C|m]iJ . Collecting those matrices, we get a matrix of functions (C|[)i,J =
CiJ . Here comes our convention. In the whole thesis, we will denote objects C, C[ and (C[)i,J
with the single letter C, and the particular interpretation will always be clear from the context.
By CT we mean the transpose map from X1(M) to Ωp(M). Note that CT (X) = iXC, for all
X ∈ X(M).

Similarly, for Π ∈ Xp+1(M), we define the vector bundle morphism Π] : Ωp(M) → X(M)
as

Π](ξJdy
J) = ξJΠiJ∂i, (1.3)

for all ξ ∈ Ωp(M), and ΠiJ = Π(dyi, dyj1 , . . . , dyjp). We again do not distinguish Π, Π] and
the matrix (Π])i,J = ΠiJ . The transpose map ΠT then maps from Ω1(M) to Xp(M).

These conventions may seem to be quite unusual when compared to the standard generalized
geometry papers. They are however well suited for matrix multiplications, and proved to be
the best choice to get rid of unnecessary (−1)p factors in all formulas.
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Chapter 2

Leibniz algebroids and their
special cases

In this chapter, we will introduce a framework useful to describe various algebraical and geo-
metrical aspects of the objects living on vector bundles. Fields arising in string and membrane
sigma models theory can be viewed as vector bundle morphisms of various powers of tangent
and cotangent bundles, which justifies the efforts to understand the canonical structures com-
ing with those vector bundles. We will proceed in a rather unhistorical direction, starting from
the most recent definitions, and arriving to the oldest.

2.1 Leibniz algebroids

The basic idea goes as follows. Let E
π→M be a vector bundle. By definition, E is a collection

of isomorphic vector spaces Em at each point m ∈ M . Let us say that every Em can be
equipped with a Leibniz algebra bracket [·, ·]m, that is an R-bilinear map from Em × Em to
Em, satisfying the Leibniz identity

[v, [v′, v′′]m]m = [[v, v′]m, v
′′]m + [v′, [v, v′′]m]m, (2.1)

for all v, v′, v′′ ∈ Em. This bracket needs not to be skew-symmetric. Leibniz algebras were first
introduced by Jean-Luis Loday in [73]. Now, suppose that this bracket changes smoothly from
point to point. More precisely, if e, e′ ∈ Γ(E) are smooth sections, then formula

[e, e′](m) := [e(m), e′(m)]m, (2.2)

defines a smooth section [e, e′] ∈ Γ(E). We have just constructed a simplest example of Leibniz
algebroid1. Note that the bracket satisfies [e, fe′] = f [e, e′] for all e, e′ ∈ Γ(E) and f ∈ C∞(M),
and also the Leibniz identity

[e, [e′, e′′]] = [[e, e′], e′′] + [e′, [e, e′′]]. (2.3)

This special case is too simple in a sense that the bracket depends only on the point-wise values
of the incoming sections. In fact, all examples which we will encounter in this thesis are not of
this type. Let us now give a formal definition of a general Leibniz algebroid.

1Consider that E has its typical fiber equipped with a Leibniz algebra bracket. If E can be locally trivialized
by Leibniz algebra isomorphisms, one calls this example a Leibniz algebroid bundle.
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Definition 2.1.1. Let E
π→ M be a vector bundle, and ρ ∈ Hom(E, TM). Let [·, ·]E :

Γ(E)×Γ(E)→ Γ(E) be an R-bilinear map. We say that (E, ρ, [·, ·]E) is a Leibniz algebroid,
if

• For all e, e′ ∈ Γ(E), and f ∈ C∞(M), there holds the Leibniz rule:

[e, fe′]E = f [e, e′]E + (ρ(e).f)e′. (2.4)

• The bracket [·, ·]E defines a Leibniz algebra on Γ(E), it satisfies the Leibniz identity

[e, [e′, e′′]E ]E = [[e, e′]E , e
′′]E + [e′, [e, e′′]E ]E , (2.5)

for all e, e′, e′′ ∈ Γ(E).

The map ρ is called the anchor of Leibniz algebroid, since it allows the sections of E to act on
the module of smooth functions on M .

Let us make a few remarks to this definition.

• In the math literature, Leibniz algebroids are often called Loday algebroids. There is
an extensive work on this topic by Y. Kosmann-Schwarzbach in [66] and especially by
J. Grabowski an his collaborators [36]. However, we stick to the name Leibniz alge-
broid which was used in relation to Nambu-Poisson structures [41, 53], or in relation to
generalized geometry, as in [7].

• In some literature, there is an another axiom present, namely that ρ is a bracket homo-
morphism:

ρ([e, e′]E) = [ρ(e), ρ(e′)], (2.6)

for all e, e′ ∈ Γ(E). However, it follows directly from the compatibility of Leibniz rule
and Leibniz identity.

• Our motivating example thus corresponds to the case ρ = 0, so called totally intransitive
Leibniz algebroid. Note that in the general case, there is no way how to consistently
induce a Leibniz algebra bracket on the single fibers of E.

• There is an interesting subtlety in the presented definition of the Leibniz algebroid. The
bracket [·, ·]E has two inputs, but Leibniz rule controls only the right one. One can prove
the following. Let e′ ∈ Γ(E) be a section such that e′|U = 0 for some open subset U ⊆M .
Then ([e, e′]E)|U = 0. This can be shown by choosing f = 1 − χ, where χ is a bump
function supported inside U , and χ(m) = 1 for chosen m ∈ M . Then e′ = (1− χ)e′ and
consequently

[e, e′]E = [e, (1− χ)e′]E = (1− χ)[e, e′]E + (ρ(e).(1− χ))e′.

Evaluating this at m, we get [e, e′]E(m) = 0. We can repeat this for any m ∈ U , and
we get ([e, e′]E)|U = 0. This property allows one to restrict the second input of [·, ·]E to
ΓU (E). For a general Leibniz algebroid, there is however no way to do this in the first
input.

Let us now examine some structures induced by Leibniz algebroid bracket on E. First note
that it induces an analogue LE of Lie derivative on the tensor algebra T (E). It is defined as
follows. Assume e, e′ ∈ Γ(E), α ∈ Γ(E∗) and f ∈ C∞(M).
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1. On T 0
0 (E) ∼= C∞(M), we define it as LEe f = ρ(e).f .

2. For T 1
0 (E) ∼= Γ(E), we set LEe e′ = [e, e′]E ,

3. For T 0
1 (E) ∼= Γ(E∗), we define it by contraction

〈LEe α, e′〉 := ρ(e).〈α, e′〉 − 〈α, [e, e′]E〉. (2.7)

It follows from the Leibniz rule that the right-hand side is C∞(M)-linear in e′, and thus
defines an element Leα ∈ Γ(E∗).

4. For general τ ∈ T pq (E), LEe is defined as

[LEe τ ](e1, . . . , eq, α1, . . . , αp) = ρ(e).τ(e1, . . . , eq, α1, . . . , αp)

− τ(LEe e1, . . . , eq, α1, . . . , αp)− . . .
. . .− τ(e1, . . . , eq, α1, . . . ,LEe αp),

(2.8)

for all e1, . . . , eq ∈ Γ(E) and α1, . . . , αp ∈ Γ(E∗).

We can easily prove the following properties of the Lie derivative.

Lemma 2.1.2. Lie derivative LEe satisfies the Leibniz rule:

LEe (τ ⊗ σ) = LEe (τ)⊗ σ + τ ⊗ LEe (σ), (2.9)

for all τ, σ ∈ T (E). Moreover, it can be restricted to the exterior algebra Ω•(E), and forms its
degree 0 derivation:

LEe (ω ∧ ω′) = LEe (ω) ∧ ω′ + ω ∧ LEe (ω′), (2.10)

for all ω, ω′ ∈ Ω•(E). Next, the commutator of Lie derivatives is again a Lie derivative:

LEe LEe′ − LEe′LEe = LE[e,e′]E , (2.11)

for all e, e′ ∈ Γ(E). Note that this also implies LE[e,e]E = 0, although in general [e, e]E 6= 0.
Finally, there holds also the identity

LEe ◦ ie′ − ie′ ◦ LEe = i[e,e′]E , (2.12)

where both sides are now considered as operators only on the submodule Ω•(E).

Proof. Leibniz rule (2.9) follows from the Leibniz rule (2.4) for the bracket [·, ·]E and the
definition formula (2.8). When τ = ω ∈ Ωq(E), the expression on the right-hand side of (2.8)
can be seen to be skew-symmetric in (e1, . . . , eq), and the derivation property (2.10) then follows
from the Leibniz rule (2.9). Finally, the left-hand side of (2.11) is a commutator and thus obeys
(2.9). It thus suffices to prove this on tensors of type (0, 0), (1, 0) and (0, 1). For f ∈ T 0

0 (E),
the condition (2.11) is equivalent to (2.6), for (1, 0) it reduces to the Leibniz identity (2.5), and
for (0, 1) it follows from the relation

〈[LEe ,LEe′ ]α, e′′〉 = [ρ(e), ρ(e′)].〈α, e′′〉 − 〈α, [LEe ,LEe′ ]e′′〉. (2.13)

To finish the proof we have to show (2.12). Because both sides are derivations of degree −1 of
the exterior algebra Ω•(E), we have to prove the result on forms of degree 0 and 1 only. The
first case is trivial, the second gives

ρ(e).〈α, e′〉 − 〈LEe α, e′〉 = 〈α, [e, e′]E〉,
which is precisely the definition of the Lie derivative on Ω1(E). Note that Leibniz identity for
[·, ·]E was not used to prove (2.12). �
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We see that there is still one piece missing in the Cartan puzzle, namely the analogue of
the differential: dE : Ω•(E) → Ω•+1(E). There is however no way around this for general
Leibniz algebroid. There are two reasons - usual Cartan’s formula for differential not only fails
to define a form of a higher degree, it does not give a tensorial object at all.

To conclude the subsection on Leibniz algebroids, we now bring up an example, which will
play a significant role hereafter.

Example 2.1.3. Let E = TM ⊕ ΛpT ∗M , where p ≥ 0. We will denote the sections of E as
formal sums X + ξ, where X ∈ X(M) and ξ ∈ Ωp(M). We define the anchor ρ simply as the
projection onto TM : ρ(X + ξ) = X. The bracket, which we will denote as [·, ·]D is defined as

[X + ξ, Y + η]D := [X,Y ] + LXη − iydξ, (2.14)

for all X + ξ, Y + η ∈ Γ(E). It is a straightforward check to see that (E, ρ, [·, ·]D) forms a
Leibniz algebroid. The bracket [·, ·]D is called the Dorfman bracket. For p = 1, it first
appeared in [29], for p > 1 it appeared in [39, 45]. It proved to be a useful tool to describe
Nambu-Poisson manifolds [41]. To illustrate the previous definitions, note that on Ω1(E), the
induced Lie derivative LE has the form

LEX+ξ(α+Q) = LXα+ (dξ)(Q) + LXQ, (2.15)

for all X + ξ ∈ Γ(E) and all α+Q ∈ Ω1(E).

2.2 Lie algebroids

Having the concept of Leibniz algebroid defined, it is easy to define a Lie algebroid. This
structure is much older, it first appeared in [80]. Lie algebroids play the role of an ”infinitesimal”
object corresponding to Lie groupoids. While a Lie algebra is the tangent space at the group
unit with the extra structure coming from the group multiplication, Lie algebroid is a vector
bundle over a set of units of a Lie groupoid. However; not every Lie algebroid corresponds to
a Lie groupoid, see [27]. For an extensive study of Lie groupoids, Lie algebroids and related
subjects, see the book [74].

Definition 2.2.1. Let (L, l, [·, ·]L) be a Leibniz algebroid. We say that (L, l, [·, ·]L) is a Lie
algebroid, if [·, ·]L is skew-symmetric, and hence a Lie bracket. Leibniz identity (2.5) is
now called the Jacobi identity (note that it can be reordered using the skew-symmetry of the
bracket).

Example 2.2.2. There are several standard examples of Lie algebroids

1. Consider L = TM , l = IdTM and let [·, ·]L = [·, ·] be a vector field commutator.

2. A generalization of the example in the previous section, where each fiber of Em is equipped
with a Lie algebra bracket, with a smooth dependence on m. In particular, for M = {m},
we see that every Lie algebra is an example of Lie algebroid.

3. This is a classical example, which probably first appeared in [35]. According to [67], it
was discovered independently by several authors during 1980s. Look there for a complete
list of references. It is sometimes called Koszul or Magri bracket, or simply a cotangent
Lie algebroid.
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Let Π ∈ X2(M) be a bivector on M . Choose L = T ∗M , and define the anchor ρ as
ρ(α) = Π(α) for all α ∈ Ω1(M). Finally, define the bracket [·, ·]Π as

[α, β]Π = LΠ(α)β − iΠ(β)dα. (2.16)

This bracket is skew-symmetric when Π is, and satisfies the Jacobi identity if and only if
Π is a Poisson bivector, that is {f, g} = Π(df, dg) defines a Poisson bracket on M . We
will investigate this in more detail in Section 5.

4. Consider a principal G-bundle P
π→ M . There is a C∞(M)-module ΓG(TP ) of G-

invariant vector fields on P , which turns out to be isomorphic to the module Γ(TP/G)
of sections of the quotient bundle TP/G (quotient with respect to the right translation
of vector fields induced by the principal bundle group action). This isomorphism induces
a bracket on Γ(TP/G) using the vector field commutator on Γ(TP ). Finally, the tangent

map T (π) : TP → TM descends to the quotient T̂ (π) : TP/G → TM , defining an
anchor. For details of this construction, see the sections §3.1, §3.2 of [74]. The resulting
Lie algebroid is called the Atiyah-Lie algebroid.

The newly imposed skew-symmetry of the bracket [·, ·]L of a Lie algebroid allows for new
structures on the exterior algebra Ω•(L) and multivector field algebra X•(L). First, see that
we finally have a differential (absent in general Leibniz algebroid case). We state this as a
proposition.

Proposition 2.2.3. Let (L, l, [·, ·]L) be a Lie algebroid. We define an R-linear map dL :
Ω•(L)→ Ω•+1(L) as follows. Let ω ∈ Ωp(L), and e0, . . . , ep ∈ Γ(L). Set

(dLω)(e0, . . . , ep) =

p∑

i=0

(−1)il(ei).ω(e1, . . . , êi, . . . , ep)

+
∑

i<j

(−1)i+jω([ei, ej ]L, e0, . . . , êi, . . . , êj , . . . , ep),

(2.17)

where êi denotes an omitted term. Then the right-hand side of (2.17) is completely skew-
symmetric in (e0, . . . , ep), which proves that dLω ∈ Ωp+1(L). Moreover, dL is a derivation of
the exterior algebra of degree +1, that is

dL(ω ∧ ω′) = dLω ∧ ω′ + (−1)|ω|ω ∧ dLω′, (2.18)

for all ω, ω′ ∈ Ω•(L), such that |ω| is defined. Moreover, the map dL squares to zero: d2
L = 0.

Finally, let LL be a Lie derivative defined by Leibniz algebroid structure on L. Then the Cartan
magic formula holds:

LLe ω = dLieω + iedLω, (2.19)

for all e ∈ Γ(L) and ω ∈ Ω•(L).

Proof. First, one can check the first assertion, which is quite straightforward. Next, one has
to prove that the right-hand side is C∞(M)-linear in e0, . . . , ep and thus dL is a well-defined
operator on tensors of L. This follows from the Leibniz rule (2.4). The most difficult step is
to show (2.18), which is a quite tedious but straightforward proof by induction and we skip it
here. To show d2

L = 0, one notes that d2
L = 1

2{dL, dL}, where {·, ·} is the graded commutator,
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and thus d2
L is a derivation of Ω•(M) of degree 2. It thus suffices to check d2

L = 0 on degrees 0
and 1. One obtains

(d2
Lf)(e, e′) = ρ(e).ρ(e′).f − ρ(e′).ρ(e).f − ρ([e, e′]L).f,

which is precisely the homomorphism property (2.6). For α ∈ Ω1(E), we get

(d2
Lα)(e, e′, e′′) = ([ρ(e), ρ(e′)]− ρ([e, e′]L).α(e′′) + cyclic{e, e′, e′′}

+ 〈α, [[e, e′]L, e′′]L + [e′′, [e, e′]L]L + [e′, [e′′, e]L]L〉.
(2.20)

The first line again vanishes due to (2.6), and the second line due to Jacobi identity (2.5). The
last assertion is an equality of two degree 0 derivations of Ω•(L), and it thus has to be verified
for degree 0 and 1 forms, which is easy. �

Interestingly, dL is not only an induced structure, it contains all the information about the
original Lie algebroid. More precisely, having any vector bundle L with a degree 1 derivation
dL of the exterior algebra Ω•(L) squaring to 0, we can define the anchor l as

l(e).f := 〈dLf, e〉, (2.21)

for all f ∈ C∞(M) and e ∈ Γ(L), and then a bracket [·, ·]L by

〈α, [e, e′]L〉 = l(e).〈α, e′〉 − l(e′).〈α, e〉 − (dLα)(e, e′), (2.22)

for all e, e′ ∈ Γ(L) and α ∈ Ω1(L). It then follows by simple calculations using just (2.18) that
(L, l, [·, ·]L) is a Lie algebroid.

The second object induced by a Lie algebroid is an analogue of Schouten-Nijenhuis bracket,
we again define it using a proposition, this time without any proof. For a detailed discussion
on this topic, see [67].

Proposition 2.2.4. Let (L, l, [·, ·]L) be a Lie algebroid. Then there is a unique bracket [·, ·]L
defined on the multivector field algebra X•(L), which has the following properties:

• For e ∈ X1(L) ≡ Γ(L), and f ∈ X0(L) ≡ C∞(M), we have [e, f ]L = ρ(e).f .

• For e, e′ ∈ X1(L) ≡ Γ(L), [·, ·]L coincides with the Lie algebroid bracket.

• (X•(L), [·, ·]L) forms a Gerstenhaber algebra, which amounts to the following:

1. [·, ·]L is a degree −1 map, that is |[P,Q]L| = |P |+ |Q| − 1 for P,Q ∈ X•(L).

2. For each P ∈ X•(L), [P, ·] is a derivation of the exterior algebra X•(L) of degree
|P | − 1, that is there holds

[P,Q ∧R]L = [P,Q]L ∧R+ (−1)(|P |−1)|Q|Q ∧ [P,R]L. (2.23)

3. It is graded skew-symmetric, that is

[P,Q]L = −(−1)(|P |−1)(|Q|−1)[Q,P ]L. (2.24)

4. It satisfies the graded Jacobi identity

[P, [Q,R]L]L = [[P,Q]L, R]L + (−1)(|P |−1)(|Q|−1)[Q, [P,R]L]L. (2.25)

All properties are assumed to hold for all P,Q,R ∈ X•(L) with a well-defined degree.

The bracket [·, ·]L is called a Schouten-Nijenhuis bracket corresponding to the Lie algebroid
(L, l, [·, ·]L). For L = TM , it reduces to the original well-known Schouten-Nijenhuis bracket of
multivector fields.
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2.3 Courant algebroids

Let us now consider a second special case of Leibniz algebroids, the one most relevant for
the generalized geometry. We will stick to the modern and more used definition, which views
Courant algebroid as a Leibniz algebroid with an additional structure. Historically, though, it
appeared to be a much more complicated object. It appeared in [72] as a double corresponding
to a pair of compatible Lie algebroids (we will show this as an example) in an attempt to
generalize the concept of Manin triple to the Lie algebroid setting. The modern definition
accounts to the thesis [81] of Roytenberg, who proved that the original skew-symmetric bracket
can be replaced by a Leibniz algebroid bracket together with a set of simpler axioms. We
present this form here.

Definition 2.3.1. Let E
π→ M be a vector bundle. By fiber-wise metric on E, we mean a

symmetric C∞(M)-billinear non-degenerate form 〈·, ·〉E : Γ(E) × Γ(E) → C∞(M). It follows
from the C∞(M)-bilinearity that for every m ∈ M it defines a non-degenerate symmetric
bilinear form (metric) on the fiber Em.

Definition 2.3.2. Let (E, ρ, [·, ·]E) be a Leibniz algebroid. Let 〈·, ·〉E be a fiber-wise metric
on E. We say that (E, ρ, 〈·, ·〉E , [·, ·]E) forms a Courant algebroid, if

1. The form 〈·, ·〉E is invariant with respect to the bracket:

ρ(e).〈e′, e′′〉E = 〈[e, e′]E , e′′〉E + 〈e′, [e, e′′]E〉E , (2.26)

for all e, e′, e′′ ∈ Γ(E). Equivalently, if gE ∈ T 0
2 (E) is a tensor corresponding to 〈·, ·〉E ,

we require LEe gE = 0 for all e ∈ Γ(E).

2. For all e, e′ ∈ Γ(E), the symmetric part of the bracket is governed by ρ and 〈·, ·〉E in the
sense:

〈[e, e]E , e′′〉E =
1

2
ρ(e′′).〈e, e〉E , (2.27)

for all e, e′ ∈ Γ(E). Equivalently, let gE : E → E∗ be the induced vector bundle iso-
morphism. Define an R-linear map D : C∞(M) → Γ(E) as D := g−1

E ◦ ρT ◦ d, where
ρT ∈ Hom(T ∗M,E∗) is the transpose of the anchor. We can then rewrite the axiom
simply as

[e, e]E =
1

2
D〈e, e〉E , (2.28)

and this can be polarized to

[e, e′]E = −[e′, e]E +D〈e, e′〉E . (2.29)

We see that [·, ·]D is skew-symmetric up to the D of the function 〈e, e′〉E .

We will call 〈·, ·〉E or gE the Courant metric on E.

Courant algebroid can be viewed as a generalization of the quadratic Lie algebra, since for
M = {m}, it reduces to a Lie algebra equipped with a non-degenerate ad-invariant symmetric
bilinear form. It was noted in [69] that the invariance of 〈·, ·〉E cannot be achieved without the
sacrifice of the skew-symmetry, i.e. there is no Lie algebroid with an invariant fiber-wise metric
〈·, ·〉E , unless it is totally intransitive, that is ρ = 0. Note that the control over the symmetric
part of the bracket allows one to derive the Leibniz rule in its first input. We get

[fe, e′]E = f [e, e′]D − (ρ(e′).f)e+ 〈e, e′〉EDf. (2.30)
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Recall the remark under the Definition 2.1.1, where we have noted that general Leibniz bracket
[e, e′]E depends only on the values of section e′ in an arbitrarily small neighborhood, but
nothing can be said about e. This is not true for Courant algebroids, where we can use (2.30)
to prove that e|U = 0 implies ([e, e′]E)|U = 0. Altogether, we can restrict [·, ·]E to the module
of the local sections ΓU (E), which proves useful when working with a local basis for Γ(E).

Remark 2.3.3. Interestingly, Kosmann-Schwarzbach has shown in [65] that the axiom of Leibniz
rule (2.4) is superfluous in the definition of Courant algebroid, and can be derived from (2.26,
2.27).

Example 2.3.4. Let us now give a few examples of Courant algebroids.

1. Consider the Leibniz algebroid from Example 2.1.3 for p = 1. Then there is a canonical
pairing 〈·, ·〉E of vector fields and 1-forms on Γ(E) = X(M)⊕Ω1(M). Explicitly, the map
D is then D(f) = 0 + df ∈ Γ(E). We have

[X + ξ,X + ξ]D = d(iXξ) =
1

2
D〈X + ξ,X + ξ〉E . (2.31)

The invariance of the pairing reduces to showing that

X.(〈η, Z〉+ 〈ζ, Y 〉) = 〈[X,Y ], ζ〉+ 〈LXη − iY dξ, Z〉+ 〈η, [X,Z]〉+ 〈Y,LXζ − iZdξ〉.

This is easy to show after one uses the definitions of L and the exterior differential d.
Now, see that [·, ·]D can be modified in the following way. Let H ∈ Ω3(M) be a 3-form
on M , and define a new bracket [·, ·]HD as

[X + ξ, Y + η]HD = [X + ξ, Y + η]D −H(X,Y, ·), (2.32)

for all X+ξ, Y +η ∈ Γ(E). Because H is completely skew-symmetric and C∞(M)-linear,
both axioms (2.26, 2.27) remain valid also for [·, ·]HD . Plugging into Leibniz identity (2.5)
shows that it holds if and only if dH = 0, that is H ∈ Ω3

closed(M). The bracket [·, ·]HD is
called the H-twisted Dorfman bracket.

2. Let (L, l, [·, ·]L) and (L∗, l∗, [·, ·]L∗) be a pair of Lie algebroids, where L∗ is the dual vector
bundle to L. One says that (L,L∗) forms a Lie bialgebroid, if dL is a derivation of the
Schouten-Nijenhuis bracket [·, ·]L∗ , that is2

dL[ω, ω′]L∗ = [dLω, ω
′]L∗ + (−1)|ω|−1[ω, dLω

′]L∗ , (2.33)

for all ω, ω′ ∈ Ω•(L) ∼= X•(L∗). Define E = L ⊕ L∗. Denote the sections of E as
ordered pairs (e, α), where e ∈ Γ(L) and α ∈ Γ(L∗). The anchor ρ is defined as ρ(e, α) =
l(e) + l∗(α). The bracket [·, ·]E is defined as

[(e, α), (e′, α′)]E =
(
[e, e′]L + LL∗α e′ − iα(dL∗e), [α, α

′]L∗ + LLe α′ − ie′(dLα)
)
, (2.34)

for all (e, α), (e′, α′) ∈ Γ(E). Finally, let 〈·, ·〉E be a fiber-wise metric on E induced by the
canonical pairing of L and L∗. Then (E, ρ, 〈·, ·〉E , [·, ·]E) is a Courant algebroid, called the
double of the Lie bialgebroid (L,L∗). The actual proof of this statement is straightforward
but takes quite some time to go through. See [72] for details.

Conversely, let (E, ρ, 〈·, ·〉E , [·, ·]E) be a Courant algebroid, and L1 and L2 be two com-
plementary Dirac structures, that is E = L1 ⊕ L2. Then L2

∼= L∗1 and (L1, L2) can be
equipped with a structure of Lie bialgebroid. (E,L1, L2) is called a Manin triple.

2This condition is in fact equivalent to the one with L and L∗ interchanged [75].
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3. Let us show an example of a double of Lie bialgebroid. Let (L, l, [·, ·]L) be any Lie
algebroid. Choose L∗ to be a trivial Lie algebroid (L∗, 0, 0). Since [·, ·]L∗ = 0, the Lie
bialgebroid condition (2.33) holds trivially. The resulting bracket on E = L⊕ L∗ is then

[(e, α), (e′, α′)]E = ([e, e′],LLe α′ − ie′dLα), (2.35)

for all (e, α), (e′, α′) ∈ Γ(E). We will call it the Dorfman bracket corresponding to Lie
algebroid (L, l, [·, ·]L). For L = (TM, IdTM , [·, ·]), one obtains part 1. of this example.

4. Let L = (TM, IdTM , [·, ·]) be the canonical tangent bundle Lie algebroid, and set L∗ =
(T ∗M,Π, [·, ·]Π) to be the cotangent Lie algebroid from Example 2.2.2, 3. One can find
in [75] that dL∗ = −[Π, ·]S , where [·, ·]S is the ordinary Schouten-Nijenhuis bracket on
X•(M). By definition of Schouten-Nijenhuis bracket, dL∗ is thus a derivation of [·, ·]S ,
which is exactly the Lie bialgebroid condition (2.33). The pair (L,L∗) therefore forms a
Lie bialgebroid, called a triangular Lie bialgebroid. The resulting double bracket (2.34)
on E can be after some effort written as

[X + ξ, Y + η]E = [X + Π(ξ), Y + Π(η)]−Π
(
L(X+Π(ξ))η − i(Y+Π(η))dξ

)

+ L(X+Π(ξ))η − i(Y+Π(η))dξ,
(2.36)

for all X+ξ, Y +η ∈ Γ(E). Although complicated at first glance, it can be rewritten using
the Dorfman bracket (2.14). Indeed, define a bundle map eΠ : E → E as eΠ(X + ξ) =
X + Π(ξ) + ξ for all X + ξ ∈ Γ(E). We can then write

[X + ξ, Y + η]E = e−Π[eΠ(X + ξ), eΠ(Y + η)]D. (2.37)

Moreover, ρ = prTM ◦eΠ, and 〈eΠ(X+ξ), eΠ(Y +η)〉E = 〈X+ξ, Y +η〉E . This shows that
bracket (2.36) is in fact just a ”twist” of the Dorfman bracket. There is one important
remark to be said. The bracket written in the form (2.36) in fact does not require Π to
be a Poisson bivector in order to define a Courant algebroid. However; for general Π, the
bracket (2.34) is not the same as (2.36).

If one uses [·, ·]HD in the formula (2.37) instead of [·, ·]D, one obtains a bracket which is
in [42] called the Roytenberg bracket. We also use this name for its higher version.

There is a famous classification of Ševera of a particular class of Courant algebroids. Let
(E, ρ, 〈·, ·〉E , [·, ·]E) be any Courant algebroid. Define a map j : T ∗M → E as j = g−1

E ◦ ρT .
One says that a Courant algebroid is exact, if there is a short exact sequence

0 T ∗M E TM 0.
j ρ

(2.38)

In particular, ρ has to be surjective and j injective, and Im j = ker ρ. Note that inclusion
Im j ⊆ ker ρ holds for any Courant algebroid, because ρ ◦ D = 0. Ševera proved in [89] that
up to an isomorphism, exact Courant algebroids are uniquely determined by a class [H] ∈
H3(M,R). In particular, there is an isotropic splitting s : TM → E, 〈s(X), s(Y )〉E = 0 for all
X,Y ∈ X(M), such that one can write

[s(X) + j(ξ), s(Y ) + j(η)]E = s([X,Y ]) + j(LXη − iY dξ −H(X,Y, ·)), (2.39)

where H ∈ Ω3
closed(M). For different splitting s′ of the sequence, H changes to H ′ = H + dB

for some 2-form B ∈ Ω2(M), but [H ′] = [H]. Map Ψ : TM⊕T ∗M → E defined as Ψ(X+ξ) =
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s(X) + j(ξ) then defines a Courant algebroid isomorphism from (TM ⊕ T ∗M,prTM , [·, ·]HD) to
(E, ρ, [·, ·]E). Every exact Courant algebroid is thus isomorphic to a one equipped with an
H-twisted Dorfman bracket.

Dorfman and H-twisted Dorfman brackets of Example 2.3.4, 1. are exact, whereas a Manin
triple of Lie bialgebroid in general is not. This can be seen on example of the Dorfman bracket
of a Lie algebroid, 2.3.4, 3. where any Lie algebroid L with a non-surjective anchor will give a
non-exact Courant algebroid. On the other hand, the example 2.3.4, 4. is an example of exact
Manin triple, in particular [H] = [0] in this case.

To conclude, let us briefly note on the older, skew-symmetric version of Courant alge-
broid brackets. Let (E, ρ, 〈·, ·〉E , [·, ·]E) be a Courant algebroid. Define [·, ·]′E to be its skew-
symmetrization:

[e, e′]′E :=
1

2
([e, e′]E − [e′, e]E) = [e, e′]E −

1

2
D〈e, e′〉E . (2.40)

Let us examine what happened to the Leibniz rule. Plugging into (2.40), we obtain

[e, fe′]′E = f [e, e′]′E + (ρ(e).f)e′ − 1

2
〈e, e′〉Df. (2.41)

Invariance of 〈·, ·〉E with respect to the bracket [·, ·]′E becomes

ρ(e).〈e′, e′′〉E = 〈[e, e′]′E +
1

2
D〈e, e′〉E , e′′〉E + 〈e′, [e, e′′]′E +

1

2
D〈e, e′′〉E〉E , (2.42)

for all e, e′, e′′ ∈ Γ(E). Note that Leibniz rule for [·, ·]E implies ρ ◦D = 0. This also shows that
[·, ·]′E also satisfies the homomorphism property (2.6):

ρ([e, e′]′E) = [ρ(e), ρ(e′)], (2.43)

for all e, e′ ∈ Γ(E). The most complicated calculation is to see that Leibniz identity for [·, ·]′E
fails in the following sense. Define a map T : Γ(E)× Γ(E)× Γ(E)→ C∞(M) as

T (e, e′, e′′) :=
1

6
〈[e, e′]′E , e′′〉E + cyclic{e, e′, e′′}. (2.44)

Then there holds the following identity:

[[e, e′]′E , e
′′]′E + [[e′′, e]]′E , e

′]′E + [[e′, e′′]′E , e]
′
E = DT (e, e′, e′′). (2.45)

For the proof of this statement see [81]. Now let us just say that equations (2.41, 2.42, 2.43,
2.45) form a set of axioms of the original definition of Courant algebroid, as proposed in [72].
The skew-symmetric version of the bracket has its advantages, in particular in relation to
strongly homotopy Lie algebras.

2.4 Algebroid connections, local Leibniz algebroids

For Lie algebroids there is a straightforward way to define linear connections [34]. For Courant
algebroids, or even Leibniz algebroids, matters become more complicated, see [1]. Let us recall
the basic definitions first.
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Definition 2.4.1. Let E be a vector bundle. Map ∇ : X(M)×Γ(E)→ Γ(E) is called a linear
connection on vector bundle E, if

∇(fX, e) = f∇(X, e), ∇(X, fe) = f∇(X, e) + (X.f)e, (2.46)

for all X ∈ X(M) and e ∈ Γ(E). We write ∇Xe := ∇(X, e).

Remark 2.4.2. Equivalently, we can view ∇ as follows. Let D(E) be a vector bundle over M
such that its space of sections Γ(D(E)) has the form

Γ(D(E)) = {F : Γ(E)→ Γ(E) | F(fe) = fF(e) + (X.f)e, ∀e ∈ Γ(E), for X ∈ X(M)}. (2.47)

Define a : Γ(D(E))→ X(M) as a(F) = X, and let [F ,G] = F ◦G −G ◦F . Then (D(E), a, [·, ·])
is a Lie algebroid. We can then view linear connection ∇ as a vector bundle morphism ∇ ∈
Hom(TM,D(E)) defined as ∇(X) = ∇X fitting in the commutative diagram

TM D(E)

TM

∇

1TM
a . (2.48)

Note that both TM and D(E) are Lie algebroids. One can easily extend this definition to any
Lie algebroid (L, l, [·, ·]L). For more details concerning the construction of vector bundle D(E),
see [74].

Every linear connection on E induces an analogue of the curvature operator. For X,Y ∈
X(M) and e ∈ Γ(E) it is defined using the standard formula:

R(X,Y )e = ∇X∇Y e−∇Y∇Xe−∇[X,Y ]e. (2.49)

It is C∞(M)-linear in all inputs, hence R ∈ Ω2(M) ⊗ T 1
1 (E). In view of Remark (2.4.2), we

may view R as a failure of ∇ to be a Lie algebroid morphism. If gE is any fiber-wise metric on
E, we can say that ∇ is metric compatible with gE if

X.gE(e, e′) = gE(∇Xe, e′) + gE(e,∇Xe′), (2.50)

for all X ∈ X(M) and e, e′ ∈ Γ(E). Obviously, there is no analogue of torsion for connections
on a vector bundle. Now, let (E, ρ, 〈·, ·〉E , [·, ·]E) be a Courant algebroid. One can define the
Courant algebroid connection according to [1] as follows:

Definition 2.4.3. Let (E, ρ, 〈·, ·〉E , [·, ·]E) be a Courant algebroid. A map ∇ : Γ(E)×Γ(E)→
Γ(E) is a Courant algebroid connection, if

∇(fe, e′) = f∇(e, e′), ∇(e, fe′) = f∇(e, e′) + (ρ(e).f)e′, (2.51)

for all e, e′ ∈ Γ(E), and ∇ is metric compatible with Courant metric 〈·, ·〉E in the sense that

ρ(e).〈e′, e′′〉E = 〈∇ee′, e′′〉E + 〈e′,∇ee′′〉E , (2.52)

for all e, e′, e′′ ∈ Γ(E). As usual, we will write ∇ee′ := ∇(e, e′).
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As before, we can naively define a curvature operator R corresponding to ∇ as

R(e, e′)e′′ = ∇e∇e′e′′ −∇e′∇ee′′ −∇[e,e′]Ee
′′, (2.53)

for all e, e′, e′′ ∈ Γ(E). This is C∞(M)-linear in e′ and e′′, but not in e. Instead, we get

R(fe, e′)e′′ = fR(e, e′)e′′ − 〈e, e′〉E∇Dfe′′. (2.54)

Let us remark that there is a class of connections which define a tensorial curvature operator.
We say that ∇ is an induced Courant algebroid connection, if ∇e = ∇′ρ(e) for some vector

bundle connection ∇′. Because ρ ◦ D = 0, the anomalous term in (2.54) disappears, and R
is a well defined tensor on E. Second possibility is to restrict R to sections of some isotropic
involutive subbundle D ⊆ E, where 〈e, e′〉E = 0.

Unlike for vector bundle connections, there is a well defined analogue of the torsion operator.
There are two independent, but essentially equivalent definitions. In [40], a torsion tensor
T ∈ T3(E) is given as

T (e, e′, e′′) = 〈∇ee′ −∇e′e− [e, e′]′E , e
′′〉E +

1

2
(〈∇e′′e, e′〉E − 〈∇e′′e′, e〉E , (2.55)

for all e, e′, e′′ ∈ Γ(E). By definition, it is skew-symmetric in (e, e′). In fact, the Courant metric
compatibility condition (2.52) can be used to show that T ∈ Ω3(E). In [1], a Courant algebroid
torsion was defined as C ∈ Ω3(E) in the form

C(e, e′, e′′) =
1

3
〈[e, e′]′E , e′′〉E −

1

2
〈∇ee′ −∇e′e, e′′〉E + cyclic(e, e′, e′′). (2.56)

This expression in manifestly completely skew-symmetric in all inputs, but at first glance it does
not resemble the conventional definition of torsion operator. Interestingly, these two definitions
coincide.

Lemma 2.4.4. Let (E, ρ, 〈·, ·〉E , [·, ·]E) be a Courant algebroid, and ∇ a Courant algebroid
connection. Then

T (e, e′, e′′) = −C(e, e′, e′′). (2.57)

Proof. This can be done by using (2.52) and Courant algebroid axioms (2.26, 2.28). Note that
both T and C are well defined based on the Leibniz rule (2.1.1), but equivalent only due to the
other Courant algebroid axioms. �

For general Leibniz algebroids, there is no metric 〈·, ·〉E present and definitions (2.55, 2.56)
make no sense anymore. There is however a way to define a connection, a torsion and even a
curvature operator for a special (and quite wide) class of Leibniz algebroids.

Definition 2.4.5. Let (E, ρ, [·, ·]E) be a Leibniz algebroid. If there exists a C∞(M)-trilinear
map L : Γ(E∗)× Γ(E)× Γ(E)→ Γ(E), such that

[fe, e′]E = f [e, e′]E − (ρ(e′).f)e+ L(df, e, e′), (2.58)

for all e, e′ ∈ Γ(E) and f ∈ C∞(M), we call (E, ρ, [·, ·]E ,L) a local Leibniz algebroid. Here
d : C∞(M)→ Γ(E∗) is an R-linear map defined by

〈df, e〉 = ρ(e).f, (2.59)

for all e ∈ Γ(E) and f ∈ C∞(M).

32



Note that L is not uniquely determined by equation (2.58), and has to be a part of the defini-
tion of a local Leibniz algebroid. Moreover, the compatibility of (2.58) with the homomorphism
property (2.6) implies

ρ(L(df, e, e′)) = 0. (2.60)

For a given Leibniz algebroid (E, ρ, [·, ·]E) with a well-defined subbundle ker ρ, one can always
find L such that this property can be extended to ρ(L(β, e, e′)) = 0 for all e, e′ ∈ Γ(E) and
β ∈ Γ(E∗). To achieve this, choose some fiber-wise metric on E∗ and define L(β, e, e′) := 0 for
all β ∈ Γ(Ann ker(ρ)⊥).

Example 2.4.6. In fact, all examples in this thesis can be equipped with the structure of a
local Leibniz algebroid.

• Let (L, l, [·, ·]L) be a Lie algebroid. The choice of L = 0 shows that (L, l, [·, ·]L,L) is a
local Leibniz algebroid.

• Let (E, ρ, 〈·, ·〉E , [·, ·]E) be a Courant algebroid. We see that from (2.30) that

L(df, e, e′) = 〈e, e′〉Eg−1
E (df). (2.61)

There is one canonical way to extend L. Define

L(β, e, e′) = 〈e, e′〉Eg−1
E (β), (2.62)

for all e, e′ ∈ Γ(E) and β ∈ Γ(E∗). However, note that this choice does not satisfy
ρ(L(β, e, e′)) = 0. For E with well-defined subbundle ker ρ, one can extend L trivially to
some complement of Ann(ker ρ). Note that different choices of this complement will lead
to different extensions.

• Let E = TM ⊕ T ∗M be equipped with the Dorfman bracket (2.14), and ρ(X + ξ) = X.
The kernel of ρ is the subbundle T ∗M ⊆ E. We have a short exact sequence

0 T ∗M E TM 0,
j ρ

(2.63)

where j is an inclusion. Choosing a complement of ker ρ corresponds to the choice of
a splitting s ∈ Hom(TM,E) of this sequence. We can restrict ourselves to isotropic
splittings, that is 〈s(X), s(Y )〉E = 0 for all X,Y ∈ X(M). The set of such splittings is in
fact Ω2(M), and for any B ∈ Ω2(M) the complement to T ∗M is exactly the subbundle

GB = {X +B(X) | X ∈ TM} ⊆ E. (2.64)

Note that G0 = TM . This gives us also a splitting of E∗, in particular

E∗ = Ann(ker ρ)⊕GB . (2.65)

We can now define L to be trivial on GB , let us write it with subscript B. We get

LB(α+ V, e, e′) = LB(α−B(V ) + (V +B(V )), e, e′)

= 〈e, e′〉Eg−1
E (α−B(V )) = 〈e, e′〉E(α−B(V )).

(2.66)

We see how L can explicitly depend on the choice of the complement.
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For an arbitrary Leibniz algebroid (E, ρ, [·, ·]E) we can define a Leibniz algebroid connection
∇ in the same way as in Definition 2.4.3, except that we do not require the metric compatibility
(2.52). Assume that this Leibniz algebroid is local. Then we can in fact define a torsion
operator!

Proposition 2.4.7. Let (E, ρ, [·, ·]E ,L) be a local Leibniz algebroid. Define an R-bilinear map
T : Γ(E)× Γ(E)→ Γ(E) as

T (e, e′) = ∇ee′ −∇e′e− [e, e′]E + L(eλ,∇eλe, e′), (2.67)

for all e, e′ ∈ Γ(E). Here (eλ)kλ=1 is an arbitrary local frame of E, and (eλ)kλ=1 the corresponding
dual one. Then T is C∞(M)-linear in e and e′ and consequently T ∈ T 1

2 (E). We call T a
torsion operator corresponding to ∇.

Proof. Direct calculation. �

Let us emphasize that T is not in general skew-symmetric in (e, e′). This is not a problem
since we can always take its skew-symmetric part. Moreover, its definition certainly depends
on the choice of the map L.

Interestingly, for induced connections ∇e = ∇′ρ(e), this is not the case. To see this, choose

the local frame (eλ)kλ=1 adapted to the splitting E = ker(ρ) ⊕ ker(ρ)⊥ with respect to some
fiber-wise metric gE on E. Because ∇ is induced, only those eλ in Γ(ker(ρ)⊥) contribute to the
sum in (2.67). But in this case eλ ∈ Ann(ker ρ), where the map L is determined uniquely3

For Courant algebroid (E, ρ, 〈·, ·〉E , [·, ·]E) and L in the form (2.62), the torsion operator
(2.67) can be simply related to the one defined by (2.55).

Proposition 2.4.8. Let (E, ρ, 〈·, ·〉E , [·, ·]E) be a Courant algebroid, and L be a map defined
by (2.62). Denote the torsion operator (2.55) as TG, and let T be the torsion operator (2.67).
Let ∇ be a Courant algebroid connection. Then

TG(e, e′, e′′) = 〈T (e, e′), e′′〉E . (2.68)

Proof. This can be verified by a direct calculation. Use the fact that

〈L(eλ,∇eλe, e′), e′′〉E = 〈∇e′′e, e′〉E . (2.69)

This shows that for Courant algebroid connections, the symmetric part of the map K(e, e′) =
L(eλ,∇eλe, e′) does not depend on ∇ at all. Indeed, we have

K(e, e′) + K(e′, e) = 〈∇e′′e, e′〉E + 〈e,∇e′′e′〉E = ρ(e′′).〈e, e′〉E .

This in fact proves that T (e, e′) is skew-symmetric in (e, e′), because

〈e′′, T (e, e′) + T (e′, e)〉E = 〈e′′,−[e, e′]E + [e′, e]E〉E + ρ(e′′).〈e, e′〉E = 0.

We have used the axiom (2.28) in the last step. �
3Note that sections of the form df for some f ∈ C∞(M) locally generate Γ(Ann(ker ρ)).

34



For more general (local) Leibniz algebroids, there also exists a notion of a generalized torsion
introduced for special examples in [24, 25]. They proceed as follows. Consider a local Leibniz
algebroid (E, ρ, [·, ·]E ,L). Let LE be the Lie derivative induced by [·, ·]E . In their paper this is
called the Dorfman derivative. Consider a local holonomic frame (eα)kα=1, that is [eα, eβ ]E = 0.
We will use the shorthand notation f,α := ρ(eα).f . Let e = vαeα and e′ = wβeβ . We have

LEe e′ = {vαwβ,α − wα(vβ,α − vλ,µLβµλα)}eβ . (2.70)

Their idea is to define a ”covariantized” Dorfman derivative L∇e by replacing commas with
semicolons:

L∇e e′ = {vαwβ ;α − wα(vβ ;α − vλ;µL
βµ
λα)}eβ . (2.71)

Here ∇eαe = vβ ;αeβ . This can be rewritten in terms of ∇ and L as

L∇e e′ = ∇ee′ −∇e′e+ L(eµ,∇eµe, e′). (2.72)

Torsion operator T is in [24,25] defined as difference of these two Lie derivatives:

T (e, e′) = (L∇e − LEe )e′. (2.73)

Comparing this with (2.67) we see from (2.72) that the two definitions coincide. Note the
importance of the local frame holonomicity for a validity of this assertion.

We have shown that any local Leibniz algebroid allows one to define a tensorial torsion
operator. We can use a very similar approach to get a well-defined curvature operator.

Proposition 2.4.9. Let (E, ρ, [·, ·]E ,L) be a local Leibniz algebroid, such that ρ(L(β, e, e′)) = 0
for all β ∈ Γ(E∗) and e, e′ ∈ Γ(E). Let ∇ be a Leibniz algebroid connection on E. Then the
map R defined for all e, e′, e′′ ∈ Γ(E) as

R(e, e′)e′′ = ∇e∇e′e′′ −∇e′∇ee′′ −∇[e,e′]Ee
′′ +∇L(eλ,∇eλe,e′)e

′′, (2.74)

is C∞(M)-linear in all inputs, and thus R ∈ T 1
3 (E). We call R a generalized Riemann tensor.

Proof. The statement can be directly verified. One has to use (2.6) to show the C∞(M)-
linearity in e′′. The additional correction term containing L cancels the wrong term coming
from the bracket term and its first input. The condition ρ(L(β, e, e′)) = 0 is necessary to keep
the C∞(M)-linearity in e′′. �

First, note that because of the condition ρ(L(β, e, e′)) = 0, the additional term vanishes for
induced connections, which in fact shows that in this case the usual curvature operator formula
works and defines a tensorial R. Next, see that in general R is not skew-symmetric in (e, e′),
which can be fixed by a skew-symmetrization if necessary.

Having a curvature operator R, we can define the corresponding Ricci tensor Ric as a
contraction of R in two indices. Namely set

Ric(e, e′) = 〈eλ, R(eλ, e
′)e〉, (2.75)

for all e, e′ ∈ Γ(E), where (eλ)kλ=1 is some local frame of E, and (eλ)kλ=1 the corresponding
dual one of E∗. For Courant algebroid connections, R has some remarkable properties.
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Proposition 2.4.10. Let (E, ρ, 〈·, ·〉E , [·, ·]E) be a Courant algebroid with ker ρ ⊆ E being a
well defined subbundle. Let L be defined trivially on some complement to Ann(ker ρ). Let ∇ be
a Courant algebroid connection. Then R(e, e′) is skew-symmetric in (e, e′), and

〈R(e, e′)f, f ′〉E + 〈R(e, e′)f ′, f〉E = 0, (2.76)

for all e, e′, f, f ′ ∈ Γ(E).

Proof. Let E∗ = Ann(ker ρ) ⊕ V for some subbundle V , such that L|V = 0. Choose a local
frame eλ = (gj , fk), where (gj)mj=1 is a local frame of Ann(ker ρ), and (fk)k−mk=1 a local frame of

V . Let eλ = (gj , fk) be a corresponding dual basis. Then (fk)k−mk=1 generates ker ρ, and (gi)
m
i=1

its complement. We have

〈L(eλ,∇eλe, e), e′〉E = 〈L(gk,∇gke, e), e′〉E = 〈〈∇gke, e〉Eg−1
E (gk), e′〉E

= [
1

2
ρ(gk).〈e, e〉E ]〈gk, e′〉 =

1

2
ρ(〈gk, e′〉gk + 〈fk, e′〉fk).〈e, e〉E

=
1

2
ρ(e′).〈e, e〉E .

This proves that for Courant algebroid connections, we have L(eλ,∇eλe, e) = [e, e], and the two
non-trivial contributions in R(e, e) cancel. Note that this shows that also T (e, e) = 0 for such
an L. The proof of (2.76) is analogous to the one for ordinary connections, using the metric
compatibility (2.52). Note that in this process one has to use ρ(L(eλ,∇eλe, e)) = 0. �

Example 2.4.11. Consider E = TM ⊕ T ∗M and the usual Dorfman bracket (2.14). Extend
L to all γ + Z ∈ Γ(E∗) as

L(γ + Z,X + ξ, Y + η) = 〈X + ξ, Y + η〉E(0 + γ). (2.77)

This corresponds to the choice B = 0 in (2.66). Now consider a Courant algebroid connection
∇ on E. We have

∇X+ξ(Y + η) = ∇′X(Y + η) +∇′′ξ (Y + η), (2.78)

for all X + ξ, Y + η ∈ Γ(E), for some vector bundle connection ∇′ on E, and a map ∇′′ :
Ω1(M) × Γ(E) → Γ(E). Note that ∇′′ must be C∞(M)-linear in the second input, and thus
in fact ∇′′ ∈ X1(M)⊗T 1

1 (E). We can view ∇′′ as C∞(M)-linear map ∇′′ : Ω1(M)→ End(E).
What are the implications of the Courant metric compatibility (2.52)? We get

X.〈e, e′〉E = 〈∇′Xe, e′〉E + 〈e,∇′Xe′〉E , (2.79)

0 = 〈∇′′ξ e, e′〉E + 〈e,∇′′ξ e′〉E . (2.80)

This implies that ∇′ and ∇′′ have to be of the block form

∇′X =

(
∇MX ΠX

BX ∇MX

)
, ∇′′ξ =

(
Aξ θξ
Cξ −ATξ

)
, (2.81)

where ΠX , θξ ∈ X2(M), BX , Cξ ∈ Ω2(M), Aξ ∈ End(TM), and ∇M is an ordinary connection
on M . ∇MX in the bottom-right corner of ∇′X is the usual extension of ∇M on 1-forms. All
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objects are assumed to be C∞(M)-linear in X and ξ. For the curvature tensor, we get

pr1(R(X,Y )(Z + ζ)) = RM (X,Y )Z + (∇MX Π)Y (ζ)− (∇MY Π)X(ζ) (2.82)

+ ΠTM (X,Y )(ζ) + ΠX(BY (Z))−ΠY (BX(Z))

−Bk(X,Y )(Ak(Z) + θk(ζ)),

pr2(R(X,Y )(Z + ζ)) = RM (X,Y )ζ + (∇MX B)Y (Z)− (∇MY B)X(Z) (2.83)

+BTM (X,Y )(Z) +BX(ΠY (ζ))−BY (ΠX(ζ))

−Bk(X,Y )(Ck(Z)− (Ak)T (ζ)),

pr1(R(ξ, η)(Z + ζ)) = (AξAη + θξCη)(Z) + (Aξθη − θξATη )(ζ)− (ξ ↔ η) (2.84)

−Πk(ξ, η)(Ak(Z) + θk(ζ)),

pr2(R(ξ, η)(Z + ζ)) = (CξAη −ATξ Cη)(Z) + (Cξθη +ATξ A
T
η )(ζ)− (ξ ↔ η) (2.85)

−Πk(ξ, η)(Ck(Z)− (Ak)T (ζ)),

pr1(R(X, η)(Z + ζ)) = (∇MX A)η(Z) +A〈η,TM (·,X)〉(Z) (2.86)

+ (∇MX θ)η(ζ) + θ〈η,TM (·,X)〉(ζ)

+ (ΠXCη − θηBX)(Z)− (ΠXA
T
η +AηΠX)(ζ),

pr2(R(X, η)(Z + ζ)) = (∇MX C)η(Z) + C〈η,T (·,X)〉(Z) (2.87)

− (∇MX A)Tη (ζ)−AT〈η,T (·,X)〉(ζ)

+ (BXAη +ATηBX)(Z) + (BXθη − CηΠX)(ζ). (2.88)

By (∇MX Π)Y we mean the following. Bivector ΠY depends C∞(M)-linearly on Y , and thus
defines a tensor Π ∈ T 2

1 (M). One can then calculate its covariant derivative (∇MX Π) ∈ T 2
1 (M),

and finally for each Y ∈ X(M) the tensor (∇XΠ)Y ∈ T 2
0 (M). Similarly for the other objects.

TM denotes the torsion operator of the connection ∇M .
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Chapter 3

Excerpts from the standard
generalized geometry

In this chapter, we will recall some basic facts about the standard generalized geometry, that is
the geometry of the vector bundle E = TM ⊕ T ∗M . We will focus only on the topics relevant
for the following chapters (including the papers). In the previous chapter, we have shown that
E is equipped with the Courant algebroid bracket (2.14), and the natural pairing 〈·, ·〉E . Note
that E is sometimes called the generalized tangent bundle. Pioneering works in generalized
geometry are those of Hitchin [43,45] and especially the Ph.D. thesis of Gualtieri [39]. We will
focus on a very detailed explicit analysis of the involved objects, which eventually will prove
to be useful for physical applications. In the section describing the generalized metric, we have
used the approach taken in [69].

3.1 Orthogonal group

First assume that V is an n-dimensional real vector space. The direct sum W = V ⊕ V ∗ is
equipped with the canonical pairing 〈·, ·〉W , which defines a symmetric non-degenerate bilinear
form on W . If E = (ei)

n
i=1 is any basis of V , there is a canonical basis (e1, . . . , en, e

1, . . . , en) of
W , where (ei)ni=1 is the basis of V ∗ dual to E . In this basis, the pairing 〈·, ·〉W has the matrix

gW =

(
0 1
1 0

)
, (3.1)

where 1 denotes the n× n unit matrix. This proves that 〈·, ·〉W has the signature (n, n). The
group of operators on W preserving 〈·, ·〉W is thus O(n, n). Let O ∈ O(n, n). We will often use
the formal block decomposition of linear maps on W , that is we will write

O =

(
O1 O2

O3 O4

)
, (3.2)

where O1 ∈ End(V ), O4 ∈ End(V ∗) and O2 ∈ Hom(V ∗, V ), O3 ∈ Hom(V, V ∗). The matrix gW
can be thus also viewed as a formal block decomposition of the isomorphism gW : V ⊕ V ∗ →
V ∗ ⊕ V induced by 〈·, ·〉W . The orthogonality condition

〈O(v + α),O(v′ + α′)〉W = 〈v + α, v′ + α′〉 (3.3)
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can be now rewritten in terms of Oi by expanding the 2× 2 block matrix equation OT gWO =
gW . One obtains a set of three relations:

OT3 O1 +OT1 O3 = 0 (3.4)

OT4 O2 +OT2 O4 = 0 (3.5)

OT3 O2 +OT1 O4 = 1 (3.6)

We can get more equations. First note that O−1 = gWOgW , which explicitly gives

O−1 =

(
OT4 OT2
OT3 OT1

)
. (3.7)

The map O−1 is again orthogonal, there holds O−T gWO−1 = gW . We have three more (of
course not independent) equations:

O4O
T
3 +O3O

T
4 = 0, (3.8)

O2O
T
1 +O1O

T
2 = 0, (3.9)

O2O
T
3 +O1O

T
4 = 1. (3.10)

We will now focus on the maps of the form O = expA, where A ∈ o(n, n). Lie algebra o(n, n)
is defined as the space of linear endomorphisms of W , which are skew-symmetric with respect
to 〈·, ·〉W . Thus, every A ∈ o(n, n) thus has to satisfy the condition

〈A(v + α), v′ + α′〉W + 〈v + α,A(v′ + α′)〉W = 0, (3.11)

for all v + α, v′ + α′ ∈W . Let us write A in a formal block matrix form

A =

(
N Π
B N ′

)
, (3.12)

where N ∈ End(V ), N ′ ∈ End(V ∗), Π ∈ Hom(V ∗, V ) and B ∈ Hom(V, V ∗). Plugging into
(3.11) gives a block matrix equation AT gW +gWA = 0, expansion of which yields a set of three
equations

B +BT = 0, Π + ΠT = 0, N ′ +NT = 0. (3.13)

This gives an easy way to interpret the conditions for the respective blocks. We see that map
B has to be induced by a 2-form B ∈ Λ2V ∗, Π by a bivector Π ∈ Λ2V , and N ′ = −NT . The
conclusion is that (as a vector space) the Lie algebra o(n, n) can be decomposed as

o(n, n) ∼= End(V )⊕ Λ2V ∗ ⊕ Λ2V, (3.14)

where each A ∈ o(n, n) has a block form

A =

(
N Π
B −NT

)
(3.15)

for N ∈ End(V ), B ∈ Λ2V ∗ and Π ∈ Λ2V . Note that this simply reflects the fact that for any

two finite-dimensional vector spaces V,W , one has Λ2(V ⊕W ) ∼=
⊕2

i=0 ΛiV ⊗Λ2−iW . We can
now proceed with the examples of O(n, n) transformations.

Example 3.1.1. Let us now show three main classes of O(n, n) transformations.

40



1. B-transform: Choose N = Π = 0 in A of the form (3.15). Denote by eB its exponential,
that is eB = expA. Explicitly,

eB =

(
1 0
B 1

)
. (3.16)

As a map, it has the form eB(v+α) = (v, α+B(v)), for all v+α ∈W . By construction,
eB ∈ O(n, n). Below, it will play an important role in relation to the Dorfman bracket.

2. Π-transform: Now, choose A so that N = B = 0. Denote by eΠ its exponential, that is
eΠ = expA. Explicitly,

eΠ =

(
1 Π
0 1

)
. (3.17)

As a map, it has the form eΠ(v + α) = (v + Π(α), α), for all v + α ∈ W . It will play an
important role in the description of (Nambu-)Poisson structures.

3. Group Aut(V ): Every invertible map A ∈ Aut(V ) defines an O(n, n) transformation OA
in the form

OA =

(
A 0
0 A−T

)
. (3.18)

As a map, it works as OA(v + α) = A(v) +A−T (α).

O(n, n) as a Lie group has four connected components, and the above three examples
generate its identity component. We will often make use of the following simple observation:

Lemma 3.1.2. Let M be a block 2× 2 matrix in the form

M =

(
A B
C D

)
. (3.19)

The matrices A and D have to be square, but can be of different dimensions. Then

• If A is invertible, there exists a unique decomposition

M =

(
1 0

CA−1 1

)(
A 0
0 D − CA−1B

)(
1 A−1B
0 1

)
(3.20)

of M into a product of block lower unitriangular, block diagonal, and block upper unitri-
angular matrices.

• If D is invertible, there exists a unique decomposition

M =

(
1 BD−1

0 1

)(
A−BD−1C 0

0 D

)(
1 0

D−1C 1

)
(3.21)

of M into a product of block upper unitriangular, block diagonal, and block lower unitri-
angular matrices.

• If M is invertible, and there exists some decomposition of M into a product of block
lower unitriangular, block diagonal, and block upper unitriangular matrices, then A is
invertible, and the decomposition is precisely of the form (3.20).
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• If M is invertible, and there exists some decomposition of M onto a product of block
upper unitriangular, block diagonal, and block lower unitriangular matrices, then D is
invertible, and the decomposition is precisely of the form (3.21).

Proof. If A is invertible, we can construct the right-hand side of (3.20) and verify by direct
calculation that the product gives M. Now assume that

M =

(
1 0
U 1

)(
S 0
0 T

)(
1 V
0 1

)
(3.22)

for some matrices U, V, S, T . Expanding the right-hand side gives
(
A B
C D

)
=

(
S SV
US T + USV

)
.

This shows that S = A, and since A is invertible, we get U = CA−1, V = A−1B and T =
D − CA−1B, which are exactly the blocks in (3.20). This proves the uniqueness assertion.

The proof of the invertible D case is analogous.

Now assume thatM is invertible and there exists some its decomposition of the form (3.22).
We see that detM = detS · detT , which forces both S and T to be invertible. But we have
shown that S has to be A, and thus A is invertible, and we have shown that the blocks U, V, T
are uniquely determined by M. The proof for the other decomposition is analogous. �

Consider now a general orthogonal transformation O, parametrized as in (3.2). If one
assumes that either O1 or O4 is invertible, there always exists one of the decompositions in
Lemma 3.1.2. Are the maps in the decomposition orthogonal? The answer is given by the
following proposition.

Proposition 3.1.3. Let O ∈ O(n, n) be parametrized as in (3.2).

• Let O1 ∈ End(TM) be an invertible map. Then there exist B ∈ Λ2V ∗ and Π ∈ Λ2V ,
such that

O =

(
1 0
B 1

)(
O1 0

0 O−T1

)(
1 Π
0 1

)
. (3.23)

Moreover, any such B and Π are unique.

• Let O4 ∈ End(T ∗M) be an invertible map. Then there exist B′ ∈ Λ2V ∗ and Π′ ∈ Λ2V ,
such that

O =

(
1 Π′

0 1

)(
O−T4 0

0 O4

)(
1 0
B′ 1

)
. (3.24)

Moreover, any such B′ and Π′ are unique.

Proof. Let O1 be an invertible map. By Lemma 3.1.2, there exists a decomposition (3.20), and
we get B = O3O

−1
1 , A = O1, and Π = O−1

1 O2. We have to show that B is induced by a 2-form
on V , that is B+BT = 0. This reduces to O3O

−1
1 +O−T1 OT3 = 0. Multiply this equation by O1

from the right, and by OT1 from the left. This gives OT1 O3 +OT3 O1 = 0. But this is exactly the
equation (3.4). To show that Π ∈ Λ2V , we are required to prove that O−1

1 O2 + OT2 O
−T
1 = 0.

This reduces precisely to (3.9). At this point we know that

O = eB
(
O1 0
0 O4 −O3O

−1
1 O2

)
eΠ.
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Because eB and eΠ are in O(n, n), so has to be the middle block. This requires O4−O3O
−1
1 O2 =

O−T1 . The proof of the second part is analogous. �

Note that there are elements of O(n, n) which can be decomposed in both ways. However,
not every orthogonal map, not even from the identity component of O(n, n), can be written in
this form. Consider for example n = 2 and O = eBeΠe−Be2Π, where

B =

(
0 1
−1 0

)
, Π =

(
0 −1
1 0

)
. (3.25)

The resulting orthogonal map has the form

O =




0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0


 . (3.26)

It is a product of exponentials, hence it lies in the identity component of O(n, n). On the other
hand, it clearly cannot be decomposed in any way of Proposition 3.1.3.

3.2 Maximally isotropic subspaces

Having the pairing 〈·, ·〉W with the signature (n, n), it is natural to study its isotropic subspaces.
We say that subspace P ⊆W is isotropic, iff 〈p, q〉 = 0 for all p, q ∈ P . In particular, we will be
interested in maximally isotropic subspaces. Let us recall a well-known fact from the theory of
quadratic forms. For the proof, see for example [70]. Note that maximally isotropic subspaces
are sometimes called Lagrangian subspaces.

Lemma 3.2.1. All maximally isotropic subspaces of (W, 〈·, ·〉W ) are n-dimensional.

Because 〈·, ·〉W is induced by the canonical pairing, there are two obvious maximally isotropic
subspaces, namely V and V ∗, viewed as subspaces of W . By definition, every orthogonal trans-
formation O ∈ O(n, n) applied on V or V ∗ induces an isotropic subspace.

Example 3.2.2. Let us recall some standard examples of maximally isotropic subspaces of
(W, 〈·, ·〉W ).

• Let B ∈ Λ2V ∗, and define the subspace GB := eB(V ). Explicitly,

GB = {v +B(v) | v ∈ V } ⊆ V ⊕ V ∗. (3.27)

We can thus view GB as a graph of the linear map B ∈ Hom(V, V ∗). Conversely, let
B ∈ Hom(V, V ∗) be any linear map. One can always construct the subspace (3.27). It is
always an n-dimensional subspace of W . One readily checks that GB is isotropic if and
only if B ∈ Λ2V ∗.

• Let Π ∈ Λ2V , and define the subspace GΠ := eΠ(V ∗). Explicitly,

GΠ = {α+ Π(α) | α ∈ V ∗} ⊆ V ⊕ V ∗. (3.28)

We can thus view GΠ as a graph of the map Π ∈ Hom(V ∗, V ). Conversely, let Π ∈
Hom(V ∗, V ) be any linear map. Onc can always construct the subspace (3.28). It is
always an n-dimensional subspace of W . One readily checks that GΠ is isotropic if and
only if Π ∈ Λ2V .
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• Let ∆ ⊆ V be any subspace of V . Let Ann(∆) ⊆ V ∗ be the annihilator subspace of V ∗,
that is the vector space defined as

Ann(∆) = {α ∈ V ∗ | ∀v ∈ ∆, α(v) = 0}. (3.29)

Then ∆⊕Ann(∆) ⊆W forms a maximally isotropic subspace.

• Let E ⊆ V be a vector subspace of V , and let θ ∈ Λ2E∗. Define the vector space

L(E, θ) = {v + α ∈ V ⊕ V ∗ | v ∈ E, and α = θ(v)} (3.30)

Then L(E, θ) is a maximally isotropic subspace. Moreover, every maximally isotropic
subspace is of this form for some E and θ, see [39].

3.3 Vector bundle, extended group and Lie algebra

We can generalize everything from the previous two sections to the vector bundle E = TM ⊕
T ∗M . Subspaces will be replaced by subbundles, and linear maps are promoted to vector
bundle morphisms over the identity map on M . For example, we define

O(n, n) = {F ∈ Aut(E) | 〈F(e),F(e′)〉E = 〈e, e′〉E for all e ∈ Γ(E)}. (3.31)

Similarly for the orthogonal Lie algebra:

o(n, n) = {F ∈ End(E) | 〈F(e), e′〉E + 〈e,F(e′)〉E = 0 for all e ∈ Γ(E)}. (3.32)

By a direct generalization of (3.14) we would arrive to

o(n, n) ∼= End(TM)⊕ Ω2(M)⊕ X2(M). (3.33)

We now have O(n, n) transformations of the form of B-transforms, Π-transforms and Aut(TM)
at our disposal, for B ∈ Ω2(M) and Π ∈ X2(M). Finally, instead of maximally isotropic
subspaces, we will talk about maximally isotropic subbundles of E. All examples from the
previous subsection generalize naturally.

Of course, we can study also slightly more general objects. In particular, define extended au-
tomorphism group EAut(E) of E to be a group of fiber-wise bijective vector bundle morphisms
over diffeomorphisms. Note that any (F , ϕ), where ϕ ∈ Diff(M), induces an automorphism
F (denoted by the same letter) of Γ(E). Indeed, let e ∈ Γ(E). Define F(e) ∈ Γ(E) as
(F(e))(ϕ(m)) = F(e(m)) for all m ∈M .

Using this notation, we can define the extended orthogonal group EO(n, n) as

EO(n, n) = {(F , ϕ) ∈ EAut(E) | 〈F(e),F(e′)〉E ◦ ϕ = 〈e, e′〉E}. (3.34)

Its structure is in fact very simple, as the following lemma proves.

Lemma 3.3.1. Let Diff(M) be the group of diffeomorphisms of M . Then

EO(n, n) = O(n, n) o Diff(M), (3.35)

where Diff(M) acts on O(n, n) by conjugation: ϕ I F0 := T (ϕ) ◦ F0 ◦ T (ϕ)−1, for all ϕ ∈
Diff(M). Define the map (T (ϕ), ϕ) ∈ EAut(E) by putting T (ϕ)(X + ξ) = ϕ∗(X) + (ϕ−1)∗(ξ),
for all X + ξ ∈ Γ(E).
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Proof. Let (F,ϕ) ∈ EO(n, n). It is not difficult to show that (T (ϕ), ϕ) ∈ EO(n, n). Define
F0 ∈ Aut(A) as F = F0 ◦ T (ϕ). Then, by definition, F0 ∈ O(n, n). Moreover, O(n, n) forms
a normal subgroup of EO(n, n). It only remains to determine the multiplication rule. Let
(G, ψ) ∈ EO(n, n) and G = G0 ◦ T (ψ). We get

F ◦ G = F0 ◦ [T (ϕ) ◦ G0 ◦ T (ϕ)−1] ◦ T (ϕ ◦ ψ).

This proves the semi-direct structure assertion (3.35). �

What is the Lie algebra Eo(n, n) corresponding to the group EO(n, n)? First, recall the
vector bundle D(E) defined in Remark 2.4.2. For any Lie algebroid (L, l, [·, ·]L), any vector
bundle morphism R : L → D(E) preserving the brackets is called a representation of Lie
algebroid L on the vector bundle E. See [74] for details.

We claim that Γ(D(E)) is exactly the Lie algebra corresponding to EAut(E). To see this,
assume that (Ft, ϕt) is a 1-parameter subgroup of automorphisms in EAut(E). In particular,
ϕt is a 1-parameter subgroup of Diff(M), hence a flow of some vector field X ∈ X(M). Define
F : Γ(E) → Γ(E) as F(e) := d

dt

∣∣
t=0
F−t(e) for all e ∈ Γ(E). Note that for f ∈ C∞(M), we

have F−t(fe) = (f ◦ ϕt)F−t(e). Differentiating this condition with respect to t at t = 0 gives

F(fe) = fF(e) + [
d

dt

∣∣∣∣
t=0

f(ϕt)]e = fF(e) + (X.f)e. (3.36)

This proves that F ∈ Γ(D(E)), and moreover a(F) = d
dt

∣∣
t=0

ϕt. We can also write the relation
of F and Ft as exp (tF) := F−t.

Let us now return to the Lie algebra Eo(n, n). Let (Ft, ϕt) be a 1-parameter subgroup of
EO(n, n). The corresponding element of Eo(n, n) will be F = d

dt

∣∣
t=0
F−t. Since Ft ∈ EO(n, n),

we have
〈F−t(e),F−t(e)〉E = 〈e, e′〉E ◦ ϕt. (3.37)

Differentiating this with respect to t at t = 0 leads us to the definition

Eo(n, n) := {F ∈ Γ(D(E)) | a(F).〈e, e′〉E = 〈F(e), e′〉E + 〈e,F(e′)〉E , ∀e, e′ ∈ Γ(E)}. (3.38)

Recall that (D(E), a, [·, ·]) is the Lie algebroid defined in Remark 2.4.2. Lemma 3.3.1 suggests
that Eo(n, n) can be also written as a semi-direct product, this time of Lie algebras. Before
proceeding to the lemma, note that there is a Lie algebroid representation R : TM → D(E)
of the Lie algebroid (TM, IdM , [·, ·]) which takes values in Eo(n, n). Indeed, let X ∈ X(M).
Define R(X) ∈ Γ(D(E)) as R(X)(e) = [X+0, e]D. It follows from (2.26) that R(X) ∈ Eo(n, n).
We can now state

Lemma 3.3.2. Lie algebra Eo(n, n) can be decomposed as

Eo(n, n) = X(M) n o(n, n), (3.39)

where X(M) acts on o(n, n) by Lie derivatives.

Proof. Let F ∈ Eo(n, n). Define F0 ∈ o(n, n) as F = R(a(F)) + F0. This proves the as-
sertion on the level of vector spaces. First note that [R(X), R(Y )] = R([X,Y ]) because R
is a Lie algebroid representation. From (3.33) we see that every F0 ∈ o(n, n) corresponds
to a triplet (N,B,Π) ∈ End(TM) ⊕ Ω2(M) ⊕ X2(M). Going through the construction of
this correspondence above (3.14) it is straightforward to show that if F0 ≈ (N,B,Π), then
[R(X),F0] ≈ (LXN,LXB,LXΠ) where N is viewed as (1, 1)-tensor on M . This proves the
assertion (3.39) on the level of Lie algebras. �
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3.4 Derivations algebra of the Dorfman bracket

Let us now focus on the Dorfman bracket (2.14). It satisfies the Leibniz rule (2.4) in the right
input, and Courant algebroid induced Leibniz rule (2.30) in the left input. We will now examine
the Lie algebra Der(E) of its derivations defined as

Der(E) = {F ∈ Γ(D(E)) | F([e, e′]D) = [F(e), e′]D + [e,F(e′)]D, ∀e, e′ ∈ Γ(E)}. (3.40)

Let us emphasize that Der(E) is not a C∞(M)-module. Recall the map R defined just before
Lemma 3.3.2. It follows from the Leibniz identity (2.5) that for every X ∈ X(M), we have
R(X) ∈ Der(E). Now observe that any F ∈ Der(E) can be decomposed as

F = R(a(F)) + F0. (3.41)

Note that F0 is now C∞(M)-linear, or equivalently F0 ∈ End(E). Moreover, it is a difference
of two derivations, hence itself a derivation. We can now focus on finding all F0 ∈ Der(E) ∩
End(E). First, there are now certain restrictions forced by the compatibility of the Leibniz
rule (2.4) and the derivation property (3.40). Indeed, evaluating the derivation F0 on [e, fe′]
in two ways, we obtain

ρ(F0(e)) = 0, (3.42)

for all e ∈ Γ(E). This shows that F0 must have a formal block form

F0 =

(
0 0
F21 F22

)
, (3.43)

where F21 ∈ Hom(TM, T ∗M) and F22 ∈ End(T ∗M). Next, there comes the compatibility with
the left Leibniz rule (2.30). We obtain the condition

〈e, e′〉EF0(Df) = {〈F0(e), e′〉E + 〈e,F0(e′)〉E}Df, (3.44)

which has to hold for all e, e′ ∈ Γ(E) and f ∈ C∞(M). In particular, for 〈e, e′〉E = 0 this implies
〈F0(e), e′〉E + 〈e,F0(e′)〉E = 0. This immediately implies that 〈F21(X), Y 〉+ 〈X,F21(Y )〉 = 0,
and thus F21(X) = B(X) for B ∈ Ω2(M). Choosing e = X ∈ X(M) and e′ = ξ ∈ Ω(M), we
get

〈ξ,X〉F22(df) = 〈F22(ξ), X〉df. (3.45)

This has to hold for any (f,X, ξ), which is possible only if F22(ξ) = λξ for some λ ∈ C∞(M).
We see that F0 has to have the form

F0 =

(
0 0
B λ · 1

)
. (3.46)

It remains to plug this into condition (3.40) to find the conditions on B and λ. We have

F0[X + ξ, Y + η]D = B([X,Y ]) + λ(LXη − iY dξ), (3.47)

[F0(X + ξ), Y + η]D = −iY d(B(X) + λξ), (3.48)

[X + ξ,F0(Y + η)]D = LX(B(Y ) + λη). (3.49)

Inserting this into (3.40) yields two independent equations

B([X,Y ]) = LX(B(Y ))− iY d(B(X)), (3.50)

λLXη = LX(λη). (3.51)

Recall that B(X) = −iXB. We can use the usual Cartan formulas to rewrite (3.50) as a
condition dB = 0, that is B ∈ Ω2

closed(M). Second equation forces λ to be locally constant,
that is λ ∈ Ω0

closed(M). We have just proved the following proposition.
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Proposition 3.4.1. Let Der(E) be the space of derivations of the Dorfman bracket [·, ·]D, that
is (3.40) holds. Then as a vector space, it decomposes as

Der(E)
.
= X(M)⊕ Ω0

closed(M)⊕ Ω2
closed(M). (3.52)

Every F ∈ Der(E) decomposes uniquely as F = R(X) + Fλ + FB, where R(X)(Y + η) =
([X,Y ],LXη) for all X,Y ∈ X(M) and η ∈ Ω1(M). Vector bundle endomorphisms Fλ and FB
are defined as

Fλ =

(
0 0
0 λ · 1

)
, FB =

(
0 0
B 0

)
, (3.53)

where λ ∈ Ω0
closed(M) and B ∈ Ω2

closed(M). Nontrivial commutation relations are

[R(X), R(Y )] = R([X,Y ]), (3.54)

[R(X), FB ] = FLXB , (3.55)

[Fλ,FB ] = FλB . (3.56)

On the Lie algebra level, we thus have

Der(E) = X(M) n (Ω0
closed(M) n Ω2

closed(M)), (3.57)

where Ω0
closed(M), Ω2

closed(M) are viewed as Abelian Lie algebras, Ω0
closed(M) acts on 2-forms

in Ω2
closed(M) by multiplication, and X(M) acts on Ω0

closed n Ω2
closed(M) by Lie derivatives.

Finally, when we restrict to the subalgebra Eo(n, n), we have

Der(E) ∩ Eo(n, n) = X(M) n Ω2
closed(M). (3.58)

Proof. We have proved the first part in the text above. The commutation relations can be
directly calculated. �

3.5 Automorphism group of the Dorfman bracket

Let us now examine the group of Dorfman bracket automorphisms. Its subgroup of orthogonal
automorphisms is well-known for a long time and it is in fact one of the main reasons why the
Dorfman bracket and generalized geometry play such an important role in string theory. We
roughly follow the proof of Gualtieri in [39]. From the Courant algebroid perspective is makes
sense to restrict to EO(n, n), because in this case one obtains an automorphism of the whole
Courant algebroid structure. However, for the sake of generalization to Leibniz algebroids
where there is no pairing anymore, we will discuss the whole automorphism group. We define
the Dorfman bracket automorphism group AutD(E) as

AutD(E) := {(F , ϕ) ∈ EAut(E) | [F(e),F(e′)]D = F [e, e′]D, ∀e, e′ ∈ Γ(E)}. (3.59)

This group decomposes similarly as EO(n, n) in Lemma 3.3.1. Indeed, let (F , ϕ) in AutD(E).
Then recall the map (T (ϕ), ϕ), defined as T (ϕ)(X+ξ) = ϕ∗(X)+(ϕ−1)∗(ξ) for all X+ξ ∈ Γ(E).
It follows from the usual properties of the Lie derivative and the exterior differential that
(T (ϕ), ϕ) ∈ AutD(E). Define F0 ∈ Aut(E) as F = F0 ◦ T (ϕ). It follows that F0 ∈ AutD(E),
and we can thus focus on finding all vector bundle morphisms F0 over the identity preserving
the bracket.
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First note that it follows from the compatibility of (3.59) and Leibniz rule (2.4) that its
projection using ρ satisfies ρ(F0(e)) = ρ(e) for all e ∈ Γ(E). This shows that F0 has to be of
the block form

F0 =

(
1 0
F21 F22

)
. (3.60)

The Leibniz rule compatibility in the left input (2.30) gives the condition

〈e, e′〉EF0(Df) = 〈F0(e),F0(e′)〉EDf, (3.61)

for all e, e′ ∈ Γ(E). Very similarly to the equation (3.44), this proves that F21(X) = B(X) for
B ∈ Ω2(M), and F22(ξ) = λ · ξ for some λ ∈ C∞(M). We require F0 to be fiber-wise bijective,
and thus λ(m) 6= 0 for all m ∈M . This restricts F0 to have the block form

F0 =

(
1 0
B λ · 1

)
. (3.62)

Finally, we have to plug F0 into the condition (3.59). We have

F0[X + ξ, Y + η]D = [X,Y ] +B([X,Y ]) + λ{LXη − iY dξ}, (3.63)

[F0(X + ξ),F0(Y + η)]D = [X,Y ] + LX(B(Y ) + λη)− iY d(B(X) + λξ). (3.64)

Combining these two expressions gives the same conditions on B and λ as (3.40). We thus
get B ∈ Ω2

closed(M), and λ ∈ Ω0
closed(M). Let G(Ω0

closed(M)) denote the Abelian group of
everywhere non-zero closed 0-forms on M . Note that G(Ω0

closed(M)) is in fact isomorphic to a
direct product of k copies of (R \ {0}, ·), where k is a number of connected components of M .
We have just proved the following proposition:

Proposition 3.5.1. Let AutD(E) be the group of automorphisms (3.59) of the Dorfman bracket
(2.14). Then it has the following group structure:

AutD(E) = (Ω2
closed(M) oG(Ω0

closed(M))) o Diff(M), (3.65)

where Ω2
closed(M) is viewed as an Abelian group with respect to addition, G(Ω0

closed(M)) acts
on Ω2

closed(M) by multiplication, and Diff(M) acts on Ω2
closed(M) oG(Ω0

closed(M)) by inverse
pullbacks. Every (F , ϕ) ∈ AutD(E) can be uniquely decomposed as

F = eB ◦ Sλ ◦ T (ϕ), (3.66)

where eB = expFB, and Sλ(X + ξ) = X + λξ, for unique B ∈ Ω2
closed(M) and locally constant

everywhere non-zero function λ ∈ G(Ω0
closed(M)). Finally, the subgroup of AutD(E) consisting

of (extended) orthogonal transformations is

AutD(E) ∩ EO(n, n) = Ω2
closed o Diff(M). (3.67)

Proof. Only the multiplication rules remain to be proved. Let G = eB
′ ◦ Sλ′ ◦ T (ϕ′). By the

direct calculation, one obtains

F ◦ G = eB+λ(ϕ−1)∗B′ ◦ Sλ(ϕ−1)∗λ′ ◦ T (ϕ ◦ ϕ′). (3.68)

Symbolically, this yields the multiplication rule

(B, λ, ϕ) ∗ (B′, λ′, ϕ′) = (B + λ(ϕ−1)∗B′, λ(ϕ−1)∗λ′, ϕ ◦ ϕ′), (3.69)

which is exactly the double semi-direct product (3.65). �

48



Finally, let us show that every Dorfman bracket derivation F ∈ Der(E) can explicitly be
integrated to a 1-parameter subgroup exp (tF) ⊆ AutD(E) of the group of Dorfman bracket
automorphisms. Note that t ∈ (−ε, ε) for some ε > 0, and in general, t cannot be expanded to
R. exp (tF) is thus a 1-parameter subgroup with ”certain conditions on parameters”.

We have shown in Proposition 3.4.1 that every F ∈ DerE can uniquely be written as
F = R(X) + Fλ + FB for X ∈ X(M), λ ∈ Ω0

closed(M), and B ∈ Ω2
closed(M). Let φXt be the

flow corresponding to X, for t ∈ (−ε, ε). There lies the reason of t limitations: X may not be
a complete vector field. We will now look for exp (tF) in the form

exp (tF) = eB(t) ◦ Sµ(t) ◦ T (φX−t), (3.70)

where B(t) ∈ Ω2
closed(M), and µ(t) ∈ G(Ω0

closed(M)) for every t ∈ (−ε, ε). We have

exp (tF)(Y + η) = φX−t∗(Y ) +B(t)(φX−t∗(Y )) + µ(t)φX∗t (η), (3.71)

for all Y + η ∈ Γ(E). Differentiating with respect to t at t = 0 gives the condition

F(Y + η) = (1 +B(0))[X,Y ] + [
d

dt

∣∣∣∣
t=0

B(t)](Y ) + [
d

dt

∣∣∣∣
t=0

µ(t)]η + µ(0)Lxη. (3.72)

Comparing this with our parametrization of F gives the conditions on B(t), and µ(t):

d

dt

∣∣∣∣
t=0

µ(t) = λ, µ(0) = 1,
d

dt

∣∣∣∣
t=0

B(t) = B, B(0) = 0. (3.73)

First two conditions give µ(t) = exp tλ. To find the solution for B, we will use the 1-parameter
subgroup property of exp (tF). Note that we have φX∗t (λ) = λ. This follows from the fact that
flows cannot flow outside of the single connected component. Using the multiplication rule
(3.68), we get

exp (tF) ◦ exp (sF) = eB(t)+exp tλ·φX∗t (B(s)) ◦ Se(t+s)λ ◦ T (φX−(t+s)). (3.74)

Comparing this to exp ((t+ s)F) gives the condition

B(t+ s) = B(t) + exp tλ · φX∗t (B(s)). (3.75)

Differentiate both sides with respect to s at s = 0. This yields

Ḃ(t) = exp tλ · φX∗t B, (3.76)

and consequently

B(t) =

∫ t

0

{exp kλ · φX∗k B}dk. (3.77)

It is straightforward to check that such B(t) indeed satisfies (3.75) and the two initial conditions
(3.73). We have thus made our way to the following proposition:

Proposition 3.5.2. Let F ∈ Der(E) be a derivation of the Dorfman bracket. Then there
is an ε > 0 and a 1-parameter subgroup exp (tF) ⊆ AutD(E), where t ∈ (−ε, ε), such that
F = d

dt

∣∣
t=0

exp (tF). Explicitly, if F = R(X) + Fλ + FB for X ∈ X(M), λ ∈ Ω0
closed(M), and

B ∈ Ω2
closed(M), we have

exp (tF) = eB(t) ◦ Sµ(t) ◦ T (φX−t), (3.78)

where µ(t) = exp tλ, φXt is the flow of X, and

B(t) =

∫ t

0

{exp kλ · φX∗k B}dk. (3.79)
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Proof. We have shown above that exp (tF) integrates F . We just have to show that for each
t, exp (tF) ∈ AutD(E). According to Proposition 3.5.1, this happens if and only if B(t) ∈
Ω2
closed(M), and µ(t) ∈ G(Ω0

closed(M)). But this clearly holds because d commutes with the
integration and pullbacks. �

3.6 Twisting of the Dorfman bracket

We have shown in Proposition 3.5.1 that F ∈ Aut(E) preserving the bracket must be of
the form (3.60) for B ∈ Ω2

closed(M) and λ ∈ Ω0
closed(M). Let us now focus only on O(n, n)

transformations, and thus set λ ≡ 1. In this case simply F = eB . What happens with the
bracket for dB 6= 0? This is what we will examine in this section. Define a new bracket [·, ·]′D
as

[e, e′]′D = e−B [eB(e), eB(e′)]D, (3.80)

for all e, e′ ∈ Γ(E). Rewriting this bracket explicitly gives

[X + ξ, Y + η]′D = [X,Y ] + LX(η +B(Y ))− iY d(ξ +B(X))−B([X,Y ])

= [X + ξ, Y + η]D + LX(B(Y ))− iY d(B(X))−B([X,Y ])

= [X + ξ, Y + η]D − dB(X,Y, ·).
(3.81)

This proves that [·, ·]′D is precisely the H-twisted Dorfman bracket (2.32), where H = dB.
One can in fact show something more general: Twisted Dorfman brackets corresponding to the
different representatives of the same cohomology class [H] ∈ H3(M,R) are related precisely by
a B-transform.

Proposition 3.6.1. Let H ∈ Ω3
closed(M), and B ∈ Ω2(M). Then

[eB(e), eB(e′)]HD = eB([e, e′]H+dB
D ). (3.82)

Proof. Just repeat the calculation (3.81). �

3.7 Dirac structures

In Section 3.2, we have introduced maximally isotropic subspaces and their examples. Gen-
eralizing this to the vector bundle E = TM ⊕ T ∗M , we have an additional structure at our
disposal, namely the Dorfman bracket. It is a well known fact that subbundles of TM which
are involutive with respect to the vector field commutator bracket are of an additional geo-
metrical significance - they are tangent bundles to integral submanifolds of distributions. This
justifies why it is interesting to study the subbundles of E involutive with respect to the
Dorfman bracket [·, ·]D. In particular, one is interested in involutive subbundles, where the
skew-symmetry ”anomaly” (2.28) disappears. This is precisely the main idea leading to the
definition of Dirac structures. Let us remark that study of Dirac structures was in fact the
origin of all Courant algebroid brackets, see [26].

Definition 3.7.1. Let (E, ρ, 〈·, ·〉E , [·, ·]E) be a Courant algebroid. A subbundle L ⊆ E is
called an almost Dirac structure, if for all e, e′ ∈ Γ(L), we have 〈e, e′〉E = 0.

An almost Dirac structure L is called a Dirac structure, if L is involutive with respect to
[·, ·]E , that is [e, e′]E ∈ Γ(L) for all e, e′ ∈ Γ(L).

Note that [·, ·]E |Γ(L)×Γ(L) together with ρ|Γ(L) forms a Lie algebroid structure on L.
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We can identify several examples of almost Dirac structures of E = TM⊕T ∗M in Example
3.2.2, if we just replace subspaces with subbundles, and elements of exterior powers of vector
spaces by sections of corresponding vector bundles. We will now show under which conditions
these become Dirac structures.

Example 3.7.2. Let E = TM ⊕ T ∗M be equipped with the Dorfman bracket (2.14).

• Let GB be the graph (3.27) of a 2-form B ∈ Ω2(M). We can examine the involutivity.
Let X +B(X), Y +B(Y ) ∈ Γ(GB). Then

[X +B(X), Y +B(Y )]D = [X,Y ] + LX(B(Y ))− iY d(B(X)).

We see that [X +B(X), Y +B(Y )]D ∈ Γ(GB) iff

LX(B(Y ))− iY d(B(X)) = B([X,Y ]), (3.83)

for all X,Y ∈ X(M). This is once more the condition (3.50), equivalent to dB = 0. We
conclude that GB is a Dirac structure iff B ∈ Ω2

closed(M).

• Let GΠ be a graph (3.28) of a bivector Π ∈ X2(M). Involutivity condition implies the
equation

[Π(ξ),Π(η)] = Π(LΠ(ξ)η − iΠ(η)dξ), (3.84)

for all ξ, η ∈ Ω1(M). We will show in Chapter 5 that this is equivalent to the Jacobi
identity for {f, g} := Π(df, dg). We conclude that GΠ is a Dirac structure if and only if
Π ∈ X2(M) is a Poisson bivector.

• Let ∆ ⊆ TM be a subbundle (that is in fact a smooth distribution on M). Let L =
∆⊕Ann(∆) ⊆ E. Examining the involutivity condition shows that L is a Dirac structure,
iff [∆,∆] ⊆ ∆, that is ∆ is an integrable distribution.

3.8 Generalized metric

We will now introduce a key concept for the applications of generalized geometry in string
theory. In the context of generalized geometry, it appeared first in [39]. The name generalized
metric was probably used for the first time by Hitchin in [43]. Generalized metric has several
equivalent formulations, which we all present here.

Definition 3.8.1. Let E be a vector bundle with a fiber-wise metric 〈·, ·〉E . Let τ ∈ End(E)
be an involution of E, that is τ2 = 1. We say that τ is a generalized metric, if the formula

Gτ (e, e′) := 〈e, τ(e′)〉E , (3.85)

for all e, e′ ∈ Γ(E), defines a positive definite fiber-wise metric Gτ on E. When talking about
generalized metric, we will not distinguish between τ and Gτ .

There are some remarks to be made about τ . It follows from the definition of a generalized
metric, that τ must be symmetric with respect to 〈·, ·〉E , and consequently also orthogonal.

There is one nice property of involutive maps.
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Lemma 3.8.2. Let V be a finite-dimensional real vector space, and A ∈ End(V ) satisfies
A2 = 1. Then A has eigenvalues ±1 and it is diagonalizable, that is V = V+ ⊕ V−, and
A(v+ + v−) = v+ − v−.

Proof. Let p(z) = z2−1. Then p(A) = 0, and a minimal polynomial mA of A thus must divide
p. For mA(z) = z±1, this would imply A = ±1. In all other cases mA(z) = (z+1)(z−1). This
shows that all roots of mA have multiplicity 1, which is equivalent to A being diagonalizable.
Moreover, its roots are precisely the eigenvalues of A. �

We can now use this result to reformulate the definition of generalized metric in case when
〈·, ·〉E has a constant signature (the same at each fiber).

Proposition 3.8.3. Let E be a vector bundle with a fiber-wise metric 〈·, ·〉E of constant sig-
nature (p, q). Definition 3.8.1 of generalized metric τ is then equivalent to a definition of a
positive subbundle V+ ⊆ E of maximal possible rank p.

Proof. First, let τ ∈ End(E) be a generalized metric. It induces an involution τm in each
fiber Em. By previous Lemma, there exist its ±1 eigenspaces Vm+ and Vm−, such that Em =
Vm+ ⊕ Vm−. By definition of generalized metric τ , Vm+ and Vm− are positive definite and
negative definite subspaces respectively. By our assumption, this implies dimVm+ = p, and
dimVm− = q. Now define

V± := ker (τ ∓ 1). (3.86)

We have just proved that vector bundle morphisms τ ∓ 1 have both constant rank, and V±
are thus well-defined subbundles of E. Moreover, rankV+ = p, and V+ is a positive definite
subbundle. Note that E = V+ ⊕ V−, and V− = (V+)⊥, where the orthogonal complement ⊥ is
taken with respect to 〈·, ·〉E .

Conversely, let V+ ⊆ E be a positive-definite subbundle or rank p.

First, having a vector space W with positive definite subspace W+ ⊆W of dimension p with
respect to signature (p, q) metric 〈·, ·〉W , define W− := (W+)⊥. Clearly W = W+⊕W−. Is W−
a negative definite subspace? If there would be a non-zero strictly positive vector w ∈W−, we
could define W ′+ = W ⊕R{w}, which would be a positive definite subspace of W of dimension
p+ 1. This cannot happen. If w ∈ W− would be a non-zero isotropic vector, we can take any
nonzero v ∈W+, and define w′ = v+w. Then 〈w′, w′〉W = 〈v, v〉W > 0, and W ′+ = W+⊕R{w′}
would be a positive definite subspace of W of dimension p+ 1, which is again impossible. We
conclude that necessarily 〈w,w〉W < 0.

To a positive definite subbundle V+ of rank p, we can define V− = (V+)⊥, where ⊥ is
taken with respect to 〈·, ·〉E . This is a well-defined rank q subbundle, which is by the previous
discussion negative definite, and V = V+⊕V−. We can now define τ ∈ End(E) as τ(e+ +e−) :=
e+ − e−, for e± ∈ V±. One checks easily that τ satisfies all properties required by Definition
3.8.1. �

To get back to E = TM ⊕ T ∗M , we now bring an interpretation of the generalized metric
most useful for actual calculations.

Proposition 3.8.4. Let E be a vector bundle with a fiber-wise metric 〈·, ·〉E of signature (n, n),
and let E = L⊕ L∗, where L and L∗ are isotropic subbundles with respect to 〈·, ·〉E. Note that
L∗ can be identified with the vector bundle dual to L.

Generalized metric τ on E is then equivalent to a unique pair (g,B), where g ∈ Γ(S2L∗) is
a positive definite fiber-wise metric on L, and B ∈ Ω2(L) is a 2-form on L.
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Proof. Let τ be a generalized metric. We meet the requirements of Proposition 3.8.3, and thus
E = V+ ⊕ V−, where rankV± = n, and V+ and V− form the positive and negative definite
subbundles with respect to 〈·, ·〉E . Now, because V+∩L = V+∩L∗ = {0}, we see that V+ must
be a graph of some vector bundle morphism A ∈ Hom(L,L∗). A can uniquely be decomposed
as A = g + B, where g ∈ Γ(S2L∗), and B ∈ Ω2(L). Every section e ∈ Γ(V+) can be thus
written as e = X + (g +B)(X), where X ∈ Γ(L). We obtain

〈e, e〉E = 〈X + (g +B)(X), X + (g +B)(X)〉E = 2〈g(X), X〉E = 2g(X,X). (3.87)

Note that the canonical pairing between L and L∗ is provided by 〈·, ·〉E . Because V+ is the
positive definite subbundle, we see that g(X,X) > 0 for all nonzero X ∈ Γ(L), proving the
positivity of the metric g. See that A is always a vector bundle isomorphism. Also note that
V− must be for the same reasons the graph of some vector bundle morphism Ã ∈ Hom(L,L).

From 〈V+, V−〉E = 0 it follows that Ã = −g +B = −AT .

Conversely, let (g,B) be a pair, where g ∈ Γ(S2L∗) is a positive definite metric and B ∈
Ω2(L). We can define V+ to be the graph of A = g + B. Repeating the calculation (3.87)
shows that V+ is a positive definite subbundle of rank n. This by Proposition 3.8.3 defines a
generalized metric on the vector bundle E. �

In the rest of this section, we will assume E = TM⊕T ∗M , and L = TM , L∗ = T ∗M . These
satisfy the requirements of the previous proposition. However, keep in mind that everything
works also for general L and L∗.

We will now rewrite the map τ and the corresponding fiber-wise metric Gτ in terms of g
and B. First, note that we can explicitly construct the projectors P± : E → V±. Define two
isomorphisms Ψ± : TM → V± as

Ψ±(X) = X + (±g +B)(X), (3.88)

for all X ∈ X(M). Next, note that we can rewrite X + ξ ∈ Γ(E) as

X + ξ =
1

2
(X + (g +B)(X)) +

1

2
(X + (−g +B)(X))

+
1

2
(g−1(ξ) + (g +B)(g−1(ξ)))− 1

2
(g−1(ξ) + (−g +B)(g−1(ξ)))

− 1

2
(g−1B(X) + (g +B)(g−1B(X))) +

1

2
(g−1B(X) + (−g +B)(g−1B(X)))

=
1

2
Ψ+

(
X + g−1(ξ)− g−1B(X)

)
+

1

2
Ψ−
(
X − g−1(ξ) + g−1B(X)

)
.

(3.89)

We thus obtain

P±(X + ξ) =
1

2
Ψ±
(
X ± g−1(ξ)∓ g−1B(X)

)
. (3.90)

We have defined V± as ±1 eigenbundles of τ . Hence

τ(X + ξ) =
1

2
Ψ+(X + g−1(ξ)− g−1B(X))− 1

2
Ψ−(X − g−1(ξ) + g−1B(X))

= g−1(ξ)− g−1B(X) + (g −Bg−1B)(X) +Bg−1(ξ).
(3.91)

This proves that τ has a formal block form

τ =

(
−g−1B g−1

g −Bg−1B Bg−1

)
. (3.92)
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Fiber-wise metric Gτ in the block form is obtained from τ by multiplying it by matrix gE ,
which is the same as (3.1). Thus

Gτ =

(
g −Bg−1B Bg−1

−g−1B g−1

)
. (3.93)

Now recall Lemma 3.1.2. We see that the top-left and bottom-right blocks are invertible, and
thus both decompositions of Gτ exist. We find

Gτ =

(
1 B
0 1

)(
g 0
0 g−1

)(
1 0
−B 1

)
. (3.94)

This proves that Gτ = (e−B)TGEe−B , where GE is the block diagonal metric

GE = BDiag(g, g−1). (3.95)

This observation gives us two interesting facts. First, note that the blocks in the decompo-
sition are unique, which re-proves the uniqueness assertions of the preceding proposition. Next,
this helps us to prove that not every positive definite fiber-wise metric on E is a generalized
metric. We see that det (Gτ ) = 1. Define G := λGτ , where λ 6= 1 is a positive real constant.
G is clearly a positive definite fiber-wise metric on E, but det (G) = λ2n 6= 1. We can now
give the last equivalent definition of the generalized metric.

Proposition 3.8.5. Let E be a vector bundle, and 〈·, ·〉E be a fiber-wise metric on E. We say
that fiber-wise metric G is a generalized metric, if G is positive definite and G ∈ Hom(E,E∗)
defines an orthogonal map. We use the fact that the dual vector bundle E∗ is naturally equipped
with an induced fiber-wise metric 〈·, ·〉E∗ = g−1

E .

We claim that this definition coincides with Definition 3.8.1.

Proof. Denote by gE ∈ Hom(E,E∗) the vector bundle isomorphism induced by a fiber-wise
metric 〈·, ·〉E . Let τ ∈ End(E) be a generalized metric according to Definition 3.8.1. The
properties of τ can be now written as

gEτ = τT gE , τ
T gEτ = gE , τ

2 = 1. (3.96)

The metric Gτ and τ are related simply as Gτ = gEτ . We have to show that 〈e, e′〉E =
〈Gτ (e),Gτ (e′)〉E∗ . This can be rewritten as the condition

Gτg
−1
E Gτ = gE . (3.97)

Plugging in for Gτ translates into τT gEτ = gE . Conversely, let G be a generalized metric
according to the definition in 3.8.5. This implies that G satisfies (3.97). Define τ := g−1

E ◦G.
We have

gEτ − τT gE = gE(gEG)− (Gg−1
E )gE = G−G = 0.

This proves that τ is symmetric with respect to 〈·, ·〉E . Then

τT gEτ = (Gg−1
E )gE(g−1

E G) = Gg−1
E G = gE ,

where we have used (3.97) in the last step. This proves that τ is orthogonal with respect to
〈·, ·〉E . The property τ2 = 1 follows automatically (any map which is both symmetric and
orthogonal is an involution). �
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To conclude this section, note that there is no actual reason to choose the map A ∈
Hom(TM, T ∗M) in order to describe V+ in the proof of Proposition 3.8.4. One can as well
describe V+ using the map A−1 ∈ Hom(T ∗M,TM), which decomposes as A−1 = G−1 + Π,
where G is positive definite metric on M , and Π ∈ X2(M). The two descriptions are related as

(g +B)−1 = G−1 + Π. (3.98)

One can find G and Π explicitly in terms of (g,B) as

G = g −Bg−1B, (3.99)

Π = −g−1B(g −Bg−1B)−1. (3.100)

To obtain this use the decomposition (3.21) for Gτ in the form (3.93), and then note that Gτ

can be also decomposed as

Gτ =

(
1 0
Π 1

)(
G 0
0 G−1

)(
1 −Π
0 1

)
. (3.101)

A comparison of the blocks gives exactly the relations (3.99, 3.100).

3.9 Orthogonal transformations of the generalized metric

There is a natural action of the orthogonal group on the space of generalized metrics. We
will analyze this action mainly in terms of the corresponding fields (g,B). We consider E =
TM ⊕ T ∗M . Let τ be a generalized metric, and O ∈ O(n, n). Define τ ′ ∈ End(E) as

τ ′ := O−1τO. (3.102)

Then Gτ ′ = gEτ
′ = OT gEτO = OTGτO. Clearly τ ′2 = 1. This means that τ ′ is also a

generalized metric. Corresponding eigenbundles are related as

V τ
′

± = O−1V τ± . (3.103)

We have also proved that there is always a unique pair (g,B) corresponding to τ . Let (g′, B′)
be a pair corresponding to τ ′. How are (g′, B′) and (g,B) related? Let A = g + B, and
A′ = g′ + B′. By definition, V τ+ = GA, and V τ

′

+ = GA′ , where GA and GA′ are the graphs of
the respective vector bundle morphisms. We will use the notation introduced in Section 3.1.
Let X ∈ X(M). We have

O−1(X +A(X)) = (OT4 +OT2 A)(X) + (OT3 +OT1 A)(X).

Define Y = (OT4 +OT2 A)(X). Then

O−1(X +A(X)) = Y + (OT3 +OT1 A)(OT4 +OT2 A)−1(Y ).

If the inverse of OT4 +OT2 A exists, we get the following formula for A′:

A′ = (OT3 +OT1 A)(OT4 +OT2 A)−1. (3.104)

Recall the isomorphisms Ψ± ∈ Hom(TM, V±) defined by (3.88), and let Ψ̃± ∈ Hom(T ∗M,V±)

be similarly induced isomorphisms: Ψ̃±(ξ) = ξ + (±G−1 + Π)(ξ), for all ξ ∈ Ω1(M). Define
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new vector bundle morphisms Φ±, Υ± by the following commutative diagram (in fact there
are two independent diagrams, one for +, one for −):

T ∗M T ∗M

V τ± V τ
′

±

TM TM

Υ±

Ψ̃τ
± Ψ̃τ′

±

O−1

Ψτ
±

Φ±

A

Ψτ′
±

A′
(3.105)

All involved maps are vector bundle isomorphisms, and so have to be Φ±, Υ±. We can find
explicit formulas:

Φ+ = OT4 +OT2 A, Φ− = OT4 −OT2 AT , (3.106)

Υ+ = OT1 +OT3 A
−1, Υ− = OT1 −OT3 A−T . (3.107)

This proves that the inverse in (3.104) exists. These maps in fact transform between the
involved Riemannian metrics.

Proposition 3.9.1. There hold the following conjugation relations:

g′−1 = Φ±g
−1ΦT

±, (3.108)

g′ −B′g′−1B′ = Υ±(g −Bg−1B)ΥT
±. (3.109)

Proof. We will prove only one of the four equations, because the other ones follow in the same
way. First note that 〈Ψτ

+(X),Ψτ
+(Y )〉E = 2g(X,Y ), and similarly for τ ′. Hence

2g(X,Y ) = 〈Ψτ
+(X),Ψτ

+(Y )〉E = 〈OΨτ ′

+ (Φ+(X)),OΨτ ′

+ (Φ+(Y ))〉E = 2g′(Φ+(X),Φ+(Y )).

Thus g = ΦT
+g
′Φ+, which is precisely (3.108) with the + sign. �

Now, note that formula (3.104) can be rewritten as

A′ = Υ+AΦ−1
+ = Φ−T− AΥT

−. (3.110)

The latter expression can be found as the analogue of (3.104) derived using the subbundle V−.
Together with the previous proposition, we can find transformation rules for B′.

B′ = ((Υ+ −Φ−T+ )g + Υ+B)Φ−1
+ = (−(Υ− −Φ−T− )g + Υ−B)Φ−1

− . (3.111)

Using the orthogonal group, we can describe the set of all generalized metrics in a more intrinsic
way. To do so, we first need to prove two following lemmas.

Lemma 3.9.2. The action of O(n, n) on the set of generalized metrics is transitive.

Proof. Let G and G′ be two generalized metrics on E. Then G = [e−B ]TGEe−B , and G′ =
[e−B

′
]TG′Ee−B

′
. Because e−B and e−B

′
are O(n, n) transformations, it suffices to show that

there exists O ∈ O(n, n), such that G′E = OTGEO. For any two Riemannian metrics g and g′

on M , there is a vector bundle isomorphism N ∈ Aut(TM), such that g′ = NT gN . Define
O := ON , where ON is a block diagonal map

ON =

(
N 0
0 N−T

)
. (3.112)

Obviously ON ∈ O(n, n) and G′E = OTNGEON . This finishes the proof. �
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On the other hand, the action of O(n, n) is not free, as the next lemma shows.

Lemma 3.9.3. Let G be a generalized metric. Let O(n, n)G ⊆ O(n, n) be its stabilizer sub-
group. Then

O(n, n)G
∼= O(n)×O(n). (3.113)

Proof. Any morphism O stabilizing G must preserve the subbundles V+ and V−, it is thus
block diagonal with respect to decomposition E = V+ ⊕ V−. Moreover, 〈·, ·〉E has the form

〈e+ + e−, e
′
+ + e′−〉E = 〈e+, e

′
+〉+ − 〈e−, e′−〉−, (3.114)

for all e±, e′± ∈ V±, and 〈·, ·〉± are positive definite fiber-wise metrics on V±. This proves
that O ∈ O(n, n) iff both its diagonal blocks are in O(n). We conclude that O(n, n)G =
O(n)×O(n). �

These two observations are sufficient to describe the set of all generalized metrics on E.

Proposition 3.9.4. The set of all generalized metrics is the coset space O(n, n)/(O(n)×O(n)).

Proof. There always exists at least one generalized metric, for example GE for some Riemannian
metric g. On every manifold M , there exists some g (it is constructed using the partition of
unity). The space of all generalized metrics is its orbit by Lemma 3.9.2. But every orbit is
isomorphic to O(n, n)/O(n, n)G, and thus by Lemma 3.9.3 to O(n, n)/(O(n)×O(n)). �

Example 3.9.5. Let us conclude this section with a few examples of the O(n, n) actions on
the generalized metric G described by a pair of fields (g,B).

• Let Z ∈ Ω2(M) be a 2-form. Set O = e−Z . In particular, we have

O1 = 1, O2 = 0, O3 = −Z, O4 = 1. (3.115)

Hence Φ± = 1, Υ± = 1 + Z(±g +B)−1. We get g′ = g, and

B′ = (∓(Υ± − 1)g + Υ±B) = B + Z. (3.116)

Of course, we could have seen this directly from G′ = (e−Z)T [(e−B)TGEe−B ]e−Z . In
particular, if B and B′ are related by a gauge transformation, B′ = B+da for a ∈ Ω1(M),
we can interpret the gauge transformation as the O(n, n) transformation of the generalized
metric (g,B) 7→ (g,B + da).

• Let θ ∈ X2(M) be a 2-vector. Set O = eθ. In particular, we have

O1 = 1, O2 = θ, O3 = 0, O4 = 1. (3.117)

This implies Φ± = 1 + θ(±g + B), Υ± = 1. The resulting relations are more clear in
terms of dual fields (G,Π) and (G′,Π′) defined by (3.98). We get

G′ = G, Π′ = Π− θ. (3.118)

One can thus write the relations as

1

g +B
=

1

g′ +B′
+ θ. (3.119)

These are precisely the open-closed relations of Seiberg-Witten as they appeared in [85].
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• Let N ∈ Aut(E), and let O = ON . Then

O1 = N, O2 = 0, O3 = 0, O4 = N−T , (3.120)

and consequently Φ± = N−1, and Υ+ = NT . We get g′ = NT gN , and B′ = NTBN .
This proves that a change of frame in TM and its consequences for g and B can be
incorporated as a special case of O(n, n) transformation.

• Consider M = Rd+1 for d > 0, and coordinates (xµ, x•), µ ∈ {1, . . . , d}. Define the vector
bundle morphism T ∈ Aut(E) as

T (∂µ) = ∂µ, T (dxµ) = dxµ, T (∂•) = dx•, T (dx•) = ∂•. (3.121)

It is easy to see that T ∈ O(n, n), where now n = d + 1. We can write the matrix of T
in block form as

T =




1d 0 0 0
0 0 0 1
0 0 1d 0
0 1 0 0


 , (3.122)

where 1d is a d× d identity matrix. We can write the matrix of metric g, and matrix of
B ∈ Ω2(M) in block forms as

g =

(
ĝ g•
gT• g••

)
, B =

(
B̂ B•
−BT• 0

)
, (3.123)

where ĝ is a d × d matrix (ĝ)µν = gµν , and similarly with other components. We thus
have

O1 =

(
1d 0
0 0

)
, O2 =

(
0 0
0 1

)
, O3 =

(
0 0
0 1

)
, O4 =

(
1d 0
0 0

)
. (3.124)

Φ± =

(
1d 0

±gT• −BT• ±g••

)
=

(
1d 0

±gT• −BT• 1

)(
1d 0
0 ±g••

)
. (3.125)

These maps are invertible, because g•• > 0. We get

Φ−1
± =

(
1d 0
0 ± 1

g••

)(
1d 0

∓gT• +BT• 1

)
=

(
1d 0

± 1
g••

(∓gT• +BT• ) ± 1
g••

)
(3.126)

The simplest way to (g′, B′) is now through (3.104), because we have already calculated
Φ−1

+ ≡ (OT4 +OT2 A)−1. We have

OT3 +OT1 A =

(
ĝ + B̂ g• +B•

0 1

)
. (3.127)

Plugging into (3.104) now gives

A′ =

(
ĝ + B̂ + 1

g••
(g• +B•)(−gT• +BT• ) 1

g••
(g• +B•)

1
g••

(−gT• +BT• ) 1
g••

)
(3.128)

Reading off the symmetric and skew-symmetric part, we obtain

ĝ′ = ĝ +
1

g••
(B•B

T
• − g•gT• ), g′• =

1

g••
B•, g

′
•• =

1

g••
, (3.129)

B̂′ = B̂ +
1

g••
(g•B

T
• −B•gT• ), B′• =

1

g••
g•. (3.130)
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But these are exactly the well-known Buscher rules [20] emerging from string theory’s
T -duality. The generalized geometry thus allows to describe T -duality as an orthogonal
transformation of the generalized metric.

3.10 Killing sections and corresponding isometries

Let G be a given generalized metric on E. Up to now, we have discussed only the isometries
formed from O(n, n) maps, concluding that O(n) × O(n) is the subgroup preserving G. We
can generalize the notion of isometry as follows.

Definition 3.10.1. We define the group EIsom(G) of extended isometries as

EIsom(G) = {(F , ϕ) ∈ EAut(E) | G(F(e),F(e′)) ◦ ϕ = G(e, e′)}. (3.131)

We have shown that EIsom(G) ∩ O(n, n) ∼= O(n) × O(n). We do not intend to find the
whole group EIsom(G). Instead, we will find an important class of examples - solutions to
the Killing equation. To find it, let us assume that (Ft, ϕt) ⊆ EIsom(G) is a one-parameter
subgroup and define F ∈ Γ(D(E)) as F = d

dt

∣∣
t=0
F−t. By differentiating (3.131) with respect

to t at t = 0, we obtain

a(F).G(e, e′) = G(F(e), e′) + G(e,F(e′)), (3.132)

for all e, e′ ∈ Γ(E). This is still a way too complicated equation to solve, and we therefore
restrict to F in the form F(e′) = [e, e′]D for fixed e ∈ Γ(E), and all e′ ∈ Γ(E). Note that
F ∈ Der(E), and a(F) = ρ(e). Requiring F to satisfy (3.132) leads to the definition of Killing
equation.

Definition 3.10.2. Let G be a generalized metric. We say that e ∈ Γ(E) is a Killing section
of G, if it satisfies the Killing equation

ρ(e).G(e′, e′′) = G([e, e′]D, e
′′) + G(e′, [e, e′′]D), (3.133)

for all e′, e′′ ∈ Γ(E).

Now assume that G ≈ (g,B). We will examine the condition (3.133) in terms of the fields
g and B. Recall that G = (e−B)TGEe−B , where GE = BDiag(g, g−1). Moreover, we can
use the fact that e−B [e, e′]D = [e−B(e), e−B(e′)]dBD , following from (3.82). Finally, note that
ρ(e−B(e)) = ρ(e). These observations allow us to rewrite (3.133) as

ρ(e−B(e)).GE(f ′, f ′′) = GE([e−B(e), f ′]dBD , f ′′) + GE(f ′, [e−B(e), f ′′]dBD ), (3.134)

for all f ′, f ′′ ∈ Γ(E). This proves that e is a Killing section of G, iff f := e−B(e) is a Killing
section of GE . We will thus find all Killing sections of simpler generalized metric GE , but using
dB-twisted Dorfman bracket instead. Write f = X ′ + ξ′ for X ′ ∈ X(M) and ξ′ ∈ Ω1(M).
Plugging into (3.134) for f , and writing f ′ = Y + η, f ′′ = Z + ζ, we obtain

X ′.{g(Y,Z) + g−1(η, ζ)} = g([X ′, Y ], Z) + g(Y, [X ′, Z])

+ g−1(LX′η − iY dξ
′, ζ) + g−1(η,LX′ζ − iZdξ

′)

− g−1(dB(X ′, Y, ·), ζ)− g−1(η, dB(X ′, Z, ·)).
(3.135)
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This gives three equations

X ′.g(Y, Z) = g([X ′, Y ], Z) + g(Y, [X ′, Z]), (3.136)

X ′.g−1(η, ζ) = g−1(LX′η, ζ) + g−1(η,LX′ζ), (3.137)

0 = g−1(iY dξ
′, ζ) + g−1(dB(X ′, Y, ·), ζ) (3.138)

all valid for all Y,Z ∈ X(M) and η, ζ ∈ Ω1(M). They are equivalent to

LX′g = 0, dξ′ = −iX′dB (3.139)

Now let X ′ + ξ′ = e−B(X + ξ) = X + ξ −B(X). We arrive to the following proposition:

Proposition 3.10.3. Let G be a generalized metric corresponding to fields (g,B). A section
e = X + ξ is a Killing section of G, iff

LXg = 0, dξ = −LXB. (3.140)

Since F = [X + ξ, ·] ∈ Der(E), we can use the result of Proposition (3.5.2) to find the
corresponding automorphism of Dorfman bracket. By construction, we expect exp (tF) to be
an element of EIsom(G). Also note that F ∈ Eo(n, n), and thus exp (tF) ∈ EO(n, n). Note
that F = R(X) +Fdξ. Using the Killing equation, we evaluate the integral defining the 2-form
B(t):

B(t) =

∫ t

0

{φX∗k (dξ)}dk = −
∫ t

0

{φX∗k (LXB)}dk = B − φX∗t B.

The corresponding 1-parameter subgroup of AutD(E) then has the form

exp (tF) = eB(t) ◦ T (φX−t). (3.141)

Finally, we are able to prove the following statement:

Proposition 3.10.4. Let F = [e, ·]D, where e ∈ Γ(E) is a Killing section of G. Then
exp (tF) ∈ AutD(E) is an extended isometry of G, exp (tF) ∈ EIsom(G).

Proof. This is a direct calculation. Note that for G = (e−B)TGEe−B , we get

G(exp (tF)(e), exp (tF)(e′)) = GE
(
eφ

X∗
t B(T (φX−t)(e)), e

φX∗t B(T (φX−t)(e
′))
)
.

Now note that eφ
X∗
t B ◦ T (φX−t) = T (φX−t) ◦ eB . Condition (3.131) then becomes

GE(T (φX−t)(f), T (φX−t)(f
′)) = GE(f, f ′) ◦ φXt . (3.142)

Rewriting this using the definition of GE , we obtain the condition φX∗−t g = g. Here we use
the second of the conditions (3.140) and the fact that Killing vector field X generates a flow
preserving the metric g. �

3.11 Indefinite case

The concept of generalized metric has proved to be a useful tool to encode a Riemannian metric
g and a 2-form B into a single object G, or its equivalents τ and V+. For applications of this
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tool in physics, we should discuss also the case when g is an indefinite metric. We clearly have
to abandon the interpretation using the definite subbundles V±. The obvious candidate for
indefinite generalized metric is G in the block form (3.93), since all expressions make sense.
For given metric g and 2-form B, we define generalized metric G to be a fiber-wise metric

G =

(
1 B
0 1

)(
g 0
0 g−1

)(
1 0
−B 1

)
=

(
g −Bg−1B Bg−1

−g−1B g−1

)
. (3.143)

A first question comes with the invertibility of the map g − Bg−1B. To answer it, we prove
the following lemma:

Lemma 3.11.1. Let V be a finite-dimensional vector space, g ∈ S2V ∗ be a non-degenerate
bilinear form on V , and B ∈ Λ2V ∗. Let A ∈ Hom(V, V ∗) be a linear map defined as A = g+B.

Then the map A is invertible if and only if the bilinear form g−Bg−1B is non-degenerate.

Proof. First, assume that A is invertible. Then so is AT = g−B. Next, note that we can write
g −Bg−1B = (g +B)g−1(g −B). This proves that g −Bg−1B is non-degenerate. In fact, we
can take the determinant of this formula to get

[det (g +B)]2 = det (g) det (g −Bg−1B). (3.144)

This proves the converse statement. �

For a positive definite g, the map g +B is always invertible. However, for indefinite g, this
is no more true. Consider for example

g =

(
1 0
0 −1

)
, B =

(
0 1
−1 0

)
. (3.145)

The map A = g +B is then certainly singular.

Then comes a question of the signature of G = g − Bg−1B. But this in fact follows from
the observation in the proof above, because G = AT g−1A, and the signature of G thus must
be same as the one of g. If the signature of g is (p, q), we can take the square root of (3.144)
to obtain

det (g +B) = ±[(−1)q det (g)]
1
2 [(−1)q det (g −Bg−1B)]

1
2 . (3.146)

Note the ± sign in the formula. For g > 0, determinant on the left-hand side is always positive.
Indeed, define f(t) = det (g + tB). This is a continuous nonzero function of t, and f(0) > 0.
This proves that f(1) > 0.

For indefinite g, the signs for det (g) and det (g +B) can be different. Consider for example

g =

(
1 0
0 −1

)
, B =

(
0 λ
−λ 0

)
. (3.147)

Then det (g +B) = −1 + λ2, and det (g) = −1. We can thus choose λ > 1 and the two signs
differ (the reason is of course the singularity at λ = 1).

We can still consider an orthogonal transformation of generalized metric G. Consider
O ∈ O(n, n) and simply define G′ := OTGO. Is there always metric g′ and 2-form B′ such
that

G′ =

(
1 B′

0 1

)(
g′ 0
0 g′−1

)(
1 0
−B′ 1

)
(3.148)

holds true? A partial answer is given by the following proposition. We use the notation of
sections 3.1 and 3.9.
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Proposition 3.11.2. Let G be a generalized metric in a sense of (3.143), and define G′ =
OTGO for O ∈ O(n, n).

There exist metric g′ and 2-form B′ such that G′ has the form (3.143), if and only if the
map Φ+ ≡ OT4 +OT2 (g +B) is invertible.

Proof. First note that bottom-right corner of G′ defines a fiber-wise bilinear form h′ on T ∗M
given by formula

h′ = OT4 g
−1O4 +OT2 Bg

−1O4 −OT4 g−1BO2 +OT4 (g −Bg−1B)O4. (3.149)

Next see that h′ can be written as

h′ = Φ+g
−1ΦT

+. (3.150)

This can be verified directly, using the orthogonality property OT4 O2 +OT2 O4 = 0 for O. Taking
the determinant of this relation gives

det (h′) = [det (Φ+)]2/det (g). (3.151)

This proves that h′ is invertible if and only if Φ+ is.

Now assume that G′ has the form (3.148) for metric g′ and B′ ∈ Ω2(M). In this case
h′ = g′−1, and (3.151) proves that Φ+ is invertible.

Conversely, let Φ+ be an invertible map. Formula (3.151) proves that h′ is invertible (and
thus a fiber-wise metric on T ∗M). Define g′ := h′−1. Now recall Proposition 3.8.5. Even in
indefinite case, G ∈ Hom(E,E∗) is an orthogonal map, and so is G′ = OTGO. Moreover, this
map has invertible bottom-right corner h′. We can now use an analogue of Proposition 3.1.3
to show that G′ can be decomposed as (3.148), proving that B′ ∈ Ω2(M). �

Note that in indefinite case, Φ+ is not always invertible, not even in the case when g + B
is. Consider O = e−Θ of Example 3.9.5 for n = 2. Define

g =

(
1 0
0 −1

)
, B =

(
0 b
−b 0

)
, Θ =

(
0 t
−t 0

)
. (3.152)

Then det (g +B) = b2 − 1, and for b 6= ±1, g + B is invertible. The map Φ+ = 1−Θ(g + B)
has the explicit form

Φ+ =

(
1 + tb t
t 1 + tb

)
. (3.153)

Now det (Φ+) = (1 + tb)2 − t2. Equation det (Φ+) = 0 now has two roots: t = −1/(b ±
1). For every b, we can thus find Θ making Φ+ a singular matrix, and consequently G′ is
indecomposable in the sense of (3.148).

We see that everything in principle carries out to the indefinite case, but in every step
one has to make assumptions concerning the invertibility of involved maps. In order to avoid
unnecessary discussions here and there, we thus usually stick to the positive definite case.
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3.12 Generalized Bismut connection

Let G be a generalized metric on the Courant algebroid E = TM ⊕ T ∗M . We may look
for Courant algebroid connections compatible with G. Recall that by Definition 2.4.3, ∇ is a
Courant algebroid connection if it preserves the Courant metric 〈·, ·〉E . There exists a simple
example of such connection. It first appeared in [33] and was studied from the perspective of
Courant algebroids in [40]. Before we introduce its definition, recall that G induces an operator
C : V± → V∓ defined as

C(Ψ±(X)) = Ψ∓(X), (3.154)

for all X ∈ X(M). By direct calculation using the projectors (3.90), one arrives to an explicit
formula

C(X + ξ) = X − ξ + 2B(X), (3.155)

for all X + ξ ∈ Γ(E). Note that by definition C2 = 1, and C is an anti-orthogonal map with
respect to 〈·, ·〉E . For any e ∈ Γ(E), denote e± ≡ P±(e) to simplify the notation.

Definition 3.12.1. The generalized Bismut connection ∇ is for e, e′ ∈ Γ(E) defined as

∇ee′ = ([e+, e
′
−]D)− + ([e−, e

′
+]D)+ + ([C(e+), e′+]D)+ + ([C(e−), e′−]D)−. (3.156)

We have used a more abstract definition as it appeared in [40]. It is easy to see that
∇fee′ = f∇ee′. This follows from the fact that 〈V+, V−〉E = 0, and (e+)− = (e−)+ = 0 for all
e ∈ Γ(E). To prove the second property note that ρ ◦ C = ρ, and we get

∇e(fe′) = f∇ee′ + (ρ(e+).f)e′− + (ρ(e−).f)e′+ + (ρ(e+).f)e′+ + (ρ(e−).f)e′−
= f∇ee′ + (ρ(e).f)e′.

We will prove the metric compatibility with 〈·, ·〉E later. It is easier to determine the action of
the connection on the sections of the special form. Let e = Ψ+(X), and e′ = Ψ−(Y ). Only
one of the four terms contributes, namely the first one. Next note that Ψ± = eBΨ0

±, where
Ψ0
±(X) = X ∓ g(X). Hence

[Ψ+(X),Ψ−(Y )]D = eB [Ψ0
+(X),Ψ0

−(Y )]HD .

Here H = dB. This simplifies the calculation, because P−(eB(Y + η)) = 1
2Ψ−(Y − g−1(η)).

Then
[Ψ0

+(X),Ψ0
−(Y )]HD = [X,Y ]− LX(g(Y ))− iY d(g(X))−H(X,Y, ·).

Combining all the observations gives

∇ee′ = Ψ−
[1
2
{[X,Y ] + g−1(LX(g(Y )) + iY d(g(X)))}+

1

2
g−1H(X,Y, ·))

]
. (3.157)

The terms not containing B form a well known object. Indeed, we have

∇LCX Y =
1

2
{[X,Y ] + g−1(LX(g(Y )) + iyd(g(X)))}, (3.158)

where ∇LC is the Levi-Civita connection on M corresponding to the metric g. We can thus
write

∇ee′ = Ψ−(∇LCX Y +
1

2
g−1H(X,Y, ·)). (3.159)

Repeating the same procedure for all the possible combination of ± signs, we would prove the
following lemma.
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Lemma 3.12.2. Let ∇ be the generalized Bismut connection defined by (3.156), and H = dB.
Then

∇Ψ±(X)(Ψ+(Y )) = Ψ+(∇+
XY ), (3.160)

∇Ψ±(X)(Ψ−(Y )) = Ψ−(∇−XY ), (3.161)

for all X,Y ∈ X(M). ∇± is a couple of connections on M defined as

∇±XY = ∇LCX Y ∓ 1

2
g−1H(X,Y, ·). (3.162)

Connections ∇± are metric compatible with g, and equations (3.160 - 3.162) can be considered
as an equivalent definition of the generalized Bismut connection.

This lemma has one immediate consequence. We can now prove that ∇ is in fact induced
by an ordinary vector bundle connection. To show this, let e = 0+α for α ∈ Ω1(M). It suffices
to show that ∇e = 0. But in this case e = Ψ+( 1

2g
−1(α)) −Ψ−( 1

2g
−1(α)), and the statement

follows from (3.160, 3.161).

Our aim now is to find an expression for the generalized Bismut connection acting on a
section in a general form e = Y + η. To do so, introduce an auxiliary connection ∇̂e =
e−B∇eB(e)e

B . We have

eB(Y + η) =
1

2
Ψ+(Y + g−1(η)) +

1

2
Ψ−(Y − g−1(η)).

In particular eB(X) = 1
2Ψ+(X) + 1

2Ψ−(X). This shows that

eB∇̂X(Y + η) =
1

2
∇Ψ+(X)Ψ+(Y + g−1(η)) +

1

2
∇Ψ+(X)Ψ−(Y − g−1(η))

=
1

2
Ψ+(∇+

X(Y + g−1(η))) +
1

2
Ψ−(∇−X(Y − g−1(η)))

=
1

2
eBΨ0

+(∇+
X(Y + g−1(η))) +

1

2
eBΨ0

−(∇−X(Y − g−1(η)))

Hence

∇̂X(Y + η) =
1

2
Ψ0

+(∇+
X(Y + g−1(η))) +

1

2
Ψ0
−(∇−X(Y − g−1(η))). (3.163)

It is now simple to plug in from (3.162) for ∇±. This results in the formal block form of ∇̂:

∇̂X =

(
∇LCX − 1

2g
−1H(X, g−1(?), ·)

− 1
2H(X, ?, ·) ∇LCX

)
. (3.164)

The ? symbol indicates where the input enters. In other words, we have

∇̂X(Y + η) = (∇LCX Y − 1

2
g−1H(X, g−1(η), ·)) + (∇LCX η − 1

2
H(X,Y, ·)). (3.165)

Now it is easy to write the original G-compatible connection ∇. One obtains

∇X =

(
1 0
B 1

)(
∇LCX − 1

2g
−1H(X, g−1(?), ·)

− 1
2H(X, ?, ·) ∇LCX

)(
1 0
−B 1

)
. (3.166)

This is the form of generalized Bismut connection as it appeared in [33].
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Proposition 3.12.3. Generalized Bismut connection ∇ is compatible with the pairing 〈·, ·〉E,
and with the generalized metric G.

Proof. Directly from the definition of ∇̂, it is easy to see that ∇ is compatible with 〈·, ·〉E and

G, if and only if ∇̂ is compatible with 〈·, ·〉E and GE . The latter property can be easily checked

explicitly using the block form (3.164) of ∇̂. �

Now recall the definition of the torsion operator (2.67). We will use L suitable for Courant
algebroids, namely

L(β, e, e′) = 〈e, e′〉Eg−1
E (β). (3.167)

We will make advantage of the simpler connection ∇̂ to calculate T . Indeed, we have

T (eB(e), eB(e′)) = eB
(
∇̂ee′ − ∇̂e′e− [e, e′]HD + L(eλ, ∇̂eλe, e′)

)
.

Thus T (eB(e), eB(e′)) = eBT̂ (e, e′), where T̂ is the torsion of connection ∇̂ with H-twisted

Dorfman bracket. Let us now calculate T̂ explicitly. One gets

T̂ (X + ξ, Y + η) =− 1

2
g−1H(X, g−1(η), ·) +

1

2
g−1H(Y, g−1(ξ), ·)

− 1

2
H(X,Y, ·)− 1

2
H(g−1(ξ), g−1(η), ·).

(3.168)

This proves that ∇̂ and consequently ∇ is torsion-free if and only if H = 0. Torsion T can be
now calculated in a straightforward manner using eB and T̂ .

According to the remark under (2.74), we may define the curvature operator of ∇ using the
usual formula:

R(e, e′)e′′ = ∇e∇e′e′′ −∇e′∇ee′′ −∇[e,e′]De
′′, (3.169)

for all e, e′, e′′ ∈ Γ(E). Using the relation of ∇ to ∇̂, we get the expression

R(eB(e), eB(e′))eB(e′′) = eB
(
∇̂e∇̂e′e′′ − ∇̂e′∇̂ee′′ − ∇̂[e,e′]HD

e′′
)
. (3.170)

Hence R(eB(e), eB(e′))eB(e′′) = eB(R̂(e, e′)e′′), where R̂ is the curvature operator of ∇̂ using

the H-twisted Dorfman bracket [·, ·]HD . It is not difficult to calculate R̂ explicitly. We get

R̂1(X,Y )(Z + ζ) = RLC(X,Y )Z − 1

2
g−1((∇LCX H)(Y, g−1(ζ), ·)− (∇LCY H)(X, g−1(ζ), ·))

+
1

4
g−1H(X, g−1H(Y, Z, ·), ·)− 1

4
g−1H(Y, g−1H(X,Z, ·), ·) (3.171)

R̂2(X,Y )(Z + ζ) = RLC(X,Y )ζ − 1

2
(∇LCX H)(Y,Z, ·) +

1

2
(∇LCY H)(X,Z, ·) (3.172)

+
1

4
H(X, g−1H(Y, g−1(ζ), ·), ·)− 1

4
H(Y, g−1H(X, g−1(ζ), ·), ·).

We have used R̂1 and R̂2 to denote the TM and T ∗M components of R̂ respectively. One can
now calculate the corresponding Ricci tensor R̂ic, defined as R̂ic(e, e′) = 〈eλ, R̂(eλ, e

′)e〉. Note
that it has only two non-trivial components (with respect to the block decomposition). One
obtains

R̂ic(X,Y ) = RicLC(X,Y )− 1

4
H(Y, g−1H(∂k, X, ·), g−1(dyk)), (3.173)

R̂ic(ξ, Y ) = −1

2
(∇LC∂k H)(Y, g−1(ξ), g−1(dyk)). (3.174)
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Finally, we may use the generalized metric GE to calculate the trace of R̂ic and obtain the
corresponding scalar curvature R̂. One gets

R̂ = R̂ic(G−1
E (eλ), eλ) = R(g)− 1

4
HijkH

ijk. (3.175)

To conclude this section, note that we can use this result to calculate the scalar curvature R
of the generalized Bismut connection.

Proposition 3.12.4. Let ∇ be the generalized Bismut connection corresponding to the gener-
alized metric G. Let Ric be its Ricci tensor, and let R be the scalar function on M defined
as

R = Ric(G−1(eλ), eλ), (3.176)

where (eλ)2n
λ=1 is some local frame on E. Then R = R̂, that is

R = R(g)− 1

4
HijkH

ijk. (3.177)

Proof. The result follows from the definition of the connection ∇̂, the relation (3.170), and the
fact that G = (e−B)TGEe−B . �

We see that the scalar curvature of the generalized Bismut connection does not depend on
B, but only on a cohomology class [H] of its exterior derivative H = dB.
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Chapter 4

Extended generalized geometry

The main aim of this chapter is to generalize the objects of the standard generalized geometry
in order to work also on the vector bundle E = TM⊕ΛpT ∗M . The main issue is that the most
straightforward generalization of the orthogonal group O(n, n) suitable for E does not seem to
be useful for a description of the generalized metric. This lead us to the idea of embedding the
generalized geometry of E into the larger vector bundle E ⊕ E∗, already equipped with the
canonical O(d, d) structure.

4.1 Pairing, Orthogonal group

Let E = TM ⊕ ΛpT ∗M . We have Γ(E) = X(M)⊕ Ωp(M). Define a non-degenerate C∞(M)-
bilinear symmetric form 〈·, ·〉E : Γ(E)→ Γ(E)→ Ωp−1(M) as

〈X + ξ, Y + η〉E = iXη + iY ξ, (4.1)

for all X + ξ, Y + η ∈ Γ(E). Although it is not an ordinary C∞(M)-valued pairing, one can
still define its orthogonal group O(E) as usual, that is

O(E) = {F ∈ Aut(E) | 〈F(e),F(e′)〉E = 〈e, e′〉E ,∀e, e′ ∈ Γ(E)}. (4.2)

We will now examine its Lie algebra o(E), defined as

o(E) = {F ∈ End(E) | 〈F(e), e′〉E + 〈e,F(e′)〉E = 0,∀e, e′ ∈ Γ(E)}. (4.3)

In fact, the structure of this algebra greatly depends on p and the dimension n of the manifold
M . Write F in the formal block form as

F =

(
A Π
−CT A′

)
. (4.4)

Plugging F into the condition (4.3) gives the following set of equations:

iY C
T (X) + iXC

T (Y ) = 0, (4.5)

iYA
′(ξ) + iA(Y )ξ = 0, (4.6)

iΠ(ξ)η + iΠ(η)ξ = 0. (4.7)

One can now discuss the consequences of these equations. This is a straightforward but a little
bit technical linear algebra. We present only the results in the form of a proposition.
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Proposition 4.1.1. Let F ∈ End(E) have a formal block form (4.4). Then, depending on p,
we have the following conditions for F ∈ o(E).

1. p = 0: All fields are arbitrary, that is

o(E) = End(TM)⊕ X(M)⊕ Ω1(M)⊕ C∞(M). (4.8)

2. p = 1: In this case o(E) = o(n, n), and thus A′ = −AT , Π ∈ X2(M), C ∈ Ω2(M), and

o(E) = End(TM)⊕ X2(M)⊕ Ω2(M). (4.9)

3. 1 < p < n − 1: In this case A = λ · 1, A′ = −λ · 1, where λ ∈ C∞(M), Π = 0, and
C ∈ Ωp+1(M). Hence,

o(E) = Xp+1(M)⊕ C∞(M). (4.10)

4. p = n− 1: A = λ · 1, A′ = −λ · 1, for λ ∈ C∞(M). Π ∈ Xn(M), and C ∈ Ωn(M). Thus,

o(E) = Xn(M)⊕ Ωn(M)⊕ C∞(M). (4.11)

5. p = n: In this case A = λ ·1, A′ = −λ ·1, for any λ ∈ C∞(M), C = Π = 0, and therefore

o(E) = C∞(M). (4.12)

We see that possible choices for o(E) are very different for different values of p. In par-
ticular note that for 1 < p < n − 1, there is no (p + 1)-vector Π defining a skew-symmetric
transformation, and thus no eΠ defining an orthogonal transformation. This proves that for
general p, Nambu-Poisson manifolds cannot be realized as Dirac structures. This was proved
by Zambon in [91], and it has in fact lead to the theory of Nambu-Dirac manifolds examined
by Hagiwara in [41].

Example 4.1.2. For a general p, there are thus fewer generic examples of orthogonal trans-
formations, let us recall them here

• C-transform: Let C ∈ Ωp+1(M). It defines a map C ∈ Hom(ΛpTM, T ∗M), and we will
define eC ∈ Aut(E) by its formal block form

eC =

(
1 0
−CT 1

)
. (4.13)

Note that for p = 1, we have C = −CT . It follows from Proposition 4.1.1 that eC ∈ O(E).

• Let λ ∈ C∞(M) be everywhere non-zero smooth function. Define the map Oλ as

Oλ(X + ξ) = λX +
1

λ
ξ, (4.14)

for all X + ξ ∈ Γ(E). Obviously Oλ ∈ O(E).
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4.2 Higher Dorfman bracket and its symmetries

Let us now examine the Dorfman bracket from Example 2.1.3. Recall that it is defined as

[X + ξ, Y + η]D = [X,Y ] + LXη − iY dξ, (4.15)

for all X + ξ, Y + η ∈ Γ(E). To distinguish it from its p = 1 version, we sometimes refer to
it as the higher Dorfman bracket. We have shown that for ρ = prTM , the triplet (E, ρ, [·, ·]E)
forms a Leibniz algebroid. Due to its structure similar to p = 1 Dorfman bracket, it also has
some properties similar to Courant algebroid axioms:

Lemma 4.2.1. Let [·, ·]D be the Dorfman bracket (4.15), and 〈·, ·〉E be the pairing (4.1). Then

[X + ξ,X + ξ]D =
1

2
d〈X + ξ,X + ξ〉E , (4.16)

for all X + ξ ∈ Γ(E), and the pairing 〈·, ·〉E is invariant with respect to [·, ·]D in the sense that

Lρ(X+ξ)〈Y + η, Z + ζ〉E = 〈[X + ξ, Y + η]D, Z + ζ〉E + 〈Y + η, [X + ξ, Z + ζ]D〉E , (4.17)

for all X,Y, Z ∈ X(M), and ξ, η, ζ ∈ Ωp(M).

Proof. Direct calculation and definitions. �

We can directly generalize the derivations algebra and the automorphism group of the
Dorfman bracket. The derivation of the results is completely analogous to the p = 1 case
provided in Section 3.4 and Section 3.5. We thus omit proofs of following propositions.

Proposition 4.2.2. Define the Lie algebra DerE of derivations of the Dorfman bracket (4.15)
as in (3.40). Then as a vector space, it decomposes as

Der(E)
.
= X(M)⊕ Ω0

closed(M)⊕ Ωp+1
closed(M). (4.18)

Every F ∈ Der(E) decomposes uniquely as F = R(X) + Fλ + FC , where R(X)(Y + η) =
([X,Y ],LXη), for all X,Y ∈ X(M) and η ∈ Ωp(M). Vector bundle endomorphisms Fλ and
FC are defined as

Fλ =

(
0 0
0 λ · 1

)
, FC =

(
0 0
−CT 0

)
, (4.19)

where λ ∈ Ω0
closed(M) and C ∈ Ωp+1

closed(M). Nontrivial commutation relations are

[R(X), R(Y )] = R([X,Y ]), (4.20)

[R(X), FC ] = FLXB , (4.21)

[Fλ,FB ] = FλC . (4.22)

On the Lie algebra level, we thus have

Der(E) = X(M) n (Ω0
closed(M) n Ωp+1

closed(M)), (4.23)

where Ω0
closed(M), Ωp+1

closed(M) are viewed as Abelian Lie algebras, Ω0
closed(M) acts on forms in

Ωp+1
closed(M) by multiplication, and X(M) acts on Ω0

closed n Ωp+1
closed(M) by Lie derivatives.
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Proposition 4.2.3. Let AutD(E) be the group of automorphisms (3.59) of the Dorfman bracket
(4.15). Then it has the following group structure:

AutD(E) = (Ωp+1
closed(M) oG(Ω0

closed(M))) o Diff(M), (4.24)

where Ωp+1
closed(M) is viewed as an Abelian group with respect to addition, G(Ω0

closed(M)) acts

on Ωp+1
closed(M) by multiplication, and Diff(M) acts on Ωp+1

closed(M) oG(Ω0
closed(M)) by inverse

pullbacks. Every (F , ϕ) ∈ AutD(E) can uniquely be decomposed as

F = eC ◦ Sλ ◦ T (ϕ), (4.25)

where eC = expFC , and Sλ(X + ξ) = X + λξ for the unique C ∈ Ωp+1
closed(M) and λ ∈

G(Ω0
closed(M)). By G(Ω0

closed(M)) we mean the multiplicative group of everywhere non-zero
closed 0-forms (locally constant functions).

Similarly to the p = 1 Dorfman bracket, we expect something interesting to happen when
we twist it with a non-trivial C-transformation. Let C ∈ Ωp+1(M), and in general dC 6= 0.
Define a new bracket [·, ·]′D as

[e, e′]′D = e−C [eC(e), eC(e′)]D, (4.26)

for all e, e′ ∈ Γ(E). It turns out, due calculations similar to Section 3.6, that [·, ·]′D = [·, ·]dCD ,

where the H-twisted higher Dorfman bracket [·, ·]HD is for given H ∈ Ωp+2
closed(M) defined as

[X + ξ, Y + η]HD = [X + ξ, Y + η]D −H(X,Y, ·), (4.27)

for all X + ξ, Y + η ∈ Γ(E). There holds also a complete analogue of Proposition 3.6.1, where
all objects can straightforwardly be replaced by their p > 1 generalizations.

4.3 Induced metric

Before proceeding to an analogue of the generalized metric suitable for E = TM ⊕ΛpT ∗M , let
us examine in detail the following construction. Let g ∈ Γ(S2T ∗M) be an arbitrary metric on
M . Our intention is to define an induced fiber-wise metric g̃ on ΛpTM . First, let us define a
type (0, 2p) tensor g̃ on M as

g̃(V1, . . . , Vp,W1, . . . ,Wp) =
∑

σ∈Sp
(−1)|σ|g(Vσ(1),W1)× · · · × g(Vσ(p),Wp), (4.28)

for all V1, . . . , Vp,W1, . . . ,Wp ∈ X(M). First note that g̃ is skew-symmetric in first and last p
inputs. Moreover, one can interchange (V1, . . . , Vp) and (W1, . . . ,Wp):

g̃(V1, . . . , Vp,W1, . . . ,Wp) = g̃(W1, . . . ,Wp, V1, . . . , Vp). (4.29)

This proves that g̃ defines a fiber-wise symmetric bilinear form on ΛpT ∗M . In local coordinates,
it has the form

g̃i1...ipj1...jp = δ
k1...kp
i1...ip

gk1j1 . . . gkpjp . (4.30)

To prove that g̃ is a fiber-wise metric, define a type (2p, 0) tensor g̃−1 on M as

g̃−1(α1, . . . , αp, β1, . . . , βp) =
∑

σ∈Sp
g−1(ασ(1), β1)× · · · × g−1(ασ(p), βp), (4.31)
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for all α1, . . . , αp, β1, . . . , βp ∈ Ω1(M). Now note that we can view g̃ as a vector bundle
morphism g̃ from ΛpTM to ΛpT ∗M , and g̃−1 as a vector bundle morphism from ΛpT ∗M to
ΛpTM . It is straightforward to check that g̃−1 ◦ g̃ = 1. This proves that g̃ is non-degenerate
and thus a fiber-wise metric on ΛpTM .

There is now one interesting question to pose. What is the signature of g̃ for given signature
(r, s) of g? The answer is given by the following lemma

Lemma 4.3.1. Let g be a metric of signature (r, s), and let g̃ be the fiber-wise metric on
ΛpTM defined by (4.28). Then g̃ has the signature (

(
n
p

)
− N(r, s, p), N(r, s, p)), where the

number N(r, s, p) is given by a formula

N(r, s, p) :=

dp/2e∑

k=1

(
s

2k − 1

)(
r

p− 2k + 1

)
. (4.32)

Proof. Choose an orthonormal frame (Ei)
n
i=1 = (e1, . . . , er, f1, . . . , fs) for g:

g(ei, ej) = δij , g(fi, fj) = −δij , g(ei, fj) = 0. (4.33)

We can calculate g̃ in the basis EI = Ei1 ∧ . . . ∧ Eip . One gets g̃(EI , EJ) = ±δJI , proving
that EI form an orthonormal basis for g̃. It thus remains to track the ± sign. For given
odd j ∈ {1, . . . , p} there is Nj(r, s, p) :=

(
s
j

)(
r
p−j
)

different strictly ordered p-indices I, such
that exactly j indices in I correspond to negative norm orthonormal basis vectors. These are
precisely the p-indices I where g̃(EI , EI) = −1. Resulting N(r, s, p) is just a sum of Nj(r, s, p)
over all odd j:

N(r, s, p) =
∑

j odd, 1≤j≤p

(
s

j

)(
r

p− j

)
.

This is exactly the formula (4.32). �

We can now calculate some relevant examples. For a positive definite g, we have (r, s) =
(n, 0), and thus N(n, 0, p) = 0. This means that also g̃ is positive definite. For Lorentzian
g, we have two possibilities: (r, s) = (1, d) or (r, s) = (d, 1). Note that for p even, one gets
N(r, s, p) = N(s, r, p).

• (r, s) = (d, 1): We get

N(d, 1, p) =

dp/2e∑

k=1

(
1

2k − 1

)(
d

p− 2k + 1

)
=

(
d

p− 1

)
. (4.34)

• (r, s) = (1, d): For even p, we get N(d, 1, p) = N(1, d, p). For odd p, we obtain

N(1, d, p) =

dp/2e∑

k=1

(
d

2k − 1

)(
1

p− 2k + 1

)
=

(
d

p

)
. (4.35)

By construction of g̃, it is clear that geometrical properties of g̃ will follow from those of g. As
an example, we can calculate its Lie derivative.
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Lemma 4.3.2. Let g̃ be the fiber-wise metric (4.28). Then we have

(LX g̃)(P,Q) = X.g̃(P,Q)− g̃(LXP,Q)− g̃(P,LXQ), (4.36)

for all P,Q ∈ Xp(M), where on the left-hand side g̃ is viewed as a tensor g̃ ∈ T 0
2p(M). Moreover,

this Lie derivative can be calculated as

(LX g̃)(V1, . . . , Vp,W1, . . . ,Wp) =

∑

σ∈Sp
(−1)|σ|

p∑

k=1

g(Vσ(1),W1)× . . .× (LXg)(Vσ(k),Wk)× · · · × g(Vσ(p),Wp).
(4.37)

In particular, LXg = 0 implies LX g̃ = 0.

Proof. Equation (4.36) follows from the definition of Lie derivative and the fact that it com-
mutes with contractions. Equation (4.37) follows from the fact that

(φX∗t g̃)(V1, . . . , Vp,W1, . . . ,Wp) =
∑

σ∈Sp
(−1)|σ|(φX∗t g)(Vσ1 ,W1)× · · · × (φX∗t g)(Vσ(p),Wp).

(4.38)
Now differentiate this at t = 0 to obtain (4.37). �

Remark 4.3.3. The converse statement is not true. Consider M = R2, and the Minkowski
metric

g =

(
−1 0
0 1

)
. (4.39)

Its algebra of Killing vectors is spanned by generators of two translations and a Lorentz boost.
For p = 2, the metric g̃ is given by single component g̃(12)(12) = −1. If X = X1∂1 +X2∂2, the
Killing equation for g̃ gives

X1
,1 +X2

,2 = 0. (4.40)

To be in Killing algebra of g, X1 and X2 have to have the form

X1 = cx2 + a, X2 = cx1 + b,

for a, b, c ∈ R. Note that such X1, X2 indeed solve (4.40). On the other hand, (4.40) has many
more solutions, for example X1 = f(x2), X2 = 0 for an arbitrary smooth function f . This
shows that the Killing algebra of g̃ can be strictly larger than the one of g. Also, note that
Killing algebra for g̃ does not have to be finite-dimensional.

Now, see that in chosen coordinates, one can view g̃IJ as a square
(
n
p

)
×
(
n
p

)
matrix, and gij

as a square n× n matrix. Are determinants of these matrices related?

Lemma 4.3.4. Let A be a square n × n matrix, denote its components as Aij. Define an(
n
p

)
×
(
n
p

)
matrix B labeled by strictly ordered p-indices I and J as

BIJ = δIk1...kpA
k1
j1 . . . A

kp
jp . (4.41)

Then A is invertible if and only if B is invertible. Moreover, there holds a determinant formula:

det (B) = [det (A)](
n−1
p−1). (4.42)
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Proof. Let A be invertible. Define B−1 as

(B−1)IJ = δIk1...kp(A−1)k1
j1
. . . (A−1)kp jp . (4.43)

It is straightforward to check that BIJ(B−1)JK = δIK . The opposite statement follows from
the formula (4.42). Its proof is more complicated and can be found in the Appendix A. �

To conclude this section, we shall examine how a covariant derivative acts on g̃. This will
be important for the generalized Bismut connection in one of the following sections.

Lemma 4.3.5. Let ∇ be any connection on M . Let g̃ be the metric (4.28) viewed as (0, 2p)-
tensor. Then we can write its covariant derivative as

(∇X g̃)(P,Q) = X.g̃(P,Q)− g̃(∇XP,Q)− g̃(P,∇XQ), (4.44)

for all P,Q ∈ Xp(M). Moreover, one has

(∇X g̃)(V1, . . . , Vp,W1, . . . ,Wp) =

∑

σ∈Sp
(−1)|σ|

p∑

k=1

g(Vσ(1),W1)× · · ·×(∇Xg)(Vσ(k),Wk)× · · · × g(Vσ(p),Wp).
(4.45)

In particular, if ∇Xg = 0, then ∇X g̃ = 0.

Proof. Equation (4.44) follows from the definition of covariant derivative and the fact that it
commutes with tensor contractions. Next, let m ∈M , and γ be the integral curve of X ∈ X(M)
starting at m. Let τγt be the parallel transport from m ≡ γ(0) to γ(t) induced by connection
∇. Then

(τγ−tg̃)(V1, . . . , Vp,W1, . . . ,Wp) =
∑

σ∈Sp
(−1)|σ|

p∑

k=1

(τγ−tg)(Vσ(1),W1)× · · · × (τγ−tg)(Vσ(p),Wp).

Differentiation of this equation with respect to t at t = 0 gives the assertion of the lemma. �

4.4 Generalized metric

We would like to define a positive definite fiber-wise metric G on E of similar properties as
the generalized metric on TM ⊕ T ∗M defined in Section 3.8. There is no canonical fiber-wise
metric on E, except for the Ωp−1(M)-valued pairing 〈·, ·〉E . The definition suitable for the
generalization to E is the formal block form (3.93), in particular its form G = (e−C)TGEe−C .
For any metric g, define

GE =

(
g 0
0 g̃−1

)
, (4.46)

where g̃ is the induced metric on ΛpTM defined by (4.28). Let C ∈ Ωp+1(M), and let e−C be
the O(E) map defined by (4.13). Then set

G :=

(
1 C
0 1

)(
g 0
0 g̃−1

)(
1 0
CT 1

)
=

(
g + Cg̃−1CT Cg̃−1

g̃−1CT g̃−1

)
. (4.47)
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If g is positive definite, then so is G. For g of a general signature (r, s), one can determine the
signature of G using Lemma 4.3.1. The reason why we first consider only g̃ induced by g and
C ∈ Ωp+1(M) follows from the physics - the inverse of G naturally appears in the Hamiltonian
density of gauge-fixed Polyakov-like action for a p-brane. It appeared in exactly this form in the
paper of Duff and Lu [30]. See also related concepts in [52] suitable for various M-geometries.

There is still one characterization, which could possibly survive the generalization, because
the dual bundle E∗ can be equipped with a Xp−1(M)-valued pairing 〈·, ·〉E∗ , defined similarly
to (4.1). We can then ask if G viewed as G ∈ Hom(E,E∗) defines an orthogonal map with
respect to 〈·, ·〉E and 〈·, ·〉E∗ . But this is not true for p > 1. This can be most easily seen from
the fact that GE itself is not orthogonal for p > 1, and thus even in the C = 0 case, G is not
orthogonal.

Note that in order to introduce the orthogonal transformations, we have to allow for more
general fields in generalized metric. In particular, for p > 1 we would not assume that g̃ is
induced from g via (4.28). Moreover, the vector bundle morphism C ∈ Hom(ΛpTM, T ∗M)
does not have to be induced by a (p + 1)-form C. Note that every positive definite fiber-wise
metric G on E can then be decomposed as (4.47). It will turn out that a generalized metric

G′ related to G by open-closed relations will not have G̃ and G related by (4.28).

For positive definite g, the symmetric bilinear form g + Cg̃−1CT is invertible, and thus
defines a metric on M . Using the decomposition Lemma (3.1.2), we see that there exists a
unique decomposition

G =

(
1 0
−ΠT

N 1

)(
GN 0

0 G̃−1
N

)(
1 −ΠN

0 1

)
, (4.48)

where the fields GN , G̃N and ΠN have the form

GN = g + Cg̃−1CT , (4.49)

G̃N = g̃ + CT g−1C, (4.50)

ΠN = −(g + Cg̃−1CT )−1Cg̃−1 = −g−1C(g̃ + CT g−1C)−1. (4.51)

There is a historical reason behind the N subscript. Fields (GN , G̃N ,ΠN ) correspond to the
Nambu sigma model dual to the membrane sigma model described by fields (g, g̃, C). Note

that in general, G̃N is not induced from GN via (4.28), and ΠN ∈ Hom(ΛpT ∗M,TM) is not
induced by ΠN ∈ Xp+1(M).

Example 4.4.1. Let us show an example proving the preceding assertion. Consider M = R3,
and let g be the Euclidean metric on R3. Consider p = 2. Let (∂(12), ∂(13), ∂(23)) be a local basis
of X2(M). The induced metric g̃ has the unit matrix in this basis. Any C ∈ Hom(Λ2TM, T ∗M)
induced by a (p+ 1)-form C has the matrix

C =




0 0 c
0 −c 0
c 0 0


 ,

where c := C123. We have

G =




1 + c2 0 0
0 1 + c2 0
0 0 1 + c2


 , G̃ =




1 + c2 0 0
0 1 + c2 0
0 0 1 + c2


 .
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This shows that G̃ is not of the form (4.28) because such G̃ must be quadratic in the

elements of G, for example G̃(12)(12) = δkl12Gk1Gl2 = G2
12 = (1 + c2)2 6= 1 + c2. The vector

bundle morphism ΠN has the matrix

ΠN =




0 0 −(1 + c2)−1c
0 (1 + c2)−1c 0

−(1 + c2)−1c 0 0


 ,

which shows that ΠN in this case is induced by a 3-vector ΠN ∈ X3(M).

Example 4.4.2. Finding a case when ΠN is not induced by (p+ 1)-vector is also not difficult,
but one has to go to higher dimensions. Consider n = 5, p = 2, M = R5 and g the Euclidean
metric. There are 10 strictly ordered 2-indices, let us order them lexicographically. Define a
3-form C as C = dx1 ∧ dx2 ∧ dx3 + dx3 ∧ dx4 ∧ dx5. We get GN = 2g + dx3 ⊗ dx3, and thus

G−1
N =

1

2
g−1 − 1

6
∂3 ⊗ ∂3.

Then (ΠN )iJ = −GikNCkJ , because g̃IJ = δJI . We can now simply calculate ΠN explicitly. One
obtains

(ΠN )1(23) = −1

2
, (ΠN )2(13) =

1

2
, (ΠN )3(12) = −1

3
. (4.52)

This proves that ΠN is not induced by a 3-vector.

To conclude this section, we can briefly discuss the p ≥ 1 analogue of the open-closed
relations (3.119). Let Π ∈ Hom(ΛpT ∗M,TM) be any vector bundle morphism. Define new
generalized metric G′ as

G′ = (eΠ)TGeΠ. (4.53)

Recall that eΠ ∈ Aut(E) is defined as

eΠ =

(
1 Π
0 1

)
. (4.54)

We immediately see that this has a solution by rewriting (4.48) as G−1 = eΠNG−1
N (eΠN )T ,

where GN = BDiag(G, G̃−1). This proves that G′−1 = e(ΠN−Π)G−1
N (e(ΠN−Π))T . We thus have

G′N = GN , G̃
′
N = G̃N , Π′N = ΠN −Π. (4.55)

We see that everything works as in the case of ordinary open-closed relations. We can also use
(4.55) to write down the explicit relations between (g, g̃, C) and new fields, usually denoted as

(G, G̃,Φ). We get

g + Cg̃−1CT = G+ ΦG̃−1ΦT , (4.56)

g̃ + CT g−1C = G̃+ ΦT g−1Φ, (4.57)

Cg̃−1 = ΦG̃−1 − (G+ ΦG̃−1ΦT )Π, (4.58)

g−1C = G−1Φ−Π(G̃+ ΦTG−1Φ). (4.59)

Similarly to the above examples, G̃ is in general not in the form (4.28), and Φ is not necessarily
induced by a (p+ 1)-form Φ ∈ Ωp+1(M).
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4.5 Doubled formalism

This section will provide a more rigid framework for the generalized metric G defined by (4.47).
The main clue leading to this approach was the fact that open-closed relations (4.56 - 4.59)
can be rewritten in the formal block matrix form

(
g C
−CT g̃

)−1

=

(
G Φ

−ΦT G̃

)−1

+

(
0 Π
−ΠT 0

)
. (4.60)

Let W be a vector bundle W = TM ⊕ ΛpTM . Define the following vector bundle morphisms:

G =

(
g 0
0 g̃

)
, B =

(
0 C
−CT 0

)
, H =

(
G 0

0 G̃

)
, Ξ =

(
0 Φ
−ΦT 0

)
, Θ =

(
0 Π
−ΠT 0

)
.

(4.61)
We can now rewrite (4.60) in the form resembling the original open-closed relations (3.119):

(G + B)−1 = (H+ Ξ)−1 + Θ. (4.62)

See that G and H are positive definite fiber-wise metrics on W , B,Ξ ∈ Ω2(W ), and Θ ∈ X2(W ).
This suggests that we should focus on the generalized geometry of W . In particular, to consider
the vector bundle V = W ⊕ W ∗. This vector bundle is equipped with a natural pairing
〈·, ·〉V , and thus also with a natural orthogonal group O(d, d), where d = n +

(
n
p

)
. This

configuration allows one to define a generalized metric on V using the formalism of Section 3.8.
By the generalized metric we mean all forms equivalent to Definition 3.8.1. Let us see how this
allows one to describe the generalized metric of Section 4.4. Note that we do not assume that
C ∈ Ωp+1(M), and g̃ is in general ont of the form (4.28).

Definition 4.5.1. Let GV be a generalized metric on V = W ⊕W ∗, where W = TM⊕ΛpTM .
We can view GV as an element of Hom(V, V ∗). Note that E and E∗ are subbundles of both V
and V ∗.

We say that GV is a relevant generalized metric, if GV (E) ⊆ E∗.

Let us now show that the restriction of a relevant generalized metric GV to the subbundle
E is exactly the generalized metric G defined by (4.47). First, note that every GV is uniquely
determined by a positive definite metric G on W , B ∈ Ω2(W ), and has the formal block form

GV =

(
G − BG−1B BG−1

−G−1B G−1

)
. (4.63)

It is straightforward to show that GV is a relevant generalized metric, if and only if G and B
have the form

G =

(
g 0
0 g̃

)
, B =

(
0 C
−CT 0

)
, (4.64)

where g is a Riemannian metric on M , g̃ is a positive definite fiber-wise metric on ΛpTM , and
C ∈ Hom(ΛpTM, T ∗M). We have shown that GV is uniquely determined by a map A = G+B.
This map now reads

A =

(
g C
−CT g̃

)
. (4.65)

To see how GV and G fit together, note that V can also be written as V = E⊕E∗. Moreover,
E and E∗ are complementary maximally isotropic subbundles of V , and 〈·, ·〉V coincides with
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the canonical pairing of E and E∗. Because GV is a relevant generalized metric, we see that
the involution TV corresponding to GV satisfies TV (E) ⊆ E∗. We can write TV as a block
matrix with respect to the splitting V = E ⊕ E∗ as

TV =

(
0 H
G N

)
. (4.66)

Now TV has to be symmetric with respect to 〈·, ·〉V , and T 2
V = 1. These two properties give

N = 0, and H = G−1. An examination of G shows that it is exactly the generalized metric
(4.47). Moreover, the corresponding eigenbundles V± have the form

V± = {e±G(e) | e ∈ E}. (4.67)

In the isotropic splitting V = E ⊕E∗, a relevant generalized metric GV is thus described by a
pair (G,0), where G is a positive definite fiber-wise metric in E, and 0 ∈ Ω2(E). Again, let
us emphasize that this description does not single out G where g̃ is an induced metric (4.28),
and C ∈ Ωp+1(M).

We can consider O(d, d) transformations an their action on the generalized metric GV ,
similarly to Section 3.9. Clearly, not for any OV ∈ O(d, d), the new metric G′V := OTV GVOV
is again a relevant one.

Example 4.5.2. Let us show some examples of O(d, d)-transformations. We will follow the
structure of Example 3.9.5. We only have to discuss the conditions under which the new
generalized metric G′V becomes relevant. We assume that GV is of the form (4.63), where G
and B are parametrized by (g, g̃, C) as in (4.64).

• Let Z ∈ Ω2(V ), and choose OV = e−Z . The new generalized metric G′V = OTV GVOV is
described by a pair (G′,B′), and we get

G′ = G, B′ = B + Z. (4.68)

Clearly (G′,B′) describes a relevant metric, if and only if B′ is again block off-diagonal.
This happens if and only if Z is block off-diagonal:

Z =

(
0 Z
−ZT 0

)
, (4.69)

where Z ∈ Hom(ΛpTM, T ∗M). The fiber-wise metric G′ corresponding to G′V is then
described by a triplet (g, g̃, C + Z).

• Let Θ ∈ X2(V ). Define OV = eΘ. The new generalized metric G′V = OTV GVOV is
described by a pair (H,Ξ), and we get the relation

(G + B)−1 = (H+ Ξ)−1 + Θ. (4.70)

To see which Θ give a relevant G′V is similar to the previous example - one just has to
switch to the dual fields describing GV . In particular, if A = G+B, let A−1 = G−1

N + ΘN

for a positive definite fiber-wise metric GN on V , and ΘN ∈ X2(V ). One can show that
for a relevant GV they have the form

GN =

(
GN 0

0 G̃N

)
, ΘN =

(
0 ΠN

−ΠT
N 0

)
, (4.71)
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where (GN , G̃N ,ΠN ) are the fields (4.49 - 4.51). Similarly to the p = 1 case, we have
Θ′N = ΘN −Θ. This proves that G′V is a relevant generalized metric, if and only if Θ is
block off-diagonal:

Θ =

(
0 Π
−ΠT 0

)
, (4.72)

where Π ∈ Hom(ΛpT ∗M,TM). To conclude, if G′ corresponding to G′V is described by

a triplet (G, G̃,Φ), we get exactly the equation (4.60). This is in turn equivalent to the
set of equations (4.56 - 4.59).

• Let N ∈ EndV , and choose OV = ON , where ON is defined as in (3.120). The new
generalized metric G′V = OTV GVOV is described by a pair (G′,B′), where

G′ = N TGN , B′ = N TBN . (4.73)

Criteria for N to give a relevant generalized metric G′V are in this case more intricate.
Indeed, let N have the block form

N =

(
N1 N2

N3 N4

)
. (4.74)

Then G′V defines a relevant generalized metric, if and only if

NT
1 gN2 +NT

3 gN4 = 0, (4.75)

NT
2 g̃N1 +NT

4 g̃N3 = 0, (4.76)

NT
2 CN4 −NT

4 C
TN2 = 0, (4.77)

NT
1 CN3 −NT

3 C
TN1 = 0. (4.78)

Let (g′, g̃′, C ′) be the fields corresponding to the fiber-wise metric G′. There are two
simple solutions to this set of equations. First consider N2 = N3 = 0. This gives

g′ = NT
1 gN1, g̃

′ = NT
4 g̃N4, C

′ = NT
1 CN4. (4.79)

The second example is N1 = N4 = 0. In this case, one obtains

g′ = NT
3 g̃N3, g̃

′ = NT
2 gN2, C

′ = −NT
3 C

TN2. (4.80)

This example shows that criteria to give a relevant generalized metric are not universal -
they can depend on the original generalized metric GV .

4.6 Leibniz algebroid for doubled formalism

We have just shown that the vector bundle V = W ⊕ W ∗ proves to be a natural way to
describe the generalized geometry on the vector bundle E. To complete this discussion, we
have to introduce a suitable bracket structure on V . In particular, we would like to define a
bracket [·, ·]V , which will restrict to the higher Dorfman bracket on (4.15) on E. To do so, we
will use the following lemma:
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Lemma 4.6.1. Let (E, ρ, [·, ·]E) be a Leibniz algebroid. Then there is always a Leibniz algebroid
structure on V = E ⊕ E∗, restricting to [·, ·]E on E. In particular, define

[e+ α, e′ + α′]V = [e, e′]E + LEe α′, (4.81)

for all e, e′ ∈ Γ(E), and α, α′ ∈ Γ(E∗). The anchor ρV ∈ Hom(V, TM) is defined as ρV =
ρ ◦ pr1. Then (V, ρV , [·.·]V ) is a Leibniz algebroid. By LE we mean the induced Lie derivative
(2.7).

Proof. The Leibniz rule for [·, ·]V follows from (2.10). For the Leibniz identity, we have

[e+ α, [e′ + α′, e′′ + α′′]V ]V = [e, [e′, e′′]E ]E + LEe LEe′e′′, (4.82)

[[e+ α, e′ + α′]V , e
′′ + α′′]V = [[e, e′]E , e

′′]E + LE[e,e′]Ee
′′, (4.83)

[e′ + α′, [e+ α, e′′ + α′′]V ]V = [e′, [e, e′′]E ]E + LEe′LEe e′′. (4.84)

One now sees that the Leibniz identity for [·, ·]V follows from the one of [·, ·]E and its property
(2.11). The bracket [·, ·]V clearly restricts to [·, ·]E on E. �

Now consider E = TM⊕ΛpT ∗M with the higher Dorfman bracket (4.15). We have already
calculated LE for this bracket, see (2.15). We will denote the sections of V as (X,P, α, ξ) for
X ∈ X(M), P ∈ Xp(M), α ∈ Ω1(M), and ξ ∈ Ωp(M). Then,

[(X,P, α, ξ), (Y,Q, β, η)]V =
(
[X,Y ],LXQ,LXβ + (dξ)(Q),LXη − iY dξ

)
, (4.85)

for all (X,P, α, ξ), (Y,Q, β, η) ∈ Γ(V ). We claim that this is the bracket most suitable to
describe the generalized geometry on E ⊆ V . The bracket (4.85) was briefly mentioned by
Hagiwara in [41] to describe Nambu-Dirac structures.

Remark 4.6.2. Note that with respect to the splitting V = W ⊕ W ∗, this bracket strongly
resembles the usual Dorfman bracket. Indeed, see that there is a Leibniz algebroid bracket on
W defined as

[(X,P ), (Y,Q)]W = ([X,Y ],LXQ), (4.86)

for all (X,P ), (Y,Q) ∈ Γ(W ). Then LW(X,P )(β, η) = (LXβ,LXη), and we have

[(X,P, α, ξ), (Y,Q, β, η)]V =
(
[(X,P ), (Y,Q)]W ,LW(X,P )(β, η)− i(Y,Q)dW (α, ξ)

)
, (4.87)

where i(Y,Q)dW (α, ξ) is a formal operation defined as i(Y,Q)dW (α, ξ) := (−(dξ)(Q), iY dξ). There
is no actual definition of the differential dW .

We have introduced the bracket (4.85) in order to be able to define Dirac structures of the
vector bundle V . Since we have the fiber-wise metric 〈·, ·〉V , we can study involutive maximally
isotropic subbundles of V . One can roughly follow Section 3.7. We will make use of the
following simple technical Lemma

Lemma 4.6.3. Let T ∈ T pq (M) be a tensor field on M , completely skew-symmetric in all upper
indices, and in all lower indices (equivalently T ∈ Hom(ΛpTM,ΛqTM)), such that LXT = 0
for all X ∈ X(M). Then

1. For p = q, T = λ · 1, where λ ∈ Ω0
closed(M).

2. For p 6= q, T = 0.
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Proof. See Appendix A. �

Example 4.6.4. Let us bring up some important examples of Dirac structures of V .

• By definition (Lemma 4.6.1), E and E∗ define Dirac structures of V .

• Subbundles W and W ∗ define Dirac structures of V .

• Let B ∈ Ω2(W ) be an arbitrary 2-form on W . We know that eB ∈ O(d, d). This implies
that eB(W ) is a maximally isotropic subbundle of V . Let B be of the block form

B =

(
B C

−CT B̃

)
, (4.88)

where B ∈ Ω2(M), B̃ ∈ Ω2(ΛpTM), and C ∈ Hom(ΛpTM, T ∗M). The subbundle eB(W )
is a graph of B ∈ Hom(W,W ∗), that is

GB = {(w,B(w)) | w ∈W} ⊆ V. (4.89)

The involutivity condition [GB, GB]V ⊆ GB gives two conditions

LX(B(Y ) + C(Q)) + d(−CT (X) + B̃(P ))(Q) = B([X,Y ]) + C(LXQ), (4.90)

LX(−CT (Y ) + B̃(Q))− iY d(−CT (X) + B̃(P )) = −CT ([X,Y ]) + B̃(LXQ)). (4.91)

These two equations have to hold for all X,Y ∈ X(M) and for all P,Q ∈ Xp(M). First
note that there is only one term containing the pair (P,Q) in the first condition. This

implies d(B̃(P )) = 0 for all P ∈ Xp(M). Hence df ∧ B̃(P ) = 0 for all P ∈ Xp(M). For

p < n, this gives B̃ = 0. For p = n, there is no non-trivial B̃, because ΛpTM has rank 1.

The part of (4.90) containing the pair (X,Y ) gives LX(B(Y )) = B([X,Y ]). This is
equivalent to LXB = 0. Using Lemma 4.6.3, we get B = 0. There remain only two
non-trivial equations. First, consider the part of (4.91) containing the pair (X,Y ). One
obtains

LX(CT (Y ))− iY d(CT (X)) = CT ([X,Y ]). (4.92)

This condition is C∞(M)-linear in Y , but in general not in X. This forces the following
condition to hold for every f ∈ C∞(M):

df ∧ [iXC
T (Y ) + iY C

T (X)] = 0. (4.93)

We see that necessarily iXC
T (Y ) + iY C

T (X) = 0. This proves that C has to be induced
by C ∈ Ωp+1(M), CT (X) = iXC. Using this in (4.92) gives iY iXdC = 0, that is
C ∈ Ωp+1

closed(M). There still remains one condition for the terms containing the pair
(X,Q) in (4.90). One can show that it already follows from dC = 0. We have just proved
that GB is a Dirac structure of V , if and only if B is of the form

B =

(
0 C
−CT 0

)
, C ∈ Ωp+1

closed(M). (4.94)

Now note that we have three more isotropic subbundles which we can produce using eB.
In particular eB(W ∗), eB(E), and eB(E∗). None of these other choices give something
interesting.
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• Let Θ ∈ X2(W ). Then eΘ(W ∗) is a maximally isotropic subbundle of V . Let Θ have the
block form

Θ =

(
π Π
−ΠT π̃

)
. (4.95)

The subbundle eΘ(W ∗) is in fact the graph of the map Θ:

GΘ = {(Θ(µ), µ) | µ ∈ Γ(W ∗)} ⊆W ⊕W ∗. (4.96)

Let us examine the consequences of the involutivity condition [GΘ, GΘ]V ⊆ GΘ. We get
the set of two equations

[π(α) + Π(ξ), π(β) + Π(η)] = π
(
Lπ(α)+Π(ξ)β + (dξ)(−ΠT (β) + π̃(η))

)
(4.97)

+ Π
(
Lπ(α)+Π(ξ)η − iπ(β)+Π(η)dξ

)
,

Lπ(α)+Π(ξ)(−ΠT (β) + π̃(η)) = −ΠT
(
Lπ(α)+Π(ξ)β + (dξ)(−ΠT (β) + π̃(η))

)
(4.98)

+ π̃
(
Lπ(α)+Π(ξ)η − iπ(β)+Π(η)dξ

)
.

Since these two equations have to hold for all α, β ∈ Ω1(M) and ξ, η ∈ Ωp(M), we can
find these equivalent to the set of more simpler equations:

[π(α), π(β)] = π(Lπ(α)β), (4.99)

[π(α),Π(η)] = Π(Lπ(α)η), (4.100)

[Π(ξ), π(β)] = π
(
LΠ(ξ)β − (dξ)(ΠT (β))

)
−Π(iπ(β)dξ), (4.101)

[Π(ξ),Π(η)] = π
(
(dξ)(π̃(η))

)
+ Π(LΠ(ξ)η − iΠ(η)dξ), (4.102)

Lπ(α)(Π
T (β)) = ΠT (Lπ(α)β), (4.103)

Lπ(α)(π̃(η)) = π̃(Lπ(α)η), (4.104)

LΠ(ξ)(Π
T (β)) = ΠT

(
LΠ(ξ)β − (dξ)(ΠT (β))

)
+ π̃(iπ(β)dξ). (4.105)

Let us focus on the very first equation. It can be rewritten as Lπ(α)π = 0. It is not linear
in α, which forces π(α) ∧ π(β) = 0, for all α, β ∈ Ω1(M). This means that vector fields
π(α) and π(β) are linearly dependent for all α, β. This would mean that the map π has
rank at most 1 everywhere. But π is skew-symmetric, and thus π = 0. This radically
simplifies the rest of the equations. In particular, we are left with the two of them:

[Π(ξ),Π(η)] = Π(LΠ(ξ)η − iΠ(η)dξ), (4.106)

LΠ(ξ)(Π
T (β)) = ΠT

(
LΠ(ξ)β − (dξ)(ΠT (β))

)
. (4.107)

First note that the first equation can be rewritten as

(LΠ(ξ)Π)(η) = −Π(iΠ(η)dξ), (4.108)

where Π on the left-hand side is viewed as a type (0, p + 1) tensor. We will show in the
next chapter that this condition forces Π to be induced by a (p+1)-vector Π ∈ Xp+1(M),
which is moreover a Nambu-Poisson tensor. Compare with (5.13) of Lemma 5.1.4 and
use Lemma 5.1.6 to prove the skew-symmetry of Π.

The second condition equation can then easily be seen to be the transpose to the first
one. Note that there is no condition on π̃ whatsoever. We conclude that eΘ(W ∗) = GΘ

is a Dirac structure, if and only if

Θ =

(
0 Θ
−ΘT π̃

)
, Θ ∈ Xp+1(M), π̃ ∈ X2(ΛpTM), (4.109)

and Θ is a Nambu-Poisson tensor. The bivector π̃ on ΛpTM can be completely arbitrary.
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• Let L ⊆ E be an arbitrary subbundle of E. We can define a subbundle ∆ of V as

∆ = L⊕ L⊥, (4.110)

where L⊥ ⊆ E∗ is the annihilator subbundle of L. By definition, ∆ is a maximally
isotropic subbundle of V . Then ∆ is a Dirac structure of V iff L is involutive under
higher Dorfman bracket (4.15).

To conclude this section, let us consider the twisting of the bracket [·, ·]V . We follow the
idea of (4.26) and below. Let B ∈ Ω2(W ) be of the same block form as in (4.88). We define a
new bracket [·, ·]′V as

[v, v′]′V = e−B[eB(v), eB(v′)]V , (4.111)

for all v, v′ ∈ Γ(V ). We expect to obtain the bracket in the form

[v, v′]′V = [v, v′]V − dB(v, v′), (4.112)

where dB : Γ(V ) × Γ(V ) → Γ(V ) is to be determined now. The calculation shows that for
v = (X,P, α, ξ), v′ = (Y,Q, β, η), we have prW dB(v, v′) = 0, and

prT∗M (dB(v, v′)) = −LX(C(Q) +B(Y )) + d(CT (X)− B̃(P ))(Q) (4.113)

+B[X,Y ] + C(LXQ),

prΛpT∗M (dB(v, v′)) = LX(CT (Y )− B̃(Q))− iY d(CT (X)− B̃(P )) (4.114)

− CT ([X,Y ]) + B̃(LXQ).

Now, note that dB(v, v′) is C∞(M)-linear in v′, but for a general B it is not C∞(M)-linear in
v. Let us now require this property. This implies that for any f ∈ C∞(M) there must hold

df ∧ iXB(Y ) + (Y.f)B(X) = 0, (4.115)

(df ∧ B̃(P ))(Q) = 0. (4.116)

The first condition can be rewritten as iY (df ∧ B(X)) = 0. It then follows that these two

conditions imply B = B̃ = 0. Next, from (4.114) we obtain the condition

df ∧ (iXC
T (Y ) + iY C

T (X)) = 0. (4.117)

This proves that C has to be induced by C ∈ Ωp+1(M). Let us see how dB looks now. We
obtain

dB(v, v′) =
(
0, 0,−(iXdC)(Q), iY iXdC

)
. (4.118)

One can conclude that the twist by eB defines a C∞(M)-bilinear map dB, if and only if

B = B̃ = 0, and C ∈ Hom(ΛpTM, T ∗M) is induced by a (p+ 1)-form C ∈ Ωp+1(M).

4.7 Killing sections of generalized metric

One can naturally generalize Section 3.10 to the p ≥ 1 setting. In particular, we can define
Killing sections as in (3.133). Also the derivation of the explicit form of Killing equations is very
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similar. Assume that g̃ is of the form (4.28), and C ∈ Ωp+1(M). One can see that e ∈ Γ(E) is
a Killing section of G = (e−C)TGEe−C , if and only if there holds

ρ(e−C(e)).GE(f ′, f ′′) = GE([e−C(e), f ′]dCD , f ′′) + GE(f ′, [e−C(e), f ′′]dCD ), (4.119)

for all f ′, f ′′ ∈ Γ(E). Let f := e−C(e). We can thus study the Killing equation for the section
f and the metric GE , but now using the twisted bracket [·, ·]dCD . Let f = X ′+ξ′ for X ′ ∈ X(M)
and ξ′ ∈ Ωp(M), and write f ′ = Y + η, f ′′ = Z + ζ. One gets

X ′.{g(Y,Z) + g̃−1(η, ζ)} = g([X ′, Y ], Z) + g(Y, [X ′, Z])

+ g̃−1
(
LX′η − iY dξ

′ − dC(X ′, Y, ·), ζ
)

+ g̃−1
(
η,LX′ζ − iZdξ

′ − dC(X ′, Z, ·)
)
.

(4.120)

This yields a set of four separate equations

X ′.g(Y,Z) = g([X ′, Y ], Z) + g(Y, [X ′, Z]), (4.121)

X ′.g̃−1(η, ζ) = g̃−1(LX′η, ζ) + g̃−1(η,LX′ζ), (4.122)

0 = g̃−1(−iY dξ
′ − dC(X ′, Y, ·), ζ), (4.123)

0 = g̃−1(η,−iZdξ
′ − dC(X ′, Z, ·)). (4.124)

The first equation is an ordinary Killing equation for the vector field X ′, that is LX′g = 0. The
second equation yields LX′ g̃−1 = 0. This in turn yields LX′ g̃ = 0. For g̃ of the form (4.28),
Lemma 4.3.2 shows that this already follows from LX′g = 0. Last two equations force

dξ′ = −iX′dC. (4.125)

Now let e = X+ ξ. Then X ′ = X, and ξ′ = ξ+ iXC. Plugging into the above conditions gives:

Proposition 4.7.1. Let e = X + ξ. Then e satisfies a generalized Killing equation (3.133) for
G = (e−C)TGEe−C , if and only if the following conditions hold:

LXg = 0, dξ = −LXC. (4.126)

Moreover, one can also restate Proposition 3.10.4 for the p > 1 case. It has the completely
same form and there is no reason to repeat it here explicitly.

4.8 Generalized Bismut connection II

We will now generalize the notion of generalized Bismut connection defined in Section 3.12.
Let G be a generalized metric (4.47) on E = TM ⊕ ΛpT ∗M . We assume that g̃ is of the form
(4.28). Let H = dC. We are looking for an example of the vector bundle connection on E
compatible with G. The most straightforward way is to use the form (3.166) and replace g
with g̃ where necessary to make it work. We define the connection ∇ as

∇X =

(
1 0
−CT 1

)(
∇LCX 1

2g
−1H(X, ·, g̃−1(?))

− 1
2H(X, ?, ·) ∇LCX

)(
1 0
CT 1

)
. (4.127)

By ∇LC we mean the Levi-Civita connection of g acting on vector fields and on p-forms. Using
Lemma 4.3.5 it is easy to check that ∇X is metric compatible with G.
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We can now examine this connection from a more conceptual viewpoint, using the doubled
formalism on V = W ⊕W ∗. Let GV be the generalized metric on V = W ⊕W ∗ corresponding
to G, and let Ψ± : W → V± be the two isomorphisms induced by GV . Let G and B be the
fields corresponding to the generalized metric GV . Let ∇∗ be the dual connection induced by
∇ on the vector bundle E∗. Explicitly

∇∗X =

(
1 C
0 1

)(
∇LCX 1

2H(X, ·, ?)
− 1

2 g̃
−1H(X, g−1(?), ·) ∇LCX

)(
1 −C
0 1

)
. (4.128)

Define a new connection ∇V on V = E ⊕ E∗ as a block diagonal combination of ∇ and ∇∗:

∇VX(e+ α) = ∇Xe+∇∗Xα, (4.129)

for all e ∈ Γ(E) and α ∈ Γ(E∗). By construction, ∇V is compatible with the generalized
metric GV . Moreover, it can be written in a way resembling the original generalized Bismut
connection. Define a bilinear map H : Γ(W ) × Γ(W ) → Γ(W ∗) using the twisting map dB
defined by (4.118). Let w,w′ ∈ Γ(W ). We can view them as elements of Γ(V ). Define

H(w,w′) = prW∗dB(w,w′). (4.130)

With respect to the splitting V = W ⊕W ∗, the connection ∇V can be written in the block
form

∇VX =

(
1 0
B 1

)(
∇LCX − 1

2G−1H(X,G−1(?))
− 1

2H(X, ?) ∇LCX

)(
1 0
−B 1

)
, (4.131)

where ∇LC acts diagonally on W = TM ⊕ ΛpTM and on W ∗ = T ∗M ⊕ ΛpT ∗M . Note that
this connection is also compatible with the natural pairing 〈·, ·〉V on V , that is

X.〈v, v′〉V = 〈∇VXv, v′′〉V + 〈v,∇VXv′′〉V , (4.132)

for all v, v′ ∈ Γ(V ). By definition, we obtain ∇ by restriction of ∇V onto the subbundle E ⊆ V .
In accordance with Lemma 3.12.2, one can write ∇V using the isomorphisms Ψ± and a pair of
connections ∇± on the vector bundle W . One gets

∇Ψ±(w)(Ψ+(w′)) = Ψ+(∇+
ww
′), (4.133)

∇Ψ±(w′)(Ψ−(w′)) = Ψ−(∇−ww′), (4.134)

for all w,w′ ∈ Γ(W ), and ∇± is a pair of connections on W defined as

∇±ww′ = ∇LCpr1ww′ ∓
1

2
G−1H(w,w′). (4.135)

Returning to the original connection ∇, we may calculate its torsion and curvature opera-
tors. Define a simpler connection ∇̂ using the formula ∇X = eC∇̂Xe−C . This is a connection
compatible with GE , having the form of the middle block as in (4.127). By definition, it will
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have the same scalar curvature as ∇. Let X,Y ∈ X(M) and Z + ζ ∈ Γ(E). We get

R̂1(X,Y )(Z + ζ) = RLC(X,Y )Z (4.136)

+
1

2
g−1(∇LCX H)(Y, ·, g̃−1(ζ))− 1

2
g−1(∇LCY H)(X, ·, g̃−1(ζ))

− 1

4
g−1H(X, ·, g̃−1H(Y,Z, ·)) +

1

4
g−1H(Y, ·, g̃−1H(X,Z, ·)),

R̂2(X,Y )(Z + ζ) = RLC(X,Y )ζ (4.137)

− 1

2
(∇LCX H)(Y, Z, ·) +

1

2
(∇LCY H)(X,Z, ·)

+
1

4
H(X, g−1H(Y, ·, g̃−1(ζ)), ·)− 1

4
H(Y, g−1H(X, ·, g̃−1(ζ)), ·)

The Ricci tensor R̂ic has only two non-trivial components. Namely, we get

R̂ic(X,Y ) = RicLC(X,Y ) +
1

4
H(Y, g−1(dyk), g̃−1H(∂k, X, ·)), (4.138)

R̂ic(ξ, Y ) =
1

2
(∇LC∂k H)(Y, g−1(dyk), g̃−1(ξ)). (4.139)

Finally, define a scalar curvature R̂ = R̂ic(G−1
E (eλ), eλ). One obtains

R̂ = R(g)− 1

4
HijKH

ijK . (4.140)

The indices of H are raised by metric g, and R(g) is the scalar curvature of the Levi-Civita
connection of g. Let R be the scalar curvature of the original connection ∇ defined using the
generalized metric G = (e−C)TGEe−C , that is R = Ric(G−1(eλ), eλ). By construction, the

two connections have the same scalar curvature, that is we get R = R̂.
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Chapter 5

Nambu-Poisson structures

In this chapter, we will discuss in detail the definitions and structures induced by a Nambu
bracket on a manifold. This (p+ 1)-ary bracket was for p = 2 introduced in 1972 by Y. Nambu
in [78] as an attempt to generalize the classical Hamiltonian mechanics. Nambu defines a
trinary bracket {f, g, h} for a triplet of functions of three variables (x, y, z) as

{f, g, h} =
∂(f, g, h)

∂(x, y, z)
. (5.1)

He notes that such a bracket has some remarkable properties, in particular it is completely
skew-symmetric and it satisfies the Leibniz rule.

{ff ′, g, h} = f{f ′, g, h}+ {f, g, h}f ′. (5.2)

Interestingly, he does not attempt to generalize the third usual property of Poisson bracket, the
Jacobi identity. An axiomatic definition of Nambu brackets was introduced more than twenty
years later in [87], where the term Nambu-Poisson manifold appears for the first time. The
author already suspects and emphasizes throughout his paper that Nambu-Poisson structures
are much more rigid objects than Poisson structures. This was finally proved by several different
people in 1996, for example in [3]. For the complete list of references and many more interesting
remarks, see the survey [88] of I. Vaisman.

5.1 Nambu-Poisson manifolds

Definition 5.1.1. Let p ≥ 1 be a fixed integer, and let {·, . . . , ·} : C∞(M)× · · · × C∞(M)→
C∞(M) be an R-(p+1)-linear map. We say that {·, . . . , ·} is a Nambu bracket, if the following
properties hold:

1. The map {·, . . . , ·} is completely skew-symmetric.

2. It satisfies the Leibniz rule:

{f1, . . . , fp+1 · gp+1} = {f1, . . . , fp+1}gp+1 + fp+1{f1, . . . , gp+1}. (5.3)
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3. It satisfies the fundamental identity:

{f1, . . . , fp, {g1, . . . , gp+1}} = {{f1, . . . , fp, g1}, . . . , gp+1}
+ · · ·+ {g1, . . . , {f1, . . . , fp, gp+1}}.

(5.4)

Both the Leibniz rule and the fundamental identity are assumed to hold for all involved smooth
functions.

We see that for p = 1, the definition reduces to the ordinary Poisson bracket on M . Next,
note that for any f ∈ C∞(M), the bracket {g1, . . . , gp}′ := {f, g1, . . . , gp} defines again a
Nambu-Poisson bracket. Both axioms can be read as follows. To any p-tuple (f1, . . . , fp) of
smooth functions, we may assign an operator

X(f1,...,fp) := {f1, . . . , fp, ·}. (5.5)

Leibniz rule proves that X(f1,...,fp) is a vector field on M , X(f1,...,fp) ∈ X(M). The fundamental
identity then requires X(f1,...,fp) to be a derivation of the bracket {·, . . . , ·}.

It follows from the Leibniz rule (5.3) that {·, . . . , ·} in fact depends only on differentials of
incoming functions. It thus makes sense to define a Nambu-Poisson tensor Π by

Π(df1, . . . , dfp+1) := {f1, . . . , fp+1}, (5.6)

for all f1, . . . , fp+1 ∈ C∞(M). The complete skew-symmetry of the bracket {·, . . . , ·} is clearly
equivalent to Π being a (p + 1)-vector, Π ∈ Xp+1(M). The fundamental identity can be then
rewritten simply as

LX(f1,...,fp)
Π = 0. (5.7)

Now, let us recall the fundamental theorem for the theory of Nambu-Poisson manifolds. The
proof can be found for example in [3, 31,88], and we thus omit it here.

Theorem 5.1.2. Let p ≥ 2, and Π ∈ Xp+1(M). Then Π is a Nambu-Poisson tensor, if and
only if for every x ∈ M , such that Π(x) 6= 0, there is a neighborhood U 3 x, and a set of local
coordinates (x1, . . . , xn) on U , such that locally

Π =
∂

∂x1
∧ . . . ∧ ∂

∂xp+1
. (5.8)

The components of Π in this coordinates are thus Πi1...ip+1 = εi1...ip+1 , and the corresponding
bracket {·, . . . , ·} has the local form

{f1, . . . , fp+1} =
∂(f1, . . . , fp+1)

∂(x1, . . . , xp+1)
(5.9)

We will call (x1, . . . , xn) the Darboux coordinates for Π.

Note that the only if part of this theorem is not true for p = 1. The simple counter-example
is the canonical Poisson structure Π on R2n, n > 1:

Π =

n∑

j=1

∂

∂qj
∧ ∂

∂pj
. (5.10)

In these coordinates, the component matrix Πij is invertible. On the other hand, the matrix in
coordinates (5.8) has always the rank 2, hence it cannot be invertible. This proves that Π defined
by (5.10) is not decomposable. For Poisson manifolds, there holds a more subtle statement,
called Darboux-Weinstein theorem [90]. We will now use Theorem 5.1.2 to reformulate the
fundamental identity in several ways more useful for our purposes.
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Lemma 5.1.3. Let Π ∈ Xp+1(M), and p > 1. Then Π satisfies the fundamental identity (5.7),
if and only if there holds

LΠ(ξ)Π = −〈Π, dξ〉Π, (5.11)

for all ξ ∈ Ωp(M).

Proof. If part is simple, for any p-tuple (f1, . . . , fp) choose ξ = df1 ∧ . . . ∧ dfp. Then Π(ξ) =
(−1)pX(f1,...,fp), and since dξ = 0, we get LX(f1,...,fp)

Π = 0.

Conversely, assume that Π is a Nambu-Poisson tensor. It suffices to prove (5.11) for ξ in
the form ξ = g · df1 ∧ . . .∧ dfp, where g, f1, . . . , fp ∈ C∞(M). At points x ∈M where Π(x) = 0
the statement holds trivially. We can thus assume that we can work locally with Π in the form
(5.8). We have

LΠ(ξ)Π = (−1)pLgX(f1,...,fp)
Π = (−1)p+1X(f1,...,fp) ∧ idgΠ.

We have used the fundamental identity (5.7) to get rid of one term. We can write

idgΠ =

p∑

r=1

(−1)r+1 ∂g

∂xr
∂

∂x1
∧ . . . ∧ ∂

∂xr−1
∧ ∂

∂xr+1
∧ . . . ∧ ∂

∂xp
,

and consequently, we obtain

(−1)p+1X(f1,...,fp) ∧ idgΠ = (−1)p+1

p∑

r=1

∂

∂x1
∧ . . . ∧Xr

(f1,...,fp)

∂g

∂xr
∂

∂xr
∧ . . . ∧ ∂

∂xp

= (−1)p+1(

p∑

r=1

Xr
(f1,...,fp)

∂g

∂xr
)Π = (−1)p+1(X(f1,...,fp).g)Π

= (−1)p+1〈Π, df1 ∧ . . . ∧ dfp ∧ dg〉Π = −〈Π, dξ〉Π.

This proves the assertion of the Lemma. �

Note that (5.11) does not hold for p = 1. To include this case, one must modify it as

LΠ(ξ)Π = −(〈Π, dξ〉Π− 1

p+ 1
idξ(Π ∧Π)). (5.12)

For p > 1, the decomposability implies Π∧Π = 0, and the proof is then just an easy alteration.
For p = 1, this is not necessarily true, as illustrates the example (5.10). The proof of (5.12) is in
this case left for an interested reader. We will now derive a more conceptual reformulation of the
fundamental identity, which will give an immediate geometrical description of Nambu-Poisson
structures.

Lemma 5.1.4. Let p ≥ 1, and Π ∈ Xp+1(M). Then Π is a Nambu-Poisson tensor iff

[LΠ(ξ)Π](η) = −Π(iΠ(η)dξ), (5.13)

for all ξ, η ∈ Ωp(M).

Proof. For p = 1, this follows from

(LΠ(ξ)Π)(η) + Π(iΠ(η)dξ) =
1

2
iηiξ[Π,Π]S , (5.14)
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for all ξ, η ∈ Ω1(M). This can be verified directly in coordinates, or using several explicit forms
of the Schouten-Nijenhuis bracket [·, ·]S . See for example [67].

We will focus on the p > 1 case here. Assume that Π is a Nambu-Poisson tensor. At
points where Π(x) = 0, the equation (5.13) holds trivially. We can thus again assume that
Π is of the form (5.8). Note that (5.13) is C∞(M)-linear in η. Moreover, Π and Π(ξ) only
have components with indices ranging only in {1, . . . , p + 1}. We thus have to check (5.13)

only for η in the form η = dx[r] := dx1 ∧ . . . ∧ d̂xr ∧ . . . ∧ dxp+1, where r ∈ {1, . . . , p+ 1} and

d̂xr denotes the omitted term. Choose one such η. Both sides of (5.13) are vector fields. If
we examine the k-th component of the both sides for k 6= r, the left hand side vanishes. The
right-hand side gives (−1)r+1εkJ(dξ)rJ . The only non-trivial contribution to the sum can come

from J = [k] := (1, . . . , k̂, . . . , p + 1), but then (dξ)r[k] = 0 because r ∈ [k]. Thus also the
right-hand side vanishes. For k = r, the left-hand side gives

(LΠ(ξ)Π)(dx[r])r = (LΠ(ξ)Π)r[r] = (−1)r+1(LΠ(ξ)Π)1...p+1 = (−1)r
p+1∑

q=1

ξJ,qε
qJ = (−1)r(dξ)1...p.

The right-hand side can be rewritten as

−[Π(iΠ(dx[r])dξ)]
r = (−1)rΠrJ(dξ)rJ = (−1)r(dξ)1...p.

A comparison of both sides gives the result. Conversely, if (5.13) holds, we can plug in ξ =
df1 ∧ . . . ∧ dfp to obtain the fundamental identity (5.7). �

We can immediately use this lemma to prove some important observations. First note that
the identity (5.13) has two parts, differential and algebraical. To see this, rewrite it in some
local coordinates (y1, . . . , yn) . We write ξ = ξIdy

I , η = dyJ , and take the k-th component of
the result. We get

[(LΠ(ξ)Π)(η)]k = (LΠ(ξ)Π)kJ = ξI
(
ΠnIΠkJ

,n −ΠkI
,nΠnJ −

p∑

q=1

ΠjqI
,nΠkj1...n...jp

)

− ξI,n
(
ΠkIΠnJ +

p∑

q=1

ΠjqIΠkj1...n...jp
)
.

The right-hand side gives

−Π(iΠ(η)dξ)
k = −ΠkL(dξ)mLΠmJ = −ξI,nδnImLΠkLΠmJ .

The terms proportional to ξI give the differential part of the fundamental identity:

ΠnIΠkJ
,n −ΠkI

,nΠnJ −
p∑

q=1

ΠjqI
,nΠkj1...n...jp = 0. (5.15)

The terms proportional to ξI,n give the quadratic equation for Π, the algebraical part of the
fundamental identity:

ΠkIΠnJ +

p∑

q=1

ΠjqIΠkj1...n...jp = δnImLΠkLΠmJ . (5.16)

This one is trivially satisfied for p = 1. For p > 1 it is in fact this part which forces Π to be
decomposable. We can use this to immediately prove the following:
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Lemma 5.1.5. Let p > 1. Let Π be a Nambu-Poisson tensor, and f ∈ C∞(M). Then
Π′ := fΠ is also a Nambu-Poisson tensor. In particular, every Π ∈ Xn(M), n = dimM , is a
Nambu-Poisson tensor.

Proof. Multiplication of Π by f does not change the algebraic part (5.16). Because Π is
Nambu-Poisson, we can choose Darboux coordinates where ΠiJ = εiJ . It suffices to prove the
differential identity, choose ξ = dxI . We thus have to show that

L(fΠ)(dxI)(fΠ) = 0. (5.17)

We have

L(fΠ)(dxI)(fΠ) = ((fΠ)(dxI).f)Π + fL(fΠ)(dyI)Π

= f(Π(dxI).f)Π + f2LΠ(dyI)Π− f(Π(dyI) ∧ idfΠ)

= f
(
(Π(dxI).f)Π−Π(dyI) ∧ idfΠ

)
.

We have used the fundamental identity for Π in the last step. It thus suffices to show that

(Π(dxI).f)Π = Π(dyI) ∧ idfΠ. (5.18)

This is equation which has a single non-trivial component, that is (1, . . . , p). We get

εnI∂nf = εkI∂nfε
nJεkJ .

The only non-trivial contribution is possible for I = [r] for r ∈ {1, . . . , p+ 1}. We then get

(−1)r+1∂rf = (−1)r+1∂nfε
nJεrJ = (−1)r+1∂rf.

This finishes the proof of the first part. The second part follows easily. Every Π ∈ Xn(M) can

be locally written as Π = f∂1 ∧ . . . ∧ ∂n. The n-vector Π̃ = ∂1 ∧ . . . ∧ ∂n is (at least locally

well defined) Nambu-Poisson tensor, and we can use the preceding proof to show that Π = fΠ̃
satisfies the fundamental identity. �

There is one very interesting observation, noted in [37]. If one assumes that Leibniz rule
(5.3) holds in every input (instead of in just one as we did), and that fundamental identity
(5.4) holds, then the complete skew-symmetry of the bracket already follows. We reformulate
this in the language of the corresponding tensors and vector bundle morphisms:

Lemma 5.1.6. Let Π ∈ Hom(ΛpT ∗M,TM) be an arbitrary vector bundle morphism satisfying
(5.16), where now ΠiJ := 〈dyi,Π(dyJ)〉. Then Π is induced by a (p + 1)-vector on M , that is
Π(ξ) = Π(·, ξ) for Π ∈ Xp+1(M).

Proof. We will show that the algebraical identity (5.16) implies that ΠiJ = 0, whenever i ∈ J ,
in arbitrary coordinates. In particular, for any non-zero α ∈ T ∗xM , we can choose the local
coordinates in M , such that dy1|x = α. This will prove that 〈α,Π(α ∧ dyi2 ∧ . . . ∧ dyip〉 = 0,
which implies the complete skew-symmetry of Π. Let us thus prove this assertion, let i ∈ J .
Choose k = n = i and J = I in (5.16). We obtain

(ΠiJ)2 +

p∑

q=1

ΠjqJΠij1...i...jp = δiJmLΠiLΠmI .

91



By assumption, we have i = jr for some r ∈ {1, . . . , p}. Thus only the q = r term on the left-
hand side contributes to the sum. Moreover, the right-hand side vanishes identically, because
δiJmL is completely skew-symmetric in top indices. We thus get

2(ΠiJ)2 = 0,

which proves the assertion. �

5.2 Leibniz algebroids picture

Recall now Example 2.2.2 and the Koszul bracket induced on cotangent bundle by a Poisson
tensor. Can one construct such a bracket also for a Nambu-Poisson structure?

Proposition 5.2.1. Let Π ∈ Hom(ΛpT ∗M,TM) be a vector bundle morphism. Let L =
ΛpT ∗M , and define the R-bilinear bracket [·, ·]Π : Γ(L)× Γ(L)→ Γ(L) as

[ξ, η]Π := LΠ(ξ)η − iΠ(η)dξ, (5.19)

for all ξ, η ∈ Ωp(M). Then (L,Π, [·, ·]Π) is a Leibniz algebroid, if and only if Π is a Nambu-
Poisson tensor.

Proof. The Leibniz rule (2.4) holds for any Π. We will show that the Leibniz identity (2.5) for
[·, ·]Π is equivalent to the fundamental identity (5.7) for Π. In particular, we will use its version
(5.13). For ξ, η ∈ Ωp(M), define the vector field V (ξ, η) as

V (ξ, η) := [Π(ξ),Π(η)]−Π(LΠ(ξ)η − iΠ(η)dξ). (5.20)

We claim that V (ξ, η) = 0 if and only if Π is a Nambu-Poisson tensor. This follows from the
fact that L commutes with contractions, and thus

[Π(ξ),Π(η)] = LΠ(ξ)(Π(η)) = (LΠ(ξ)Π)(η) + Π(LΠ(ξ)η)

= Π(LΠ(ξ)η − iΠ(η)dξ) + {(LΠ(ξ)Π)(η) + Π(iΠ(η)dξ)}.
We see that Π satisfies (5.13) if and only if V (ξ, η) = 0. Combining this with Lemma 5.1.6
proves that V (ξ, η) = 0 if and only if Π is a Nambu-Poisson tensor. Moreover, note that we
have

V (ξ, η) = [Π(ξ),Π(η)]−Π([ξ, η]Π). (5.21)

Let us now examine the Leibniz identity for [·, ·]Π:

[ξ, [η, ζ]Π]Π = LΠ(ξ)(LΠ(η)ζ − iΠ(ζ)dη)− iΠ(LΠ(η)ζ−iΠ(ζ)dη)dξ, (5.22)

[[ξ, η]Π, ζ]Π = LΠ(LΠ(ξ)−iΠ(η)dξ)ζ − iΠ(ζ)d(LΠ(ξ)η − iΠ(η)dξ), (5.23)

[η, [ξ, ζ]Π]Π = LΠ(η)(LΠ(ξ)ζ − iΠ(ζ)dξ)− iΠ(LΠ(ξ)ζ−iΠ(ζ)dξ)dη. (5.24)

Arranging this into the Leibniz identity for [·, ·]Π and using the Cartan formulas to rewrite
several terms, one arrives to the condition

LV (ξ,η)ζ − iV (ξ,ζ)dη + iV (η,ζ)dξ = 0. (5.25)

We are now ready to finish the proof. First, when Π is a Nambu-Poisson tensor, then
V (ξ, η) = 0, hence (5.25) holds. This proves that (L,Π, [·, ·]Π) is a Leibniz algebroid. Con-
versely, if (L,Π, [·, ·]Π) is a Leibniz algebroid, we know that the anchor Π is a bracket homo-
morphism (2.6). Glancing at (5.21), we see that this is equivalent to V (ξ, η) = 0. Hence Π is
a Nambu-Poisson tensor. �
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There is a natural way how to explain the origin of the bracket (5.19). Consider now
arbitrary Π ∈ Hom(ΛpT ∗M,TM). We view its graph GΠ as a subbunle of E:

GΠ = {Π(ξ) + ξ | ξ ∈ ΛpT ∗M}. (5.26)

We can now study its involutivity. Note that GΠ is not an isotropic subbundle with respect to
the pairing (4.1). Instead, it forms an example of an almost Nambu-Dirac structure, defined
and studied in detail in [41].

Proposition 5.2.2. The subbundle GΠ is involutive under the higher Dorfman bracket (4.15),
if and only if Π is a Nambu-Poisson tensor.

Proof. Let Π(ξ) + ξ and Π(η) + η be sections of GΠ. Then

[Π(ξ) + ξ,Π(η) + η]D = [Π(ξ),Π(η)] + LΠ(ξ)η − iΠ(η)dξ. (5.27)

The right-hand side is again a section of GΠ iff

[Π(ξ),Π(η)] = Π
(
LΠ(ξ)η − iΠ(η)dξ

)
. (5.28)

Using the properties of Lie derivative, this is equivalent to

(LΠ(ξ)Π)(η) = −Π(iΠ(η)dξ). (5.29)

This is exactly the fundamental identity for Π written in the form (5.13). �

We can use this to clarify the structure of the bracket (5.19). Indeed, define a vector bundle
isomorphism Ψ ∈ Hom(ΛpT ∗M,GΠ) as Ψ(ξ) = Π(ξ) + ξ. Assume that Π is a Nambu-Poisson
tensor. The relation is then

Ψ([ξ, η]Π) = [Ψ(ξ),Ψ(η)]D. (5.30)

The anchor for [·, ·]Π is then in fact a composition ρ ◦Ψ. Indeed, we have

(ρ ◦Ψ)(ξ) = Π(ξ). (5.31)

This gives an alternative proof of the ”if part” of Proposition 5.2.1.

To conclude this section, see that Proposition 5.2.2 allows one to easily define the twisted
version of Nambu-Poisson structure.

Definition 5.2.3. Let H ∈ Ωp+2(M) be a closed (p + 2)-form, and let [·, ·]HD be a twisted
Dorfman bracket (4.27). Let Π ∈ Hom(ΛpT ∗M,TM), and let GΠ ⊆ E be its graph (5.26). We
say that Π is an H-twisted Nambu-Poisson tensor if GΠ defines a subbundle involutive
under [·, ·]HD .

This definition by itself does not point at all to the statement of the following proposition,
which may seem somewhat surprising. It was first observed and proved in [18].

Proposition 5.2.4. For p = 1, Definition 5.2.3 gives a usual H-twisted Poisson manifold,
where Π ∈ X2(M) satisfies the condition

1

2
[Π,Π]S(ξ, η, ζ) = H(Π(ξ),Π(η),Π(ζ)), (5.32)

for all ξ, η, ζ ∈ Ω1(M). Recall that [·, ·]S is the Schouten-Nijenhuis bracket of multivector fields.
For p > 1, Definition 5.2.3 gives no new structure at all.
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Proof. For p = 1, the statement follows from the fact that

1

2
[Π,Π]S(ξ, η, ·) = [Π(ξ),Π(η)]−Π(LΠ(ξ)η − iΠ(η)dξ). (5.33)

The involutivity of GΠ under [·, ·]HΠ gives the condition

[Π(ξ),Π(η)] = Π(LΠ(ξ)η − iΠ(η)dξ −H(Π(ξ),Π(η), ·)) (5.34)

A combination of these two relations gives the assertion of the proposition. For p > 1, we can
rewrite the involutivity of GΠ under [·, ·]HD as

(LΠ(ξ)Π)(η) = −Π(iΠ(η)dξ +H(Π(ξ),Π(η), ·)). (5.35)

Now recall that the algebraic part (5.16) of the fundamental identity comes from the failure of
(5.13) to be C∞(M)-linear in ξ. But the addition of H does not change this part! Hence Π
satisfies (5.16). It was shown in [3] that this in fact proves that there is a local frame (eλ)nλ=1,
such that Π = e1 ∧ . . . ∧ ep+1. Thus the only components of H contributing to (5.35) are
those corresponding to the first p+ 1 vectors of the frame. But H is a (p+ 2)-form, and those
components vanish due to skew-symmetry. Hence H in no way contributes to (5.35) and Π
satisfies the untwisted fundamental identity (5.13). �

5.3 Seiberg-Witten map

We will now show that given a p-form A, one can use a Nambu-Poisson tensor Π to define
a diffeomorphism of M . It is a direct generalization of the Seiberg-Witten map [85]. In the
presented form, it was introduced for p = 1 in [63] as a dual analogue of Moser’s lemma in
symplectic geometry [77]. Its generalization to p > 1 were presented in [59] and [23]. Let us
first recall a few facts about time-dependent vector fields and their flows.

Definition 5.3.1. Let I ⊆ R be an open interval, and let V• : I → X(M) be a map. A value
of this map at given t ∈ I is a vector field denoted as Vt. We say that V• is a time-dependent
vector field, if in every local coordinate set (y1, . . . , yn) the components of Vt depend smoothly
on t. General time-dependent tensor fields are defined analogously.

Remark 5.3.2. Equivalently, we may view V• as a vector field on the extended manifold M × I
in the form

V•(x, t) = Vt(x) + ∂t. (5.36)

This interpretation is however not useful for higher tensor fields.

For a time-dependent vector field, a notion of integral curve still makes sense, except that
one has to specify its starting time. For s ∈ I, γs : J → M is an integral curve starting at
m ∈ M at the time s, if γ̇s(t) = Vt(γs(t)) for all t ∈ J , and γs(s) = m. Here J ⊆ I is an open
interval. The vector field local flow theorem generalizes as follows:

Proposition 5.3.3. Let V• be a time-dependent vector field defined on an open interval I ⊆ R.
Then there exists an open subset E ⊆ I × I × M and a smooth map ψ : E → M called a
time-dependent local flow of V•, such that

1. For each s ∈ I and m ∈ M , the set Es,m = {t ∈ I | (t, s,m) ∈ E} is an open subinterval
of I containing s. The map ψs,m := ψ(·, s,m) : Es,m →M is a maximal integral curve of
V• starting at m at the time s.
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2. For any t ∈ Es,m, and q = ψs,m(t), there holds Et,q = Es,m, and ψt,q = ψs,p.

3. For any (t, s) ∈ I × I, the set Mt,s = {m ∈ M | (t, s,m) ∈ E} is an open subset of M .
The map ψt,s := ψ(t, s, ·) : Mt,s →Ms,t is a diffeomorphism, and ψ−1

t,s = ψs,t.

4. Let m ∈Mt,s, ant ψt,s(m) ∈Mv,t. Then p ∈Mv,s and

ψv,t ◦ ψt,s = ψv,s. (5.37)

Proof. The proof is in fact a careful application of the ordinary local flow theorem for a vector
field V• mentioned in Remark 5.3.2. For details see [71]. �

Having a local flow, there is a well defined generalization of Lie derivative. Let T• be a
time-dependent tensor field, and ψt,s be a local flow of a time-dependent vector field V•. Define
a new time-dependent tensor field as

(LτV•T•)s = d
dt

∣∣
t=s

ψ∗t,s(Tt). (5.38)

A direct calculation similar to the one for ordinary tensor fields shows that

(LτV•T•)s = ∂sTs + LVsTs. (5.39)

We have used the superscript τ to distinguish the generalization from the ordinary Lie derivative
standing on the right-hand side (which is assumed to be given by usual algebraic formula). Lie
derivative is a tool useful to describe the invariance of tensor fields with respect to flows. Let
us show that for time-dependent tensor fields, Lτ plays the same role.

Lemma 5.3.4. Let V• be a time-dependent vector field. Let T• be a time-dependent tensor
field satisfying LτV•T• = 0. Then for any (t, s) ∈ I × I, one has ψ∗t,s(Tt) = Ts on Mt,s.

Proof. First let us show that the assumption in fact implies that d
dtψ
∗
t,s(Tt) = 0, for all t ∈ I.

We will now use the composition rule (5.37). Indeed, one has

d

dt
ψ∗t,s(Tt) =

d

da

∣∣∣∣
a=0

ψ∗t+a,s(Tt+a) = ψ∗t,s
d

da

∣∣∣∣
a=0

ψ∗t+a,t(Tt+a) = ψ∗t,s(LτV•(T•)t) = 0. (5.40)

This proves that ψ∗t,s(Tt) = T ′s for some T ′• and all t ∈ I. Setting t = s shows that T ′• = T•. �

We now have all ingredients prepared to introduce the Seiberg-Witten map. Let Π ∈
Xp+1(M) be a Nambu-Poisson tensor, and let A ∈ Ωp(M). Denote F = dA. We can use F to
define a new Nambu-Poisson tensor Π′ as follows. Let eF ∈ Aut(E) be the map (4.13) induced
by F . Let GΠ ⊆ E be a graph of Π which is by definition involutive under the Dorfman bracket.
We have shown in Proposition 4.2.3 that eF is an automorphism of the Dorfman bracket. This
proves that the subbundle eF (GΠ) is also involutive under the Dorfman bracket. If there is
Π′ ∈ Hom(ΛpT ∗M,TM) such that GΠ′ = eF (GΠ), we know that Π′ is again a Nambu-Poisson
tensor. Let Π(ξ) + ξ ∈ Γ(GΠ). We have

eF (Π(ξ) + ξ) = Π(ξ) + (1− FTΠ)(ξ). (5.41)

If Π′ exists, there must hold Π(ξ) = Π′(1 − FTΠ)(ξ). Let us assume that 1 − FTΠ is an
invertible map. Hence

Π′ = Π(1− FTΠ)−1. (5.42)
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Now define a time-dependent tensor field Π• as

Πt = Π(1− tFTΠ)−1. (5.43)

Assume that it is well defined for I = (−ε, 1 + ε) for some ε > 0. Clearly Π0 = Π, Π1 = Π′.
Using the same argument as above, Πt is a Nambu-Poisson tensor for every t ∈ I. In particular,
it satisfies the fundamental identity (5.13). Plug ξ = A into this condition. It gives LΠt(A)Πt =
−ΠtF

TΠt. Next, examine the time derivative of Πt. One obtains

∂tΠt = Π(1− tFTΠ)−1FTΠ(1− FTΠ)−1 = ΠtF
TΠt. (5.44)

If we define a time-dependent vector field A#
• as A#

t = Πt(A), we have just proved that
Lτ
A#
•

Π• = 0. Using Lemma 5.3.4 we see that ψ∗t,sΠt = Πs. In particular, define a diffeomorphism

ρA := ψ1,0. The map ρA ∈ Diff(M) is called the Seiberg-Witten map. By construction,
ρ∗A(Π′) = Π. Note that it is essential that Πt is a Nambu-Poisson tensor for every t ∈ I.

To conclude this section, note that for p > 1, the form F ∈ Ωp+1(M) used to define a
time-dependent tensor field Π• does not have to be closed to define a set of Nambu-Poisson
tensors. This is true because in fact for any F ∈ Ωp+1(M) there holds

Πt = (1− t

p+ 1
〈Π, F 〉)−1Π. (5.45)

This can be proved easily in Darboux coordinates (5.8) for Π. This shows that Πt is just a
scalar multiple of Π and the assertion follows from Lemma 5.1.5.
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Chapter 6

Conclusions and outlooks

We have introduced an extension of the generalized geometry suitable for a description of
membrane sigma models. Our intention was to follow the outline of the standard generalized
geometry, in particular in the case of generalized metric. This was not possible until we have in-
troduced a doubled formalism. To our delight, we were able to use it to significantly simplify the
calculations required in particular to relate commutative and semi-classically non-commutative
p-DBI actions. Moreover, it proved useful to discover the membrane analogue of background-
independent gauge and the double scaling limit. Of course, this formalism is mathematically
interesting in its own right. We should focus on the future prospects of the ideas presented in
this thesis. We will now point out the sections which require further investigation.

Let us start with the mathematical side of things. We have defined connections on local
Leibniz algebroids in Section 2.4. This direction is definitely worth of pursuing. For example,
one can study a class of Courant algebroid connections which are compatible with the general-
ized metric and their torsion operator (2.55) vanishes. A set of such connections is larger then
in the case of the ordinary Riemannian geometry. However, it turns out that they such connec-
tions have a quite nice form allowing for the calculation of their scalar curvature. Interestingly,
this scalar function is exactly the one multiplying the integral density in string effective actions.
One should relate this viewpoint to the generalized geometry treatment of string effective ac-
tions in [11, 12]. It would be also necessary to generalize such Courant algebroid connections
to the Leibniz algebroid setting, in particular using the doubled formalism of Sections 4.5 and
4.6.

Killing sections of Section 3.10 have an interesting role in string theory, since one can
construct generalized charges using such sections. Those charges are conserved in time evolution
if and only if the respective sections satisfy the generalized Killing equations. Moreover, such
sections are closely related to T-duality, see [38]. There has to exist some link between these
observations. It would be also important to find a geometrical explanation to membrane duality
rotations od Duff and Lu in [30]. Understanding T-duality analogues for membranes could
possibly give an equivalent derivation od p-DBI actions.

There are several directions where to proceed with the physics presented in the attached
papers. A Nambu sigma model proposed using AKSZ construction in [18] is a little bit different
from the one defined in [59]. It would be interesting to analyze this disparity. In particular,
the latter version used also in our paper [61] is not invariant with respect to worldvolume
reparametrizations. Is there a way to define an invariant and possibly more general Nambu
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sigma model action?

An important feature of topological Poisson sigma models is the existence of the gauge trans-
formations, see for example [13]. It is in fact a direct consequence of the fact that topological
Poisson sigma models are a theory with constraints, and constraints themselves are integrals
of motion. Since the topological Nambu sigma model is also a theory with constraints, there
should be a similar process leading to its gauge symmetries. Nambu-Poisson structures can be
possibly an interesting object on its own. Usual Poisson structures and Poisson sigma models
turned out to be a crucial element in the integration of Lie algebroids. Is there a similar use
for Nambu-Poisson structures and Nambu sigma models?

By construction, standard generalized geometry (and its extended variant presented here)
is not suitable to describe supersymmetric theories due to its lack of Grassmanian variables.
There are its extensions used in supergravity [24, 25] and M-theory [52]. It would be inter-
esting to modify generalized geometry to work in a world of graded geometry, in particular
supermanifolds in the sense of [21]. The proposed p-DBI action in [59] is obviously only the
bosonic part of a (yet unknown) full supersymmetric action. An understanding of generalized
(super)geometry could give us answers necessary to derive it.

The guiding principle of ”doubling” and related construction of generalized metric can be
easily generalized to more general vector bundles. There is an intriguing relation between
Leibniz algebroids and Lie algebra representations, see [7]. This reference provides a huge
class of interesting Leibniz algebroid examples, which can treated similarly as we did within
our extended generalized geometry. This can be useful to understand better the spherical
T-duality, [15].

The author hopes that this thesis and his research proved once more the importance of
understanding the geometry underlying the theoretical physics. Not only it brings new ways
how to understand and verify known things, but it could also provide the missing tools to
push the knowledge of our world further.
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[61] B. Jurčo, P. Schupp, and J. Vysoký, p-Brane Actions and Higher Roytenberg Brackets,
JHEP 1302 (2013) 042, [arXiv:1211.0814].
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Appendix A

Proofs of technical Lemmas

• Lemma 4.3.4

Proof. Let us prove the formula (4.42). Both sides can be viewed as smooth functions of
matrix elements Aij . We will restrict to the open subset GL(n,R) = Rn,n \ det−1({0}).
It is dense in Rn,n, and the general result will follow by the continuity of both functions.
Recall that there holds a formula

∂ det (A)

∂Aij
= det (A)(A−1)ji, (A.1)

Hence we get

∂

∂Aij
[detA](

n−1
p−1) =

(
n− 1

p− 1

)
[detA](

n−1
p−1)(A−1)

j

i.

This proves that for F = [detA](
n−1
p−1), we have

∂

∂Aij
ln |F | =

(
n− 1

p− 1

)
(A−1)ji. (A.2)

We will now show that the same equation holds for B, that is

∂

∂Aij
ln |detB| =

(
n− 1

p− 1

)
(A−1)ji. (A.3)

Let us calculate this explicitly. We get

∂

∂Aij
det (B) = det (B)(B−1)JI

∂BIJ
∂Aij

= det (B)(B−1)JI
∂

∂Aij
[δIk1...kpA

k1
j1 . . . A

kp
jp ]

= det (B)(B−1)JI

p∑

r=1

δIk1...kpA
k1
j1 . . . δ

kr
i δ

jr
j . . . Akp jp .
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One can now insert a unit matrix to get

∂

∂Aij
det (B) = det (B)(B−1)JI

p∑

r=1

δIk1...kpA
k1
j1 . . . A

kr
m . . . A

kp
jpδ

jr
j (A−1)mi

= det (B)(B−1)JI

p∑

r=1

BI j1...m...jpδ
jr
j (A−1)mi =

= det (B)
∑

J,j∈J
(A−1)ji = det (B)

(
n− 1

p− 1

)
(A−1)ji.

This proves the equation (A.3). We thus have

det (B) = K[det (A)](
n−1
p−1). (A.4)

for some K which is locally constant on GL(n,R). To finish the proof, we have to prove
that K = 1 on both components of GL(n,R). For the group unit component, we can
choose A = 1. In this case BIJ = δIJ , and thus det (B) = 1. For the second component,
choose A to be Minkowskian metric of signature (n − 1, 1). From the proof of Lemma
4.3.1, we see that B is diagonal metric with ±1 on the diagonal, where the number of
negative ones is N(n− 1, 1, p) =

(
n−1
p−1

)
. We have

det (A) = −1, det (B) = (−1)(
n−1
p−1).

We see that again K = 1. This finishes the proof for A ∈ GL(n,R), and the assertion of
the lemma follows by the continuity. �

• Lemma 4.6.3

Proof. Let us work in fixed local coordinate system (y1, . . . , yn) on M . Let I = (i1 <
· · · < ip) be a strictly ordered p-index, and J = (j1 < · · · < jq) a strictly ordered q-index.
By assumption, we have

0 = (LXT )IJ = XmT IJ,m +

q∑

r=1

Xm
,jqT

I
j1...m...jq −

p∑

l=1

Xil
,mT

i1...m...ip
J , (A.5)

for all X ∈ X(M). In particular, it must hold also for fX, where f ∈ C∞(M). This gives
a necessary condition

q∑

r=1

f,jrX
mT Ij1...m...jq =

p∑

l=1

Xilf,mT
i1...m...ip
J . (A.6)

First assume that I 6= J . In particular, this includes the case p 6= q. With no loss of
generality, we may assume that there is ia ∈ I, such that ia 6= J . Choose X = ∂ia , and
f = yia . This gives

q∑

r=1

δiajrT
I
j1...ia...jq = T IJ . (A.7)

But because ia 6= J , the Kronecker symbol in the left-hand side sum is always zero.
Hence T IJ = 0. We can now assume that p = q. Moreover, we have already proved that
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T JI = λIδ
J
I , where λI ∈ C∞(M). We want to show that λI = λJ for all (I, J). First

consider (I, J), such that both p-indices differ in exactly one index. There is thus ia ∈ I,
and jb ∈ J , such that I \ {ia} = J \ {jb}. Choose X = ∂ia and f = yjb in (A.6). This
gives λI = λJ .

Now let I and J be general p-indices. There is always a chain [K0, . . . ,Km] of p-indices,
where I = K0, J = Km, and (Ki,Ki+1) differ in exactly one index. This proves λI = λJ .
Hence T IJ = λ · δIJ for λ ∈ C∞(M). As a map T thus has a form T = λ · 1. By definition
of Lie derivative, we have

LX(T (Q)) = (LXT )(Q) + T (LXQ), (A.8)

for all Q ∈ Xp(M). Using the assumption and the above form of T , we get

LX(λQ) = λLXQ, (A.9)

for all Q ∈ X(M). This is possible, if and only if λ ∈ Ω0
closed(M). �
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1 Introduction

To relate ten-dimensional superstring theory to particle physics and cosmology in four-

dimensional spacetime, it is necessary to compactify the superfluous dimensions. Intro-

ducing fluxes in this context helps to overcome problems of more standard Calabi-Yau

compactifications, but at the same time the underlying geometric structures become more

general: the notion of a compactifying manifold needs to be relaxed, allowing patching not

only by diffeomorphisms but also by more general string symmetry transformations. The

resulting non-geometric flux compactifications can appear in the T -duals of geometric flux

compactifications [1, 2]. An example are toroidal compactifications with R-fluxes, where

non-associative structures arise [3], whose quantization is related to twisted Poisson sigma

models [4]. Poisson sigma models [5, 6] are also at the heart of Kontsevich’s approach to

deformation quantization [7]. For a recent review with a comprehensive list of references

in the more general context of AKSZ topological field theory, we refer to [8]. See also [9]

for an interesting conception of membrane symmetries.

From a mathematical point of view, it is known that Poisson sigma models are inti-

mately connected to a lot of interesting differential geometry. The fields of Poisson sigma

models can be interpreted as Lie algebroid morphisms [10] and can be further generalized

in terms of generalized (complex) geometry [11, 12]. It was observed by Alekseev and

Strobl in [13], that the current algebra of sigma models naturally involves the structures of

generalized geometry [14, 15], such as Dorfman bracket and Dirac structures. This was fur-

ther developed by Ekstrand and Zabzine in [16] and Bonelli and Zabzine in [17]. Recently,
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D-branes have been identified with Dirac structures [18]. In [19], Halmagyi observed that

in the Hamiltonian of the Polyakov model, characterized by a 2-form B and a bivector Π,

appears a more general form of world sheet currents and found their algebra to close under

a more general bracket, which he calls a Roytenberg bracket. Finally, in [20], Halmagyi

shows that the same bracket appears if one lifts the first order action to a three-manifold

using Stokes theorem.

The known string theories as well as supergravity are naturally embedded in eleven-

dimensional M-theory, whose building blocks are membranes and five-branes. This mo-

tivates the study of higher dimensional analogs of the structures that we have described

above. In this article, we would like to go beyond the Courant sigma-model, which is

already a higher version of the Poisson sigma-model on an open three-dimensional mem-

brane, but still features a bi-vector field. Generalizing this (twisted) Poisson bi-vector to a

(p+ 1)-vector field we face the question how to generalize the Jacobi identity that governs

the p = 1 case. One possibility is to impose the condition of a vanishing Schouten bracket,

but that will be non-trivial only for even p. Another possibility is to impose the so-called

fundamental identity of a Nambu-Poisson structure [21]. Evidence for the latter choice

comes from the study of actions for multiple membranes in M-theory [22], see [23] for a

recent review and many references. Local symmetries in M-theory and their relation to

generalized geometry were discussed in [24–26]. For p = 1, the consistency of the equations

of motion of the topological sigma model action implies the Jacobi identity. For p > 1, the

Nambu-Poisson fundamental identity has an algebraic as well as a differential part and it is

thus not clear how it could be related to a consistency condition for differential equations

of motion. In this article we solve this problem and study the relevant higher algebraic and

geometric structures. A suitable higher generalization of Poisson sigma models has recently

been proposed by two of us [27]: this Nambu-sigma model features a (p + 1)-dimensional

world volume and corresponding higher-order tensor fields on a target manifold. The topo-

logical version of the model can also be obtained by an AKSZ construction [28].

This paper is organized as follows: In section 2 we review the relevant models and

compute the Hamiltonian. In section 3 we use a (p+1)-vector Π to twist a higher Dorfman

bracket and obtain a new Courant bracket like structure, which we call a higher Royten-

berg bracket. In section 4 we discuss the charge algebra of the model and its relation to

the higher Roytenberg bracket. In section 5 we verify the consistency of the topological

part of the p-brane action. We find that Π should satisfy the fundamental identity of a

Nambu-Poisson structure (differential as well as algebraic part). In section 6 we derive

the equations of motion of the topological model and find an explicit non-trivial solution.

In section 7 we lift the topological part of the action to a (p + 2)-dimensional world vol-

ume and derive generalized Wess-Zumino terms that involve the structure functions of

the higher Roytenberg bracket. In the appendices we summarize relevant facts about the

higher Roytenberg bracket and Nambu Poisson structures.

2 Nambu sigma model and p-brane action

In this section we review the Nambu sigma model following [27, 29], compute the corre-

sponding Hamiltonian and remark on the dual p-brane action.
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Let us consider a (p + 1)-dimensional world volume Σ with a set of local coordinates

(σ0, . . . , σp). We assume that σµ are Cartesian coordinates for a Lorentzian metric h with

signature (−,+, . . . ,+) on Σ. Furthermore, we consider an n-dimensional target manifold

M , equipped with a (p + 1)-vector Π and a (p + 1)-form B. We also choose some local

coordinates (y1, . . . , yn) on M . Lower case Latin characters will always correspond to these

coordinates. We will use upper case Latin characters to denote strictly ordered multi-

indices (mostly p-indices), that is I = (i1, . . . , ip), where i1 < · · · < ip. We will assume

that M is equipped with a metric tensor field G with local components Gij , and a fiber-

wise metric G̃ on the vector bundle ΛpTM with components G̃IJ in a local section basis

∂I ≡ ∂
∂yi1

∧· · ·∧ ∂
∂yip . Metric matrices with upper indices denote as usual the corresponding

inverses. For the components of the smooth map X : Σ → M we will use the following

notation: Xi = yi(X), dXI = dXi1 ∧ . . . ∧ dXip , and ∂̃X
I

= (dXI)1...p where the latter

denotes the 1 . . . p component of the world volume form dXI .

The “Nambu-sigma model” action, as introduced in [27, 29], is

S[η, η̃,X] :=

∫
dp+1σ

[
− 1

2
(G−1)ijηiηj +

1

2
(G̃−1)IJ η̃I η̃J + ηi∂0X

i

+ η̃I ∂̃X
I − ΠiJηiη̃J −BiJ∂0X

i∂̃X
J
]
, (2.1)

where ηi, η̃J are auxiliary fields, which transform under change of local coordinates on M

according to their index structure.

The canonical momenta corresponding to the fields Xi are

Pi = ηi −BiJ ∂̃X
J
. (2.2)

Starting with the canonical Hamiltonian Hcan[X,P, η̃] =
∫
dpσPi∂0X

i − L(X,P, η̃) and

substituting the Euler-Lagrange equation for η̃J , we obtain the Hamiltonian1

H[X,P ] =
1

2

∫
dpσ
[
(G−1)ijKiKj + G̃IJK̃

IK̃J
]
, (2.3)

where

Ki := ηi = Pi +BiK ∂̃X
K
, (2.4)

K̃I := −G̃IJ η̃J = ∂̃X
I − ΠmIKm . (2.5)

Here and in the rest of the paper, the integration over dpσ means the integration over the

space-like coordinates (σ1, . . . , σp) of Σ. The Hamiltonian can be conveniently written in

matrix notation: the components of the (p + 1)-vector ΠiJ form an n ×
(
n
p

)
rectangular

matrix Π with row index i and column index J ; similarly for B. Likewise, G and G̃ are

1Note that ∂0X
i cannot be directly expressed in terms of Pi but it still drops out of Hcan in the

computation, as it should. The construction is robust in the sense that first using the equations of motion

for η̃ and η and then constructing the Hamiltonian yields the same result.
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n × n and
(
n
p

)
×
(
n
p

)
matrices corresponding to the metrics G and G̃, respectively. Next,

we define (n+
(
n
p

)
)-row column vectors

K =

(
Ki

K̃I

)
and V =

(
Pi

∂̃X
I

)
.

Note that these vectors have the same index structure as coordinate expressions of sec-

tions of T ∗M ⊕ ΛpTM . The defining equations (2.4) and (2.5) can then be rewritten as

K = AV , where

A =

(
1 0

−ΠT 1

)
·
(

1 B

0 1

)
=

(
1 B

−ΠT 1 − ΠTB

)
. (2.6)

Note that A can always be inverted, i.e. we can uniquely express the fields P and ∂̃X

using K and K̃. We can view A as the matrix of a linear endomorphism of T ∗M ⊕ΛpTM .

Finally, we can define the matrix G =
(

G−1 0
0 G̃

)
and view it as the matrix of the fiberwise

metric on T ∗M ⊕ ΛpTM . Then, we can rewrite the Hamiltonian (2.3) as

H[X,P ] =

∫
dpσ[VT (ATGA)V ] . (2.7)

Let us note that the matrix ATGA has a natural interpretation as a (twisted) higher

(p > 1) analog of the generalized metric of p = 1 generalized geometry.

If we start again with the action (2.1), and integrate out the fields η̃J using their

equations of motion, we get the action

S[X, η] =

∫
dp+1σ

[
− 1

2
ηTG−1η − 1

2
K̃T G̃K̃ + ∂0X

T (η −B∂̃X )

]
, (2.8)

where η, η̃, K, K̃, ∂0X and ∂̃X are column vectors defined in the obvious way. We next

use the Euler-Lagrange equations to eliminate η in (2.8) and get

S[X] =

∫
dp+1σ

[
1

2
∂0X

T g ∂0X − 1

2
∂̃X

T
g̃ ∂̃X − ∂0X

T (B + C)∂̃X

]
, (2.9)

where

g = (G−1 + ΠG̃ΠT )−1 , (2.10)

g̃ = (G̃−1 + ΠTGΠ)−1 , (2.11)

and

C = −gΠG̃ = −GΠg̃ . (2.12)

The action (2.9) is just the Polyakov-style Howe-Tucker membrane action introduced by

Deser-Zumino [30], Brink-Di Vecchia-Howe [31] and Howe-Tucker [32] with properly fixed

gauge (coordinates on Σ), see [27]. For p = 1 case, see [33].

The background fields G, G̃,Π can also be expressed in terms of g, g̃, C:

G = g + Cg̃−1CT , (2.13)

G̃ = g̃ + CT g−1C, (2.14)
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and

Π = −g−1CG̃−1 = −G−1Cg̃−1 . (2.15)

The relations between G, G̃,Π and g, g̃, C are higher p-brane version [27] of the well-known

open-closed string relations, cf. also [9]. We can write these relations in terms of the higher

generalized metric ATGA as

ATGA = aTga , where g =

(
g−1 0

0 g̃

)
and a =

(
1 B + C

0 1

)
.

The Hamiltonian corresponding to the action (2.9) features the inverse of the matrix aTga.

Instead of the B-field, it is sometimes more convenient to introduce a (p + 1)-form

Φ and write Ã =
(

1 Φ
0 1

)
·
(

1 0
−ΠT 1

)
. Redefining ã =

(
1 C
0 1

)
and equating ÃTGÃ = ãTgã

provides an alternative derivation of the general open-closed p-brane relations of [27]. This

new approach should also be useful in the context of effective actions for multiple branes

ending on branes.

3 Higher Roytenberg bracket

In this section we will recall some of the algebraic structures needed in the following.

The name “Roytenberg bracket” was introduced by Halmagyi [19], since the bracket was

originally introduced by Roytenberg in [34]. We present a higher analog of this bracket

here, which is essentially a higher Dorfman bracket twisted by a (p+1)-vector Π as well as

by a (p+ 1)-form H. For further reading on higher Dorfman bracket see e.g. [35] or [36].

Let E = TM ⊕ ΛpT ∗M . We define a non-degenerate and C∞(M)-bilinear pairing

〈·, ·〉 : Γ(E) × Γ(E) → Ωp−1(M) as

〈V + ξ,W + η〉 = iV (η) + iW (ξ), (3.1)

for vector fields V,W ∈ X(M) and p-forms ξ, η ∈ Ωp(M). We define the anchor map

ρ : E → TM as the projection onto the first direct summand of E, and denote by the

same character also the induced map of sections ρ(V + ξ) = V . The Dorfman bracket is

the R-bilinear bracket on sections [·, ·]D : Γ(E) × Γ(E) → Γ(E), defined as

[V + ξ,W + η]D = [V,W ] + LV (η) − iW (dξ), (3.2)

for all V,W ∈ X(M) and ξ, η ∈ Ωp(M). This bracket is a particular example of a Leibniz

algebroid bracket, see [35]. If we define D : Ωp−1(M) → Γ(E) as D = j ◦ d, where

j : Ωp(M) →֒ Γ(E) is the inclusion, we have the following properties of Dorfman bracket:

1. Derivation property:

[e1, [e2, e3]D]D = [[e1, e2]D, e3]D + [e2, [e1, e3]D]D , (3.3)

for all e1, e2, e3 ∈ Γ(E).

[e1, fe2]D = f [e1, e2]D + (ρ(e1).f)e2 , (3.4)

for all e1, e2 ∈ Γ(E) and f ∈ C∞(M).
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2. 〈·, ·〉 is E-invariant in the following sense:

Lρ(e1)(〈e2, e3〉) = 〈[e1, e2]D, e3〉 + 〈e2, [e1, e3]D〉 , (3.5)

for all e1, e2, e3 ∈ Γ(E).

3. Dorfman bracket is skew-symmetric up to “coboundary”, that is

[e, e]D =
1

2
D〈e, e〉 , (3.6)

for all e ∈ Γ(E).

This bracket can be easily modified in two ways:

Firstly, given a (p + 2)-form H ∈ Ωp+2(M), we can define H-twisted higher Dorfman

bracket on E as

[V + ξ,W + η]
(H)
D = [V,W ] + LV (η) − iW (dξ) + iW iVH. (3.7)

The form H has to be closed, in order to keep the property (3.3). All the other

properties of higher Dorfman bracket are also valid for the H-twisted case.

Secondly, assume that we have an arbitrary C∞(M)-linear map of sections Π# :

Ωp(M) → X(M), for example the map induced by a (p+ 1)-vector Π on M :

Π#(ξ) = (−1)piξΠ = ξKΠiK∂i, (3.8)

for all ξ ∈ Ωp(M). Define new anchor map ρ : E → TM as

ρ(V + ξ) = V − Π#(ξ) , (3.9)

and the “twisted” inclusion of Ωp(M) into Γ(E) as

j(ξ) = ξ + Π#(ξ) . (3.10)

Denote as pr2 the projection onto the second summand of E. Using this notation, one can

define new non-degenerate pairing 〈·, ·〉R:

〈e1, e2〉R = iρ(e1)(pr2(e2)) + iρ(e2)(pr2(e1)) , (3.11)

for all e1, e2 ∈ Γ(E). Finally, we define the following bracket on Γ(E):

[e1, e2]R = [ρ(e1), ρ(e2)] + j
(
Lρ(e1)(pr2(e2)) − iρ(e2)(d(pr2(e1))) + iρ(e2)iρ(e1)H

)
, (3.12)

for all e1, e2 ∈ Γ(E). We refer to [·, ·]R as higher Roytenberg bracket. This bracket together

with the anchor map (3.9) defines again a Leibniz algebroid, i.e., it satisfies (3.3) and (3.4).

More interestingly, it also satisfies (3.5) and (3.6) with respect to the pairing (3.11). All

of the properties are straightforward to check; see also [28]. In appendix A we present the

coordinate form of the higher Roytenberg bracket. For p = 1 we get exactly the structure

functions of [20].
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4 Charge algebra

In this section we study the algebra of the currents that appear in the Hamiltonian as-

sociated to the Nambu-sigma model. We find that the corresponding charge algebra is

governed by the higher Roytenberg bracket that we have discussed in the previous section.

Let us return to the Hamiltonian (2.3). The canonical equal-time Poisson brackets are

{Xi(σ), Pj(σ
′)} = δi

jδ(σ − σ′) ,

where σ, σ′ are the space-like p-tuples of world volume coordinates. We consider the gen-

eralized charges

Qf (V + ξ) =

∫
dpσf(σ)[V iKi + ξJK̃

J ] , (4.1)

corresponding to the currents Ki and K̃J that appear explicitly in the Hamiltonian. Here

V + ξ ∈ Γ(E) and f ∈ C∞(Σ) is a test function. The appearance of Courant algebroid

structures in the current algebra was first observed by Alekseev and Strobl in [13] for the

Poisson-sigma model, i.e. the special case p = 1. More general observations from the super-

geometry point of view were done by Guttenberg in [37]. Here we will calculate the charge

algebra for p ≥ 1, following the approach of Ekstrand and Zabzine, who integrated the

currents to generalized charges. In fact, we shall consider more general charges, involving

background fields Π and B. This can be done in a straightforward manner; however it is

easier to use the results of [16]: With Q̃f (V + ξ) defined as

Q̃f (V + ξ) =

∫
dpσf(σ)

[
V iPi + ξJ ∂̃X

J]
, (4.2)

the Poisson bracket is

{Q̃f (V + ξ), Q̃g(W + η)} =

− Q̃fg([V + ξ,W + η]D) −
∫
dpσg(σ)(df ∧X∗(〈V + ξ,W + η〉))1...p , (4.3)

where [·, ·]D is the higher Dorfman bracket (3.2) and 〈·, ·〉 is the pairing (3.1). We can use

this result to find the Poisson brackets for the charges Q as defined in (4.1). The key is

the following relation between charges Q and Q̃:

Qf (V + ξ) = Q̃f

(
V − Π#(ξ) + ξ + iV −Π#(ξ)(B)

)
. (4.4)

The resulting Poisson bracket of the charges is

{Qf (V + ξ), Qg(W + η)} =

−Qfg([V + ξ,W + η]R) −
∫
dpσg(σ)(df ∧X∗(〈V + ξ,W + η〉R))1...p , (4.5)

where [·, ·]R is the higher Roytenberg bracket (3.12) and 〈·, ·〉R is the pairing (3.11). The

calculation is straightforward but quite lengthy and we omit it here.
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Let us note that choosing constant test functions f = g = 1, one finds that the charge

algebra (4.5) closes and it is described by the higher Roytenberg bracket. For the special

case p = 1, this was already observed by Halmagyi [19].

Using this result, we can determine conditions for the conservation of such charges. To

avoid the anomalous term in (4.5), we shall consider only the charges

Q(V + ξ) := Q1(V + ξ) , (4.6)

for a constant test function f = 1. We are interested to obtain conditions on V +ξ ∈ Γ(E),

which would guarantee that

{Q(V + ξ), H} = 0 , (4.7)

where H is the Hamiltonian (2.3). The left hand side of this condition can be conveniently

rewritten using the Leibniz rule for Poisson bracket:

{Q(V + ξ), H} =

1

2
{Q(V + ξ), QKi((G

−1)ij∂j)} +
1

2
{Q(V + ξ), Q(G−1)ij∂j

(∂i)}

+
1

2
{Q(V + ξ), Q

K̃I (G̃IJdy
J)} + {Q(V + ξ), Q

G̃IJK̃J (dyI)} . (4.8)

Now we can use (4.5) to carry out the straightforward but tedious calculation that leads

to the following result. Let LW be the Lie derivative with respect to the vector field W =

V − Π#(ξ). The following set of conditions ensure that the charge Q(V + ξ) is conserved:

LW (G)ij = GinΠ
nL
(
WmdBmjL − (dξ)jL

)
+ (i ↔ j) , (4.9)

LW (G̃)IJ = G̃ILΠnL
(
WmdBmnJ − (dξ)nJ

)
+ (I ↔ J) , (4.10)

LW (Π)kI =
(
ΠkJΠnI − (G̃−1)IJ(G−1)kn

)(
WmdBmnJ − (dξ)nJ

)
. (4.11)

(Here G̃ is viewed as a 2p-times covariant tensor field on M .) Let us observe that there

exists a particular simplification of these conditions: choosing

dξ = iW (dB) , (4.12)

all terms on the right-hand side vanish and we get a new set of conditions

LW (G) = LW (G̃) = LW (Π) = 0 . (4.13)

The special choice (4.12) can be rewritten as

LW (B) = d(ξ − iW (B)) . (4.14)

The particular solution (4.13) to the more general conditions (4.9)–(4.11) implies that the

image of V + ξ under the anchor map (3.9) preserves the background fields G, G̃,Π and

preserves the (p+ 1)-form field B up to an exact term.
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The conditions (4.9)–(4.11) have an interesting geometrical meaning. Let (·, ·) be the

fiberwise metric on TM ⊕ ΛpT ∗M given by G−1, the inverse of matrix G appearing in the

Hamiltonian (2.7):

(V + ξ,W + η) :=

(
V

ξ

)T (
G 0

0 G̃−1

)(
W

η

)
. (4.15)

Let e = V + ξ ∈ Γ(TM ⊕ ΛpT ∗M). The conditions (4.9)–(4.11) are equivalent to

the equation

ρ(e).(e1, e2) = ([e, e1]R, e2) + (e1, [e, e2]R) , (4.16)

for all e1, e2 ∈ Γ(TM ⊕ ΛpT ∗M). In the other words, the charge Q(V + ξ) is conserved,

if e = V + ξ is a “Killing section” of the fiberwise metric (·, ·) (4.15) with respect to the

higher Roytenberg bracket.

5 Topological model, consistency of constraints

In this section we examine the topological sigma model, which is obtain from (2.1) by

setting G−1 = G̃−1 = 0. We will show that algebra of constraints closes on shell and that

the constraints are compatible with time evolution. The consistency of the constraints is

ensured by the vanishing of certain structure functions of the higher Roytenberg bracket,

which in turn is related to the fundamental identity of a Nambu-Poisson structure.

The action has the form

S[η, η̃,X] :=

∫
dp+1σ

[
ηi∂0X

i + η̃I ∂̃X
I − ΠiJηiη̃J −BiJ∂0X

i∂̃X
J]
. (5.1)

The canonical Hamiltonian of this model can be written as

H[X, η̃, P ] = −
∫
dpσ
[
η̃I

(
∂̃X

I − ΠkI(Pk +BkJ ∂̃X
J
)
)]
, (5.2)

with canonical momenta Pk as given in (2.2). Using the notation of (2.4) and (2.5), we have

H[X, η̃, P ] = −
∫
dpση̃IK̃

I . (5.3)

Looking at Lagrange-Euler equation for η̃I , we obtain

K̃I = 0 , (5.4)

which should be viewed as a set of constraints, with η̃I being the corresponding Lagrange

multipliers. K̃I as well as H can be expressed in terms of the charges (4.1) for special

choices of test functions:

K̃I(σ) = Qδ(σ−·)(dy
I) , (5.5)

H = −Qη̃I
(dyI) . (5.6)
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The constraint algebra and time evolution of constraints can therefore be expressed in

terms of the Roytenberg bracket by equation (4.5). In terms of the structure functions of

the Roytenberg bracket (cf. appendix) we obtain the following current algebra

{K̃I(σ), K̃J(σ′)} = −δ(σ − σ′)(RIJkKk + SIJ
K K̃K)(σ′)

−
(
d(δ(σ − ·)) ∧X∗(〈dyI , dyJ〉R)

)
1...p

(σ′) . (5.7)

It is hence natural to ask for R to vanish. This leads precisely to the condition (B.6) for

ξ = dyJ , η = dyI and H = −dB. Imposing the condition R = 0 is thus equivalent to the

assumption that Π fulfills the differential part of the fundamental identity for a (−dB)-

twisted Nambu-Poisson tensor2 and we shall henceforth assume that this is the case. Even

then, there still seems to be a problem with the anomalous last term in (5.7), since in

general the expression 〈dyJ , dyI〉R doesn’t vanish. To see it let us note that vanishing of

〈dyJ , dyI〉R is equivalent to

iΠ#(dyJ )(dy
I) + iΠ#(dyI)(dy

J) = 0 . (5.8)

The anomalous terms can be dealt with using secondary constraints and consistency of

these constraints turns out to be ensured by the algebraic part of the fundamental identity

for a Nambu-Poisson tensor. Indeed, geometrically (5.8) implies that the graph of Π,

GΠ = {ξ+Π#(ξ)| ξ ∈ Ωp(M)}, is isotropic with respect to the canonical pairing 〈·, ·〉 (3.1)

on Γ(TM ⊕ ΛpT ∗M). However, as was noticed by Zambon in [36], such (nontrivial) Π

exists only for p = 1 and p = dimM − 1. For 1 < p < dimM − 1, we are forced to add the

following set of constraints to the system:

χIJ
q ≡ (X∗〈dyI , dyJ〉R)1...q̂...p = 0 . (5.9)

The new constraints (5.9) do not contain any Pm’s and thus they Poisson commute with

each other, i.e.

{χIJ
q (σ), χKL

r (σ′)} = 0. (5.10)

The Poisson brackets between the new constraints χIJ
q and the constraints K̃M (σ′) are

{χIJ
q (σ), K̃M (σ′)} =

(
SMI

Kχ
KJ
q + SMJ

Kχ
IK
q

)
(σ)δ(σ − σ′)

+

p∑

r=1
r 6=q

sgn(r, q)
(
X∗(iΠ#(dyM )〈dyI , dyJ〉R〉)

)
1...r̂...q̂...p

(σ)
∂δ(σ′ − ·)
∂σr

(σ) ,

where sgn(r, q) is just a sign, irrelevant for the discussion. The first term clearly vanishes

for χIJ
q = 0. The second term, in fact, also weakly vanishes (i.e. it vanishes when the

constraints equations are used; this is denoted by “≈”). To see this, it is sufficient to

show that (
X∗(iΠ#(dyM )〈dyI , dyJ〉R)

)
1...r̂...q̂...p

≈ 0 , (5.11)

2Note that for p > 1 the twisting of Nambu-Poisson structures is redundant since it just leads again to

an ordinary Nambu-Poisson structure.
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Evaluating the left hand side expression at a p ∈ Σ with Π(X(p)) = 0, clearly gives zero.

If Π(X(p)) 6= 0, the validity of (5.11) can be shown to be a consequence of the following

observation made in [38]

〈dyI , dyJ〉R|Λp−1ρ(GΠ) = 0 , (5.12)

where ρ denotes the projection onto the first summand of the graph GΠ. The reasoning

itself is not very illuminating and we skip the details here.3

Since the Hamiltonian is of the form (5.3), the constraints K̃I and χIJ
q are consistent

with the dynamics, i.e., they weakly Poisson commute with the Hamiltonian. This follows

immediately from the above discussion of the constraints algebra.

To conclude this section, we shall investigate the conservation of charges (4.6) with

respect to the dynamics governed by the Hamiltonian (5.3). This is again simple using (5.6)

and (4.5). For the charge Q(V + ξ) to be conserved, one gets the condition

LΠ#(η̃)(V ) = Π#(iΠ#(η̃)iV dB), (5.13)

where we have introduced the section η̃ := ηJdy
J of the pullback bundle X∗(

∧p T ∗M).

Note that the charge Q(0 + ξ) is conserved for arbitrary ξ ∈ Ωp(M).

Given the results of this section, we will shall henceforth assume that Π is a Nambu-

Poisson tensor (which may be twisted in the case p = 1).

6 Equations of motion, solution

In this section we will derive the equations of motion of the topological action (5.1) using

the Hamiltonian formalism and previous results. Using the natural coordinates associated

with every Nambu-Poisson structure (for p > 1), we will find an explicit solution of these

equations. The calculations involve the higher Roytenberg bracket via the charge algebra.

They are again quite long, but straightforward and we will mostly just state the results.

Straight from the definition, one can calculate the equations of motion for the Xm

fields. Indeed, the calculation of

Ẋm(σ) = {Xm(σ), H}

is just an easy application of the Leibniz rule for the Poisson bracket. Of course, among

the equations of motion we will find also the constrains K̃I = 0. The most difficult part

comes with the calculation of

Ṗi(σ) = {Pi(σ), H} .
3Alternatively, one can introduce new constraints χMIJ

rq :=
(
X∗(iΠ#(dyM )〈dyI , dyJ〉R)

)
1...r̂...q̂...p

= 0.

These will obviously Poisson commute with each other and with all χIJ
q ’s. Hence, we just have

to check their Poisson brackets with the K̃I ’s. Doing this, new anomalous terms proportional to

X∗(iΠ#(dyN )iΠ#(dyM )〈dyI , dyJ〉R) will appear. We can treat these again as new constraints and repeat

the procedure until we arrive at anomalous terms containing (p − 1)-contractions with iΠ#(sth). By (5.12)

this is identically equal to zero. Note that all these auxiliary constraints follow already from the first ones,

i.e., from χIJ
q = 0 by the above discussion.
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This can be done again using (4.5). First, note that

Pi = Ki −BiL

(
ΠmLKm + K̃L

)
. (6.1)

Hence

Pi(σ) = Qδ(σ−·)
(
∂i − Π#(i∂iB) − i∂iB

)
.

Now, using (5.6) and (4.5), one gets the following result: The fields Xm(σ), Pm(σ) and

η̃J(σ) of the sigma model defined by action (5.1) evolve in accordance with the following

set of equations:

∂̃X
I

= ΠmI(Pm +BmK ∂̃X
K

) , (6.2)

Ẋm = ΠmJ η̃J , (6.3)

Ṗm = −ΠkJ
,mPk − (dη̃mN ∧ dXN )1...p + ΠkJBkmL(dη̃J ∧ dXL)1...p (6.4)

−η̃J

(
ΠkJBmL,k + ΠkJ

,mBkL +

p∑

n=1

ΠkJ
,lnBml1...k...lp − ΠkJ(dB)kmL

)
∂̃X

L
.

In particular, for B = 0, we get the equations of motion for the untwisted sigma model:

∂̃X
I

= ΠmIPm , (6.5)

Ẋm = ΠmJ η̃J , (6.6)

Ṗm = −η̃JΠkJ
,mPk − (dη̃mN ∧ dXN )1...p . (6.7)

Now we will show that there always exists a non-trivial solution of the field equations (6.2)–

(6.3). We will use the natural local coordinates that are associated with every Nambu-

Poisson tensor, namely (x1, . . . , xn), such that

Π =
∂

∂x1
∧ . . . ∧ ∂

∂xp+1
, (6.8)

which exist around every point x ∈ M , where Π(x) 6= 0 (see e.g. [39]). In these coordinates

the components of Π can be expressed in terms of the Levi-Civita symbol:

Πi1...ip+1 = ǫi1...ip+1 . (6.9)

This choice of local coordinates simplifies the equations of motion considerably. We define

a p-index [r] = (1, . . . , r̂, . . . p+1) and (p−1)-index [p, q] = (1, . . . , p̂, . . . , q̂, . . . , p+1). (The

hats denote omitted indices.)

The constraints (5.9) are in these coordinates equivalent to

∂Xm

∂σk
= 0,

for m > p + 1 and k ∈ {1, . . . , p}. This is not straightforward to see, one has to use the

consequences of (5.12). Furthermore, the equations (6.3) impose

Ẋm = 0,

for m > p+ 1 and we thus get Xm = Cm for m > p+ 1, where Cm ∈ R are arbitrary real

constants. One can then easily deduce the following solution of (6.2)–(6.4):
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(i) For m ≤ p+ 1,

Xm = fm,

where fm ∈ C∞(Σ) are arbitrary smooth functions on Σ;

(ii) for m > p+ 1,

Xm = Cm,

where Cm ∈ R are arbitrary real constants;

(iii) for r ≤ p+ 1,

η̃[r] = (−1)r+1Ẋr,

and if I 6= [r],

η̃I = EI ,

where EI are arbitrary constants in space-like variables on Σ.

(iv) for r ≤ p+ 1,

Pr = (−1)r+1(1 −B1...p+1)∂̃X
[r]

;

(v) for m > p+ 1,

Pm =

∫
dσ0

[
p+1∑

k,r=1

[
(dBkm[r] −Bm[r],k)Ẋ

k∂̃X
[r]]

+

p+1∑

r,q=1
r 6=q

p+1∑

k=1

Bkm[r,q](dẊ
k ∧ dX [r,q])1...p

]
.

Although straightforward, it is actually a lengthy computation to verify that this solution

to equations (6.2) and (6.3) indeed also solves the equation (6.4).

There is a nice geometrical interpretation of the solutions for X: Π defines a (p+ 1)-

dimensional foliation in M , and (x1, . . . , xn) are coordinates adapted to this foliation.

Hence the fields X are constant in the directions transversal to this foliation.

7 Generalized Wess-Zumino terms

In this section, we encounter yet another way how the higher Roytenberg bracket appears

in the context of the Nambu sigma model: Lifting the topological terms of the model to

(p+2) dimensions, the structure functions appear as coefficients in the resulting generalized

Wess-Zumino terms. This resembles the p = 1 case, where the generalized Wess-Zumino

terms are topological if and only if the associated Roytenberg relations are satisfied.

We shall use the Lagrangian formalism this time and follow essentially the classic

approach of Wess, Zumino, and Witten [40, 41], adapted to the twisted Poisson sigma

model by Halmagyi in [20].
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Define the p-forms Ai and 1-forms ÃJ as

Ai = ηidσ
1 ∧ . . . ∧ dσp,

ÃJ = η̃Jdσ
0.

Choosing the orientation on Σ as o(σ0, σ1, . . . , σp) = +1 and introducing an auxiliary

Minkowski world volume metric, the action (2.1) can be rewritten as

S[X,A, Ã] =

∫

Σ
−1

2
(G−1)ijAi ∧ ∗Aj − 1

2
(G̃−1)IJ ÃI ∧ ∗ÃJ

+ dXi ∧Ai + ÃJ ∧ dXJ − ΠiJ ÃJ ∧Ai −X∗(B) , (7.1)

Topological part of this action has the form

Stop[X,A, Ã] =

∫

Σ
dXi ∧Ai + ÃJ ∧ dXJ − ΠiJ ÃJ ∧Ai

+
1

2
ÃI ∧ ÃJ ∧M IJ −X∗(B) , (7.2)

where we have added a new term 1
2ÃI ∧ ÃJ ∧M IJ , which is zero on Σ4 and where

M IJ =
1

2
X∗(iΠ#(dyI)(dy

J) − iΠ#(dyJ )(dy
I)
)

=
1

2

p∑

r=1

(−1)r−1ΠjrI(dXj1 ∧ . . . ∧ d̂Xjr ∧ . . . ∧ dXjp) − (I ↔ J) .
(7.3)

(The hat denotes a factor that is omitted.)

Let us suppose that Σ = ∂N , where N is a smooth (p+2)-dimensional manifold. Using

Stoke’s theorem, we can lift the action to N :

Stop[X,A, Ã] =

∫

N
d(L)top . (7.4)

d(Ltop) = −(dXi − ΠiJ ÃJ) ∧ dAi + dÃJ ∧ (dXJ − ΠiJAi −MJKÃK)

−ΠiJ
,kdX

k ∧ ÃJ ∧Ai +
1

2
ÃI ∧ ÃJ ∧ dM IJ

− p!

(p+ 2)!
dBklJ ∧ dXk ∧ dX l ∧ dXJ .

We define new fields ψi and ψ̃J as

ψi = dXi − ΠiJ ÃJ , (7.5)

ψ̃J = dXJ − ΠiJAi −MJK ∧ ÃK . (7.6)

4This term is zero on Σ = ∂N ; however, we assume an arbitrary extension of Ã on N , hence it is in

general non-zero on N .
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We observe that

dM IJ =
1

2

p∑

r=1

ΠjrI
,kdX

j1...k...jp − (I ↔ J)

=
1

2

p∑

r=1

ΠjrI
,k

(
ψ̃j1...k...jr + Πij1...k...jpAi +M j1...k...jp,K ∧ ÃK

)
− (I ↔ J) .

(7.7)

Putting the above expression for dM IJ and redefinition of the fields into d(Ltop), one finds

that

d(Ltop) = −ψi ∧ dAi + dÃJ ∧ ψ̃J +Q′Ji
kψ

k ∧ ÃJ ∧Ai +
1

2
F ′

kl
i
ψk ∧Ai ∧ ψl (7.8)

−1

2
H ′

klJ ψ
k ∧ ψl ∧ ψ̃J +D′

kM
J
ÃM ∧ ψ̃J ∧ ψk

−1

2
S′LM

J ÃL ∧ ÃM ∧ ψ̃J − 1

2
R′LJiÃL ∧ ÃJ ∧Ai

−
(

1

2
H ′

klLψ
k ∧ ψl +D′

lL
I
ÃI ∧ ψl +

1

2
S′IJ

LÃI ∧ ÃJ

)
∧ ÃN ∧MNL ,

where Q′, F ′, H ′, D′, S′, R′ are structure functions of skew-symmetric version of the higher

Roytenberg bracket (see appendix A) corresponding to a re-scaled 3-form flux

HjlK =
1

(p+ 1)(p+ 2)
(dB)jlK .

8 Conclusion

In this article, we have studied higher dimensional analogs of generalized Poisson sigma

models and the corresponding dual string and p-brane models. In this context, we have

found that higher algebraic structures related to a generalization of the Roytenberg bracket

play an important role and that Nambu-Poisson structures are the appropriate p > 1

generalization of the Poisson structures that are relevant for the p = 1 case.

Let us summarize the main results: By a Legendre transformation, we have obtained

the Hamiltonian corresponding to the Nambu sigma model that had been introduced in [27]

and identified as a dual to the gauge-fixed Polyakov-style Howe-Tucker p-brane action. The

resulting quadratic form can be viewed as higher-dimensional analog of a generalized metric

(see e.g. [42]). Starting with the definition of a twisted higher Dorfman bracket (see [35])

and using a (p + 1)-vector Π, we have further twisted this structure and have obtained

a new Courant bracket like structure, which we call a higher Roytenberg bracket. Its

p = 1 version was originally introduced by Roytenberg in [34]. We define a higher analog

in coordinate-free intrinsic form, such that its properties, which resemble that of higher

Dorfman brackets, can be easily verified. The algebraic structures related to this new

bracket play a fundamental role throughout this article. Next, we have defined generalized

charges for the model, with a complicated structure that is parameterized by sections of the

vector bundle TM ⊕ ΛpT ∗M . We have found that we can use previous results of Ekstrand

and Zabzine [16] to calculate the world sheet algebra of the charges. It turns out that
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the Poisson bracket of the charges closes under the higher Roytenberg bracket up to an

anomaly. This anomaly vanishes if one restricts to some isotropic subbundle TM⊕ΛpT ∗M
with respect to a twisted pairing 〈·, ·〉R. One can further find the parameterizing sections

of the charges, such that they are conserved under time evolution. We have been let to a

set of partial differential equations that generalize the ones found by Halmagyi in [19]. The

equations have an interesting geometrical interpretation: they constitute Killing equations

with respect to a certain fiber-wise metric. The topological part of the p-brane action turns

out to be a system with constraints, as expected. We have analyzed the consistency of these

constraints under time evolution and with the constraint algebra itself. The constraints

can be written in the terms of the generalized charges that we have introduced in this

article and the calculation of their Poisson bracket can be carried out using the higher

Roytenberg bracket. Consistency under time evolution forces certain structure functions

of the higher Roytenberg bracket to vanish, which is equivalent to the differential part of

the fundamental identity satisfied by a Nambu-Poisson tensor. However, an anomalous

term remains in the Poisson bracket, which can be dealt with using secondary constraints

for the model. We have shown that these secondary constraints are compatible with time

evolution, provided that the algebraic part of the fundamental identity of a Nambu-Poisson

structure also holds. It is thus natural to consider the background (p + 1)-vector field Π

to be a Nambu-Poisson structure. We have derive explicit expressions for the equations of

motion of the topological model, using once more results for the charge algebra. This has

been possible, since the canonical momenta Pm can be rewritten in the terms of generalized

charges. Using special coordinates, whose existence is guaranteed locally for any Nambu-

Poisson structure, we have been able to simplify the equations of motion and find an explicit

non-trivial solution. This is similar to the use of Darboux-Weinstein coordinates in the

case of Poisson sigma models. Finally, we have present the analog of the calculation of

Halmagyi in [20]: we have lifted the topological part of the action to a (p+ 2)-dimensional

world volume N , such that Σ = ∂N , using Stoke’s theorem. After some redefinitions of

the fields, the resulting Lagrangian density (generalized Wess-Zumino terms) incorporates

the fields coupled to new background fields, which are the structure functions of the skew-

symmetric version of the higher Roytenberg bracket that we have introduce in this paper.

The generalized Wess-Zumino terms are topological if and only if the higher Roytenberg

relations are satisfied (see appendix A).

Studying the consistency of the topological model, one is let to a set of constraints

that are usually understood as constraints on the embedding fields X and eventually imply

conditions on the multi-vector Π, but that can also be interpreted as constraints on the

auxiliary fields η and η̃. This was already observed by Halmagyi in the case p = 1 in [19].

Halmagyi does not further comment on the implication of this observation, but we can

in fact now understand this in the present context: the constraints on the auxiliary fields

effectively reduce the available dimensionality of target space for the other fields of the

model. The multi-vector Π is of maximal rank in this subspace. It therefore factorizes and

is thus forced to be of Nambu-Poisson type. This is true for p > 1 and confirms the results

that we have obtained in this article using more sophisticated methods. The observation

and the conclusion is, however, also valid in the well-studied p = 1 case: a factorized
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bi-vector (i.e. Π = V1 ∧ V2 with suitable vector fields V1 and V2) will indeed ensure the

consistency of the equations of motion, but this is just a special example of a more general

Poisson bi-vector satisfying the Jacobi identity, which also ensures consistency.
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A Higher Roytenberg bracket, structure functions

Here we summarize the local form of the higher Roytenberg bracket (3.12) twisted by a

(p+ 2)-form flux

H =
1

(p+ 1)(p+ 2)
HklJdX

k ∧ dX l ∧ dXJ ,

where dXJ ≡ dXj1 ∧ . . . ∧ dXjp and J = (j1, . . . , jp) denotes an ordered multi-index with

j1 < . . . < jp.

Let (y1, . . . , yn) be a set of local coordinates on M . Denote ∂k = ∂
∂yk and dyK =

dyk1 ∧ . . . ∧ dykp . Then, one has

[∂k, ∂l]R = Fkl
m∂m +HklLdy

L , (A.1)

[∂k, dy
J ]R = Qm

k
J∂m +DJ

k Ldy
L , (A.2)

[dyI , dyJ ]R = RIJm∂m + SIJ
Ldy

L . (A.3)

The structure functions have the following form (Roytenberg relations):

Fkl
m = HklJΠmJ , (A.4)

Qm
k

J = −ΠmJ
,k +HlkLΠlJΠmL , (A.5)

DJ
k L = HlkLΠlJ , (A.6)

RIJm = ΠnIΠmJ
,n − ΠnJΠmI

,n

−
p∑

r=1

ΠjrI
,kΠ

mj1...k...jp + ΠkIΠlJΠmLHklL , (A.7)

SIJ
L = −

p∑

r=1

ΠjrI
,kδ

j1...k...jp

L + ΠkIΠlJHklL . (A.8)

We denote by a prime the structure functions of the skew-symmetrized version of the higher

Roytenberg bracket. For example S′IJ
L = 1

2

(
SIJ

L − SJI
L

)
.
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B Nambu-Poisson structures

Here we recall some fundamental properties of Nambu-Poisson structures [21] as needed in

this paper. For details see, e.g., [38] or [35].

For any (p+ 1)-vector field A on M we define the induced map A# : Ωp(M) → X(M)

as A#(ξ) = (−1)piξA = ξKA
iK∂i.

Let Π be a (p+ 1)-vector field on M . We call Π a Nambu-Poisson structure, if

LΠ#(df1∧...∧dfp)(Π) = 0 , (B.1)

for all f1, . . . , fp ∈ C∞(M).

Lemma 1. For arbitrary p ≥ 1 the condition (B.1) can be stated in the following equivalent

ways:

1. The graph GΠ = {Π#(ξ) + ξ | ξ ∈ Ωp(M)} is closed under the higher Dorfman

bracket (3.2);

2. for any ξ, η ∈ Ωp(M) it holds that

(LΠ#(ξ)(Π))#(η) = −Π#(iΠ#(η)(dξ)) ; (B.2)

3. let [·, ·]π : Ωp(M) × Ωp(M) → Ωp(M) be defined as

[ξ, η]π := LΠ#(ξ)(η) − iΠ#(η)(dξ) , (B.3)

for all ξ, η ∈ Ωp(M). Then it holds that

[Π#(ξ),Π#(η)] = Π#([ξ, η]π) , (B.4)

for all ξ, η ∈ Ωp(M);

4. for any ξ ∈ Ωp(M) it holds that

LΠ#(ξ)(Π) = −
(

idξ(Π)Π − 1

p+ 1
idξ(Π ∧ Π)

)
. (B.5)

There seems to be a natural way to define a twisted Nambu-Poisson structure: Let Π

be a (p+ 1)-vector on M . Let H ∈ Ωp+2(M), such that dH = 0. We call Π an H-twisted

Nambu-Poisson structure, if the graph GΠ of Π is closed under H-twisted higher Dorfman

bracket (3.7). Equivalently, a H-twisted Nambu-Poisson structure can be defined using

the condition

(LΠ#(ξ)(Π))#(η) = −Π#(iΠ#(η)(dξ − iΠ#(ξ)H)) , (B.6)

for all ξ, η ∈ Ωp(M). This definition is correct, however, for p > 1 there occurs an interest-

ing thing: The fundamental identity (B.1) splits into two parts – one part is a differential

identity similar to the Jacobi identity for the Poisson bivector, the other part of the identity
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is purely algebraic. Interestingly for p > 1, the fundamental identity ensures the existence

of coordinates (x1, . . . , xn) around every point x where Π(x) 6= 0, such that

Π =
∂

∂x1
∧ . . . ∧ ∂

∂xp+1
. (B.7)

For details, see e.g. [39]. Conversely, every decomposable (p+1)-vector whose support is an

integrable distribution is Nambu-Poisson. The algebraic part of (B.1) comes from the fact

that (B.2) is not C∞(M)-linear in ξ. If we now consider (B.6), we see that if we add a part

that is C∞(M)-linear in ξ, the algebraic part of identity will stay untouched. This means

that a Π satisfying (B.6) is in fact still an ordinary Nambu-Poisson tensor, satisfying (B.2).

The concept of an H-twisted Nambu-Poisson tensor is therefore redundant for p > 1, as

has already been noticed in [28].

References

[1] J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications,

JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].

[2] A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds,

JHEP 05 (2006) 009 [hep-th/0512005] [INSPIRE].
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aMathematical Institute, Faculty of Mathematics and Physics, Charles University,

Prague 186 75, Czech Republic
bCERN, Theory Division,

CH-1211 Geneva 23, Switzerland
cJacobs University Bremen,

28759 Bremen, Germany
dCzech Technical University in Prague,

Faculty of Nuclear Sciences and Physical Engineering,

Prague 115 19, Czech Republic

E-mail: jurco@karlin.mff.cuni.cz, p.schupp@jacobs-university.de,

vysokjan@fjfi.cvut.cz

Abstract: We discuss noncommutative gauge theory from the generalized geometry point

of view. We argue that the equivalence between the commutative and semiclassically

noncommutative DBI actions is naturally encoded in the generalized geometry of D-branes.

Keywords: D-branes, Non-Commutative Geometry, Differential and Algebraic Geometry,

Sigma Models

Dedicated to Bruno Zumino on the occasion of his 90th birthday

Open Access doi:10.1007/JHEP07(2013)126



J
H
E
P
0
7
(
2
0
1
3
)
1
2
6

Contents

1 Introduction 1

2 Generalized geometry 3

2.1 Fiberwise metric, generalized metric 3

2.2 Factorizations of generalized metric, open-closed relations 6

2.3 Dorfman bracket, Dirac structures, D-branes 7

3 Gauge field as an orthogonal transformation of the generalized metric 8

4 Non-topological Poisson-sigma model and Polyakov action 10

5 Seiberg-Witten map 11

6 Noncommutative gauge theory and DBI action 12

1 Introduction

Generalized geometry [1, 2] recently appeared to be a powerful mathematical tool for

the description of various aspects of string and field theories. Here we mention only few

instances of its relevance that are more or less directly related to the present paper. Topo-

logical and non-topological Poisson sigma models are known to be intimately related to a

lot of interesting differential, in particular generalized, geometry. For instance, the topo-

logical Poisson sigma models are of interest for the integration of Poisson manifolds (and

Lie algebroids) [3] and are at the heart of deformation quantization [4]. Field equations

of (topological) Poisson sigma models can be interpreted as Lie algebroid morphisms [5]

and as such can further be generalized in terms of generalized (complex) geometry [6, 7].

Poisson sigma models can be twisted by a 3-form H-field [8] and also generalized to Dirac

sigma models [7], where the graph defined by the corresponding (possibly twisted) Poisson

structure is replaced by a more general Dirac structure. In turn, at least in some instances,

D-branes can be related to Dirac structures [9, 10], or coisotropic submanifolds [11]. In [12],

it has been observed that the current algebra of sigma models naturally involves structures

of generalized geometry, such as the Dorfman bracket and Dirac structures. This was

further developed in [13] and [14]. In [15], it was observed that in the first order (non-

topological) Poisson sigma model characterized by a 2-form B and a bivector θ, a more

general form of world-sheet currents appears. Their algebra has been shown to close under

a more general bracket, the so called Roytenberg bracket [16]. In [17], it has been shown

that the structure constants of the Roytenberg bracket appear if one lifts the topological
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part of first order Poisson sigma characterized by a 2-form B and a bivector θ to a three-

dimensional WZW term. It this respect, generalized geometry is relevant for discussions

of non-geometric backgrounds.

Noncommutativity of open strings, more precisely of their endpoints, in the presence

of a B-field was recognized in [18, 19] and [20]. A thorough discussion of noncommutativity

in string theory followed in the famous article of Seiberg and Witten [21], where, among

other things, also the equivalence of commutative and noncommutative gauge theories

was discussed via a field redefinition known under the name Seiberg-Witten map. In

particular, it was argued that the higher derivative terms in the noncommutative version

of the Dirac-Born-Infeld (DBI) action can be viewed as corrections to the usual DBI action,

the effective D-brane action. For reviews on noncommutativity in string theory we refer,

e.g., to [22, 23]. Let us also note that the (semiclassical) noncommutativity of D-branes

can be seen as the (semiclassical) noncommutativity of the string endpoints in the open

topological Poisson sigma model [3], which fits naturally to their role in both the integration

as well as deformation quantization of Poisson structures.

The purpose of the present paper is to unravel the generalized geometry origin of

noncommutative gauge theory. We will mainly focus on the equivalence between the com-

mutative and semiclassically noncommutative DBI actions (and closely related issues) and

argue that the necessity of such an equivalence can be seen and naturally interpreted within

generalized geometry. In the discussion, non-topological Poisson sigma models play a role.

Roughly speaking, we intend to convince the reader that the equivalence of commuta-

tive and semiclassically noncommutative DBI actions is encoded in two different ways of

expressing a generalized metric on a D-brane.

Before going into a more detailed description of the individual sections, let us note that

almost everything in this paper is presented in a form suitable for a direct generalization

to Nambu-Poisson structures and M-theory membranes, cf. [24, 25]. We will discuss this

in detail in a forthcoming paper.

The paper is organized as follows.

In the second section, we review basic definitions of generalized geometry. We empha-

size the behavior of a generalized metric under orthogonal transformations of TM ⊕ T ∗M .

This allows us to recover the formulas relating, via a bivector θ, the closed background

fields g, B and the open string backgrounds G and Φ. It comes as a relation between two

generalized metrics, which are connected by the action of a certain orthogonal transforma-

tion induced by the bivector θ. Finally, we recall the definition of the Dorfman bracket,

Dirac structures and their relation to D-branes. In the latter we follow the proposal of [10],

where D-branes correspond to leaves of foliations defined by Dirac structures.

In the third section, we observe that adding the gauge field F on D-brane volume cor-

responds to an action of an orthogonal transformation on the natural generalized metric

on the D-brane, the pullback of the generalized space-time metric defined by the closed

backgrounds g and B. The natural question is whether the so obtained generalized metric

can again be rewritten in the open string variables (with some gauge field F ′ and a possibly

modified bivector θ′). The positive answer is given by two different factorizations of an

orthogonal transformations defined by a bivector and a 2-form, in our case θ and F . As
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a consequence, we find a generalization of open-closed relations of Seiberg and Witten,

which includes the field strengths F and F ′, the latter one closely related to the nocom-

mutative gauge field strength. This equality, crucial for our discussion of DBI actions, also

hints towards the appearance of the semiclassical Seiberg-Witten map, once one recalls its

interpretation as the local coordinate change between the two (Poisson) bivectors θ and θ′.
In the fourth section, we use the above mentioned relation between open and closed

variables (including gauge fields) to show that non-topological Poisson-sigma model,

its Hamiltonian and the corresponding Polyakov action are manifestly invariant un-

der the open-closed field redefinitions as they geometrically correspond to the same

generalized metric.

In the fifth section, we briefly recall the interpretation of the semiclassical Seiberg-

Witten map as a local diffeomorphism on the D-brane world volume relating the non-

commutativity parameters (Poisson bivectors) θ and θ′. This interpretation is the most

relevant one for our discussion in the final section. When considering D-branes which are

symplectic leaves of θ, the Seiberg-Witten map is naturally interpreted in terms of the

corresponding Dirac structure.

In the final section, we discuss the equivalence of commutative and semiclassically

noncommutative DBI action of a D-brane. We show that this equivalence is a direct

consequence of the (gauge field dependent) open-closed relations combined with a Seiberg-

Witten map. The discussion here is not completely new. However, what we believe is new

and interesting is the clear generalized geometry origin of its main ingredients as developed

in previous sections. Everything works very naturally for a D-brane which is a symplectic

leaf of the Poisson structure, describing the noncommutativity.

We believe that analogous results hold also for more general D-branes, i.e. those which

are related to more general Dirac structures than the ones defined by graphs of Pois-

son tensors. For such D-branes, Dirac sigma models of [7] should replace the Poisson

sigma models.

2 Generalized geometry

2.1 Fiberwise metric, generalized metric

In this section we recall some basic facts regarding generalized geometry, see, e.g., [2, 26].

Although most of the involved objects can be defined in a more general framework, we

focus on a particular choice of vector bundle. Namely, let M be a smooth manifold and

E = TM ⊕ T ∗M . A fiberwise metric (·, ·) on E is a C∞(M)-bilinear map (·, ·) : Γ(E) ×
Γ(E) → C∞(M), such that for each p ∈ M , (·, ·)p : Ep × Ep → R is a symmetric non-

degenerate bilinear form. There exists a canonical fiberwise metric 〈·, ·〉 on E, defined as

〈V + ξ, W + η〉 = iV (η) + iW (ξ), (2.1)

for every (V + ξ), (W + η) ∈ Γ(E). This fiberwise metric has signature (n, n), where n is

a dimension of M . Hence, we denote by O(n, n) the set of vector bundle automorphisms

preserving this fiberwise metric. That is

O(n, n) = {O ∈ Γ(Aut(E)) | (∀e1, e2 ∈ Γ(E)) (〈Oe1, Oe2〉 = 〈e1, e2〉)}. (2.2)
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There are three important examples of O(n, n) transformations, which we will use in the

sequel. Let B ∈ Ω2(M) be a 2-form on M . In this paper we will always denote the induced

vector bundle morphism from TM to T ∗M by the same letter, i.e., we define

B(V ) = −iV B = B(·, V ), (2.3)

for all V ∈ X(M). Correspondingly, the map eB is given as

eB(V + ξ) = V + ξ + B(V ). (2.4)

In the block matrix form

eB

(
V

ξ

)
=

(
1 0

B 1

)(
V

ξ

)
, (2.5)

for all (V +ξ) ∈ Γ(E). Similarly, let θ ∈ Λ2X(M) be a bivector. The induced vector bundle

morphism is again denoted by the same letter, that is

θ(ξ) := −iξθ = θ(·, ξ), (2.6)

for all ξ ∈ Ω1(M). Correspondingly, we have eθ

eθ(V + ξ) = V + ξ + θ(ξ). (2.7)

In the block matrix form

eθ

(
V

ξ

)
=

(
1 θ

0 1

)(
V

ξ

)
, (2.8)

for all (V + ξ) ∈ Γ(E). Finally, let N : TM → TM be any invertible smooth vector bundle

morphism over identity. We define the map ON as

ON (V + ξ) := N(V ) + N−T (ξ), (2.9)

where N−T : T ∗M → T ∗M denotes the map transpose to N−1. In the block matrix form

ON

(
V

ξ

)
=

(
N 0

0 N−T

)(
V

ξ

)
. (2.10)

Any O(n, n) transformation with the invertible upper-left block can be uniquely decom-

posed as a product of the form

e−BONe−θ. (2.11)

More explicitly, for
(

A11 A12
A21 A22

)
in O(n, n), i.e., AT

21A11 + AT
11A21 = 0, AT

12A22 + AT
22A12 = 0

and AT
21A12 + AT

11A22 = 1, we find N = A11, θ = −A−1
11 A12 and B = −A21A

−1
11 .

Let now τ : Γ(E) → Γ(E) be a C∞(M)-linear map of sections, such that τ2 = 1. For

e1, e2 ∈ Γ(E), we put

(e1, e2)τ := 〈τ(e1), e2〉. (2.12)

– 4 –



J
H
E
P
0
7
(
2
0
1
3
)
1
2
6

If such (., .)τ defines a positive definite fiberwise metric, we refer to it as a generalized

metric on E. From now on, we will always assume that this is the case. Since (·, ·)τ is

symmetric, τ is a symmetric map, that is,

〈τ(e1), e2〉 = 〈e1, τ(e2)〉, (2.13)

for all e1, e2 ∈ Γ(E). Also, because τ2 = 1, it is orthogonal and thus τ ∈ O(n, n). Moreover,

from τ2 = 1, we get two eigenbundles V+ and V−, corresponding to +1 and −1 eigenvalues

of τ , respectively. Using the fact that (·, ·)τ is positive definite, we get that 〈·, ·〉 is positive

definite on Γ(V+) and negative definite on Γ(V−). Finally, we can observe that V ⊥
+ = V−

with respect to 〈·, ·〉 and vice versa, and using the knowledge of the signature of 〈·, ·〉, we

get the direct sum decomposition

E = V+ ⊕ V−. (2.14)

Conversely, for any subbundle V of E of rank n, on which 〈·, ·〉 is positive definite, set

τ |V := +1 and τ |V ⊥ = −1 to get a generalized metric on E.

From positive definiteness on V+, we have V+ ∩ TM = 0 and V+ ∩ T ∗M = 0, and the

same for V−. This means that V+ and V− can be viewed as graphs of invertible smooth

vector bundle morphisms:

V+ = {V + A(V ) | V ∈ TM} ≡ {A−1(ξ) + ξ | ξ ∈ T ∗M}, (2.15)

V− = {V + A′(V ) | V ∈ TM} ≡ {A′−1(ξ) + ξ | ξ ∈ T ∗M}, (2.16)

where A, A′ : TM → T ∗M , respectively. We can view A as covariant 2-tensor field on M ,

and write uniquely A = g + B, where g is a symmetric part of A and B a skew-symmetric

part of A. From the positive definiteness of V+ we get that g is a Riemannian metric on

M , whereas B can be an arbitrary 2-form on M . Using the orthogonality of V+ and V−,

we see that A′ = −g + B. From this equivalent formulation, i.e. using g and B, we can

uniquely reconstruct τ . This will give

τ(V + ξ) = (g − Bg−1B)(V ) − g−1B(V ) + Bg−1(ξ) + g−1(ξ), (2.17)

for all (V + ξ) ∈ Γ(E). In the block matrix form,

τ

(
V

ξ

)
=

(
−g−1B g−1

g − Bg−1B Bg−1

)(
V

ξ

)
. (2.18)

The corresponding fiberwise metric (·, ·)τ can then be written in the block matrix form

(V + ξ, W + η)τ =

(
V

ξ

)T (
g − Bg−1B Bg−1

−g−1B g−1

)(
W

η

)
. (2.19)

The important observation is that the block matrix in formula (2.19) can be written

as a product of simpler matrices. Namely,
(

g − Bg−1B Bg−1

−g−1B g−1

)
=

(
1 B

0 1

)(
g 0

0 g−1

)(
1 0

−B 1

)
. (2.20)
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Note the important fact that the 2-form B does not have to be closed, and this will

remain true throughout the whole paper. Nevertheless, we assume that B is globally

defined, i.e. H = dB globally.1 We thus consider only the models with trivial H-flux. The

case of the non-trivial H-flux will be discussed elsewhere.

There exists a natural action of the group O(n, n) on the space of generalized metrics.

For each O ∈ O(n, n) and given τ define τ ′ = O−1τO. Clearly τ ′2 = 1 and

〈τ ′(e1), e2〉 = 〈τ(O(e1)), O(e2)〉 = (O(e1), O(e2))τ .

Hence (·, ·)τ ′ is again a generalized metric. We may use the notation (·, ·)τ ′ = O(·, ·)τ .

2.2 Factorizations of generalized metric, open-closed relations

Let us start with a (different) generalized metric H, described by a Riemannian metric G

and a 2-form Φ. Hence

H =

(
1 Φ

0 1

)(
G 0

0 G−1

)(
1 0

−Φ 0

)
. (2.21)

Let θ be a 2-vector field on M . The action of the O(n, n) map e−θ on the generalized

metric H gives us a new generalized metric G, which has the form

G =

(
1 0

θ 1

)(
1 Φ

0 1

)(
G 0

0 G−1

)(
1 0

−Φ 1

)(
1 −θ

0 1

)
. (2.22)

By the previous discussion, there exists a unique Riemannian metric g and a 2-form B,

such that

G =

(
1 B

0 1

)(
g 0

0 g−1

)(
1 0

−B 1

)
. (2.23)

Comparing the two expressions (2.22) and (2.23) of G, we get the matrix equations

g − Bg−1B = G − ΦG−1Φ, (2.24)

Bg−1 = ΦG−1 − (G − ΦG−1Φ)θ, (2.25)

which can be uniquely solved for G and Φ. Since e−θ is invertible, we can proceed the other

way around as well. We also know how the corresponding endomorphism τH is changed by

e−θ. Namely, we have

τG = eθτHe−θ. (2.26)

From that, we can easily find the relation between +1 eigenbundles:

V G
+ = eθV H

+ . (2.27)

Since

V G
+ = {ξ + (g + B)−1(ξ) | ξ ∈ T ∗M},

1More precisely, we assume that the corresponding integral cohomology class [H] is trivial.
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and

V H
+ = {ξ + (G + Φ)−1(ξ) | ξ ∈ T ∗M},

we get using the above formula that

(g + B)−1 = θ + (G + Φ)−1. (2.28)

Formulae (2.24) and (2.25) are the symmetric and antisymmetric parts of (2.28). If θ is

Poisson, (2.28) is the Seiberg-Witten formula2 relating closed and open string backgrounds

in the presence of a noncommutative structure represented by θ. In particular, for given g,

B and θ, we can find a unique G and Φ, and conversely, for given G, Φ and θ, there exists

a unique pair g and B.

For Φ = 0 the open-closed relations can be given a slightly more geometric interpreta-

tion [10]. Consider the inverse G−1 of the generalized metric G. If we exchange the tangent

and cotangent bundles TM and T ∗M , respectively, G−1 has the same properties as G.

Obviously, G−1 and G have identical graphs as well as ±1-eigenbundles. The open-closed

relations, for Φ = 0, is a simple consequence of that.

2.3 Dorfman bracket, Dirac structures, D-branes

Here we briefly recall some relevant facts concerning the Dorfman bracket and Dirac struc-

tures, see, e.g., [2, 26, 28]. Our vector bundle E = TM ⊕ T ∗M can be equipped with

a structure of a Courant algebroid. The corresponding Courant bracket is the antisym-

metrization of the Dorfman bracket:

[V + ξ, W + η]D = [V, W ] + LV (η) − iW (dξ), (2.29)

for all (V + ξ) ∈ Γ(E). The corresponding pairing is the canonical fiberwise metric (2.1).

A Dirac structure is a (smooth) subbundle L of E, which is maximally isotropic with

respect to 〈·, ·〉 and involutive under the Dorfman bracket (2.29).

Let θ be a rank-2 contravariant tensor field on M . As before, define a vector bundle

morphism θ : T ∗M → TM by θ(ξ) = θ(·, ξ). Define a subbundle Gθ of E as its graph,

that is

Gθ = {ξ + θ(ξ) | ξ ∈ T ∗M}. (2.30)

It is known that Gθ is a Dirac structure with respect to the Dorfman bracket, if and only if

θ is a Poisson bivector. Similarly, let B be any rank-2 covariant tensor field on M . Define

B(V ) = B(V, ·) and its graph GB as

GB = {V + B(V ) | V ∈ TM}. (2.31)

Again, one can show that GB is a Dirac structure, if and only if B is a closed 2-form on M .

Furthermore, for any closed B ∈ Ω2(M), one has

eB[V + ξ, W + η]D = [eB(V + ξ), eB(W + η)]D, (2.32)

2For an earlier appearance of this type of formulae in the context of duality rotations see [27].
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and

〈eB(V + ξ), eB(W + η)〉 = 〈V + ξ, W + η〉, (2.33)

for all (V + ξ), (W + η) ∈ Γ(E). In the other words, eB is an automorphism of the

corresponding Courant algebroid. Note that (2.32) is no longer true for eθ, where θ ∈
Λ2X(M), but (2.33) holds.

Generally, a Dirac structure L provides a singular foliation of M by presympletic leaves,

which is generated by its image ρ(L) of the Dirac structure under the anchor map. We

refer to [10] for arguments in favor of the identification “D-branes ∼ leaves of foliations

defined by Dirac structures”. In the case we will consider later, L will be given as a graph

of a Poisson tensor θ and the corresponding foliation of M will be the foliation generated

by Hamiltonian vector fields, i.e., by symplectic leaves of θ. Hence, in this case we will

identify the symplectic leaves and D-branes.

3 Gauge field as an orthogonal transformation of the generalized metric

Let us start with a given Riemannian metric g and 2-form B. Further, let F be a 2-form (at

this point an arbitrary one3). The gauge transformation defines new 2-form B′ = B + F .

To the pair (g, B) corresponds the generalized metric G, see (2.23). The generalized metric

G′ corresponding to the pair (g, B + F ) has the following block matrix form:

G′ =

(
1 F

0 1

)(
1 B

0 1

)(
g 0

0 g−1

)(
1 0

−B 1

)(
1 0

−F 1

)
, (3.1)

that is, G′ is related to G by the O(n, n) transform e−F . As shown before, we can always

get G by action of O(n, n) transformation e−θ on the generalized metric H, where H is

described by fields G and Φ, see (2.21).

One may ask, if there is a bivector θ′ on M , such that we get G′ by the action of

e−θ′
on the generalized metric H′, which is described by the same G as H, but by gauged

2-form Φ′ = Φ+F ′ for some gauge field F ′. This can be achieved under some assumptions,

however, only up to a certain additional O(n, n) action. In particular, there exists a vector

bundle morphism N : TM → TM , such that

G′ =

(
1 0

θ′ 1

)(
NT 0

0 N−1

)
H′
(

N 0

0 N−T

)(
1 −θ′

0 1

)
, (3.2)

where

H′ =

(
1 Φ′

0 1

)(
G 0

0 G−1

)(
1 0

−Φ′ 1

)
.

Indeed, examine the block matrix decomposition:

G′ =

(
1 F

0 1

)(
1 0

θ 1

)(
1 Φ

0 1

)(
G 0

0 G−1

)(
1 0

−Φ 1

)(
1 −θ

0 1

)(
1 0

−F 1

)
.

3Later, when discussing DBI action, F will be closed and defined only on a submanifold of M supporting

a D-brane. In which case, all expression involving F will make sense only when considered on the D-brane.
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It suffices to consider the three rightmost matrices in the above expression. Since we want

to modify Φ to Φ + F ′, we may proceed by inserting 1 = e−F ′
eF ′

:
(

1 0

−Φ 1

)(
1 −θ

0 1

)(
1 0

−F 1

)
=

(
1 0

−(Φ + F ′) 1

)(
1 0

F ′ 1

)(
1 −θ

0 1

)(
1 0

−F 1

)
.

Now it is enough to note that the product of the last three matrices, can be uniquely

decomposed into a product of a diagonal and an upper triangular block matrix — of

course, only if we assume that (1 + θF ) is invertible. For this, use the decomposition of

e−θe−F ∈ O(n, n) according to (2.11) as

e−θe−F = e−F ′
ONe−θ′

, (3.3)

with F ′ ∈ Ω2(M), θ′ ∈ Λ2X(M) and N ∈ Γ(Aut(TM)). What we find are the following

expression for θ′, F ′ and N :

θ′ = (1 + θF )−1θ = θ(1 + Fθ)−1, (3.4)

F ′ = F (1 + θF )−1 = (1 + Fθ)−1F, (3.5)

N = 1 + θF. (3.6)

Comparing (3.1) and (3.2), we get the equalities

g − (B + F )g−1(B + F ) = NT (G − (Φ + F ′)G−1(Φ + F ′))N (3.7)

and

(B + F )g−1 = NT (Φ + F ′)G−1N−T − NT (G − (Φ + F ′)G−1(Φ + F ′))Nθ′. (3.8)

Taking the determinant of (3.7), we find that

det(g − (B + F )g−1(B + F )) = det(N)2 · det(G − (Φ + F ′)G−1(Φ + F ′)). (3.9)

This equality will play the central role when later discussing the DBI action.

Furthermore, following the same type of arguments leading to (2.28) we see that the

equations (3.7) and (3.8) can equivalently be written as

(g + B + F )−1 = θ′ + (NT (G + Φ + F ′)N)−1. (3.10)

Finally, let us examine the objects F ′ and θ′ using the tools described in subsection 2.3.

We will concentrate on the case important for the discussion of the DBI action and non-

commutative gauge theory. Therefore, in the rest of this section, we assume that θ is

Poisson and F is closed. θ′ is a bivector on M . For the graphs of θ and θ′ we have

eF Gθ = Gθ′ . (3.11)

Since eF is an automorphism of Dorfman bracket, Gθ′ has to be again a Dirac structure of

E. Hence, θ′ is a Poisson bivector. Similarly, one can see that

eθGF = GF ′ . (3.12)
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This is no more an automorphism of Dorfman bracket but it preserves the (maximal)

isotropy property of GF . Hence GF ′ is an isotropic subbundle of E and F ′ is therefore a

2-form on M . Let us also note, that F ′ doesn’t need to be closed. The last remark: In

case that (1 + θF ) is not invertible, eF Gθ still makes perfect sense as a Dirac structure.

Similarly, eθGF will still define an almost Dirac structure.

4 Non-topological Poisson-sigma model and Polyakov action

In this section we review the non-topological Poisson-sigma model from the generalized

geometry point of view developed in the previous sections.

Let us consider a 2-dimensional world-sheet Σ with a set of local coordinates (σ0, σ1).

We assume that σµ are Cartesian coordinates for a Lorentzian metric h with signature

(−, +) on Σ. Furthermore, we consider an n-dimensional target manifold M , equipped

with a metric G, 2-vector θ and a 2-form Φ. We can assume Σ with a non-empty boundary

∂Σ. On M assume an abelian gauge field A coupling to the boundary (and extending to

Σ, the field strength being F = dA). We also choose some local coordinates (y1, . . . , yn)

on M . Lower case Latin characters will always correspond to these coordinates. For

the components of the smooth map X : Σ → M we will use the following notation:

Xi = yi(X). In this section it will be convenient to introduce the following notation:

We put Ḡ := NT GN , Φ̄ := NT ΦN and F̄ ′ := NT F ′N and introduce auxiliary fields ηi

and η̃j , which transform under change of local coordinates on M according to their index

structure. We combine them in a 2n-dimensional column vector ΨT := (η, η̃). We also

introduce another 2n-dimensional column vector V T := (∂0X, ∂1X). Finally, we define a

2n × 2n matrix4

Ḡ =

(
−Ḡ −Φ̄ − F̄ ′

Φ̄ + F̄ ′ Ḡ

)−1

+

(
0 θ′

−θ′ 0

)
. (4.1)

Our (non-topological) Poisson-sigma model action is

S[η, η̃, X] :=

∫
d2σ

1

2
ΨT ḠΨ + ΨT V. (4.2)

Using relations (3.7), (3.8), the action (4.2) can equivalently be written as

S[η, η̃, X] :=

∫
d2σ

1

2
ΨT G̃Ψ + ΨT V, (4.3)

where

G̃ =

(
−g −B − F

B + F g

)−1

(4.4)

with g, B and F being related to G, Φ and F ′ by (3.7), (3.8) and (3.5). Integrating out

the auxiliary fields η and η̃ we obtain the Polyakov action expressed equivalently either in

open or closed variables

S[X] := −1

2

∫
d2σV T Ḡ−1V = −1

2

∫
d2σV T G̃−1V. (4.5)

4Here, we neither need to assume that θ is Poisson nor that F is closed.
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Actually, all this can be seen rather straightforwardly. For this, note that rela-

tions (3.7), (3.8) can alternatively be expressed as the equality of matrices Ḡ = G̃. The

relations in the form (3.10) and their transposes are obtained from the nonzero off-diagonal

blocks after the similarity transformation with the block matrix
(

1 1
1 −1

)
is applied to the

equality Ḡ = G̃.

The generalized metric G′ can explicitly be seen either in the Hamiltonian correspond-

ing to the Polyakov action (4.5) or in the Hamiltonian corresponding to the action (4.2)

after the equations of motions for one half of the auxiliary fields, the η̃s, are used. As can

straightforwardly be checked, these Hamiltonians are identical. To write down the result

we introduce a new 2n-dimensional column vector ΥT := (∂1X, η). The auxiliary fields ηi

become the canonical momenta and the Hamiltonian is

H[X, η] =
1

2

∫
dσ1ΥTG′Υ , (4.6)

where G′ the matrix given by the two equivalent decompositions (3.1) and (3.2). Hence, we

have the same Hamiltonian using either the closed or the open variables. Let us note that,

for F = 0, the relation between the action (4.2) and the action (4.5) with G′ expressed as

in (3.1) can be found in [29]. The Hamiltonian (4.6) with G′ given by (3.2) can be found,

again for F = 0, in [17]. Polyakov actions like the first one in (4.5) appeared (with F = 0)

in [30] in the context of Poisson-Lie T-duality.

5 Seiberg-Witten map

For an approach to the non-abelian case, using cohomological methods akin to the ones of

Zumino’s famous decent equations [31], see [32, 33]. Here we follow the approach of [34–

36], where it was shown that the Seiberg-Witten field redefinition from the commutative

to the non-commutative setting has its origin in a change of coordinates given by a map

ρ : M → M , such that ρ∗(θ′) = θ.5 This map can be derived using a generalization of

Moser’s lemma: Consider the family of Poisson bivectors

θt = θ(1 + tFθ)−1 (5.1)

parameterized by t ∈ [0, 1]. Of course, we have to presume that the formula is well-defined.

To see that these θt are indeed Poisson for all t, simply observe that Gθt = etF Gθ holds

for the respective graphs.6 Partial differentiation of (5.1) with respect to t leads to the

differential equation

∂tθt = −θtFθt.

For F = dA, this can be rewritten as

∂tθt = −Lθt(A)θt,

5As said before, here we assume only topologically trivial [H]-flux. The interested reader may find some

relevant discussion concerning nontrivial H and the related non-commutative gerbe in [37].
6Let us note again that etF Gθ is a bona-fide Dirac structure even for non-invertible (1 + tFθ).
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with a vector field θt(A) := θt(·, A), with initial condition θ0 = θ. This differential equation

can be integrated to a flow φt, such that φ∗
t (θt) = θ. Thus ρ = φ1. Obviously, ρ explicitly

depends on the choice of gauge potential A, hence we shall use the notation ρA. To avoid

possible confusion, we will for a moment notationally distinguish between the tensor itself

and its components in coordinates. Therefore we introduce the matrix (θ)ij := θij . Also,

denote J i
k = ∂ρi

∂xk . We have

ρ∗
A(θ′kl

) = Jk
iJ

l
jθ

ij .

We thus get that

det ρ∗
A(θ′) = J2 det θ. (5.2)

Let us assume for a moment that θ is invertible. From (3.4) we see that so is ρ∗
Aθ′. We

immediately have that

J−2 = det (θ(ρ∗
Aθ′)−1). (5.3)

For degenerate θ and hence also θ′ the formula (5.3) still makes sense and we can argue

as follows: Since the map ρA is infinitesimally generated by the vector field θt(A), and the

kernels of all θt’s are the same, we see that ρA only changes coordinates on the symplectic

leaves (of θ). We can thus restrict ourselves to the non-degenerate case in order to carry

out the computation of the Jacobian.

In the next section, we will discuss the case when the Poisson structure θ (i.e., the

corresponding Dirac structure) will be used, following the suggestion of [10], to define the

D-branes as its symplectic leaves. The above argument shows that we can safely restrict

our discussion without the loss of generality to any of the respective D-branes. In such a

case, the (Seiberg-Witten) map ρA is a diffeomorphism of the D-brane world-volume D.

The Poisson structures θt have in fact the same symplectic foliations for all t. Actually, all

Poisson structures θt, including in particular θ and θ′, are Morita equivalent [38].

Finally, on the level of Dirac structures, the Seiberg Witten map is the map of graphs

ρ∗ : G′
θ 7→ Gθ. More explicitly,

{θ′(η) + η, η ∈ T ∗M} 7→ {θ(η) + η, η ∈ T ∗M} = {Nθ′N−T (η) + N−T (η), η ∈ T ∗M}.

Hence, the Seiberg-Witten map can be seen as the map induced by the O(n, n) transfor-

mation ON entering the decomposition (2.11), if one considers D-branes which are sym-

plectic leaves.

6 Noncommutative gauge theory and DBI action

In the previous sections we have described all ingredients needed for our discussion of

noncommutativity of D-branes as a consequence of their generalized geometry. Namely,

we have seen that the relations (2.24), (2.25), (3.7) and the (semiclassical) Seiberg-Witten

have their root in generalized geometry. Actually, it is know for quite some time [36] that

the equivalence of the commutative and (semiclassically) noncommutative DBI actions fol-

lows once one has established (2.24), (2.25), (3.7) and has understood the (semiclassical)

Seiberg-Witten map as a (local) D-brane diffeomorphism. Nevertheless, according to our

– 12 –



J
H
E
P
0
7
(
2
0
1
3
)
1
2
6

best knowledge, the direct relation to generalized geometry is new. Moreover, the discus-

sion generalizes to the case of M -theory branes [24, 25] and will be elaborated in detail in

a forthcoming paper. Here we will include the derivation of the equivalence of the commu-

tative and (semiclassically) noncommutative DBI actions for the sake of completeness and

the reader’s convenience. For related work based on dualities, see [39].

Assume that we have a D-brane D of dimension d, i.e, a submanifold of target space-

time M equipped with a line bundle with a connection A and corresponding field strength

F . Also, consider the restrictions (pullbacks) of the background fields (open and closed

ones) to D. While describing the Seiberg-Witten map in the previous section, we have

seen that it is quite natural to assume that there is a relation between the D-brane and

the Poisson tensor θ.7 Namely, assume that our D-brane is of a particular kind, i.e., one

which comes as symplectic leaf of the Poisson structure θ.8 As argued before, under this

assumption, the Seiberg-Witten map is a D-brane diffeomorphism.

Before we turn to the discussion of the DBI action and its commutative and noncom-

mutative description, we discuss the relation between the effective closed and open string

coupling constants gs and Gs, respectively [21]. These are related as

Gs = gs

(
det(G + Φ)

det(g + B)

)1/2

.

We can use the formula for the determinant of a sum of a symmetric matrix S and an

antisymmetric matrix A, |S +A| = |S|1/2|S −AS−1A|1/2, and the relation (2.24) to rewrite

this as

Gs = gs

(
det G

det g

)1/4

. (6.1)

A most intriguing relation is obtained from (6.1) and the relation (3.7), again using the

above mentioned formula for the determinant of a sum of a symmetric and an antisym-

metric matrix:

1

gs
det1/2(g + B + F ) =

1

Gs
det1/2(1 + θF ) det1/2(G + Φ + F ′). (6.2)

Integrating over the D-brane world-volume
∫

ddx
1

gs
det1/2(g + B + F ) =

∫
ddx

1

Gs
det1/2(1 + θF ) det1/2(G + Φ + F ′), (6.3)

recalling (5.3), and performing the change of coordinates according to the Seiberg-Witten

map, we finally obtain a relation between the commutative and semiclassically noncommu-

tative DBI actions

Sc
DBI :=

∫
ddx

1

gs
det1/2(g + B + F ) =

∫
ddx

1

Ĝs

det1/2

(
θ̂

θ

)
det1/2(Ĝ + Φ̂ + F̂ ′) =: Snc

DBI.

(6.4)

7Recall, in accordance with our above discussion of the open-closed relations, here we start from a given

closed background (g, B), pick a θ and determine uniquely the open variables (G, Φ).
8It is straight-forward to modify everything to the case where the D-brane is a submanifold, such that

the restriction of θ to it defines a regular Poisson structure, i.e. a Poisson structure having constant rank.
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The hat “̂ ” has the following meaning: On matrix elements of θ it is defined as

θ̂ij := ρ∗
A(θij), and similarly for the other objects. As a result of this definition, F̂ ′ is

the semiclassically noncommutative field strength, which under the gauge transformation

δA = dλ transforms semiclassically noncommutatively, i.e.,

δF̂ ′
ij = {F̂ ′

ij , λ̃},

λ̃ =
∑ (θt(A) + ∂t)

n(λ)

(n + 1)!
|t=0.

Here, the curly bracket is the Poisson bracket corresponding to the Poisson tensor θ and λ̃

is the (semiclassical) noncommutative gauge parameter.

Let us note: The commutative DBI action Sc
DBI on the l.h.s. in (6.4) is the effective

D-brane action obtained from the Polyakov action (4.5). Expressed directly in terms of

the matrix G̃, the action Sc
DBI is the integral of

det1/4G̃ (6.5)

up to the inverse of the closed coupling constant gs. Hence, an alternative — but completely

equivalent — way of obtaining the relation between the commutative and semiclassically

noncommutative DBI actions (6.4) is to start from the matrix equality G̃ = Ḡ. This makes

the relation to the Polyakov action more transparent. We leave the details to the reader.

Finally, the Hamiltonian (4.6) can equivalently be expressed using either the “commu-

tative” (3.1) or “noncommutative” (3.2) decompositions of the generalized metric G′. This

is maybe the most direct hint from generalized geometry about the necessity of a relation

like (6.4).
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[35] B. Jurčo, P. Schupp and J. Wess, Noncommutative gauge theory for Poisson manifolds,

Nucl. Phys. B 584 (2000) 784 [hep-th/0005005] [INSPIRE].
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1 Introduction

Among the most intriguing features of fundamental theories of extended objects are novel

types of symmetries and concomitant generalized notions of geometry. Particularly interest-

ing examples of these symmetries are T-duality in closed string theory and the equivalence

of commutative/noncommutative descriptions in open string theory. These symmetries

have their natural settings in generalized geometry and noncommutative geometry. Low

energy effective theories link the fundamental theories to potentially observable phenomena

in (target) spacetime. Interestingly, the spacetime remnants of the stringy symmetries can
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fix these effective theories essentially uniquely without the need of actual string computa-

tions: “string theory with no strings attached.”

The main objective of this paper is to study this interplay of symmetry and geometry

in the case of higher dimensional extended objects (branes). More precisely, we intended

to extend, clarify and further develop the construction outlined in [1] that tackles the quest

to find an all-order effective action for a system of multiple p-branes ending on a p′-brane.

The result for the case of open strings ending on a single D-brane is well known: the

Dirac-Born-Infeld action provides an effective description to all orders in α′ [2–4]. The way

that this effective action has originally been derived from first principles in string theory is

rather indirect: the effective action is determined by requiring that its equations of motion

double as consistency conditions for an anomaly free world sheet quantization of the funda-

mental string. A more direct target space approach can be based on T-duality arguments.

Moreover, there is are equivalent commutative and non-commutative descriptions [5], where

the equivalency condition fixes the action essentially uniquely [6, 7]. This “commutative-

noncommutative duality” has been used also to study the non-abelian DBI action [6, 8].

In the context of the M2/M5 brane system a generalization has been proposed in [9].

In this paper, we focus only on the bosonic part of the action. The main idea of [1],

inspired by [9], was to introduce open-closed membrane relations, and a Nambu-Poisson

map which can be used to relate ordinary higher gauge theory to a new Nambu gauge

theory [10–13]. See also the work of P.-M. Ho et al. [14–17] and K. Furuuchi et al. [18, 19]

on relation of M2/M5 to Nambu-Poisson structures. It turns out that the requirement of

“commutative-noncommutative duality” determines the bosonic part of the effective action

essentially uniquely. Interesting open problems are to determine, in the case of a M5-brane,

the form of the full supersymmetric action and to check consistency with κ-symmetry and

(nonlinear) selfduality.

Nambu-Poisson structures were first considered by Y. Nambu already in 1973 [20], and

generalized and axiomatized more then 20 years later by L. Takhtajan [21]. The axioms

of Nambu-Poisson structures, although they seem to be a direct generalization of Poisson

structures, are in fact very restrictive. This was already conjectured in the pioneering

paper [21] and proved three years later in [22, 23]. For a modern treatment of Nambu-

Poisson structures see [24–26].

Matrix-model like actions using Nambu-Poisson structures are a current focus of re-

search (see e.g. [27–30]) motivated by the works of [31–35] and others. See also [36, 37] for

further reference. Among the early approaches, the one closest to ours is the one of [38, 39],

which uses κ-symmetry as a guiding principle and features a non-linear self-duality con-

dition. It avoids the use of an auxiliary chiral scalar [40] with its covariance problems

following a suggestion of [41]. For these and alternative formulations, e.g., those of [42],

based on superspace embedding and κ-symmetry, we refer to the reviews [43, 44].

Generalized geometry was introduced by N. Hitchin in [45–47]. It was further elab-

orated in [48]. Although Hitchin certainly recognized the possible importance for string

backgrounds, and commented on it in [45], this direction is not pursued there. Recently, a

focus of applications of generalized geometry, is superstring theory and supergravity. Here

we mention closely related work [49, 50]. The role of generalized geometries in M-theory
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was previously examined by C.M. Hull in [51]. A further focus is the construction of the

field theories based on objects of generalized geometry. This is mainly pursued in [52, 53]

and in [54], see also [55]. Generalized geometry (mostly Courant algebroid brackets) was

also used in relation to worldsheet algebras and non-geometric backgrounds. See, for ex-

ample, [56–58] and [59, 60]. One should also mention the use of generalized geometry in

the description of T-duality, see [61], or the lecture notes [62]. An outline of the relation

of T-duality with generalized geometry can be found in [63]. Finally, there is an interest-

ing interpretation of D-branes in string theory as Dirac structures of generalized geometry

in [64, 65]. Finally, in [66], we have used generalized geometry to describe the relation

between string theory and non-commutative geometry.

This paper is organized as follows: in section 3, we review basic facts concerning

classical membrane actions. In particular, we recall how gauge fixing can be used to find

a convenient form of the action. We show that the corresponding Hamiltonian density is

a fiberwise metric on a certain vector bundle. We present background field redefinitions,

generalizing the well-known open-closed relations of Seiberg and Witten.

In section 4, we describe the sigma model dual to the membrane action. It is a

straightforward generalization of the non-topological Poisson sigma model of the p = 1 case.

Section 5 sets up the geometrical framework for the field redefinitions of the previ-

ous sections. An extension of generalized geometry is used to describe open-closed re-

lations as an orthogonal transformation of the generalized metric on the vector bundle

TM ⊕ ΛpTM ⊕ T ∗M ⊕ ΛpT ∗M . Compared to the p = 1 string case, we find the need

for a second “doubling” of the geometry. The split in TM and ΛpTM has its origin in

gauge fixing of the auxiliary metric on the p + 1-dimensional brane world volume and the

two parts are related to the temporal and spatial worldvolume directions. To the best of

our knowledge, this particular structure W ⊕ W ∗ with W = TM ⊕ ΛpTM has not been

considered in the context of M-theory before.

In section 6, we introduce the (p+1)-form gauge field F as a fluctuation of the original

membrane background. We show that this can be viewed as an orthogonal transformation

of the generalized metric describing the membrane backgrounds. On the other hand, the

original background can equivalently be described in terms of open variables and this

description can be extended to include fluctuations. Algebraic manipulations are used to

identify the pertinent background fields. The construction requires the introduction of a

target manifold diffeomorphism, which generalizes the (semi-classical) Seiberg-Witten map

from the string to the p > 1 brane case.

This map is explicitly constructed in section 7 using a generalization of Moser’s lemma.

The key ingredient is the fact that Π, which appears in the open-closed relations, can

be chosen to be a Nambu-Poisson tensor. Attention is paid to a correct mathematical

formulation of the analogue of a symplectic volume form for Nambu-Poisson structures.

Based on the results of the previous sections, we prove in section 8 the equivalence of

a commutative and semiclassically noncommutative DBI action. We present various forms

of the same action using determinant identities of block matrices. Finally, we compare our

action to existing proposals for the M5-brane action.
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In section 9, we show that the Nambu-Poisson structure Π can be chosen to be the

pseudoinverse of the (p + 1)-form background field C. In analogy with the p = 1 case, we

call this choice “background independent gauge”. However, for p > 1 we have to consider

both algebraic and geometric properties of C in order to obtain a well defined Nambu-

Poisson tensor Π. The generalized geometry formalism developed in section 5 is used to

derive the results in a way that looks formally identical to the much easier p = 1 case.

(This is a nice example of the power of generalized geometry.)

In section 10, we introduce a convenient splitting of the tangent bundle and rewrite

all membrane backgrounds in coordinates adapted to this splitting using a block matrix

formalism. We introduce an appropriate generalization of the double scaling limit of [5] to

cut off the series expansion of the effective action.

In the final section 11 of the paper, we use background independent gauge, double

scaling limit, and coordinates adapted to the non-commutative directions to expand the

DBI action up to first order in the scaling parameter. It turns out that this double scaling

limit cuts off the infinite series in a physically meaningful way. We identify a possible

candidate for the generalization of a matrix model. For a discussion of the underlying

Nambu-Poisson gauge theory we refer to [11].

2 Conventions

Thorough the paper, p > 0 is a fixed positive integer. Furthermore, we assume that we

are given a (p + 1)-dimensional compact orientable worldvolume Σ with local coordinates

(σ0, . . . , σp). We may interpret σ0 as a time parameter. Integration over all coordinates is

indicated by
∫

dp+1σ, whereas the integration over space coordinates (σ1, . . . , σp) is indicted

as
∫

dpσ. Indices corresponding to the worldvolume coordinates are denoted by Greek

characters α, β, . . . , etc. As usual, ∂α ≡ ∂
∂σα . We assume that the n-dimensional target

manifold M is equipped with a set of local coordinates (y1, . . . , yn). We denote the corre-

sponding indices by lower case Latin characters i, j, k, . . . , etc. Upper case Latin characters

I, J, K, . . . , etc. will denote strictly ordered p-tuples of indices corresponding to (y) coor-

dinates, e.g., I = (i1, . . . , ip) with 1 ≤ i1 < · · · < ip ≤ n. We use the shorthand notation

∂J ≡ ∂
∂yj1

∧ . . .∧ ∂
∂yjp and dyJ = dyj1 ∧ . . .∧dyjp . The degree q-parts of the exterior algebras

of vector fields X(M) and forms Ω(M) are denoted by Xq(M) and Ωq(M), respectively.

Where-ever a metric g on M is introduced, we assume that it is positive definite, i.e.,

(M, g) is a Riemannian manifold. With this choice we will find a natural interpretation

of membrane backgrounds in terms of generalized geometry. For any metric tensor gij , we

denote, as usually, by gij the components of the inverse contravariant tensor.

We use the following convention to handle (p+1)-tensors on M . Let B ∈ Ωp+1(M) be

a (p + 1)-form on M . We define the corresponding vector bundle map B♭ : ΛpTM → T ∗M
as B♭(Q) = BiJQJdyi, where Q = QJ∂J . We do not distinguish between vector bundle

morphisms and the induced C∞(M)-linear maps of smooth sections. We will usually use

the letter B also for the
(
n
p

)
× n matrix of B♭ in the local basis ∂J of Xp(M) and dyi

of Ω1(M), that is (B)i,J = 〈∂i, B♭(∂J)〉. Similarly, let Π ∈ Xp+1(M); the induced map

Π♯ : ΛpT ∗M → TM is defined as Π♯(ξ) = ΠiJξJ∂i for ξ = ξJdyJ . We use the letter Π also
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for the
(
n
p

)
×n matrix of Π♯, that is (Π)i,J = 〈dyi, Π♯(dyJ)〉. Clearly, with these conventions

(B)i,J = BiJ and (Π)i,J = ΠiJ .

Let X : Σ → M be a smooth map. We use the notation Xi = yi ◦ X, and corre-

spondingly dXi = d(Xi) = X∗(dyi). Similarly, dXJ = X∗(dyJ). We reserve the symbol

∂̃X
J

for spatial components of the p-form dXJ , that is, ∂̃X
J

= (dXJ)1...p. We define the

generalized Kronecker delta δ
j1...jp

i1...ip
to be +1 whenever the top p-index constitutes an even

permutation of the bottom one, −1 if for the odd permutation, and 0 otherwise. In other

words, δ
j1...jp

i1...ip
= p! · δ

[j1
[i1

. . . δ
jp]
ip] . We use the convention ǫi1...ip ≡ ǫi1...ip ≡ δ1...p

i1...ip
≡ δ

i1...ip
1...p .

Thus, in this notation we have ∂̃X
I

= ∂l1X
i1 · · · ∂lpX

ipǫl1...lp .

3 Membrane actions

The most straightforward generalization of the relativistic string action to higher dimen-

sional world volumes is the Nambu-Goto p-brane action, simply measuring the volume of

the p-brane:

SNG[X] = Tp

∫
dp+1σ

√
det (∂αXi∂βXjgij), (3.1)

where gij are components of the positive definite target space metric g, and X : Σ → M

is the n-tuple of scalar fields describing the p-brane. In a similar manner as for the string

action, one can introduce an auxiliary Riemannian metric h on Σ and find the classically

equivalent Polyakov action of the p-brane:

SP [X, h] =
T ′

p

2

∫
dp+1σ

√
h
(
hαβ∂αXi∂βXjgij − (p − 1)λ

)
, (3.2)

where λ > 0 can be chosen arbitrarily (but fixed), and T ′
p = λ

p−1
2 Tp. Using the equations

of motion for hαβ ’s:
1

2
hαβ

(
hγδgγδ − (p − 1)λ

)
= gαβ , (3.3)

where gαβ = [X∗(g)]αβ ≡ ∂αXi∂βXjgij , in SP , one gets back to (3.1). In the rest of

the paper, we will choose Tp ≡ 1. Using reparametrization invariance, one can always

(at least locally) choose coordinates (σ0, . . . , σp) such that h00 = λp−1 det hab, h0a = 0,

where hab denotes the space-like components of the metric. In this gauge, the first term in

action (3.2) splits into two parts, one of them containing only the spatial derivatives of Xi

and the spatial components of the metric h. Using now the equations of motion for hab,

one gets the gauge fixed Polyakov action1

Sgf
P [X] =

1

2

∫
dp+1σ

{
∂0X

i∂0X
jgij + det (∂aX

i∂bX
jgij)

}
. (3.4)

1The gauge constraints on ha0, h0b and h00 imply an energy-momentum tensor with vanishing compo-

nents Ta0 = T0a and T00. These constraints must be considered along with the equations of motion of the

action (3.4), to ensure equivalence with the actions (3.1) and (3.2). As discussed in [67], the subgroup of

the diffeomorphism symmetries that remains after gauge fixing is a symmetry of the gauge-fixed p-brane

action (3.4) and also transforms the pertinent components of the energy-momentum tensor into one

another (even if they are not set equal to zero). The constraints can thus be consistently imposed at the

level of states.
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The second term can be rewritten in a more convenient form once we define

g̃IJ =
∑

π∈Σp

sgn(π)giπ(1)j1 . . . giπ(p)jp ≡ δ
k1...kp

I gk1j1 . . . gkpjp . (3.5)

Using this notation, one can write

Sgf
P [X] =

1

2

∫
dp+1σ

{
∂0X

i∂0X
jgij + ∂̃X

I
∂̃X

J
g̃IJ

}
. (3.6)

From now on, assume that g is a positive definite metric on M . Note that from the

symmetry of g it follows that g̃IJ = g̃JI . We can view g̃ as a fibrewise bilinear form on the

vector bundle ΛpTM . Moreover, at any m ∈ M , one can define the basis (EI) of ΛpTmM

as EI = ei1 ∧ . . . ∧ eip , where (e1, . . . , en) is the orthonormal basis for the quadratic form

g(m) at m ∈ M . In this basis one has g̃(m)(EI , EJ) = δI,J , which shows that g̃ is a positive

definite fibrewise metric on ΛpTM .

For any C ∈ Ωp+1(M), we can add the following coupling term to the action:

SC [X] = −i

∫

Σ
X∗(C) = −i

∫
dp+1σ∂0X

i∂̃X
J
CiJ . (3.7)

The resulting gauge fixed Polyakov action Stot
P [X] = Sgf

P [X] + SC [X] has the form

Stot
P [X] =

1

2

∫
dp+1σ

{
∂0X

i∂0X
jgij + ∂̃X

I
∂̃X

J
g̃IJ − 2i∂0X

i∂̃X
J
CiJ

}
. (3.8)

This can be written in the compact matrix form by defining an (n +
(
n
p

)
)-row vector

Ψ =

(
i∂0X

i

∂̃X
J

)
.

The action then has the block matrix form

Stot
P [X] =

1

2

∫
dp+1σ

{
Ψ†
(

g C

−CT g̃

)
Ψ

}
. (3.9)

From now on, unless explicitly mentioned, we may assume that g̃ is not necessarily

of the form (3.5), i.e., g̃ can be any positive definite fibrewise metric on ΛpTM . Any

further discussions will, of course, be valid also for the special case (3.5). Since g is non-

degenerate, we can pass from the Lagrangian to the Hamiltonian formalism and vice versa.

The corresponding Hamiltonian has the form

Htot
P [X, P ] = −1

2

∫
dpσ

(
iP

∂̃X

)T (
g−1 −g−1C

−CT g−1 g̃ + CT g−1C

)(
iP

∂̃X

)
. (3.10)

The expression g̃ + CT g−1C in the Hamiltonian and a similar expression g + Cg̃−1CT play

the role of “open membrane metrics” and first appeared in the work of Duff and Lu [68]

already in 1990. Hamilton densities for membranes have also been discussed around that
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time, see e.g. [67].2 The block matrix in the Hamiltonian can be viewed as positive definite

fibrewise metric G on T ∗M ⊕ ΛpTM defined on sections as

G(α + Q, β + R) =

(
α

Q

)T (
g−1 −g−1C

−CT g−1 g̃ + CT g−1C

)(
β

R

)
, (3.11)

for all α, β ∈ Ω1(M) and Q,R ∈ Xp(M). For p = 1 and g̃ = g, one gets exactly the

inverse of the generalized metric corresponding to a Riemannian metric g and a 2-form C.

Note that, analogously to the p = 1 case, G can be written as a product of block lower

triangular, diagonal and upper triangular matrices:

G =

(
1 0

−CT 1

)(
g−1 0

0 g̃

)(
1 −C

0 1

)
. (3.12)

Before we proceed with our discussion of the corresponding Nambu sigma models, let

us introduce another parametrization of the background fields g and C. In analogy with

the p = 1 case, we shall refer to g and C as to the closed background fields. Let A denote

the matrix in the action (3.9), that is,

A =

(
g C

−CT g̃

)
. (3.13)

This matrix is always invertible, explicitly:

A−1 =

(
(g + Cg̃−1CT )−1 −(g + Cg̃−1CT )−1Cg̃−1

g̃−1CT (g + Cg̃−1CT )−1 (g̃ + CT g−1C)−1

)
. (3.14)

Further, let us assume an arbitrary but fixed (p + 1)-vector Π ∈ Xp+1(M) and consider a

matrix B of the form

B =

(
G Φ

−ΦT G̃

)−1

+

(
0 Π

−ΠT 0

)

=

(
(G + ΦG̃−1ΦT )−1 −(G + ΦG̃ΦT )−1ΦG̃−1 + Π

G̃−1ΦT (G + ΦG̃−1ΦT )−1 − ΠT (G̃ + ΦT G−1Φ)−1

) (3.15)

such that the equality A−1 = B, i.e.,

(
g C

−CT g̃

)−1

=

(
G Φ

−ΦT G̃

)−1

+

(
0 Π

−ΠT 0

)
(3.16)

holds. This generalization was introduced and used in [1]. Again, in analogy with the case

p = 1, we will refer to G and Φ as to the open backgrounds. More explicitly, we have the

2We believe that the Hamiltonian (3.10) has been known, in this or a similar form, to experts for a long

time but we were not able to trace it in even older literature, cf. [69] for the string case. More recently,

the Hamiltonian as well as the open membrane metrics appeared, e.g., in [70]. We thank D. Berman for

bringing this paper to our attention.
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following set of open-closed relations:

g + Cg̃−1CT = G + ΦG̃−1ΦT , (3.17)

g̃ + CT g−1C = G̃ + ΦT G−1Φ, (3.18)

g−1C = G−1Φ − Π(G̃ + ΦT G−1Φ), (3.19)

ΦG̃−1 = Cg̃−1 + (g + Cg̃−1CT )Π. (3.20)

For fixed Π, given (g, g̃, C) there exist unique (G, G̃, Φ) such that the above relations are

fulfilled, and vice versa. The explicit expressions are most directly seen from the equality

A = B−1, again using the formula for the inverse of the block matrix B. In particular,

g−1 = (1 − ΦΠT )T G−1(1 − ΦΠT ) + ΠG̃ΠT , (3.21)

g̃−1 = (1 − ΦT Π)T G̃−1(1 − ΦT Π) + ΠT GΠ, (3.22)

and the explicit expression for C can be found straightforwardly. Obviously, the inverse

relations are obtained simply by interchanging g ↔ G, g̃ ↔ G̃, C ↔ Φ, and Π ↔ −Π. Using

these relations, we can write the action (3.9) equivalently in terms of the open backgrounds

G, Φ and the (so far auxiliary) (p + 1)-vector Π.

In terms of the corresponding Hamiltonian (3.10), the above open-closed relations give

just another factorization of the matrix G. This time we have

G =

(
1 Π

0 1

)(
1 0

−ΦT 1

)(
G−1 0

0 G̃

)(
1 −Φ

0 1

)(
1 0

ΠT 1

)
. (3.23)

In the sequel it will be convenient to distinguish the respective expressions of above in-

troduced matrices A and G in the closed and open variables. For the former we we shall use

Ac and Gc and for the latter we introduce Ao and Go, respectively. Hence the open-closed

relations can be expressed either way: A ≡ Ac = Ao ≡ B−1 or Gc = Go. Note, that the

latter form is just equivalent to the statement about the decomposability of a 2x2 block ma-

trix with the invertible upper left block as a product of lower triangular, diagonal, and upper

triangular block matrices, the triangular ones having unit matrices on the diagonal. Note

that for p = 1 and g̃ = g, the open-closed relations (see [5]) are usually written simply as

1

g + C
=

1

G + Φ
+ Π. (3.24)

To conclude this section, note that taking the determinant of the matrix Ac , we may prove

the useful identity:

det (g̃ + CT g−1C) =
det g̃

det g
det (g + Cg̃−1CT ). (3.25)

To show this, just note that Ac can be decomposed in two different ways, either

Ac =

(
1 0

−CT g−1 1

)(
g 0

0 (g̃ + CT g−1C)

)(
1 g−1C

0 1

)
,

or as

Ac =

(
1 Cg̃−1

0 1

)(
(g + Cg̃−1CT ) 0

0 g̃

)(
1 0

−g̃−1CT 1

)
.

Taking the determinant of both expressions and comparing them yields (3.25).
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4 Nambu sigma model

In analogy with the p = 1 case, we may ask whether there is a Nambu sigma model

classically equivalent to the action (3.9). To see this, introduce new auxiliary fields ηi and

η̃J , which transform according to their index structure under a change of coordinates on M .

Define an (n +
(
n
p

)
)-row vector Υ =

(
iηi

η̃J

)
. The corresponding (non-topological) Nambu

sigma model then has the form:

SNSM [X, η, η̃] = −
∫

dp+1σ

{
1

2
Υ†A−1Υ + Υ†Ψ

}
, (4.1)

where A can be either of Ao and Ac, supposing that the open-closed relations Ao = Ac

hold. Using the equations of motion for Υ, one gets back the Polyakov action (3.9). For

the detailed treatment of Nambu sigma models see [71].

Yet another parametrization of A−1 — using new background fields GN , G̃N , ΠN ,

which we refer to as Nambu background fields3 — can be introduced

A−1 =

(
G−1

N ΠN

−ΠT
N G̃−1

N

)
. (4.2)

We will denote as AN the matrix A expressed with help of Nambu background fields

GN , G̃N , ΠN . Using (3.14), one gets the correspondence between closed and Nambu sigma

background fields:

GN = g + Cg̃−1CT , (4.3)

G̃N = g̃ + CT g−1C, (4.4)

ΠN = −(g + Cg̃−1CT )−1Cg̃−1 = −g−1C(g̃ + CT g−1C)−1. (4.5)

Clearly, GN is a Riemannian metric on M and G̃N is a fibrewise positive definite metric

on ΛpTM . It is important to note that in general, for p > 1, ΠN : ΛpT ∗M → TM is not

necessarily induced by a (p + 1)-vector on M . This also means that it is not in general a

Nambu-Poisson tensor. However; for p = 1, it is easy to show that ΠN is a bivector.

Also note that even if g̃ is a skew-symmetrized tensor product of g’s (3.5), G̃N is not

in general the skew-symmetrized tensor product of GN ’s.

The converse relations are:

g = (G−1
N + ΠN G̃NΠT

N )−1, (4.6)

g̃ = (G̃−1
N + ΠT

NGNΠN )−1, (4.7)

C = −(G−1
N + ΠN G̃NΠT

N )−1ΠN G̃N = −GNΠN (G̃−1
N + ΠT

NGNΠN )−1. (4.8)

Again, it is instructive to pass to the corresponding Hamiltonians. First, find the

canonical Hamiltonian to (4.1), that is

Hc
NSM [X, P, η̃] =

∫
dpσPi∂0X

i − L[X, P, η̃].

3Here, instead of fixing Π and finding open variables in terms of closed ones, we fix Φ to be zero and

find, again using the open-closed relations, unique GN , G̃N , ΠN as functions of g, g̃ and C, or vice versa.
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Second, use the equations of motion to get rid of η̃. In analogy with the p = 1 case, one

expects that resulting Hamiltonian HNSM coincides with (3.10), that is

HNSM [X, P ] = Htot
P [X, P ].

Indeed, we get

HNSM [X, P ] = −1

2

∫
dpσ

(
iP

∂̃X

)T (
G−1

N + ΠN G̃NΠT
N ΠN G̃N

G̃NΠT
N G̃N

)(
iP

∂̃X

)
. (4.9)

If one plugs (4.3)–(4.4) to (4.9), one obtains exactly the Hamiltonian (3.10). The matrix

G can be thus written as

G =

(
1 ΠN

0 1

)(
G−1

N 0

0 G̃N

)(
1 0

ΠT
N 1

)
(4.10)

when using the Nambu background fields, in which case we shall introduce the notation

GN for it. This shows that to any g, g̃, C one can uniquely find GN , G̃N , ΠN and vice versa,

since they both come from the respective unique decompositions of the matrix G.

Note that for p = 1 and g̃ = g, relations (4.3)–(4.5) are usually written simply as

1

g + C
=

1

GN
+ ΠN . (4.11)

We will refer to the Poisson sigma model, when expressed — using Π — in open

variables (G, G̃, Φ) as to augmented Poisson sigma model.

5 Geometry of the open-closed brane relations

For p = 1, the open-closed relations (3.24) can naturally be explained using the language

of generalized geometry. We have developed this point of view in [66]. One expects that

similar observations apply also for p > 1 case. In the previous section we have already men-

tioned the possibility to define the generalized metric on the vector bundle TM ⊕ ΛpT ∗M
by the inverse of the matrix (3.12). Here we discuss an another approach to a generalization

of the generalized geometry starting from equation (3.16). Denote W = TM ⊕ ΛpTM .

The main goal of this section is to show that we can without any additional labor

adapt the whole formalism of [66] to the vector bundle W ⊕ W ∗.
Define the maps G, B : W → W ∗ using block matrices as

G
(

V

P

)
=

(
g 0

0 g̃

)(
V

P

)
, B

(
V

P

)
=

(
0 C

−CT 0

)(
V

P

)
, (5.1)

for all V + P ∈ Γ(W ). Next, define the map Θ : W ∗ → W as

Θ

(
α

Σ

)
=

(
0 Π

−ΠT 0

)(
α

Σ

)
, (5.2)
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for all α + Σ ∈ Γ(W ∗). Then define H, Ξ : W → W ∗ as in (5.1) using the fields G, G̃, Φ

instead of g, g̃, C. The open-closed relations (3.16) can be then written as simply as

1

G + B =
1

H + Ξ
+ Θ. (5.3)

We see that they have exactly the same form as (3.24) for p = 1. The purpose of this

section is to obtain these relations from the geometry of the vector bundle W ⊕ W ∗.
We define an inner product 〈·, ·〉 : Γ(W ⊕ W ∗) × Γ(W ⊕ W ∗) → C∞(M) on W ⊕ W ∗

to be the natural pairing between W and W ∗, that is:

〈V + P + α + Σ, W + Q + β + Ψ〉 = β(V ) + α(W ) + Ψ(P) + Σ(Q),

for all V, W ∈ X(M), α, β ∈ Ω1(M), P,Q ∈ Xp(M), and Σ, Ψ ∈ Ωp(M). Note that this

pairing has the signature (n +
(
n
p

)
, n +

(
n
p

)
).

Now, let T : W ⊕ W ∗ → W ⊕ W ∗ be a vector bundle endomorphism squaring to

identity, that is, T 2 = 1. We say that T is a generalized metric on W ⊕W ∗, if the fibrewise

bilinear form

(E1, E2)T ≡ 〈E1, T (E2)〉,

defined for all E1, E2 ∈ Γ(W ⊕ W ∗), is a positive definite fibrewise metric on W ⊕ W ∗.
It follows from definition that T is orthogonal and symmetric with respect to the inner

product 〈·, ·〉. Moreover, it defines two eigenbundles V± ⊂ W ⊕ W ∗, corresponding to

eigenvalues ±1 of T . It follows immediately from the properties of T , that they are both

of rank n +
(
n
p

)
, orthogonal to each other, and thus

W ⊕ W ∗ = V+ ⊕ V−.

Moreover, V+ and V− form the positive definite and negative definite subbundles of 〈·, ·〉,
respectively. From the positive definiteness of V+ it follows that V+ has zero intersection

both with W and W ∗, and is thus a graph of a unique vector bundle isomorphism A :

W → W ∗. The map A can be written as a sum of a symmetric and a skew-symmetric part

with respect to 〈·, ·〉: A = G + B. From the positive definiteness of V+, it follows that G is

a positive definite fibrewise metric on W . From the orthogonality of V+ and V− we finally

obtain that:

V± = {(V + P) + (±G + B)(V + P) |V + P ∈ W}.

The map T , or equivalently the fibrewise metric (·, ·)T can be reconstructed using the data

G and B to get

(V + P + α + Σ, W + Q + β + Ψ)T =

(
V + P

α + Σ

)T (
G − BG−1B BG−1

−G−1B G−1

)(
W + Q

β + Ψ

)
.

Note that the above block matrix can be decomposed as a product

(
G − BG−1B BG−1

−G−1B G−1

)
=

(
1 B
0 1

)(
G 0

0 G−1

)(
1 0

−B 1

)
.
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The maps G, B can be parametrized as

G
(

V

Q

)
=

(
g D

DT g̃

)(
V

Q

)
,

B
(

V

Q

)
=

(
B C

−CT B̃

)(
V

Q

)
,

where g is a symmetric covariant 2-tensor on M , C, D : ΛpTM → T ∗M are vector bundle

morphisms, B ∈ Ω2(M), and g̃ and B̃ are symmetric and skew-symmetric fibrewise bilinear

forms on ΛpTM , respectively. The fields g, g̃, D are not arbitrary, since G has to be a

positive definite fibrewise metric on W . One immediately gets that g, g̃ have to be positive

definite. The conditions imposed on D can be seen from the equalities
(

g D

DT g̃

)
=

(
1 0

DT g−1 1

)(
g 0

0 g̃ − DT g−1D

)(
1 g−1D

0 1

)

=

(
1 Dg̃−1

0 1

)(
g − Dg̃−1DT 0

0 g̃

)(
1 0

g̃−1DT 1

)
.

We see that there are two equivalent conditions on D: the fibrewise bilinear form g̃ −
DT g−1D, or 2-tensor g −Dg̃−1DT have to be positive definite. Inspecting the action (3.9),

we see that only the case when B = B̃ = D = 0 is relevant for our purpose.

Now, let us turn our attention to the explanation of the open-closed relations. For

this, consider the vector bundle automorphism O : W ⊕ W ∗ → W ⊕ W ∗, orthogonal with

respect to the inner product 〈·, ·〉, that is,

〈O(E1), O(E2)〉 = 〈E1, E2〉,

for all E1, E2 ∈ Γ(W ⊕ W ∗). Given a generalized metric T , we can define a new map

T ′ = O−1T O. It can be easily checked that T ′ is again a generalized metric. Obviously,

the respective eigenbundles V+ are related using O, namely:

V T ′
+ = O−1(V T

+ ). (5.4)

We have also proved that every generalized metric T corresponds to two unique fields G
and B. This means that to given G and B, and an orthogonal vector bundle isomorphism

O, there exists a unique pair H, Ξ corresponding to T ′ = O−1T O. We will show that

open-closed relations are a special case of this correspondence. Also, note that (·, ·)T and

(·, ·)T ′ are related as

(·, ·)T ′ = (O(·), O(·))T . (5.5)

Now, consider an arbitrary skew-symmetric morphism Θ : W ∗ → W , that is

〈α + Σ, Θ(β + Ψ)〉 = −〈Θ(α + Σ), β + Ψ〉,

for all α, β ∈ Ω1(M), and Σ, Ψ ∈ Ωp(M). It can easily be seen that the vector bundle

isomorphism eΘ : W ⊕ W ∗ → W ⊕ W ∗, defined as

eΘ

(
V + Q

α + Σ

)
=

(
1 Θ

0 1

)(
V + Q

α + Σ

)
,
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for all V + Q + α + Σ ∈ Γ(W ⊕ W ∗), is orthogonal with respect to the inner product 〈·, ·〉.
Its inverse is simply e−Θ. Let T be the generalized metric corresponding to G + B. Note

that V T
+ can be expressed as

V T
+ = {(G + B)−1(α + Σ) + (α + Σ) | (α + Σ) ∈ W ∗}.

Using the relation (5.4), we obtain that

V T ′
+ = e−ΘV T

+ = {
(
(G + B)−1 − Θ

)
(α + Σ) + (α + Σ) | (α + Σ) ∈ W ∗}.

We see that the vector bundle morphism H + Ξ corresponding to T ′ satisfies

(H + Ξ)−1 = (G + B)−1 − Θ.

But this is precisely the relation (5.3). We also know how to handle this relation on the

level of the positive definite fibrewise metrics (·, ·)τ and (·, ·)τ ′ . From (5.5) we get the

relation (
H − ΞH−1Ξ BH−1

−H−1Ξ H−1

)
=

(
1 0

−Θ 1

)(
G − BG−1B BG−1

−G−1B G−1

)(
1 Θ

0 1

)
.

Using the decomposition of the matrices, we can write this also as

(
1 Ξ

0 1

)(
H 0

0 H−1

)(
1 0

−Ξ 0

)
=

(
1 0

−Θ 1

)(
1 B

0 1

)(
G 0

0 G−1

)(
1 0

−B 1

)(
1 Θ

0 1

)
.

Comparing both expressions, we get the explicit form of open-closed relations:

H − ΞH−1Ξ = G − BG−1B, (5.6)

ΞH−1 = (G − BG−1B)Θ + BG−1, (5.7)

H−1 = (1 + ΘB)G−1(1 − BΘ) − ΘGΘ. (5.8)

We have proved that for given G, B and any Θ, H and Ξ can be found uniquely. Inverse

relations can be obtained by interchanging G ↔ H, B ↔ Ξ and Θ ↔ −Θ. Note that,

actually, the last equation follows from the first two. Now let us turn our attention to the

case of G + B in the form (5.1). One has

G − BG−1B =

(
g + Cg̃−1CT 0

0 g̃ + CT g−1C

)
,

BG−1 =

(
0 Cg̃−1

−CT g−1 0

)
, G−1 =

(
g−1 0

0 g̃−1

)
.

Parametrize Θ as

Θ =

(
π Π

−ΠT π̃

)
,
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where π ∈ X2(M), Π : ΛpT ∗M → TM , and π̃ is skew-symmetric fibrewise bilinear form on

ΛpT ∗M . Right-hand side of (5.7) is then

(
g + Cg̃−1CT 0

0 g̃ + CT g−1C

)(
π Π

−ΠT π̃

)
+

(
0 Cg̃−1

−CT g−1 0

)
=

=

(
(g + Cg̃−1CT )π (g + Cg̃−1CT )Π + Cg̃−1

−(g̃ + CT g−1C)ΠT − CT g−1 (g̃ + CT g−1C)π̃

)
.

We see that to obtain a generalized metric where H is block diagonal, and Ξ is block

off-diagonal, we have to choose π = π̃ = 0. This means that we choose Θ to be of the

form (5.2). Defining

H =

(
G 0

0 G̃

)
, Ξ =

(
0 Φ

−ΦT 0

)
,

it is now straightforward to see that the set of equations (5.6)–(5.8) gives exactly the open-

closed relations (3.17)–(3.20). The relations between the open membrane variables and

Nambu fields GN , G̃N , ΠN can be explained in a similar fashion. Indeed, note that the

map G + B is invertible, and its inverse, the vector bundle morphism from W ∗ to W , can

be split into symmetric and skew-symmetric part:

(G + B)−1 = H−1
N + ΘN , (5.9)

where HN is a fibrewise positive definite metric on W , and ΘN is a skew-symmetric fibrewise

bilinear form on W ∗. Parametrizing them as

HN =

(
GN 0

0 G̃N

)
, ΘN =

(
0 ΠN

−ΠT
N 0

)
,

and expanding (5.9), we obtain exactly the set of equations (4.3)–(4.5).

6 Gauge field F as transformation of the fibrewise metric

In this section, we would like to develop the equalities required in the discussion of DBI

actions. In the previous sections we have shown how the closed and open membrane actions

are related using the generalized geometry point of view. One expects that it is also true

for their versions taking into account the fluctuations. The following paragraphs show that

it is true “up to an isomorphism”, fluctuated backgrounds cannot be related simply by

open-closed relations in the form (3.17)–(3.20).

We also show that corresponding open backgrounds are essentially uniquely fixed, there

is no ambiguity at all. For p = 1, we have already used this observation in [66].

The idea is the following: suppose that we would like to add a fluctuation F to the

(p+1)-form C. At this point we consider F to be defined globally on the entire manifold M ,

although everything works also in the case when F is defined only on a some submanifold

of M .4

4Later, this submanifold will correspond to a p′-brane, p′ ≥ p, where p-branes can end.
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Going from C to C + F corresponds to replacing Gc in the Hamiltonian (3.10) with

GF
c , defined as

GF
c =

(
1 0

−F T 1

)
Gc

(
1 −F

0 1

)
≡
(

1 0

−(C + F )T 1

)(
g−1 0

0 g̃

)(
1 −(C + F )

0 1

)
. (6.1)

The matrix

(
1 −F

0 1

)
corresponds to an endomorphism of T ∗M ⊕ΛpTM , which we denote

as e−F . Note that unlike in the p = 1 case, e−F is not orthogonal with respect to the

canonical pairing (valued in Xp−1(M)) on T ∗M ⊕ ΛpTM , defined as:

〈α + Q, β + R〉 = iαR + iβQ,

for all α, β ∈ Ω1(M) and Q,R ∈ Xp(M). It can be shown that any orthogonal F has

to be identically 0. On the other hand, its transpose map, (e−F )T ≡ e−F , which is an

endomorphism of TM ⊕ΛpT ∗M , is orthogonal with respect to the canonical pairing (valued

in Ωp−1(M)) on TM ⊕ ΛpT ∗M iff F is a (p + 1)-form in M . This pairing is defined as

〈V + Σ, W + Ξ〉 = iV Σ + iW Ξ,

for all V, W ∈ X(M) and Σ, Ξ ∈ Ωp(M). In this notation, the transformation (6.1) can be

written as

GF
c = e−FGce

−F ≡ (e−F )TGce
−F . (6.2)

We know that G can be rewritten as Go in the open variables (G, G̃, Φ), corresponding to

augmented Nambu sigma model. If we define the automorphism eΠ of T ∗M ⊕ ΛpTM as

eΠ

(
α

Q

)
=

(
1 0

ΠT 1

)(
α

Q

)
,

we can express Go as

Go = eΠ

(
1 0

−ΦT 1

)(
G−1 0

0 G̃

)(
1 −Φ

0 1

)
eΠ, (6.3)

where eΠ = (eΠ)T . Dually to the previous discussion, eΠ is an orthogonal transformation

of T ∗M ⊕ ΛpTM ; although eΠ, for non-zero Π, is never orthogonal on TM ⊕ ΛpT ∗M .

Now, it is natural to ask whether to the gauged closed variables (g, g̃, C + F ) there

correspond some open variables and hence an augmented Nambu sigma model, described

by some Π′ and (G, G̃, Φ+F ′), where F ′ describes a fluctuation of the background Φ. More

precisely, we ask whether one can write GF
o in the form

GF
o

?
= eΠ′

(
1 0

−(Φ + F ′)T 1

)(
G−1 0

0 G̃

)(
1 −(Φ + F ′)
0 1

)
eΠ′

. (6.4)

Translated into the language of the corresponding automorphisms of T ∗M ⊕ ΛpTM , this

boils down to the question

eΠe−F ?
= e−F ′

eΠ′
, (6.5)
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for some Π′ and F ′. In general, this is not possible. Explicitly the equation (6.5) reads

(
1 −F

ΠT 1 − ΠT F

)
?
=

(
1 − F ′Π′ −F ′

Π′T 1

)
.

This implies ΠT F = 0, which, of course, in general is not satisfied. The decomposition

on the right-hand side therefore has to contain a block-diagonal term. Note that e−F ′
is

upper triangular, whereas eΠ′
is lower triangular. For a matrix to have a decomposition

into a product of a block upper triangular, diagonal and lower triangular matrix, it has to

have an invertible bottom right block, that is 1 − ΠT F . Hence, we assume that 1 − ΠT F

is an invertible
(
n
p

)
×
(
n
p

)
matrix. We are now looking for a solution of the equation

eΠe−F = e−F ′
(

M 0

0 N

)
eΠ′

, (6.6)

where M : T ∗M → T ∗M and N : ΛpTM → ΛpTM are (necessarily) invertible vector

bundle morphisms.

We can decompose eΠe−F as

(
1 −F (1 − ΠT F )−1

0 1

)(
1 + F (1 − ΠT F )−1ΠT 0

0 1 − ΠT F

)(
1 0

(1 − ΠT F )−1ΠT 1

)
. (6.7)

From this we see that F ′ = F (1 − ΠT F )−1, Π′ = Π(1 − F T Π)−1 and N = 1 − ΠT F . To

find an alternative description of F ′, Π′ and M , examine the inverse of the equation (6.6):

eF e−Π = e−Π′
(

M−1 0

0 N−1

)
eF ′

. (6.8)

The left hand side of this equation is

eF e−Π =

(
1 − FΠT F

−ΠT 1

)
,

which shows that 1 − ΠT F is invertible iff 1 − FΠT is invertible. The decomposition of

eF e−Π reads
(

1 0

−ΠT (1 − FΠT )−1 1

)(
1 − FΠT 0

0 1 + ΠT (1 − FΠT )−1F

)(
1 (1 − FΠT )−1F

0 1

)
. (6.9)

We thus get that F ′ = (1 − FΠT )−1F , Π′ = (1 − ΠF T )−1Π and M = (1 − FΠT )−1.

We can conclude that the fields F ′, Π′, and vector bundle morphisms M, N in the

decomposition (6.6) have one of the following equivalent forms:

F ′ = F (1 − ΠT F )−1 = (1 − FΠT )−1F, (6.10)

Π′ = Π(1 − F T Π)−1 = (1 − ΠF T )−1Π, (6.11)
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M = 1 + F (1 − ΠT F )−1ΠT = 1 + F ′ΠT = (1 − FΠT )−1, (6.12)

N = 1 − ΠT F =
(
1 + ΠT (1 − FΠT )−1F

)−1
= (1 + Π′T F )−1. (6.13)

Thus, we have found a factorization of GF
o in the form

GF
o = eΠ′

(
MT 0

0 NT

)
e−(Φ+F ′)

(
G−1 0

0 G̃

)
e−(Φ+F ′)

(
M 0

0 N

)
eΠ′

. (6.14)

Comparing this to GF
c , in particular comparing the respective bottom right blocks, we get

the important identity

g̃ + (C + F )T g−1(C + F ) = NT
(
G̃ + (Φ + F ′)T G−1(Φ + F ′)

)
N. (6.15)

Similarly, comparing the top left blocks of the inverses, one gets

g + (C + F )g̃−1(C + F )T = M−1
(
G + (Φ + F ′)G̃−1(Φ + F ′)T M−T . (6.16)

Equivalently, one can gauge the matrix Ac, i.e., set

AF
c =

(
g (C + F )

−(C + F )T g̃

)
. (6.17)

To express this matrix in open variables we introduce the following notation: Ḡ−1 :=

MT G−1M ,
¯̃
G = NT G̃N , Φ̄ := M−1ΦN and F̄ ′ := M−1F ′N . If we now put

AF
o =

(
Ḡ (Φ̄ + F̄ ′)

−(Φ̄ + F̄ ′)T ¯̃
G

)−1

+

(
0 Π′

−Π′T 0

)
, (6.18)

the (gauged) open-closed relations are equivalent to AF
c = AF

o . As in the previous sections,

using the matrices AF
c , AF

o , GF
c and GF

o , one can write down the corresponding Polyakov

or (augmented) Nambu sigma models, i.e.,

Stot,F
P [X] =

1

2

∫
dp+1σ{Ψ†AF

c Ψ} =
1

2

∫
dp+1σ{Ψ†AF

o Ψ}, (6.19)

SF
NSM [X, η, η′] = −

∫
dp+1σ{Υ†AF

c
−1

Υ+Υ†Ψ}=−
∫

dp+1σ{Υ†AF
c

−1
Υ+Υ†Ψ}, (6.20)

Htot,F
P [X, P ] = HF

NSM [X, P ] = −1

2

∫
dpσ

(
iP

∂̃X

)T

GF
c

(
iP

∂̃X

)

= −1

2

∫
dpσ

(
iP

∂̃X

)T

GF
o

(
iP

∂̃X

)
. (6.21)

7 Seiberg-Witten map

In the previous section, we have developed the correspondence between closed and open

fields, including their respective fluctuations. However, they are not related simply by
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open-closed relations. Instead, the discussion brings new vector bundle isomorphisms M

and N , defined by (6.12), (6.13), respectively, into the picture. The determinant of the

left-hand side of (6.16) seems to be a likely candidate to appear in the “commutative”

membrane DBI action, whereas the determinant on the right-hand side of (6.16) seems to

contain as a factor a likely candidate to appear in its “noncommutative” counterpart.

This observation suggests that we should look for a change of coordinates on the

manifold M , the Jacobian of which could cancel the det 2(N) factor coming under the

determinant from the right-hand side of (6.16). The resulting diffeomorphism will be called

a Seiberg-Witten map in analogy to the string p = 1 case. We use a direct generalization of

the semi-classical construction used first in [7]. The most intriguing part will be to define

carefully a substitute for a determinant of a Nambu-Poisson (p + 1)-vector.

In the following, let Π be a Nambu-Poisson (p+1)-vector (see appendix A) on M . We

can examine the F -gauged tensor Π′ = (1 − ΠF T )−1Π.5 We will now show that for p > 1

this tensor is always a Nambu-Poisson (p + 1)-vector, whereas for p = 1 it is a Poisson

bivector if F is closed.

First, for p > 1, one can see that

Π′ =

(
1 − 1

p + 1
〈Π, F 〉

)−1

Π, (7.1)

where 〈Π, F 〉 = ΠiJFiJ ≡ Tr(ΠF T ). For this, one has to prove that

Π = (1 − ΠF T )

(
1 − 1

p + 1
〈Π, F 〉

)−1

Π. (7.2)

This can easily be checked in coordinates (x1, . . . , xn) in which (A.7) holds, and hence, for

Π with components ΠiJ = ǫiJ . Now, using (7.1) and lemma A.2, we see that Π′ is again a

Nambu-Poisson tensor.

To include the p = 1 case: for p ≥ 1, and F closed, we can use the fact that

GΠ′ = e−F GΠ, where GΠ and GΠ′ are graphs of the maps Π♯ and Π′♯, respectively

(see lemma A.1). This is easily verified using (6.11). It can be seen that the Dorfman

bracket (A.1) satisfies [e−F (V + ξ), e−F (W + η)]D = e−F [V + ξ, W + η]D, whenever F is

closed. But this implies that GΠ′ is closed under the Dorfman bracket, which is according

to A.1 equivalent to the Nambu-Poisson fundamental identity. On the other hand, note

that for p > 1, F ′ is not necessarily a (p + 1)-form.

Next, see that the scalar function in front of Π in (7.1) is related to the determinant

of the vector bundle isomorphism 1−ΠF T . For p > 1, any Nambu-Poisson tensor and any

(p + 1)-form F , its holds

det (1 − ΠF T ) =

(
1 − 1

p + 1
〈Π, F 〉

)p+1

. (7.3)

To prove this identity, note that both sides are scalar functions. We may therefore use any

local coordinates on M . Again, use those in which (A.7) holds. The rest of the proof is

straightforward.

5We assume that 1 − ΠF T is invertible. In a more formal approach we also could treat Π′ as a formal

power series in Π.
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Further on, assume that F is closed, that is at least locally F = dA for a p-form A.

Define a 1-parametric family of tensors Π′
t := (1 − tΠF T )−1Π, cf. Footnote 5. This is

obviously chosen so that Π′
0 = Π and Π′

1 = Π′. Differentiation of Π′
t with respect to t gives:

∂tΠ
′
t = Π′

tF
T Π′

t. (7.4)

This equation can be rewritten as

∂tΠ
′
t = −L

A♯
t
Π′

t, (7.5)

where the time-dependent vector field A♯
t is defined as A♯

t = Π′♯
t(A). To see this, note

that Π′
t is, using similar arguments as above, a Nambu-Poisson tensor. Then recall the

property (A.3), and choose ξ = A and η = dyJ . Contracting the resulting vector field

equality with dyi gives exactly L
A♯

t
Π′

t = −Π′
tF

T Π′
t. Equation (7.5) states precisely that

the flow φt corresponding to A♯
t, together with condition Π′

0 = Π, maps Πt to Π, that is,

φ∗
t (Π

′
t) = Π. (7.6)

We have thus found the map ρA ≡ φ1, which gives ρ∗
A(Π′) = Π. This is the p ≥ 1 analogue

of the well known semiclassical Seiberg-Witten map. Obviously, it preserves the singular

foliation defined by Π. We emphasize the dependence of this map on the p-form A by an

explicit addition of the subscript A.

Denote J i
k = ∂X̂i

∂xk , with X̂i := ρ∗
A(xi) being covariant coordinates. We have

ρ∗
A(Π′j1,...jp+1) = J j1

i1
. . . J

jp+1

ip+1
Πi1...ip+1 . (7.7)

Further, denote by |J | the determinant of J i
k in some (arbitrarily) chosen local coordi-

nates (x1, . . . , xn) on M . One can choose, for instance, the special coordinates (x̃i, . . . x̃n)

on M in which (A.7) holds. We will use the notation |J̃ | for the determinant of the matrix

J̃ i
k = ∂x̃i(ρA(x))

∂x̃k . From now, for any function ϕ (e.g., a matrix component, determinant,

etc.), the symbol ϕ̂ will always denote the function defined as ϕ̂(x) ≡ ρ∗
A(ϕ)(x) = ϕ(ρA(x)).

Recall now the definition (A.8) of the density |Π(x)|.6 By definition of |J |, we then have

|J | = |J̃ | |Π̂(x)|
1

p+1

|Π(x)|
1

p+1

(7.8)

The Jacobian |J̃ | can easily be calculated using (7.1) and (7.7). Indeed, the equation (7.7)

can be, in (x̃) coordinates, rewritten as

(
1 − 1

p + 1
〈Π̂, F̂ 〉

)−1

ǫj1...jp+1 = ǫj1...jp+1 J̃1
i1 . . . J̃p+1

ip+1
ǫi1...ip+1 .

To justify this, note that Seiberg-Witten map acts nontrivially only in the directions of the

first (p+1)-coordinates. The Jacobi matrix J̃ of ρA in (x̃) coordinates is thus a block upper

6For p = 1, one can (around every regular point of the characteristic distribution) define |Π(x)| to be the

Jacobian of the transformation to the Darboux-Weinstein coordinates. This gives a good definition even if

Π is degenerate.

– 19 –



J
H
E
P
0
8
(
2
0
1
4
)
1
7
0

triangular with identity matrix in the bottom right block. Moreover, the determinant of

J̃ is then equal to the determinant of the top left block. We can divide both sides with

ǫj1...jp+1 . We thus remain with the equation

(
1 − 1

p + 1
〈Π̂, F̂ 〉

)−1

= J̃1
i1 . . . J̃p+1

ip+1
ǫi1...ip+1 = |J̃ |.

Putting this back into (7.8), we obtain the useful relation

|J |p+1 =

(
1 − 1

p + 1
〈Π̂, F̂ 〉

)−(p+1) |Π̂(x)|
|Π(x)| , (7.9)

or using (7.3)7

|J |p+1 = det (1 − Π̂F̂ T )
−1 |Π̂(x)|

|Π(x)| . (7.10)

Note that this expression does not depend on the choice of the Darboux coordinates in

which the densities |Π(x)| are calculated. We discuss this subtlety in the appendix A un-

der (A.9). We see that |Π(x)| itself transforms as in (A.10). Fortunately, the determinant of

the block M in (A.9) does not depend on the coordinates (x̃1, . . . x̃p+1). Since these are the

only coordinates changed by the Seiberg-Witten map, we get (det M)(x) = (det M)(ρA(x)).

In other words, these determinants cancel out in the fraction |Π̂(x)|/|Π(x)|, as expected.

The following observation is in order: the Nambu-Poisson tensor Πt does not depend

on the choice of the gauge p-potential A. As already mentioned, the Nambu-Poisson map

ρA does: an infinitesimal gauge transformation δA = dλ — with a (p − 1)-form gauge

transformation parameter λ — induces a change in the flow, which is generated by the

vector field X[λ,A] = ΠiJdΛJ∂i, where

Λ =
∞∑

k=0

(L
A♯

t
+ ∂t)

k(λ)

(k + 1)!

∣∣∣
t=0

, (7.11)

is the semiclassically noncommutative (p − 1)-form gauge parameter. This is the p-brane

analog of the exact Seiberg-Witten map for the gauge transformation parameter. It is

straightforwardly obtained by application of the BCH formula to ρ∗
A+dλ(ρ∗

A)−1. Finally, in

analogy with the p = 1 case, we define the (components of the) semiclassically noncommu-

tative field strength to be

F̂ ′
i1,...,ip+1

= ρ∗
AF ′

i1,...,ip+1
, (7.12)

i.e., the components of F ′ evaluated in the covariant coordinates. Infinitesimally, compo-

nents of F̂ transform as

δF̂ ′ = ΠiJdΛJ∂iF̂
′, (7.13)

which justifies the adjectives “semiclassically noncommutative”.

7For p = 1, one can derive this relation by calculating |J̃ | in Darboux-Weinstein coordinates directly

from (7.7) and the definition of Π′, and then use (7.8).
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8 Nambu gauge theory; equivalence of commutative and semiclassically

noncommutative DBI action

Here we consider a system of multiple open M2 branes ending on an M5 brane. We

would like to describe this system by an effective action that is exact, for slowly varying

fields, to all orders in the coupling constant. Since we focus only on the bosonic part

of this action, we do not need to restrict ourselves to the values p = 2 and p′ = 5 and

our construction is valid for arbitrary values of p and p′ such that p ≤ p′. Our goal

is thus the construction of an effective action for a p′-brane with open p-branes ending

on it while being submerged in a Cp+1-background. The construction is based on two

guiding principles: firstly, this effective action should have dual descriptions similar to the

commutative and non-commutative ones of the D-brane and open strings8 and secondly, it

should feature expressions that also appear in the p-brane action (6.19).

Denote the p′-brane submanifold as N . We shall now clarify the geometry underly-

ing the following discussion. Originally, g, g̃, C were assumed to be the closed membrane

backgrounds in the ambient background manifold M . Hereafter, we denote by the same

characters their pullbacks to the p′-brane N . This makes sense since all of them are co-

variant tensor fields on M . Little subtlety comes with the Nambu-Poisson tensor Π. We

have basically two options. First, we would like to restrict some Nambu-Poisson tensor in

M to the p′-brane. This in fact requires N to be a Nambu-Poisson submanifold of M . The

latter option is to choose the Nambu-Poisson tensor Π on N after we restrict the other

backgrounds to N . The open membrane variables G, G̃, Φ, calculated using the membrane

open-closed relations (3.17)–(3.20), are assumed to be calculated entirely on N , using the

pullbacks of closed variables. Finally, the field F is assumed to be a (p + 1)-form defined

and having components only in N . All the discussion related to Seiberg-Witten map in

the previous section is assumed to take place on the submanifold N .

The open-closed membrane relations (6.16) immediately imply

det[g + (C + F )g̃−1(C + F )T ] = det 2[1 − FΠT ] · det[G + (Φ + F ′)G̃−1(Φ + F ′)T ] , (8.1)

where F ′ = (I − FΠT )−1F . Obviously, in order get a sensible action we have to form

an integral density, which can be integrated over the world volume of the larger p′-brane.

And, in order to obtain a noncommutative action from the right hand side of (8.1), we

have to apply the Seiberg-Witten map ρ∗
A to it. It would be tempting to take the square

root of the identity (8.1) to construct the action. But, recall (7.10) and notice the factor

det −(p+1)[1−FΠT ] appearing in it upon the application of the Seiberg-Witten map. Hence,

not the square root but the 2(p + 1)-th root of (8.1) is the most natural choice to enter

the effective action that we look for. As we already said, the Lagrangian density must be

an integral density, and therefore we need to multiply that piece of the action by a proper

power of the determinant of the pullback of the target space metric. These considerations

8Actually, our exposition so far closely followed our previous work [71], where the role of generalized

geometry was emphasized.
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fix the action essentially uniquely and we postulate

Sp-DBI = −
∫

dp′+1x
1

gm
det

p
2(p+1) (g) · det

1
2(p+1)

[
g + (C + F )g̃−1(C + F )T

]
, (8.2)

where gm is a “closed membrane” coupling constant. The integration is over the p′-brane

and the fields g, g̃, and C in this expression are the pull-backs of the corresponding back-

ground target space fields to this p′-brane. Asking for

1

gm
det

p
2(p+1) g · det

1
2(p+1)

[
g + (C + F )g̃−1(C + F )T

]

=
1

Gm
det

p
2(p+1) (G) det

1
(p+1) [1 − ΠF T ] · det

1
2(p+1)

[
G + (Φ + F ′)G̃−1(Φ + F ′)T

]
, (8.3)

it follows from (8.1) that the closed and open coupling constants gm and Gm must be

related as

Gm = gm (det G/ det g)
p

2(p+1) . (8.4)

As desired, the action (8.2) is exactly equal to its “noncommutative” dual

Sp-NCDBI = −
∫

dp′+1x
1

Ĝm

|̂Π|
1

p+1

|Π|
1

p+1

det
p

2(p+1) Ĝ·det
1

2(p+1)
[
Ĝ+(Φ̂+F̂ ′) ̂̃G−1(Φ̂+F̂ ′)T

]
, (8.5)

where as before ̂ denotes objects evaluated at covariant coordinates9 and F̂ ′ is the Nambu

(NC) field strength (7.12). This follows from integrating of (8.3) followed by the change of

integration variables on its right hand side according to the Seiberg-Witten map.

The factor involving the quotient of |̂Π| and |Π| vanishes for constant |Π|, but it is

essential for the gauge invariance of (8.5) in all other cases.

Let us give two alternative, but equivalent, expressions for the action (8.2), which

might turn out to be useful when looking for supersymmetric generalizations. The first

one is obvious:

Sp-DBI = −
∫

dp′+1x
1

gm
det

1
2 (g) · det

1
2(p+1)

[
1 + g−1(C + F )g̃−1(C + F )T

]
. (8.6)

A very similar expression can be found using (3.25)

Sp-DBI = −
∫

dp′+1x
1

gm
det

1
2 (g) · det

1
2(p+1)

[
1 + g̃−1(C + F )T g−1(C + F )

]
. (8.7)

For the second one, let us note that det g̃ = det(
p′

p−1) g, in the case of factorizable g̃.

Hence, in this case:

Sp-DBI = −
∫

dp′+1x
1

gm
det

p−( p′
p−1)

2(p+1) g · det
1

2(p+1)

(
g (C + F )

−(C + F )T g̃

)
. (8.8)

9Let us emphasize that this is not a coordinate transformation of a tensor. We just evaluate the

component functions in different coordinates.
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Let us note that in the case of a D-brane, i.e., p = 1, we get indeed the DBI D-brane

action. In the other extreme case, p = p′, we get10

SM = −
∫

dp+1x
1

gm
det

1
2(p+1)

(
g (C + F )

−(C + F )T g̃

)
. (8.9)

Now we can compare our action, e.g, to the DBI part of the M5-brane action in

equation (2.9) of [38, 39]. Their action is, up to conventions,

S′ = −
∫

d6x
√

det g

√
1 +

1

3
trk − 1

6
trk2 +

1

18
(tr k)2 , (8.10)

where ki
j = (dA+C)ikl(dA+C)jkl is the modified field strength. (See also [72], for an early

proposal with a similar index structure.) The form of the polynomial in k in the action

has been determined by lengthy computation based on κ-symmetry and the requirement of

non-linear self-duality, the self-duality relations being consistently decoupled from the back-

ground. More precisely, in [38, 39], it is shown that consistency of the non-linear self-duality

is restrictive enough that demanding κ-symmetry gives its explicit form, which can be ob-

tained without a priori specifying the form of the polynomial in the action. At the same time

the projector specifying the κ-symmetry and the form of the polynomial are determined.

To our surprise, we found that this action S′ can be interpreted as a low-energy (second

order in k) approximation of our p-DBI action (8.2). Indeed,for p = 2 and p′ = 5 we have

dp′+1x = d6x, 1
2(p+1) = 1

6 and

det
1
6 (1 + k) =

√
1 +

1

3
trk − 1

6
trk2 +

1

18
(tr k)2 + . . . .

The fact that two very different approaches (one based on non-linear self-duality and κ-

symmetry, the other on commutative/non-commutative duality) give rise to the same action

in the low energy limit is very encouraging and seems to indicate that our proposal can

indeed be extended to a full supersymmetric action.

Finally, let us mention that noncommutative structures in the context of the M5 brane

have previously been discussed, for example, in [73] and [74]. However, the type of non-

commutativity discussed in these earlier papers is the well-known deformation of the com-

mutative point-wise multiplication along a (constant) Poisson tensor that already appeared

in the p = 1 string theory case. This is very different from the notion of noncommutativity

that we argue to be pertinent for p > 1 and in particular for the p = 2 case relevant for the

M5 brane: for p > 1, we do not deform the commutative product — our “noncommutativ-

ity” has rather to be understood in the Nambu-Poisson sense as explained in detail above,

cf. the remark at the end of the previous section.

9 Background independent gauge

For p = 1, assuming that the pullback of the background 2-form C to the p′-brane N

is non-degenerate and closed (that is symplectic), one can choose the bivector Π to be

10The notation SM will be justified later.
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the inverse of C (that is a Poisson bivector corresponding to the symplectic structure C).

Solving the open-closed relations then gives

G = −Cg−1C, Φ = −C. (9.1)

This is known as the background independent gauge [5]. Our aim is to generalize this

construction for p ≥ 1, even giving milder assumptions on C for p = 1.

Let us start on the level of linear algebra first. Assume that V is a finite-dimensional

vector space. Let g be an inner product on V , and C ∈ Λ2V ∗ a 2-form. Let P : V → V

denote a projector orthogonal with respect to g, such that

ker(C) = ker(P ),

where C is viewed as a map C : V → V ∗. Then there exists a unique bivector Π ∈ Λ2V ,

satisfying

ΠC = P , PΠ = Π. (9.2)

The reader can find the proof of this statement in proposition B.1 of appendix B.

Recall that open-closed relations for p = 1 have the form

1

g + C
=

1

G + Φ
+ Π. (9.3)

This equality can be rewritten as

G + Φ = (1 − (g + C)Π)−1(g + C). (9.4)

Using (9.2), one gets

G + Φ = P ′T gP ′ − Cg−1C − C,

where P ′ = 1−P . From this we can read of the symmetric and skew-symmetric part to get

G = P ′T gP ′ − Cg−1C , Φ = −C. (9.5)

We can view this as a generalization of (9.1), not assuming a non-degenerate C. See that

G is again a positive definite metric, and G + Φ is thus invertible. Note that we are now

on the level of a single vector space V , not discussing any global properties of Π yet.

We would like to generalize this procedure to p ≥ 1 case. Our goal is to find a suitable

choice for Π, such that Φ = −C. Assume that C : ΛpV → V ∗ is a linear map, g is an

inner product on V , and g̃ is an inner product on ΛpV . The key is to keep in mind the

open-closed relations (5.3). We see that by defining

G =

(
g 0

0 g̃

)
, B =

(
0 C

−CT 0

)
,

we get an inner product G on W ≡ V ⊕ΛpV , and a bilinear skew-symmetric form B ∈ Λ2W ∗.
The situation is thus analogous to the previous one, if we replace V by W , the metric

g by G, and the 2-form C by B. If we define P to be an orthogonal projector with respect
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to G with ker(P) = ker(B), we may again apply proposition B.1 to see that there exists a

unique Θ ∈ Λ2W , such that

ΘB = P , PΘ = Θ. (9.6)

Now we can solve the open-closed relations (5.3) for this choice of Θ, using the same

calculation as we did in order to obtain (9.5). One gets

H = P ′T GP ′ − BG−1B , Ξ = −B, (9.7)

where P ′ = 1 − P. Exploring what B and Ξ are, leads to Φ = −C, as intended. However,

we do not know whether H and Θ obtained by this procedure are of the suitable form,

that is whether H is block-diagonal and Θ block-off-diagonal. This can be easily proved

by examining the projector P. Clearly, one has

ker B = ker CT ⊕ ker C ⊆ V ⊕ ΛpV.

Therefore we have that Im(P) = ker B⊥ = (ker CT )⊥(g) ⊕ (ker C)⊥(g̃). This proves that in

a block form, we have

P =

(
P 0

0 P̃

)
,

where P : V → V is an orthogonal projector with respect to g, and P̃ : ΛpV → ΛpV is an

orthogonal projector with respect to g̃. This and the relation (9.7) imply that H is block-

diagonal. The second equality in (9.6) then proves that Θ is block-off-diagonal, that is

Θ =

(
0 Π

−ΠT 0

)
,

where Π : ΛpV ∗ → V . We can now simply extract all the relations from (9.6). The equality

ΘB = P gives (
0 Π

−ΠT 0

)(
0 C

−CT 0

)
=

(
P 0

0 P̃

)
,

which translates into

ΠCT = −P , ΠT C = −P̃ . (9.8)

Rewriting the equation BP = B, we get

(
0 C

−CT 0

)(
P 0

0 P̃

)
=

(
0 C

−CT 0

)
,

which translates into

CP̃ = C , CT P = CT . (9.9)

Also see that ker(P̃ ) = ker(C), and ker(P ) = ker(CT ). The equality PΘ = Θ gives

(
P 0

0 P̃

)(
0 Π

−ΠT 0

)
=

(
0 Π

−ΠT 0

)
,
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and thus

PΠ = Π , P̃ΠT = ΠT . (9.10)

Finally, we may examine (9.7) to find

G = P ′T gP ′ + Cg̃−1CT , G̃ = P̃ ′T g̃P̃ ′ + CT g−1C , Φ = −C. (9.11)

We have thus shown that, corresponding to the orthogonal projectors P and P̃ and the

linear map C : ΛpV → V ∗, there exists a unique linear map Π : ΛpV ∗ → V , such that (9.8)

and (9.10) hold. Plugging this Π into open-closed relations (5.3) gives (9.11).

To use this for our purposes, we have to impose conditions on C to ensure that Π is a

Nambu-Poisson tensor.

For p > 1, first observe that the linear map Π : ΛpV ∗ → V induced (at a chosen point

on M) by a Nambu-Poisson tensor has rank either 0 or p+1. Since Π always has the same

rank as C, we get the first assumption on the linear map C.

There will always arise problems with the smoothness of Π at points x ∈ N , where

C(x) = 0. If this set has measure zero, we can change the area of integration in DBI

action from N to an open submanifold N ′, where C(x) 6= 0. If not, we cannot go to the

background-independent gauge. Let us hereafter assume that C(x) 6= 0 for all x ∈ N , and

therefore that rank(C) = p + 1.

Now assume that the linear map C is induced by a (p + 1)-form C ∈ Λp+1V ∗. Note

that in this case, we always have the estimate rank(C) ≥ p + 1.

Let D ⊆ V denote the non-degenerate subspace of CT orthogonal (with respect to

g) to its kernel, that is D = ker(CT )⊥. Assumption on the rank of C thus means that

dim(D) = p + 1. From the skew-symmetry of C, we have that C ∈ Λp+1D∗. It is thus a

top-level form on D. Choose now an orthonormal basis (e1, . . . , ep+1) of D. We see that

C = λ · e1 ∧ . . . ∧ ep+1, (9.12)

where λ 6= 0. Now, choosing an arbitrary complementary basis (f1, . . . , fp′−p) of ker(CT ) ≡
D⊥, one can find counterexamples to the assumption that, for a general g̃, the map Π is a

(p+1)-vector (although it has a correct rank). We thus have to add the second assumption:

g̃ has to be of the special skew-symmetrized tensor product form (3.5).

In this case we find that ΛpD is spanned by orthonormal basis of the form e1 ∧ . . . ∧
êr ∧ . . . ∧ ep+1. This allows us to write Π explicitly as

Π = − 1

λ
· e1 ∧ . . . ∧ ep+1. (9.13)

It is easy to show that such a Π indeed satisfies (9.8) and (9.10), and since such a Π is

unique, this is the one. We can thus conclude that for rank(C) = p + 1, and g̃ in the

form (3.5), Π is a (p + 1)-vector, more precisely Π ∈ Λp+1D.

We now turn our attention to global properties. If we assume that C(x) 6= 0 on the

p′-brane, we can define the subspace D at every point, defining a smooth subbundle (it is

an orthogonal complement to the kernel of constant rank vector bundle morphism CT ).

Around any point, we can choose a local orthonormal frame (e1, . . . , ep+1), forming a local
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basis for the sections of D. The expression (9.13) proves that Π is a smooth (p + 1)-vector

on the p′-brane, since 1
λ is a smooth function.

Finally, we have to decide under which conditions Π forms a Nambu-Poisson tensor.

In the view of lemma A.3, we see that the sufficient and necessary condition is that the

subbundle D defines an integrable distribution in N . This distribution has to be regular,

and thus, this condition is equivalent to the involutivity of D under vector field commutator:

[D, D] ⊆ D.

One can find a simple equivalent criterion for C to define an integrable distribution

D. In order to do so, assume now that (e1, . . . , ep+1, f1, . . . fp′−p) is a positively oriented

orthonormal local frame for N , such that (e1, . . . , ep+1) is a local orthonormal frame for D.

The metric volume form Ωg is then by definition

Ωg = e1 ∧ . . . ∧ ep+1 ∧ f1 ∧ . . . ∧ fp′−p.

Having a volume form, one can form the Hodge dual of C. Using (9.12) we get

∗C = λ · f1 ∧ . . . ∧ fp′−p.

We see that D = ker(∗C)T , (∗C)T : TN → Λp′−p−1T ∗N . But forms with integrable kernel

distribution have their own name, they are called integrable forms, see appendix B for the

definition and basic properties. We can conclude that Π is a Nambu-Poisson (p+1)-vector

if and only if ∗C is an integrable everywhere non-vanishing (p′ − p)-form on N . Note that

the Hodge star is defined with respect to the induced metric on N .

There exists a nice sufficient integrability condition: if C is a (p + 1)-form of rank

p + 1, such that δC = 0, then ∗C is integrable. By δ we denote the codifferential defined

using the Hodge duality. Note that δC = 0 are the non-homogeneous charge free Maxwell

equations for the field strength C. Also, note that in the whole discussion, we do not need

the integrability of the distribution D⊥. Since C is already a non-vanishing (p+1)-form of

rank p + 1, the sufficient condition for integrability of D⊥ is dC = 0. Interestingly, both D

and D⊥ are integrable regular distributions if C is a (p + 1)-form of rank p + 1, satisfying

the Maxwell equations dC = 0, δC = 0.

For p = 1, the discussion is very similar, except that the rank of C can be any nonzero

even integer not exceeding n. This adds another condition on dC. In particular, the

necessary and sufficient condition on C to define a Poisson tensor Π is the integrability of

the regular smooth distribution D, and a condition dC|Γ(D) = 0.

10 Non-commutative directions, double scaling limit

By the construction of the preceding section, we have the decompositions

TM = D ⊕ D⊥, ΛpTM = D̃ ⊕ D̃⊥,

where D̃ = ΛpD. We say that tangent vectors contained in D point in “non-commutative”

directions. Because D is integrable, around each point there are coordinates such that D

is spanned by coordinate tangent vectors corresponding to first p + 1 of these coordinates.

– 27 –



J
H
E
P
0
8
(
2
0
1
4
)
1
7
0

These local coordinates are accordingly called “non-commutative” coordinates. This ter-

minology comes from the fact that for p = 1, we have {xi, xj} = Πij . The right-hand

side is non-vanishing when both xi and xj correspond to D. This gives non-vanishing

quantum-mechanical commutator of these coordinates.

We can thus write all involved quantities in the block matrix form corresponding to

this decomposition. From the orthogonality of respective subspaces, the matrices of g and

g̃ will be block diagonal:

g =

(
g• 0

0 g◦

)
, g̃ =

(
g̃• 0

0 g̃◦

)
,

where g• is a positive definite fibrewise metric on D, g◦ is a positive definite fibrewise metric

on D⊥ and g̃• and g̃◦ are positive definite fibrewise metrics on D̃ and D̃⊥, respectively. In

the same fashion we obtain

C =

(
C• 0

0 0

)
, Π =

(
Π• 0

0 0

)
, F =

(
F• FI

FII F◦

)
.

Examine how the F -gauged tensor Π′ looks like in this block form. We have

1 − F T Π =

(
1 − F T

• Π• 0

−F T
I Π• 1

)
.

Hence

Π′ ≡ Π(1 − F T Π)−1 =

(
Π•(1 − F T

• Π•)−1 0

0 0

)
.

Denote Π′
• = Π•(1 − F T

• Π•)−1. We also have Π′
• = (1 − Π•F T

• )−1Π•. Also, note that in

this formalism P and P̃ are simply given as

P =

(
1 0

0 0

)
, P̃ =

(
1 0

0 0

)
.

Hence, the defining equations of Π can be written as

Π•CT
• = −1 , ΠT

• C• = −1. (10.1)

Having this in hand, recall that for p = 1, the background independent gauge could

be obtained in a completely different way. It was obtained by Seiberg and Witten in [5] as

a following limit of the relation (4.11). Reintroducing the Regge slope α′ into description,

the relation between closed variables g, C and Nambu fields GN , ΠN is explicitly

GN = g − (2πα′)2Cg−1CT ,
1

2πα′ ΠN = −(2πα′)g−1C
(
g − (2πα′)2Cg−1C

)−1
.

Now one would like to do the zero slope limit α′ → 0 in a way such that GN and ΠN

remain finite. This clearly requires the simultaneous scaling of the metric g. Scaling the g

as a whole will not work, since the resulting GN will not be a metric. The correct answer
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is given by scaling the non-commutative part g• and commutative part g◦ of the metric g

differently. The resulting maps GN and ΠN also split accordingly as

GN• = g• − (2πα′)2C•g−1
• CT

• , GN◦ = g◦,
1

2πα′ ΠN• = −(2πα′)g−1
• C•(g• − (2πα′)2C•g−1

• C•)−1.

Now, scaling g• ∝ ǫ, g◦ ∝ 1, α′ ∝ ǫ
1
2 as ǫ 7→ 0 gives in this limit

GN• = −C•g−1
• CT

• , GN◦ = g◦,

ΠN• = C−1
• .

Replacing ΠN by Π and GN by G is exactly the background independent gauge. This double

scaling limit was then used to determine which terms should be kept in the expansion of the

DBI action. We would like to find an analogue of this in our p > 1 case.11 We immediately

see that first naive answer would be wrong. One of the relations is

GN• = g• + C•g̃−1
• CT

• .

Note that g̃• is again a skew-symmetrized p-fold tensor product of g•. This suggests that

if g• ∝ ǫ, then g̃• ∝ ǫp. This would imply that C• ∝ ǫ
p
2 in order to keep GN• finite (we

have included ǫ into C). But the second relation is

G̃N• = g̃• + CT
• g−1

• C.

This shows that G̃N → 0 as ǫ → 0. This is clearly not very plausible. However, this can

still be fixed by using the remaining gauge fixing freedom of the Polyakov action (3.2) by

scaling also the ratio between g and g̃. The biggest issue comes with the fact that g̃◦ is

not a tensor product of g◦’s only. In fact, every component (g̃◦)IJ contains as many g•’s
as the number of “commutative” indices in I (or J) is. This means that every component

of g̃◦ should scale differently. We must thus abandon the idea of scaling just g, we have to

scale g̃ independently! The correct answer is given by the geometry of the vector bundle

W = TM ⊕ ΛpTM again. We immediately see that scaling G• ∝ ǫ, G◦ ∝ 1 and B ∝ ǫ
1
2

gives in limit ǫ → 0 the background independent gauge. This corresponds to

g• ∝ ǫ, g̃• ∝ ǫ, g◦ ∝ 1, g̃◦ ∝ 1, C• ∝ ǫ
1
2 . (10.2)

Let us note that in the case of an M5 brane a scaling treating directions differently was

described in [75] and [76]. It would be interesting to compare the scaling in these papers

with the one introduced here.

11 Matrix model

Now we will apply the previous generalization of the background independent gauge. We

will use the double scaling limit to cut off the power series expansion of the DBI action. It

11See [9] for a previous discussion of the double scaling limit in the context of the M2/M5 system that

came to different conclusions regarding the appropriate powers of ǫ.
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turns out that we find an action describing a natural p > 1 (semi-classical) analogue of a

matrix model with higher brackets and an interacting with the gauge field F . It will be of

order 2(p + 1) in the matrix variables X̂a, and at most quadratic in F . The term of order

2(p+1) in X̂a’s and constant in F gives a possible p > 1 analogue of the semiclassical pure

matrix model.

Assume that C satisfies all the conditions required for Π to be a Nambu-Poisson tensor

on N . From (8.6), we have that Lagrangian of the commutative p-DBI action has the form

Lp−DBI = − 1

gm
det

1
2 (g) · det

1
2(p+1) [1 + g−1(C + F )g̃−1(C + F )T ].

Note that the second determinant is the determinant of the vector bundle endomorphism

X : TM → TM , where X = 1+g−1(C +F )g̃−1(C +F )T . In the block form X : D⊕D⊥ →
D ⊕ D⊥, we have

X =

(
1+g−1

• (C•+F•)g̃−1
• (C•+F•)T +g−1

• FIg̃
−1
◦ F T

I g−1
• (C• + F•)g̃−1

• F T
II + g−1

• FIg̃
−1
◦ F T

◦
g−1
◦ FIIg̃

−1
• (C• + F•)T + g−1

◦ F◦g̃−1
◦ F T

I 1 + g−1
◦ FIIg̃

−1
• F T

II + g−1
◦ F◦g̃−1

◦ F T
◦

)
.

Here we have used the following notations for the blocks of F

F =

(
F• FI

FII F◦

)
.

This can be decomposed as a product

X =

(
g−1
• (C• + F•) 0

0 1

)
Y

(
g̃−1
• (C• + F•)T 0

0 1

)
,

where the vector bundle endomorphism Y : D̃ ⊕ D⊥ → D̃ ⊕ D⊥ is

Y =

(
1 + Π′T

• (g• + FIg̃
−1
◦ F T

I )Π′
•g̃• g̃−1

• (F T
II − g̃•Π′T

• FI‘g̃
−1
◦ F T

◦ )

g−1
◦ (FII − F◦g̃−1

◦ F T
I Π′

•g̃•) 1 + g−1
◦ FIIg̃

−1
• F T

II + g−1
◦ F◦g̃−1

◦ F T
◦

)
.

Writing Y in block form as

Y =

(
Y• YI

YII Y◦

)
,

note that Y• is an invertible matrix. This is true because it is a top left block of the

matrix Y coming from positive definite matrix g + (C + F )g̃−1(C + F ) by multiplying it

by invertible block-diagonal matrices. Hence, we can write

det (Y ) = det (Y•) det (Y◦ − YIY
−1
• YII). (11.1)

The second matrix has the form

Y◦ − YIY
−1
• YII = 1 + g−1

◦ FII(1 − Y −1
• )g̃−1

• F T
II + g−1

◦ F◦g̃
−1
0 F T

◦ + g−1
◦ FIIY

−1
• Π′T

• FIg̃
−1
◦ F T

◦
+ g−1

◦ F◦g̃−1
◦ F T

I Π′
•g̃•Y −1

• g̃−1
• F T

II − g−1
◦ F◦g̃−1

◦ F T
I Π′

•g̃•Y −1
• Π′T

• FIg̃
−1
◦ F T

◦ .
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At this point, we will employ the double scaling limit introduced above. Namely, in the

det
1

2(p+1) (Y ), we wish to keep only the terms scaling at most as ǫ1. Note that (Y• − 1) ∝ ǫ.

Also, Y −1
• = 1 − (Y• − 1) + o(ǫ2). Using this, we can write

Y◦−YIY
−1
• YII=1+g−1

◦
(
FIIΠ

′T
• g•Π′

•F
T
II+

(
FIIΠ

′T
• FI +F◦

)
g̃−1
◦
(
FIIΠ

′T
• FI +F◦

)T)
+o(ǫ2).

The whole term in parentheses after g−1
0 is of order ǫ1. Therefore, we have

det
1

2(p+1) (Y◦−YIY
−1
• YII)=1 +

1

2(p + 1)
tr(g−1

◦ FIIΠ
′T
• g•Π′

•F
T
II)

+
1

2(p+1)
tr
(
g−1
◦
(
FIIΠ

′T
• FI +F◦

)
g̃−1
◦
(
FIIΠ

′T
• FI +F◦

)T ))
+o(ǫ2).

For the first factor in (11.1), we have

det
1

2(p+1) (Y•) = 1 +
1

2(p + 1)
tr
(
Π′T

• (g• + FIg̃
−1
◦ F T

I )Π′
•g̃•
)

+ o(ǫ2).

Putting all together, we obtain

det
1

2(p+1) (Y )=1+
1

2(p+1)
tr
(
Π′T

• (g•+FIg̃
−1
◦ F T

I )Π′
•g̃•
)
+

1

2(p+1)
tr(g−1

◦ FIIΠ
′T
• g•Π′

•F
T
II)

+
1

2(p+1)
tr
(
g−1
◦
(
FIIΠ

′T
• FI +F◦

)
g̃−1
◦
(
FIIΠ

′T
• FI +F◦

)T)
+o(ǫ2). (11.2)

Now, comparing the definitions of scalar densities corresponding to Π and Π′, it is clear that

det(C• + F•) = ± det(1 − ΠF T ) · |Π(x)|−(p+1).

Here we assume that one chooses the basis of ΛpD induced by the basis of D. The sign ±
depends on the ordering of that basis. Next, see that det(g̃•) = det ( p

p−1)(g•) = det p(g•).
This shows that

Sp-DBI = ∓
∫

dp′+1x
1

gm

det
1

p+1 (1 − ΠF T )

|Π(x)|
1

p+1 det
1
2 (g•)

det
1
2 (g) det

1
2(p+1) (Y ).

Changing the coordinates according to Seiberg-Witten map, we get the noncommutative

DBI action in the form:

Sp-NCDBI = ∓
∫

dp′+1x
1

ĝm

det
1
2 (ĝ)

|Π(x)|
1

p+1 det
1
2 (ĝ•)

det
1

2(p+1) (Ŷ ).

In the last part of the discussion assume that the distribution D⊥ is also integrable,

so we can use the set of local coordinates (x1, . . . , xp+1, xp+2, . . . , xp′+1) on N , such that

( ∂
∂x1 , . . . ∂

∂xp+1 ) span D, and ( ∂
∂xp+2 , . . . , ∂

∂xp′+1 ) span D⊥. All quantities with indices in

D⊥ are now assumed to be in this coordinate basis. Under this assumptions, the integral

density in the action can be written as

det
1
2 (g) = det

1
2 (g•) · det

1
2 (g◦).
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Finally, to distinguish the noncommutative and commutative coordinates, we reserve

the letters (a, b, c) for labeling the coordinates (x1, . . . , xp+1), (i, j, k) for labeling the coor-

dinates (xp+2, . . . , xp′+1), (A, B, C) for p-indices containing only noncommutative indices

(thus p-indices labeling D̃) and (I, J, K) for p-indices containing at least one commutative

index (thus p-indices labeling D̃⊥). Also, note that from the definition of ρA, we have

Π̂
′aB = {X̂a, X̂b1 , . . . , X̂bp},

where {·, . . . , ·} is the Nambu-Poisson bracket corresponding to Π, X̂a = ρ∗
A(xa), and B =

(b1, . . . , bp). To simplify the expressions, we shall also use the shorthand notation {·, X̂A} ≡
{·, X̂a1 , . . . , X̂ap}. Finally, we also introduce usual index raising/lowering conventions, for

example, F̂ k
A =

∑p′+1
n=1 ĝknF̂nA = ĝklF̂lA, or F̂k

A = ̂̃gAB
F̂kB for multiindices. Note that

since both g and g̃ are block diagonal, no confusion concerning range of summation appears.

Implementing this notation, we can write

Sp-NCDBI = ∓
∫

dp′+1x
1

ĝm

det
1
2 (ĝ◦)

|Π(x)|
1

p+1

(
1 +

1

2(p + 1)
{X̂a, X̂A}{X̂a, X̂A}

+
1

2(p + 1)
{X̂a, X̂A}F̂a

I F̂bI{X̂b, X̂A} +
1

2(p + 1)
{X̂a, X̂A}F̂kAF̂ k

B{X̂a, X̂
B}

+
1

2(p + 1)
(F̂kA{X̂a, X̂A}F̂aJ + F̂kJ)(F̂ k

B{X̂b, X̂B}F̂b
J + F̂ kJ)

)
+ · · · .

Note that the first non-cosmological term {X̂a, X̂A}{X̂a, X̂A} can be rewritten as

{X̂a, X̂A}{X̂a, X̂A} =
1

p!
ĝa1b1 . . . ĝap+1bp+1{X̂a1 , . . . , X̂ap+1}{X̂b1 , . . . , X̂bp+1}, (11.3)

where summation now goes over all (not strictly ordered) (p+1)-indices (a1, . . . , ap+1) and

(b1, . . . , bp+1). Here, we have used the fact that g̃• is a skew-symmetrized p-fold tensor

product of g•. We can even drop the restriction of the summations to noncommutative

directions, since the Nambu-Poisson bracket takes care of this automatically. This term

corresponds to a p > 1 generalization of the matrix model. Note that using the double

scaling limit for the expansion of (11.2) leads to a series in positive integer powers of ǫ,

automatically truncating higher-order powers in F . This gives an independent justification

of the independent scaling of g̃• and g̃◦ in (10.2).

12 Conclusions and discussion

In this paper we have extended, clarified and further developed the construction outlined

in [1]. We discussed in detail the bosonic part of an all-order effective action for a system

of multiple p-branes ending on a p′-brane. The leading principle was to have an action

allowing, similarly to the DBI action, for two mutually equivalent descriptions: a com-

mutative and a “noncommutative” one. As explained in the main body of the paper, the

noncommutativity means a semicalssical one, in which the Poisson tensor is replaced by a
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Nambu-Poisson one.12 It turned out that this requirement determines the bosonic part of

the effective action essentially uniquely.

In our derivation of the action, generalized geometry played an essential role. All key

ingredients, have their origin in the generalized geometry. It already has been appreciated

in the literature that the presence of a (p+1)-form leads to a generalized tangent space

TM ⊕ΛpT ∗M . Although, this observation perfectly applies also in our situation, we found

it very useful to double it, i.e., to consider the the extended/doubled generalized tangent

space W ⊕ W ∗, with W = TM ⊕ ΛpTM .

Let us comment on this more: in the string case, p=1, the sum of the background

fields g+B plays a prominent role. It enters naturally the Polyakov action, the DBI action,

Buscher’s rules, etc. In generalized geometry, one way define a generalized metric, is to give

a subbundle of the generalized tangent bundle TM ⊕ T ∗M of maximal rank, on which the

natural (+) pairing on generalized tangent bundle is positive definite. Such a subbundle can

be characterized as a graph of the map from TM → T ∗M defined by the sum g+B. There-

fore, it is quite natural to look for a formalism which would allow for a natural “sum” of a

metric and a higher rank (p+1)-form. What this sum should be is indicated by the Polyakov

type membrane action in its matrix form (3.9). From here it is just a small step to recognize

the doubled generalized tangent bundle as a right framework for a meaningful interpreta-

tion of the “sum” of the metric and a higher rank (p+1)-form. This observation is further

supported by the form of the open closed relations in the doubled form (3.16) and the ma-

trix form of the Nambu sigma model (4.1). Finally, the corresponding Hamiltonian (3.10),

cf. also (4.9), tells us what the relation to the generalized metric on TM ⊕ ΛpT ∗M is.

Hence, at the end, we do not really use the full doubled generalized tangent bundle, we

use it only for a nice embedding of the generalized tangent bundle TM ⊕ ΛpT ∗M .13

Nevertheless, we found the doubled generalized geometry quite intriguing. Extending

on the above comments: since on the doubled generalized tangent bundle there is a natural

function-valued non-degenerated pairing 〈., .〉, we can mimic the standard constructions

with TM ⊕ T ∗M . For instance, one can speak of the orthogonal group, define the gener-

alized metric using an involutive endomorphism T on W ⊕ W ∗, such that 〈T , .〉 defines a

fibre-wise metric on the doubled generalized tangent bundle, etc.

However, we are still facing a problem; we lack a canonical Courant algebroid structure.

The reason lies basically in very limited choices for the anchor map ρ : W ⊕ W ∗ → TM ,

which leave us only with a projection onto the tangent bundle TM . The map ρ is therefore

“too simple” to control the symmetric part of any bracket. However, we can still consider

Leibniz algebroid structures on W ⊕ W ∗. There are several possibilities to do this. To

choose the one suitable for p-brane backgrounds, one can consider the action of the map eB :

W ⊕W ∗ → W ⊕W ∗, where B is a general section of Λ2W , viewed as a map from W to W ∗,
and extended to End(W⊕W ∗) by zeros. The map eB is thus an analogue of the usual B-field

12Let us notice, that in our approach to noncommutativity of fivebrane, the ordinary point-wise product

remains undeformed.
13The doubled generalized geometry formalism can also be introduced for the p=1 string case and allows

an elegant formulation of the theory. For any p, the appearance of TM and ΛpTM (and similarly of T ∗M

and ΛpT ∗M) is related to the split into one temporal and p spatial world-sheet directions.
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transform of generalized geometry TM⊕T ∗M . It turns our that there is a Leibniz algebroid,

such that the condition for eB to be an isomorphism of the bracket forces B to take the block

off-diagonal form (5.1), with C ∈ Ωp+1
closed(M). This bracket coincides with the one defined

by Hagiwara in [24] to study Nambu-Dirac manifolds. Moreover, Nambu-Poisson manifolds

appear naturally as its Nambu-Dirac structures. Interestingly, its full group of orthogonal

automorphisms can be calculated, giving (for p > 1) a semi-direct product Diff(M) ⋉
(Ωp+1

closed ⋊ G), where G is the group of locally constant non-zero functions on M . Notably,

this coincides with the group of all automorphisms of higher Dorfman bracket, see e.g. [25].

Relating our approach, based on the generalized geometry on the vector bundle W ⊕
W ∗, with the usual generalized geometries in M -theory and supergravity [49–51, 70], we

notice the following. A choice of a generalized geometry is subject to the field content one

wants to describe. In principle, one can double each of of them and use the advantages of

having a natural function-valued pairing as we did for our case of interest in this paper.

However, the field content coming with such a doubled generalized geometry is much bigger

then we started with and we have to reduce it accordingly.

Finally, let us again notice the striking similarity with the result of [38, 39] — based on

a very different approach — and discussed after equation (8.10). We find worth to pursue

a deeper understanding of this similarity in the future.
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Watamura for helpful discussions. B.J. and P.S. appreciate the hospitality of the Center for

Theoretical Sciences, Taipei, Taiwan, R.O.C. B.J. thanks CERN for hospitality. We grate-

fully acknowledge financial support by the grant GAČR P201/12/G028 (B.J.), by the Grant
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A Nambu-Poisson structures

Here we recall some fundamental properties of Nambu-Poisson structures [21] as needed in

this paper. For details see, e.g., [24] or [25].

For any (p + 1)-vector field A on M we define the induced map A♯ : Ωp(M) → X(M)

as A♯(ξ) = (−1)piξA = ξKAiK∂i.

Also, for an alternative formulation of the fundamental identity, we need to recall the

Dorfman bracket, i.e., the R-bilinear bracket on the sections of TM ⊕ ΛpT ∗M , defined as

[V + ξ, W + η]D = [V, W ] + LV η − iW dξ, (A.1)

for all V, W ∈ X(M) and ξ, η ∈ Ωp(M).
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Let Π be a (p + 1)-vector field on M . We call Π a Nambu-Poisson structure if

LΠ♯(df1∧...∧dfp)(Π) = 0 , (A.2)

for all f1, . . . , fp ∈ C∞(M).

Lemma A.1. For an arbitrary p ≥ 1, the condition (A.2) can be stated in the following

equivalent ways:

1. The graph GΠ = {Π♯(ξ)+ξ | ξ ∈ Ωp(M)} is closed under the Dorfman bracket (A.1);

2. for any ξ, η ∈ Ωp(M) it holds that

(LΠ♯(ξ)(Π))♯(η) = −Π♯(iΠ♯(η)(dξ)) ; (A.3)

3. let [·, ·]π : Ωp(M) × Ωp(M) → Ωp(M) be defined as

[ξ, η]π := LΠ♯(ξ)(η) − iΠ♯(η)(dξ) , (A.4)

for all ξ, η ∈ Ωp(M). Then it holds that

[Π♯(ξ), Π♯(η)] = Π♯([ξ, η]π) , (A.5)

for all ξ, η ∈ Ωp(M);

4. for any ξ ∈ Ωp(M) it holds that

LΠ♯(ξ)(Π) = −
(

idξ(Π)Π − 1

p + 1
idξ(Π ∧ Π)

)
. (A.6)

For p > 1, around any point x ∈ M , where Π(x) 6= 0, there exist local coordinates

(x1, . . . , xn), such that

Π(x) =
∂

∂x1
∧ · · · ∧ ∂

∂xp+1
. (A.7)

In this coordinates ΠiJ = δiJ
1...p+1 = ǫiJ .

For p > 1, a Nambu-Poisson tensor can be multiplied by any smooth function, and

one gets again a Nambu-Poisson tensor:

Lemma A.2. Let Π be a Nambu-Poisson tensor, and p > 1. Let f ∈ C∞(M) be a smooth

function on M . Then fΠ is again a Nambu-Poisson tensor. For p = 1 this is not true in

general.

This lemma has a simple useful consequence

Lemma A.3. Let n = p + 1. Then any Π ∈ Γ(Λp+1TM) is a Nambu-Poisson tensor.

There is an interesting little technical detail. One of the equivalent reformulations

of fundamental identity was the closedness of the graph GΠ under the Dorfman bracket.

But see that the both, the definition of GΠ and the involutivity condition have a good

meaning also for any vector bundle morphism Π♯ : ΛpT ∗M → TM . We may ask whether

there exists Π♯, which is not induced by (p + 1)-vector on M . The answer is given by the

following lemma:
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Lemma A.4. Let Π♯ : ΛpT ∗M → TM be a vector bundle morphism, such that its graph

GΠ = {Π♯(ξ) + ξ | ξ ∈ Ωp(M)},

is closed under higher Dorfman bracket (A.1). Let Π be a contravariant (p + 1)-tensor

defined by

Π(α, ξ) = 〈α, Π♯(ξ)〉,

for all α ∈ Ω1(M) and ξ ∈ Ωp(M). Then Π is a (p+1)-vector, and hence a Nambu-Poisson

tensor.

Proof. The closedness of GΠ under the Dorfman bracket can immediately be rewritten

as (A.3), where Π is now not necessarily a (p + 1)-vector. This relation is tensorial in η, so

choose η = dyJ , and look at the i-th component of the identity. The left-hand side is

(LΠ♯(ξ)Π)iJ = ξK

(
ΠmKΠiJ

,m − ΠiK
,mΠmJ −

p∑

r=1

ΠjrK
,mΠij1...m...jp

)

− ξK,m

(
ΠiKΠmJ +

p∑

r=1

ΠjrKΠij1...m...jp

)
.

The right-hand side of (A.3) is

−Π♯(iΠ♯(dyJ )dξ)i = ΠiMΠlJ(dξ)lM = −ξK,m

(
ΠiMΠlJδmK

lM

)
.

The terms proportional to ξK form the differential part of the identity, whereas the terms

proportional to ξK,m form the algebraic part:

ΠiKΠmJ +

p∑

r=1

ΠjrKΠij1...m...jp = ΠiMΠlJδmK
lM .

We will use this algebraic identity to show that ΠkM = 0, whenever k ∈ M . This will

prove that Π is a (p + 1)-vector. To do this, choose m = i = k, and K = J = M in the

above identity. Assume that mq = k, where M = (m1 . . . mp). Then, the only non-trivial

term in the sum is the one for r = q. Right-hand side vanishes due to skew-symmetry of

the symbol δ. Hence, we obtain

2(ΠkM )2 = 0.

This proves that ΠkM = 0, and Π is thus a (p + 1)-vector.

A.1 Scalar density

Interestingly, the coordinates (x1, . . . xn), in which Π has the form (A.7), allow us to define

a well-behaved scalar density |Π(x)| of weight −(p + 1). Let (y1, . . . , yn) be arbitrary local

coordinates. Define the function |Π(x)| as

|Π(x)| = det

(
∂yi

∂xj

)p+1

, (A.8)
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that is, the Jacobian of the coordinate transformation yi = yi(xk). This is indeed a scalar

density (with respect to a change y 7→ ỹ) of weight −(p + 1), as can easily be seen using

the chain rule.

For p = 1, let Πij be the matrix of Π in (y) coordinates. We can ask, whether

|Π(x)| = det Πij whenever Π is decomposable. The answer is clearly negative for n > 2,

where det Πij = 0. The case p = 1, n = 2 is a special case contained in the next question.

Let p ≥ 1 and n = p+1. Let ΠiJ be the matrix of the vector bundle map Π♯. For n = p+1,

this is a square n × n matrix. We can thus ask whether |Π(x)| = det ΠiJ . It is of course

modulo the sign, depending on the ordering of the basis of Ωp(M). Now, see that

Π(x) =
∂

∂x1
∧ · · · ∧ ∂

∂xp+1
= |Π(x)| 1

n
∂

∂y1
∧ · · · ∧ ∂

∂yp+1
.

This means that |Π(x)| 1
n = Π1...n(x). The determinant of ΠiJ is up to sign the n-th power

of Π1...n, and thus det ΠiJ = ±|Π(x)|.
Further, we have to be careful with the dependence of |Π(x)| on the choice of the

special local coordinates (x1, . . . , xn). Let (x′1, . . . , x′n) is another set of such coordinates,

that is

Π(x) =
∂

∂x1
∧ · · · ∧ ∂

∂xp+1
=

∂

∂x′1 ∧ · · · ∧ ∂

∂x′p+1
. (A.9)

Denote by J the Jacobi matrix of the transformation x̃i = x̃i(xk). We can split it as

J =

(
Jǫ K

L M

)
,

where the top-left block Jǫ is a (p + 1) × (p + 1) submatrix corresponding to the first p + 1

of both sets of coordinates. The condition in (A.9) forces det (Jǫ) = 1 and L = 0. We thus

get the important observation that

det J = det M,

and moreover det M = det M(xj>p+1). This implies that |Π(x)| transforms, with respect

to the change the special coordinates (x), as

|Π(x)| = det (M)p+1|Π(x)|′, (A.10)

where |Π(x)|′ is calculated with respect to (x′) coordinates on M .

B Background independent gauge

B.1 Pseudoinverse of a 2-form

Proposition B.1. Let V be a finite-dimensional vector space. Let g be an inner product

on V , and C ∈ Λ2V ∗ a 2-form on V . Let P : V → V an orthogonal projector, such that

ker(P ) = ker(C). Then there exists a unique 2-vector Π, such that

ΠC = P , PΠ = Π.
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Proof. Let C, g and P be the matrices of C, g, P , respectively, in an arbitrary fixed basis

of V . First construct the map C̃ ≡ g−1C : V → V . This map is skew-symmetric with

respect to g. Indeed, we have

g−1(g−1C)Tg = −g−1C.

Denote C̃ = g−1C. Let A be the matrix diagonalizing g, that is ATgA = 1. Finally,

define the matrix C̃′ = A−1C̃A. This matrix is skew-symmetric (in the ordinary sense).

Standard linear algebra says that there exists a standard block-diagonal form of the ma-

trix C̃′. In more detail, one can find an orthogonal matrix O and a matrix Σ, such that

C̃′ = OΣOT , where Σ has the form

Σ = diag

((
0 λ1

−λ1 0

)
, . . . ,

(
0 λk

−λk 0

)
, 0, . . . , 0

)
.

where k = 1
2rank(C̃′), and λ1, . . . , λk > 0. Note that the matrix O is not unique, and the

matrix Σ is unique up to the reordering of the 2 × 2 blocks.

This shows that we can write C = gAOΣOTA−1. Define ∆2k =

diag(1, . . . , 1, 0, . . . , 0), where the number of 1’s is 2k. The (unique) matrix P can

be now written as P = AO∆2kO
TA−1. Let Π be the matrix of a bivector we are looking

for. The equation ΠC = P translates into

ΠgAOΣOTA−1 = AO∆2kO
TA−1.

We thus get that (OTA−1ΠgAO)Σ = ∆2k. This means that

Π = AOΣ+OTA−1g−1,

where Σ+Σ = ∆2k. Now it is easy to see that Π is a bivector, if and only if Σ+ is, and that

PΠ = Π holds if and only if ∆2kΣ
+ = Σ+. This fixes Σ+ and thus Π uniquely. It coincides

with the Moore-Penrose pseudoinverse of the matrix Σ, and it is given, in the block form, as

Σ+ =

(
Σ0

−1 0

0 0

)
,

where Σ0 is the invertible top left 2k × 2k block of Σ.

B.2 Integrable forms

Let M be a smooth manifold, and let C be a (p + 1)-form on M . The form C is called an

integrable form if it holds

C(P) ∧ C = 0, (B.1)

C(P) ∧ dC = 0, (B.2)

for all P ∈ Xp(M), where on the left-hand side C(P) denotes the value of the induced vector

bundle morphism C : ΛpTM → T ∗M when evaluated on (P). The condition (B.1) is in

fact a very restrictive one. Also, it is very similar to the algebraic part of Nambu-Poisson

fundamental identity:
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Lemma B.2. Let C be a (p + 1)-form. Then C satisfies (B.1) if and only if it is decom-

posable around every point x ∈ M , such that C(x) 6= 0. That means that there exists a

(p + 1)-tuple (α1, . . . , αp+1) of linearly independent 1-forms , such that locally

C = α1 ∧ . . . ∧ αp+1.

Proof. Let us proceed by induction on p. The p = 0 case is a trivial statement, any 1 form

is decomposable. Now choose p > 0. Assume that statement holds for all p-forms, and let

C be a (p + 1)-form satisfying (B.1). We have to show that it is decomposable.

Let x ∈ M , such that C(x) 6= 0. First, see that for any V ∈ X(M), such that

(iV (C))(x) 6= 0, the p-form iV (C) satisfies (B.1), and thus, by induction hypothesis, is

decomposable. Let us take any Q ∈ Xp−1(M). We have to show that

(iV C)(Q) ∧ (iV C) = 0.

But this can be rewritten as

iV
(
C(V ∧ Q) ∧ C

)
= 0,

which follows from the assumptions on C, taking P = V ∧ Q. Second, take the original

condition (B.1) and apply iV to both sides with an arbitrary V ∈ X(M). One gets

iV (C(P)) · C − C(P) ∧ iV (C) = 0.

But iV (C(P)) is a scalar function, and since C is a nonzero (p + 1)-form at x, there have

to exist V ∈ X(M) and P ∈ Xp(M), such that λ ≡ iV (C(P)) 6= 0, at least at some

neighborhood of x. Thus, locally we can write

C =
1

λ
C(P) ∧ iV (C).

Since λ(x) 6= 0, also (iV (C))(x) 6= 0. We can now apply the induction hypothesis to this

p-form to get p linearly independent 1-forms (α1, . . . , αp), such that

iV C = α1 ∧ . . . ∧ αp.

This finishes the proof, because taking αp+1 = (−1)p

λ C(P) leads to the desired decomposi-

tion.

Let us now clarify where integrable forms got their name from:

Definition B.3. Let C is a (p+1)-form. Denote by M ′ the open submanifold of M , where

C 6= 0. The kernel distribution K of C is a distribution on M ′, defined at every x ∈ M ′ as

Kx = {V ∈ TxM | iV (C(x)) = 0}.

Note that this distribution is not necessarily a smooth one.

We can now relate integrability of distributions to the integrability od forms.
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Lemma B.4. Let C be a (p+1)-form. Then C integrable if and only if K is an integrable

(n − (p + 1))-dimensional regular smooth distribution on M ′.

Proof. First assume that C is an integrable (p + 1)-form. Then by the previous lemma,

around every point of x ∈ M ′, there exists a (p + 1)-tuple of linearly independent 1-forms,

such that locally

C = α1 ∧ . . . ∧ αp+1. (B.3)

The subspace Kx can be determined easily as

Kx = {V ∈ TxM | iV (αi(x)) = 0, ∀i ∈ {1, . . . , p + 1}}.

This is a set of k linearly independent linear equations for the components of V . The

dimension of Kx is thus n − (p + 1). To see that this is a smooth regular distribution, note

that K is the kernel of a smooth vector bundle morphism of a constant rank, and hence a

subbundle of TM ′. Hence, a smooth distribution in M ′.
To see that it is also integrable, plug the expression (B.3) into the second defining

equation (B.2). It turns out that it is equivalent to

dαj ∧ α1 ∧ . . . ∧ αp+1 = 0, (B.4)

for all j ∈ {1, . . . , p + 1}. Now take any V ∈ Γ(K), and plug it into (B.4). It gives

iV (dαj) = 0 for all j ∈ {1, . . . , p + 1}. But this is, using the Cartan formula for dαj ,

equivalent to involutivity of the subbundle K under the commutator of vector fields, which

is in turn, using the Frobenius integrability theorem, equivalent to the integrability of K.

Conversely, assume that K is integrable ((n− (p+1))-dimensional regular smooth dis-

tribution. At every x ∈ M ′, there is a neighborhood Ux ∋ x, and a set of local coordinates

(x1, . . . , x(n−(p+1)), y1, . . . , yp+1), such that sections of the subbundle K are on Ux spanned

by ( ∂
∂x1 , . . . , ∂

∂x(n−(p+1)) ). Then C has to be annihilated by all vectors of K, so it has to

have the local form

C = λ · dy1 ∧ . . . ∧ dyp+1. (B.5)

We see that this C clearly satisfies (B.1). Since we are on M ′, we have λ 6= 0. We

set α1 = λdy1, and αi = dyi for i = 2, . . . , p + 1. The second condition for integrable

(p + 1)-forms translates as (B.4). Obviously, this holds for the above defined αj ’s.

At x ∈ M \ M ′ the integrability conditions (B.1), (B.2) hold trivially and we can

conclude that C is an integrable (p + 1)-form.

Remark B.5. One can extend the distribution K to the whole manifold M . For each x ∈ M\
M ′, define Kx = {0}. By this extension one gets a smooth singular distribution on M . How-

ever, even for integrable (p + 1)-forms, K is not integrable in general. For details see [77].

Let us conclude this section by relating the concepts of integrable (p + 1)-forms to

Nambu-Poisson structures. This is given by the following lemma.

Lemma B.6. Let M be an orientable smooth manifold. Let Ω be the corresponding volume

form. Let C be a (p + 1)-form on M . Define a (p + 1)-vector Π by equation

iΠΩ = C.

Then Π is a Nambu-Poisson (n−(p+1))-vector if and only if C is an integrable (p+1)-form.
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Proof. Clearly, Π(x) = 0 if and only if C(x) = 0. Let Π be a Nambu-Poisson tensor. By

previous comment, at singular points of Π, C vanishes. The conditions on integrability

are, at these points, satisfied trivially. Assume that Π(x) 6= 0. Then there exist local

coordinates (x1, . . . , xn) around x, such that

Π =
∂

∂x1
∧ . . . ∧ ∂

∂xn−(p+1)
.

In these coordinates, the volume form Ω is

Ω = ω · dx1 ∧ . . . ∧ dxn,

where ω 6= 0. We thus see that C has the explicit form

C = ω · dxn−(p+1)+1 ∧ . . . ∧ dxn.

It is easy to check that it satisfies both integrability conditions (B.1), (B.2).

The converse statement follows basically from the proof of the previous lemma. There,

we have shown that C can be, for an integrable (p + 1)-form, written (around any point

where C(x) 6= 0) in the local form (B.5). Writing the volume form in these local coordinates

as

Ω = g · dx1 ∧ . . . dx(n−(p+1)) ∧ dy1 ∧ . . . dyp+1,

one finds the local expression for Π as

Π =
λ

g
· ∂

∂x1
∧ . . . ∧ ∂

∂xn−(p+1)
.

Note that this is a top-level multivector field on the submanifold N ′. In the view of

lemma A.3, one would expect that this is enough. Inspection of the fundamental identity

shows that all partial derivatives are contracted with the components of Π, so in the

fundamental identity there are no partial derivatives in transversal directions. We can now

apply (the proof of) lemma A.3 to conclude that Π is a Nambu-Poisson tensor on M .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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1. Introduction

In this letter, we introduce a higher analogue of noncommuta-
tive (abelian) pure gauge theory. What we consider here is a de-
formation, in the presence of a background (p + 1)-rank Nambu–
Poisson tensor, of an abelian gauge theory with a p-form gauge
potential, i.e., a (p − 1)-gerbe connection. Our approach, for p > 1,
is similar to that of [1] which deals with the more familiar case of
p = 1. A Nambu–Poisson gauge theory was pioneered by P.-M. Ho
et al. in [2] as the effective theory of M5-brane for a large longitu-
dinal C-field background in M-theory. Related work can be found
in their papers [3–5].

We formulate the theory independently of string/M-theory.
Nevertheless, the motivation comes from M-theory branes; more
explicitly from an effective DBI-type theory proposed for the de-
scription of multiple M2-branes ending on an M5-brane, where the
Nambu–Poisson 3-tensor enters as a pseudoinverse of the 3-form
field C [6,7]. We develop the theory at a semiclassical level, briefly
commenting on the issue of quantization at the end.

The paper is organized as follows: After discussing conven-
tions in Section 2, we introduce in Section 3 covariant coordinates,
which transform nontrivially with respect to gauge transformations
parametrized by a (p − 1)-form, the gauge transformation being
described in terms of a (p + 1)-bracket arising from a background

* Corresponding author.
E-mail addresses: jurco@karlin.mff.cuni.cz (B. Jurčo),

p.schupp@jacobs-university.de (P. Schupp), vysokjan@fjfi.cvut.cz (J. Vysoký).

Nambu–Poisson (p + 1)-tensor. Based on these covariant coordi-
nates, we introduce Nambu–Poisson gauge fields in Section 4. In
Section 5, we construct Nambu–Poisson gauge fields explicitly, us-
ing a suitable generalization [6–8] of the Seiberg–Witten map [9],
starting from an ordinary (p−1)-form gauge potential. We give ex-
plicit expressions for all components of the Nambu–Poisson field
strength. In Section 6, we give the corresponding (semiclassi-
cally) “noncommutative” action and its first order expansion in the
Nambu–Poisson tensor. Up to this order the result is unambiguous,
because quantum corrections from any type of quantization of the
Nambu–Poisson structure will only affect higher orders. We con-
clude the letter by relating the action to (the semiclassical version
of) a Nambu–Poisson matrix model.

We only briefly comment on deformation quantization of
Nambu–Poisson structures in this letter. A satisfactory descrip-
tion of Nambu–Poisson noncommutative gauge theory beyond the
semiclassical level will require a suitable analogue of Kontsevich’s
formality, solving in particular the deformation quantization prob-
lem for an arbitrary Nambu–Poisson structure.

2. Conventions

We assume that n-dimensional space–time M is equipped with
a rank p + 1 Nambu–Poisson structure Π , with 1 < p < n.1 The
corresponding Nambu–Poisson bracket is denoted by {·, . . . , ·}. In

1 The discussion could be extended to include also the well known case p = 1,
but for clarity and brevity we concentrate here on p > 1 and refer to [7] for p = 1.

http://dx.doi.org/10.1016/j.physletb.2014.04.043
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
SCOAP3.
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order to keep notation close to the familiar p = 1 case, we write
{ f , λ} := Π(df ,dλ) = 1

p!Π
i j1... jp ∂i f (dλ) j1... jp for a (p − 1)-form λ

and a function f . In the special case, where dλ factorizes as
a product dλ = dλ1 ∧· · ·∧dλp , we have { f , λ} ≡ { f , λ1, . . . , λp}. We
consider a set of local coordinates (x1, . . . , xn) on M and denote
the corresponding indices by lower case Latin characters i, j, k,
etc. Upper case Latin characters I , J , K , etc. denote strictly ordered
p-tuples of indices, i.e. J = ( j1, . . . , jp) with 1 � j1 < · · · < jp � n.
With this notation, Π(df ,dλ) = Π i J ∂i f (dλ) J . Often, we will omit
indices altogether, implicitly implying matrix multiplication of the
underlying rectangular matrices as in (Π F T )i

j = Π iK F K j . We use
Roman characters a, B , etc. for indices and multi-indices taking
values only in the “noncommutative” directions 1, . . . , p + 1.

3. Covariant coordinates

Before we introduce in the next section the Nambu–Poisson
gauge potential2 Â and field strength F̂ , let us define “covari-
ant coordinates”3 as functions x̂i(x), i = 1, . . . ,n of the space–time
coordinates {xi}n

i=1, which transform under gauge transformations
parametrized by a (p − 1)-form Λ as

δΛ x̂i = {
x̂i,Λ

}
, (1)

where the bracket is a p + 1 Nambu–Poisson bracket (cf. Section 2
for notation). We assume our fixed (but arbitrarily chosen) coor-
dinates xi to be invariant under gauge transformations. We also
assume that they can be expanded around any point x ∈ M , at
least in the sense of formal power series, as x̂i = xi +· · · . Hence, at
least formally, we can always solve for xi as functions of covariant
coordinates x̂i , i.e. xi = x̂i + · · · . We denote by ρ the (formal) dif-
feomorphism on M corresponding to this change of local variables
on M and write x̂i = ρ∗(xi) for the respective local coordinate
functions. The change of coordinates defined by ρ∗ is also called
“covariantizing map”. The diffeomorphism ρ can be used to define
a new Nambu–Poisson structure Π ′ with bracket {·, . . . , ·}′:
ρ∗({xi1 , . . . , xip+1

}′) := {
ρ∗xi1 , . . . , ρ∗xip+1

}
≡ {

x̂i1 , . . . , x̂ip+1
}
. (2)

4. Nambu–Poisson gauge fields

Here and in the subsequent sections, we follow closely the
semiclassical parts of [10,11], where the p = 1 case is described.
Using covariant coordinates x̂i , we define the Nambu–Poisson
(“noncommutative”) gauge potential with components labeled by
upper indices i = 1, . . . ,n as4

Âi = x̂i − xi = ρ∗(xi) − xi . (3)

Its gauge transformation follows from (1)

δΛ Âi = {
Âi,Λ

} + {
xi,Λ

}
. (4)

Next, we introduce the contravariant tensor F ′ with components
F ′ i1...ip+1 as the difference of the Nambu–Poisson structures Π ′ ,
see Eq. (2), and Π :

F ′ i1...ip+1 = Π ′ i1...ip+1 − Π i1...ip+1 . (5)

2 This is the higher analog of the p = 1 noncommutative gauge potential.
3 Covariant with respect to the gauge transformation (4). For p = 1 they cor-

respond to background independent operators of [9]; they are actually dynamical
fields.

4 See [12–14] for an alternative approach related to area-preserving diffeomor-
phisms.

Covariantizing the individual components of this tensor using the
diffeomorphism ρ , we obtain the Nambu–Poisson (“noncommuta-
tive”) field strength F̂ ′ with components

F̂ ′ i1...ip+1 := ρ∗(F ′ i1...ip+1
)
. (6)

Using (5) and a hat to denote the application of ρ∗ ,

F̂ ′ i1...ip+1 = Π̂ ′ i1...ip+1 − Π̂ i1...ip+1

= ρ∗(Π ′ i1...ip+1
) − ρ∗(Π i1...ip+1

)
. (7)

Rewriting this with the help of (2) as

F̂ ′ i1...ip+1 = {
x̂i1 , . . . , x̂ip+1

} − {
xi1 , . . . , xip+1

}
(x̂), (8)

the gauge transformation of F̂ ′ can be easily determined:

δΛ F̂ ′ i1...ip+1 = {
F̂ ′ i,Λ

}
. (9)

From now on we will assume without loss of generality that
the local coordinates xi are adapted to the Nambu–Poisson struc-
ture Π , i.e., {xi} are local coordinates around some point M , where
Π is non-zero, such that5

Π = ∂1 ∧ · · · ∧ ∂p+1. (10)

With this choice of coordinates, we find

F̂ ′ i1...ip+1 = {
x̂i1 , . . . , x̂ip+1

} − {
xi1 , . . . , xip+1

}
, (11)

where the second bracket is in fact either zero or equal to the p+1
epsilon symbol in the noncommutative directions 1, . . . , p + 1. Ro-
man indices a1, . . . ,ap+1 shall henceforth denote these directions.
Furthermore, we will focus on the case where for the covariantiz-
ing map ρ∗ acts trivially (i.e. x̂i = xi ) on coordinates xi with indices
in the commutative directions p + 2, . . . ,n. It follows from (1) that
only the covariant coordinates in the noncommutative directions
transform non-trivially under gauge transformations and that the
gauge fields Âi are trivial for i = p + 2, . . . ,n. Also, all the field
strengths, except those indexed solely by noncommutative indices
i = 1, . . . , p + 1, will automatically be zero. With these conven-
tions, we can use the p +1 epsilon tensor to lower the index on Âa

and introduce another kind of gauge potential uniquely determined
by complete antisymmetrization of its non-zero components ÂB
labeled by strictly ordered p-tuples of indices, with individual in-
dices taking values in the labels of the noncommutative directions

ÂB := εaB Âa. (12)

The components ÂB transform in a more familiar looking manner
(but recall that we are still dealing with a p + 1 Nambu–Poisson
bracket and a (p − 1)-form gauge parameter Λ):

δΛ ÂB = (dΛ)B + { ÂB ,Λ}. (13)

Similarly, we define the corresponding field strength with compo-
nents F̂ ′

aB by

F̂ ′
aB = εaC

(
Π̂ ′ bC − ΠbC )

εbB . (14)

The components F̂ ′
aB transform as expected

δΛ F̂ ′
aB = {

F̂ ′
aB ,Λ

}
. (15)

A straightforward check reveals that F̂ ′
aB can be consistently ex-

tended to be antisymmetric in all of its indices. Finally, F̂ ′
aB can be

5 Here we ignore, for simplicity, points where Π could possibly be zero and focus
on globally non-degenerate Nambu–Poisson structures.
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expressed in terms of the gauge potential ÂB . For this, we need
a (p + 1 − q)-ary Nambu bracket defined as6

{·, . . . , ·}i1...iq := {
xi1 , . . . , xiq , ·, . . . , ·}.

Now, using (3), (11), (12) and (14) we obtain

F̂ ′
1...p+1 = (dÂ)1...p+1 +

p−1∑
r=0

∑
σ∈S(r,n−r)

(−1)
∑p+1

k=r+1(σ (k)−1)

× sgn(σ ){ Â[σ (r+1)], . . . , Â[σ (p+1)]}σ (1)...σ (r), (16)

where σ ∈ S(r,n − r) is an (r,n − r) shuffle, and [a] is the multi-
index 1 · · · (a − 1)(a + 1) · · · (p + 1). This formula is a generalization
to p > 1 of the well-known p = 1 formula for the (noncommuta-
tive) field strength that involves the 2-bracket (“commutator”) of
gauge fields.

In the next section we will use a higher analog of the Seiberg–
Witten map in order to construct explicit expressions for the co-
variant coordinates and noncommutative gauge fields. This will
allow us to also supplement the remaining components of the
Nambu–Poisson gauge field strength (14), i.e., the ones with at
least one index in a commutative direction.

5. Nambu–Poisson gauge fields via Seiberg–Witten map

We start with a brief summary of the relevant facts concerning
the Seiberg–Witten map as it applies in the present context. We
refer the reader to a detailed exposition in [7]. All order solution
to the Seiberg–Witten map related to Nambu–Poisson M5-brane
theory can be found in [8].

Let us consider a p-form gauge potential a on M with cor-
responding field strength F = da. Infinitesimally, under a gauge
transformation given by a (p − 1)-form λ,

δλa = dλ, δλ F = 0. (17)

Using the (p + 1)-form F we construct from a given Nambu–
Poisson tensor Π the F -gauged tensor which we denote for now
by ΠF ,7

ΠF := (
1 − Π F T )−1

Π = Π
(
1 − F T Π

)−1
. (18)

These expressions are to be interpreted as matrix equations for
the corresponding maps sending p-forms to 1-forms, cf. Section 2.
The superscript T stands for the transposed map. For p > 1, the
(p + 1)-tensor ΠF is always a Nambu–Poisson one,8 furthermore,
we also have due to factorizability of Π ,

ΠF =
(

1 − 1

p + 1
〈Π, F 〉

)−1

Π, (19)

where 〈Π, F 〉 = Π i J F i J ≡ Tr(Π F T ).
Now we define a 1-parametric family of Nambu–Poisson ten-

sors Πt := (1 − tΠ F T )−1Π , cf. Footnote 7, interpolating between
Π and ΠF . Differentiation of Πt with respect to t gives:

∂tΠt = Πt F T Πt . (20)

This equation can be rewritten as

∂tΠt = −L
A


t
Πt, (21)

6 With some abuse of notation we allow also for the case p = q, i.e., the “1-ary”
bracket, which will become useful later.

7 We assume that 1−Π F T is invertible. In a more formal approach we also could
treat ΠF as a formal power series in Π .

8 Even for a non-closed F .

where the time-dependent vector field A

t is defined as A


t =
Π



t (a) = Π

i J
t a J ∂i and L

A

t

is the corresponding Lie derivative.

Eq. (21) implies that the flow φt corresponding to A

t , together

with the initial condition Π0 = Π , maps Πt to Π , that is,

φ∗
t (Πt) = Π. (22)

We have thus found the map ρa := φ1, such that ρ∗
a (Π ′) = Π .

This is the higher form gauge field (p > 1) analogue of the well
known semiclassical Seiberg–Witten map. We emphasize the de-
pendence of this map on the p-form a by an explicit addition
of the subscript a. The following observation is important: The
Nambu–Poisson tensor Πt is gauge invariant (because it depends
on the p-potential a only via the gauge invariant p + 1 form field
strength f = da), but the Nambu–Poisson map ρa is not: The in-
finitesimal gauge transformation δλa = dλ, with a (p − 1)-form
gauge transformation parameter λ, induces a change in the flow,
which is generated by the vector field X[λ,a] = Π i J dΛ J ∂i , where
the (p − 1)-form Λ, explicitly given by

Λ =
∞∑

k=0

(L
A


t
+ ∂t)

k(λ)

(k + 1)!
∣∣∣∣
t=0

, (23)

is the semiclassically noncommutative (p − 1)-form gauge param-
eter. This leads to the following rule for the gauge transformation
of coordinates x̂i

a := ρ∗
a (xi), cf. (1):

δλx̂i
a = {

x̂i
a,Λ

}
. (24)

Hence, the generalized Seiberg–Witten map provides us with an
explicit construction, based on ordinary higher gauge fields, of
the covariant coordinates x̂i that we introduced in Section 3. As
a consequence, we can identify x̂i ≡ x̂i

a and Π ′ ≡ ΠF . Moreover,
x̂i = x̂i

a = xi , for the “commutative” directions i = p + 2, . . . ,n. All
discussion of the previous Sections 3 and 4 applies directly.

Having the ordinary p-form gauge field a at our disposal we
can now define the full Nambu–Poisson field strength F̂ ′ with all
components (in noncommutative as well as in commutative direc-
tions), such that its components in the noncommutative directions
x1, . . . , xp+1 coincide with those of F̂ ′

aB (14).
For this let

F ′ := F
(
1 − Π T F

)−1 = (
1 − FΠ T )−1

F (25)

and define

F̂ ′
i J := ρ∗

A F ′
i J , (26)

i.e., the components of F ′ evaluated in the covariant coordinates.
It is a rather straightforward check to see that for all indices
i1, . . . , ip+1 taking values only in the set {1, . . . , p + 1} we get ex-
actly the F̂ ′

aB of (14).

Now we turn our attention to the remaining components of F̂ ′
(including commutative directions). Starting from (25) and (26),
we can with the help of Footnote 7 and the explicit expression
for Π in coordinates (10) use a construction very similar to the
one leading to (16). We find that the resulting expressions in-
volve a covariant scalar function that depends on Â (and hence via
the generalized Seiberg–Witten map also on the ordinary p-form
gauge potential a):

f [ Â] := 1 +
p∑

r=0

∑
σ∈S(r,n−r)

(−1)
∑p+1

k=r+1(σ (k)−1)

× sgn(σ ){ Â[σ (r+1)], . . . , Â[σ (p+1)]}σ (1)...σ (r).
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Firstly, let us consider F̂ ′
aK with the index a taking on values in

{1, . . . , p + 1}, and K containing at least one index in one of the
commutative directions p + 2, . . . ,n. We find

F̂ ′
aK = f [ Â] F̂aK , (27)

where F̂aK = ρ∗ FaK is the component FaK of the ordinary (com-
mutative) field strength evaluated at the covariant coordinates x̂i .
Secondly, for the components of F̂ ′ with index k taking value in
{p + 2, . . . ,n}, and A containing only the indices lying in the set
{1, . . . , p + 1},

F̂ ′
kA = f [ Â] F̂kA . (28)

Finally, for the components F̂ ′
kL , where k takes value in the set

{p + 2, . . . ,n} and L contains at least one index of the same set,
we have

F̂ ′
kL = F̂kL + f [ Â]

p+1∑
a=1

(−1)a+1 F̂k[a] F̂aL . (29)

Under (ordinary) infinitesimal gauge transformations δλ , all com-
ponents of F̂ ′ transform as

δλ F̂ ′ = {
F̂ ′,Λ

}
, (30)

justifying calling it “Nambu–Poisson” or “(semiclassically) noncom-
mutative” field strength.

Note that unlike for the noncommutative components, the full
tensor F̂ ′ cannot be extended to be a totally antisymmetric one.

6. Action

For simplicity, we assume Euclidean space–time signature.9 The
action

1

g

∫
M

dnxF̂ ′
i J F̂ ′ i J (31)

is by construction invariant under ordinary commutative as well
as under Nambu–Poisson (semiclassically noncommutative) gauge
transformations. This can easily be verified using partial integra-
tion. The coupling constant g is dimensionless in n = 2(p + 1)

spacetime dimensions, i.e. for example for p = 1, n = 4 (NC
Maxwell) and for p = 2, n = 6 (M2–M5 system). In the following
we will set g = 1.

We expand F̂ ′ in a power series in Π

F̂ ′
i J = Fi J + ALΠ

kL Fi J ,k + FiLΠ
kL Fk J + o

(
Π2). (32)

The corresponding expansion of the action (31) is
∫
M

dnxF̂ ′
i J F̂ ′ i J =

∫
M

dnx

{
Fi J F i J − 1

p + 1
Fi J F i J FkLΠ

kL

+ 2F i J F iLΠ
kL Fk J

}
+ o

(
Π2). (33)

A quantization of the underlying Nambu–Poisson structure will not
add quantum corrections to the action at the given order of expan-
sion.

9 Another simple possibility would be consider the Minkowskian space–time,
with Π extending in the spatial directions only. In case of a general metric g we
would have to use the inverse metric matrix elements evaluated in the covariant
coordinates to rise the indices of F̂ ′ and the density defined by the metric also
evaluates in the covariant coordinates.

Shifting the components F̂ ′
1...p+1 of the Nambu–Poisson field

strength by the constants ε1...p+1, will not affect the gauge in-
variance of the action (31). Using (11) and (14) we see that the
action (31) with shifted F̂ ′ takes the form of a semiclassical ver-
sion of a Nambu–Poisson matrix model:

SM =
∫

dnx
{

x̂a, x̂A}{x̂a, x̂A}

=
∫

dnx
1

p!
{

x̂a1 , . . . , x̂ap+1
}{x̂a1 , . . . , x̂ap+1}, (34)

where the summation in the second expression runs over all (not
strictly ordered) (p + 1)-indices (a1, . . . ,ap+1) and (b1, . . . ,bp+1),
with all of them in the noncommutative direction. We could actu-
ally drop the a priori restriction of the summation to noncommu-
tative directions, since the Nambu–Poisson bracket automatically
takes care of this. For a more detailed discussion of the (semiclas-
sical) matrix model we refer to [7].

Given an appropriate quantization [·, . . . , ·] of the Nambu–
Poisson bracket and trace of the quantized Nambu–Poisson struc-
ture, the Nambu–Poisson matrix model takes the form

S̃M = 1

p! Tr
[
x̂a1 , . . . , x̂ap+1

][x̂a1 , . . . , x̂ap+1 ]. (35)

There have been several attempts to find a consistent quantization
of Nambu–Poisson structures. One of these [15] is in fact suitable
for our purposes (at least in the case p = 2): It is an approach
based on nonassociative star product algebras on phase space,
whose Jacobiator defines a quantized Nambu–Poisson bracket on
configuration space. Let us mention without going into details that
this approach can be adapted to provide a consistent quantization
of the Nambu–Poisson gauge theory described in this letter, includ-
ing a quantization of the generalized Seiberg–Witten maps. Details
of this construction are beyond the scope of the present letter and
will be reported elsewhere.
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[7] B. Jurčo, P. Schupp, J. Vysoký, Extended generalized geometry and a DBI-type
effective action for branes ending on branes, in preparation, http://arxiv.org/
abs/1404.2795.

[8] C.-H. Chen, K. Furuuchi, P.-M. Ho, T. Takimi, More on the Nambu–Poisson
M5-brane theory: scaling limit, background independence and an all order so-
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