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and a patience throughout the whole time of my Ph.D. studies. Besides him, I also wish to
thank Prof. Pavel Exner for his encouragement. Next, I would like to acknowledge the support
from the grant No. 202/08/H072 of the Czech Science Foundation and grant No. LC06002 of
the Czech Ministry of Education, Youth and Sport.

Last but not least, I would like to thank my wife, Hana and the rest of my family, who
supported and encouraged me during my long studies.

i





Contents

List of Symbols v

1 Introduction 1
1.1 Fractal properties of the built-up structure . . . . . . . . . . . . . . . . . . . . 1
1.2 Physical properties and existing models . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries from stochastic geometry 5
2.1 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Random closed sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Capacity functional and Choquet’s theorem . . . . . . . . . . . . . . . . 7
2.2.2 Properties of random closed sets . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Characteristics of random closed sets . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Volume fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Second order characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 The Bartlett spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Random fields and Excursion sets . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Random measures and Point processes . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Moment measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2 Characteristics of point processes . . . . . . . . . . . . . . . . . . . . . . 24
2.5.3 The Poisson point process . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.4 Relation to random closed sets . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.5 The Bartlett spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.6 Ergodic theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Marked point processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7 Particle processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7.1 Germ-grain models, Boolean models . . . . . . . . . . . . . . . . . . . . 38
2.8 Long-range dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Generalized centroid 49
3.1 Classical definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 General definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Sufficient condition of existence . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Rectifiable sets and submanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Generalized centroid based on the Hausdorff measure . . . . . . . . . . . . . . . 64

4 Statistics of random structures 67
4.1 Point processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Stationary point processes . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.2 Non-stationary point processes . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Stationary random closed sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

iii



iv CONTENTS

4.2.1 Volume fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.2 Second order characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.3 Fourier transform based estimation . . . . . . . . . . . . . . . . . . . . . 78

4.3 Non-stationary random closed sets . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.1 Volume fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.2 Second order characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Simulation studies of second order estimators . . . . . . . . . . . . . . . . . . . 90
4.4.1 The Boolean model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.2 The level excursion set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Built-up structure properties 105
5.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Formulae for the area and centroid of a polygon . . . . . . . . . . . . . . . . . . 107
5.3 Built-up area as a stationary random closed set . . . . . . . . . . . . . . . . . . 108

5.3.1 Correlation function estimation . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.2 Variance in balls: theory and simulations . . . . . . . . . . . . . . . . . 114
5.3.3 Variance in balls: results . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Built-up area as a non-stationary random closed set . . . . . . . . . . . . . . . 126
5.4.1 Kernel estimate approximation for polygons . . . . . . . . . . . . . . . . 127
5.4.2 Choosing the bandwidth and estimating the correlation function . . . . 131
5.4.3 Justification of the window choice for the stationary approach . . . . . . 139
5.4.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5 Discussion of random closed set approach results . . . . . . . . . . . . . . . . . 153
5.6 Radial density analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.7 Distribution of building sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.7.1 Covariance for small arguments . . . . . . . . . . . . . . . . . . . . . . . 164
5.8 Fractality versus long-range dependence . . . . . . . . . . . . . . . . . . . . . . 172

Conclusion and final remarks 173

A Selected parts from Topology and Measure theory 177
A.1 General measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.2 Fourier analysis of positive semi-definite measures . . . . . . . . . . . . . . . . . 181
A.3 Geometric measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
A.4 Fell topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.5 Hausdorff metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B Dataset details 199

Bibliography 201



List of Symbols

This index contains only the notation used throughout the thesis. Symbols with localized usage
are omitted, as are standard symbols such as e and π.

Special sets

Symbol Description Page

N Natural numbers, N = {1, 2, 3, . . . }.
R Real numbers.
(a, b) Open interval in R from a to b.
[a, b] Closed interval in R from a to b.
A◦ Topological interior of a set A.
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Chapter 1

Introduction

Cities certainly represent one of the most significant fingerprints of human activity on the
Earth. The creation and development of their structure is influenced by cultural, sociological,
economic, political, and other conditions. There were several attempts in the past to under-
stand the structure of cities and their neighbourhood. Despite the apparent complexity, some
simple universal properties and rules were found. The classic example is the rank size distri-
bution of cities which was according to [1] firstly mentioned by Auerbach in 1913 and later
discussed by Zipf [2]. They claimed that if the cities are ranked by the number of inhabitants,
then the rank-size distribution follows a power law with the exponent close to -1 (see also
[1, 3]).

In the last 20 years much attention was drawn by the spatial analysis of urban structures.
A comprehensive review about both static and dynamic properties is given by Batty in [4] and
an overview of structural properties is given by Schweitzer in [1].

The probably most visible morphological property of urban structure is the clustering of
the built-up area and free space that appears over various scales. As many researchers agree,
the prominent role in describing those properties is played by the fractal analysis.

1.1 Fractal properties of the built-up structure

The connection between fractal properties and urban systems goes back to 1980’s (see [5, 6, 7]).
Systematic development of qualitative characterization of fractal properties is given in more
recent publications, see e.g. [8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

The authors usually argue that fractals appearing in urban analysis are self-similar, re-
peating their structure over different scales, i.e. from parts of a city through whole cities and
metropolitan areas to wide urban areas. An urban structure is usually analysed using the bi-
nary lattice representation given by black-and-white maps of a certain resolution with the best
values around 16 m2 per one pixel in recent publications, [20]. Black pixels stand for occupied,
built-up sites and white pixels for empty, non building sites. The difference between various
types of buildings is not taken into account. Fractal properties of such maps are characterized
by fractal dimensions.

There are generally three different fractal dimensions and four methods how to estimate
them used in connection with the built-up structure. In the following parsimonious inventory
they are called exactly as in referred publications, which is consistent with the terminology
used in the overview [22]. Those are the box-counting dimension estimated by a grid method
[8, 10, 11, 15] and by a dilation method [10, 12], the correlation dimension [9, 10, 1, 12, 14, 17,
20], and the radial dimension [8, 9, 10, 1, 15, 18, 21]. Numerical values of fractal dimensions
obtained using those methods are always between 1 and 2. The most common values are
between 1.5 and 1.9. Moreover, it is sometimes noted that the correlation dimension is more
reliable than other methods, [12, 20].

1



2 CHAPTER 1. INTRODUCTION

Radial analysis provides specific information about a spatial organisation around a specific
point, usually the centre of a city. The number Nr(R) of black pixels which lies within a circle
of radius R centred at that point is counted. The fractal law then takes the following form

Nr(R) = CRDr

for some range of R, where Dr is called the radial (mass) dimension. Its estimation is performed
using linear regression on the logarithm of the previous relation. It is often mentioned by some
authors [9, 10, 1, 18] that varying R, there are regions with different slopes corresponding to
different fractal dimensions. In particular there appears to be a region, around the city core,
where the radial dimension Dr = 2 (see [1, 23]).

It should be noted that the above terminology used in the urban context often differs from
the terminology used in mathematical publications like [24, 25]. Also the power law relations
that lead to fractal dimensions are not analysed in the limit as the length factor goes to 0 but
only within a certain range of values.

1.2 Physical properties and existing models

From the physical point of view the built-up structure shows significant analogies to critical
systems in statistical physics, that is of systems that are at critical points of second order
phase transitions. It is often mentioned, e.g. in [9, 1, 10, 26, 18, 16], that the built-up
structure in a city is self-organized since it results from a large number of decisions on various
scales (individuals, private sector groups, local authorities). The self-organization then leads to
typical features of critical systems (see for instance [27, 28]) like cluster formation, aggregation,
or percolation phenomena.

Observed fractal properties lead many authors to simulate the growth of urban clusters by
means of physical growth models like the diffusion-limited aggregation and dielectric break-
down model, [29, 30, 31, 8]. The structure generated by those models follows the fractal
properties. However, they can only produce connected clusters, which is not sufficient for the
full description of the observed properties.

To overcome this problem, several methods were developed. In [1, 9] Schweitzer and Stein-
bing introduced the kinetic model of Brownian agents. They use three types of agents rep-
resenting the already constructed built-up area, the free space, and the demand for built-up
growth. The existing built-up area creates a spatio-temporal attractive field that follows the
reaction-diffusion dynamics. The agents representing the demand diffuse from the centres, meet
there the free space, and eventually transform into a constructed built-up area. This reaction-
diffusion approach can reflect the attraction of the existing built-up area, the movement of
growth zones into outer regions, and thus the depletion of free space in the centres.

Another model is a correlated percolation model introduced by Makse et al. in [32, 33].
They model urban population occupancy using percolation in the presence of the exponential
radial decrease of the population density ρ(r) from the city centre and under long-range power
law decaying correlations between points.

Besides physical models, White and Engelen in [34] developed a model of the urban land-use
dynamics based on the cellular automata (CA) technique, which was later studied extensively
and generalized (for a references see e.g. [35, 36]). In this approach the land use in each
cell is qualitatively represented (unlike the binary representation in previous models) in terms
of the land use type. The cell state is updated each time step with respect to transition
rules depending on the states of neighbouring cells. The neighbourhood is typically small, but
regardless of that fact, after sufficient iteration time the interaction is able to propagate over
long distances and therefore the typical properties of urban systems emerge.

Instead of analysing the spatial distribution of one particular land type it is also possible
to focus on the morphology of the division of the whole land into land parcels as was done
in [37, 38]. One usually observes the power law distribution of the parcel sizes in the urban
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areas. In rural areas the power law holds for the distribution of the overall land area owned
by individuals.

1.3 Outline of the thesis

Our aim is to analyse the built-up structure in cities using the framework of stochastic geometry
and especially of random closed sets. Such an approach is suitable since stochastic geometry
is well known for its ability to characterise randomly generated patterns and it is natural to
understand the built-up structure of a given city as randomly generated.

Throughout the analysis the built-up structure is represented by the collection of individual
buildings that are taken as two dimensional subsets of the plane. Hence, unlike in the previous
studies, there is no rough coarse graining that yields grid maps of certain resolution. The
accuracy of our data is sufficient enough when compared to individual building sizes and thus
we may analyse the structure also on small scales.

The thesis is organized as follows: After this introduction Chapter 2 is devoted to the
theoretical background of stochastic geometry. The random closed sets are recalled together
with their basic characteristics and several important models. Then random measures are
introduced together with special cases given by point and particle processes. The notion of the
Bartlett spectrum is defined and the long-range dependence of random measures and random
closed sets is described.

Next, Chapter 3 provides a detailed construction of the special centre function that can
be used for some particle processes. It is given by the centroid and its two generalizations to
certain sets of zero Lebesgue measure.

Chapter 4 deals with statistical issues concerning the estimation of basic characteristics of
random closed sets. We focus especially on second order properties of the stationary case and
on the volume fraction estimation for the non-stationary case. The numerical simulations are
performed to analyse the properties of several proposed estimators. For the convenience of
the reader selected mathematical issues important for deriving results in Chapters 2 and 3 are
reviewed in Appendix A, thus making our exposition self-contained.

Chapter 5 is devoted to the analysis of the built-up structure. We focus especially on the
second order characteristics of both stationary and non-stationary approach. The long-range
dependence is here clearly observed and discussed. We also study the radial density dependence
and distribution of building sizes.

Finally, we recapitulate major findings of the thesis and discuss a possible future research.





Chapter 2

Preliminaries from stochastic geometry

In this chapter the basic mathematical notation and background from stochastic geometry
is introduced. In particular, we focus on random closed sets, random measures, and their
special cases like random point processes and particle processes. Known facts are presented
with references and only new assertions are proved. Although the built-up area is studied as
a subset of R2, the theory in the following is introduced for general Rd. Moreover, even more
general space is used when necessary.

In the first section, some basic notation is summarized. Then in Section 2.2 random closed
sets are introduced and theirs important properties and characteristics are defined. As a first
important model of random closed sets we introduce the level excursion set in Section 2.4. Then
the generalization given by random measures is reviewed. We especially focus on the precise
definition of the covariance measure and corresponding Bartlett spectrum. In Sections 2.6
and 2.7 the marked point process and the particle process are presented and their relationship
is discussed. Finally, Section 2.8 deals with long-range dependence of random measures and
random closed sets. The connection to the Bartlett spectrum is shown and a particularly
important sub-case of isotropic-long range dependence is introduced.

2.1 Basic notation

Let Rd denote the d-dimensional Euclidean space of real numbers. The notation x · y is used
for the standard Euclidean scalar product defined by

x · y =

d∑

i=1

xiyi,

for each x = (x1, . . . , xd) and y = (y1, . . . , yd) in Rd. Instead of x · x we write x2. The
Euclidean norm ‖x‖ is as usual given by

‖x‖ =
√
x · x

for each x ∈ Rd. The distance between x and y is d(x,y) = ‖x− y‖. The distance from x
to a set A ⊂ Rd is defined to be d(x, A) = inf{d(x,y)|y ∈ A}. The d-dimensional open and
closed unit ball centred at the origin 0 = (0, . . . , 0) are given by

Ud = {x ∈ Rd | ‖x‖ < 1} and Bd = {x ∈ Rd | ‖x‖ ≤ 1},

respectively. The d-dimensional open and closed ball of radius r centred at x are

Ur(x) = {y ∈ Rd | ‖x− y‖ < r} and Br(x) = {y ∈ Rd | ‖x− y‖ ≤ r},

respectively. By <,≤, >,≥ on Rd we mean the simultaneous inequalities in all coordinates,
i.e. x < y if and only if xi < yi for all i = 1, . . . , d. For a, b ∈ Rd we write (a, b) =

5
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(a1, b1)× . . .×(ad, bd) ⊂ Rd and analogously for all other types of intervals in Rd. In particular
we write (−∞,a] = {x ∈ Rd|x ≤ a}.

The Minkowski addition A + B and the Minkowski reflection Ǎ of A,B ⊂ Rd are
defined to be

A+B = {x+ y|x ∈ A,y ∈ B} and Ǎ = {−x|x ∈ A},

respectively.

The family of all Borel sets of Rd is denoted by B(Rd). By νd (or ν) we denote the
d-dimensional Lebesgue measure on the measurable space (Rd,B(Rd)). Note, that up to a
normalizing constant, νd is the only translation-invariant measure on B(Rd). In integrals
the notation νd(dx) = dx is used. If f is a non-negative measurable function then by fνd
we mean a measure defined by (fνd)(B) =

∫
B
f(x) dx for all B ∈ B(Rd). Clearly, fνd is

absolutely continuous with respect to νd, and f is the corresponding density. When we work
with a probability space (Ω,A,P), the expectation of a random variable with respect to the
probability measure P is denoted by E.

2.2 Random closed sets

For further connection to particle processes it is useful to define random closed sets not only
in Rd but in more general space. In the following, the standard construction of random closed
sets is briefly presented. For a fuller treatment we refer the reader to [39, 40, 41, 42].

Let E be a locally compact, Hausdorff topological space with a countable base. Let G,F ,
and C denote the class of all open, closed, and compact subsets of E, respectively. For any
A ⊂ E we define

FA = {F ∈ F|F ∩A 6= ∅} and FA = {F ∈ F|F ∩A = ∅}.

In Section A.4 is shown that the collection of sets of the form

FC ∩ FG1
∩ . . . ∩ FGn ,

where C ∈ C is compact and G1, . . . , Gn ∈ G are open, is a base of a topology on F called the
Fell topology which is locally compact, Hausdorff separable, and with a countable base. Let
us denote by B(F) the Borel σ-algebra generated by the Fell topology on F .

Definition 2.2.1. Let (Ω,A,P) be a probability space and (F ,B(F)) be a measurable space
introduced above. The map

X : Ω→ F

is called the random closed set if X is A− B(F) measurable, i.e.

X−1(F ) = {ω ∈ Ω|X(ω) ∈ F} ∈ A

for each F ∈ B(F).

The definition means that probabilities can be assigned to the statement that X hits the
countable collection of open sets and miss any of another countable collection of compact sets.
The measurability property of X implies the probability measure PX on (F ,B(F)) according
to PX(F ) ≡ P(X ∈ F ) = P(X−1(F )) for all F ∈ B(F) which is called the distribution of

X. Two random closed set X and X ′ are stochastically equivalent, X
D∼ X ′, if they have

the same distribution.
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2.2.1 Capacity functional and Choquet’s theorem

The distribution of a random closed set can be effectively characterised by the restriction of
the probability to particular subclass FC of B(F). The result is the capacity functional
TX : C → [0, 1] of a random closed set X defined by

TX(C) = PX(FC) = P(X ∩ C 6= ∅)

for all C ∈ C.
The capacity functional returns the probability of hitting a given compact set. It can be

regarded as the analogon of a distribution function of a random variable in R. In particular,
it determines the distribution of X uniquely. This result is known as Choquet’s theorem.

Theorem 2.2.1 (Choquet’s theorem). A functional T : C → [0, 1] such that T (∅) = 0 is
the capacity functional of a necessarily unique random closed set if and only if T satisfies the
following conditions:

• T (Cn)↘ T (C) as Cn ↘ C in C
• ∆Cn · · ·∆C1T (C) ≤ 0 for n ≥ 1 and C,C1, . . . , Cn ∈ C, where the successive differences

are for n = 1 given by
∆C1

T (C) = T (C)− T (C ∪ C1)

and for n ≥ 2 by

∆Cn · · ·∆C1
T (C) = ∆Cn−1

· · ·∆C1
T (C)−∆Cn−1

· · ·∆C1
T (C ∪ Cn).

Proof. Theorems 2.1.2 and 2.2.1 in [40] or Section 1.3 in [42].

2.2.2 Properties of random closed sets

The joint distribution of random closed sets X1, . . . , Xk defined on the same probability space
(Ω,A,P) is the probability measure

PX1,...,Xk(F1, . . . , Fk) = P(X1 ∈ F1, . . . , Xk ∈ Fk)

for all F1, . . . , Fk ∈ B(F).

Definition 2.2.2. Random closed setsX1, . . . , Xk are independent if for arbitrary F1, . . . , Fk ∈
B(F),

PX1,...,Xk(F1, . . . , Fk) = P(X1 ∈ F1)· · ·P(Xk ∈ Fk).

As follows from Choquet’s theorem 2.2.1, the independence condition can be equivalently
written as

TX1,...,Xk(C1, . . . , Ck) = TX1
(C1)· · ·TXk(Ck)

for all compact C1, . . . , Ck.
Let G be a topological group that acts measurably on the space E. Then G acts in a

natural way on F by letting

SgF = {gx|x ∈ F} for F ∈ F . (2.1)

From Lemma A.4.1 follows that the mapping F 7→ SgF from (F ,B(F)) into itself is continuous
and consequently measurable. Hence, if X is a random closed set and g ∈ G, then SgX is a
random closed set.

In the following let E be the d-dimensional Euclidean space Rd. Important cases arise if
G is the group of all translations or all rotations of Rd. Note that in the case of the group of
translations, if y ∈ Rd then y(x) = x+ y and so SyF = F + y for all F ∈ F . Since SyX is a
random closed set we obtain PX+y(G) = PX(G− y) for all G ∈ B(F).
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Definition 2.2.3. A random closed set X is called stationary if X
D∼ (X+y) for all y ∈ Rd.

It is called isotropic if X
D∼ θX for all rotations θ ∈ SOd.

The probabilities PX and PX+y induced by a stationary random closed set X satisfy

PX(F ) = PX+y(F )

for every F ∈ B(F) and y ∈ Rd. This particularly gives

P(y ∈ X) = P(X ∩ {y} 6= ∅) = PX(F{y}) = PX+y(F{y}) =

= P(X + y ∩ {y} 6= ∅) = P({0} ∩X 6= ∅) = P(0 ∈ X). (2.2)

The stationarity is a property that implies strong consequences on the structure of random
closed set as will be also seen later.

Both stationarity and isotropy of a random closed set X can be equivalently formulated
using the capacity functional TX .

Theorem 2.2.2. The random closed set X is stationary if and only if its capacity functional
TX is translation invariant, i.e.

TX(C) = TX(SyC) = TX(C + y)

for every C ∈ C and y ∈ Rd, and it is isotropic if and only if TX is rotation invariant, i.e.

TX(C) = TX(SθC) = TX(θC)

for every C ∈ C and θ ∈ SOd.

Proof. Theorem 2.4.5 in [40].

Corollary 2.2.1. Let X be a stationary random closed set in Rd and r ∈ Rd. Then X∩(X−r)
is a stationary random closed set.

Proof. The mapping ω 7→ X(ω)∩ (X(ω)−r) from (Ω,A) to (F ,B(F)) is measurable as follows
from Lemma A.4.1 and hence X ∩ (X − r) is a random closed set. Stationarity follows from

TX∩(X−r)(C) = P
(
X ∩ (X − r) ∩ C 6= ∅

)
= P

(
X ∩ C 6= ∅, (X − r) ∩ C 6= ∅

)

= P
(
X ∩ C 6= ∅, X ∩ C + r 6= ∅

)
= P

(
X ∩ C ∩ (C + r) 6= ∅

)
= TX

(
C ∩ (C + r)

)
,

which holds for every C ∈ C and from the obvious property SyC ∩ (SyC + r) = Sy
(
C ∩ (C +

r)
)
.

2.2.3 Ergodicity

The important property of random closed sets is the ergodicity, which allows one to express
statistical expectations by limits of arithmetic or spatial averages. For every Borel A we define
the inner radius of A by

r(A) = sup{r ≥ 0|Br(x) ⊂ A for some x ∈ A}. (2.3)

A stationary random closed set X is said to be metrically transitive if the condition

PX(F \ SyF ∪ SyF \ F ) = 0 for all y ∈ Rd (2.4)

on F ∈ B(F) implies that PX(F ) = 0 or PX(F ) = 1.
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Definition 2.2.4. A stationary random closed set X is

(a) mixing, if for all F,G ∈ B(F)

PX(SxF ∩G)→ PX(F )PX(G) as ‖x‖ → ∞,

(b) weakly mixing, if for all F,G ∈ B(F)

1

νd(Kn)

∫

Kn

∣∣PX(SxF ∩G)−PX(F )PX(G)
∣∣dx→ 0 as n→∞,

(c) ergodic, if for all F,G ∈ B(F)

1

νd(Kn)

∫

Kn

PX(SxF ∩G) dx→ PX(F )PX(G) as n→∞,

for any convex averaging sequence {Kn, n ∈ N}, i.e. a sequence of non-empty convex
compact sets, non-decreasing in the sense of inclusion, Kn ⊂ Kn+1 for n ∈ N, such that
r(Kn)→∞ as n→∞.

It is easy to see that mixing implies weak mixing and this further implies ergodicity. It can
also be shown that metrical transitivity is equivalent to ergodicity, [43, Proposition 12.3.III].
All properties from previous definition can be equivalently formulated using the capacity func-
tional, for details see [44].

To present the results for ergodic random closed sets, some notation must be introduced to
describe the kind of spatial averaging that will be used. Let C0 denote the half-open cube,

C0 =

[
−1

2
,

1

2

)
× · · · ×

[
−1

2
,

1

2

)
⊂ Rd, (2.5)

and let B0(Rd) denote the family of all bounded Borel sets of Rd.

Theorem 2.2.3. Let X be a stationary ergodic random closed set and the mapping h :
B0(Rd) → R be a measurable, translation invariant, additive set-function defined on bounded
Borel sets. Furthemore, if there is a non-negative random variable ξ of finite mean such that
|h(X ∩K)| < ξ almost surely for all non-empty, convex K ⊂ C0 then

lim
n→∞

h(X ∩Kn)

νd(Kn)
= Eh(X ∩ C0) P -almost surely

for each convex averaging sequence {Kn, n ∈ N}.

Proof. See [45] or Theorem 12.2.IV in [43].

The theorem states that the spatial average h(X ∩K)/νd(K) converges to the expectation
Eh(X∩K) under conditions of stationarity and ergodicity. The most useful version is obtained
when one uses the d-dimensional Lebesgue measure as a mapping h.

Corollary 2.2.2. Let X be a stationary ergodic random closed set. Then

lim
n→+∞

νd(X ∩Kn)

νd(Kn)
= E νd(X ∩ C0) P -almost surely.
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2.3 Characteristics of random closed sets

2.3.1 Volume fraction

A random closed set X in Rd is given by its indicator function 1X(x). The measurability of
1X(x) follows from Theorem A.4.5. Therefore we can take its mean

m(x) = E1X(x) = P(x ∈ X) (2.6)

which is called the volume fraction. As follows from (2.2) the volume fraction of a stationary
random closed set X is constant,

m(x) = m(0) = p.

By the Fubini-Tonelli theorem

p =

∫
B
p dx

νd(B)
=

∫
B
E1X(x) dx

νd(B)
=
E
∫
B
1X(x) dx

νd(B)
=
E νd(X ∩B)

νd(B)
(2.7)

for every Borel set B ⊂ Rd with 0 < νd(B) < +∞.

2.3.2 Second order characteristics

Given a random closed set X the covariance function cov of X is defined by

cov(x,y) = E(1X(x)−m(x))(1X(y)−m(y)) for allx,y ∈ Rd,
where m(x) is the volume fraction of X. Obviously

cov(x,y) = E1X(x)1X(y)−m(x)m(y)

and because E1X(x)1X(y) = P(x ∈ X,y ∈ X) we obtain

cov(x,y) = P(x ∈ X,y ∈ X)−m(x)m(y).

The first term is called the covariance of X and is usually denoted by C(x,y). Thus

C(x,y) = cov(x,y) +m(x)m(y).

Obviously C(x,y) = C(y,x). If X is stationary then

C(x,y) = P(x ∈ X,y ∈ X) = P(x ∈ X + y,y ∈ X + y)

= P(x− y ∈ X,0 ∈ X) = C(x− y,0)

and the same relation holds for the covariance function cov(x,y). Both the covariance and
covariance function thus depend only on one argument

C(x,y) = C(x− y,0) = C(r),

where r = x − y. Moreover, C(r) = C(−r) for all r ∈ Rd. If X is isotropic, it can be easily
shown, then the covariance (and covariance function) depends only on the distance r = ‖r‖.

For stationary RACS we have

C(r) = P(r ∈ X,0 ∈ X) = P
(
0 ∈ (X − r),0 ∈ X

)
= P

(
0 ∈ X ∩ (X − r)

)
.

The covariance at r is thus the volume fraction of X ∩ (X − r) that is from Corollary 2.2.1
also stationary RACS. A relation similar to (2.7) can now be easily derived:

C(r) =

∫
B
P
(
0 ∈ X ∩ (X − r)

)
dx

νd(B)
=

∫
B
P
(
x ∈ X ∩ (X − r)

)
dx

νd(B)

=

∫
B
E1X∩(X−r)(x) dx

νd(B)
=
E νd

(
X ∩ (X − r) ∩B

)

νd(B)
(2.8)
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for every Borel B ⊂ Rd.
Let assume that the volume fraction is positive. Then the covariance function cov(x,y)

can be normalized by variances of the process at x and y. The result is called the correlation
function and is given by

κ(x,y) =
cov(x,y)√

cov(x,x)
√

cov(y,y)
.

Since
cov(x,x) = E(1X(x)−m(x))2 = E 1X(x)−m(x)2 = m(x)−m(x)2,

the relation between the covariance and the correlation function is

κ(x,y) =
C(x,y)−m(x)m(y)√

m(x)−m(x)2
√
m(y)−m(y)2

.

Similarly to the correlation function of two random variables, κ(x,y) ∈ [−1, 1] for all x,y ∈ Rd.
The covariance may be expressed using the correlation function and the volume fraction as

C(x,y) = κ(x,y)
√
m(x)−m(x)2

√
m(y)−m(y)2 +m(x)m(y) (2.9)

for all x,y ∈ Rd.
Sometimes, analogously to point processes, the pair correlation function of X is defined

to be

g(x,y) =
C(x,y)

m(x)m(y)

for all x,y ∈ Rd.
In many cases the covariance has nice continuity properties. First we show the following

simple implication.

Proposition 2.3.1. If C is continuous at 0 then C(r) is uniformly continuous everywhere.

Proof. Let r ∈ Rd be fixed. Further let f = 1X(r)− 1X(r − y) and g = 1X(−y) for y ∈ Rd.
Using the Schwartz inequality (e.g. [46, (5.36)]), E(|fg|)2 ≤ E f2 ·E g2, we obtain

(
C(r,−y)− C(r − y,−y)

)2 ≤
(
C(r, r) + C(r − y, r − y)− 2C(r, r − y)

)
C(−y,−y).

The stationarity yields

(
C(r + y)− C(r)

)2 ≤ 2
(
C(0)− C(y)

)
C(0)

and the statement follows by letting y → 0.

Many important continuity properties holds for the so called P -continuous random closed
sets, see [39] for further details.

Definition 2.3.1. A random closed set X is P -continuous at a point x ∈ Rd if

lim
y→x

P(y ∈ X,x /∈ X) = lim
y→x

P(x ∈ X,y /∈ X) = 0.

We say that X is P -continuous if it is P -continuous at every x ∈ Rd.

Almost all models of random closed sets are P -continuous and in particular, stationary
random closed sets are P -continuous.

Lemma 2.3.1. Every stationary random closed set X is P -continuous.
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Proof. Let y − x = z. From stationarity it follows that

P(x+ z ∈ X,x /∈ X) = P(z ∈ X,0 /∈ X) ≤ P(‖z‖Bd ∩X 6= ∅,0 /∈ X),

P(x ∈ X,x+ z /∈ X) = P(−z ∈ X,0 /∈ X) ≤ P(‖z‖Bd ∩X 6= ∅,0 /∈ X),

where ‖z‖Bd is a closed ball of radius ‖z‖ centred at 0. Since X is closed, we have {‖z‖Bd ∩
X 6= ∅,0 /∈ X} ↓ ∅ as ‖z‖ ↓ 0. The assertion follows from the continuity of the probability
measure (Theorem A.1.1 (c)).

Proposition 2.3.2. The covariance of a P -continuous RACS X is continuous in each ar-
gument, uniformly with respect to the other argument, and is also continuous in Rd × Rd.
Moreover, if X is stationary, then it is uniformly continuous.

Proof. We follow the idea of the proof given in [47] for stationary RACS. For any two events
A and B one can easily show the inequality

|P(A)−P(B)| ≤ max{P(A \B),P(B \A)}.

Let now A = {x ∈ X} ∩ {y ∈ X} and B = {x ∈ X} ∩ {y + z ∈ X}. In that case

A \B = {x ∈ X,y ∈ X,y + z /∈ X} ⊂ {y ∈ X,y + z /∈ X},
B \A = {x ∈ X,y + z ∈ X,y /∈ X} ⊂ {y + z ∈ X,y /∈ X}.

Hence, for the covariance we obtain

|C(x,y)− C(x,y + z)| = |P(A)−P(B)|
≤ max{P(y ∈ X,y + z /∈ X),P(y + z ∈ X,y /∈ X)}.

From the P -continuity of X follows that |C(x,y)− C(x,y + z)| → 0 as ‖z‖ → 0 independently
of x. The continuity in the first argument of C(x,y) can be proved in the same way and is
again uniform in the second argument. The continuity of C(x,y) in Rd ×Rd follows from

|C(x,y)− C(x+ u,y + v)| ≤ |C(x,y)− C(x+ u,y)|+ |C(x+ u,y)− C(x+ u,y + v)| .

In the case of a stationary RACS X we get that C(r) = C(r,0) is continuous in r and in
particular at r = 0. The uniform continuity then follows from Proposition 2.3.1.

The previous assertion does not hold generally. If we take a constant RACS X in R given
as the closed interval X = [0, 1], it is obvious that the covariance C(0, x) has a discontinuity
at point x = 1.

Proposition 2.3.3. The volume fraction m(x) of a P -continuous RACS X is continuous.

Proof. For any two events A and B it holds

P(B) = P(A) +P(Ac ∩B)−P(A ∩Bc).

Let now tek A = {x ∈ X} and B = {y ∈ X}. It follows that

P(y ∈ X) = P(x ∈ X) +P(y ∈ X,x /∈ X)−P(x ∈ X,y /∈ X).

Letting y → x on both sides and using the definition of P -continuity completes the proof.

The trivial consequence of last two propositions is the continuity of the covariance function
and also the correlation function, if exists.

Corollary 2.3.1. Let X be a P -continuous RACS. Then the covariance function cov of X is
continuous. If moreover m(x) > 0 for all x ∈ Rd then the correlation function κ is continuous.
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The last important property of the covariance function is its positive semi-definiteness.

Definition 2.3.2. We say that a real valued function f defined on Rd is positive semi-
definite if ∑

i

∑

j

λiλjf(xi − xj) ≥ 0

for all n ∈ N, x1, . . . ,xn ∈ Rd and λ1, . . . , λn ∈ C.

It is a simple consequence of the definition that f(0) ≥ 0, f(x) = f(−x) and |f(x)| ≤ f(0)
for all x ∈ Rd. It is also clear that convex combinations and scalar multiplications of positive
semi-definite functions produce again positive semi-definite functions.

The positive semi-definiteness is usually formulated for stationary random closed sets where
the covariance function depends only on the difference x−y (see e.g. [48, 49]). In the following
we prove the more general version of this property that holds also for non-stationary random
closed sets.

Theorem 2.3.1. Let X be a random closed set with correlation function κ(x,y). Then for
every n ∈ N, x1, . . . ,xn ∈ Rd and λ1, . . . , λn ∈ C

∑

i

∑

j

λiλjκ(xi,xj) ≥ 0.

Proof. It is easy to see the following chain of equalities.

n∑

i=1

n∑

j=1

λiλjκ(xi,xj) =

n∑

i=1

n∑

j=1

λiλj
E1X(xi)1X(xj)−m(xi)m(xj)√
m(xi)−m(xi)2

√
m(xj)−m(xj)2

=

n∑

i=1

n∑

j=1

λiλj
E
(
1X(xi)1X(xj)− 1X(xi)m(xj)− 1X(xj)m(xi) +m(xi)m(xj)

)
√
m(xi)−m(xi)2

√
m(xj)−m(xj)2

=E

n∑

i=1

n∑

j=1

λiλj
1X(xi)1X(xj)− 1X(xi)m(xj)− 1X(xj)m(xi) +m(xi)m(xj)√

m(xi)−m(xi)2
√
m(xj)−m(xj)2

=E

∣∣∣∣∣
n∑

i=1

λi
1X(xi)−m(xi)√
m(xi)−m(xi)2

∣∣∣∣∣

2

≥ 0.

Analogous argumentation holds for the covariance function cov(x,y) and the covariance
C(x,y).

Corollary 2.3.2. If the correlation function κ(x,y) (or the covariance function, or the co-
variance) of a random closed set X depends only on x − y, then it is positive semi-definite,
i.e. for all n ∈ N, x1, . . . ,xn ∈ Rd and λ1, . . . , λn ∈ C

∑

i

∑

j

λiλjκ(xi − xj) ≥ 0.

2.3.3 The Bartlett spectrum

Since the covariance function of a stationary random closed set X is positive semi-definite then
by Bochner’s theorem A.2.2, there exists a finite Borel measure Γ on Rd such that

cov(x) = (2π)−d/2
∫

Rd

eix·ξ Γ(dξ).

The measure Γ is called the Bartlett spectrum of X.
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Recall that the Fourier transform Fh and the inverse Fourier transform F−1h of a function
h ∈ L1(Rd, νd) are given by

(Fh)(ξ) = (2π)−d/2
∫

Rd

e−iξ·xh(x) dx and (F−1h)(x) = (2π)−d/2
∫

Rd

eiξ·xh(ξ) dξ,

respectively. If the covariance function cov of X is absolutely integrable, i.e. cov ∈ L1(Rd, νd),
then from the inversion formula A.2.1 follows that the Bartlett spectrum of X is absolutely
continuous with respect to νd, and a density fΓ is given by

fΓ(ξ) = (2π)−d/2
∫

Rd

e−iξ·x cov(x) dx.

More details about the Bartlett spectrum of random closed sets can be found in [48, 50]. The
extension to random measures is presented in Subsection 2.5.5.

2.4 Random fields and Excursion sets

In the following we introduce the important class of models of random closed sets. We start
with a brief review of the theory of random fields. For a more detailed treatment we refer the
reader to [51].

Definition 2.4.1. A random field Z in Rd is a collection of real random variables {Z(x)|x ∈
Rd} defined on a probability space (Ω,A,P).

The distribution of random field is usually described by its finite-dimensional distributions
defined for every k ∈ N and every x1, . . . ,xk ∈ Rd by µx1,...,xk(B) = P

(
(Z(x1), . . . , Z(xk)) ∈

B
)

for all Borel B ∈ Rk. The Kolmogorov’s existence theorem (see [46, Theorem 36.2]) implies
that for a family of probability measures {µx1,...,xk |k ∈ N, x1, . . . ,xk ∈ Rd} there exists a
random field with finite-dimensional distributions given by those measures if and only if they
satisfy the additional properties of symmetry,

µx1,...,xk(A1 × . . .×Ak) = µxπ(1),...,xπ(k)
(Aπ(1) × . . .×Aπ(k))

for every k ∈ N, x1, . . . ,xk ∈ R, Borel sets A1, . . . , Ak ⊂ R, and every permutation π, and
consistency,

µx1,...,xk(A1 × . . .×Ak) = µx1,...,xk+1
(A1 × . . .×Ak ×R)

for every k ∈ N, x1, . . . ,xk ∈ R, and all Borel sets A1, . . . , Ak ⊂ R.

Definition 2.4.2. A Gaussian random field Z inRd is a random field with finite-dimensional
distributions that are all multivariate normal.

This means that the finite-dimensional distributions are determined by the probability
density functions

fx1,...,xk(z1, . . . , zk) =
1

(2π)k/2
√

detV
e−

1
2 (z−µ)V −1(z−µ)T ,

where z = (z1, . . . , zk) ∈ Rk, µ =
(
EZ(x1), . . . ,EZ(x1)

)
and V is a positive-semi definite

matrix with elements (V )ij = cov
(
Z(xi), Z(xj)

)
for all i, j = 1, . . . , k.

For a random field Z we define the mean function by µZ(x) = EZ(x), x ∈ Rd and the
covariance function by covZ(x,y) = cov

(
Z(x), Z(y)

)
, x,y ∈ Rd. Clearly covZ(x,y) =
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covZ(y,x). Moreover, it can be easily shown that covZ satisfies the condition similar to
positive-semi definiteness: ∑

i

∑

j

λiλj covZ(xi,xj) ≥ 0 (2.10)

for every n ∈ N, x1, . . . ,xn ∈ Rd and λ1, . . . , λn ∈ C. A Gaussian random field Z is therefore
completely determined by its mean function and covariance function. Moreover, for any func-
tion µ : Rd → R and cov : Rd×Rd satisfying cov(x,y) = cov(y,x) and (2.10) it is possible to
construct a (Gaussian) random field having µ and cov as its mean and covariance functions,
respectively.

Let G be a topological group acting measurably on Rd. Then we define the action of G on
a random field Z by

SgZ(x) = Z(g−1x) for all x ∈ Rd, g ∈ G.

For the finite-dimensional distributions µSgZ;x1,...,xk of SgZ it follows

µSgZ;x1,...,xk = µZ;g−1x1,...,g−1xk ,

where µZ;x1,...,xk of SgZ are finite dimensional distributions of Z. For the group of translations
of Rd we use the notation SyZ = Z + y for all y ∈ Rd.

Definition 2.4.3. A random field Z in Rd is called stationary if Z
D∼ Z + x for all x ∈ Rd.

It is called isotropic if Z
D∼ θZ for all rotations θ ∈ SOd.

For a stationary random field Z the mean function is constant, µ(x) = µ for all x ∈ Rd,
and the covariance function covZ(x,y) depends only on x− y, covZ(x,y) = covZ(x− y) for
all x,y ∈ Rd. The property (2.10) now corresponds to the standard positive semi-definiteness
from Definition 2.3.2. It easily follows that a Gaussian random field Z is stationary if and only
if it has constant mean function and its covariance function covZ(x,y) depends only on x−y.
Similarly, for a stationary isotropic random field Z the covariance function covZ(x,y) depends
only on ‖x− y‖, covZ(x,y) = covZ(‖x− y‖) for all x,y ∈ Rd. A stationary Gaussian random
field Z is isotropic if and only if its covariance function covZ(x,y) depends only on ‖x− y‖.

Now we introduce the connection to random closed set. For a random field Z, u ∈ Rd and
Borel B let us define

Au(Z,B)(ω) = {x ∈ B|Z(x, ω) ≥ u} for all ω ∈ Ω. (2.11)

Our aim is to take Au(Z,Rd) as a random closed set. This is, however, a problem in general
since Au(Z,Rd) may not be closed and measurable in sense of Definition 2.2.1. For measura-
bility the concept of separability introduced by Doob in [52] have to be used.

Definition 2.4.4. A real random field Z in Rd on a probability space (Ω,A,P) is separable,
if there exists a countable set D ⊂ Rd dense in Rd such that for any closed interval (finite or
infinite) I ⊂ R and any open set G ⊂ Rd,

{ω|Z(x, ω) ∈ I,x ∈ G} = {ω|Z(x, ω) ∈ I,x ∈ G ∩D}

holds. The set D is called a separating set for Z.

For a separable random field Z with separating set D the following two relations hold, [53,
Lemma 2.2]:

inf
y∈G∩D

Z(y) = inf
x∈G

Z(x) and sup
y∈G∩D

Z(y) = sup
x∈G

Z(x),

where G ⊂ Rd is an arbitrary open set. Furthermore, it can be shown (see [53, Theorem 2.6])
that to every random field there is an equivalent separable random field. Thus in the following
we always assume that random fields are separable.
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Let us now deal with the continuity. Clearly, for a random field with almost surely contin-
uous sample functions and a closed set F is the set Au(Z,F ) almost surely closed. Therefore
random fields with almost surely continuous sample functions are of primary importance. The
following assertion gives a sufficient condition for a Gaussian random field to have this property.

Theorem 2.4.1. Let Z be a zero-mean Gaussian random field with a continuous covariance
function and such that for some 0 < K <∞, some ε > 0, and every compact C ⊂ Rd,

E(Z(x)− Z(y))2 ≤ K

|log ‖x− y‖|1+ε for all x,y ∈ C.

Then Z has almost surely continuous sample functions.

Proof. Follows from Theorem 3.4.1 in [51].

For a stationary random field the expectation on the left side of the condition can be written
as 2 covZ(0)− 2 covZ(x− y).

Corollary 2.4.1. Let Z be a stationary zero-mean Gaussian random field with a continuous
covariance function and such that for some 0 < K <∞ and some ε > 0,

covZ(0)− covZ(r) ≤ K

|log ‖r‖|1+ε

for all ‖r‖ < 1. Then Z has almost surely continuous sample functions.

A similar condition can be formulated for non-Gaussian random fields as was done in [54].
Now we may proof the main theorem of this part.

Theorem 2.4.2. Let Au(Z,Rd) be defined by (2.11) for a random closed set Z with almost
surely continuous sample functions. Then Xu(Z) given by Au(Z,Rd) whenever Au(Z,Rd) is a
closed set and by ∅ otherwise is a random closed set. If Z is stationary (isotropic) then Xu(Z)
is stationary (isotropic).

Proof. Let u ∈ R be fixed. By construction, Xu(Z) is always closed. Now we show the
measurability. Without loss of generality we may assume that the set A = {ω|Xu(Z)(ω) 6=
Au(Z,Rd)(ω)} ⊂ {ω|Xu(Z)(ω) = ∅} is measurable and P(A) = 0. Let C ∈ C′. Then
{Xu(Z) ∈ FC} = A ∪ {ω|Z(x, ω) < u,x ∈ C}. It is enough to prove the measurability
of {Z(x, ω) < u,x ∈ C} ∩ Ac. Since C is compact and Z is continuous on Ac this is equiv-
alent to {supx∈C Z(x, ω) < u} ∩ Ac. Let Gn be a decreasing sequence of open sets such that
C =

⋂∞
n=1Gn given e.g. by Gn = C + 1/nUd. From the separability of Z follows that for

each n and for all ω ∈ B, supx∈Gn Z(x, ω) = supx∈Gn∩D Z(x, ω), where D is a separating
set for Z. Since D is countable it follows that supx∈Gn Z(x, ω) as a mapping from Ω to
R is measurable. Hence the set {ω| supx∈Gn Z(x, ω) < u} is measurable for each n. Since
{ω| supx∈C Z(x, ω) < u} =

⋃∞
n=1{ω| supx∈Gn Z(x, ω) < u}, it is also measurable and thus also

the set {Z(x, ω) < u,x ∈ C} ∩ Ac is measurable. Taking all together, we have shown that
{Xu(Z) ∈ FC} is measurable. The measurability of Xu(Z) now follows from Lemma A.4.3.
The stationarity and isotropy follow from obvious relations Xu(Z) + x = Xu(Z + x), x ∈ Rd
and θXu(Z) = Xu(θZ), θ ∈ SOd, respectively.

Definition 2.4.5. Let Z be a random closed set with almost surely continuous sample func-
tions. The random closed set Xu(Z) is called the u-level excursion set of a random field
Z.
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Finally we present some basic characteristics of u-level excursion set Xu(Z) of a Gaussian
random field determined by a mean function µZ and a covariance function covZ(x,y). For the
volume fraction m(x) of Xu(Z) we obtain

m(x) = P(Z(x) ≥ u) =P

(
Z(x)− µZ(x)√

covZ(x,x)
≥ u− µZ(x)√

covZ(x,x)

)

=1− Φ

(
u− µZ(x)√
covZ(x,x)

)
, (2.12)

where Φ is a distribution function of a standard normal random variable. In order to obtain
the covariance function we first show an important relation that holds for a bivariate normal
distribution. If

φ(x, y; ρ) =
1

2π
√

1− ρ2
e
− x2+y2−2ρxy

2(1−ρ2)

is the joint probability density function of two standard normal variables with mutual covari-
ance ρ, then it can be easily checked that

∂φ

∂ρ
=

∂2φ

∂x∂y
.

Similar relation holds for a general multivariate normal distribution, see [55, p. 26]. Integrating
the relation with respect to x, y and ρ one obtains

∞∫

a

∞∫

b

φ(x, y; ρ) dxdy = (1− Φ(a))(1− Φ(b)) +

ρ∫

0

φ(a, b; z) dz.

The covariance of Xu(Z) can be written as

C(x,y) = P(Z(x) ≥ u, Z(y) ≥ u)

=
1

2π
√

detV

∞∫

u

∞∫

u

e−
1
2 (s−µZ(x),t−µZ(y))V −1(s−µZ(x),t−µZ(y))T dsdt,

where

V =

(
covZ(x,x) covZ(x,y)
covZ(x,y) covZ(y,y)

)
.

The inverse of V is

V −1 =
1

detV

(
covZ(y,y) − covZ(x,y)
− covZ(x,y) covZ(x,x)

)

and detV = covZ(x,x) covZ(y,y)− cov2
Z(x,y) = covZ(x,x) covZ(y,y)

(
1−κ2

Z(x,y)
)
, where

κZ(x,y) =
covZ(x,y)√

covZ(x,x)
√

covZ(y,y)

is the correlation function of Z. Taking all together and after the substitution x = (s −
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µZ(x))/
√

covZ(x,x), y = (s− µZ(y))/
√

covZ(y,y) we obtain

C(x,y) =
1

2π
√

(1− κ2
Z(x,y))

∞∫

u−µZ (x)√
covZ (x,x)

∞∫

u−µZ (y)√
covZ (y,y)

e
− x

2+y2−2xyκZ (x,y)

2(1−κ2
Z

(x,y)) dxdy

=

∞∫

x̃

∞∫

ỹ

φ(x, y;κZ(x,y)) dxdy = (1− Φ(x̃))(1− Φ(ỹ)) +

κZ(x,y)∫

0

φ(x̃, ỹ; z) dz

= m(x)m(y) +

κZ(x,y)∫

0

φ(x̃, ỹ; z) dz,

where x̃ = u−µZ(x)√
covZ(x,x)

and ỹ = u−µZ(y)√
covZ(y,y)

. The covariance function is thus

cov(x,y) =

κZ(x,y)∫

0

φ(x̃, ỹ; z) dz. (2.13)

If Z is a stationary Gaussian random field determined by µZ = 0 and covZ(r) with
covZ(0) = 1 we particularly obtain

p = 1− Φ(u) (2.14)

and

cov(r) =
1

2π

covZ(r)∫

0

e−
u2

1+z

√
1− z2

dz.

If moreover u = 0, then

cov(r) =
1

2π
arcsin

(
covZ(r)

)
. (2.15)

Thus for the correlation function κ of X0(Z) holds

κ(r) =
2

π
arcsin

(
covZ(r)

)
. (2.16)

Finally, it should be noted that those formulas are already known and in the stationary case
also usually mentioned (see e.g. [41]). However, hard to find their precise derivation, which is
the reason why it was shown here.

2.5 Random measures and Point processes

We introduce random measures and point processes in the similar fashion as was done in [40]
and in [43]. Let E be locally compact, Hausdorff topological space with a countable base and
let B(E) be its Borel σ-algebra. By M we denote the set of all locally finite Borel measures
on E. Let M be the smallest σ-algebra for which all mappings ϕ 7→ ϕ(A), A ∈ B(E) are
measurable.

A counting measure on E is a measure η ∈ M with η(A) ∈ N0 ∪ {∞} for all A ∈ B(E).
Let N be the set of all counting measures on E and let N be the trace σ-algebra of M on N.

Lemma 2.5.1. The set N is a measurable subset of M, i.e. N ∈M.

Proof. Lemma 3.1.2 in [40].
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The last important lemma before the definition of a random measure and a point process
shows that every counting measure can be measurably represented as a sum of Dirac measures.
The Dirac measure δx at x ∈ E is for every A ∈ B(E) defined by

δx(A) =

{
1, if x ∈ A,
0, if x /∈ A.

Lemma 2.5.2. There exist measurable mappings ζi : N→ E such that

η =

η(E)∑

i=1

δζi(η)

for η ∈ N.

Proof. Lemma 3.1.3 in [40].

The counting measure η is simple if η({x}) ≤ 1 for all x ∈ E. Let Ns be the set of all simple
counting measures on E and let Ns be the trace σ-algebra of N on Ns. From the previous
lemma follows that for i, j ∈ N, ζi ∩ ζj is measurable, and since E is a Hausdorff topological
space, that the set {η ∈ N|ζi(η) 6= ζj(η)} is measurable in N. Now, because η is simple if
and only if ζi(η) 6= ζj(η), for all pairs i 6= j, we see, that Ns can be written as a countable
intersection of measurable subsets of N. Hence Ns is a measurable subset of N .

Definition 2.5.1. Let (Ω,A,P) be a probability space and (M,M) be a measurable space of
locally finite measures. A map

ξ : Ω→M

is called a random measure if ξ is A −M measurable. The image measure Pξ on (M,M)
given by Pξ(A) = P(ξ ∈ A) = P(ξ−1(A)) for all A ∈ M is called the distribution of ξ.

Two random measures ξ and ξ′ are stochastically equivalent, ξ
D∼ ξ′, if they have the same

distribution.
A point process is a random measure N which is almost surely concentrated on N. If it

is concentrated on Ns, we call it a simple point process.

Given a random measure ξ we associate a particular realization with every sample point
ω ∈ Ω, which is a locally finite measure on E. We denote such realization by ξ(ω, ·) or just
ξ(·) and sometimes just ξ. The same notation is used for point processes and simple point
processes. From the construction of M,N , and Ns it follows that ξ(ω,A) as a function of ω
is a random variable for every Borel A. The following lemma states that this condition is also
sufficient.

Lemma 2.5.3. The mapping ξ : (Ω,A,P) → (M,M) is a random measure if and only if
{ω ∈ Ω|ξ(ω,G) ≤ r} is measurable for all open, relatively compact G and all r ≥ 0.

The mapping N : (Ω,A,P)→ (N,N ) is a point process if and only if {ω ∈ Ω|ξ(ω,G) = k}
is measurable for all open, relatively compact G and all k ∈ N0.

Proof. Lemma 3.1.5 in [40] or Proposition 9.1.III in [43].

For a measure ϕ ∈ M, the support of ϕ, suppϕ, is the smallest closed set F such that
ϕ(E \ F ) = 0. This leads to the following connection between random measures and random
closed sets.

Proposition 2.5.1. The mapping ϕ→ suppϕ from M to F is measurable. Moreover for every
random measure ξ, supp ξ is a random closed set whose distribution is uniquely determined by
the distribution of ξ.
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Proof. Proposition 8.16 in [42] or Lemma 3.1.4 in [40].

Random measures can be constructed from random sets. One particular way is given by
the following proposition.

Proposition 2.5.2. Let X be a random closed set in E and let µ be a locally finite measure
on E. Then µX : Ω→ M defined by µX(ω,B) = µ(X(ω) ∩B) for each B ∈ B(E) is a random
measure.

Proof. Let us take an open, relatively compact G ⊂ E and r ≥ 0. The restriction µ|G of µ on
G is a finite measure. From Theorem A.4.4 follows that it is upper-semi continuous on F and
therefore measurable. The composition µ|G ◦X : Ω→ R given by (µ|G ◦X)(ω) = µ(X(ω)∩B)
is also measurable. Hence the set {ω ∈ Ω|µX(ω,B) ≤ r} = (µ|G ◦X)−1([0, r]) is measurable,
which together with Lemma 2.5.3 completes the proof.

In the case of simple point processes the correspondence is much stronger.

Proposition 2.5.3. N is a simple point process if and only if its support suppN is a locally
finite random closed set.

Proof. Lemma 3.1.4 in [40].

Finally we present the result similar to the Choquet theorem 2.2.1 for random closed sets.

Theorem 2.5.1. The mapping N : (Ω,A,P)→ (Ns,Ns) is a simple point process if and only
if {ω ∈ Ω|N(ω,C) = 0} is measurable for all C ∈ C.

Let N,N ′ be simple point processes in E. If P(N(C) = 0) = P(N ′(C) = 0) for all C ∈ C,

then N
D∼ N ′.

Proof. Theorem 3.1.1 in [40].

Let G be a topological group that acts measurably on the space E. Then G acts in a
canonical way on M by letting

Sgξ(B) = ξ(g−1B) for B ∈ B(E), g ∈ G. (2.17)

It can be shown (see Section 3.1 in [40]) that the mapping ξ 7→ Sgξ on (M,M) is measurable.
Therefore if ξ is a random measure and g ∈ G, then Sgξ is a random measure. Important
examples are when E = Rd or E = F ′(Rd). For the group G of rigid motions the acting of
G on E is continuous in both cases. In the case of the group of translations, if y ∈ Rd then
Syξ(B) = ξ(B − y) for all B ∈ B(Rd) and we use the notation Syξ ≡ ξ + y.

Note that the action Sg is for random closed sets and random measures defined consistently
in the sense that

suppSgξ = Sg supp ξ. (2.18)

Moreover, if µ is a locally finite measure on E invariant with respect to Sg and X is a random
closed set, then

SgµX = µSgX , (2.19)

where µX is defined as in Proposition 2.5.2.

Definition 2.5.2. The random measure (point process) ξ on E = Rd or E = F ′(Rd) is

stationary if ξ
D∼ ξ + x for all x ∈ Rd. It is isotropic if ξ

D∼ θξ for all rotations θ ∈ SOd.
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2.5.1 Moment measures

Here we focus on the properties of random measures (point processes) that are analogous to
moments of random variables.

Definition 2.5.3. Let ξ be a random measure on E and let Λ be a measure on E defined by

Λ(B) = E ξ(B)

for every Borel B in E. If Λ is locally finite, then we call it the intensity measure (first
moment measure).

It follows easily that Λ is a Borel measure: since Λ(∅) = 0, it is finitely additive and the σ-
additivity follows from Lebesgue’s monotone convergence theorem. Generally the expectation
E ξ(B) may be infinite even for bounded Borel sets, but we take into account only random
measures with locally finite Λ.

By standard arguments of a measure theory it is easy to proof the following result.

Theorem 2.5.2 (Campbell). Let ξ be a random measure on E with intensity measure Λ, and
let f : E → R be a non-negative measurable function. Then

∫
f dξ is measurable and

E

∫

E

f dξ =

∫

E

f dΛ.

Proof. Theorem 3.1.2 in [40].

Similarly to the intensity measure we can construct high-order measures. Let Ek ≡ E ×
· · · × E be equipped with the usual product Borel σ-algebra. For a random measure ξ we use
the notation ξ(k) for a Borel measure on Ek given almost surely by

ξ(k)(B1 ×· · · ×Bk) = ξ(B1)· · · ξ(Bk)

for all B1, . . . , Bk ∈ B(E).

Definition 2.5.4. The kth order moment measure Λ(k) of ξ is the intensity measure of
ξ(k), whenever this intensity measure exists.

Therefore if the kth order moment measure exists, we have

Λ(k)(B1 ×· · · ×Bk) = E ξ(B1)· · · ξ(Bk)

for all B1, . . . , Bk ∈ B(E), and Λ(k) is locally finite. A special role is played by the subset Ek6=
of Ek obtained by removing all sub-diagonals of Ek,

Ek6= = {(x1, . . . , xk) ∈ Ek|xi 6= xj for all i 6= j}.

Definition 2.5.5. Let ξ be a random measure with kth order moment measure Λ(k). The
restriction Λ[k] = Λ(k) |Ek6= of Λ(k) on Ek6= is called the kth order factorial moment measure

of ξ.

Thus the kth order factorial moment measure is a Borel measure given by

Λ[k](B1 ×· · · ×Bk) = E ξ(k)
(
B1 ×· · · ×Bk ∩ Ek6=

)

for all B1, . . . , Bk ∈ B(E). Moment measures and factorial moment measures again satisfy the
Campbell theorem.
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Theorem 2.5.3. Let ξ be a random measure on E with kth order moment measure Λ(k), and
let f : Ek → R be a non-negative measurable function. Then

∫
Ek
f dξ(k) and

∫
Ek
f dξ(k) |Ek6=

are measurable, and

E

∫

Ek

f dξ(k) =

∫

Ek

f dΛ(k) and E

∫

Ek

f dξ(k) |Ek6==

∫

Ek

f dΛ[k].

Finally, the second order covariance measure C(2) is for every bounded A,B ∈ B(E)
given by

C(2)(A×B) = Λ(2)(A×B)− Λ(A)Λ(B) = cov
(
ξ(A), ξ(B)

)
,

whenever both Λ(2) and Λ are locally finite. The second order factorial covariance measure
C [2] is defined analogously. It should be noted that both C(2) and C [2] are signed measures in
the sense of Section A.2 rather than ordinary Borel measures. Moreover, both can be regarded
as second order moment measures of the mean-corrected random signed measure

ξ̃ = ξ − Λ,

again in the functional meaning.
In the following, we consider the case E = Rd. If the intensity measure Λ of a random

measure ξ is absolutely continuous with respect to the d-dimensional Lebesgue measure νd, we
call its density the intensity of ξ and denote it by λ. Thus

Λ(B) =

∫

B

λ dνd =

∫

B

λ(x) dx

for every B ∈ B(Rd). If ξ is a stationary random measure on Rd, then Λ is clearly invariant
under translations. Moreover, since it is well known that the only translation invariant locally
finite measure on Rd is, up to a constant factor, the Lebesgue measure νd, we claim that

Λ = λνd

for some non-negative constant λ, which is then the intensity of ξ.
Similarly to the intensity measure one can study densities of high-order moment measures

and of high-order factorial moment measures. Let ξ be a random measure with kth order
intensity measure Λ(k) that is absolutely continuous with respect to the Lebesgue measure νdk
on Rdk. The density ρ(k) of Λ(k) is called the kth order product density. Analogously we
define the kth order factorial product density ρ[k]. Thus

Λ(k)(B1 ×· · · ×Bk) =

∫

B1

· · ·
∫

Bk

ρ(k)(x1, . . . ,xk) dx1 . . . dxk,

for all B1, . . . , Bk ∈ B(Rd), and equivalently for Λ[k] and ρ[k].
Now we turn the attention to reduced moment measures that appear in high order ergodic

theorems.

Definition 2.5.6. A random measure ξ on Rd is kth order stationary, if its kth moment
measure exists, and for each j = 1, . . . , k, bounded Borel sets B1, . . . , Bj , and x ∈ Rd,

Λ(j)
(
(B1 + x)×· · · × (Bj + x)

)
= Λ(j)(B1 ×· · · ×Bj).

It is easy to see that if ξ is stationary random measure for which the kth order moment
measure exists, it is kth order stationary. The converse is not true in general (see Section 12.6
in [43] for a deeper discussion).
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Proposition 2.5.4. Let ξ be a second order stationary random measure. Then there exists
λD ≥ 0 such that

Λ(2)(B1 ×B2) = λDνd(B1 ∩B2) + Λ[2](B1 ×B2)

for all B1, B2 ∈ B(Rd).

Proof. Since (Rd)2
6= = {(x,y) ∈ (Rd)2|x 6= y} we have D = {(x,x) ∈ (Rd)2|x ∈ Rd} =

(Rd)2 \ (Rd)2
6=. Thus Λ(2) − Λ[2] = Λ(2) |D and

Λ(2) |D (B1 ×B2) = Λ(2)((B1 ×B2) ∩D) = Λ(2)
(
{(x,x)|x ∈ B1 ∩B2}

)
,

for all Borel sets B1, B2 ∈ Rd. Let us define new Borel measure µ on Rd by setting µ(B) =
Λ(2)

(
{(x,x)|x ∈ B}

)
for all Borel B. Clearly, µ is locally finite. From second order stationarity

of ξ follows that µ(B+x) = µ(B) for all Borel B and all x ∈ Rd. Hence µ is a multiple of the
Lebesgue measure, µ = λDνd, and the proof is complete.

Now we proceed to reduced measures.

Proposition 2.5.5. For kth order (second order) stationary random measures on Rd, there
exist reduced measures Λ̆(k), Λ̆[k] and C̆(2), C̆ [2] related to the corresponding kth order measures
Λ(k),Λ[k] and second order measures C(2), C [2], respectively, through equations valid for any
bounded Borel functions of bounded support on (Rd)k, of the type

∫

(Rd)k

f(x1, . . . ,xk)Λ(k)(dx1 ×· · · × dxk)

=

∫

Rd

dx

∫

(Rd)k−1

f(x,x+ y1, . . . ,x+ yk−1)Λ̆(k)(dy1 ×· · · × dyk−1).

Proof. Proposition 12.6.III in [43].

We call Λ̆(k), Λ̆[k], C̆(2), and C̆ [2] the reduced kth order measure, the reduced kth
order factorial measure, the reduced second order covariance measure, and the re-
duced second order factorial covariance measure, respectively. Note that for k = 1
the reduced measure and the reduced factorial measure coincide and are equal to the constant
intensity λ. The measures C̆(2) and C̆ [2] are signed measures on Rd in the sense of Section A.2.
The density of C̆ [2], if it is absolutely continuous with respect to νd, is called the covariance
function and denoted by cov.

Reduced moment measures have some important properties that are, for the particular
choice of Λ̆(k), summarized in the following proposition, which holds for all other reduced
moment measures introduced above.

Proposition 2.5.6. Let Λ̆(k) be the kth order reduced moment measure of a kth order station-
ary random measure ξ on Rd.

(a) Λ̆(k) is a symmetric measure on (Rd(k−1), i.e. Λ̆(k)(A) = Λ̆(k)(−A) for all Borel sets
A ∈ Rd(k−1).

(b) Λ̆(k) is invariant under the shift reflection transformation mapping (u1,u2, . . . ,uk−1) 7→
(−u1,u2 − u1, . . . ,uk−1 − u1).

(c) When Λ(k) is absolutely continuous with respect to the dk-dimensional Lebesgue measure
νdk, with density ρ(k), then Λ̆(k) is absolutely continuous with respect to νd(k−1), and its

density ρ̆(k) is related to ρ(k) by

ρ(k)(x1, . . . ,xk) = ρ̆(k)(x2 − x1, . . . ,xk − x1).
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(d) If k = 2, then Λ̆(2) is positive semi-definite according to Definition A.2.1, i.e. for every
continuous function f of compact support on Rd,

∫

Rd

(f ∗ f∗)(x) Λ̆(2)(dx) ≥ 0,

where f ∗ f∗ is defined by

(f ∗ f∗)(x) =

∫

Rd

f(y)f(y − x) dy.

(e) If k = 2, then Λ̆(2) is translation bounded, i.e. for every bounded Borel set A in Rd,
there exists a finite constant KA such that

Λ̆(k)(x+A) ≤ KA for all x ∈ Rd.

Proof. Proposition 12.6.IV in [43] and Proposition 8.1.II in [56].

The condition of positive semi-definiteness can be equivalently formulated using bounded
functions of bounded support as is shown in Proposition A.2.3.

Corollary 2.5.1. The reduced second order (factorial) covariance measure C̆(2) (C̆ [2]) of a
second order stationary random measure ξ on Rd is symmetric, positive semi-definite and
translation bounded signed measure.

Proof. Corollary 8.1.III in [56].

2.5.2 Characteristics of point processes

Throughout this subsection E = Rd. For the intensity measure of a point process N we have

Λ(B) = E
∑

x∈N
1B(x)

for every Borel B. If Λ is absolutely continuous with respect to νd, then

Λ(B) = E
∑

x∈N
1B(x) =

∫

B

λ(x) dx. (2.20)

For stationary N the intensity is constant, λ(x) = λ.
Let N be the point process with second order moment measure Λ(2). The relation between

Λ(2) and Λ[2] can be easily derived. For A,B ∈ B(E) we obtain

Λ(2)(A×B) = E
∑

x1,x2∈N
1A(x1)1B(x2)

= E

6=∑

x1,x2∈N
1A(x1)1B(x2) +E

∑

x∈N
1A(x)1B(x)

= Λ[2](A×B) + Λ(A ∩B).

Note that this relation holds for arbitrary E and not justRd. It is clear that Λ(2)(A×B) cannot
be absolutely continuous with respect to ν2d whenever is Λ, and hence N , non-trivial. On the
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other side, for the factorial moment measure Λ[2] the absolute continuity is often assumed. For
such a point process we can write Theorem 2.5.3 in the form:

E




6=∑

x,y∈N
f(x,y)


 =

∫

Rd×Rd

f(x,y)ρ[2](x,y) dx dy

for any non-negative, measurable function on Rd ×Rd.
The second order factorial product density ρ[2] normalized by the intensities λ(x) and λ(y),

g(x,y) =
ρ[2](x,y)

λ(x)λ(y)
for all x,y ∈ Rd,

is called the pair correlation function. If N is second order stationary then from Proposition
2.5.6 (c) follows

g(x,y) =
ρ[2](x,y)

λ2
=
ρ̆[2](x− y)

λ2
= g(r),

where r = x− y, and the pair correlation function is thus dependent only on the difference of
x and y. Moreover, if N is isotropic it can be easily shown that g(r) = g(r), where r = ‖r‖.

Important integral characteristic of a second order stationary point process N is the reduced
second order factorial moment measure Λ̆[2] that is applied on the ball Br(0) and normalized
by λ2. The result is called Ripley’s K-function and denoted by K(r). Thus we have

K(r) =
Λ̆[2](Br(0))

λ2
for all r ≥ 0.

For a second order stationary point process that is also isotropic one can, using spherical
coordinates, directly derive the connection between the K-function and the pair correlation
function that is given by

g(r) =
1

dcdrd−1

dK(r)

dr
for all r ≥ 0,

where cd is the d-dimensional volume of the unit sphere in Rd.

Finally, we show the useful connection between the variance of a number of points in a
Borel set, the pair correlation function, and the intensity. Let N be a second order stationary
point process with intensity λ, pair correlation function g, and let B ⊂ Rd be a Borel set.
From previous considerations and Propositions 2.5.5 and 2.5.6 follows

var(N(B)) = Λ(2)(B,B)− Λ(B)2 = Λ[2](B,B) + Λ(B)− Λ(B)2

=

∫

Rd×Rd

1B(x)1B(y)ρ[2](x,y) dx dy + λνd(B)− λ2ν2
d(B)

=

∫

Rd×Rd

1B(x)1B(x+ y)ρ̆[2](y) dx dy + λνd(B)− λ2ν2
d(B)

= λ2

∫

Rd

γB(y)g(y) dy + λνd(B)− λ2ν2
d(B), (2.21)

where γB(y) is the set covariance of B defined by

γB(r) = νd
(
B ∩ (B − r)

)
(2.22)
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for all r ∈ Rd. If N is isotropic, we may use the spherical coordinates and further obtain

var(N(B)) = λ2

∫

Rd

γB(y)g(y) dy + λνd(B)− λ2ν2
d(B)

= λ2

∞∫

0

∫

Sd−1

γB(ru)g(r)rd−1 σd−1(du) dr + λνd(B)− λ2ν2
d(B)

= λ2dcd

∞∫

0

γB(r)g(r)rd−1 dr + λνd(B)− λ2ν2
d(B),

where Sd−1 is the unit sphere in Rd, σd−1 is the usual spherical measure (non-normalized and
thus equal to the d − 1 dimensional Hausdorff measure) on Sd−1, dcd is the surface area of
Sd−1, dcd = σd−1(Sd−1), and γB(r) is the isotropised set covariance given by

γB(r) =
1

dcd

∫

Sd−1

γB(ru) σd−1(du)

for all r ≥ 0.

2.5.3 The Poisson point process

In this part we introduce the most important point process model. We follow the definition
in [40] Section 3.2. Let E be a locally compact, Hausdorff topological space with a countable
base.

Definition 2.5.7. Let N be a simple point process in E with intensity measure Λ. We say
that N is a Poisson point process in E if the two following conditions are satisfied:

(a) P
(
N(A) = k

)
= e−Λ(A) Λk(A)

k! for all k ∈ N0 and all bounded Borel A ⊂ E,

(b) N(A1), . . . , N(An) are independent random variables for every n ∈ N and all pairwise
disjoint Borel sets A1, . . . , An in E.

It can be shown that the intensity measure of the Poisson point process has no atoms (see
e.g. [40, Lemma 3.2.1]). The following theorem shows the wideness of the class of Poisson
point processes.

Theorem 2.5.4. Let Λ be a locally finite measure on E without atoms. Then there exists a
Poisson process in E with intensity measure Λ and it is (up to equivalence) uniquely determined.

Proof. Theorem 3.2.1 in [40].

There is an important corollary of the previous theorems for stationary Poisson point pro-
cesses in Rd.

Corollary 2.5.2. Let λ ≥ 0. Then there is (up to equivalence) precisely one stationary Poisson
process N in Rd with intensity λ. Moreover, N is also isotropic.

Proof. Corollary 3.2.1 in [40].

The following theorem states the most important properties of the Poisson point process.

Theorem 2.5.5. Let N be a Poisson point process in E with intensity measure Λ.
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(a) Let A1, A2, . . . be pairwise disjoint Borel sets in E. Then the point processes given by the
restrictions N |A1

, N |A2
, . . . are independent.

(b) Let A be a Borel set in E with 0 < Λ(A) < ∞ and let k ∈ N. Then under the condition
N(A) = k the points ζ1, . . . , ζk of N |A are independent, identically distributed random
points in E with distribution

Pζi =
Λ |A
Λ(A)

, i = 1, . . . , k.

Proof. Theorem 3.2.2 in [40].

The last statement shows that the factorial moment measures of a Poisson point process
are the powers of its intensity measure.

Proposition 2.5.7. For a Poisson point process N in E with intensity measure Λ and for
m ∈ N, the mth factorial moment measure Λ(m) of N satisfies

Λ[m] = Λm.

Proof. Corollary 3.2.4 in [40].

2.5.4 Relation to random closed sets

We again assume E = Rd throughout this subsection. In proposition 2.5.2 we have seen how
to construct a random measure from a random closed set. The canonical way is to use the
d-dimensional Lebesgue measure νd.

Definition 2.5.8. Let X be a random closed set in Rd. The random measure νX defined by
νX(B) = νd(X ∩B) for each B ∈ B(Rd) is called the volume measure of X.

By Fubini-Tonelli’s theorem, it follows that for every B ∈ B(Rd)

Λ(B) = E νX(B) = E ν(X ∩B) =

∫

B

E1X(x) dx =

∫

B

m(x) dx,

where m(x) is the volume fraction of X. Therefore Λ is locally finite and hence it is the
intensity measure with intensity λ(x) that is νd-almost surely equal to the volume fraction
m(x) of X. For a stationary RACS X, both λ and m are constant and therefore λ = m = p.

By the same arguments as for the intensity measure we obtain that the kth order moment
measure Λ(k) exists and is absolutely continuous with respect to the Lebesgue measure νdk
on (Rd)k. Thus the stationary RACS X is also kth order stationary for every k ≥ 1. The
corresponding kth order product density ρ(k) is νdk-almost surely given by

ρ(k)(x1, . . . ,xk) = E1X(x1) · . . . · 1X(xk)
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for all x1, . . . ,xk ∈ Rd. Since obviously νdk
(
(Rd)k \ (Rd)k6=

)
= 0, the definition of the kth

order factorial moment measure yields

Λ[k](B1 ×· · · ×Bk) =E

∫

(B1×...×Bk)∩(Rd)k6=

1X(x1) . . .1X(xk) dx1 . . . dxk

= E

∫

B1×...×Bk

1X(x1) . . .1X(xk) dx1 . . . dxk

=

∫

B1×...×Bk

ρ(k)(x1, . . . ,xk) dx1 . . . dxk

=

∫

(B1×...×Bk)∩(Rd)k6=

ρ(k)(x1, . . . ,xk) dx1 . . . dxk

= Λ(k)(B1 ×· · · ×Bk)

for all B1, . . . , Bk ∈ B(Rd). Hence

Λ(k) = Λ[k] and ρ(k) = ρ[k].

For the particular value k = 2 we have

ρ(2)(x,y) = ρ[2](x,y) = E1X(x)1X(y) = C(x,y)

for all x,y ∈ Rd, where C(x,y) is the covariance of X. The second order covariance measure
C(2) equals the second order factorial covariance measure C [2] and both are also absolutely con-
tinuous with density given by the covariance function cov(x,y) of X. Hence λD in Proposition
2.5.4 equals 0.

2.5.5 The Bartlett spectrum

The Bartlett spectrum of a stationary random closed set was defined in Subsection 2.3.3. Here
we extend the notion to stationary random measures. The construction is adapted from [56].
For the majority of statements we provide full direct proofs.

Let ξ be a second order stationary random measure (point process) and C̆ [2] the reduced
second order factorial covariance measure of ξ. The measure C̆ [2] is understood as a signed
measure on Rd in the sense of Section A.2. From Proposition 2.5.5 defining C̆ [2] follows that

C̆ [2] = Λ̆[2] − λ2νd. (2.23)

Thus C̆ [2] is a difference of two positive measures. Corollary 2.5.1 implies that C̆ [2] is positive
semi-definite. Thus from Theorem A.2.3 there exists a uniquely given Fourier transform of
C̆ [2], here denoted by Γ, such that

∫

Rd

(f ∗ f∗)(x) C̆ [2](dx) = (2π)d/2
∫

Rd

|f̌(ω)|2 Γ(dω)

for all f ∈ Cc(Rd), where f∗ is the involution defined by (A.6) and f̌(ω) = f̂(−ω) is given by
(A.8).

Definition 2.5.9. The Bartlett spectrum of a second order stationary random measure ξ
on Rd is the Fourier transform Γ of the reduced second order factorial covariance measure C̆ [2]

of ξ.
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Note that the Fourier transform of a positive semi-definite measure is a positive measure
and hence a locally finite Borel measure in the usual sense. Due to specific properties of C̆ [2],
the Bartlett spectrum has several specific properties as well.

Proposition 2.5.8. Let Γ be the Bartlett spectrum of a second order stationary random mea-
sure ξ on Rd. Then

(a) Γ is symmetric, positive, and translation-bounded (see Proposition 2.5.6),

(b) for all bounded measurable functions f of bounded support,

∫

Rd

(f ∗ f∗)(x) C̆ [2](dx) = (2π)d/2
∫

Rd

|f̌(ω)|2 Γ(dω),

(c) for all ω ∈ Rd,

Γ
(
{ω}

)
= lim
a→∞

(2π)d/2

(2a)d

∫

[−a,a]d

e−iω·x C̆ [2](dx),

(d) if ζf =
∫
Rd
f(x) ξ(dx) for a bounded measurable real function f of bounded support,

var ζf = λD(f ∗ f∗)(0) + (2π)d/2
∫

Rd

|f̌(ω)|2 Γ(dω) ≥ 0,

where λD is the constant from Proposition 2.5.4,

(e) it holds

Γ
(
{0}
)

= lim
a→∞

(2π)d/2 var ξ
(
[−a, a]d

)

(2a)2d
.

Proof. (a) Let f ∈ Cc(Rd). Defining g(x) = f(−x) for every x it is easy to show ǧ(ω) = f̌(−ω)
and g ∗ g∗(x) = f ∗ f∗(−x). From the symmetry of C̆ [2] (Corollary 2.5.1) follows

∫

Rd

(g ∗ g∗)(x) C̆ [2](dx) =

∫

Rd

(f ∗ f∗)(x) C̆ [2](dx).

Since g ∈ Cc(Rd) then Theorem A.2.3 implies

∫

Rd

|f̌(ω)|2 Γ(dω) =

∫

Rd

|f̌(−ω)|2 Γ(dω).

Since f was arbitrary, the uniqueness of Γ implies the symmetry of Γ. Positivity follows
directly from Theorem A.2.3 and translation-boundedness is Proposition A.2.7.

(b) Proposition A.2.5.

(c) Let ω ∈ Rd, a > 0 and fa;ω(x) = (π/2)d/2a−d1[−a,a]d(x)e−iω·x for all x ∈ Rd, where

1[−a,a]d is the indicator of the d-dimensional cube [−a, a]d ≡ [−a, a] × . . . × [−a, a]. The
inverse Fourier transform reads

f̌a;ω(ξ) =
1

(2a)d

∫

[−a,a]d

eiξ·xe−iω·x dx =

d∏

j=1

sin
(
a(ξj − ωj)

)

a(ξj − ωj)
.
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From Proposition A.2.8 follows f̌a;ω ∈ L1(Rd,Γ) and

(2π)d/2

(2a)d

∫

[−a,a]d

e−iω·x C̆ [2](dx) =

∫

Rd

f̌a;ω(ξ) Γ(dξ)

for every a > 0. Let

g = f̌1;ω +

d∑

j=1

(
f̌1;ω−sj + f̌1;ω+sj

)
,

where sj = (sj;1, . . . , sj,d) ∈ Rd are such that sj;` = π/2δi,j (zeros except π/2 at the jth
position). Since f̌a;ω → 1{ω} point-wise as a → ∞, it can be checked that |fa;ω| ≤ g

for all a > 2 and g ∈ L1(Rd, µ̂), the Lebesgue dominated convergence theorem yields∫
Rd
f̌a;ω(ξ) Γ(dξ)→ Γ

(
{ω}

)
as a→∞.

(d) Since ξ is stationary, E ζf = λ
∫
Rd
f(x) dx, where λ is the intensity of ξ. From the

symmetry of C̆(2) (Corollary 2.5.1) follows

var ζf =E ζ2
f − (E ζf )2

=

∫∫

Rd×Rd

f(x)f(y) Λ(2)(dx× dy)− λ2

∫∫

(Rd)2

f(x)f(y) dxdy.

From Proposition 2.5.4 follows
∫∫

Rd×Rd

f(x)f(y) Λ(2)(dx× dy) = λD

∫

Rd

f2(x) dx+

∫∫

Rd×Rd

f(x)f(y) Λ[2](dx× dy).

Hence

var ζf =λD

∫

Rd

f2(x) dx+

∫∫

Rd×Rd

f(x)f(y) Λ[2](dx× dy)− λ2

∫∫

(Rd)2

f(x)f(y) dxdy

=λD

∫

Rd

f2(x) dx+

∫∫

Rd×Rd

f(x)f(y) C [2](dx× dy)

=λD

∫

Rd

f2(x) dx+

∫∫

Rd×Rd

f(y)f(y − x) dy C̆ [2](dx)

=λD(f ∗ f∗)(0) +

∫

Rd

(f ∗ f∗)(x) C̆ [2](dx)

and we can use (b). The non-negativity is obvious.

(e) Let fa = 1[−a,a]d for each a > 0. Then ξ
(
[−a, a]d

)
=
∫
Rd
fa(x) ξ(dx) and by (d),

(2π)d/2 var ξ
(
[−a, a]d

)

(2a)2d
=
πd/2λD
2d/2ad

+

∫

Rd

(2π)d|f̌a(ω)|2
(2a)2d

Γ(dω),

since (fa ∗ f∗a )(0) = (2a)d. For the inverse Fourier transform f̌a(ω) we have

f̌a(ω) = (2π)−d/2
∫

[−a,a]d

eiω·x dx = (2π)−d/22d
d∏

j=1

sin(aωj)

ωj
,
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where ω = (ω1, . . . , ωd) ∈ Rd. The integrand is thus

(2π)d|f̌a(ω)|2
(2a)2d

=

d∏

j=1

sin2(aωj)

(aωj)2
.

Clearly (2π)d(2a)−2d|f̌a(ω)|2 → 1{0}(ω) point-wise as a → ∞. Let ϑ(x) = 1 for x ∈
[−1, 1] and ϑ(x) = x−2 for x ∈ (−∞,−1) ∪ (1,∞). Obviously g(ω) =

∏d
j=1 ϑ(ωj) ≥

(2π)d(2a)−2d|f̌a(ω)|2 for all a > 1 and all ω ∈ Rd. Furthermore, from the translation
boundedness of Γ and the convergence of series

∑∞
k=1 k

−2 follows that g ∈ L1(Rd,Γ).
Finally, the Lebesgue dominated convergence theorem yields

∫

Rd

(2π)d|f̌a(ω)|2
(2a)2d

Γ(dω)→ Γ
(
{0}
)

as a→∞,

which completes the proof.

From the decomposition (2.23), the uniqueness of the Fourier transform stated in Theorem
A.2.3, and Proposition A.2.6 follows that

Γ = Γ2 − λ2δ0,

where Γ2 is the Fourier transform of Λ̆[2]. Thus the Bartlett spectrum may have a pole at the
origin 0.

From Proposition A.2.4 follows that if the reduced factorial covariance measure C̆ [2] is
bounded, then the Bartlett spectrum is absolutely continuous with respect to νd, and its
density fΓ is given by

fΓ(ξ) = (2π)−d/2
∫

Rd

e−iξ·x C̆ [2](dx) ≥ 0. (2.24)

If C̆ [2] is absolutely continuous with respect to νd, with continuous density cov(x), then cov
is positive semi-definite function and by Bochner’s theorem A.2.2 the Bartlett spectrum Γ is
bounded and

cov(x) = (2π)−d/2
∫

Rd

eiξ·x Γ(dξ). (2.25)

If moreover C̆ [2] is bounded, that is cov ∈ L1(Rd, νd), then

fΓ(ξ) = (2π)−d/2
∫

Rd

e−iξ·x cov(x) dx. (2.26)

From (2.25) further follows that fΓ ∈ L1(Rd, νd), since Γ(Rd) = cov(0), and the inversion
formula (Theorem A.2.1) yields

cov(x) = (2π)−d/2
∫

Rd

eiξ·xfΓ(ξ) dξ.

2.5.6 Ergodic theorems

We have already discussed ergodic theorems for random closed sets in Subsection 2.2.3. Now
we introduce a more general approach for random measures that particularly covers ergodic
theorems for point processes and also for random closed sets. We restrict ourselves to E = Rd.
More general treatment can be found in [43] which is our main reference here.
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Let ξ be a stationary random measure on Rd with distribution Pξ and Sy be the action of
the group of translations of Rd given by (2.17), i.e.

Sxξ(B) = ξ(B − x)

for all x ∈ Rd and B ∈ B(Rd). We denote by I the σ-algebra of events in M, invariant under
all translations, that is, of those sets M ∈M for which

Pξ
(
M \ SxM ∪ SxM \M

)
= 0 for all x ∈ Rd.

If I is trivial, that is, Pξ(I) = 0 or 1 for every I ∈ I, we say that ξ is metrically transitive.
A convex averaging sequence {Kn, n ∈ N} is again a sequence of non-empty convex

compact sets, non-decreasing in the sense of inclusion, Kn ⊂ Kn+1 for n ∈ N, such that
r(Kn)→∞ as n→∞, where r(Kn) is given by (2.3).

Definition 2.5.10. A stationary random measure (point process) ξ on Rd is

(a) mixing, if for all V,W ∈M (V,W ∈ N respectively)

Pξ(SxV ∩W )→ Pξ(V )Pξ(W ) as ‖x‖ → ∞,

(b) weakly mixing, if for all such V,W ,

1

νd(Kn)

∫

Kn

∣∣Pξ(SxV ∩W )−Pξ(V )Pξ(W )
∣∣dx→ 0 as n→∞,

(c) ergodic, if for all such V,W ,

1

νd(Kn)

∫

Kn

Pξ(SxV ∩W ) dx→ Pξ(V )Pξ(W ) as n→∞,

for any convex averaging sequence {Kn, n ∈ N}.
It is easy to see that mixing implies weak mixing and this further implies ergodicity. It can

also be shown that metrical transitivity is equivalent to ergodicity, [43, Proposition 12.3.III].
A direct consequence of Definition 2.5.8 of the volume measure νX of a random closed set X
is that there is an equivalence in the ergodicity, weak mixing, and mixing, respectively, for X
and for νX .

Proposition 2.5.9. The stationary Poisson point process is mixing.

Proof. Corollary 12.3.VII in [43].

The first ergodic theorem that we mention is based on classical ergodic theorems that were
given in [57].

Theorem 2.5.6. Let (Ω,A,P) be a probability space, {Sx|x ∈ Rd} a group of measure preserv-
ing transformations acting measurably on (Ω,A,P), {Kn, n ∈ N} a convex averaging sequence
in Rd, and I the σ-algebra of events in A that are invariant under the transformations {Sx}.
Let further f be a random variable on (Ω,A,P).

(a) If E |f | <∞ then

1

νd(Kn)

∫

KN

f(Sxω) dx→ E(f |I) as n→∞

almost surely.
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(b) If f ∈ Lp(P) and p ≥ 1 then

E

∣∣∣∣∣∣
1

νd(Kn)

∫

KN

f(Sxω) dx−E(f |I)

∣∣∣∣∣∣

p

→ 0 as n→∞.

Proof. Theorem 6.1 and Theorem 6.2 in [57]. See also Proposition 12.2.II in [43].

For the definition and properties of the conditional expectation E(f |I) we refer the reader
to Section 34 in [46]. The only thing we need is that if I is trivial, then E(f |I) = E(f) almost
surely. The application of the previous theorem to random measures yields the following
proposition.

Proposition 2.5.10. Let ξ be an ergodic random measure (point process), f a measurable
function on (M,M) (on (N,N ) respectively) and {Kn} a convex averaging sequence in Rd.
Then

1

νd(Kn)

∫

Kn

f(Sxξ) dx→ E f(ξ) as n→∞

almost surely if E |f(ξ)| <∞ and in Lp mean if f ∈ Lp(M,Pξ) for p ≥ 1.

Proof. Let us identify (Ω,A,P) with (M,M,Pξ) or with (M,M,Pξ) in the case of point
process. The transformations {Sx} act measurably on M and since ξ is stationary, they are
measure preserving. The assertion follows from the previous theorem and the fact, that I is
trivial for ergodic ξ.

The following important ergodic theorems deal with moment measures. Recall that C0 is
the half-open unit cube given by (2.5).

Theorem 2.5.7. Let ξ be an ergodic random measure on Rd and {Kn} a convex averaging
sequence in Rd. Then

ξ(Kn)

νd(Kn)
→ E ξ(C0) as n→∞

a.s., in L1 mean, and in a mean square if ξ is second order stationary.

Proof. Theorem 12.2.IV in [43].

Theorem 2.5.8. Let ξ be a kth order stationary ergodic random measure on Rd with reduced
kth order moment measure Λ̆(k), and B1, . . . , Bk−1 be bounded Borel sets in Rd. Then for any
convex averaging sequence {Kn} in Rd, as n→∞,

1

νd(Kn)

∫

Kn

ξ(x+B1) . . . ξ(x+Bk−1)ξ( dx)→ Λ̆(k)(B1 ×· · · ×Bk−1) a.s..

Proof. Theorem 12.6.VI in [43].

The previous theorem holds also for factorial moment measures.

Corollary 2.5.3. Let ξ be an ergodic second order stationary random measure on Rd. Then
for any bounded Borel set B and any convex averaging sequence {Kn}, as n→∞,

C̆(2)(Kn)

νd(Kn)
→ 0,

1

νd(Kn)

∫

Kn

ξ̃(x+B)ξ̃( dx)→ C̆(2)(B) a.s.,

where ξ̃ is a mean-corrected random signed measure given by ξ̃ = ξ − Λ.
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Proof. Corollary 8.1.III in [56].

2.6 Marked point processes

Important extension of point processes is given by marked point processes. They are char-
acterised by the presence of an additional information at every point of the underlying point
process. In the following we present only the basic definition and refer the reader to [40, 56]
for more details.

By M we denote a locally compact, Hausdorff topological space with a countable base and
we assume that Rd ×M is equipped with the product topology.

Definition 2.6.1. A marked point process in Rd with mark space M is a simple point
process Y in Rd ×M with intensity measure Θ satisfying

Θ(C ×M) <∞ for all C ∈ C.

If Y is a marked point process in Rd, its image under the projection (y,m) 7→ y is an ordinary
point process Y 0 in Rd that is called the ground process of Y .

In the following we will always assume that the ground process of a marked point process
is simple, which may not be true in general.

On Rd ×M we define the action of the group of translations of Rd by setting Sy(x,m) =
(Syx,m) = (x + y,m) for all y ∈ Rd and all (x,m) ∈ Rd ×M . Thus Sy is continuous on
Rd ×M and hence measurable. For a marked point process Y we write SyY ≡ Y + y, where
SyY is defined by (2.17). Clearly, SyY

0 = Y 0 + y.

A marked point process Y is stationary if Y
D∼ Y + x for all x ∈ Rd. It is clear that the

ground process Y 0 of a stationary marked point process Y is stationary.

Theorem 2.6.1. If Y is a stationary marked point process in Rd with mark space M and
intensity measure Θ 6= 0, then

Θ = λνd ⊗Q

with 0 < λ <∞, which is the intensity of the ground process Y 0, and a (uniquely determined)
probability measure Q on M .

Proof. Theorem 3.5.1 in [40].

Important subclass of marked point processes is given by independently marked point pro-
cesses. If Y is a marked point process then Lemma 2.5.2 yields

Y =

Y (Rd×M)∑

i=1

δ(yi,mi), (2.27)

where y1,y2, . . . are random variables in Rd and m1,m2, . . . are random variables in M .

Definition 2.6.2. The marked point process Y isindependently marked if the marks
m1,m2, . . . are independently, identically distributed, and are independent of locations y1,y2, . . . ,
where {(mi,yi)} corresponds to Y according to the previous representation. The distribution
Q of mi is called the mark distribution of Y .

See [56, Definition 6.4.III] for a more general definition of independent marking that includes
also the dependence of the mark distribution on the location.
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Theorem 2.6.2. Let Y be an independently marked point process in Rd with intensity measure
Θ and mark distribution Q. Then

Θ = Λ⊗Q,
where Λ is the intensity measure of the ground process Y 0.

Proof. Theorem 3.5.6 in [40].

The last statement deals with the case where the ground process is a Poisson point process.

Theorem 2.6.3. Let Y be an independently marked point process in Rd such that its ground
process Y 0 is a Poisson point process. Then Y is a Poisson point process.

Proof. Theorem 3.5.7 in [40].

2.7 Particle processes

In this section we introduce practically important class of models of stochastic geometry in Rd.
We follow Chapter 4 in [40]. As a consequence of Theorem A.4.2, the system F ′ = F ′(Rd) of
non-empty closed subsets of Rd equipped with the Fell topology is a locally compact, Hausdorff
topological space with a countable base. Hence we may consider a point processes on F ′. The
subset C′ of F ′ given by non-empty compact sets is by Corollary A.5.2 a Borel subset of F ′.
We always assume that C′ is equipped with topology of the Hausdorff metric introduced in
Appendix A.5 and with the Borel σ-algebra generated by this topology. By Corollary A.5.2,
every Borel set in C′ is a Borel set in F ′.
Definition 2.7.1. LetW be a Borel subset of C′. A simple point process Y in F ′ concentrated
on W, i.e. P

(
Y (F ′ \W) > 0

)
= 0, for which the intensity measure exists is called a particle

process in W. If W = C′ we call Y a particle process in Rd.

If Θ is the intensity measure of a particle process Y in W, it follows Θ(F ′ \ W) = 0. By
Definition 2.5.3 the intensity measure Θ exists if it is locally finite. It can be shown (see [40,
Lemma 2.3.1]) that this is equivalent to

Θ(FC) <∞ for all C ∈ C′. (2.28)

The action of the group of translations of Rd on Ns(F ′) is induced in a usual canonical way
(2.17) from the action (2.1) on F ′. Hence

SyY (F ) = Y (F − y) for all y ∈ Rd, F ∈ B(F),

where F − y = {G− y|G ∈ F}.
From now on let assume that W is invariant under translations, i.e. C + x ∈ W for all

C ∈ W and all x ∈ Rd. For a stationary particle process Y in W it is possible to find a useful
decomposition of the intensity measure Λ. To do this we need a Borel measurable mapping
z : W → Rd called a centre function on W that satisfies z(C + x) = z(C) + x for every
C ∈ W and every x ∈ Rd. Possible choices on C′ are the centre of the smallest ball containing
C (circumcentre of C), or the Steiner point of the convex hull of C, see [40]. In Chapter 3
we develop a new centre function motivated by the centroid (centre of mass) on certain Borel
subsets of C′.

For a centre function z on W we define

W0 = {C ∈ C′|z(C) = 0} (2.29)

and call it the grain space. The measurability of z yields that W0 is a Borel set in C′ and
hence in F ′. Further we define the mapping ϕ : Rd ×W0 →W by

ϕ(x, C) = C + x, (2.30)

which is clearly a bijection.
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Theorem 2.7.1. Let Y be a stationary particle process in W with intensity measure Θ 6= 0.
Then there exist a number λ ∈ (0,+∞) and a probability measure Q on W0 such that

Θ = λϕ(νd ⊗Q).

The number λ and the measure Q are uniquely determined.

Proof. Analogous to the proof of Theorem 4.1.1 in [40].

The number λ is called the intensity and the measure Q the grain distribution of the
stationary particle process Y inW. A random closed set concentrated onW0 with distribution
Q is called the typical grain of Y . If Y is isotropic, W is invariant under rotations, and z is
compatible with rotations, then Q is rotation invariant. The compatibility of z with rotations
means that z(θC) = θz(C) for all C ∈ W and all rotations θ ∈ SOd. The condition (2.28)
gives a restriction on the grain distribution of a stationary particle process.

Theorem 2.7.2. The probability measure Q onW0 is the grain distribution of some stationary
particle process if an only if

∫

W0

νd(C + rBd)Q(dC) <∞ for some r > 0.

If Q satisfies the previous relation and if λ > 0 is given, then there exists (up to equivalence)
precisely one Poisson particle process Y in W with intensity λ and grain distribution Q. More-
over if W is invariant under rotations and z is compatible with rotations, then Y is isotropic
if and only if Q is rotation invariant.

Proof. Theorem 4.1.2 in [40].

If Y is a particle process in W and z is a centre function on W, then

Y 0 =
∑

C∈Y
δz(C) (2.31)

is a random counting measure on Rd. In general Y 0 is not a point process in Rd since it
may not be locally finite. In the stationary case the situation is simple and we may state the
following connection to marked point processes.

Theorem 2.7.3. Let Y be a stationary particle process in W, and let z be a centre function
on W. Then Y 0 is a stationary point process in Rd, and

Ỹ =
∑

C∈Y
δ(
z(C),C−z(C)

) (2.32)

is a stationary marked point process with mark space W0. The intensities of Y, Y 0, and Ỹ are
the same. The mark distribution of Ỹ is the grain distribution Q of Y .

Proof. Theorem 4.2.1 in [40].

For Poisson particle processes we have the following assertion.

Theorem 2.7.4. Let Y be a stationary Poisson particle process in W, and let z be a centre
function on W. Then Y 0 is a stationary Poisson process and Ỹ is an independently marked
stationary Poisson process with mark space W0.

Proof. Theorems 4.1.4 and 4.2.2 in [40].
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Let us now focus on the non-stationary case. It can be shown (see [40, Section 11.1]) that
the locally finite intensity measure Θ of a particle process Y in W with centre function z has
a decomposition

Θ(A) =

∫

W0

∫

Rd

1A(C + x)ρ(C,dx)Q(dC) (2.33)

for all A ∈ B(C′), where Q is a probability measure on W0 and ρ is a function that is Borel
measurable in the first variable and a locally finite measure in the second variable. Following
[40], it is sometimes possible to assume that ρ(C, ·) is for each C ∈ W0 absolutely continuous
with respect to νd, with density η(C,x). Then we obtain

Θ(A) =

∫

W0

∫

Rd

1A(C + x)η(C,x) dxQ(dC) (2.34)

for all A ∈ B(C′). The local finiteness of Θ implies that η is locally integrable onW0×Rd with
respect to the product measure Q⊗νd. The following proposition deals with the general case
when ρ is a locally finite measure independent of the first argument.

Proposition 2.7.1. If in the decomposition (2.33) of the intensity measure Θ of a particle
process Y holds ρ(C, ·) = ρ(·) for all C ∈ W0, then

Θ = ϕ(Λ⊗Q),

where Λ = ρ is a locally finite measure on Rd and Q is a probability measure on W0. The
measures Λ and Q are uniquely determined.

Moreover Y 0 given by (2.31) is a point process in Rd with intensity η, and Ỹ given by
(2.32) is a marked point process in Rd with mark space W0, ground process Y 0 and intensity
measure Θ̃ given by

Θ̃ = Λ⊗Q .

Proof. Let ϕ be defined by (2.30) and ϕ−1(Θ) be the image measure of Θ on Rd ×W0. For
every Borel A ∈ Rd and every Borel B ∈ W0 we have

ϕ−1(Θ)(A×B) = Θ(ϕ(A×B)) =

∫

W0

∫

Rd

1ϕ(A×B)(C + x)ρ(dx)Q(dC)

=

∫

W0

∫

Rd

1A(x)1B(C)ρ(dx)Q(dC) =

∫

A

ρ(dx) ·
∫

B

Q(dC) = (Λ⊗Q)(A×B).

The uniqueness is trivial. For the proof of the second part we show that Ỹ is a marked point
process with desired properties. The result for Y 0 then follows. We proceed similarly to the
proof of Theorem 4.2.1 in [40]. First let us show the measurability of Ỹ . By Lemma 2.5.3
it is enough to show that {Ỹ (A) = k} is measurable for all Borel A ∈ Rd × W0 and all
k ∈ N0. From the measurability of the centre function z follows the measurability of the
mapping ϑ : W → Rd × W0 defined by ϑ(C) =

(
z(C), C − z(C)

)
for all C ∈ W. Since,

{Ỹ (A) = k} = {Y (ϑ−1(A)) = k} the measurability of Ỹ follows. Let A be a Borel set in Rd

and B be a Borel set in W0. Since ϑ is the inverse of previously defined ϕ we obtain

Θ̃(A×B) = E Ỹ (A×B) = EY (ϑ−1(A×B)) = Θ(ϕ(A×B)) = (Λ⊗Q)(A×B).

Hence Θ̃ = Λ⊗Q. From local finiteness of Λ and finiteness ofQ follows that E Ỹ (C×W0) <∞
for every compact C ∈ Rd and hence Ỹ is a.s. locally finite and therefore, it is a marked point
process in Rd.
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Under the assumptions of the previous theorem we analogously to the stationary case
call Λ the intensity measure and Q the grain distribution of Y . A random closed set
concentrated on W0 with distribution Q is called the typical grain of Y . If ρ is absolutely
continuous with respect to νd, with density η, then clearly Θ allows the decomposition (2.34)
with η(C,x) = η(x) for all C ∈ W0 and thus Λ = ηνd. In such a case we call η the intensity
of Y .

Now let us consider the opposite situation with given marked point process Ỹ in Rd with
mark space W0 being an arbitrary Borel subset of C′.

Definition 2.7.2. A marked point process Ỹ in Rd with mark space W0 ∈ B(C′) is called a
germ-grain process whenever a measure Y on F ′ defined by

Y =
∑

(x,C)∈Ỹ
δC+x

has a locally finite intensity measure. In the positive case Y defines a particle process called
the particle process generated by Ỹ .

If Θ̃ is the intensity measure of Ỹ and Θ the intensity measure of Y , then clearly

Θ = ϕ(Θ̃).

If a germ-grain process Ỹ is stationary then Y is also stationary and by Theorems 2.6.1 and
2.7.3 the mark distribution Q is the same as the grain distribution of Y .

If Ỹ is an independently marked point process in Rd with mark space W0 and intensity
measure Θ̃, then Theorem 2.6.2 yields a decomposition

Θ̃ = Λ⊗Q

and thus
Θ = ϕ(Λ⊗Q). (2.35)

In that case we call Ỹ the independent germ-grain process. It is obvious that the conditions
of Proposition 2.7.1 are satisfied for a particle process Y generated by Ỹ . As a consequence
we may use the same terminology for Ỹ and Y . Thus in particular, a random closed set
concentrated on W0 with distribution Q is called the typical grain of Ỹ .

2.7.1 Germ-grain models, Boolean models

First we mention the union set of a point process. For a point process Y in F ′ we set

XY =
⋃

F∈suppY (ω)

F for all ω ∈ Ω.

Theorem 2.7.5. The union set XY of a point process Y in F ′ is a random closed set. If Y
is stationary (isotropic), then XY is stationary (isotropic).

Proof. Theorem 3.6.2 in [40].

Now let us construct the union set of a germ-grain process. Let Ỹ be a germ-grain process
and Y the particle process generated by Ỹ . We define the union set of Ỹ by

XỸ =
⋃

(x,C)∈Ỹ
C + x,

i.e. as the union set of the particle process Y . From the previous theorem follows that XỸ is
a random closed set.
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Definition 2.7.3. A random closed set XỸ of an independent germ-grain process Ỹ with mark
space W0 ∈ B(C′) is called a germ-grain model in W0. A Boolean model is a germ-grain
model for which the ground process of a corresponding germ-grain process is a Poisson process.

A Boolean model XỸ is determined by the intensity measure Λ of the ground Poisson

process Ỹ 0 and by the distribution Q of the typical grain.

Theorem 2.7.6. The stationary Boolean models are precisely the union sets of stationary
Poisson particle processes.

Proof. Theorem 4.3.2 in [40].

For a later statistical issues the next assertion is important.

Theorem 2.7.7. A stationary Boolean model is mixing.

Proof. Theorem 9.3.5 in [40].

Finally we present some relations for the most important characteristics of Boolean models.
We start with a capacity functional.

Proposition 2.7.2. Let X be a Boolean model and Θ the intensity measure of the correspond-
ing particle process. Then

TX(C) = 1− e−Θ(FC)

for each C ∈ C.

Proof. Theorem 3.6.3 in [40].

Now we may easily derive relations for the volume fraction and the covariance. Let X be
a Boolean model in W0 with intensity measure Θ, typical grain X0, grain distribution Q and
ground Poisson process X0. Let Λ be the intensity measure of X0. The decomposition (2.35)
yields

Θ(FC) =

∫
1FC (D + x) Λ(dx)Q(dD) =

∫
1(D + x ∩ C 6= ∅) Λ(dx)Q(dD)

=

∫
1(x ∈ C + Ď) Λ(dx)Q(dD) =

∫
Λ(C + Ď) Q(dD)

= EΛ(C + X̌0),

where C+ Ď = {y−z|y ∈ C, z ∈ D} is the combination of Minkowski addition and reflection.
Hence

TX(C) = 1− e−EΛ(C+X̌0). (2.36)

Taking C = {x} leads to

m(x) = TX
(
{x}

)
= 1− e−EΛ(X̌0+x).

If X is stationary, then

p = TX
(
{0}
)

= 1− e−EΛ(X̌0) = 1− e−λE νd(X̌0). (2.37)

For the covariance we take C = {x,y} which yields

C(x,y) = P(x ∈ X,y ∈ X) = P(x ∈ X) +P(y ∈ X)−P(x ∈ X ∪ y ∈ X)

= m(x) +m(y)− TX
(
{x,y}

)
= m(x) +m(y)− 1 + e−EΛ(X̌0+x∪X̌0+y)

= m(x) +m(y)− 1 + e−EΛ(X̌0+x)e−EΛ(X̌0+y)eEΛ(X̌0+x∩X̌0+y)

= m(x) +m(y)− 1 +
(
1−m(x)

)(
1−m(y)

)
eEΛ(X̌0+x∩X̌0+y).
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The covariance function is

cov(x,y) = C(x,y)−m(x)m(y) =
(
1−m(x)

)(
1−m(y)

)(
eEΛ(X̌0+x∩X̌0+y) − 1

)

and the correlation function

κ(x,y) =

√(
1−m(x)

)(
1−m(y)

)

m(x)m(y)

(
eEΛ(X̌0+x∩X̌0+y) − 1

)
.

In the stationary case we obtain

C(r) = 2p− 1 + (1− p)2eλE γX0
(r),

cov(r) = (1− p)2(eλE γX0
(r) − 1),

κ(r) =
1− p
p

(eλE γX0
(r) − 1), (2.38)

where γX0
(r) = νd

(
X0 ∩ (X0 − r)

)
is the set covariance of X0.

2.8 Long-range dependence

The long-range dependence for one dimensional discrete stochastic processes is a well developed
theory, see [58] and references therein. Here we present a natural extension to random measures
in Rd that was indicated in [43]. The concept of long-range dependence is introduced through
a slow decay of correlations.

Definition 2.8.1. A second order stationary random measure ξ is long-range dependent if

lim sup
a→∞

var ξ
(
[−a, a]d

)

(2a)d
=∞,

where [−a, a]d ≡ [−a, a] × . . . × [−a, a] is the d-dimensional closed interval in Rd. A random
closed set X is long-range dependent if its volume measure νX is long-range dependent.

The long-range dependence is connected to the behaviour of a reduced second order factorial
covariance measure. By Proposition 2.5.8 (b) and (d) with f = 1[−a,a]d ,

var ξ
(
[−a, a]d

)
= λD

(
1[−a,a]d ∗ 1∗[−a,a]d

)
(0) +

∫

Rd

(
1[−a,a]d ∗ 1∗[−a,a]d

)
(x) C̆ [2](dx),

where λD is the constant from Proposition 2.5.4. Since

(
1[−a,a]d ∗ 1∗[−a,a]d

)
(x) =

d∏

i=1

max{2a− |xi| , 0}

for all x = (x1, . . . , xd) ∈ Rd, we obtain

var ξ
(
[−a, a]d

)

(2a)d
= λD +

∫

Rd

∏d
i=1 max{2a− |xi| , 0}

(2a)d
C̆ [2](dx). (2.39)

The reduced second order factorial covariance measure C̆ [2] of second order stationary
random measure ξ is a signed measure in sense of Appendix A.2. Thus in general we cannot
treat it as a usual Borel measure and try to take C̆ [2](Rd), which may be undefined. The
(Jordan-Hahn) decomposition may, however, be helpful. Note that lower and upper variations
of a signed measure are ordinary Borel σ-finite measures.
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Proposition 2.8.1. Let ξ be a second order stationary random measure and C [2] its reduced
second order factorial covariance measure. Let further C [2]+ and C [2]− be the upper and lower
variations, respectively, of C [2]. If C [2]− is finite, then ξ is long-range dependent if and only if
C [2]+ is finite.

Proof. Let us denote the integrand in equation (2.39) by fa(x). Clearly it converges pointwise
monotonously to 1 for all x ∈ Rd as a→∞. From the dominated convergence theorem follows

∫

Rd

fa(x) C̆ [2]+(dx)→ C [2]+(Rd) and

∫

Rd

fa(x) C̆ [2]−(dx)→ C [2]−(Rd) <∞

as a→∞. Hence

lim
a→∞

var ξ
(
[−a, a]d

)

(2a)d
= λD + C [2]+(Rd) + C [2]−(Rd)

and the statement follows.

There is a strong connection of the long-range dependence to the Bartlett spectrum Γ of ξ.
First we mention a simple consequence of the previous proposition.

Corollary 2.8.1. If C̆ [2] is bounded, then ξ is not long-range dependent and

var ξ
(
[−a, a]d

)

(2a)d
→ λD + (2π)d/2fΓ(0) as a→∞,

where fΓ is the density of the Bartlett spectrum Γ of ξ with respect to νd, and

fΓ(0) = (2π)−d/2C̆ [2]
(
Rd
)
.

Proof. By the proof of previous proposition,

var ξ
(
[−a, a]d

)

(2a)d
→ λD + C [2](Rd) <∞ as a→∞.

The boundedness of C̆ [2], by Proposition A.2.4, implies the absolute continuity of Γ with respect
to the Lebesgue measure νd and validity of (2.24) which completes the proof.

The existence of atom of Γ at the origin implies the long-range dependence.

Proposition 2.8.2. If Γ
(
{0}
)
> 0, then ξ is long-range dependent.

Proof. Let fa = 1[−a,a]d for each a > 0. Then ξ
(
[−a, a]d

)
=
∫
Rd
fa(x) ξ(dx) and by Proposition

2.5.8 (d),
var ξ

(
[−a, a]d

)

(2a)d
≥ (2π)d/2

∫

Rd

|f̌a(ω)|2
(2a)d

Γ(dω).

The integrand is (see the proof of Proposition 2.5.8 (e))

|f̌a(ω)|2
(2a)d

=

d∏

j=1

sin2(aωj)

πaω2
j

.

Since Γ is a positive measure, we obtain

∫

Rd

|f̌a(ω)|2
(2a)d

Γ(dω) =

∫

Rd\{0}

|f̌a(ω)|2
(2a)d

Γ(dω) +
ad

πd
Γ
(
{0}
)
≥ ad

πd
Γ
(
{0}
)
.

Taking the limit a→∞ yields the result.
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The case of a positive atom at the origin cannot happen for ergodic random measures as
stated by the following theorem.

Proposition 2.8.3. Let ξ be an ergodic second order stationary random measure. Then
Γ
(
{0}
)

= 0.

Proof. Proposition 2.5.8 (c) yields

Γ
(
{0}
)

= (2π)d/2 lim
a→∞

C̆ [2]
(
[−a, a]d

)

νd
(
[−a, a]d

) .

If ξ is ergodic then from Corollary 2.5.3

lim
a→∞

C̆(2)
(
[−a, a]d

)

νd
(
[−a, a]d

) = 0.

From Proposition 2.5.4 (see also the proof of Proposition 2.5.8 (d)) follows C̆(2) = λDδ0 + C̆ [2],
and hence C̆ [2]

(
[−a, a]d

)
≤ C̆(2)

(
[−a, a]d

)
. Therefore Γ

(
{0}
)

= 0.

Proposition 2.8.4. Let Γ be the Bartlett spectrum of a second order stationary random mea-
sure ξ such that Γ is absolutely continuous with respect to νd, with spectral density fΓ.

(a) If fΓ is νd a.e. bounded in some neighbourhood of 0, then ξ is not long-range dependent.

(b) If for every K > 0 there exists a neighbourhood UK of 0 such that fΓ(x) ≥ K for νd almost
all x ∈ UK , then ξ is long-range dependent.

Proof. Again, as in the proof of Proposition 2.5.8 (e), consider fa = 1[−a,a]d for each a > 0.
Hence

|f̌a(ω)|2
(2a)d

=

d∏

j=1

sin2(aωj)

πaω2
j

.

With the notation φa = (2a)−d|f̌a|2, it is easy to check that
∫
Rd
φa(ω) dω = 1 for every

a > 0. Moreover, φa(ω) = adφ1(aω) for all ω ∈ Rd and all a > 0. This means that
{φ1/a|a > 0} is an approximation of the identity (see the definition before Theorem A.2.4).
Therefore lima→∞(φa ∗ g)(0) = g(0) for every bounded uniformly continuous g by Theorem
A.2.4. Let {an} be an arbitrary sequence such that an > 0 for all n and an → ∞ as n → ∞.
Since ∫

Rd

g(ω)φan(ω) dω → g(0) =

∫

Rd

g(ω)δ0(dω)

for all bounded uniformly continuous g, Theorem A.1.4 yields φanνd
w−→ δ0. Let U be a

neighbourhood of 0. The complement U c is a set with δ0(U c) = 0 and δ0(∂U c) = 0, hence
from Theorem A.1.4 (e), limn→∞(φanνd)(U

c) = limn→∞
∫
Uc
φan(ω) dω = 0. From this follows

limn→∞
∫
Uc
φan(x)fΓ(ω) dω = 0 and hence there is n0 > 0 such that

∫
Uc
φan(x)fΓ(ω) dω < 1

for all n > n0.
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For the proof of (a) we take U and K such that fΓ(x) ≤ K for νd almost all x ∈ U . From
previous considerations, there is n0 such that for all n > n0 we have

∫

Rd

|f̌an(ω)|2
(2an)d

Γ(dω) =

∫

Rd

φan(ω)fΓ(ω) dω

=

∫

U

φan(x)fΓ(ω) dω +

∫

Uc

φan(x)fΓ(ω) dω

< K

∫

U

φan(x) dω + 1

< K + 1.

Now we use Proposition 2.5.8 (d). Since (fa ∗ f∗a )(0) = (2a)d for all n > n0,

var ξ
(
[−an, an]d

)

2dadn
< λD + (2π)d/2(K + 1).

Since K is independent on the choice of {an} the statement follows.
For the proof of (b) let take arbitrary K > 0 and corresponding UK such that fΓ(x) ≥ K

almost everywhere with respect to νd. Again by Theorem A.1.4 (e), limn→∞(φanνd)(UK) =
limn→∞

∫
UK

φan(ω) dω = 1. From this follows lim infn→∞
∫
UK

φan(x)fΓ(ω) dω > K and

hence there is m0 > 0 such that
∫
Uc
φan(x)fΓ(ω) dω > K/2 for all n > m0. Therefore for all

n > max{n0,m0},
∫

Rd

|f̌an(ω)|2
(2an)d

Γ(dω) =

∫

U

φan(x)fΓ(ω) dω +

∫

Uc

φan(x)fΓ(ω) dω

≥
∫

U

φan(x)fΓ(ω) dω >
K

2
.

Finally, for all sufficiently large n,

var ξ
(
[−an, an]d

)

(2an)d
> λD + (2π)d/2

K

2
,

which completes the proof.

In the remainder of this section we assume C̆ [2] of ξ to be absolutely continuous with respect
to νd, with density cov(x) called the covariance function, and the Bartlett spectrum Γ of ξ
to be absolutely continuous with spectral density fΓ.

In most practical applications the long-range dependence is formulated using the power law
decay of the covariance, or equivalently the power law dependence of the spectral density in
the neighbourhood of 0. We present here the multidimensional extension motivated by [59]
(see also [58, 60]).

Definition 2.8.2. Let ξ be a second order stationary random measure with covariance function
cov. We say that ξ exhibits isotropic long-range dependence if

cov(x) ∼ ‖x‖−α `
(
‖x‖

)
g

(
x

‖x‖

)
(‖x‖ → ∞),

where α ∈ (0, d), ` is slowly varying at infinity, and g is a positive function on the unit sphere
in Rd. A random closed set X exhibits isotropic long-range dependence if its volume
measure νX exhibits isotropic long-range dependence.
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We use ∼ for the asymptotic equality defined by: f(x) ∼ g(x) (‖x‖ → ∞) if and only
lim‖x‖→∞ f(x)/g(x) = 1. The slowly varying function f : (0,∞) → R is a positive
measurable function satisfying

f(ut)

f(t)
→ 1 as t→∞

for every u > 0. If the limit equals uα we say that f is regularly varying of degree α. The
slowly varying function ` in the previous definition can be actually considered continuous, see
[61, Proposition 1.3.4] or [62, p. 56] for details, and we may write

cov(x) = h(x) ‖x‖−α `
(
‖x‖

)
g

(
x

‖x‖

)
(2.40)

for all x ∈ Rd \ {0}, where h is bounded and h(x)→ 1 as ‖x‖ → ∞.

Proposition 2.8.5. Let ` be a slowly varying function and β > 0. Then

xβ`(x)→∞ and x−β`(x)→ 0

as x→∞.

Proof. Proposition 1.3.6 in [61].

The next result concerns the asymptotic behaviour of the special integrals of regularly
varying functions.

Theorem 2.8.1 (Karamata’s theorem). Let f be a regularly varying of degree γ, and locally
bounded in [x0,∞) for some x0. Then

(a) for any β ≥ −(γ + 1),

xβ+1f(x)
/ x∫

x0

tβf(t) dt→ γ + β + 1 (x→∞),

(b) for any β < −(γ + 1),

xβ+1f(x)
/ ∞∫

x

tβf(t) dt→ γ + β + 1 (x→∞).

Conversely, if f is positive, locally integrable in [x0,∞) for some x0 and for some β satisfies
(a) with sharp inequality, or (b), then it is regularly varying of degree γ.

Proof. Theorems 1.5.11 and 1.6.1 in [61].

Let us now discuss the range (0, d) of the coefficient α in Definition 2.8.2. Assume that
the covariance function cov of ξ is given by (2.40). The case α < 0 cannot occur, since
otherwise Proposition 2.8.5 implies that the reduced second order factorial covariance measure
C̆ [2] cannot be translation bounded as stated by Corollary 2.5.1.

In order to analyse the case α > 0, let us take r0 such that |h(x)| < 2 for all x with
‖x‖ > r0. Then for a > r0,

∣∣∣C̆ [2]
∣∣∣
(
aBd

)
=

∫

aBd

|cov(x)| dx =
∣∣∣C̆ [2]

∣∣∣
(
r0B

d
)

+

∫

aBd\r0Bd

|cov(x)| dx.
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Using spherical coordinates x = ru, r ∈ (0,∞),u ∈ Sd−1,

∣∣∣C̆ [2]
∣∣∣
(
aBd

)
=
∣∣∣C̆ [2]

∣∣∣
(
r0B

d
)

+

a∫

r0

∫

Sd−1

|h(ru)| rd−1−α`(r) |g(u)| σd−1(du) dr

≤
∣∣∣C̆ [2]

∣∣∣
(
r0B

d
)

+ 2G̃

a∫

r0

rd−1−α`(r) dr,

where σd−1 is the spherical measure (the d − 1 dimensional Hausdorff measure) on the unit
sphere Sd−1 in Rd and G =

∫
Sd−1 g(u)σd−1(du) > 0. By Proposition 2.5.8 (c),

Γ
(
{0}
)
≤ (2π)d/2 lim sup

a→∞

∣∣∣C̆ [2]
∣∣∣
(
[−a, a]d

)

(2a)d
≤ (2π)d/2 lim sup

a→∞

∣∣∣C̆ [2]
∣∣∣
(
a
√
dBd

)

(2a)d

≤ (2π)d/2 lim sup
a→∞

C̆ [2]
(
r0B

d
)

(2a)d
+ (2π)d/2 lim sup

a→∞

2G̃

(2a)d

a
√
d∫

r0

rd−1−α`(r) dr.

Now Theorem 2.8.1 (a) (for d = 1 only when α < 0) yields

G

2(2a)d

a∫

r0

rd−1−α`(r) dr ∼ Ga−α`(a)

2d+1(d− α)
(a→∞),

and by Proposition 2.8.5, a−α`(a) → 0 as a → ∞. Thus we finally obtain Γ
(
{0}
)

= 0 which
means the compatibility with possible ergodicity of ξ according to Proposition 2.8.3.

In the case α > d it follows from Proposition 2.8.5 with β = (α− d)/2 that

∞∫

r0

rd−1−α`(r) dr ≤ C
∞∫

r0

rd−1−α+β dr <∞,

where C is the upper bound of r−β`(r) on [r0,∞). Hence C̆ [2] is bounded and by Corrolary
2.8.1 it is not long-range dependent. The case α = 0 may lead to various situations, since the
limit of `(a) may be arbitrary from 0 to ∞, or it may even not exist. Only when ξ is ergodic
then `(a) must tend to 0 as a→∞ as follows from Proposition 2.8.3. The case α = d may again
lead to various results depending on `. Note, however, that all of them imply Γ

(
{0}
)

= 0 and
are thus compatible with possible ergodicity of ξ. See [61, §1.5 and 1.6] for further discussion
on integrals of this type.

The next result represents a very important relation between the behaviour of the covariance
function at large distances and the behaviour of the spectral density in the neighbourhood of
the origin.

Theorem 2.8.2. A second order stationary random measure ξ with Bartlett spectrum Γ ex-
hibits isotropic long-range dependence if and only if for the corresponding spectral density fΓ

holds

fΓ(ω) ∼ ‖ω‖α−d `
(
‖ω‖−1 )

g

(
ω

‖ω‖

)
(‖ω‖ → 0+),

where α ∈ (0, d), ` is slowly varying at infinity and g is positive continuous function on the
unit sphere in Rd.

Proof. The proof is based on the asymptotic behaviour of the Fourier transform of quasi-
asymptotically homogeneous tempered distributions on the Schwartz space S (Rd) of rapidly



46 CHAPTER 2. PRELIMINARIES FROM STOCHASTIC GEOMETRY

decreasing smooth functions. First note that every translation bounded signed measure µ can
be uniquely identified as a tempered distribution µ ∈ S ′(Rd), since f ∈ L1(Rd, µ). This can
be shown using the criterion derived in [63, Theorem 2.1], claiming that µ ∈ S′(Rd) if and only

if there exists real β such that (1 + ‖x‖2)β/2 ∈ L1(Rd, µ). However, this condition is satisfied
for all translation bounded measures with β = −2d as can be checked based on convergence of
the series

∑∞
k=1 k

−2. The result now follows from Theorem 3.1 in [64] together with Lemma 2.3
in [64] or Theorem 1 in [62, §3.3]. Since α ∈ (0, d), the asymptotic result is locally integrable.
Finally to obtain the proper functional form of fΓ (or cov in the opposite implication) one uses
Theorem 1.4.1 (iii) in [61]. The non-negativity of g follows from the positivity of Γ.

Note that the proof can be also made without the use of distributions. This is the way
how it is usually done in R1. It is based on Theorem 4.1.5 in [61]. However, in Rd there
appears the Hankel type transform of td/2−α−1 that does not converge for 2α < d − 1. The
general theorems that deal with such kind of dual relations are called Abellian and Tauberian
theorems.

Corollary 2.8.2. If ξ is isotropic long-range dependent then it is long-range dependent ac-
cording to Definition 2.8.1.

Proof. The assertion follows from Proposition 2.8.4 and the fact that xβ`(x) → ∞ as x → ∞
for β > 0 by Proposition 2.8.5.

Finally, we prove the following proposition that will be important for statistical issues
connected to estimation. Recall that the set covariance γB(x) of a Borel set B is defined by
γB(x) = νd(B ∩ (B + x)).

Proposition 2.8.6. Let ξ be an isotropically long-range dependent random measure with co-
variance function of the form (2.40) and W be a compact set of positive d-dimensional Lebesgue
measure. Then

var ξ
(
aW

)
∼ λDνd(W )ad + a2d−α Fα;W `(a) (a→∞),

where

Fα;W =

∞∫

0

∫

Sd−1

γW (tu)td−1−αg(u) σd−1(du) dt.

Proof. For the proof we start with Proposition 2.5.8 (d) and (b) which yields

var ξ(aW ) = λD(1aW ∗ 1∗aW )(0) +

∫

Rd

(1aW ∗ 1∗aW )(x) C̆ [2](dx).

Clearly

(1aW ∗ 1∗aW )(x) =

∫

Rd

1aW (y)1aW (y − x) dy = νd
(
aW ∩ (aW + x)

)
= γaW (x).

It is easy to see that γaW (ax) = adγW (x). Therefore

var ξ(aW ) = λDνd(W )ad + ad
∫

Rd

γW

(x
a

)
C̆ [2](dx).

Imposing (2.40) yields

ad
∫

Rd

γW

(x
a

)
C̆ [2](dx) = ad

∫

Rd

γBd
(x
a

)
h(x) ‖x‖−α `(‖x‖)g

(
x

‖x‖

)
dx.
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Using spherical coordinates x = ru, r ∈ (0,∞),u ∈ Sd−1 we obtain

ad
∫

Rd

γW

(x
a

)
C̆ [2](dx) = ad

∞∫

0

∫

Sd−1

γW

(ru
a

)
h(ru)rd−1−α`(r)g(u) σd−1(du) dr.

Using the substitution r = at leads to

ad
∫

Rd

γW

(x
a

)
C̆ [2](dx) = a2d−α

∞∫

0

∫

Sd−1

γW (tu)td−1−αh(atu)`(at)g(u) σd−1(du) dt

= a2d−α`(a)

∞∫

0

∫

Sd−1

γW (tu)td−1−αh(atu)
`(at)

`(a)
σd−1(du) dt.

Letting a → ∞ yields h(atu) → 1 for all u ∈ Sd−1 and all t > 0. It also yields `(at)
`(a) → 1

for each t > 0 since ` is slowly varying function. The continuity of ` implies that `(at)
`(a) is

bounded for all t ∈ [0, rW ] and all a > 0, where rW < ∞ is determined by the condition
γW (ru) = 0 for all r > rW and all u ∈ Sd−1. Such rW always exists because W is compact.
Since d− 1− α > −1 the rest of the integrand is integrable on [0, rW ]× Sd−1 and thus by the
Lebesgue dominated convergence theorem

∞∫

0

∫

Sd−1

γW (tu)td−1−αh(atu)
`(at)

`(a)
σd−1(du) dt

→
∞∫

0

∫

Sd−1

γW (tu)td−1−αg(u) σd−1(du) dt

as a→∞. This completes the proof.

The previous Corollary is also implied by this proposition.





Chapter 3

Generalized centroid

Let W be a Borel subset of the system C′ of non-empty compact subsets of Rd. In Section 2.7
we saw that for a stationary particle processes inW it is possible to find a useful decomposition
of the intensity measure Λ. To do this we need a Borel measurable mapping z :W → Rd that
is translation invariant, i.e. it satisfies z(C + x) = z(C) + x for every x ∈ Rd and every C in
W. For clear interpretation it is preferable to choose the mapping z so that z(C) is located at
some geometrically reasonable centre of a set C. Usual choices (see [40]) are the centre of the
smallest ball containing C or the Steiner point of the convex hull of C.

In this chapter we construct a different centre function that is physically more plausible
and is based on the centroid of a set. We start by introducing the classical definition and
discussing its properties and measurability. Then we propose a possible generalization based
on the limiting procedure. The existence issues are discussed and the measurability is proven
for a certain subclasses of sets. Finally we show the second possible generalization based on
the Hausdorff measure and discuss their relation.

Throughout this chapter C′ is assumed to be equipped with the Hausdorff topology defined
in Section A.5. The Borel σ-algebra on C′ is denoted by B(C′).

3.1 Classical definition

First we start with the classical definition. A centroid of a non-empty compact set C ∈ C′
with positive d-dimensional Lebesgue measure, νd(C) > 0, is given by

z(C) =
1

νd(C)

∫

C

x dx =
1

νd(C)



∫

C

x1 dx,

∫

C

x2 dx, . . . ,

∫

C

xd dx


 , (3.1)

where x = (x1, x2, . . . , xd) ∈ Rd. The point z(C) is also called the centre of mass since
it corresponds to the centre of mass of an object geometrically corresponding to set C with
homogeneously distributed density, which is used in physics.

In order to be able to construct particle process with particles concentrated on sets with
positive Lebesgue measure it must be shown that collection of such sets forms a Borel set in
C′.

Theorem 3.1.1. The collection of all compact sets with positive Lebesgue measure is a Borel
set in C′.

Proof. The Lebesgue measure νd is σ-finite measure and therefore upper semi-continuous as a
consequence of Theorem A.5.4. According to the remark after Lemma A.4.3 it is also measur-
able. Hence ν−1

d ((0,∞)) is a Borel set.

49
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Theorem 3.1.2. The centroid z is a Borel measurable mapping on C′ with positive Lebesgue
measure.

Proof. From Theorem A.5.4 we know that every σ-finite measure is upper semi-continuous.
Let us define two σ-finite measures µ+ and µ− on Rd by

µ+(A) =

∫

A

x11{x1≥0}(x) dx and µ−(A) = −
∫

A

x11{x1<0}(x) dx.

Formula (3.1) for z1(C) can be now rewritten as

z1(C) =
µ+(C)− µ−(C)

νd(C)
.

Since all three elements are upper semi-continuous and therefore measurable, z1 is also mea-
surable. The same argumentation is valid for all other components of z(C).

It is worth noting that the centroid is generally not continuous. To see this let take a
sequence {Ci} of finite sets converging to the unit ball Bd. A sequence Ci ∪ (Bd + x0), where
x0 is an arbitrary point with ‖x0‖ > 2, then converges to a union Bd ∪ (Bd + x0), because
union operation is continuous in C′ according to Theorem A.5.5. Since Ci are finite sets with
zero Lebesgue measure we get

lim
i→+∞

z
(
Ci ∪ (Bd + x0)

)
= lim
i→+∞

x0 = x0 6= z
(
Bd ∪ (Bd + x0)

)
=
x0

2
.

The centroid is therefore not continuous and, since x0 was chosen arbitrarily, even not upper
or lower semi-continuous in any component.

The continuity can be proven when restricted on a family K′ of non-empty compact convex
sets. From Theorem A.5.10 it is known that the denominator of (3.1) is continuous. In the
following lemma we show that the numerator is also continuous.

Lemma 3.1.1. The mapping K 7→
∫
K
x dx from K′ to Rd is continuous on K′.

Proof. For an arbitrary compact, convex set K a measure µK on Rd can be constructed by
taking

µK(A) = νd(A ∩K) for all Borel A ⊂ Rd.
The measure µK is finite since µK(Rd) = νd(K) < +∞.

Now let Ki → K be a convergent sequence in K′ with respect to the Hausdorff metric.
From the continuity of the Lebesgue measure (Theorem A.5.10) follows

lim
i
µKi(R

d) = lim
i
νd(Ki)→ νd(K) = µK(Rd).

Since convergence in K ′ implies convergence in F (see Theorem A.5.3), by Theorem A.4.5 and
Proposition A.4.1 we obtain

lim sup
i

1Ki(x) ≤ 1K(x).

This for arbitrary closed set F ∈ F yields

µK(F ) = νd(K ∩ F ) =

∫

F

1K(x) dx ≥
∫

F

lim sup
i

1Ki(x) dx ≥

≥ lim sup
i

∫

F

1Ki(x) dx = lim sup
i

νd(Ki ∩ F ) = lim sup
i

µKi(F )
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by Fatou’s lemma. The convergence of Ki is bounded (see Theorem A.5.3), so there exists a
set L ∈ C′, such that 1Ki ≤ 1L, 1K ≤ 1L, and

∫
F
1L dx < +∞. Hence Fatou’s lemma can be

applied.
For the sequence µKi we proved all properties of Theorem A.1.4 (c) and thus µKi

w−→ µK .
Now let f be a bounded, continuous function from Theorem A.1.5 such that f(x) = 1 for x ∈ L,
where K,Ki ⊂ L. A function g given by g(x) = x1f(x) is also bounded and continuous. The
weak continuity implies

∫

Ki

x1 dx =

∫

Rd

1Ki(x)g(x) dx =

∫

Rd

g(x)µKi(dx)→
∫

Rd

g(x)µK(dx) =

∫

K

x1 dx.

The same holds for other components of x which completes the proof.

Note that we have actually proven the continuity of the mapping K 7→
∫
K
f(x) dx for

every continuous real function f bounded on compact sets. Since the Lebesgue measure νd
is from Theorem A.5.10, or from previous remark, also continuous we obtain the following
consequence.

Corollary 3.1.1. The centroid z given by (3.1) is continuous on the system of non-empty
convex compact sets with positive Lebesgue measure.

The important property of the centroid is compatibility with euclidean transformations (i.e.
translations, rotations, and reflections in Rd).

Proposition 3.1.1. The centroid satisfies z(eC) = ez(C) for all C ∈ C′, νd(C) > 0 and every
Euclidean transformation e.

Proof. An Euclidean transformation e : Rd → Rd can be written as

ex = Lx+ a,

where L is an orthogonal linear transformation (L ∈ Od) and a ∈ Rd. The Lebesgue measure
νd is invariant under Euclidean transformations giving νd(eC) = νd(C). Substituting ey = x
into the integral

∫
eC
x dx yields

∫

eC

x dx =

∫

C

ey |detL| dy = L

∫

C

y dy + aνd(C).

By dividing the previous equation with νd(C) we conclude that

z(eC) = L

∫
C
x dx

νd(C)
+ a = ez(C).

3.2 General definition

The usual definition of z can be applied only for sets with positive Lebesgue measure. In this
section we will restrict our attention to sets with zero Lebesgue measure. Let C be non-empty
closed set with νd(C) = 0. One possible approach to overcome the problem of division by zero
in (3.1) is to take an ε-neighbourhood Cε of C defined by

Cε = C + εUd = {x | d(x, C) < ε},

and calculate its centroid. Then one can try to take a limit of z(Cε) as ε → 0+ and if it
exits then it is reasonable to call the result a centroid of C. This motivates us to the following
definition.
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Definition 3.2.1. Let C ∈ C′ be a non-empty compact set in Rd such that a limit

lim
ε→0+

1

νd(Cε)

∫

Cε

x dx (3.2)

exists. We denote the limit by zM (C) and call it the generalized (Minkowski) centroid of
C.

The first natural question is whether this definition coincide with the usual centroid for sets
with positive Lebesgue measure.

Proposition 3.2.1. Let C ∈ C′ be an arbitrary non-empty compact set with positive Lebesgue
measure, νd(C) > 0. Then the limit (3.2) exists and is equal to the classical definition of z(C)
given by (3.1).

Proof. Let {εn}n∈N be a sequence such that εn → 0 and εn > 0 for every n ∈ N. Since
C ⊂ Cεn we have 1Cεn (x) = 1 = 1C(x) for all x ∈ C. Let x /∈ C. Since C is compact there
have to be only a finite number of i such that x ∈ Cεi . Otherwise one can find a sequence of
points in C converging to x. Therefore for all x /∈ C we have 1Cεn (x)→ 0 = 1C(x).

The Lebesgue dominated convergence theorem implies

lim
n→+∞

∫

Rd

x11Cεn (x) dx =

∫

Rd

lim
n→+∞

x11Cεn (x) dx =

∫

Rd

x11C(x) dx.

The same proof works for other components of x = (x1, . . . , xd). By the same arguments

lim
n→+∞

νd(Cεn) = νd(C).

This limit also follows from the continuity of νd from above (Theorem A.1.1 (b)) since we can
without loss of generality assume that {εn} is decreasing. Thus limits of both numerator and
denominator parts of (3.2) exist. Since νd(C) > 0, the interchange of the limit and division
leads to

lim
ε→0+

1

νd(Cε)

∫

Cε

x dx =
limε→0+

∫
Cε
x dx

limε→0+
νd(Cε)

=

∫
C
x dx

νd(C)
= z(C).

The other class of sets for which the centroid exists is given by centrally symmetric compact
sets.

Proposition 3.2.2. Let C be a non-empty compact set in Rd and a a point in Rd such that
C possesses point symmetry with respect to a, i.e. C = ra(C) where ra(x) = 2a − x. Then
the generalized centroid zM (C) of C exists and zM (C) = a.

Proof. Let take arbitrary ε > 0 and observe that Cε is also invariant with respect to ra, which
follows from

‖ra(x)− ra(y)‖ = ‖y − x‖
and the fact, that x ∈ C implies ra(x) ∈ C. Next, note that ra is a special example of an
Euclidean transformation. Moreover it has a unique fixed point a. From Proposition 3.1.1 we
obtain

z(Cε) = z
(
ra(Cε)

)
= ra

(
z(Cε)

)
.

Therefore z(Cε) is a fixed point of ra and hence z(Cε) = a is independent of ε. The proof is
completed by letting ε→ 0+.

Now we are able to prove the compatibility with euclidean transformations.
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Theorem 3.2.1. Let C be a non-empty compact set for which the generalized centroid ex-
ists and e be an Euclidean transformation. Then the generalized centroid of eC exists and
zM (eC) = ezM (C).

Proof. An Euclidean transformation e : Rd → Rd can be written as

ex = Lx+ a,

where L is an orthogonal linear transformation (L ∈ Od) and a ∈ Rd. From the straightforward
equality

‖ex− ey‖ = ‖L(x− y)‖ = ‖x− y‖
we may conclude that (eC)ε = e(Cε). By continuity of e and Proposition 3.1.1,

lim
ε→0+

z
(
(eC)ε

)
= lim
ε→0+

z
(
e(Cε)

)
= lim
ε→0+

ez(Cε) = e lim
ε→0+

z(Cε) = ezM (C).

From the previous propositions we know that the generalized centroid exists for compact
sets with positive Lebesgue measure, for point symmetric sets and the existence is invariant
under Euclidean transformations. The question is whether it exists for every compact set. The
following proposition shows that the answer is negative.

Proposition 3.2.3. There are compact sets in Rd for which the limit (3.2) does not exist.

Proof. We give the proof only for the case d = 2; the other dimensions can be treated in an
analogous fashion. Throughout the proof we use notation x = (x, y). We will construct the
sequence of parallel lines of length L perpendicular to the x-axis and touching it with one end
at x-coordinates {xi}i∈N0

.
Let {ak}k∈N0 be a sequence of integers with a0 = 1 and {δk}k∈N0 be a strictly decreasing

sequence of positive numbers such that

+∞∑

k=0

akδk < +∞.

The points xi depend on sequences {ak} and {δk} so that lines form blocks of ak lines with
gaps δk between neighbours and between the first line of the block and the previous block. The
first position is x0 = δ0. The i-th position is therefore given by xi = xi−1 + δk, where k is such

that
∑k−1
l=0 al ≤ i <

∑k
l=0 al. From the properties of sequences {ak} and {δk} follows

lim
i→+∞

xi =

+∞∑

k=0

akδk < +∞.

The set C given by the union of those lines and a line at
∑+∞
k=0 akδk is obviously compact and

can be schematically depicted as in the figure 3.1.
Since the sequence {δk} is strictly decreasing one can for every ε > 0 find n(ε) such that

δn(ε)−1 ≥ 2ε and δn(ε) < 2ε.

Therefore the set Cε can be divided into two parts. The first part consists of isolated objects

given by first
∑n(ε)−1
k=0 ak lines covered by ε balls. The area of every such object is 2εL + πε2

and the x-th component of the centre of mass is the corresponding xi. The second part is the
union of the remaining lines covered by ε balls forming one connected (rectangle like) object.
Its x-size is

∑+∞
k=n(ε) akδk − δn(ε) + 2ε. Its area is approximately




+∞∑

k=n(ε)

akδk − δn(ε)


 (L+ 2ε) + (2εL+ πε2) +O(ε) (ε→ 0+)
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x0

y

0

L

x0 x1 x2 x3 x4 x5

. . .δ0 δ1 δ1 δ2 δ2 δ2

a2=3︷ ︸︸ ︷a1=2︷ ︸︸ ︷a0 = 1

∑+∞
k=0 akδk

Figure 3.1: Schematic picture of the set C from the proof of Proposition 3.2.3.

and x-th component of its centroid is 1
2

(∑n(ε)−1
k=0 akδk + δn(ε) +

∑+∞
k=0 akδk

)
.

The compact set C for which we are going to show the non-existence of the limit (3.2) is
the union of two parts. The first (positive) part C+ is formed by above described union of
lines for sequences

ak = 2k and δk =
1

4k
.

The second (negative) part C− is the analogous object mirrored to the negative x-axis (x̃i = −xi)
with the choice of sequences

ãk = 2k and δ̃k =
1

2
· 1

4k
.

Now let us take the sequence

εn =
1

2
· 1

4n
for all n ∈ N.

Such choice leads in the positive part C+ of C to n(εn) = n+ 1 and in the negative part C−

of C to ñ(εn) = n. This gives

∫

C+
εn

xdx =
6L

2n
+O

( n
4n

)
, ν2(C+

εn) =
3L

2n
+O

(
1

4n

)

as n→∞ for the positive part and

∫

C−εn

x dx = −2L

2n
+O

( n
4n

)
, ν2(C−εn) =

2L

2n
+O

(
1

4n

)

for the negative part. Taking all together we get

z1(Cεn) =
6L
2n − 2L

2n +O
(
n
4n

)
3L
2n + 2L

2n +O
(

1
4n

) n→+∞−−−−−→ 4

5

for the x-th component.
The second sequence we take is

ε̃n =
1

4n
for all n ∈ N.

This in the positive part of C leads to n(ε̃n) = n and in the negative part of C to ñ(ε̃n) = n.
We have ∫

C+
ε̃n

xdx =
8L

2n
+O

( n
4n

)
, ν2(C+

ε̃n
) =

4L

2n
+O

(
1

4n

)
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as n→∞ for the positive part and
∫

C−ε̃n

x d~x = −3L

2n
+O

( n
4n

)
, ν2(C−ε̃n) =

3L

2n
+O

(
1

4n

)

for the negative part. Thus for the first component

z1(Cε̃n) =
8L
2n − 3L

2n +O
(
n
4n

)
4L
2n + 3L

2n +O
(

1
4n

) n→+∞−−−−−→ 5

7
.

Since z1(Cεn) and z1(Cε̃n) lead to different limits, we have constructed the compact set
such that the limit (3.2) does not exist and the proof is complete.

The previous proof can be easily modified to show that for d > 1 the generalized centroid may
not exist even for connected compact sets.

The last assertion shows that the generalized centroid is measurable. It is easy to see that
if D is some Borel subset of C′ than the trace σ-algebra B(D) induced by the Borel σ-algebra
B(C′) on C′ is the same as the Borel σ-algebra generated by trace topology on D induced by
the topology on (C′, δ). For more details see Section A.5.

Theorem 3.2.2. Let D be a Borel subset of C′ such that for each C ∈ D the generalized
centroid of C exists. Then the generalized centroid as a mapping zM : D → Rd is Borel
measurable with respect to B(D).

Proof. First note that the generalized centroid can be equivalently defined using closed ε-
neighbourhood Cε = C + εBd,

zM (C) = lim
ε→0+

1

νd
(
Cε
)
∫

Cε

x dx.

If ε > 0 is fixed then from Theorem A.5.5 (b) follows that Cε as a function from D to C′ is
continuous and hence Borel measurable. Moreover, from Theorem 3.1.2 we have that z(·) is
Borel measurable on C′ with positive Lebesgue measure. Therefore z(Cε) = z(Cε) is also Borel
measurable. Since zM (C) is a limit of z(Cε) as ε→ 0+ the measurability follows.

3.3 Sufficient condition of existence

In this section we formulate a sufficient condition of existence of the generalized centroid. The
formulation falls naturally into two parts. In the first part we observe that the limit defining
generalized centroid is the special case of a general formula for weak convergence of probability
measures. The second part is devoted to prove the existence of weak limit when a set is
Minkowski measurable.

First we start with the weak limit. It is useful to rewrite the integral term of (3.2) as

1

νd(Cε)

∫

Cε

x dx =

∫

Rd

x
1Cε(x)

νd(Cε)
dx.

This may be understood as an integral from x with respect to a probability measure PC,ε
defined by

PC,ε(A) =
νd
(
A ∩ Cε

)

νd(Cε)
for all Borel A. (3.3)

Clearly PC,ε is absolutely continuous with respect to νd, and its density is given by
1Cε (x)
νd(Cε)

.

If we are able to show the existence of the weak limit PC,ε
w−→ PC to some Borel probability

measure PC , then the existence of the centroid follows. We formally state the following lemma.
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Lemma 3.3.1. Let C be a non-empty compact subset of Rd. Let further PC,ε be probability
measures given for each ε > 0 by (3.3) and PC be a probability measure such that for every
sequence {εn} of positive numbers with εn → 0+, a sequence {PC,εn} converges weakly to PC ,

PC,εn
w−→ PC as n→∞. Then the generalized centroid of C exists and is given by

zM (C) =

∫

Rd

xPC(dx).

Proof. If we denote δ = sup{εn|n = 1, . . . } then for a closure Cδ holds Cεn ⊂ Cδ for all n.
From the construction (3.3) follows that PC,εn(Cδ) = 1. Since Cδ is compact, Theorem A.1.4
(b) yields

lim sup
n→∞

PC,εn
(
Cδ
)

= 1 ≤ PC
(
Cδ
)
≤ 1.

Hence PC(Cδ) = 1 and PC((Cδ)
c) = 0. Now we take bounded, continuous function f from

Theorem A.1.5 such that f(x) = 1 for all x ∈ Cδ. The function g given by g(x) = x1f(x) is
therefore also bounded and continuous. From weak continuity follows

lim
n→∞

∫

Rd

x1PC,εn(dx) = lim
n→∞

∫

Rd

g(x)PC,εn(dx) =

∫

Rd

g(x)PC(dx) =

∫

Rd

x1PC(dx).

The same holds for other components of x. Since the sequence {εn} was arbitrary, the proof
is complete.

Now we are ready to show the connection between the Minkowski measurability and the
existence of weak limit. Let us recapitulate that the α-dimensional Minkowski content of a set
C ⊂ Rd is defined to be

Mα(C) = lim sup
ε→0+

νd(Cε)

cd−αεd−α

whenever the limit exists. The set A is called Minkowski measurable if 0 <Mα(A) < ∞ for
some α which is then called the Minkowski dimension of A. For further definitions and details
see Section A.3. Our aim is to prove the following theorem that ensures the existence of weak
limit for certain Minkowski measurable sets.

Theorem 3.3.1. Let C be a non-empty, compact, Minkowski measurable set with Minkowski
dimension α and let Mα

(
(−∞,x] ∩ C

)
exist for all x ∈ Rd. Then there is a probability

measure PC such that PC,εn
w−→ PC as n → ∞ for every sequence {εn} with ε → 0+ and

PC,εn given by (3.3).

We begin by proving certain properties of Minkowski content.

Lemma 3.3.2. Let C be a non-empty set such that Mα
(
(−∞,x] ∩ C

)
exist for all x ∈ Rd

and some α. Then

(a) Mα
(
(−∞,x] ∩ C

)
is non-decreasing in each coordinate of x,

(b) 0 ≤Mα
(
(−∞,x] ∩ C

)
≤Mα

(
C
)

for all x,

(c) for each d-dimensional rectangle (a, b] with a = (a1, . . . , ad) and b = (b1, . . . , bd) holds

∑

(θ1,...,θd)∈{0,1}d
(−1)

∑
θiMα

((
−∞, (a1 + θ1(b1 − a1), . . . , ad + θd(bd − ad))

]
∩ C

)
≥ 0.

(d) Mα
(
(−∞,x]∩C

)
→ 0 as any one coordinate of x goes to −∞, andMα

(
(−∞,x]∩C

)
→

Mα
(
C
)

as all coordinates of x go to +∞.
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Proof. (a) Let x ≤ y. Clearly (−∞,x] ⊂ (−∞,y] and therefore ((−∞,x]∩C)ε ⊂ ((−∞,y]∩
C)ε for every ε > 0. By monotonicity of νd,

νd
(
((−∞,x] ∩ C)ε

)

cd−αεd−α
≤ νd

(
((−∞,y] ∩ C)ε

)

cd−αεd−α
.

Taking the limit ε→ 0+ gives

Mα
(
(−∞,x] ∩ C

)
≤Mα

(
(−∞,y] ∩ C

)
.

(b) Let ε > 0. Obviously ∅ ⊂ ((−∞,x] ∩ C)ε ⊂ Cε. By monotonicity of νd,

0 ≤ νd
(
((−∞,x] ∩ C)ε

)

cd−αεd−α
≤ νd(Cε)

cd−αεd−α
.

Letting ε→ 0+ yields the desired inequality.

(c) Let a < b and ε > 0. Since νd is a measure, it is easy to check that

∑

(θ1,...,θd)∈{0,1}d
(−1)

∑
θiνd

(((
−∞, (a1 + θ1(b1 − a1), . . . , ad + θd(bd − ad))

]
∩ C

)
ε

)

= νd(A) ≥ 0,

where

A =
(

(−∞, b] ∩ C
)
ε
\

⋃

(θ1,...,θd)∑
θi=1

((
−∞,

(
a1 + θ1(b1 − a1), . . . , ad + θd(bd − ad)

)]
∩ C

)
ε
.

The result again follows by letting ε→ 0+.

(d) Since C is a compact set, it is bounded. If any of coordinates of x is smaller than minimum
from all coordinates of all points in C we obtain (−∞,x] ∩ C = ∅. On the other hand, if
all coordinates of x are larger than maximum from all coordinates of all points in C then
(−∞,x] ∩ C = C. This completes the proof.

For being able to prove the existence of the weak limit we prepare two more assertions from
calculus.

Lemma 3.3.3. Let f be a real function on Rd that is bounded and non-decreasing in each
coordinate. Then for every sequence {xn} with xn > a for all n and xn → a as n → ∞ the
limit

lim
n→∞

f(xn)

exists and its value is independent of the sequence {xn}.

Proof. Suppose the assertion is false. In that case there are two sequences {xn} and {yn} such
that xn,yn > a for all n, xn,yn → a and f(xn)→ b, f(yn)→ c with b 6= c. Without loss of
generality we may assume c < b. Take ε > 0 such that c + ε < b − ε. Then there is n0 such
that f(yn0

) < c+ε and for all n ≥ n0, f(xn) > b−ε. Since a < yn0
and xn → a, we may find

n such that a < xn ≤ yn0
. But from the monotonicity follows b− ε < f(xn) ≤ f(yn0

) < c+ ε,
which is a contradiction.

Lemma 3.3.4. Let f be a real function bounded and non-decreasing in each coordinate. Let g
be defined by

g(x) = lim
δ→0+

f(x+ δ).

Then g is also bounded, non-decreasing in each coordinate, and continuous from above. More-
over, f(x) = g(x) at every continuity point x of f .
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Proof. If f is continuous at x than the above limit exists and equals f(x). In the following
we without loss of generality assume that 0 ≤ f ≤ 1 and hence 0 ≤ g ≤ 1. Let us prove the
monotonicity. Since x+ δ ≤ y + δ we have f(x+ δ) ≤ f(y + δ) and for every sequence {δn},
δn → 0+ we get g(x) = lim f(x+δn) ≤ lim f(y+δn) = g(y). Now we prove the continuity form
above. From monotonicity of f(x+ δ) in δ follows that there is maximally countable number
of values of δ such that f is discontinuous at x+ δ. Therefore there is always a sequence {δn},
δn > 0 such that f(x + δn) = g(x + δn) for all n and therefore g(x) = limn→∞ g(x + δn).
From the previous Lemma 3.3.3 follows that g(x) = limyn→x+

g(yn) for every sequence {yn}
such that yn > x for all n. Now let {yn} be a sequence such that yn ≥ x for all n. We
construct a new sequence {ỹn} by setting ỹn = yn + 1/n for all n. From the construction
follows ỹn > yn ≥ x and ỹn → x. Since g is non-increasing it leads to g(ỹn) ≥ g(yn) ≥ g(x).
Finally, because g(ỹn)→ g(x) we conclude that g(yn)→ g(x).

Now we have all necessary assertions to prove the main result of this section.

Proof of Theorem 3.3.1. The basic idea of the proof is to construct the probability measure
PC such that PC,ε

w−→ PC as ε → 0+. First let us construct the distribution functions FC,ε
corresponding to probability measures PC,ε by

FC,ε(x) = PC,ε
(
(−∞,x]

)
=
νd
(
(−∞,x] ∩ Cε

)

νd(Cε)
.

The upper and lower set bounds for the intersection in the numerator are
(
(−∞,x− ε] ∩ C

)
ε
⊂
(
(−∞,x] ∩ Cε

)
⊂
(
(−∞,x+ ε] ∩ C

)
ε
,

where x± ε = (x1 ± ε, . . . , xd ± ε) ∈ Rd. Let take a fixed, arbitrarily small δ > 0 and assume
ε < δ. We can enlarge the previous bounds by

(
(−∞,x− δ] ∩ C

)
ε
⊂
(
(−∞,x] ∩ Cε

)
⊂
(
(−∞,x+ δ] ∩ C

)
ε
.

For the distribution functions FC,ε we therefore have

νd
(
((−∞,x− δ] ∩ C)ε

)

νd(Cε)
≤ FC,ε(x) ≤ νd

(
((−∞,x+ δ] ∩ C)ε

)

νd(Cε)
.

From the assumptions we know that

Mα
(
(−∞,y] ∩ C

)
= lim
ε→0+

νd
(
((−∞,y] ∩ C)ε

)

cd−αεd−α
< +∞,

0 <Mα(C) = lim
ε→0+

νd(Cε)

cd−αεd−α
< +∞,

for all y ∈ Rd. Thus we may rewrite the inequality for FC,ε as

νd
(
((−∞,x− δ] ∩ C)ε

)

cd−αεd−α
cd−αεd−α

νd(Cε)
≤ FC,ε(x) ≤ νd

(
((−∞,x+ δ] ∩ C)ε

)

cd−αεd−α
cd−αεd−α

νd(Cε)
.

Taking the lim inf and lim sup we obtain

Mα
(
(−∞,x− δ] ∩ C

)

Mα(C)
≤ lim inf

ε→0+

FC,ε(x) ≤ lim sup
ε→0+

FC,ε(x) ≤ M
α
(
(−∞,x+ δ] ∩ C

)

Mα(C)

Now we can take the limit δ → 0+. At every continuity point x ofMα
(
(−∞,x]∩C

)
we obtain

lim
ε→0+

FC,ε(x) =
Mα

(
(−∞,x] ∩ C

)

Mα(C)
.
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If we define FC(x) by

FC(x) = lim
δ→0+

Mα
(
(−∞,x+ δ] ∩ C

)

Mα(C)

we have

lim
ε→0+

FC,ε(x) = FC(x) at all continuity points of FC(x)

since continuity points of FC(x) are the same as continuity points of Mα
(
(−∞,x] ∩ C

)
.

According to Lemma 3.3.2 (a), (b) and Lemma 3.3.4, the function FC(x) is non-decreasing and
continuous from above. From Lemma 3.3.2 (d) follows that FC(x)→ 0 as any one coordinate
of x goes to −∞, and FC(x) → 1 as all coordinates of x go to ∞. Finally, the inequality in
Lemma 3.3.2 (c) holds also for (a+ δ, b+ δ] and taking the limit δ → 0 it consequently remains
valid for FC(x). All conditions of Lemma A.1.1 are therefore satisfied. Hence FC(x) is a
distribution function and there is a probability measure PC such that FC(x) is its distribution

function. Taking a sequence {εn} such that εn → 0 we conclude that PC,εn
w−→ PC as a

consequence of Theorem A.1.6.

Thus taking together Theorem 3.3.1 and Lemma 3.3.1 we have proven the following state-
ment.

Corollary 3.3.1. Let C be a non-empty, compact, Minkowski measurable set with Minkowski
dimension α such that Mα

(
(−∞,x]∩C

)
exists for all x ∈ Rd. Then the generalized centroid

z(C) of C exists.

3.4 Rectifiable sets and submanifolds

In the previous section we derived a sufficient condition for the existence of generalized cen-
troid formulated with the help of Minkowski content. An important subclass of Minkowski
measurable sets is given by certain rectifiable sets defined in A.3.2. First we recapitulate some
known results about the connection of Hausdorff measure and Minkowski content.

Unless otherwise stated m is assumed to be a positive integer throughout this section. The
following theorem shows that for m-rectifiable sets the m-dimensional Minkowski content exists
and is equal to the m-dimensional Hausdorff measure.

Theorem 3.4.1. If F is a closed m-rectifiable subset of Rn, then Mm(F ) = Hm(F ).

Proof. Theorem 3.2.39 in [65].

Since every m-rectifiable set is a subset of an image of some bounded subset of Rm under
Lipschitz function and νm = Hm as a result of Theorem A.3.1, the following corollary follows
from Theorem A.3.2.

Corollary 3.4.1. Under the assumptions of previous theorem Mm(F ) <∞.

It is easy to prove that in such case the generalized centroid exists.

Corollary 3.4.2. If C is a compact m-rectifiable subset of Rn such that 0 < Hm(C), then the
generalized centroid of C exists and is given by

zM (C) =
1

Hm(C)

∫

C

xHm(dx).
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Proof. The previous theorem and its corollary yield 0 <Mm(C) = Hm(C) < ∞. Moreover,
Mm(D) = Hm(D) <∞ for any compact subset D of C and particularly for D = (−∞,x]∩C,
where x ∈ Rd is arbitrary. Thus Mm

(
(−∞,x] ∩ C

)
= Hm

(
(−∞,x] ∩ C

)
≤ Hm(C) < ∞.

Hence from Theorem 3.3.1 and Lemma 3.3.1 the generalized centroid of C exists. More-
over, because Hm taken on Borel sets is a measure, it follows that Mm

(
(−∞,x] ∩ C

)
=

Hm
(
(−∞,x]∩C

)
is continuous from above. We denote by P(C) the probability measure such

that PC,ε
w−→ P(C) and by FC its distribution function. From the proof of Theorem 3.3.1 we

have

FC(x) = lim
δ→0+

Mm
(
(−∞,x+ δ] ∩ C

)

Mm(C)
=
Hm

(
(−∞,x] ∩ C

)

Hm(C)
for all x ∈ Rd.

The probability measure PC is therefore given by

PC(A) =
Hm(A ∩ C)

Hm(C)
for all Borel A.

This using Lemma 3.3.1 proves the second part of the assertion.

It is easy to see that every set form the collection K′ of non-empty compact convex sets is
either an isolated point for which the generalized centroid clearly exists or an m-rectifiable set
for some positive integer m. We may therefore formulate the existence particularly for sets in
K′.

Corollary 3.4.3. The generalized centroid exists for all non-empty, compact, convex sets.

From Theorem 3.2.2 we know that zM is measurable on K′. The natural question is whether
zM is continuous on K′. The answer is negative. To see this let take isosceles triangles with
equal height and length ε of the third side. For ε > 0 the centroid is located in the 2/3 of the
height. For ε = 0 the triangle collapses into a line having the centroid in the middle which
proves the discontinuity.

The common extension of m-rectifiable sets is given by (Hm,m)-rectifiable sets (see Section
A.3 for a definition). The previous result, however, does not hold for (Hm,m)-rectifiable sets.
It cannot be directly extended to countable union of m-rectifiable sets even if its Hausdorff
measure is finite. The counterexample of a (H2, 2)-rectifiable set with infinite Minkowski
content is discussed in [65, 3.2.40]. However, it is still on open question if the generalized
centroid of such set exists, since the conditions in Theorem 3.3.1 are only sufficient.

Let Ur(x) resp. Br(x) be the open resp. closed ball in Rd with centre x and radius r. One
of the most general results recently available is the following.

Theorem 3.4.2. Let C be a countably (Hm,m)-rectifiable compact set and assume that η is a
Radon measure in Rd absolutely continuous with respect to Hm such that for some γ > 0, for
all x ∈ C and for all r, 0 < r < 1,

η
(
Ur(x)

)
≥ γrm.

Then Mm(F ) = Hm(F ).

Proof. Theorem 2.104 in [66].

The generalized centroid therefore exists for sets satisfying conditions of the previous the-
orem. In the sequel we show that the condition is satisfied for compact subsets of C1 sub-
manifolds. First note that for m ≥ 1 there is an equivalent formulation of Definition A.3.3 of
m-dimensional C1 submanifold of Rd.
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Proposition 3.4.1. Let m ≥ 1 be an integer. Then M is an m-dimensional C1 submanifold
of Rd if and only if for each x ∈M there exists a neighbourhood T of x in Rd, a convex open
subset V of Rm, and C1 maps φ : T → V, ψ : V → T such that

M ∩ T = ψ(V ), φ ◦ ψ = idV .

Proof. 3.1.19 in [65].

Now we prepare an important result that will be used later.

Lemma 3.4.1. Let m be a positive integer and C be a compact subset of m-dimensional C1

submanifold M of Rd. Then there are constants r,K,L > 0 such that for each x ∈ C there exist
a neighbourhood T of x in Rd, a convex open subset V of Rm, and maps φ : T → V, ψ : V → T
having the following properties:

(a) φ, ψ are C1,

(b) M ∩ T = ψ(V ), φ ◦ ψ = idV ,

(c) T contains a closed ball with centre x and radius r, Br(x) ⊂ T ,

(d) φ restricted to Br(x) is Lipschitzian with Lipschitz constant not greater than K,

(e) ψ restricted to φ
(
Br(x)

)
is Lipschitzian with Lipschitz constant not greater than L.

Proof. Let {Tx|x ∈ M} be a collection of all neighbourhoods of all points in C with the
properties from Proposition 3.4.1. Since every Tx is an open set, it contains with x a closed
ball with radius 2rx for some rx, B2rx(x) ⊂ Tx. The collection {Urx(x)|x ∈ C} is a covering
of C. By compactness of C there is a finite subcovering {Uri(xi)|i = 1, . . . , n} where ri = rxi .
For i = 1, . . . , n we denote Ti = Txi . It follows that {Ti|i = 1, . . . , n} is also a finite covering of
C. Let r = min1≤i≤n ri. This gives B2r(xi) ⊂ B2ri(xi) ⊂ Ti for all i. For each i we denote by
Vi and φi, ψi the open convex set and maps corresponding to Tj and xj by Proposition 3.4.1.

Now consider arbitrary y ∈ C. It is possible to choose j, 1 ≤ j ≤ n, such that y ∈
Urj (xj) ⊂ B2rj(xj) ⊂ Tj . Hence Tj contains a whole closed ball with centre y and radius r,
i.e. Br(y) ⊂ B2rj (xj) ⊂ Tj . If we take T = Tj , V = Vj , φ = φj , ψ = ψj the proof of parts (a),
(b), (c) is complete.

To prove (d) and (e) let take arbitrary 0 ≤ i ≤ n. Since the norm of the derivative Dφj is
a continuous map on a compact set B2rj (xj) it is bounded. Hence φj restricted to B2rj (xj)
is Lipschitzian with Lipschitz constant denoted by Kj . The set φj

(
B2rj (xj)

)
is compact and

consequently ψj restricted to φj
(
B2rj (xj)

)
is analogously Lipschitzian with Lipschitz constant

denoted by Li. If we set K = min1≤i≤nKi and L = max1≤i≤n Li, the assertions (d) and (e)
clearly follows since for every y and respective j is φj Lipschitzian also on Br(y) ⊂ B2rj (xj)
with Lipschitz constant smaller or equal than L and the same for ψj .

In the following the area formula for Lipschitzian (C1) maps is needed.

Theorem 3.4.3. Suppose f : Rm → Rd is Lipschitzian with m ≤ d. Then if A is a Borel set
in Rm, then ∫

A

Jmf(x)νm(dx) =

∫

Rd

H0(A ∩ f−1(y))Hm(dy).

Proof. Theorem 3.2.3 in [65] or Theorem 5.1.1 in [67]. The version for C1 map is Theorem
5.1.9 in [67].

Note that H0
(
A∩f−1(y)

)
returns the number of points of the set A∩f−1(y). The Jmf(x)

is the m-dimensional Jacobian defined in the usual way for instance in [65, 3.2.1].
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Theorem 3.4.4. Let C be a compact subset of an m-dimensional C1 submanifold M of Rd

such that Hm(M) <∞. Then there is a number γ > 0 and a Radon measure η in Rd absolutely
continuous with respect to Hm such that for all x ∈ C and for all 0 < ρ < 1

η
(
Uρ(x)

)
≥ γρm.

Proof. If m = 0 then M has a finite number of points and the theorem clearly holds for
η = H0 |M , where H0 |M is the restriction of a 0-dimensional Hausdorff measure H0 to M . Let
m > 0 and x be an arbitrary point in C. From Lemma 3.4.1 and Proposition 3.4.1 there exist
r > 0, constants K,L > 0, an open neighbourhood T ⊂ Rd such that Br(x) ⊂ T , a convex
open subset V of Rm, and C1 maps φ : T → V, ψ : V → T such that

M ∩ T = ψ(V ), φ ◦ ψ = idV .

The set φ
(
Br(x)

)
is a compact subset of V . From Lemma 3.4.1 (e) follows that ψ restricted to

φ
(
Br(x)

)
is Lipschitzian with Lipschitz constant not greater than L. Let define f : Rm → Rd

as a Lipschitzian extension (due to Kirszbraun’s theorem e.g. 2.10.43 in [65]) of ψ|
φ
(
Br(x)

)

such that the Lipschitz constant of f is the same as the Lispchitz constant of ψ|
φ
(
Br(x)

) and

thus not greater than L.
Let 0 < s < r. Therefore Us(x) ⊂ Ur(x) and φ

(
Bs(x)

)
⊂ φ

(
Br(x)

)
. We may apply the

area formula from Theorem 3.4.3 for A = φ
(
M ∩ Us(x)

)
and f . Since f on A is one-to-one

then A∩ f−1(y) is exactly one point in A if y ∈M ∩Us(x) and because it is Lipschitzian then
A ∩ f−1(y) is an empty set if y /∈M ∩ Us(x). Therefore we have

Hm
(
M ∩ Us(x)

)
=

∫

Rd

H0
(
φ
(
M ∩ Us(x)

)
∩ f−1(y)

)
Hm(dy) =

∫

φ(M∩Us(x))

Jmf(z)νm(dz).

Since f is Lipschitz with Lipschitz constant not greater then L we have

‖f(φ(x))− f(y)‖ ≤ L ‖φ(x)− y‖ , for all y ∈ Rm.

This gives that if y ∈ Us/L(φ(x)) then f(y) ∈ Us(x) and so y ∈ φ(Us(x)) ⊂ φ
(
Br(x)

)
⊂ V .

Hence f(y) = ψ(y) ∈ M , which follows from the fact that ψ(V ) = M ∩ T , and finally
y ∈ φ(M ∩ Us(x)) because y = φ(ψ(y)). Therefore Us/L(φ(x)) ⊂ φ(M ∩ Us(x)) and

∫

φ(M∩Us(x))

Jmf(z)νm(dz) ≥
∫

Us/L(φ(x))

Jmf(z)νm(dz).

The map φ is on φ(M ∩ Us(x)) ⊂ φ
(
Br(x)

)
Lipschitzian with Lipschitz constant smaller or

equal than K. Thus

‖φ(f(z))− φ(f(y))‖ ≤ K ‖f(z)− f(y)‖ , for all z,y ∈ φ(M ∩ Us(x)).

Since for all y in V we have φ(ψ(y)) = y, it holds particularly for all y ∈ φ(M ∩ Us(x)) ⊂ V
where ψ(y) = f(y). Therefore

‖f(z)− f(y)‖ ≥ 1

K
‖z − y‖ , for all z,y ∈ φ(M ∩ Us(x)).

From this follows that Jmf(x) ≥ 1/Km for all x ∈ Us/L(φ(x)) and we obtain

∫

Us/L(φ(x))

Jmf(z)νm(dz) ≥ cm
LmKm

sm.
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Finally let us take γ = cmr
m

LmKm and η = Hm |C . Then η is clearly a Radon measure absolutely
continuous with respect to Hm and

η
(
Uρ(x)

)
= Hm(M ∩ Uρ(x)) ≥ γρm

for all x ∈ C and ρ ∈ (0, 1). This completes the proof.

Corollary 3.4.4. Let m be a non-negative integer and C be a compact subset of an m-
dimensional C1 submanifold M of Rd such that 0 < Hm(C) < ∞. Then the generalized
centroid of C exists and is given by

zM (C) =
1

Hm(C)

∫

C

xHm(dx).

Proof. First assume m > 0. Then from Theorem A.3.3 follows that C is (Hm,m)-rectifiable.
This together with the previous theorem gives that C satisfies all conditions of Theorem 3.4.2.
Therefore 0 <Mm(C) = Hm(C) <∞. The measure η corresponding to C from the previous
theorem can be used for all subsets of C and particularly for (−∞,x] ∩ C for all x ∈ Rd.
Theorem 3.4.2 yields Mm

(
(−∞,x] ∩ C

)
= Hm

(
(−∞,x] ∩ C

)
≤ Hm(C) < ∞. In the case

m = 0 we know from discussion after Definition A.3.3 that C consists only of finite number
of isolated points. Thus clearly M0

(
(−∞,x] ∩ C

)
= H0

(
(−∞,x] ∩ C

)
≤ H0(C) <∞ for all

x ∈ Rd. Hence in both cases we may use Theorem 3.3.1 and Lemma 3.3.1 yielding that the
generalized centroid of C exists. The proof of the second part is the same as proof of Corollary
3.4.2.

It is worth noting that Theorem 3.4.4 and the previous corollary, formulated for compact
subsets of C1 submanifolds, cover many important sets that are not submanifolds as a whole.
In particular it is valid for some submanifolds with boundary. For example the closed unit ball
Bd is not a d-dimensional C1 submanifold since for points on the boundary of Bd one cannot
satisfy the Definition A.3.3. However, it is a closed subset of an open ball with radius larger
than 1, Bd ⊂ δUd with δ > 1, which is a d-dimensional C1 submanifold. Hence the generalized
centroid of Bd exists which also follows from Proposition 3.2.2.

The C1 differentiability can be actually weaken to Lipschitz continuity. If we define m-
dimensional Lipschitzian submanifold analogously to Definition A.3.3 assuming that φ and its
inverse are Lipschitzian instead of C1 then we can prove analogous proposition as Proposition
3.4.1 and as a consequence also the previous theorem and its corollary will be still valid.

Corollary 3.4.5. Let C be a compact subset of an m-dimensional Lipschitzian submanifold
N of Rd such that 0 < Hm(C) <∞. Then the generalized centroid of C exists and is given by

zM (C) =
1

Hm(C)

∫

C

xHm( dx).

Finally we may easily show that the generalized centroid exists for finite unions of previously
taken types of sets.

Theorem 3.4.5. Let k ∈ N, C1, . . . , Ck be compact sets in Rd and 0 ≤ α1, . . . , αk ≤ d be such
that for each i = 1, . . . , k we have 0 <Mαi(Ci) = Hαi(Ci) <∞ and Mαi(D) = Hαi(D) holds

for every compact D ⊂ Ci. Then the generalized centroid of C =
⋃k
i=1 Ci exists and is given

by

zM (C) =
1

Hβ(C)

∫

C

xHβ( dx), (3.4)

where β = max{α1, . . . , αk} = dimH C.
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Proof. It is enough to prove that 0 < Mβ(C) = Hβ(C) < ∞ and Mβ
(
(−∞,x] ∩ C

)
=

Hβ
(
(−∞,x] ∩C

)
for all x ∈ Rd. Then from Theorem 3.3.1 and Lemma 3.3.1 the generalized

centroid of C exists. The second part follows in the same way as in the proof of Corollary
3.4.2.

From the assumption follows that each Ci is an αi-set and in particular that dimH Ci = αi.
By the countable stability (see e.g. [25, Section 2.2]) of the Hausdorff dimension we get
dimH C = max{α1, . . . , αk}. Thus if we set β = dimH C the relation 0 < Hβ(C) < ∞ clearly
follows since Hβ(A) = 0 whenever β > dimH A and there exists i with β = αi yielding together
0 < Hβ(Ci) ≤ Hβ(C) ≤ Hβ(C1) + . . . +Hβ(Ck) < ∞. Next we prove Mβ

(
(−∞,x] ∩ C

)
=

Hβ
(
(−∞,x] ∩ C

)
form which, by taking x sufficiently large, follows Mβ(C) = Hβ(C). We

need to show

lim
ε→0+

νd
(
((−∞,x] ∩ C)ε

)

cd−βεd−β
= Hβ

(
(−∞,x] ∩ C

)
.

Let us denote Di = (−∞,x]∩Ci ⊂ Ci and Di;ε = (Di)ε for all i = 1, . . . , k. By the well known
inclusion-exclusion principle

νd
(
((−∞,x] ∩ C)ε

)
= νd

(
k⋃

i=1

Di;ε

)
=

k∑

i=1

(−1)i+1
∑

1≤m1<...<mi≤k
νd(Dm1;ε ∩ . . . ∩Dmi;ε).

Since Dm1;ε ∩ . . . ∩Dmi;ε = (Dm1 ∩ . . . ∩Dmi)ε and Dmi ⊂ Cmi we obtain

lim
ε→0+

νd
(
(Dm1

∩ . . . ∩Dmi)ε
)

cd−βεd−β
= Hβ

(
Dm1

∩ . . . ∩Dmi

)
<∞

for every i = 1, . . . , k and 1 ≤ m1 < . . . < mi ≤ k. Using the inclusion-exclusion principle
backwards for Hβ yields the result.

Corollary 3.4.6. Let k be a positive integer and compact sets C1, . . . , Ck ⊂ Rd be of the
following type: for each i = 1, . . . , k there is an integer 0 ≤ mi ≤ d such that Ci is an mi-set
and subset of either mi-dimensional C1 submanifold, mi-dimensional Lipschitzian submanifold
or mi-rectifiable set. Then the generalized centroid of the union C =

⋃k
i=1 Ci exists and is given

by

zM (C) =
1

Hn(C)

∫

C

xHn( dx),

where n = max{m1, . . . ,mk} = dimH C.

Proof. Clearly follows from the previous theorem, proofs of Corollaries 3.4.2, 3.4.4, and Corol-
lary 3.4.5.

Corollary 3.4.7. The generalized centroid exists for any set from the convex ring R′, whose
elements are the finite unions of non-empty compact convex sets.

Since by Theorem A.5.11 is R′ a Borel subset of C′ we can, as a consequence of Theorem
3.2.2, use zM as a centre function for particle processes in R′ introduced in Section 2.7.

3.5 Generalized centroid based on the Hausdorff measure

Apart from Definition 3.2.1 there is another possibility how to extend the classical definition
(3.1) of the centroid. It is based on the expression (3.4). Recall that an α-set is defined (see
Appendix A.3) as a set A ⊂ Rd such that dimH(A) = α and 0 < Hα(A) <∞.
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Definition 3.5.1. Let C be a non-empty compact α-set for some 0 ≤ α ≤ d. Then we define

zH(C) =
1

Hα(C)

∫

C

xHα(dx) (3.5)

and call it the generalized Hausdorff centroid of C.

First we show the measurability of the Hausdorff centroid on certain Borel measurable
subsets of C′. Let τδ(C′) denote the topology induced by the Hausdorff metric δ on C′.
Theorem 3.5.1. Let α ∈ [0, d] be fixed. Then the class of non-empty compact α-sets C′Hα is
a Borel subset of C′, and the Hausdorf centroid zH is measurable on C′Hα with respect to the
Borel σ-algebra of trace topology induced by the topology τδ(C′).

Proof. Clearly C′Hα = (Hα)−1
(
(0,∞)

)
. From Theorem A.5.7 follows that C′Hα is a Borel set

and that the denominator of (3.5) is measurable on C′ and hence on C′Hα since the trace σ-
algebra Bδ(C′) ∩ C′Hα is the Borel σ-algebra Bδ(C′Hα) of the trace topology. Let us define two
measures µ+ and µ− on Rd by

µ+(A) =

∫

A

x11{x1≥0}(x)Hα(dx) and µ−(A) = −
∫

A

x11{x1<0}(x)Hα(dx).

Proposition A.5.1 yields that µ+ and µ− are measurable on C′Hα . The equation (3.5) for the
first component of zH(C) can be now rewritten as

zH;1(C) =
µ+(C)− µ−(C)

Hα(C)
.

Since all three elements are measurable on C′Hα , zH;1 is also measurable. The same holds for
all other components of zH .

As a consequence of the previous theorem, the generalized Hausdorff centroid can be used
as a centre function for particle processes in C′Hα (see Section 2.7 for details).

Important models in random geometry are given by rectifiable sets (see Definition A.3.2).
The following statement shows the measurability of zH on particular subclasses of such sets.

Theorem 3.5.2. Let 0 < m ≤ d be an integer and X(m) be a class of (Hm,m)-rectifiable

non-empty compact m-sets in Rd. Then X(m) is a Borel subset of C′ and zH is measurable on
X(m).

Proof. By Theorem A.4.7 the collection Xm of (Hm,m)-rectifiable closed sets in Rd is a Borel
set in F . Since X(m) = Xm ∩ C′ then by Corollary A.5.2 X(m) is a Borel set in C′. Let X(m)

be equipped with the Borel σ-algebra Bδ(X(m)) of trace topology induced by topology of the
Hausdorff metric on C′. Since X(m) ⊂ C′Hm and the trace σ-algebra Bδ(C′Hα) ∩ X(m) equals
Bδ(X(m)), it follows from the previous theorem that zH is measurable on X(m).

Corollary 3.5.1. Let X = ∪dm=1X(m). Then X is a Borel subset of C′ and zH is measurable
on X .

Proof. The Borel property of X is obvious. Let X be equipped with the Borel σ-algebra
Bδ(X ) of trace topology induced by topology of the Hausdorff metric on C′ which is equal to
the trace σ-algebra Bδ(C′) ∩ X . For the measurability of zH note that X(m) are disjoint, i.e.
X(i)∩X(j) = ∅ for i 6= j, as follows from properties of the Hausdorff measure. Let zH |X denote

the restriction of zH on X . Hence for every open U ⊂ R is
(
zH |X

)−1
(U) =

⋃d
m=1

(
zH |X(m))−1

(U) =
⋃d
m=1 Cm, where Cm =

(
zH |X(m)

)−1
(U) ⊂ X(m) is for each m = 1, . . . , d a Borel

sets in X(m) by the previous theorem. Since each Borel set in X(m) is also a Borel set in X , the
proof is complete.
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Again the generalized Hausdorff centroid can be used as a centre function for particle
processes in X . Now let focus on the relation between the generalized Hausdorff centroid zH
and the generalized Minkowski centroid zM discussed in previous sections.

Proposition 3.5.1. The generalized centroids zH and zM coincide on compact sets with
positive Lebesgue measure and on sets for which zM exists from Corollary 3.4.6.

Proof. The first part is a consequence of Proposition 3.2.1 and Theorem A.3.1. The second
part is obvious.

The natural question is which one of the two proposed generalizations of the centroid
is more general. Clearly, the generalized Minkowski centroid may exist for sets where the
generalized Hausdorff centroid is not defined. As an example consider C = {−n−1}n∈N∪{0}∪
{n−1}n∈N ⊂ R. Here the Minkowski centroid exists and zM (C) = 0 by Proposition 3.2.2 since
C is symmetric around 0. However, clearly dimH C = 0 and H0(C) = ∞ and hence C is
not a 0-set (and also not an α-set for any other α). Therefore the Hausdorff centroid of C is
not defined. On the other side there is an open question whether the generalized Minkowski
centroid exists for each compact α-set. Clearly one may think about sets that are α-sets but
are not Minkowski measurable. For those sets we cannot apply our weak limit mechanism from
Theorem 3.3.1 to prove the existence of the limit. However, the limit (3.2) may still exist.



Chapter 4

Statistics of random structures

In this chapter the statistical issues of various characteristics from stochastic geometry are
discussed. The outline is as follows: In the first section we present some standard estimators
for point processes. In Section 4.2 we introduce several first and second order estimators for
stationary random closed sets and discuss their basic properties. The use of the fast Fourier
transform for the estimation is introduced. Section 4.3 is devoted to non-stationary random
closed sets. Here the kernel estimator of the volume fraction is introduced. Then the problem of
the second order estimation is also discussed. Finally, in Section 4.4 we present some numerical
analysis of the performance of correlation function estimators in the stationary case.

4.1 Point processes

4.1.1 Stationary point processes

Here we recapitulate some well known facts from the estimation theory of point processes. The
general references are [41, 68]. Let N be a stationary point process in Rd with intensity λ that
is observed in a subset W of Rd called the observation window. Here νd(W ) > 0 is always
assumed. The straightforward estimator of the intensity is the empirical intensity defined
by

λ̂ =
N(W )

νd(W )
.

It is unbiased as follows from (2.20).
Besides unbiasedness the important characteristic of an estimator is its consistency. We

use the following definition. Let {Wn, n ∈ N} be a convex averaging sequence of observation

windows defined in Subsection 2.5.6 and let λ̂n be the empirical intensity corresponding to Wn

for every n. We say that λ̂ is consistent if λ̂n → p in probability as n→∞, i.e.

P(|λ̂n − p| ≥ ε)→ 0 as n→∞

for all ε > 0. Since the almost sure convergence implies convergence in probability, we obtain
that if N is ergodic then from Theorem 2.5.7 follows that λ̂ is a consistent estimator of λ. For
the definition of different modes of convergence in probability spaces and their relations see for
instance [69].

Using (2.21), the variance of λ̂ can be expressed as

var(λ̂) =
λ2

ν2
d(W )

∫

Rd

γW (y)g(y) dy +
λ2

ν2
d(W )

− λ2,

where g is the pair correlation function of N and γW is the set covariance of W .

67
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The estimation of second order characteristics is strongly influenced by the boundedness
of the observation window W . Since second order characteristics need joint information from
at least two points of the process one must be careful in the neighbourhood of the edge of
W where such a joint information may be inaccessible. Therefore it is convenient to use edge
corrections (see [68] for various methods).

Probably the best results are given by Horwitz-Thompson type estimators [70, 71] with
suitable weights based on W . The basic unbiased estimator of the reduced second order
factorial moment measure Λ̆[2] is given by

̂̆
Λ

[2]
st (B) =

6=∑

x,y∈N∩W

1B(y − x)

νd
(
(W − x) ∩ (W − y)

)

for all Borel B such that νd
(
W ∩ (W − y + x)

)
> 0 for all z = y − x ∈ B. The unbiasedness

can be shown easily from Campbell’s theorem 2.5.3 and Proposition 2.5.5. Moreover, if N is
ergodic then one can use Theorem 2.5.8 for factorial moment measures to prove consistency.

Since Λ̆[2](Br) is λ2K(r), where K is the K-function, we immediately obtain the estimator
of λ2K(r). In the isotropic case one can use Ripley’s estimator

λ̂2KR(r) =

6=∑

x,y∈N∩W

1[0,r](‖x− y‖) w(x,y)

νd(W (‖x−y‖))
for 0 ≤ r < r∗,

where r∗ = sup
{
r ≥ 0|νd

(
W (r)

)
> 0
}

and W (r) = {x ∈ W |∂Br(x) ∩W 6= 0} is the set of all
points x of the window W such that a circular arc of radius r centred at x is not completely
outside W . Furthermore,

w(x,y) =
2π

αx,y
,

where αx,y is the sum of all those central angles that belong to arcs of the circle centred at x,
of radius ‖x− y‖ and lying in W . See [41, Chapter 4], [68, Section 4.3], [72, Chapter 15], [73]
and references therein for further discussion and other possible estimators. If one wants an
estimator of K(r) instead of λ2K(r) it is strongly recommended ([68, 73]) to use an adapted

estimator of λ2, which depends on r, instead of just (λ̂)2.
From an interpretation perspective either the reduced second order factorial product density

ρ̆[2] or the pair correlation function g could be regarded as a more fundamental quantities.
However, the estimation is more complicated since the situation is analogous to the problem of
the non-parametric density estimation in classical statistics. A standard approach is to apply
kernel estimators.

In the reminder of this subsection we assume N to be isotropic. One proposed estimator

for ρ̆[2] corresponding to
̂̆
Λ

[2]
st is

ρ̂st(r) =
1

dcdrd−1

6=∑

x,y∈N∩W

Kh(r − ‖y − x‖)
νd
(
(W − x) ∩ (W − y)

) ,

where dcd is the surface area of the unit sphere in Rd and Kh : R → R is a kernel function
defined by Kh(x) = h−1K(h−1x) for some probability density function K called the kernel
and h > 0 called the bandwidth. Typically the Epanechnikov or box kernel are used. The
estimator given by the previous formula has a property similar to unbiasedness:

E ρ̂(r) =

∫

R

kh(s)ρ(r + hs) ds.

As h → 0+ one obtains ρ̆[2](r) if the product density is continuous at r. The crucial role is
played by the choice of bandwidth. We refer the reader to [68] for a detailed discussion of this
important topic.
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The analogue to Ripley’s estimator λ̂2KR(r) is

ρ̂R(r) =
1

dcdrd−1

6=∑

x,y∈N∩W

Kh(r − ‖x− y‖) w(x,y)

νd(W (‖x−y‖))
for 0 ≤ r < r∗.

It is convenient that the estimator has a simpler form given by Ohser’s estimator ([68, 73])

ρ̂O(r) =
1

dcdrd−1γW (r)

6=∑

x,y∈N∩W
Kh(r − ‖x− y‖)

for all r such that γW (r) > 0, where γW (r) is the isotropised set covariance function of W
defined by (2.5.2).

If one wants to estimate g by division by the squared intensity λ2 it is again important to
use some adapted estimator of λ2. For a fuller treatment of this estimation problem we refer
the reader to [68, 72, 73].

4.1.2 Non-stationary point processes

Here we consider the case when the stationarity is broken even for the first moment. Thus
in the following it is assumed that the intensity λ of a point process N in Rd exists but it
is not constant. Let us again assume that N is observed in an observation window W with
νd(W ) > 0.

One of the most natural ways for estimating the intensity λ(x) is to use a non-parametric
kernel estimate. The use of this method in spatial statistics of point processes goes back to
1985 when P. Diggle in [74] used kernel smoothing method to estimate the intensity of a Cox
spatial point process. The basic idea is similar to kernel smoothing (see e.g. [75, 76, 77]) used
in the non-parametric estimation of a probability density function in classical statistics.

The usual edge corrected kernel estimator of the intensity, [78, 79], is

λ̂h(x) =
∑

y∈N∩W

Kh(x− y)∫
W
Kh(u− y) du

,

where Kh : Rd → R is the kernel function defined by Kh(x) = h−dK(h−1x) for some radially
symmetric multivariate probability density function K (the kernel) and h > 0 (the bandwidth).
The bandwidth h of the kernel involves a trade-off between bias and variance, whereas, in the
common use scenarios, the choice of kernel function K is of secondary importance.

The estimator λ̂h(x) is not unbiased since from Campbell’s theorem 2.5.2 follows

E λ̂h(x) =

∫

W

Kh(x− y)∫
W
Kh(u− y) du

λ(y) dy.

If the intensity is continuous at x and x ∈W ◦ then E λ̂h(x)→ λ(x) as h→ 0+.
The bandwidth is usually chosen such that it minimizes the mean square error (MSE) of

λ̂h(x) with respect to the true intensity λ(x), which is defined by

MSE
(
λ̂h(x)

)
= E

(
λ̂h(x)− λ(x)

)2
.

For particular point models the MSE can be explicitly evaluated as a function of second order
statistics. In the case of Cox process it was done by Diggle [74]. Generally the MSE depends
on x and cannot be minimized simultaneously for all x ∈ W . In that case one minimizes the
mean integrated square error (MISE) defined by

MISE
(
λ̂h
)

=

∫

W

MSE
(
λ̂h(x)

)
dx.
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Note that the problematic part of the minimization is that MISE (and also MSE) includes
second order characteristics like the second order factorial product density ρ[2]. Thus in practice
the minimization without additional assumptions is quite problematic.

Sometimes, computably less demanding version (the Nadaraya-Watson estimator, [80])

λ̂NW ;h of λ̂h is used,

λ̂NW ;h(x) =

∑
y∈N∩W Kh(x− y)∫
W
Kh(x− u) du

. (4.1)

Again, it is generally not unbiased and E λ̂NW ;h(x) → λ(x) as h → 0+ if λ is continuous at
x ∈W ◦.

For second order characteristics the situation is even more complicated since without sta-
tionarity the usually analysed characteristics like the reduced second order factorial moment
measure, its density and pair correlation function generally do not exist. Here we briefly follow
According to [68] it is known that, except some local methods for short range interaction pro-
cesses, there are generally two ways how to deal with this problem. The first is the intensity
reweighting and the second the local rescaling.

In the intensity reweighting approach one assumes that N has an everywhere positive
intensity λ(x) and constructs a new random measure ξN by

ξN =
∑

y∈N

1

λ(y)
δy,

where δy is the Dirac measure defined by A.1. If ξN is second order stationary then N is said
to be second order intensity reweighted stationary. In that case one analyses second
order characteristics of ξN and estimates them by usual estimators of stationary point processes
from the previous section. In particular the definition and stationarity of ξN implies that ξN
has intensity equal to 1. Hence the pair correlation function of ξN equals the pair correlation
function of N :

gξN (x,y) = ρ
[2]
ξN

(x,y) =
ρ

[2]
N (x,y)

λ(x)λ(y)
= gN (x,y),

which consequently depends only on r = x − y or just on r = ‖x− y‖ when ξN is isotropic.
Intensity reweighting is suitable for inhomogeneous Poisson processes and in general for pro-
cesses obtained by independent thinning from a stationary point process. On the other hand
it is unsuitable for processes with varying range of correlation. For further details see [78, 79].

The other possible method is the local rescaling. The general idea is to locally rescale
the metric on Rd in the way that the intensity with respect to corresponding locally rescaled
volume measure is constant. One then studies all the characteristics in this modified metric.
This method is especially useful for Gibbs point processes. For more details see [81].

It is worth noting that the main problem in non-stationary statistics of point processes
is the possible confounding between intensity and interaction. It was shown (see [79, 82]
and references therein) that sometimes it is not possible to recognize the difference of spatial
inhomogeneity from clustering in a single realization of a point process. Thus it may be not
possible to distinguish from one realization if the point process is stationary or not. In the
theory of point processes this represents a fundamental limitation of the scope of statistical
inference.

4.2 Stationary random closed sets

In this section we discuss possible methods for estimating the volume fraction and second order
characteristics of a random closed set.
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4.2.1 Volume fraction

First let us look more closely at the estimation of the volume fraction. Let assume that
a stationary random closed set X is observed in an observation window W such that 0 <
νd(W ) < ∞. The most natural estimator of the volume fraction p is given by the empirical
volume fraction

p̂v =
νd(X ∩W )

νd(W )
. (4.2)

From (2.7) follows that p̂v is unbiased, E p̂v = p, for every window W . If X is ergodic random
closed set then Corollary 2.2.2 implies the consistency of p̂v. Here we mean the consistency
defined in part 4.1.1.

The variance of the estimator is

var(p̂v) = E(p̂v − p)2 =
E
( ∫

W
1x(x) dx

)2 −
( ∫

W
p dx

)2

ν2
d(W )

=
1

ν2
d(W )

E

∫

W

∫

W

1x(x)1x(y)− p2 dx dy

=
1

ν2
d(W )

∫

W

∫

W

cov(x− y) dx dy. (4.3)

This can be rewritten using the correlation function κ of X as

var(p̂v) =
p(1− p)
ν2
d(W )

∫

W

∫

W

κ(x− y) dx dy =
p(1− p)
ν2
d(W )

∫

W

∫

v−W

κ(u) dudv. (4.4)

For W large in all dimensions one obtains the following approximation

var(p̂v) ≈ p(1− p)
A

νd(W )
, (4.5)

where

A =

∫

Rd

κ(r) dr

is called the integral range whenever the integral on the right side exists, [41, 49]. The
dimension of integral range is the same as of a volume of Rd. The integral range has a similar
interpretation as the correlation time for stochastic processes (see e.g. [83]). If the size νd(W )
of the observation window does not exceed very much the integral range, then the accuracy of
the estimate is up to the multiplicative constant given by the standard deviation

√
p(1− p)

of the volume fraction. With increasing size of W the variance decreases as νd(W )−1. If we
denote N = νd(W )/A and σ2 = p(1− p) then

var(p̂v) ≈
σ2

N
,

which is the usual formula for the variance of the sample mean constructed from N i.i.d.
random variables with common variance σ2. This means that N gives the effective number of
domains of size A that are analogous to independent observations.

Clearly the approximation (4.5) is inapplicable when A = 0, A = ∞, or A is not defined.
In the first case it follows from (4.4) that the variance decreases more rapidly than νd(W )−1 as
νd(W )→∞ and hence the acceptable window sizes are generally smaller than for cases when
A > 0. On the other hand, if A = ∞ then by Proposition 2.8.1 X is long-range dependent
and formula (4.4) implies that var(p̂v) falls off more slowly than νd(W )−1 with increasing size
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of W . If X is isotropically long-range dependent according to Definition 2.8.2, then we may
use Proposition 2.8.6 for its volume measure νX . Let assume that we observe X in a family of
convex compact windows {aW |a > 0}. Then

var p̂v =
var νX(aW )

ν2
d(aW )

∼ a−αFα;W `(a)

νd(W )
(a→∞)

since λD = 0 for random closed sets as was discussed in Subsection 2.5.4. Thus for large
window W we have the asymptotic relation

var p̂v ≈ νd(W )−
α
dKα,W , (4.6)

where Kα,W depends only on the shape of W and not on its scale. If A is not defined, it may
still be the case of the long-range dependence but more detailed analysis is needed. For further
discussion of the long-range dependence see Section 2.8.

We have seen that ergodicity was a sufficient condition for pv to be consistent. Now we
present a necessary condition for the mean square consistency, formulated using the correlation
function, a result known as Slutsky’s ergodic theorem [83, 49]. Let {Wn, n ∈ N} be a convex
averaging sequence of observation windows from Definition 2.2.4 and let p̂v;n be the empirical
volume fraction corresponding to Wn for every n. We say that pv is mean square consistent
if for every convex averaging sequence {Wn},

E(p̂v;n − p)2 = var(p̂v;n)→ 0 as n→∞.
Classical consistency defined above is a consequence of mean square consistency ([69]).

Theorem 4.2.1 (Slutsky’s ergodic theorem). Let X be a stationary random closed set with
covariance function cov. Then the empirical volume fraction pv is mean square consistent if
and only if

1

νd(Wn)

∫

Wn

cov(r) dr → 0 as n→∞ (4.7)

for every convex averaging sequence {Wn, n ∈ N}.

Proof. The proof is similar to the one dimensional case that can be found as note 3.5 in [84].
First let assume that pv is mean square consistent. For the expression on the left side of (4.7)
we have

1

νd(Wn)

∫

Wn

cov(r) dr =
1

νd(Wn)
E

∫

Wn

1X(r)1X(0)− p2 dr

= E pv;n1X(0)− p2 = E(pv;n − p)(1X(0)− p).
Thus it is a scalar product of pv;n − p and 1X(0) − p in a Hilbert space L2(F ,PX). The
Cauchy-Schwartz inequality yields

∣∣∣∣∣∣
1

νd(Wn)

∫

Wn

cov(r) dr

∣∣∣∣∣∣
≤
√

cov(0)
√

var(p̂v;n)

and hence the condition (4.7) holds.
For the opposite implication let Kn = Wn −Wn = {x − y|x,y ∈ Wn} for every n. It is

easy to see that Kn is again a convex averaging sequence. Moreover for every n ∈ N its volume
satisfies νd(Kn) ≤ 3dνd(Wn) and x −Wn ⊂ Kn for each x ∈ Wn. Now (4.7) yields that for
ε > 0 there exists n0 = n0(ε) such that

∫

Kn

cov(r) dr ≤ ενd(Kn) for n > n0.
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On the other hand, since |cov(r)| ≤ cov(0) which follows from the positive semi-definiteness,

∫

B

cov(r) dr ≤ cov(0)νd(B) for any Borel set B.

Therefore if n > n0,

var(p̂v) =
1

ν2
d(Wn)

∫

Wn

∫

x−Wn

cov(r) dr dx

=
1

ν2
d(Wn)



∫

Wn0

∫

x−Wn

cov(r) dr dx+

∫

Wn\Wn0

∫

x−Wn

cov(r) dr dx




≤ 1

ν2
d(Wn)



∫

Wn0

cov(0)νd(x+Wn) dx+

∫

Wn\Wn0

∫

Kn

cov(r) dr dx




=
1

ν2
d(Wn)


cov(0)νd(Wn)νd(Wn0

) +

∫

Wn\Wn0

ενd(Kn) dx




=
cov(0)νd(Wn0

)

νd(Wn)
+ ε

νd(Kn)
(
νd(Wn)− νd(Wn0

)
)

ν2
d(Wn)

≤ cov(0)νd(Wn0
)

νd(Wn)
+ ε3d.

As a consequence var(p̂v) can be made arbitrary small by choosing n to be sufficiently large.
Hence var(p̂v)→ 0 as n→∞.

It is easy to see that every ergodic random closed set X satisfies (4.7). This is an immediate
result of Corollary 2.5.3 for the volume measure νX of X.

Another possible method of estimating the volume fraction p of a stationary random closed
set X arises when X is observed at a specific number of points in some observation window
W . For x1, . . . ,xn ∈W we define p̂p to be

p̂p =
1

n

n∑

i=1

1X(xi). (4.8)

The estimator is clearly unbiased. For its variance we have

var(p̂p) = E(p̂p − p)2 =
1

n2
E

(
n∑

i=1

1X(xi)− np
)2

=
1

n2
E

n∑

i,j=1

(1X(xi)1X(xj)− p2)

=
2

n2

n∑

i<j

cov(xi − xj) +
p(1− p)

n
.

The exact behaviour of the first term depends on the sampling scheme, that is on the particular
choice of positions x1, . . . ,xn in the window W . Usual possibilities are random sampling, where
the points are chosen randomly with uniform distribution in W , and square grid sampling,
where the points are given by the intersection of a regular point lattice in Rd with W . The
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later situation often arise in image analysis, where the grid points are centres of pixels, see [50]
for more details. For a fuller treatment of different sampling schemes and their influences to the
difference p̂p− p̂v we refer the reader to [49, §2.8.3], [85, §5.6.1], [86, Chapter 3] and references
therein. In most situations var(p̂v) ≤ var(p̂p) and sampling on a square grid is usually the best
sampling scheme, i.e. it produces the smallest variance of p̂p. However, it should be noted
that there are situations when the estimator p̂p has smaller variance than p̂v, see [87]. Some
discussion about the connection of p̂p to ergodicity can be found in [50].

4.2.2 Second order characteristics

In the following part we discuss the estimation procedure for most important second order
characteristics of a stationary random closed set X that is again observed in a window W .
Most estimation procedures are based on relation (2.8) for the covariance.

If the stationary random closed set X is observed in some window W , we cannot directly
estimate C(r) as the volume fraction of X ∩ (X − r) since the information from outside of
W is needed. This problem can be overcome by the so called minus sampling, where the set
B = W ∩W − r instead of W is used, because inside B we know values of X and also of
X − r. The unbiased estimator of the covariance is therefore given by the so called empirical
covariance

Ĉv(r) =
νd
(
X ∩ (X − r) ∩W ∩ (W − r)

)

νd
(
W ∩ (W − r)

) (4.9)

for all r ∈ Rd such that νd
(
W ∩(W −r)

)
> 0. From the translation invariance of the Lebesgue

measure follows Ĉv(r) = Ĉv(−r) for all admissible r. For ergodic random closed sets the
empirical covariance is consistent and also mean square consistent. Let {Wn, n ∈ N} be a
convex averaging sequence of observation windows and let Ĉv;n(r) be the empirical covariance
corresponding to Wn for every n.

Proposition 4.2.1. Let X be a stationary ergodic random closed set. Then for every r ∈ Rd
and every convex averaging sequence {Wn, n ∈ N}

Ĉv;n(r)→ C(r) as n→∞

almost surely and in mean square.

Proof. Let νX be the volume measure of X and r ∈ Rd. We define fr(ϕ) = 1suppϕ(0)1suppϕ(r)
for all ϕ ∈ M. From Proposition 2.5.1 and Theorem A.4.5 follows that f is measurable. Let
further Sx denote the action of a group of translations in Rd corresponding to x ∈ Rd.
According to relations (2.19) and (2.18) we have

fr(SxνX) = fr(µSxX) = fr(µX+x) = 1X+x(0)1X+x(r) = 1X(−x)1X−r(−x)

for every x ∈ Rd. Now, Proposition 2.5.10 for the convex averaging sequence {−Wn∩ (−Wn+
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r), n ∈ N} yields

Ĉv;n(r) =
νd
(
X ∩ (X − r) ∩Wn ∩ (Wn − r)

)

νd
(
Wn ∩ (Wn − r)

)

=
1

νd
(
Wn ∩ (Wn − r)

)
∫

Wn∩(Wn−r)

1X(x)1X−r(x) dx

=
1

νd
(
Wn ∩ (Wn − r)

)
∫

−Wn∩(−Wn+r)

1X(−x)1X−r(−x) dx

=
1

νd
(
−Wn ∩ (−Wn + r)

)
∫

−Wn∩(−Wn+r)

fr(Sxω) dx

→ E(fr(νX)) = C(r) as n→∞

almost surely and in the square mean since |f | ≤ 1.

Analogously to the volume fraction, the variance of Ĉv;n(r) is given by

var
(
Ĉv(r)

)
= E

(
Ĉv(r)− C(r)

)2

=
1

ν2
d

(
W ∩ (W − r)

)
∫

W∩(W−r)

∫

W∩(W−r)

covX∩(X−r)(x− y) dx dy,

where covX∩(X−r)(x−y) is the covariance function of the random closed set X ∩ (X−r) that
is also stationary as follows from Corollary 2.2.1. Again, Slutsky’s theorem for mean square
consistency of Ĉv(r) can be formulated.

Theorem 4.2.2. Let X be a stationary random closed set and r ∈ Rd. Then the empirical
covariance Ĉv(r) is mean square consistent if and only if

1

νd(Wn)

∫

Wn

covX∩(X−r)(u) du→ 0 as n→∞

for every convex averaging sequence {Wn, n ∈ N}.

Proof. Analogously as in Theorem 4.2.1.

The condition is, as a result of the previous proposition, satisfied for every ergodic random
closed set. An important modification of the empirical covariance is given by

Ĉ∗v (r) =
νd
(
X ∩ (X − r) ∩W ∩ (W − r)

)

νd(W )

for all r ∈ Rd. Since

Ĉ∗v (r) =
νd(W )

νd
(
W ∩ (W − r)

) Ĉv(r),

it is asymptotically unbiased as νd(W )→∞. Moreover it is also consistent whenever Ĉv(r) is
consistent. This estimator is usually preferred in the field of time-series analysis [83, 88]. The
reason is in the fact that Ĉ∗v (r) has despite its biasedness many favourable properties. First,
note that the estimator Ĉv;n(r) does not always produce positive definite function of r which
the theoretical covariance always satisfy as a consequence of Corollary 2.3.2. This can be seen
on example of a set X = [0, 1] ∪ [2, 3] ⊂ R observed in window W = [0, 3]. In that case

Ĉv(0) =
2

3
and Ĉv(2) =

1

1
= 1.



76 CHAPTER 4. STATISTICS OF RANDOM STRUCTURES

Hence Ĉv(2) > Ĉv(0) which is impossible for any positive semi-definite function. On the other
hand we can easily prove that Ĉ∗v (r) is always positive semi-definite.

Proposition 4.2.2. The estimate Ĉ∗v (r) is a positive semi-definite function of r.

Proof. For all r1, r2 ∈ Rd

Ĉ∗v (r1 − r2) =
1

νd(W )

∫

Rd

1W (x)1X(x)1W−r1+r2(x)1X−r1+r2(x) dx

=
1

νd(W )

∫

Rd

1W (x)1X(x)1W (x+ r1 − r2)1X(x+ r1 − r2) dx

=
1

νd(W )

∫

Rd

1W (x− r1)1X(x− r1)1W (x− r2)1X(x− r2) dx.

Hence, for all n ∈ N, r1, . . . , rn ∈ Rd and λ1, . . . , λn ∈ C

∑

i

∑

j

λiλjĈ
∗
v (ri − rj) =

1

νd(W )

∫

Rd

(∑

i

1W (x− ri)1X(x− ri)
)2

dx ≥ 0.

Another reason why the biased version is so popular is that under ergodicity condition one
can prove, see [89], that Ĉ∗v (r) converges uniformly to C(r) with probability one, that is

sup
r∈Rd

∣∣∣Ĉ∗v;n(r)− C(r)
∣∣∣→ 0 as n→∞

almost surely for every convex averaging sequence {Wn}. Moreover, it is not possible to prove
analogous formula for Ĉv. For further discussion of the properties of Ĉ∗v and arguments for its
superiority over Ĉv in one dimensional case and short-range dependence see [83, Section 3.17]
and [88, Chapter 6].

The main problem of estimator Ĉ∗v (r) is the bias that can produce significantly large relative
error if r is not small with respect to diameter of W . This is especially a problem for long-range
processes.

Now let focus on the estimation procedure of the covariance function cov and the correlation
function κ. The natural estimator ˆcovv(r) of the covariance function of stationary random
closed set X is given by

ˆcovv(r) = Ĉv(r)− (p̂v)
2,

whenever νd
(
W ∩(W −r)

)
> 0, where Ĉv(r) is the empirical covariance and p̂v is the empirical

volume fraction defined by (4.2). This estimator is generally not unbiased. This follows from
the fact that Ĉv(r) is unbiased whereas (p̂v)

2 is not. Since p̂v is unbiased the bias of (p̂v)
2 can

be expressed as

E(p̂v)
2 − p2 = E

(
p̂v − p

)2
= var(p̂v)

and is therefore always non-negative. For the empirical covariance function it leads to

E ˆcovv(r)− cov(r) = − var(p̂v) ≤ 0.

The bias is therefore independent of r. The large relative errors are produced when the value
of the covariance function is small which is usually the case of large r. From the discussion
of the consistency of p̂v in the previous section follows that ˆcovv(r) is asymptotically (with
increasing W ) unbiased for ergodic random closed sets and, moreover, for all random closed
sets satisfying Slutsky’s condition (4.7).
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Several modifications that lead to estimators of better performance were proposed by Picka
in [90]. Here we present only the so called intrinsically balanced estimator ˆcov•v(r) of the
covariance function defined by

ˆcov•v(r) = Ĉv(r)− p̂v[0̌, r]p̂v[0, ř], (4.10)

where

p̂v[0̌, r] =
νd
(
X ∩W ∩ (W − r)

)

νd
(
W ∩ (W − r)

) and p̂v[0, ř] =
νd
(
(X − r) ∩W ∩ (W − r)

)

νd
(
W ∩ (W − r)

)

for all r ∈ Rd such that νd
(
W ∩ (W − r)

)
> 0. The general idea of this modification is to

use the information from different subsets of X ∩W in the same way in both parts Ĉv(r) and
(p̂v)

2 of ˆcovv(r). The observation window W can be divided into 3 disjoint sets:

W0 = W ∩ (W − r)c ∩ (W + r)c,

W1 =
(
W ∩ (W − r) ∩ (W + r)c

)
∪
(
W ∩ (W − r)c ∩ (W + r)

)
,

W2 = W ∩ (W − r) ∩ (W + r).

The information from X observed in W is used by the estimator Ĉv(r) in the following way.
In W0 no points of X are used, in W1 every point of X is used exactly once, and in W2 exactly
twice. This is clearly the same way how the estimator p̂v[0̌, r]p̂v[0, ř] uses the information from
X in W . Since clearly both p̂v[0̌, r], p̂v[0, ř] are unbiased, the bias of ˆcov•v(r) is equal to

E ˆcov•v(r)− cov(r) = −E p̂v[0̌, r]p̂v[0, ř] + p2 = − cov
(
p̂v[0̌, r], p̂v[0, ř]

)
.

If the random closed set is assumed to be isotropic, the best performance is usually obtained
by estimators modified according to this property. The isotropic modification of the intrinsically
balanced covariance function estimator is for all r > 0 given by

ˆcovI•v (r) = ĈIv (r)−
(
p̂Iv(r)

)2
, (4.11)

with

ĈIv (r) =
γX∩W (r)

γW (r)
, (4.12)

p̂Iv(r) =

∫
Sd−1 νd(X ∩W ∩ (W − ru)

)
σd−1(du)

dcdγW (r)
,

where Sd−1 is the unit sphere in Rd, σd−1 is the usual non-normalized spherical measure,
which equals to d−1 dimensional Hausdorff measure, on Sd−1, dcd is the surface area of Sd−1,
dcd = σd−1(Sd−1), and γB(r) is the isotropised set covariance defined by

γB(r) =
1

dcd

∫

Sd−1

νd
(
B ∩ (B − ru)

)
σd−1(du)

for all r ≥ 0. Note that ĈIv (r) gives the isotropic modification of the empirical covariance
Ĉv(r) and can be used to estimate the covariance C(r) under the isotropy assumption of X.
For other possible improvements of second order estimators and their performance we refer the
reader to [90] .

The straightforward estimator κ̂v(r) of the correlation function κ(r) is

κ̂v(r) =
ˆcovv(r)

p̂v(1− p̂v)
, (4.13)
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whenever 0 < p̂v < 1 and νd
(
W ∩ (W − r)

)
> 0. This estimator again suffers form the bias of

(p̂v)
2. However, both numerator and denominator have the same bias and one can hope that

they partly cancel out by division. In this case still an improvement can be made by the use of
adapted estimator. Based on the previous intrinsically balanced modification we propose the
following estimator of the correlation function given by

κ̂•v(r) =
ˆcov•v(r)√

p̂v[0̌, r]
(
1− p̂v[0̌, r]

)√
p̂v[0, ř]

(
1− p̂v[0, ř]

) (4.14)

for all r ∈ Rd such that νd
(
W ∩ (W − r)

)
> 0 and 0 < p̂v[0̌, r], p̂v[0, ř] < 1. As will be seen

in Section 4.4 the performance of this estimator is better than of κ̂v, especially for large r.
Besides the correlation function, the pair correlation function is usually ([91]) estimated

and analysed. However, use it since for random closed sets, in contrary to point processes, it
cannot be consistently extended to non-stationary case as discussed in the next section.

4.2.3 Fourier transform based estimation

In practice one often has a digitalized version of part of X observed in a window W . This
means that one knows the values of 1X at a grid of points given by the regular point lattice
Ld = aZd + c, a > 0, c ∈ Rd restricted to W , where Z denotes the set of integers, a is called
the lattice distance, and c is the lattice shift. The effective way to obtain estimates of the
covariance in that case is to use the Fourier transform. This method was introduced in [48] as
a part of spectral theory for random closed sets.

To see how the Fourier transform appears in the estimation of the covariance let us focus
on the empirical covariance Ĉv(r). The numerator of (4.9) can be rewritten as

νd
(
X ∩ (X − r) ∩W ∩ (W − r)

)
=

∫

Rd

1W (x)1X(x)1W−r(x)1X−r(x) dx

=

∫

Rd

1W (x)1X(x)1W (x+ r)1X(x+ r) dx

=

∫

Rd

g(x)g(x+ r) dx,

where g(x) = 1W (x)1X(x). If we set f(r) = νd
(
X ∩ (X−r)∩W ∩ (W −r)

)
for every r ∈ Rd,

it is clear that both f and g are bounded and with compact support. Thus f, g ∈ L1(Rd) and
the Fourier transform Ff of f reads

(Ff)(ξ) = (2π)−d/2
∫
g(x)g(x+ r)e−irξ drdx

= (2π)−d/2
∫
g(x)eixξg(v)e−ivξ dvdx

= (2π)d/2(Fg)(ξ)(Fg)(ξ) = (2π)d/2 |Fg|2 (ξ).

Since g is also in L2(Rd) it follows that Fg ∈ L2(Rd). The Plancherel theorem (e.g. [92,
Theorem IX.6]) implies ‖Fg‖2 = ‖g‖2. However, since

‖Fg‖2 =

∫

Rd

|Fg|2 (ξ) dξ,

we have |Fg|2 ∈ L1(Rd). Thus the inverse Fourier transform F−1 can be applied yielding

f(x) = (2π)d/2
(
F−1 |Fg|2

)
(x).



4.2. STATIONARY RANDOM CLOSED SETS 79

The empirical covariance Ĉv(r) finally reads

Ĉv(r) =
(2π)d/2

(
F−1 |Fg|2

)
(r)

γW (r)
, (4.15)

where γW (r) is the set covariance of W defined by (2.22). The same argumentation as be-
fore works for γW . Thus it can again be obtained using the Fourier transform as γW =
(2π)d/2F−1 |F1W |2. The previous formula for Ĉv(r) may be used for effective computation
of the covariance with the help of the discrete fast Fourier transform (FFT).

Now we formalize the digitalization process and the corresponding discrete estimation
procedure. Let us assume that a window W is the closed d-dimensional interval with each
dimension larger then some a > 0, that is W = [a, b] ≡ [a1, b1] × · · · × [ad, bd], where
a + a < b element-wise. The indicator 1X of X taken at the points of lattice Ld = aZd + c
intersected by W define a d-dimensional array M ∈ {0, 1}n1,...,nd of zeros and ones with
nj ∈ N, (bj − aj)/a − 1 ≤ nj ≤ (bj − aj)/a for all j = 1, . . . , d. The lattice shift c can be,
without loss of generality, chosen such that the elements of M are given by

(M)i1,...,id = 1X
(
a(i1, . . . , id) + c

)

for all ij = 1, . . . , nj and all j = 1, . . . , d. The total number n of grid points equals the total
number of elements of M which is given by n = Πd

j=1nj .
Let I denote the matrix of the same size as M with all elements equal to one. The discrete

version of the estimator Ĉv(r) is given by

Ĉp(ak) =

∑
i∈A(k)(M)i(M)i+k∑
i∈A(k)(I)i(I)i+k

, (4.16)

where k = (k1, . . . , kd), i = (i1, . . . , id), and the index set

A(k) = {(i1, . . . , id) ∈ Zd|1 ≤ ij ≤ nj , 1 ≤ ij + kj ≤ nj for all j = 1, . . . , d}

for all k such that the denominator is positive. Note that those k form a set {−n1 +1, . . . , n1−
1} × . . . × {−nd + 1, . . . , nd − 1}. It is clear that Ĉp(ak) is unbiased and that it has also the

desired property Ĉp(ak) = Ĉp(−ak) following from the simple observation A(−k) = A(k) +k.
Since I is a constant matrix, the value of the denominator can be calculated explicitly as
Πd

1

(
nj − |kj |

)
.

If the bounded window W is not a closed interval, then we can take a closed d-dimensional
interval D such that W ⊂ D and repeat the procedure for D. The matrix M now corresponds
to the indicator of X ∩W and I to the indicator of W . Formula (4.16) remains valid but now
the value of the denominator cannot be in general determined explicitly and may also attain
zero values. Hence there may be values of k in {−n1+1, . . . , n1−1}×. . .×{−nd+1, . . . , nd−1}
for which the estimator Ĉp(ak) is not defined.

Similarly to Ĉp we may construct discrete versions of ˆcovv(r) and of κ̂v(r). They are given
by

ˆcovp(ak) = Ĉp(ak)− p̂2
p

and

κ̂p(ak) =
ˆcovp(ak)

p̂p(1− p̂p)
, (4.17)

where p̂p is the discrete empirical volume fraction given according to (4.8) by

p̂p =

∑n
i=(1,1)(M)i∑n
i=(1,1)(I)i

=
1

n1 · n2

n∑

i=(1,1)

(M)i. (4.18)
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To establish a version of (4.15) using discrete Fourier transform one must take care of
the periodicity assumption in the discrete Fourier transform that causes an overlapping effect
(edge-effect), see [93, Section 6.4]. This effect can be eliminated by expanding the matrices M
and I to the window 2W (resp. 2D):

(M̃)i =

{
(M)i, if 1 ≤ i ≤ n,
0, otherwise,

and (Ĩ)i =

{
(I)i, if 1 ≤ i ≤ n,
0, otherwise,

i.e. the original matrices are padded with zeros. This increases the number of sample points
to 2dn. The discrete version of (4.15) now reads

Ĉp(ak) =
iDFT

(
|DFT(M̃)|?2

)
(ak)

iDFT
(
|DFT(Ĩ)|?2

)
(ak)

, (4.19)

where ?2 means the element-wise square of a matrix. The discrete Fourier transform (DFT)
and its inverse (iDFT) are given by

(DFT(M))k =
∑

j∈A(0)

e−2πi(k−1)· (j−1)
n M j for all k ∈ A(0),

(iDFT(N))j =
1

Πd
l=1nl

∑

k∈A(0)

e2πi(j−1)· (k−1)
n Nk for all j ∈ A(0),

respectively, where · is the standard scalar product on Rd and (j − 1)/n denotes the element-
wise division, (j − 1)/n = ((j1 − 1)/n1, . . . , (jd − 1)/nd).

If M is a matrix with n elements, the covariance can be computed by the use of the fast
Fourier transform with a complexity in O(n log n). This is a considerable gain compared to
the usual estimation of the covariance with a complexity O(n2).

The similar procedure can be used for all second order estimators from the previous subsec-
tion. Hence the discrete versions ˆcov•p(r) and κ̂•p(r) of intrinsically balanced estimators ˆcov•v(r)
and κ̂•v(r), defined by (4.10) and (4.14), are given by

κ̂•p(ak) = Ĉp(ak)− p̂p[0̌, ak]p̂p[0, ǎk]

and

κ̂•p(ak) =
Ĉp(ak)− p̂p[0̌, ak]p̂p[0, ǎk]√

p̂p[0̌, ak]
(
1− p̂p[0̌, ak]

)√
p̂p[0, ǎk]

(
1− p̂p[0, ǎk]

) , (4.20)

respectively, where

p̂p[0̌, ak] =

∑
i∈A(k)(M)i(I)i+k∑
i∈A(k)(I)i(I)i+k

, p̂p[0, ǎk] =

∑
i∈A(k)(I)i(M)i+k∑
i∈A(k)(I)i(I)i+k

(4.21)

are discrete versions of p̂v[0̌, r], p̂v[0, ř]. We may again use the Fourier transform to calculate
p̂p[0̌, ak] and p̂p[0, ǎk]. By the same argumentation as for the numerator of Ĉv(r) one obtains

νd
(
X ∩W ∩ (W − r)

)
= (2π)d/2

(
F−1(FgF1W )

)
(r),

νd
(
(X − r) ∩W ∩ (W − r)

)
= (2π)d/2

(
F−1(F1WFg)

)
(r),

where again g(x) = 1W (x)1X(x). Hence

p̂v[0̌, r] =

(
F−1(FgF1W )

)
(r)

F−1 |F1W |2
,

p̂v[0, ř] =

(
F−1(F1WFg)

)
(r)

F−1 |F1W |2
,
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and in the discrete version:

p̂p[0̌, ak] =
iDFT

(
DFT(M̃) ?DFT(Ĩ)

)
(ak)

iDFT
(
|DFT(Ĩ)|?2

)
(ak)

, (4.22)

p̂p[0, ǎk] =
iDFT

(
DFT(Ĩ) ?DFT(M̃)

)
(ak)

iDFT
(
|DFT(Ĩ)|?2

)
(ak)

, (4.23)

where M̃ , Ĩ have the same meaning as before and ? denotes element-wise multiplication of
matrices. More detailed discussion about the use of Fourier transform in estimation of charac-
teristics of random closed sets can be found in [50].

If the random closed set X is assumed to be isotropic, we would like to obtain estimates
of the covariance, covariance function, or correlation function that depends only on the scalar
parameter r. In the digitalized version of X ∩W we cannot directly use the isotropic modifica-
tions as in (4.12) since we cannot calculate the isotropised set covariance. The way to overcome
this problem is to use the kernel estimates analogously as for second order point processes in
part 4.1.1. We demonstrate this method on the example of the covariance C(r). Let assume
that we have calculated the discrete version Ĉp(ak) of its estimator at all admissible points
ak. The isotropic modification is then

ĈIp (r) =

∑
kKh

(
‖ak‖ − r

)
Ĉp(ak)∑

kKh

(
‖ak‖ − r

) ,

where the sum is taken over all admissible k and Kh : R → R is the kernel function defined
by Kh(x) = h−1K(h−1x) for some probability density function K called the kernel and h > 0
called the bandwidth. ĈIp (r) is defined for all r such that the denominator is positive. It is
not unbiased but has the following property

E ĈIp (r) =

∑
kKh

(
‖ak‖ − r

)
C(a ‖k‖)∑

kKh

(
‖ak‖ − r

) .

The estimator therefore depends on the choice of kernel and the bandwidth. The choice of
kernel is usually of second importance since the smoothness of the estimate is mainly deter-
mined by the value of the bandwidth. The larger the bandwidth the smoother the estimator
as a function of r. However, large value of bandwidth can produce larger systematic error as
can be seen from the last relation.

In practical applications one can often assume that the covariance is decreasing and more
flat with increasing r. In that case it is useful to use the so called adapted version of the
estimator (see e.g. [76, Section 5.3])

ĈAIp (r) =

∑
kKh(r)

(
‖ak‖ − r

)
Ĉp(ak)∑

kKh(r)

(
‖ak‖ − r

) ,

with bandwidth being a function of r chosen to properly increase with increasing r. Thus
for large r, where the statistics is poor due to small number of observations included in the
estimation, there is a large smoothing effect that brings acceptable systematic error, because
the true covariance is flat enough. On the other hand, for small r, where the statistics is
sufficiently good, the smoothing effect and the corresponding systematic error are small. In
practical applications we often use the adapted isotropic covariance function estimator κ̂AIp (r)
defined analogously by

κ̂AIp (r) =

∑
kKh(r)

(
‖ak‖ − r

)
κ̂p(ak)∑

kKh(r)

(
‖ak‖ − r

) . (4.24)
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4.3 Non-stationary random closed sets

The statistics of non-stationary random closed sets based on one sample is much more com-
plicated compared to the stationary case. It is because one cannot use ergodicity to prove the
consistency of estimators. Actually, even the unbiasedness is usually not obtained.

In this section we introduce a non-parametric kernel method for the estimation of the
volume fraction and finally discuss the estimation of second order characteristics.

4.3.1 Volume fraction

Let assume that X is a random closed set observed in W with volume fraction m(x). For W
we further assume that 0 < νd(W ) and νd

(
W ∩Br(x)

)
> 0 for every x ∈W and every r > 0,

where Br(x) is the closed ball of radius r centred at x. Thus every neighbourhood of a point
in W has a positive volume inside W .

Without any parametric knowledge about the form of m, the most natural way to estimate
m is to use a kernel based estimator. Similarly to (4.1) we take (see [94])

m̂h(x) =
1

eh(x)

∫

W

1X(u)Kh(x− u) du (4.25)

for all x ∈ W , where h > 0 is called the bandwidth, Kh : Rd → R is the kernel function
defined by Kh(x) = h−dK(h−1x) for some radially symmetric multivariate probability density
function K called the kernel and eh(x) is the edge correction factor given for all x ∈W by

eh(x) =

∫

W

Kh(x− u) du.

The estimator m̂h is not unbiased, except the case of constant m, since for its expectation
holds

E m̂h(x) =
1

eh(x)

∫

W

m(u)Kh(x− u) du. (4.26)

If X is stationary then m(x) = m is constant and E m̂h(x) = m for all h > 0 and all admissible
x.

Proposition 4.3.1. Let X be a random closed set with volume fraction m(x) continuous at
x ∈W ◦. Then E m̂h(x)→ m(x) as h→ 0+.

Proof. Since x ∈ W ◦ then x is in W together with its neighbourhood. Let take r such that
Br(x) ⊂W . Then by the integrability and symmetry, K(x) = K(−x) for all x, of K one can
choose h0 such that for all h < h0,

eh(x) ≥
∫

Br(x)

Kh(x− u) du =

∫

Br/h(0)

K(y) dy >
1

2
.

From the continuity of m at x, given ε > 0 one can choose δ < r such that for all u with
‖u− x‖ ≤ δ,

|m(u)−m(x)| < ε

4
.

Moreover, one can choose h1 < h0 such that for all h < h1,

∫

{u|‖x−u‖>δ}

Kh(x− u) du <
ε

8
.
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Thus
∫

W

Kh(x− u) |m(u)−m(x)| du ≤ 2

∫

W∩{u|‖x−u‖>δ}

Kh(x− u) du

+

∫

W∩{u|‖x−u‖≤δ}

Kh(x− u) |m(u)−m(x)| du <
ε

4
+
ε

4
.

Finally

1

eh(x)

∣∣∣∣∣∣

∫

W

Kh(x− u)m(u) du− eh(x)m(x)

∣∣∣∣∣∣
≤ 2

∫

W

Kh(x− u) |m(u)−m(x)| du < ε,

which completes the proof.

By Proposition 2.3.3 we obtain the following corollary.

Corollary 4.3.1. Let X be a P -continuous random closed set. Then E m̂h(x) → m(x) as
h→ 0+ for all x ∈W ◦.

The error of the estimation at point x ∈ W is usually measured by a mean square error
(MSE) given by

MSE
(
m̂h(x)

)
= E

(
m̂h(x)−m(x)

)2
.

The cumulative value over W is given by the mean integrated square error (MISE),

MISE
(
m̂h

)
= E

∫

W

(
m̂h(x)−m(x)

)2
dx.

It is convenient to split MISE
(
m̂h

)
into two parts corresponding to the bias and variance of

m̂h:

MISE
(
m̂h

)
=

∫

W

(
E m̂h(x)−m(x)

)2
dx+

∫

W

var m̂h(x) dx. (4.27)

By the previous proposition, one may assume that the first part corresponding to the bias is
small for small h. Let us observe the second part. We have

var m̂h(x) =
1

e2
h(x)

E



∫

W

(
1X(u)−m(u)

)
Kh(x− u) du




2

=
1

e2
h(x)

∫

W

∫

W

cov(u,v)Kh(x− u)Kh(x− v) dudv. (4.28)

Proposition 4.3.2. Let X be a random closed set with cov(x,y) continuous in Rd×Rd. Then
var m̂h(x)→ cov(x,x) as h→ 0+ for all x ∈W ◦.

Proof. From Theorem 2.3.1 follows 2 |cov(x,y)| ≤ cov(x,x) + cov(y,y) for all x,y ∈ Rd
yielding |cov(x,y)| ≤ 1/4 for all x,y ∈ Rd. Now we continue in the similar way as in the proof
of Proposition 4.3.1. One can take r such that Br(x) ≡ {u| ‖u− x‖ ≤ r} ⊂ W and h0 such
that for all h < h0,

eh(x) ≥
∫

Br(x)

Kh(x− u) du =

∫

Br/h(0)

K(y) dy >
1

2
.
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From the continuity of cov at (x,x), given ε > 0 one can choose δ < r such that for all u,v
with ‖u− x‖ ≤ δ and ‖v − x‖ ≤ δ,

|cov(u,v)− cov(x,x)| < ε

4
.

Moreover one can choose h1 < h0 such that for all h < h1,

∫

{u|‖x−u‖>δ}

Kh(x− u) du <
ε

4
.

Thus

∫

W

∫

W

|cov(u,v)− cov(x,x)|Kh(x− u)Kh(x− v) dudv

=

∫

Bδ(x)

∫

Bδ(x)

|cov(u,v)− cov(x,x)|Kh(x− u)Kh(x− v) dudv

+
2

4

∫∫

{(u,v)∈W×W |‖u−x‖>δ or ‖v−x‖>δ}

Kh(x− u)Kh(x− v) dudv

<
ε

4
+

∫

W∩{u|‖u−x‖>δ}

∫

W

Kh(x− u)Kh(x− v) dudv <
ε

4
+
ε

4
.

Finally,

|var m̂h(x)− cov(x,x)| ≤ 1

e2
h(x)

∫

W

∫

W

|cov(u,v)− cov(x,x)|Kh(x− u)Kh(x− v) dudv

≤ 4

∫

W

∫

W

|cov(u,v)− cov(x,x)|Kh(x− u)Kh(x− v) dudv < ε

for all h < h1, which completes the proof.

Proposition 2.3.2 yields the following corollary.

Corollary 4.3.2. Let X be a P -continuous random closed set. Then var m̂h(x) → cov(x,x)
as h→ 0+ for all x ∈W ◦.

Let assume that m(x) and cov(x,y) are continuous and νd(W ) <∞. Then by Proposition
4.3.1 the first integrand in (4.27) have pointwise limit 0 almost surely in W and by Proposition
4.3.2 the second integrand of (4.27) have pointwise limit cov(x,x) almost surely in W . Both
can be bounded by a constant and hence the Lebesgue dominated convergence theorem yields

MISE
(
m̂h

)
→
∫

W

cov(x,x) dx as h→ 0+.

On the other side under the assumption of continuity of K at 0 we obtain

m̂h(x)→ 1

νd(W )

∫

W

1X(u) du as h→∞

by the Lebesgue dominated convergence theorem. The limit is the well known empirical volume
fraction p̂v given by (4.2) that was used in Subsection 4.2.1 as an estimator of the volume
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fraction for stationary random closed sets. If we denote m̄W = ν−1
d (W )

∫
W
m(x) dx then

clearly E m̂h(x)→ m̄W as h→∞. For the first part of (4.27) we have

∫

W

(
E m̂h(x)−m(x)

)2
dx→

∫

W

(
m2(x)− m̄2

W

)
dx as h→∞.

Similarly

var m̂h(x)→ 1

ν2
d(W )

∫

W

∫

W

cov(u,v) dudv as h→∞.

Finally, for the MISE holds

MISE
(
m̂h

)
→
∫

W

(
m2(x)− m̄2

W

)
dx+

1

νd(W )

∫

W

∫

W

cov(u,v) dudv as h→∞.

Since from Theorem 2.3.1 follows |cov(u,v)| ≤ cov(u,u)+cov(v,v)
2 we have

1

νd(W )

∫

W

∫

W

cov(u,v) dudv ≤
∫

W

cov(x,x) dx.

Moreover, the left side is for many covariance functions much smaller than the right side,
since the value of cov(u,v) is usually highly decreasing as ‖u− v‖ growth. This suggests
that the integrated variance of m̂h given by the second part in (4.27) is large for small h, the
phenomenon well known in usual kernel density estimation in statistics, see e.g. [76, 80]. The
opposite behaviour holds for the integrated bias represented by the first part of (4.27). Thus
it is small with small h and eventually approaching 0 as h→ 0+.

The main task when using the estimator m̂h is the proper choice of bandwidth h, since it
crucially influences the estimation result. The trade-off between the large possible variation for
small h and the large possible bias for large h is usually solved by taking a value that minimizes
the integrated mean square error. Such value ho is called the optimal bandwidth. That is

ho = arg min
h

MISE(m̂h)

if the global minimum is attained for h ∈ (0,∞), ho = 0 if limh→0+
MISE(m̂h) < MISE(m̂t)

for all t, and ho =∞ if limh→∞MISE(m̂h) < MISE(m̂t) for all t.
In the following we present an explicit asymptotic calculation in a special case.

Proposition 4.3.3. Let K be the Gaussian kernel in R2 given by

K(x) =
1

(2π)
e−

x2

2 .

Further, let X be a random closed set in R2 satisfying the following conditions:

(a) the volume fraction is

m(x) = Ba2(2π)Ka(x) = Be−
x2

2a2 ,

where B > 0, a > 0,

(b) the covariance function is

cov(x,y) = e−α‖x−y‖
√
m(x)−m(x)2

√
m(y)−m(y)2,

where α > 0.



86 CHAPTER 4. STATISTICS OF RANDOM STRUCTURES

Then for a� 1, aα� 1 and W = R2 the optimal bandwidth is approximately given by

ho ≈
a2/3

α1/3

(
2−B

2B

)1/6

.

Proof. The relation (4.27) can be further rewritten as

MISE
(
m̂h

)
=

∫

R2

1

e2
h(x)

∫

R2

∫

R2

cov(u,v)Kh(x− u)Kh(x− v) dudvdx

+

∫

R2

1

e2
h(x)

∫

R2

∫

R2

m(u)m(v)Kh(x− u)Kh(x− v) dudvdx

−
∫

R2

2m(x)

eh(x)

∫

R2

m(u)Kh(x− u) dudx+

∫

R2

m2(x) dx.

Using assumptions (a), (b), and the fact that eh(x) = 1 for all x ∈ R2 we obtain

MISE
(
m̂h

)
≈
∫∫∫

e−α‖u−v‖
√
m(u)−m(u)2

√
m(v)−m(v)2Kh(x− u)Kh(x− v) dudvdx

+B24π2a4

∫∫∫
Ka(u)Ka(v)Kh(x− u)Kh(x− v) dudvdx

−B28π2a4

∫∫
Ka(u)Ka(x)Kh(x− u) dudx

+B24π2a4

∫
K2
a(x) dx. (4.29)

The last three terms can be easily calculated using well known relations for Gaussians:

Kα(x)Kβ(x) =
1

2π(α2 + β2)
K αβ√

α2+β2

(x),

√
Kα(x) = 2

√
2παK√2α(x),

∫

R2

Kα(x)Kβ(y − x) dx = K√
α2+β2(y).

The result is given by
B2πa4

h2 + a2
− B24πa4

h2 + 2a2
+B2πa2.

In order to calculate the first term of (4.29) we need to approximate the inner part of the
integral. It holds

√
m(u)−m(u)2

√
m(v)−m(v)2 =

√
m(u)

√
m(v)

(
1−m(u)

)
√

1− m(v)−m(u)

1−m(u)
.

Since a is large comparing to 1/α the difference m(v)−m(u) in the volume fraction is much
smaller then the decrease of e−α‖u−v‖ when u goes away from v. The square root can be
expanded into the Taylor series,

√
1− m(v)−m(u)

1−m(u)
= 1− 1

2

m(v)−m(u)

1−m(u)
+O

((
m(v)−m(u)

1−m(u)

)2
)
.

Hence, the first integral in (4.29) may be approximated by
∫∫∫

Kh(x− u)Kh(x− v)e−α‖u−v‖
√
m(u)

√
m(v)

(
1− m(u) +m(v)

2

)
dudvdx.
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Since the argument of integral is symmetric with respect to interchange of u and v, we get

B4πa4

h2 + 2a2

∫
K 2ha√

h2+2a2
(x)e−α‖x‖ dx− B24πa4

3h2 + 4a2

∫
K 4ha
√

2
√

3h2+4a2
(x)e−α‖x‖ dx.

The integral appearing in both parts can be calculated as

∫
KA(x)e−α‖x‖ dx = 1− Aα√

2

√
πe

A2α2

2 erfc

(
Aα√

2

)
,

where erfc is the complementary error function given by

erfc(x) =
2√
π

∞∫

x

e−t
2

dt.

Now we use the asymptotic expansion of the complementary error function for large x (see e.g.
[95]) given by

erfc(x) =
e−x

2

x
√
π

(
1− 1

2x2
+O(x−4)

)
(x→∞).

As will bee seen later, for the optimal h is hα ≈ C(aα)2/3 � 1, so the argument in the erfc is
large enough to use the asymptotic expansion. We obtain

Bπa2

h2α2
− B2πa2

2h2α2
=
B(2−B)πa2

h22α2
.

Taking all together, we finally have

MISE
(
m̂h

)
≈ B(2−B)πa2

h22α2
+

B2πa4

h2 + a2
− B24πa4

h2 + 2a2
+B2πa2.

After differentiating with respect to h one obtains

−B(2−B)πa2

h3α2
− 2hB2πa4

(h2 + a2)2
+

2hB24πa4

(h2 + 2a2)2
= 0.

This leads to the polynomial of degree h8. To find the approximative solution, it is worth
noting that

− 2hB2πa4

(h2 + a2)2
+

2hB24πa4

(h2 + 2a2)2
= 2B2πa4h343 3h2 + 4a2

(4h2 + 4a2)2(2h2 + 4a2)2

= 2B2πa4h343 3h2 + 4a2

((3h2 + 4a2)2 − h4)
2 =

2B2πa4h343

(3h2 + 4a2)3
(

1− h4

(3h2+4a2)4

)2 .

The largest value of h4

(3h2+4a2)4 is when h = 2√
3
a which leads to

1 ≥
(

1− h4

(3h2 + 4a2)4

)2

≥
(

1− 1

4432a4

)2

≈ 1

as a� 1. The approximative equation is therefore given by

2B2πa4h343

(3h2 + 4a2)3
− B(2−B)πa2

h3α2
= 0.
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The solution is

ho ≈
2a√

4
(

2Bα2a2

2−B

) 1
3 − 3

.

As aα� 1, we finally obtain

ho ≈
a2/3

α1/3

(
2−B

2B

)1/6

.

Note that (b) means that the correlation function κ(x,y) = e−α‖x−y‖ depends only on
‖x− y‖. This exponential approximation of the correlation function is suggested in [41].

4.3.2 Second order characteristics

As we have seen in the previous part, in order to obtain the optimal estimator of the vol-
ume fraction of a random closed set X one must minimize the integrated mean square error
MISE(m̂h) with respect to the bandwidth h. This involves the knowledge of the volume frac-
tion and the covariance. In most cases, however, those characteristics are unknown and must
be estimated by some preliminary estimators. For the volume fraction one usually uses the
estimator m̂h for some subjectively chosen bandwidth h that is relatively large in order to
smooth out second order fluctuations.

In the following we focus on the estimation of the unknown covariance function. First, let
assume that the volume fraction m is known. In the most general situation one may similarly
to the volume fraction use a kernel estimator of the covariance C(x,y) given by

Ĉh(x,y) =
1

eh(x)eh(y)

∫

W

∫

W

1X(u)1X(v)Kh(x− u)Kh(y − v) dudv

for all x,y ∈W with the same notation as in Subsection 4.3.1, and then set

ˆcovh(x,y) = Ĉh(x,y)−m(x)m(y)

as the estimator for the covariance function. For Ĉh and ˆcovh similar relations as in the previous
part can be derived for the (integrated) mean square error now involving fourth moments of
X. If m is unknown and has to be estimated one uses m̂g instead of m in ˆcovh. However, the
analytic expressions for the MISE of this estimator are quite complicated.

For the interpretation of second order characteristics of X it is preferable if they depend
only on the difference x − y. For a random closed set with non-constant volume fraction,
both the covariance C(x,y) and the covariance function cov(x,y) cannot depend only on the
difference x− y. For the covariance it is obvious since C(x,x) = m(x) and for the covariance
function since cov(x,x) = m(x)−m(x)2. So the only characteristics that may depend on the
difference x− y is the correlation function κ(x,y).

In the theory of point processes the possible method how to deal with non-stationarity is to
construct a new random measure that is stationary and analyse its second order characteristics,
see Subsection 4.1.2. Two possible methods how to do that are intensity reweighting and local
rescaling. For random closed sets, both methods are, however, unsuitable. The intensity
reweighted measure is ξ = m−1νX , where νX is the volume measure of X. For its covariance
holds

covξ(x,y) =
covX(x,y)

m(x)m(y)
.

In particular covξ(x,x) = 1−m(x)
m(x) meaning that the covariance of ξ cannot depend just on

x−y and hence ξ cannot be second order stationary. For the correlation function, the intensity
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reweighting does not bring any benefit since

κξ(x,y) =
covξ(x,y)√

covξ(x,x)
√

covξ(y,y)
=

covX(x,y)

m(x)m(y)

m(x)m(y)√
covX(x,x)

√
covX(y,y)

= κX(x,y).

Thus the correlation function of ξ depends only on x−y if and only if the correlation function
of X depends only on x−y. The similar problem is with local rescaling. Here the local change
of the metric does not change the volume fraction. So the local rescaling cannot yield the
stationary random measure.

In the following we focus on the case κ(x,y) = κ(x− y). Since κ(x,y) = κ(x+ u,y + u)
for all u,x,y ∈ Rd and by definition κ(x,y) = κ(y,x) for all x,y ∈ Rd, we have κ(r) =
κ(0 + r,0) = κ(0,0 + r) = κ(0− r,0) = κ(−r) for all r ∈ Rd. Moreover,

κ(r) =
1

νd(B)

∫

B

κ(u+ r,u) du

= E
1

νd(B)

∫

B

(
1X(u+ r)−m(u+ r)

)(
1X(u)−m(u)

)
√
m(u+ r)−m2(u+ r)

√
m(u)−m2(u)

du.

for all r ∈ Rd and all Borel B ⊂ Rd. Let suppose that X is observed in a window W with
νd(W ) > 0 and 0 < m(u) < 1 for all u ∈ W . A natural unbiased estimator of κ(r) is thus
given by

κ̂v(r) =
1

νd
(
W ∩ (W − r)

)
∫

W∩(W−r)

(
1X(u+ r)−m(u+ r)

)(
1X(u)−m(u)

)
√
m(u+ r)−m2(u+ r)

√
m(u)−m2(u)

du

for all r ∈ Rd such that νd
(
W ∩ (W − r)

)
> 0. If the volume fraction m is unknown we use

the kernel estimator m̂h and define

κ̂v;h(r) =
1

νd
(
W ∩ (W − r)

)
∫

W∩(W−r)

(
1X(u+ r)− m̂h(u+ r)

)(
1X(u)− m̂h(u)

)
√
m̂h(u+ r)− m̂2

h(u+ r)
√
m̂h(u)− m̂2

h(u)
du

(4.30)
for all r ∈ Rd such that νd

(
W ∩ (W − r)

)
> 0, whenever 0 < m̂h(u) < 1 for all u ∈ W .

Clearly, both estimators κ̂v(r) and κ̂v;h(r) have the property κ̂v(−r) = κ̂v(r) that is satisfied
for κ.

Note that in the non-stationary case it is not reasonable to construct the adapted version
of the previous estimator as was (4.14) in the stationary case. This is because the prime role
here is played by edge effects. The benefit from balancing the bias will not be achieved since
the reduced estimators of the volume fraction suffer more significantly from edge effects. The
best way is to use m̂h calculated in the window W0 ⊃ W that is sufficiently larger then W ,
which is used to estimate the covariance. This can reduce edge effects of m̂h(u) for u ∈W .

The estimator κ̂h(r) can be calculated using the Fourier transform. Similarly as in subsec-
tion 4.2.3,

κ̂v;h(r) =
(2π)d/2

(
F−1 |Fgh|2

)
(r)

γW (r)
, (4.31)

where

gh(u) = 1W (u)
1X(u)− m̂h(u)√
m̂h(u)− m̂2

h(u)
.

Following the same approach as in Subsection 4.2.3 we can derive the discrete version when
X is observed at a grid of points given by intersection of the lattice Ld = aZd + c, a > 0
with W being included in the closed d-dimensional interval D with each dimension larger then
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a. The values of gh taken at those points define a d-dimensional array Gh ∈ Rn1,...,nd , where
nj ∈ N, (bj−aj)/a−1 ≤ nj ≤ (bj−aj)/a. The lattice shift c can be, without loss of generality,
chosen such that the elements of Gh are given by

(Gh)i1,...,id = gh
(
a(i1, . . . , id) + c

)

for all ij = 1, . . . , nj and all j = 1, . . . , d. The total number of elements of Gh is given by
n = Πd

j=1nj . Let further I denote the matrix obtained from values of the indicator of W at
grid points, i.e.

(I)i1,...,id = 1W
(
a(i1, . . . , id) + c

)

for all ij = 1, . . . , nj and all j = 1, . . . , d. The discrete version of the estimator κ̂v;h(r) is then
given by

κ̂p;h(ak) =

∑
i∈A(k)(Gh)i(Gh)i+k∑
i∈A(k)(I)i(I)i+k

, (4.32)

where k = (k1, . . . , kd), i = (i1, . . . , id) and the index set

A(k) = {(i1, . . . , id) ∈ Zd|1 ≤ ij ≤ nj , 1 ≤ ij + kj ≤ nj for all j = 1, . . . , d},

for all k such that the denominator is positive, thus forming a subset of {−n1 + 1, . . . , n1 −
1}× . . .×{−nd+ 1, . . . , nd−1}. The estimator has the desired property κ̂p;h(ak) = κ̂p;h(−ak)
which follows from A(−k) = A(k) +k. If I is a constant matrix, the value of the denominator
can be calculated explicitly as Πd

1

(
nj − |kj |

)
.

To establish a version of (4.31) using discrete Fourier transform one must again take care
of the periodicity assumption in the discrete Fourier transform and expand the matrices Gh

and I by padding with zeros:

(G̃h)i =

{
(Gh)i, if 1 ≤ i ≤ n,
0, otherwise,

and (Ĩ)i =

{
(I)i, if 1 ≤ i ≤ n,
0, otherwise,

This increases the number of sample points to 2dn. Thus similarly as in Subsection 4.2.3 we
obtain

κ̂p;h(ak) =
iDFT

(
|DFT(G̃h)|?2

)
(ak)

iDFT
(
|DFT(Ĩ)|?2

)
(ak)

, (4.33)

where ?2 means the element-wise square of a matrix. If κ(r) depends only on the norm ‖r‖
one may use the isotropic adapted kernel estimator κ̂AIp;h(r) defined by (4.24).

4.4 Simulation studies of second order estimators

In this section we use numerical simulations to study the performance of discrete estimators
of the correlation function from Subsection 4.2.3. We focus only on the stationary case in R2.
The non-stationary case is studied in Subsection 5.4.4 in connection to analysis of a built-
up structure. Moreover, we especially focus on the performance of estimation for long-range
dependent random closed sets introduced Section 2.8.

Let X be a random closed set in R2 sampled on a grid of points {ai + c|i ∈ Z2, (1, 1) ≤
i ≤ n} for some a > 0, c ∈ R2 and n = (n1, n2) ∈ N2 such that the values of the indicator
1X on the grid define a matrix M ∈ {0, 1}n1,n2 ,

(M)i = 1X
(
ai+ c

)
, i ∈ {1, . . . , n1} × {1, . . . , n2},

Let I be a matrix of the same size as M with all elements equal to one.
The natural unbiased estimator p̂p of the volume fraction is defined by (4.18). Concerning

second order properties, our first aim is to analyse the properties of the discrete estimator
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κ̂p(r) defined by (4.17) and its intrinsically balanced modification κ̂•p(r) defined by (4.20). All
of those estimators can be calculated with the help of the fast Fourier transform using relations
(4.19), (4.22) and (4.23).

Except direct estimators we also study isotropic adapted estimators κ̂AIp;h(r) defined by

(4.24) and κ̂•AIp (r) defined analogously, with K being the Gaussian kernel and h(r) being the
variable bandwidth that is throughout the analysis taken to be

h(r) = 30 · (1− e−0.001r) + 0.5.

Such a function increases from 0.5 to 30.5 with fastest increase around zero and represents a
reasonable choice balancing the need for a small bandwidth when r is small and a sufficiently
large bandwidth when r is medium or large.

In order to quantify the performance of analysed estimators the following basic characteris-
tics are used. For the analysed estimator f̂ of a model characteristic f with known expectation
E f̂ its variance var f̂ is estimated by the sample variance s2

N (f̂) and the standard deviation√
var f̂ by the sample standard deviation sN (f̂). Estimators s2

N (f̂) and sN (f̂) are defined by

s2
N (f̂) =

1

N

N∑

i=1

(f̂i −E f̂)2 and sN (f̂) =

√
s2
N (f̂), (4.34)

respectively, where f̂i is the value of f̂ on i-th realisation of the model. If the true value of

the expectation E f̂ of the analysed estimator f̂ is not known, then the sample mean f̂ as the
estimator of E f̂ is used. It is given by

f̂ =
1

N

N∑

i=1

f̂i. (4.35)

In that case the sample variance s2
N (f̂) and the sample standard deviation sN (f̂) are defined

by

s2
N (f̂) =

1

N − 1

N∑

i=1

(
f̂i − f̂

)2
and sN (f̂) =

√
s2
N (f̂), (4.36)

respectively. Furthermore, the mean squared error E(f̂ − f)2 from the true value f is esti-

mated by d2
N (f̂ ; f) and the deviation from the true value given by

√
E(f̂ − f)2 is estimated

by dN (f̂ ; f), where d2
N (f̂ ; f) and dN (f̂ ; f) are defined by

d2
N (f̂ ; f) =

1

N

N∑

i=1

(f̂i − f)2 and dN (f̂ ; f) =

√
d2
N (f̂ ; f), (4.37)

respectively. Sometimes we also estimate the two sided 90% confidence interval (confidence

bounds) I0.9(f̂) of f̂ defined via the property P
(
f̂ ∈ I0.9(f̂)

)
= 0.9 together with

P
(
f̂ on the left of I0.9(f̂)

)
= P

(
f̂ on the right of I0.9(f̂)

)
= 0.05.

If f is a function (e.g. the correlation function), we define the confidence bounds at every point

of its domain independently. Denoting I0.9(f̂) = [a(f̂), b(f̂)], the bound a(f̂) is estimated by

â(f̂) = fi0.05 , where i0.05 ∈ 1, 2, . . . , N is the index of a realization such that there are exactly

b0.05 · Nc realizations with values of f̂ smaller than f̂i0.05 . Note that b0.05 · Nc means the

integral part of 0.05 ·N . The estimator of b(f̂) is defined analogously.
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4.4.1 The Boolean model

The analysis is based on two different models, the Boolean model and the level excursion set.
The Boolean model was introduced in Section 2.7 as a germ-grain model with a Poisson ground
point process. It represents a short-range dependent structure. We analyse realizations of a
Boolean model X with ground stationary Poisson point process X0 having intensity λ and
with typical grain X0 being a disc of fixed radius R centred at the origin, i.e X0(ω) = BR(0)
for all ω ∈ Ω. From (2.37) follows that the volume fraction p of X is

p = 1− e−λE νd(X̌0) = 1− e−λπR2

,

since X̌0 = BR(0). In order to determine the correlation function we need to express the set
covariance γX0

(r) = νd
(
X0 ∩ (X0 − r)

)
of X0. It is a simple matter to check that

γX0
(r) = 2R2 arccos

( r

2R

)
− rR

√
1−

( r

2R

)2

for r ≡ ‖r‖ ∈ [0, 2R) and γX0
(r) = 0 otherwise. Hence by (2.38),

κ(r) = κ(r) =

{
1−p
p (eλγX0

(r) − 1) for r ∈ [0, 2R),

0 for r ≥ 2R.
(4.38)

The fact that κ(r) is a function of ‖r‖ also follows from the isotropy of X. To show the
isotropy of X one can use Theorem 2.2.2, relation (2.36) and the fact that Λ(θC + X̌0) =
λν(θC + θBR(0)) = λν(θ(C +BR(0)) = Λ(C + X̌0) for every rotation θ ∈ SO2.

The parameters of the model used in simulations are R = 10 and p = 0.3 which corresponds
to

λ =
1

πR2
log
(
(1− p)−1

) .
= 11.35 · 10−4.

The random closed set X is analysed on the grid sampled with a = 1 and c = −1(1, 1) inside
two square windows W3000 = [0, 3000] × [0, 3000] and W5000 = [0, 5000] × [0, 5000] in order to
analyse the influence of window size. To construct a realization of X in W3000 we generate
points of the Poisson process X0 in a larger window [−10, 3010] × [−10, 3010] so that the
final Boolean model in W3000 is without simulation based edge effects. Analogously we obtain
realizations in W5000. An example of a realization is shown in Figure 4.1. The results of
estimations of the correlation function for the same realization are shown in Figure 4.2. We
can see that they are close to the true value κ(r).

The study was performed by generating N = 1000 realizations. The results for the volume
fraction are summarized in Table 4.1. We can see the influence of a larger window in the
decrease of the standard deviation and narrowing the confidence interval. The decrease in the
variance should be consistent with

s2
N (p̂p;W5000

) =
ν(W3000)

ν(W5000)
s2
N (p̂p;W3000

) =
9

25
s2
N (p̂p;W3000

),

which follows from relation (4.5) that approximately holds even in the discrete case with
short range dependence and large W . Since 9/25 · 6.8 · 10−6 = 2.46 · 10−6, we see that it is
approximately true.

Deviations of correlation function estimators from true values are shown in Figure 4.3.
We can see the better performance of intrinsically balanced versions of estimators compared
to ordinary ones, especially at larger distances. Also the isotropic adapted estimators are
generally better, but only for large r. This improvement is due to more information used by
the isotropic estimator which is a result of averaging. For small r the influence of larger bias,
yielding larger deviations then usual estimators, is clearly visible. The bias is a result of the
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Figure 4.1: A part of one concrete realization of the Boolean model X in window W3000.
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Figure 4.2: A result of correlation function estimators for one realization in window W3000. On
the left: ordinary estimators, on the right: intrinsically balanced estimators. The true value
κ(r) is superimposed in both cases.

Table 4.1: Basic characteristics of p̂p.

Window I0.9(p̂p) s2
N (p̂p) sN (p̂p)

W3000 [0.2958, 0.3043] 6.8 · 10−6 0.0026
W5000 [0.2975, 0.3025] 2.3 · 10−6 0.0015
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Figure 4.3: Estimated deviations of κ̂p(r), κ̂•p(r) from the true value κ(r) ≡ κ(r) along r =

(0, r) on the left and of κ̂AIp (r), κ̂•AIp (r) on the right.

convolution and of the particular choice of a bandwidth function h(r) as was mentioned in the
end of Subsection 4.2.3. The estimated bias of adapted isotropic estimators is shown in Figure
4.4. As can be expected, the bias of estimators obtained for W3000 and W5000 is almost the
same. One can see the clear difference between regions r < 2R and r > 2R. The first is the
region with strongly decreasing κ and thus the bias produced by the convolution is significant.
On the other side, in the second region κ is constantly equal to 0 and hence the bias should be
zero.
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Figure 4.4: Estimated bias of κ̂AIp (r) and of κ̂•AIp (r).

4.4.2 The level excursion set

The second model is given by the level excursion set introduced in Section 2.4. The analysis
is based on realizations from a 0-level excursion set X0(Z) of a Gaussian random field Z
determined by the mean µZ = 0 and the covariance function

covZ(x,y) = κC(‖x− y‖),

where κC(r) is the Cauchy covariance function defined by

κC(r) =
(

1 +
(r
θ

)α)− βα
for r ≥ 0. (4.39)

The Cauchy covariance function, or one may say Cauchy correlation function since κC(0) = 1,
depends on shape parameters α ∈ (0, 2], determining behaviour for small arguments, β > 0,
determining behaviour for large arguments, and the scale parameter θ > 0. The class formed by
all Cauchy covariance functions, called the Cauchy class, was introduced in [96]. See also [97],
where it is argued that it corresponds to a valid covariance function, i.e. positive semi-definite,
for all combinations of the parameters.

It is important to note that Z determined by µZ and covZ has almost surely continuous
sample functions, since it satisfies Corollary 2.4.1. To check this it is enough to see that(
1−C(r)

)
|log(r)|1+ε

is bounded as r → 0+. Using the Taylor expansion one can by standard
methods of calculus show that the limit equals 0. Hence Z has almost surely continuous sample
functions. Therefore X0(Z) = {x|Z(x) ≥ 0} is by Theorem 2.4.2 a stationary and isotropic
random closed set.

From (2.14) follows that the volume fraction p of X0(Z) is p = 0.5. The covariance function
cov(r) of X0(Z) is given by (2.15) and the correlation function by (2.16) as

κL(r) =
2

π
arcsin

((
1 +

(r
θ

)α)− βα
)
. (4.40)

Since arcsin(x)/x→ 1 as x→ 0, it follows that

κL(r) ∼ 2

π

(r
θ

)−β
(r →∞).

Clearly, cov(r) has the same asymptotic with different constant factor. Let assume that
β ∈ (0, 2). Then the random closed set X0(Z) satisfies Definition 2.8.2 and hence exhibits
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Table 4.2: Settings used in simulations. The volume fraction is p = 0.5 and the covariance is
given by (4.40) with parameters α, β, θ. The simulation is performed in window W and the
sampling is based on a regular grid scheme with a and c = −a(1, 1).

Setting W a α β θ

1–a W3000 1 1.8 0.8 3
1–b W3000 1 2 1.05 4
2–a W5000 1 1.8 0.8 3
2–b W5000 1 2 1.05 4
3–a W10000 2 1.8 0.8 3
3–b W10000 2 2 1.05 4

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

Figure 4.5: A part of one realization of the 0-level excursion set X0(Z) in the setting 2–a.

isotropic long-range dependence, which means, as a result of Corollary 2.8.2, that it is long-
range dependent. Therefore we may assume poor statistical properties compared to those
observed for the Boolean model in the previous subsection.

The values of Gaussian random field Z and the corresponding 0-level excursion set X0(Z)
on a regular grid may be simulated using the method of circular embedding with the help
of fast Fourier transform, see [98]. Note that the method can be used only if the circular
embedding results in a non-negative definite covariance matrix which is for the Cauchy class
not true in general. However, for all settings we have analysed the method works well. The
concrete MATLAB codes used in simulations were taken from [99].

The numerical analysis was performed for 6 settings that are combined from 3 sampling
schemes and 2 correlation schemes that follow. The sampling schemes are regular grids with
a = 1 inside W3000 = [0, 3000]× [0, 3000], a = 1 inside W5000 = [0, 5000]× [0, 5000], and a = 2
inside W10000 = [0, 10000] × [0, 10000]. In all schemes we take c = −a(1, 1). The correlation
schemes are determined by α = 1.8, β = 0.8, θ = 3 and α = 2, β = 1.05, θ = 4. Thus the
first case has more slowly decaying correlations than the second. The summary of parameters
of all settings can be found in Table 4.2. An example of one realization is shown in Figure 4.5.
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Table 4.3: Basic characteristics of p̂p.

Setting I0.9(p̂p) s2
N (p̂p) sN (p̂p)

1–a [0.437, 0.563] 1.43 · 10−3 0.038
2–a [0.453, 0.549] 8.55 · 10−4 0.029
3–a [0.463, 0.539] 5.50 · 10−4 0.023
1–b [0.462, 0.536] 4.87 · 10−4 0.022
2–b [0.471, 0.528] 3.00 · 10−4 0.017
3–b [0.482, 0.521] 1.45 · 10−4 0.012

During the analysis we have generated N = 500 realizations for each setting. Again, as in
the previous subsection, we estimate variances, standard deviations, and deviations from true
values of studied estimators according to (4.34), (4.37) and sometimes also the sample mean
according to (4.35). When it is instructive we also determine the 90% confidence interval of
the estimator.

The results for the volume fraction are summarized in Table 4.3. On can clearly see the
strong influence of the correlation strength. The (b) settings that correspond to weaker cor-
relations have much smaller variances then (a) settings corresponding to stronger correlations.
By comparing to Table 4.1 it is clearly visible that variances in all settings are much larger
than for the short-range Boolean model. Similarly, there is again the influence of the sample
window size. The larger window corresponds to smaller standard deviation, variance, and to
more narrow confidence interval. However, here the variance is not linearly dependent on the
window volume as it was for the Boolean model. This holds because random closed set X0(Z)
is now long-range dependent. Relation (4.5) is no longer true since the integral range A is
infinity. Instead, relation (4.6) should approximately hold, yielding

s2
N (p̂p;W5000

) ≈
(
ν(W3000)

ν(W5000)

) β
2

s2
N (p̂p;W3000

) =

(
3

5

)β
s2
N (p̂p;W3000

)

and analogously for other combinations of W3000, W5000 and W10000. Since

1.43 · 10−3 ·
(

3

5

)0.8

= 9.50 · 10−4, 4.87 · 10−4 ·
(

3

5

)1.05

= 2.85 · 10−4,

1.43 · 10−3 ·
(

3

10

)0.8

= 5.46 · 10−4, 4.87 · 10−4 ·
(

3

10

)1.05

= 1.38 · 10−4,

8.55 · 10−4 ·
(

5

10

)0.8

= 4.91 · 10−4, 3.00 · 10−3 ·
(

5

10

)1.05

= 1.45 · 10−4,

we see that it works with less then 15% error in all cases. The better result is again achieved
for weaker correlations with β = 1.05 in (b) cases. This is because relation (4.6) holds asymp-
totically and hence systems with faster decrease of correlations achieve the asymptotic region
faster.

Deviations from the true value κ of correlation function estimators κ̂p, κ̂
•
p are shown in

Figure 4.6 and of isotropically adapted estimators κ̂AIp , κ̂•AIp in Figure 4.7. Again one can
see a clear influence of the window size and the strength of correlations. Thus the deviation
decreases with increasing window and weaker correlations. In all cases the intrinsically bal-
anced estimators are better then their ordinary counterparts, especially at larger distances.
Actually, the effect of intrinsically balancing is much stronger here than it was for the Boolean
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model, see Figure 4.3 for comparison. This is in contradiction to dismissal of such performance
improvement of covariance function estimators pointed out by Picka in [90, p. 694], where the
intrinsically balanced estimators were introduced. He argued that: ”the intrinsically balanced
modification has no obvious beneficial or detrimental effect when the dependence structure is
present”.

The isotropic adapted estimators are generally better only for large values of r. The reason
is the same as in the previous subsection. For small r there is an influence of larger bias caused
by the convolution that results in large deviations. The biases of adapted isotropic estimators
are shown in Figure 4.8. The domain of a bias can be divided into two parts. For r smaller
then approximately 5 the main part of the bias is due to convolution and it is not sensitive
to the window size. The messy beginnings in settings 3–a and 3–b are because of the large
grid step a = 2 in sampling which disables the precise estimation of the correlation function at
very small distances. On the other hand, for larger values of r there is a decrease in the bias
when the window is enlarged. This is because of the presence of systematic bias of underlying
estimators κ̂p(r) and κ̂•p(r) in that range. To visualise the situation we show the estimated
mean values of κ̂•p(r) together with 90% confidence bounds in Figure 4.9. One can see the
clear underestimation of correlation function values at the right half of every case. Again the
situation is better for (b) cases and for larger windows.

Finally, we estimate the values of α, β and θ that determine the correlation function. This
is done by fitting of estimated values of the correlation function with parametric function
κL(r,θ) defined by (4.40), where θ = (α, β, θ) is the vector of unknown parameters. The fit is
obtained by minimizing the weighted least squares. Hence as an estimate we take the vector
of parameters θ̂ = (α̂, β̂, θ̂), 0 < β̂, θ̂ <∞, 0 < α̂ ≤ 2, that minimizes

Q(θ) =

n−1∑

k=−n+1

wk
(
κ̂p(ak)− κC(‖ak‖ ;θ)

)2
,

where n = (n1, n2) and the weights wk are chosen accordingly to [49, §2.6.2] as wk = Nk

a‖k‖+1 .

The coefficient Nk = (n1 − |k1|) · (n2 − |k2|) gives the number of points that were used for

the calculation of κ̂p(ak). Analogously we define the estimator θ̂
•

based on the intrinsically
balanced estimator κ̂•p. Note that we do not use isotropic adapted estimators since they bring
additional bias into the fitting mechanism leading to poor performance of resulting estimators

of the parameters. In Table 4.4 we summarized estimated statistical properties of θ̂ and θ̂
•

in
all analysed settings.

Clearly, as before, the estimation is better for larger windows and for weaker correlations. It
is also much better for intrinsically balanced estimators. For the individual parameters we may
say that α is underestimated whereas β and θ are overestimated. The parameter of a special
importance is β since it corresponds to the power law coefficient of the long-range correlation
function (or equally covariance function) decay. We can see that the bias in the estimation of β
can be up to 24% in the setting 1–a and the best achieved value is in 3–b with bias slightly less
then 4%. Even in this case 5% of realizations lead to values larger then 1.15 which is more than
10% overestimation. This is also demonstrated in Figure 4.9 with estimated mean values of

estimator κ̂•p and superimposed κL
(
r,θ
•)

, where θ
•

=
(
α̂
•
, β̂
•
, θ̂
•)

is the vector of determined
mean parameters. We may see that the estimation is mainly influenced by the negative bias
of β̂•. This means that the green dashed line has always a faster decay then κ(r) plotted as a
red line.

It is also interesting to see how the situation looks like for one concrete realization. The
example of a result of intrinsically balanced estimators together with the fit of two realizations

is shown in Figure 4.10. We see that for the first realization the parameter fit θ̂
•

is more
precise that in the mean situation. On the other hand the result of the estimation on second
realization is worse then in the mean. However, in both cases the general qualitative features of
estimations are similar and also similar to the mean situation depicted in Figure 4.9. They are



4.4. SIMULATION STUDIES OF SECOND ORDER ESTIMATORS 99

100 101 102 103
0

0.5

1

1.5

2

2.5

·10−2

r

D
ev
ia
ti
o
n

Setting 1–a

100 101 102 103
0

0.5

1

1.5

2

2.5

·10−2

r
D
ev
ia
ti
on

Setting 1–b

100 101 102 103
0

0.5

1

1.5

2

2.5

·10−2

r

D
ev
ia
ti
on

Setting 2–a

100 101 102 103
0

0.5

1

1.5

2

2.5

·10−2

r

D
ev
ia
ti
on

Setting 2–b

100 101 102 103 104
0

0.5

1

1.5

2

2.5

·10−2

r

D
ev
ia
ti
on

Setting 3–a

100 101 102 103 104
0

0.5

1

1.5

2

2.5

·10−2

r

D
ev
ia
ti
on

Setting 3–b

dN
(
κ̂p;κL

)(
(0, r)

)
dN
(
κ̂•p;κL

)(
(0, r)

)

Figure 4.6: Estimated deviations of κ̂p(r) and κ̂•p(r) from the true value κL(r) along r = (0, r).
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Figure 4.7: Estimated deviations of κ̂AIp (r) and κ̂•AIp (r) from the true value κL(r).
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Figure 4.8: Estimated bias of κ̂AIp (r) and of κ̂•AIp (r).
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•

is the sample mean of fitted vector of
parameters. The true value κL(r) is superimposed.
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Table 4.4: The summary of estimated properties of θ̂ = (α̂, β̂, θ̂) based on κ̂p(r) and of θ̂
•

=

(α̂•, β̂•, θ̂•) based on κ̂•p(r). α̂ is the sample mean, I0.9(α̂) the 90% confidence interval, dN (α̂, α)
the deviation from the true value given by (4.37), sN (α̂) the sample standard deviation given

by (4.36), and analogously for β, θ and θ̂
•
.

Setting α α̂ I0.9(α̂) dN (α̂, α) sN (α̂) α̂
•

I0.9(α̂•) dN (α̂•, α) sN (α̂•)

1–a 1.8 1.46 [0.89, 2.00] 0.52 0.40 1.49 [1.31, 1.74] 0.34 0.14
2–a 1.8 1.48 [0.89, 2.00] 0.51 0.40 1.53 [1.38, 1.80] 0.30 0.13
3–a 1.8 1.54 [0.90, 2.00] 0.49 0.42 1.55 [1.39, 1.85] 0.29 0.14
1–b 2.0 1.77 [1.39, 2.00] 0.32 0.22 1.87 [1.76, 2.00] 0.15 0.08
2–b 2.0 1.82 [1.46, 2.00] 0.27 0.20 1.90 [1.80, 2.00] 0.12 0.07
3–b 2.0 1.84 [1.55, 2.00] 0.23 0.17 1.93 [1.85, 2.00] 0.09 0.05

β β̂ I0.9(β̂) dN (β̂, β) sN (β̂) β̂
•

I0.9(β̂•) dN (β̂•, β) sN (β̂•)

1–a 0.8 1.18 [0.62, 2.22] 0.65 0.52 0.99 [0.81, 1.16] 0.22 0.11
2–a 0.8 1.08 [0.60, 1.88] 0.49 0.40 0.94 [0.79, 1.07] 0.16 0.09
3–a 0.8 0.97 [0.59, 1.60] 0.35 0.31 0.90 [0.78, 0.99] 0.12 0.07
1–b 1.05 1.22 [0.82, 1.74] 0.34 0.29 1.14 [0.99, 1.28] 0.13 0.09
2–b 1.05 1.14 [0.76, 1.56] 0.25 0.24 1.11 [1.01, 1.21] 0.09 0.06
3–b 1.05 1.11 [0.85, 1.37] 0.17 0.16 1.09 [1.02, 1.15] 0.06 0.04

θ θ̂ I0.9(θ̂) dN (θ̂, θ) sN (θ̂) θ̂
•

I0.9(θ̂•) dN (θ̂•, θ) sN (θ̂•)

1–a 3.0 7.90 [1.91, 24.37] 9.84 8.54 4.38 [3.16, 5.64] 1.58 0.78
2–a 3.0 6.70 [1.87, 19.97] 7.18 6.16 4.04 [2.98, 4.93] 1.20 0.60
3–a 3.0 5.52 [1.72, 15.34] 5.34 4.71 3.80 [2.90, 4.59] 0.95 0.52
1–b 4.0 5.20 [2.96, 8.95] 2.23 1.89 4.49 [3.78, 5.13] 0.65 0.42
2–b 4.0 4.69 [2.63, 7.53] 1.64 1.49 4.34 [3.87, 4.83] 0.46 0.31
3–b 4.0 4.49 [3.07, 6.21] 1.13 1.02 4.24 [3.91, 4.55] 0.31 0.20

namely: for small values of r the values of the estimator and the fit follows the true correlation
function well. For medium values of r there is an almost straight plateau of values still very
close to the true function that drops down to negative values with possible small bump before
that decrease. Then there is a region, where the values are predominantly negative, which can
be seen as the absence of κ̂•AI(r). Finally, the estimators again reach the positive values with
usually overcoming even the true values of κ.

As a conclusion we may recommend to use the intrinsically balanced estimators and to be
aware of the possible resulting bias that can be large especially for small windows. One should
also note, that obtained results often suggest weaker correlation structure than is actually
presented.
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Figure 4.10: Correlation function estimators based on κ̂•p(r) calculated for two different real-
ization of 0-level excursion set X0(Z) in the setting 2–a. Fitted parameters are α̂• = 1.66,

β̂• = 0.85, θ̂• = 3.36 for the first realization and α̂• = 1.44, β̂• = 0.97, θ̂• = 4.34. The true
covariance function κL is also shown.



Chapter 5

Built-up structure properties

This chapter is devoted to the introduction and analysis of a built-up structure in cities. After
introducing a built-up structure as a collection of buildings that are represented by polygons,
formulas for the centroid and area of a polygon are derived. Then we focus on centres of
cities. The built-up area is there taken as a realization of a stationary random closed set. We
especially study the second order properties using the direct correlation function estimators
and using the analysis of the variance in balls. In the next section a wider city area is analysed.
Here the built-up area is taken as a realisation of non-stationary random closed set. As a basic
characteristic we estimate the volume fraction using non-parametric kernel method introduced
in the previous chapter. The optimal bandwidth is determined by an iterative procedure
based on the correlation function estimation and an assumption that it depends only on the
distance between two points. In subsequent sections also the radial cumulative volume fraction
dependence and the distribution of building sizes are analysed. Finally, the connection between
the fractality and observed long-range dependence is discussed.

5.1 Data description

The detailed spatial information about buildings is available in various countries. In some of
them, like the Czech Republic, it is based on exact geodetic measurements and is collected
mainly for tax purposes. Here, buildings can be recognised easily as a unique type of land.
In other countries, especially in the USA, the spatial information about buildings is based
on automatic extraction through very high resolution aerial or satellite imagery. Those data
are usually collected by local government authorities as a part of the Geographic Information
System (GIS) and are available for download through respective web pages. The next general
source is the OpenStreetMap (www.openstreetmap.org). In our study we use the GIS based
data for buildings in USA cities and OpenStreetMap in the rest of the world. Complete details
about analysed datasets and their sources are given in Appendix B. In the following analysis we
sometimes use also the information about water areas which give a natural constrain to building
construction. Those data are solely from the OpenStreetMap. In Figure 5.1 an example of a
part of Berlin is shown.

All used datafiles were in ESRI Shapefile format. For a complete specification of this format
see [100]. Regardless of the source, the data were transformed to a representation, where
individual buildings are given by polygons in the generalized sense explained below. These
polygons representing buildings are called building footprints. The coordinates of points
defining them are always given in optimal local coordinate reference system. The summary of
used coordinate systems can be found in Table B.3.

The axes of each coordinate system are always treated as perpendicular and the unit of
length is one metre. The points can therefore be considered as elements of R2. A polygon
P is a compact subset of R2 such that its boundary ∂P consists of one or more rings: ∂P =

105
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Figure 5.1: Polygon representation of the built-up structure in the centre of Berlin. Shaded
polygons are building footprints and blue polygons correspond to water areas (Spree river).

x1,0 ≡ x1,4 x1,1

x1,2x1,3

x2,0 ≡ x2,4 x2,3

x2,2x2,1

Figure 5.2: A polygon P with ∂P = {C1, C2}, C1 = {x1,0,x1,1,x1,2,x1,3,x1,4}, and C2 =
{x2,0,x2,1,x2,2,x2,3,x2,4}. The outer ring C1 has clockwise ordered vertices and the inner
ring C2 has counter-clockwise ordered vertices.

{C1, . . . , Ck}. The ith ring Ci is a closed non-self-intersecting curve specified by a sequence
of four or more points, Ci = {xi,0,xi,1, . . . ,xi,ni}, called vertices so that the curve consists
of line segments connecting the consecutive vertices. Clearly, the last and the first point are
identical, xi,0 ≡ xi,ni . The boundary of a polygon may contain multiple outer and inner rings
that do not intersect. The order of vertices indicates which side of the ring is the interior of
the polygon. The neighbourhood on the right hand side of an observer walking along the ring
in vertex order is the neighbourhood inside the polygon. Vertices for a single-ringed polygon
are therefore always in the clockwise order. Rings defining holes have the counter-clockwise
orientation. An example of a polygon with a hole is presented in Figure 5.2.
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5.2 Formulae for the area and centroid of a polygon

For a given polygon P its area ν2(P ) and the centroid z(P ) ∈ R2 can be easily calculated.
To derive the respective formulas let us begin with a simple case of single ringed polygon

P, ∂P =
{
{x0,x1, . . . ,xn ≡ x0}

}
, where the vertices are clockwise ordered. Let the origin of

a given coordinate system be denoted by 0 and let xi =
(
xi;1, xi;2

)
for all i = 0, . . . , n.

It is well known that the norm of a vector product u × v in R3 equals to the area of
parallelogram with sides u,v and that the direction follows the right hand rule. If we therefore
take the half of the third component of

(
x0;1, x0;2, 0

)
×
(
x1;1, x1;2, 0

)
=
(
0, 0, x0;1x1;2 − x1;1x0;2

)
,

it gives us both the area of a triangle 0x0x1 and the information about the ordering. If the
third component is positive, then the points x0,x1 are counter-clockwise ordered around the
origin. For the clockwise ordered single ringed polygon P , it is easy to see that the area of P is
given by minus the sum off all oriented areas of 0xixi+1 for all i. Hence the area of the whole
clockwise ordered single ringed polygon P , ∂P = {{x0, . . . ,xn}}, can be calculated by

ν2(P ) = −1

2

n−1∑

j=0

(
xj;1xj+1;2 − xj+1;1xj;2

)
.

The previous formula is also a consequence of the divergence theorem well known from
geometry (e.g. [65, 101, 67]). We can use the version in R2 saying that if V ⊂ R2 is compact

with a piecewise smooth boundary ∂V and ~F is a continuously differentiable vector field on a
neighbourhood of V , then ∫

V

(∇ · ~F ) dx =

∮

∂V

(~F · ~n) dl,

where ~n is the outward pointing unit normal field of the boundary ∂V which is traversed
counter-clockwise. Taking V = P, ~F (x) = x/2 = (x1/2, x2/2) together with the fact that ∂P
is traversed clockwise, one obtains the desired result.

If we use the same formula for an inner ring of a general polygon, it gives us the negative
value because the vertices of that ring are counter-clockwise ordered. Moreover, since the rings
C1, . . . , Ck of a polygon P with ∂P = {C1, . . . , Ck} do not intersect each other, it is easy to
see that the general formula for the area of P is given by

ν2(P ) = −1

2

k∑

i=1

ni−1∑

j=0

(
xi,j;1xi,j+1;2 − xi,j+1;1xi,j;2

)
, (5.1)

where Ci = {xi,0,xi,2, . . . ,xi,ni} for all i = 1, . . . , k. Note that the minus sign is necessary as
the outer ring is always clockwise ordered.

For the centroid a polygon P is taken as an object with uniform density. Under these
circumstances, its centroid can be defined by

z(P ) =
1

ν2(P )

∫

P

x dx =
1

ν2(P )



∫

P

x1 dx,

∫

P

x2 dx


 ,

because we assume that the area ν2(P ) of P is always positive. The centroid of a triangle
Ox0x1 is known to be at 2/3 of the median. That gives us

z(0x0x1) =
2

3

(x0 + x1)

2
=
x0 + x1

3
.
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Generally for a triangle yx0x1 we have z(yx0x1) = y + ((x0 − y) + (x1 − y))/3.
Similarly as for the area, the centroid of a single ringed polygon P can be calculated by

z(P ) = − 1

6ν2(P )

n−1∑

j=0

(
xj;1xj+1;2 − xj+1;1xj;1

)(
xj + xj+1

)
.

One can prove this formula directly or use the divergence theorem with V = P, ~F (x) =
(x2

1, x1x2) for the first component and analogously the second one. Finally, it easily follows
that the centroid z(P ) of a general polygon P with ∂P = {C1, . . . , Ck}, Ci = {xi,0, . . . ,xi,ni},
xi,j = (xi,j;1, xi,j;2), can be calculated by

z(P ) = − 1

6ν2(P )

k∑

i=1

ni−1∑

j=0

(
xi,j;1xi,j+1;2 − xi,j+1;1xi,j;2

)(
xi,j + xi,j+1

)
,

where ν2(P ) can be calculated using (5.1).

5.3 Built-up area as a stationary random closed set

In this part we analyse the built-up area from the perspective of theory of random closed sets
introduced in Section 2.2. Thus we take the built-up area in a particular city as a realization
of a random closed set X in R2 observed in a sample window W ⊂ R2. Moreover, we focus
only on a central part of the city where, as was argued in [1, 23], the volume fraction is roughly
constant. This assumptions is reasonable since throughout the historical development every
location in this area had the same theoretical chance of being occupied by a building.

In the following it is therefore assumed that the random closed set X is stationary. It is
often argued (see e.g. discussions in [82, 102]) that this approach is pragmatically justified when
one studies a small subregion, where the pattern appear stationary. The stationarity implies
that the volume fraction is constant and the analysis could then concentrate on investigating
of the second order properties. Moreover, we assume that X is ergodic, an assumption not
susceptible to statistical analysis if there is only one sample, but one, that is necessary if any
statistical analysis is sensible.

For the stationarity assumption it is necessary to choose the observation window W prop-
erly. Since we do not want to rely on methods from the following section that is devoted
to non-stationary approach, we choose W subjectively based on a visualisation of building
footprints in a city centre. In the next section we justify the choice for each city by a compar-
ison with volume fraction estimates. When choosing W it is appropriate to exclude natural
constrains of the urbanization. Those are particularly represented by large water areas like
seas, rivers, and lakes and it is reasonable to exclude them from the analysis. In practice, we
choose W as some rectangular region D from which the polygons corresponding to water areas
are subtracted. An example of this choice for Pittsburgh is shown in Figure 5.3. The GPS
coordinates of rectangular parts of chosen windows are summarized in Table 5.1.

Having W , the observed part X ∩W of X can be obtained by

X ∩W =

n⋃

i=1

(Pi ∩W ),

where {Pi}ni=1 are the building footprints in a given city. The volume fraction p of X is
estimated using the empirical volume fraction p̂v defined by (4.2),

p̂v =
ν2(X ∩W )

ν2(W )
=

1

ν2(W )

n∑

i=1

ν2(Pi ∩W ).

Since W is a polygon and an intersection of two polygons is again a polygon, possibly of zero
volume, we may easily calculate all terms in the previous formula using (5.1). The results for
analysed cities are shown in Table 5.2.
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Figure 5.3: Observation window selection for Pittsburgh.

Table 5.1: GPS coordinates of rectangular bounding box D of W .

Lower left corner Upper right corner
City Latitude Longitude Latitude Longitude Size of D [m]

Boston N 42◦ 20.275′ W 71◦ 05.813′ N 42◦ 22.803′ W 71◦ 03.101′ 3700× 4700
Chicago N 41◦ 54.599′ W 87◦ 44.203′ N 41◦ 57.053′ W 87◦ 38.608′ 7700× 4600
Los Angeles N 33◦ 58.910′ W 118◦ 17.280′ N 34◦ 01.893′ W 118◦ 13.782′ 5400× 5500
Pittsburgh N 40◦ 26.464′ W 79◦ 58.166′ N 40◦ 28.142′ W 79◦ 55.178′ 4300× 3000
Seattle N 47◦ 36.214′ W 122◦ 21.562′ N 47◦ 37.755′ W 122◦ 19.291′ 2900× 2800
Berlin N 52◦ 29.814′ E 13◦ 21.379′ N 52◦ 32.186′ E 13◦ 26.050′ 5200× 4500
Birmingham N 52◦ 28.238′ W 1◦ 54.788′ N 52◦ 29.692′ W 1◦ 52.134′ 3000× 2700
Milan N 45◦ 27.512′ E 9◦ 10.897′ N 45◦ 28.659′ E 9◦ 12.705′ 2350× 2130
Minsk N 53◦ 53.387′ E 27◦ 33.764′ N 53◦ 55.044′ E 27◦ 36.617′ 3100× 3100
Moscow N 55◦ 44.767′ E 37◦ 35.633′ N 55◦ 46.415′ E 37◦ 38.446′ 3000× 3000
Oslo N 59◦ 54.605′ E 10◦ 43.375′ N 59◦ 55.493′ E 10◦ 45.038′ 1550× 1650
Paris N 48◦ 50.878′ E 2◦ 18.711′ N 48◦ 53.055′ E 2◦ 22.200′ 4300× 4000
Prague N 50◦ 04.296′ E 14◦ 25.055′ N 50◦ 05.512′ E 14◦ 26.488′ 2000× 2000
St. Petersburg N 59◦ 55.355′ E 30◦ 17.378′ N 59◦ 56.640′ E 30◦ 20.610′ 3000× 2400

5.3.1 Correlation function estimation

To study second order properties of X we use the correlation function κ(r). Since it is nor-
malized it enables us to compare the results for individual cities. The best available esti-
mator of κ(r) is the intrinsically balanced estimator κ̂•v(r) given by (4.14). However, it
is computationally demanding because one has to calculate the volume of the intersection
X ∩ (X−r)∩W ∩ (W −r) for every r for which κ(r) is to be known. Since there are typically
thousands of buildings in a city core (and in W ), this approach is practically unusable.

It is advantageous to use a digitalized version of the estimator. This approach was in-
troduced in Subsection 4.2.3. Hence we first digitalize W ∩ X by sampling the values of the
indicator 1X∩W on some fixed grid of points given by the intersection of a regular point lattice
L2 = aZ2+c with a rectangular bounding boxD ofW . The shift c of the lattice is always chosen
such that the lower left corner of D corresponds to a(1, 1)+c. Let D = [a, b] ≡ [a1, b1]×[a2, b2].
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Figure 5.4: The estimation κ̂•p(k) of the correlation function for Pittsburgh. The built-up
structure is sampled with a = 1 m.

The values of the indicator 1X∩W on the grid define a matrix M ∈ {0, 1}n1,n2 by

(M)i = 1X∩W
(
ai+ c

)
, i ∈ {1, . . . , n1} × {1, . . . , n2},

where nj ∈ N, (bj − aj)/a− 1 ≤ nj ≤ (bj − aj)/a for j = 1, 2. Similarly we set

(I)i = 1W
(
ai+ c

)
, i ∈ {1, . . . , n1} × {1, . . . , n2},

for the observation window only.
The discrete version κ̂•p(r) of the estimator κ̂•v(r) is according to (4.20),

κ̂•p(ak) =
Ĉp(ak)− p̂p[0̌, ak]p̂p[0, ǎk]√

p̂p[0̌, ak]
(
1− p̂p[0̌, ak]

)√
p̂p[0, ǎk]

(
1− p̂p[0, ǎk]

)

for all k from a subset of {−n1 + 1, . . . , n1 − 1} × {−n2 + 1, . . . , n2 − 1} such that the denom-
inator is positive and the estimator Ĉp(ak) given by (4.16) is well defined, and therefore also
p̂p[0̌, ak], p̂p[0, ǎk] given by (4.21) are well defined. See the discussion following formula (4.16)
for more details.

As we know from Subsection 4.2.3 the estimators Ĉp(ak), p̂p[0̌, ak], and p̂p[0, ǎk] can be
calculated with help of the discrete fast Fourier transform using relations (4.19), (4.22), and
(4.23), respectively. Note that matrices M and I have to be padded with zeros before calcu-
lating the discrete Fourier transform because of its periodicity assumption.

Throughout the analysis, the data were sampled with a = 1 m. A typical result of the
correlation function estimation is given in Figure 5.4. The pattern seems to correspond to
the isotropic situation. This assumption is reasonable also from the theoretical point of view
since there are so many different directional trends in a city centre, influenced e.g. by roads,
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Figure 5.5: The correlation function κ̂•p(r) in the range r ∈ (−500, 500)× (−500, 500) for North
American cities with gridiron urban structure.

water sides, terrain slopes, and cardinal directions, such that we may assume that they mu-
tually neglect. In the following it is therefore assumed that X is isotropic. Hence we may
use the adapted isotropic intrinsically balanced covariance function estimator κ̂•AIp (r) defined
analogously to (4.24) by

κ̂•AIp (r) =

∑
kKh(r)

(
‖ak‖ − r

)
κ̂•p(ak)∑

kKh(r)

(
‖ak‖ − r

) ,

where K is the Gaussian kernel, so that Kh(x) = 1
h
√

2π
e−

x2

2h2 and the bandwidth function h(r)

is chosen to be
h(r) = 30 · (1− e−0.001r/m) m + 0.5 m.

Such a function represents a reasonable choice balancing the need for a small bandwidth when
r is small and a sufficiently large bandwidth when r is medium or large.

Obtained estimates for analysed cities are sown in Figure 5.6. In Chicago, Los Angeles,
and Seattle one can see small oscillations of the correlation function for r approximately in
(20, 1000) m. This is a consequence of the grid urban planning of many North American cities
(see [103]). In those cities, especially in their older parts, the rigid regular shaping of the of the
built-up structure is presented. Consequently, also the correlation function partially follows
this regular structure as can bee seen in Figure 5.5 for Los Angeles, Chicago, and Seattle. As
a result, the adapted isotropic estimator κ̂•AIp (r) shows oscillations in the above mentioned
range of r. Those oscillations however does not influence the overall asymptotic behaviour of
the correlation function as the waves blur and eventually disappear for large values of r. Thus
even in those cities we do not drop the isotropy assumption that leads to use of κ̂•AIp (r) and to
the following parametric fit. In the next subsection we confirm, with help of a special estimator
sensitive to periodic structures, that the oscillatory background of the correlation function is
of marginal importance and does not influence the overall characteristics of the correlation
function decay for large r.

An example of a result of both estimators κ̂•p(r) and κ̂•AIp (r) for Pittsburgh is shown in
Figure 5.7. We see the similar pattern as in Figure 4.10 corresponding to the 0-excursion set
of a Gaussian random field with Cauchy covariance function.

Therefore it is instructive to fit estimated values of the correlation function with a function
from some simple parametric class of correlation functions. Among commonly used parametric
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Figure 5.6: The results of the adapted estimator κ̂•AIp (r) for all analysed cities.
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Figure 5.7: An example of Pittsburgh. The result of the intrinsically balanced estimator κ̂•p(r)
is shown together with result of its adapted isotropic modification κ̂•AIp (r). The values of κ̂•p(r)

are fitted by the Cauchy correlation function κC(r; θ̂) with α̂ = 1.60, β̂ = 1.05, and θ̂ = 4.32 m.
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Table 5.2: The volume fraction and fitted values of parameters of the Cauchy correlation
function for analysed cities.

City p̂v α̂ β̂ θ̂ [m]

Boston 0.30 1.32 1.01 7.86
Chicago 0.32 1.39 1.32 5.05
Los Angeles 0.32 1.27 1.33 7.90
Pittsburgh 0.22 1.60 1.05 4.32
Seattle 0.34 2.00 0.78 4.49
Berlin 0.26 2.00 0.84 4.23
Birmingham 0.32 2.00 0.78 4.59
Milan 0.47 2.00 0.84 3.44
Minsk 0.20 1.58 1.10 7.16
Moscow 0.35 2.00 1.07 4.60
Oslo 0.36 1.20 0.89 5.95
Paris 0.49 1.98 0.77 3.04
Prague 0.42 2.00 0.65 2.77
St. Petersburg 0.41 2.00 1.00 4.39

classes, for their inventory we refer the reader to [49, Section 2.5], the best fit is achieved by
the Cauchy class that was introduced in Section 4.4. The general form of a correlation function
from the Cauchy class is

κC(r;θ) =
(

1 +
(r
θ

)α)− βα
, (5.2)

where θ = (α, β, θ) with θ > 0, 0 < α ≤ 2, and β > 0.
The fit is performed by minimizing the least squares with predefined weights. Our aim is

to choose the vector θ̂ = (α̂, β̂, θ̂) of parameters constrained to 0 < β̂, θ̂ <∞, 0 < α̂ ≤ 2, such
that it minimizes

Q(θ) =

n−1∑

k=−n+1

wk
(
κ̂•p(ak)− κC(‖ak‖ ;θ)

)2
,

where n = (n1, n2) and the weights wk are chosen accordingly to [49] as

wk =
Nk

a ‖k‖+ 1
.

The coefficient Nk =
∑
i∈A(k)(I)i(I)i+k, where A(k) is defined by A(k) = {i ∈ Z2|1 ≤ i ≤

n, 1 ≤ i + k ≤ n}, gives the number of points that were used for the calculation of κ̂•p(ak).
Note that the least squares fitting is based on the estimator κ̂•p(ak) and not on the adapted

isotropic modification κ̂•AIp (r), because it yields the better performance as was discussed in
Section 4.4. An example of a fit for Pittsburgh is shown in Figure 5.7. The fitted coefficients
for all cities are summarized in Table 5.2.

From the fact that the correlation function may be well fitted by the Cauchy covariance
function follows that the built-up area viewed as a stationary random closed set posses a
long-range dependence. To see this let note that

(
1 +

(r
c

)α)− βα ∼
(r
c

)−β
(r →∞).

Furthermore, from Table 5.2 follows that β ∈ (0, d), where d = 2. Hence X satisfies Definition
2.8.2 and it is isotropic long-range dependent. One must be careful here since we were able
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to study the correlation function at largest distances only around 5 · 103, which is surely not
close to the infinity. On the other hand by comparing Figures 5.6 and 5.7 with Figures 4.9
and 4.10, the qualitative behaviour of the correlation function seems to be similar to the case
of long-range dependence observed in Section 4.4 for level excursion sets. Thus we may argue
that the long-range dependence of a built-up structure is at least strongly supported by our
results.

5.3.2 Variance in balls: theory and simulations

As an additional approach to the analysis of the possible long-range dependence of a built-
up structure we use the method based on studying variances in balls. This approach was
introduced in [104] for analysis of the spatial distribution of the matter in cosmology. In
connection to a built-up structure it was introduced by the author and co-authors in [105, 106].
In the following the method is systematically developed and finally some numerical experiments
to confirm the approach are also performed. Then it is used to study the properties of a built-up
area.

Let X be a stationary random closed set in R2 and let νX be its volume measure defined
by νX(B) = ν2(B ∩X) ≡ ν(B ∩X) for all Borel B ⊂ R2. Note that we may work in a more
general space Rd. However, since our aim is to study the planar situation only, we restrict
ourselves on R2. In what follows the 2-dimensional Lebesgue measure is denoted by ν and a
closed ball with radius r centred at x by Br(x), using a special notation Br(0) ≡ Br.

The idea of the method is to analyse the dependence of the variance var
(
νX(Br)

)
in a

closed ball Br on the ball radius r. In the following we use the term variance in balls for
var
(
νX(Br)

)
thought as a function of r. The variance var

(
νX(Br)

)
can be similarly to (4.3)

expressed using the covariance function cov of X as

var
(
νX(Br)

)
=

∫

Br

∫

Br

cov(x− y) dx dy.

This can be further rewritten using the correlation function κ and volume fraction p of X as

var
(
νX(Br)

)
= p(1− p)

∫

Br

∫

Br

κ(x− y) dx dy = p(1− p)
∫

Br

∫

Br(v)

κ(u) dudv.

Now the behaviour of var
(
νX(Br)

)
for very large r depends on the value of integral

A =

∫

Rd

κ(r) dr,

which is called the integral range whenever the integral exists. See subsection 4.2.1 for more
details and references on the integral range.

There are three interesting different situations depending on the value of A. First is when
0 < A <∞. Then we clearly obtain the following asymptotic,

var
(
νX(Br)

)
∼ p(1− p)Aπr2 (r →∞).

Thus var
(
νX(Br)

)
is for large r proportional to r2.

Next case corresponds to A =∞. This is usually connected with long-range behaviour that
was discussed in Section 2.8. The variance in this situation is generally larger and also of faster
increase than in the previous case. To see this let us take X to be an isotropically long-range
dependent random closed set according to Definition 2.8.2. Hence its covariance function, and
also correlation function, is of the form (2.40), where the long-range exponent is β ∈ (0, 2). We
may use Proposition 2.8.6 and obtain

var
(
νX(Br)

)
∼ r4−β Fβ;B1`(r) (r →∞),
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since λD = 0 for random closed sets as was discussed in Subsection 2.5.4. The constant Fβ,B1

is independent of r. This means that var
(
νX(Br)

)
is for large r proportional to r4−β , where

4− β > 2.
Now we focus on A = 0. In this case one may expect the variance to be smaller and increase

more slowly than r2. The coefficient of a power law decay is governed by the behaviour of the
Bartlett spectrum Γ of X in the vicinity of 0, which was introduced in Subsections 2.3.3 and
2.5.5. Since the covariance function is integrable, Γ is absolutely continuous with respect to ν,
with corresponding density denoted by fΓ. By Proposition 2.5.8 (d),

var
(
νX(Br)

)
= 2π

∫

R2

∣∣1̌Br (ω)
∣∣2 fΓ(ω) dω,

where 1̌Br ≡ F−11Br is the inverse Fourier transform of the ball indicator 1Br defined by
(A.8). It can be shown that

1̌Br (ω) = 1̌Br (ω) = r
J1(rω)

ω
, (5.3)

where ω = ‖ω‖ and J1 is a Bessel function of the first kind (see e.g. [95, Chapter 9] for
definition and properties). Hence by transferring to polar coordinates:

var
(
νX(Br)

)
= (2π)r2

∞∫

0

2π∫

0

J2
1 (rω)

ω
fΓ(ω, φ) dω dφ

and after substitution rω = ξ,

var
(
νX(Br)

)
= (2π)r2

∞∫

0

2π∫

0

J2
1 (ξ)

ξ
fΓ(ξ/r, φ) dξ dφ.

Since A = 0, from (2.26) follows fΓ(0) = 0. Now if fΓ behaves as C ‖r‖σ with σ > 0 as r → 0
and C > 0 ,then

var
(
νX(Br)

)
∼ (2π)2r2−σC

∞∫

0

J2
1 (ξ)

ξ1−σ dξ (r →∞). (5.4)

Thus var
(
νX(Br)

)
is for large r proportional to r2−σ. Note that this derivation works also

for σ = β − 2, 0 < β < 2, which by Theorem 2.8.2 corresponds to a certain subclass of
isotropic long-range dependent random closed sets with power law coefficient β, that were
already discussed.

Finally, the last case occurs when A is not defined. This may for example hold for simple
situations of randomly shifted periodic patterns. Let assume that X = X + b for some b 6= 0.
Then clearly κ(x+b) = κ(x). If κ(x) < 0 for some x and its neighbourhood, we clearly obtain
that A is undefined since it has infinitely large negative part. As a particular example let us
take a random closed set with correlation function given by κ(r) = cov(r) = cos(r1) cos(r2).
It is easy to check from (2.25) that the corresponding Bartlett spectrum is

Γ =
2π

4

(
δ(1,1) + δ(−1,1) + δ(1,−1) + δ(−1,−1)

)
,

where δx is a Dirac measure at x defined by (A.1). Hence by Proposition 2.5.8 (d) and same
arguments as in the previous case we obtain

var
(
νX(Br)

)
= 2π2r2J2

1

(
r
√

2
)
.
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Since in [107, Lemma IV.3.11] was shown that Jm(r) =
√

2/πr cos(r−πm/2−π/4)+O(r−3/2)
as r →∞ we finally obtain

var
(
νX(Br)

)
=

4π√
2
r cos2(r − π3/4) +O(1) (r →∞).

Hence in this case, var
(
νX(Br)

)
is O(r), i.e. of order not exceeding r, and it has a periodical

component that reaches 0 every multiple of π shifted by π/4.

The previous particular case can be generalized to every periodic correlation function κ.
Since it is also an even function it can be expanded to the Fourier cosine series. Hence by the
similar approach as before one may show that its Bartlett spectrum is again a sum, possibly
infinite, of Dirac measures. Now the situation depends on a presence or absence of 0 in
the support of Γ, which is equivalent to the presence or absence of the absolute term in the
Fourier series. If Γ({0}) > 0, then it represents a dominating term in the variance. Since

J1(a)/a → 1/2 as a → 0+ ([95, Eq. 9.1.7]) we get
∣∣1̌Br (0)

∣∣2 = r4/4 and thus var
(
νX(Br)

)
is

for large r proportional to r4. Note that in this case the random closed set is also long-range
dependent. The second possibility is when Γ({0}) = 0. Since for a fixed period b, the norms of

frequencies appearing in Γ are bounded from below by (2π) ‖b‖−1
, we obtain, similarly to the

situation with cosine alone, that var
(
νX(Br)

)
is O(r). Random closed sets with var

(
νX(Br)

)

being proportional to r2−σ for some σ > 0 are generally called super-homogeneous.

From the previous discussion follows that it is interesting to study the dependence of the
variance var

(
νX(Br)

)
in balls. If one obtains

var
(
νX(Br)

)
∼ Crη (r →∞),

then for η > 2 the random closed set X is isotropically long-range dependent with coefficient
β = 4 − η, for η = 2 it is an ordinary short range dependent, and for η < 2 it is super-
homogeneous with possible periodicity for η = 1.

The non-trivial task, however, is the estimation of the variance in a bounded window W .
We propose the following mechanism. For a selected radius r we choose locations {x1, . . . ,xn}
of n points in W such that Br(xi) ⊂ W for all i = 1, . . . , n. For those points we determine
values of νX

(
Br(xi)

)
= ν

(
X ∩ Br(xi)

)
. The estimator v̂arv

(
νX(Br)

)
of the variance is then

defined by

v̂arv
(
νX(Br)

)
=

1

n− 1

n∑

i=1

(
νX
(
Br(xi)

)
− νX(Br)

)2

, (5.5)

where

νX(Br) =
1

n

n∑

i=1

νX
(
Br(xi)

)
.

Note that E νX(Br) = p2πr2 and hence νX(Br) is an unbiased estimator of pν(Br). The
estimator v̂arv

(
νX(Br)

)
can be further rewritten as

v̂arv
(
νX(Br)

)
=

1

n− 1

n∑

i=1

(
ν2
X

(
Br(xi)

)
− 2νX

(
Br(xi)

)
νX(Br) + νX(Br)

2
)

=
1

n− 1

(
n∑

i=1

ν2
X

(
Br(xi)

)
− nνX(Br)

2

)
.
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Using the definition of νX(Br),

v̂arv
(
νX(Br)

)
=

1

n− 1




n∑

i=1

ν2
X

(
Br(xi)

)
− n

n2

n∑

i,j=1

νX
(
Br(xi)

)
νX
(
Br(xj)

)



=
1

n(n− 1)


(n− 1)

n∑

i=1

ν2
X

(
Br(xi)

)
−

n∑

i 6=j
νX
(
Br(xi)

)
νX
(
Br(xj)

)

 .

Applying the expectation yields

E v̂arv
(
νX(Br)

)
=

1

n(n− 1)


(n− 1)

n∑

i=1

E ν2
X

(
Br(xi)

)
−

n∑

i 6=j
E νX

(
Br(xi)

)
νX
(
Br(xj)

)



=
1

n(n− 1)

(
(n− 1)

n∑

i=1

E ν2
X

(
Br(xi)

)
− n(n− 1)

(
E νX(Br)

)2

+ n(n− 1)
(
E νX(Br)

)2 −
n∑

i 6=j
E νX

(
Br(xi)

)
νX
(
Br(xj)

)
)

= var
(
νX(Br)

)
− 1

n(n− 1)

n∑

i6=j
cov

(
νX
(
Br(xi)

)
, νX

(
Br(xj)

))
. (5.6)

The covariance term can be calculated using the covariance function cov of X as

cov
(
νX
(
Br(xi)

)
, νX

(
Br(xj)

))
=

∫

Br(xi)

∫

Br(xj)

cov(x− y) dxdy.

If the covariance function is positive, then the estimator v̂arv
(
νX(Br)

)
is negatively biassed.

This particularly holds for many isotropic long-range dependent random closed sets, e.g. for
sets with the Cauchy correlation function.

In order to analyse the asymptotic properties of cov
(
νX
(
Br(xi)

)
, νX

(
Br(xj)

))
we continue

by

cov
(
νX
(
Br(xi)

)
, νX

(
Br(xj)

))
=

∫

R2

∫

R2

1Br(xi)(x)1Br(xj)(y) cov(x− y) dxdy

=

∫

R2

∫

R2

1Br (v + xi)1Br (v + u+ xj) cov(u) dudv

=

∫

R2

(1Br ∗ 1∗Br )(u+ xj − xi) cov(u) du.

Since for the inverse Fourier transform ǧ of g(x) = f(x − a) follows ǧ(ω) = eia·ω f̌(ω), then
by Proposition A.2.8,

cov
(
νX
(
Br(xi)

)
, νX

(
Br(xj)

))
= (2π)

∫

R2

e−i(xj−xi)·ω
∣∣1̌Br (ω)

∣∣ Γ(dω)

and using (5.3) we get

cov
(
νX
(
Br(xi)

)
, νX

(
Br(xj)

))
= (2π)r2

∫

R2

cos
(
(xj − xi) · ω

)J2
1 (r ‖ω‖)
ω2

Γ(dω),
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because the integral is a real number and Γ is a positive measure. Substitution rω = ξ leads
to

cov
(
νX
(
Br(xi)

)
, νX

(
Br(xj)

))
= (2π)r4

∫

R2

cos

(
1

r
(xj − xi) · ξ

)
J2

1 (‖ξ‖)
ξ2 Γ

(
d
ξ

r

)
.

The covariance therefore depends on the behaviour of the Bartlett spectrum Γ of X in the vicin-
ity of 0. Since cos

(
(xj − xi) · ξ/r

)
→ 1 as r →∞, we see that cov

(
νX
(
Br(xi)

)
, νX

(
Br(xj)

))

can be arbitrary close to var
(
νX(Br)

)
. In particular it has the same asymptotic behaviour.

This pointed out the key problem in the estimation procedure. It is that the estimator
v̂arv

(
νX(Br)

)
may, with increasing r, return values that are in the mean much smaller than

true values of var
(
νX(Br)

)
. Particularly it may lead to different (if any) power law behaviour.

Since we are primarily focused on the estimation of the asymptotic behaviour of the variance
and especially on the estimation of the power law coefficient, we need an estimator that follows
the same asymptotic. For this, it is perfectly sufficient to construct an estimator of the constant
multiple of the true variance.

Such an estimator is v̂arv
(
νX(Br)

)
, defined by (5.5), for the proper choice of sampling

points {x1, . . . ,xn}. If we choose them to be dependent on r in such a way that inter-point
distances are always equal to some multiple of r, i.e. xj−xi = ai,jr for some vectors {ai,j}i 6=j ,
we get cos

(
(xj −xi) · ξ/r

)
= cos(ai,j · ξ) < 1 for all ξ close to 0 and not perpendicular to ai,j .

Let us now observe how it helps in certain cases. If Γ has an atom at 0, then there is clearly
no benefit and v̂arv

(
νX(Br)

)
still does not follow r4 asymptotic of var

(
νX(Br)

)
. In that case

the asymptotic behaviour is be governed by other parts of Γ.
If Γ has atom at point x 6= 0 that is not perpendicular to ai,j , we obtain the same for-

mula as for the variance but with multiplicative factor cos(rai,j · x). Hence the covariance
cov

(
νX
(
Br(xi)

)
, νX

(
Br(xj)

))
is again O(r) as r → ∞. Now lets us inspect the contribution

of the continuous part of Γ corresponding to the density fΓ(ω). Whenever it behaves around
0 as K ‖ω‖σ with σ > −2 and K > 0, we obtain

cov
(
νX
(
Br(xi)

)
, νX

(
Br(xj)

))
∼ (2π)2r2−σK

∞∫

0

J0

(
‖ai,j‖ ξ

)J2
1 (ξ)

ξ1−σ dξ (r →∞),

because
∫ 2π

0
cos(a1 cosφ+a2 sinφ) dφ = 2πJ0

(
‖a‖

)
as follows from the integral representation

of J0 ([95, Eq. 9.1.18]). Since J0(x) < 1 for all x > 0, by comparing to (5.4) we finally get that
cov

(
νX
(
Br(xi)

)
, νX

(
Br(xj)

))
is for large r proportional to r2−σ. Note that the range −2 < σ

covers also the long-range dependence, where β = σ + 2 is the power law decay coefficient.
From the previous considerations and from (5.6) follow that whenever the asymptotic be-

haviour of the variance var
(
νX(Br)

)
is governed by atomic components located outside of the

origin or by a power law behaviour of the absolutely continuous part of the Bartlett spectrum
Γ around the origin, the expectation of the estimator v̂arv

(
νX(Br)

)
, based on proper scale

invariant sampling points {xi} introduced above, is just the constant multiple of the variance,
i.e.

E v̂arv
(
νX(Br)

)
= C var

(
νX(Br)

)
,

where C is independent on r. Hence it has the same asymptotic behaviour. Moreover, in
other cases the power law exponent of E v̂arv

(
νX(Br)

)
, if the power law is presented, will

be smaller or equal than the power law coefficient of the variance var
(
νX(Br)

)
. Note that

v̂arv
(
νX(Br)

)
in this setting is not a good estimator of true values of var

(
νX(Br)

)
, but rather

of its asymptotic behaviour.
In the following we precisely construct the estimator in a rectangular window W . Let us

without loss of generality assume that W = [0, v1] × [0, v2], where v = (v1, v2) is the upper
right corner of W . Let further n = (n1, n2) ∈ N2 and δ > 0. The sample points {xi} indexed
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by two dimensional integer vector 0 ≤ i = (i1, i2) ≤ n are chosen by

xi = rδi+ r. (5.7)

We thus have n = (n1+1)·(n2+1) points that satisfy the scaling property xi−xj = rδ(i−j) =
rai,j . The particular choices of n and δ determine the maximal possible value of r accordingly
to condition Br(xi) ⊂W , which is equivalent to

rδn1 + 2r ≤ v1 and rδn2 + 2r ≤ v2.

The maximal radius rM is thus rM = min{v1/(rδn1 +2r), v2/(rδn1 +2r)}. It should be always
large enough such that the behaviour of the variance approaches the asymptotic regime.

The estimator v̂arv
(
νX(Br)

)
defined by (5.5) with previous choice of {xi} clearly uses only

limited information from the windowW . It uses a partWr;0 = [0, rδn1+2r]×[0, rδn2+2r] ⊂W ,
which can be only a small fraction ofW , when r is small comparing to rM . This can be enhanced
by repeating the estimation with suitably shifted points {xi}+y for several shifts y, and then
take the estimate as the sample mean of these estimates. Hence we choosem = (m1+1)·(m2+1)
points {yk}mk=0 with m = (m1,m2) such that shifted windows Wr;yk

= Wr;0 + yk for all yk
cover the whole W . In particular we take

yk = (b1 · k1, b2 · k2)

for a proper choice of b = (b1, b2) such that

b1m1 = v1 − rδn1 − 2r and b2m2 = v2 − rδn2 − 2r, (5.8)

i.e. the upper right corner of the last sub window Wr;ym
exactly equals the upper right corner

(v1, v2) of W .
In this way we use the information inside W more homogeneously. Note that both m and

b generally depend on r. It brings no benefit to have large number m of sub windows when r
is close to rM , since then even the first sub window Wr;0 uses large fraction of W . In such a
case it makes sense to have small m. On the other hand, for small values of r there is a clear
benefit of having n large. Here, the natural choice is to take b = rδn+ 2r and m accordingly
to (5.8).

The final estimator of the variance is

v̂arMv
(
νX(Br)

)
=

1

(m1 + 1)(m2 + 1)

m∑

k=0

v̂arv
(
νX(Br);yk

)
, (5.9)

where v̂arv
(
νX(Br);yk

)
is the estimator given by (5.5) for sample points {xi + yk}ni=0, i.e.

v̂arv
(
νX(Br);yk

)
=

1

(n1 + 1)(n2 + 1)− 1

n∑

i=0

(
νX
(
Br(xi + yk)

)
− νX

(
Br(yk)

))2

,

with

νX
(
Br(yk)

)
=

1

(n1 + 1)(n2 + 1)

n∑

i=0

νX
(
Br(xi + yk)

)
.

Clearly
E v̂arMv

(
νX(Br)

)
= E v̂arv

(
νX(Br); 0

)
.

Hence they share the same asymptotic and in particular the same relation to the asymptotic
of var

(
νX(Br)

)
as discussed above.

In the rest of this part we present some numerical analysis of the proposed estimator. We
use the same random closed set models as in Section 4.4, i.e. the Boolean model with R = 10,
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p = 0.3 in window W3000 sampled with a = 1, and the 0-level excursion set based on the Cauchy
covariance function with 6 different settings summarized in Table 4.2. We again work with the
discrete realizations of those models on the grid {ai + c} of points in W . Therefore we work
with the discrete estimator v̂arMp

(
νX(Br)

)
that is defined by (5.9) with the only difference in

approximation of the volume νX
(
Br(z)

)
by the sum of values of the indicator 1X at points of

the grid that are inside Br(z).
In both models the variance in balls has asymptotic power law behaviour. For the Boolean

model it is
var
(
νX(Br)

)
∼ Cr2 (r →∞)

and for the 0-level excursion set with covariance function (4.40) determined by parameters α, β
and θ it is

var
(
νX(Br)

)
∼ Cr4−β (r →∞).

As we have discussed before in both cases the same asymptotic behaviour holds also for the
expectation E v̂arMv

(
νX(Br)

)
and hence also for its discrete version v̂arMp

(
νX(Br)

)
.

In simulations, sample points {xi} were given by (5.7) with δ = 3 and n = (4, 4), yielding
25 points. Every two points xi,xj , i 6= j are separated by the distance larger than δr = 3r and
thus every two balls Br(xi), Br(xj) are separated by at least r. The maximal possible radius
rM is rM = min{v1/14, v2/14}, i.e. approximately rM = 210 for W3000, rM = 350 for W5000,
and rM = 710 for W10000.

For each model and each setting we have generated N = 1000 realizations. For each
realization the values of v̂arMv

(
νX(Br)

)
were calculated for radii r, equidistantly distributed

in their logarithm from r = 30 to rM with l values, where l = 10 for rM = 210, l = 12 for
rM = 350, and l = 15 for rM = 750.

Mean values together with 90% confidence bands, defined below equation (4.35), and true
expectations obtained by numerical integration are shown in Figure 5.9 (a) for the Boolean
model and in Figure 5.8 for all settings of the 0-level excursion set. Deviations from the
true value are plotted in Figures 5.9 (b) and 5.10. We can see that mean values of the discrete
estimator v̂arMp

(
νX(Br)

)
are in all cases very close to the theoretical values of E v̂arMv

(
νX(Br)

)
.

The 90% confidence bounds are wider for larger values of r as follows from the boundedness
of the observation window W . Analogously, the deviation from true values increases with
increasing r. The effect of the decrease of deviations for larger windows is also visible. Note
that for the Boolean model it follows from (4.38) that the covariance function is zero for
r > 2R = 20 and hence the covariance cov

(
νX
(
Br(xi)

)
, νX

(
Br(xj)

))
is zero for all i 6= j

and all r in the analysed range [30, rM ]. Therefore E v̂arMv
(
νX(Br)

)
= var

(
νX(Br)

)
and the

estimator v̂arMv
(
νX(Br)

)
is in the analysed range of r unbiased.

For the estimation of the power law exponent β we use the least squares log-linear fit
according to the relation

log v̂arMp
(
νX(Br)

)
= (4− β̂v) log r + c. (5.10)

In this way we obtain the estimator β̂v of β. It is a good idea not to use all values of r
in the analysed range. For small values of r the variance is still not sufficiently close to the
asymptotic regime and for r close to rM there is a poor statistic as demonstrated by wide
confidence bounds in Figures 5.9 (a) and 5.8. It turns out that best performance is achieved
when the values of r are restricted onto the range r ∈ (46, 136) for W3000 corresponding to
rM = 210, or r ∈ (47, 224) for W5000 corresponding to rM = 350, or r ∈ (47, 452) for W10000

corresponding to rM = 750. An example of such a fit for two realizations is shown in Figure
5.11.

The summary of statistical results of β̂v is given in Table 5.3. By comparing to Table 4.4
we see that in contrary to the correlation function based estimator β̂ from Section 4.4, this
method has tendency to underestimate the values of the exponent β. The underestimation
is clearly stronger for larger values of β. The overall bias is generally much smaller for the



5.3. BUILT-UP AREA AS A STATIONARY RANDOM CLOSED SET 121

30 50 100 200

105

106

107

108

r

var
(
νX(Br)

)
Setting 1–a

30 50 100 200

105

106

107

108

r

var
(
νX(Br)

)
Setting 1–b

30 50 100 200 400

105

106

107

108

109

r

var
(
νX(Br)

)
Setting 2–a

30 50 100 200 400

105

106

107

108

109

r

var
(
νX(Br)

)
Setting 2–b

30 50 100 200 400 700

105

106

107

108

109

1010

r

var
(
νX(Br)

)
Setting 3–a

30 50 100 200 400 700

105

106

107

108

109

1010

r

var
(
νX(Br)

)
Setting 3–b

v̂arMp
(
νX(Br)

)
90% conf. bounds E v̂arMv

(
νX(Br)

)

Figure 5.8: Estimated expectations and two-sided 90% confidence bounds of v̂arMp
(
νX(Br)

)

for the 0-level excursion set. The true value of E v̂arMv
(
νX(Br)

)
is also shown.
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Figure 5.9: The results for the Boolean model. (a): Estimated expectations and two-sided
90% confidence bounds of v̂arMp

(
νX(Br)

)
. The true value E v̂arMv

(
νX(Br)

)
of the expectation

is also shown. (b): Estimated deviations of v̂arMp
(
νX(Br)

)
from true values of var

(
νX(Br)

)
.
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Figure 5.10: Estimated deviations of v̂arMp
(
νX(Br)

)
from true values of var
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for level

excursion set models.



5.3. BUILT-UP AREA AS A STATIONARY RANDOM CLOSED SET 123

30 50 100 200 400

105

106

107

108

109

r

var
(
νX(Br)

)
Realization 1

30 50 100 200 400

105

106

107

108

109

r

var
(
νX(Br)

)
Realization 2

v̂arMp
(
νX(Br)

)
v̂ar
(
r, β̂
)

E v̂arMv
(
νX(Br)

)

Figure 5.11: Example of the log linear fit for two realizations of the 0-level excursion set in
the setting 2–a. The values of v̂arMp

(
νX(Br)

)
in the narrowed range r ∈ (47, 223) are fitted

accordingly to (5.10) by v̂ar
(
r, β̂
)
. The values of the estimation of β are β̂ = 0.77 for realization

1 and β̂ = 0.67 for realization 2. The expectation E v̂arMv
(
νX(Br)

)
is superimposed in both

plots.

Table 5.3: The summary of estimated properties of β̂ based on the variance in balls: β is the
true value of the power law decay coefficient; β∗ is the value obtained by the fit of true values

of E v̂arMv
(
νX(Br)

)
; β̂ is the sample mean of β̂ defined by (4.35); I0.9(β̂) the 90% confidence

interval of β̂; dN (β̂, β) the deviation from the true value defined by (4.37). The estimator β̂ is
based on the log-linear fit of v̂arMp

(
νX(Br)

)
for k values of r ∈ J according to (5.10).

Setting β β∗ β̂ I0.9(β̂) dN (β̂, β) k J

Boolean model 2.00 1.92 1.93 [1.75, 2.09] 0.13 6 [46, 136]
1–a 0.80 0.78 0.79 [0.56, 1.00] 0.13 6 [46, 136]
2–a 0.80 0.78 0.79 [0.63, 0.94] 0.10 8 [47, 224]
3–a 0.80 0.79 0.80 [0.67, 0.91] 0.07 11 [47, 452]
1–b 1.05 0.99 1.00 [0.78, 1.21] 0.14 6 [46, 136]
2–b 1.05 1.00 1.01 [0.86, 1.15] 0.10 8 [47, 224]
3–b 1.05 1.01 1.02 [0.91, 1.13] 0.07 11 [47, 452]

variance based estimator. This holds especially for strong correlations represented by settings
1–a, 2–a, and 3–a, where it has also smaller deviation. On the other hand, the variance based
estimator is generally less stable since it has similar or larger deviations and much smaller
bias that contributes significantly to deviations of the correlation function based estimator.
This can be also observed by the fact that confidence intervals of β̂v are wider then confidence
bounds of β̂. In contrary to β̂ we see that deviations and the width of the confidence interval
of β̂v are independent of the concrete model (setting) and depend only on the window size.

Finally, we show the result of the variance estimation for the model of a randomly shifted
chessboard. That is a random closed set X = Xs + x, where Xs is a fixed set defined by
1Xs(x) = sgn

(
sin(x1π/s) sin(x2π/s)

)
, with s > 0 being a side of the small rectangle, and x

is a random variable in [0, 2s]2 with uniform distribution. The random closed set X is clearly
periodic. Hence from the considerations above the variance var

(
νX(Br)

)
is asymptotically of

order O(r). In Figure 5.12 we show the basic realization for x = 0 of the chessboard model of
side s = 100 and estimation of the corresponding variances in balls. We see that there is no
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Figure 5.12: The base realization and result of the variance in balls estimation given by
v̂arMp

(
νX(Br)

)
for the chessboard model with small rectangle side s = 100 in the window

W3000.

clear power law behaviour of the variance. In particular, there is no increase of order larger
than O(r).

5.3.3 Variance in balls: results

For the analysis of the built-up area represented by a stationary random closed set X in
an observation window W we perform the estimation of the variance using the estimator
v̂arMv

(
νX(Br)

)
defined by (5.9). For all cities we take sample points {xi} given by (5.7) with

δ = 3 and n = (4, 4). Hence we have 25 points and all balls of radius r are separated by at
least 3r. We use only balls that are fully included in W , i.e. Br(xi + yk) ⊂W . The maximal
possible radius rM is determined by the window size. If D = [u1, u2]× [v1, v2] is the rectangular
bounding box of the window W , then rM = min{(v1 − u1)/14, (v2 − u2)/14}. For each city we
calculate the values of v̂arMv

(
νX(Br)

)
for k different radii r that are equidistantly distributed

in their logarithm in a certain interval I such that smallest values are around r = 48 m and
largest up to r = 332 m.

The results of the estimator v̂arMv
(
νX(Br)

)
and the corresponding log-linear fit according

to equation

log v̂arMv
(
νX(Br)

)
= (4− β̂v) log r + c (5.11)

are plotted in Figure 5.13. The estimated values β̂v of the power law coefficient β together
with other parameters of the estimation are summarized in Table 5.4. We can see that values
of β̂v are generally smaller than values of β̂ from Table 5.2. The only exceptions are Paris and
Minsk, where β̂v are larger then β̂. For Minsk, Moscow, and St. Petersburgh the values are
similar. The largest differences are for Oslo, Pittsburgh, and Seattle. In Oslo, Seattle, and also
in Milan, and Prague, however, the observation window W is small and thus also the range I
of values of r for which we estimate the variance in balls is narrow. Hence the results for those
cities are highly unreliable.

Finally let us discuss the results for Chicago, Los Angeles, and Seattle that are of gridiron
structure as discussed on page 111. We have seen that the correlation function κ(r) partially
follows a regular structure which is reflected by small oscillations of the isotropic adapted
estimator of the correlation function. The question is whether the structure is not actually
periodic as discussed in the previous subsection. In such a case the variance in balls should not
follow a power law and moreover it should be of asymptotic order not exceeding r as r →∞.
On the example in Figure 5.12 we have seen that the estimator v̂arMv

(
νX(Br)

)
is capable of

recognizing this type of behaviour.
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Table 5.4: The results of the estimation of the power law dependence coefficient β of the
variance in balls var

(
νX(Br)

)
for all analysed cities. The estimator β̂v is based on the log-

linear fit of k values of v̂arMv
(
νX(Br)

)
for r ∈ I according to (5.11). The values denoted by ∗

are unreliable since they are determined from a range of r with length only around 100 m.

City β̂v k I [m]

Boston 0.85 13 [51, 260]
Chicago 1.11 15 [51, 320]
Los Angeles 1.07 15 [51, 332]
Pittsburgh 0.61 12 [50, 210]
Seattle 0.40∗ 11 [44, 155]
Berlin 0.67 15 [51, 320]
Birmingham 0.56 12 [49, 190]
Milan 0.70∗ 11 [48, 150]
Minsk 1.16 13 [45, 220]
Moscow 1.02 11 [50, 184]
Oslo 0.28∗ 10 [45, 110]
Paris 1.05 12 [51, 215]
Prague 0.42∗ 11 [47, 140]
St. Petersburg 0.95 12 [48, 170]

In Figure 5.13 the power law behaviour is clearly visible in the whole analysed range.
Moreover as follows from Table 5.4 the exponent β of the power law decay is far smaller then
β = 3 that should hold (as the upper bound) in the periodic situation and it also does not
correspond to super-homogeneous situations that holds for β > 2. Hence we may conclude
that the gridiron structure produces only small perturbations of the correlation function and
the overall behaviour on large distances is fully dominated by the power law decay.
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Figure 5.13: The log-linear fits according to (5.11) of the power law behaviour of the variance
in balls estimator v̂arMv

(
νX(Br)

)
for analysed cities.

5.4 Built-up area as a non-stationary random closed set

In the previous section the built-up area in a city centre was analysed when taken as a part
of a stationary random closed set. In this section the stationarity assumption is removed and
we analyse the built-up area using non-stationary methods introduced in Section 4.3. Hence
we take the built-up area in a particular city as a realization of a random closed set X in
R2. Without stationarity there is no ergodicity, however, we still assume that the estimation
from one sample makes sense. Moreover, we always assume P -continuity of X which implies
continuity of the (non-constant) volume fraction and covariance as was discussed in Section
2.3.

The random closed set X is observed in a sample window W ⊂ R2 which is, in opposite
to the previous section, chosen as large as possible in order to study the city as a whole. In
practice we obtain W by choosing a rectangular region D and subtracting water areas inside
it. The choice of D is usually limited by the availability of the data. In the USA cities building
footprints are available only in a certain range around the city. For European cities the most
determining factor is the quality of the Openstreetmap data. This means that for many cities
the building footprints are usually available only in the close vicinity of the city centre. In more
remote areas the building information is incomplete or fully missing. The GPS coordinates of
rectangular parts of chosen windows are summarized in Table 5.5.

Having the window W the observed part of a random closed set X in W can be obtained
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Table 5.5: The selections of the rectangular region D for analysed cities in the non-stationary
approach. The coordinates are given in the GPS format.

Lower left corner Upper right corner
City Latitude Longitude Latitude Longitude Size of D [m]

Boston N 42◦ 16.615′ W 71◦ 10.273′ N 42◦ 24.147′ W 71◦ 01.488′ 12000× 14000
Chicago N 41◦ 46.508′ W 87◦ 46.480′ N 41◦ 59.741′ W 87◦ 36.479′ 13650× 24600
Los Angeles N 33◦ 46.058′ W 118◦ 27.791′ N 34◦ 07.205′ W 118◦ 05.860′ 33900× 39000
Pittsburgh N 40◦ 21.470′ W 80◦ 04.714′ N 40◦ 30.371′ W 79◦ 51.567′ 19000× 16000
Seattle N 47◦ 29.149′ W 122◦ 25.018′ N 47◦ 46.537′ W 122◦ 16.340′ 11500× 32000
Berlin N 52◦ 27.223′ E 13◦ 16.796′ N 52◦ 33.558′ E 13◦ 28.484′ 13000× 12000
Birmingham N 52◦ 23.978′ W 1◦ 56.913′ N 52◦ 33.673′ W 1◦ 45.129′ 13000× 18000
Milan N 45◦ 26.436′ E 9◦ 07.671′ N 45◦ 30.745′ E 9◦ 14.594′ 9000× 8000
Minsk N 53◦ 50.181′ E 27◦ 27.068′ N 53◦ 56.474′ E 27◦ 41.390′ 15600× 11800
Moscow N 55◦ 38.543′ E 37◦ 24.710′ N 55◦ 52.283′ E 37◦ 48.114′ 25000× 25000
Oslo N 59◦ 53.123′ E 10◦ 41.982′ N 59◦ 57.430′ E 10◦ 49.604′ 7100× 8000
Paris N 48◦ 44.839′ E 2◦ 11.038′ N 48◦ 57.903′ E 2◦ 32.139′ 26000× 24000
Prague N 50◦ 00.569′ E 14◦ 21.118′ N 50◦ 08.546′ E 14◦ 31.262′ 14000× 13000
St. Petersburg N 59◦ 49.925′ E 30◦ 12.838′ N 60◦ 03.072′ E 30◦ 30.154′ 16000× 24500

as

X ∩W =

n⋃

i=1

(Pi ∩W ),

where {Pi}ni=1 are the building footprints in a given city. First task in the non-stationary
analysis is to estimate the volume fraction. Since we do not assume any specific parametrizable
result we use the general kernel based non-parametric estimation method. Hence we use the
estimator (4.25),

m̂h(x) =
1

eh(x)

∫

W

1X(u)Kh(x− u) du,

where the kernel function Kh taken in the analysis is the bivariate Gaussian kernel

Kh(x) =
1

2πh2
e−

x2

2h2

and

eh(x) =

∫

W

Kh(x− u) du.

Since all polygons are disjoint, it follows

m̂h(x) =
1

eh(x)

n∑

i=1

∫

Pi∩W

Kh(x− u) du. (5.12)

Thus all items in the previous relation are given by the convolution of the Gaussian kernel
with some polygon. In the following subsection we develop an approximate method how to
determine those integrals in practice.

5.4.1 Kernel estimate approximation for polygons

The main task of this part is to calculate the integral
∫

P

Kh(y − x) dx, (5.13)
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where P is a polygon. For the Gaussian kernel the closed formula, however, cannot be found.
We may only found an approximate relation. Let us first consider the case when the polygon
is just a rectangle B. The kernel can be expressed in a special form

Kh(y − x) =
1

2πh2
e−

(x−y)2

2h2 =
1√
2πh

e−
(x1−y1)2

2h2
1√
2πh

e−
(x2−y2)2

2h2 = φh(x1 − y1)φh(x2 − y2),

where φh(x) denotes the one-dimensional probability distribution function of the normal dis-
tribution N(0, h) with zero mean and variance h2. Let

Φh(x) =
1√
2πh

x∫

−∞

e−
t2

2h2 dt (5.14)

be the cumulative distribution function of N(0, h). The integral of Kh(y−x) over the rectangle
B is therefore given by

∫

B

Kh(y − x) dx =

∫

B

Kh(x− y) dx =

∫

B+y

Kh(x) dx =

=

u2+y2∫

v2+y2

u1+y1∫

v1+y1

φh(x1)φh(x2) dx1 dx2 =

=
(
Φh(u1 + y1)− Φh(v1 + y1)

)(
Φh(u2 + y2)− Φh(v2 + y2)

)
, (5.15)

where v = (v1, v2) is the lower left corner of B and u = (u1, u2) is the upper right corner of B.

When P is not a rectangle one may approximate the value of the integral by the value
calculated for its bounding box BP multiplied by the ratio of the polygon area and the area of
the bounding box. If we denote the lower left corner of BP by vP = (vP ;1, vP ;2) and the upper
right corner by uP = (uP ;1, uP ;2) we can approximately take

∫

P

Kh(y − x) dx ≈ ν(P )

ν(BP )

∫

BP

Kh(y − x) dx =

=
ν(P )

(uP ;1 − vP ;1)(uP ;2 − vP ;2)

(
Φh(uP ;1 +y1)−Φh(vP ;1 +y1)

)(
Φh(uP ;2 +y2)−Φh(vP ;2 +y2)

)
,

where ν(P ) ≡ ν2(P ) is the area of P .

In order to estimate the error of such approximation we prove the following assertion.

Proposition 5.4.1. Let P be a polygon and B be a rectangle, both in R2, such that P ⊂ B.
Let further Kh be the Gaussian kernel, given for all x ∈ R2 by

Kh(x) =
1

2πh2
e−

x2

2h2 .

Then for all y ∈ R2

∣∣∣∣∣∣

∫

P

Kh(y − x) dx− ν(P )

ν(B)

∫

B

Kh(y − x) dx

∣∣∣∣∣∣
≤ p(1− p)ν(B)

2πh2
min

{
1,

diam(B)

2h

}
,

where diam(B) = maxx,y∈B ‖x− y‖ is the largest distance of two points inside B and p = ν(P )
ν(B) .
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Proof. Let y ∈ R2 be fixed and let my = infx∈BKh(y − x) and My = infx∈BKh(y − x).
Then we have

myν(P ) = my

∫

B

1P (x) dx ≤
∫

B

Kh(y − x)1P (x) dx ≤My

∫

B

1P (x) dx = Myν(P ).

The rectangle B is a convex compact set and Kh(y−x) is continuous in x. Therefore Kh(y−x)
as a function of x attains every value of the interval [my,My] and in particular there exists
uy ∈ B such that

Kh(y − uy)ν(P ) =

∫

B

Kh(y − x)1P (x) dx =

∫

P

Kh(y − x) dx.

Analogously there is vy ∈ B such that

Kh(y − vy)ν(B \ P ) =

∫

B\P

Kh(y − x) dx.

Using ν(B \ P ) = ν(B)− ν(P ) we have

∣∣∣∣∣∣

∫

P

Kh(y − x) dx− ν(P )

ν(B)

∫

B

Kh(y − x) dx

∣∣∣∣∣∣
=

=

∣∣∣∣∣∣∣

∫

P

Kh(y − x) dx− ν(P )

ν(B)



∫

P

Kh(y − x) dx+

∫

B\P

Kh(y − x) dx




∣∣∣∣∣∣∣
=

=

∣∣∣∣ν(P )Kh(y − uy)− ν(P )

ν(B)

(
ν(P )Kh(y − uy) +

(
ν(B)− ν(P )

)
Kh(y − vy)

)∣∣∣∣ =

= p(1− p)ν(B) |Kh(y − uy)−Kh(y − vy)| ,

where p = ν(P )
ν(B) ≤ 1. Introducing new variable xy = y − uy+vy

2 gives us

|Kh(y − uy)−Kh(y − vy)| =
∣∣∣∣Kh

(
xy −

uy − vy
2

)
−Kh

(
xy +

uy − vy
2

)∣∣∣∣ .

Using the explicit formula for Kh one obtains

|Kh(y − uy)−Kh(y − vy)| = 1

2πh2

∣∣∣∣e
− 1

2h2

(
xy−uy−vy

2

)2

− e−
1

2h2

(
xy+

uy−vy
2

)2
∣∣∣∣ . (5.16)

Let us now inspect the function f(x) =
∣∣∣e−(x−a)2 − e−(x+a)2

∣∣∣. It is clearly even in the

sense that f(x) = f(−x) for all x ∈ R2. With the decomposition x = x⊥ + x‖, where x⊥ is
perpendicular to a and x‖ is parallel to a, we have

f(x) =
∣∣∣e−(x⊥+x‖−a)2 − e−(x⊥+x‖+a)2

∣∣∣ = e−x
2
⊥

∣∣∣e−(x‖−a)2 − e−(x‖+a)2
∣∣∣ ≤ f(x‖).

The maximum of f is therefore always at x located on the line given by the vector a. Thus
we can without loss of generality restrict ourselves to one dimensional case and study the
maximum of f(x) = e−(x−a)2 − e−(x+a)2 where a > 0 and x > 0. Taking the derivative and
setting it to 0,

f ′(x) = −2(x− a)e−(x−a)2 + (x+ a)e−(x+a)2 = 2e−x
2−a2 ((x+ a)e−xa − (x− a)exa

)
= 0,



130 CHAPTER 5. BUILT-UP STRUCTURE PROPERTIES

leads to equation

1− 2a

x+ a
= e−4xa. (5.17)

The left side is positive only when x > a, so for the solution xmax we have xmax > a. The
expansion of the right side gives us

1− 2a

x+ a
= 1− 4xa+

∞∑

k=2

(−4xa)k

k!
.

In the limit a→ 0 we thus have xmax = 1√
2
. Now we prove that for all a > 0 holds xmax >

1√
2
.

In order to see this it is useful to rewrite equation (5.17) with x = u√
2

+ 1√
2
:

1− 2
√

2a

1 + u+
√

2a
− e−2

√
2a(1+u) = 0.

Note that the denominator of the left side is positive since we know that in the neighbourhood
of the solution is x > a. The function on the left side is obviously increasing in u. By the
standard methods of analysis it is easy to show that for u = 0 and all a > 0,

1− 2
√

2a

1 +
√

2a
− e−2

√
2a < 0.

On the other side, the limit of the left side equals 1 when u → ∞. The solution is therefore
positive, umax > 0, which proves the fact that xmax >

1√
2
.

Let us now inspect the value of f(xmax):

f(xmax) = e−(xmax−a)2 − e−(xmax+a)2 = e−(xmax−a)2
(
1− e−4xmaxa

)
.

With the use of the relation (5.17) we obtain

f(xmax) = e−(xmax−a)2
(

2a

xmax + a

)
≤ 2a

xmax + a
.

Since we know that xmax > a and xmax >
1√
2
, we have

2a

xmax + a
<

2a

a+ a
= 1

and for a < 1√
2

also

2a

xmax + a
<

2a
1√
2

+ a
<
√

2a.

This can be finally written together as

f(xmax) < min{1,
√

2a}.

Now we can return back to equation (5.16). The maximal error can be bounded from above
by removing the dependence of u,v, and x on y

sup
y∈R2

∣∣∣∣e
− 1

2h2

(
xy−uy−vy

2

)2

− e−
1

2h2

(
xy+

uy−vy
2

)2
∣∣∣∣ ≤ sup

x∈R2,u,v∈B

∣∣∣e− 1
2h2

(x−u−v
2 )

2

− e− 1
2h2

(x+ u−v
2 )

2
∣∣∣ .

From the previous analysis we know that the maximal error is when
∥∥u−v

2

∥∥ is maximal. The
maximum is at xmax, which is the multiplication of the vector u−v

2 with the lower bound of
its norm, ‖xmax‖ >

∥∥u−v
2

∥∥. Since u,v are points from B the norm
∥∥u−v

2

∥∥ in its maximal

value equals diam(B)
2 . Using the previous estimate of f(xmax) with a = diam(B)

2
√

2h
yields the final

assertion.
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It is obvious that the error is smaller for smaller polygons. If the bounding box B of a
polygon P has sides a, b < h than the error

D(P,B) =

∣∣∣∣∣∣

∫

P

Kh(y − x) dx− ν(P )

ν(B)

∫

B

Kh(y − x) dx

∣∣∣∣∣∣

is, as a consequence of the previous proposition, bounded by

D(P,B) ≤ p(1− p)ab
√
a2 + b2

4πh3
≤ ab

√
a2 + b2

16πh3

since p(1 − p) ≤ 1
4 . Let divide the bounding box B of P into n × n equal pieces B1, . . . , Bn2 .

Clearly all Bi have sides a
n ,

b
n . Let further Pi = Bi ∩ P be the part of P in the i-th small

rectangle Bi. The error in estimating the convolution for Pi is bounded by

D(Pi, Bi) ≤ pi(1− pi)
ab
√
a2 + b2

4πh3n3
≤ ab

√
a2 + b2

16πh3n3
.

In the overall sum it leads to

D(P,B) ≤
n2∑

i=1

D(Pi, Bi) ≤
n2∑

i=1

pi(1− pi)
ab
√
a2 + b2

4πh3n3
≤ ab

√
a2 + b2

16πh3n
= O(n−1)

as n → ∞. If n is large then many of small rectangles Bi are either fully contained in P
(pi = 1) or contain zero volume from P (pi = 0). Thus in the limit n → ∞ the number of
small rectangles with pi(1− pi) > 0 is proportional to n with a constant L. Hence

n2∑

i=1

pi(1− pi)
ab
√
a2 + b2

4πh3n3
≈

Ln∑

i=1

pki(1− pki)
ab
√
a2 + b2

4πh3n3
≤ Lab

√
a2 + b2

16πh3n2
= O(n−2)

as n → ∞. In other words, the overall error is of order not exceeding n−2. From this follow
that it is reasonable to approximate the correct value of (5.13) by setting n big enough and
using the formula

∫

P

Kh(y − x) dx ≈
n2∑

i=1

ν(Pi)

ν(Bi)

∫

Bi

Kh(y − x) dx, (5.18)

where Bi is the i-th small rectangle given by the division of the bounding box B into n × n
pieces and Pi = P ∩Bi. In figure 5.14 an example of the dependence of the error on n is shown.

In the numerical analysis of the built-up structure we chose n for each building footprint
P individually in such a way that a

n ,
b
n < 5 m, where a, b are the sides of the bounding box B

of P .

5.4.2 Choosing the bandwidth and estimating the correlation function

The estimation result of the kernel estimator m̂h(x) depends strongly on the choice of band-
width h. As was discussed in Subsection 4.3.1, choosing the large bandwidth may introduce
a large bias whereas too small bandwidth may cause a large variance of m̂h(x). Thus as the
best theoretical choice the value minimizing the mean integrated square error (MISE)

MISE
(
m̂h

)
=

∫

W

(
E m̂h(x)−m(x)

)2
dx+

∫

W

var m̂h(x) dx
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Figure 5.14: An example of the decrease of a relative error given by the ratio between the
absolute value of the error and the correct value. The notation is the same as in (5.18). The
relative error is fitted with curve Cn−2. Polygon P is chosen to be a square with side a = 25
centred at the origin and rotated by π

4 . The bandwidth is h = 1000 and values are evaluated
for y = (100, 0). The correct value was calculated by rotating P and y by π

4 and using formula
(5.15).

is usually considered. Such a value is called the optimal bandwidth and one may assume a
reasonable performance of the estimator based on this value.

The aim is therefore to estimate the optimal bandwidth and then use it in the estimation of
the volume fraction. In the classical problem of kernel univariate or bivariate density estimation
several methods of choosing the optimal bandwidth are known, see e.g. [76, 80], however, for
our task the situation is much more complicated and we can take them as a motivation rather
than usable methods. The situation in our case is different since we have only one sample and
values of the indicator 1X(x) are spatially correlated. Thus, except several specific cases like
in Proposition 4.3.3, the choice of optimal bandwidth is analytically intractable.

In the following we introduce a heuristic approach to choosing the approximate optimal
bandwidth based solely on one realization. Some numerical arguments in favour of this ap-
proach are presented further in Subsection 5.4.4. First note that according to (4.28) we have

MISE
(
m̂h

)
=

∫

W

∫

W

∫

W

cov(u,v)
Kh(x− u)Kh(x− v)

e2
h(x)

dudvdx

+

∫

W

∫

W

∫

W

m(u)m(v)
Kh(x− u)Kh(x− v)

e2
h(x)

dudvdx

− 2

∫

W

∫

W

m(u)m(x)
Kh(x− u)

eh(x)
dudx+

∫

W

m2(x) dx. (5.19)

Hence in order to minimize the MISE with respect to h one must have some preliminary
estimates of m(x) and cov(x,y) for all x,y ∈W . The optimal bandwidth is then determined
by minimising MISE

(
m̂h

)
, where those preliminary estimates are used instead of the true

volume fraction and covariance function.
A natural choice of a volume fraction estimator is the kernel estimator m̂h for some initial

a priori chosen bandwidth h0. In practice we use the approximated version m̂A;h of m̂h ob-
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tained using the approximation of the kernel integral for polygons introduced in the previous
subsection. Hence combining (5.12), (5.18), and (5.15) we get

m̂A;h(x) =
1

eh(x)

n∑

i=1

n2
i∑

j=1

ν(Pi ∩W ∩Bi;j)
ν(Bi;j)

∫

Bi;j

Kh(x− u) du

=
1

eh(x)

n∑

i=1

n2
i∑

j=1

ν(Pi ∩W ∩Bi;j)
ν(Bi;j)

2∏

`=1

(
Φh(uBi;j ;` + x`)− Φh(vBi;j ;` + x`)

)
,

where Bi;j is the j-th small rectangle given by the division of bounding box Bi of Pi ∩W into
ni×ni pieces, vBi;j = (vBi;j ;1, vBi;j ;2) is the lower left corner of Bi;j , uBi;j = (uBi;j ;1, uBi;j ;2) is
the upper right corner ofBi;j , and Φh(x) denotes the cumulative distribution function ofN(0, h)
defined by (5.14). The division of each polygon Pi∩W is taken such that uBi;j ;`−vBi;j ;` < 5 m
for ` = 1, 2. An example of m̂A;h0

calculated for Prague with h0 = 2000 is in Figure 5.15.
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Figure 5.15: The volume fraction in Prague obtained using the kernel estimator m̂A;h0
with

h0 = 2000 m.

Having m̂h0
the cov(x,y) may be further estimated. This is done in the following way. Let

us assume that the correlation function κ(x,y) approximately depends only on ‖x− y‖, which
yields

cov(x,y) ≈ κ
(
‖x− y‖

)√
m(x)−m(x)2

√
m(y)−m(y)2. (5.20)

The approximate estimator of cov based on m̂h is therefore given by

ˆcovh(x,y) = κ̂
(
‖x− y‖

)√
m̂A;h(x)− m̂A;h(x)2

√
m̂A;h(y)− m̂A;h(y)2, (5.21)
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where κ̂(r) is a suitable estimator of the correlation function. In order to be able to use
ˆcovh(x,y) in formula (5.19) for the MISE one needs to have an estimator that enables fast

calculation of its values. Since ˆcovh(x,y) consists of two parts, m̂A;h and κ̂, this requirement
should be satisfied for both of them. In the case of m̂A;h(x) can assume that it is, for h large
enough, only slowly varying with x. Thus its values may be calculated on a dense grid of
points (we use inter-point distances from 50 m to 150 m) in W and then use the cubic spline
interpolation. As a result the values of m̂A;h(x) can be quickly obtained in arbitrary points of
W with a sufficient precision.

For κ̂ a different approach is used. It is approximated by a correlation function from a
suitable parametric family of correlation functions fitted to the values of the estimator κ̂p;h(r).
The estimator κ̂p;h(r) is defined by (4.32) and represents a digitalized counterpart of κ̂v;h(r)
defined by (4.30) that is too computationally demanding to be of a practical use.

The digitalization process was for non-stationary random closed sets introduced in Subsec-
tion 4.3.2. Here it is performed exactly in the same way. We begin with standardizing the
values of the indicator 1X∩W using m̂A;h, which yields

gh(u) = 1W (u)
1X(u)− m̂A;h(u)√
m̂A;h(u)− m̂2

A;h(u)
.

The digitalization is now performed by sampling the values of gh on some fixed grid of points
given by the intersection of a regular point lattice L2 = aZ2 + c with a rectangular box
B ⊂ W . The shift c is chosen such that the lower left corner of B corresponds to a(1, 1) + c.
Let B = [a, b] ≡ [a1, b1]× [a2, b2]. The values of gh on the grid define a matrix Gh ∈ {0, 1}n1,n2

with elements

(Gh)i = gh
(
ai+ c

)
, i ∈ {1, . . . , n1} × {1, . . . , n2},

where nj ∈ N, (bj − aj)/a− 1 ≤ nj ≤ (bj − aj)/a for j = 1, 2. Similarly we set

(I)i = 1W
(
ai+ c

)
, i ∈ {1, . . . , n1} × {1, . . . , n2},

for the observation window only. The discrete version κ̂p;h(r) of the estimator κ̂v;h(r) is given
by (4.32) as

κ̂p;h(ak) =

∑
i∈A(k)(Gh)i(Gh)i+k∑
i∈A(k)(I)i(I)i+k

for all k from a subset of {−n1+1, . . . , n1−1}×{−n2+1, . . . , n2−1} such that the denominator
is positive, and A(k) = {i ∈ Z2|1 ≤ i ≤ n, 1 ≤ i+ k ≤ n}. Again κ̂p;h(ak) can be calculated
with the help of the discrete fast Fourier transform using relation (4.33), where matrices G
and I must be padded with zeros.

In practice the data for different cities are sampled with different values of a in the range
[0.7, 3] m, which is chosen so that the sizes of obtained matrices G and I are around 10000×
10000. This is a limit, determined by the computer memory, for which we are able to perform
the fast Fourier transform of padded matrices that are of double size. In contrary to the
stationary approach from the previous section, the sampling region B is not taken as the
bounding box D of the observation window W , but it is taken smaller by 1 km in each direction.
This is to avoid largest edge effects in m̂h arising near the boundaries.

The result of the calculation of κ̂p;h(r) for Prague is shown in Figure 5.16. One can see
that κ̂p;h seems to be direction independent. Thus in the following it is assumed that κ(r)
depends only on the norm ‖r‖ of r. For a visualisation of the dependence of κ̂p;h(r) on ‖r‖
the isotropic adapted estimator κ̂AIp;h(r) is used. It is defined by (4.24) as

κ̂AIp;h(r) =

∑
k Lh(r)

(
‖ak‖ − r

)
κ̂p;h(ak)∑

k Lh(r)

(
‖ak‖ − r

) ,
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Figure 5.16: The estimator κ̂p;h0(k) with h0 = 2000 m for Prague. The built-up area is sampled
with a = 1 m.

where L is the Gaussian kernel so that Lh(x) = 1
h
√

2π
e−

x2

2h2 and the bandwidth function h(r)

is chosen to be
h(r) = 30 · (1− e−0.001r/m) m + 0.5 m

exactly as in Section 5.3. The result obtained for Prague is shown in Figure 5.17.
Similarly to the stationary case the obtained values of the correlation function are well

fitted by the Cauchy correlation function of the form (5.2). The fit by the Cauchy correlation
function is also the best among other commonly used covariance classes. The fit is performed
by minimizing the least squares with predefined weights. As the estimator θ̂h = (α̂h, β̂h, θ̂h)
of the vector θ = (α, β, θ) of parameters we choose θ constrained to 0 < β, θ <∞, 0 < α ≤ 2,
that minimizes

Q(θ) =

n−1∑

k=−n+1

wk
(
κ̂p;h(ak)− κC(‖ak‖ ;θ)

)2
,

where n = (n1, n2) and the weights wk are chosen as wk = Nk

a‖k‖+1 . The coefficient Nk =∑
i∈A(k)(I)i(I)i+k gives the number of points that were used for the calculation of κ̂p;h(ak).

An example of such a fit for Prague is presented in Figure 5.17.
Taking all together, given h we are able to construct the approximate estimator ˆcovh(x,y)

according to (5.21) as

ˆcovh(x,y) = κC
(
‖x− y‖ ; θ̂h

)√
m̂A;h(x)− m̂A;h(x)2

√
m̂A;h(y)− m̂A;h(y)2.
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Figure 5.17: An example of Prague. The result of the adapted estimator κ̂AIp;h0
(r) is shown

together with κ̂p;h0
for h0 = 2000 m. The values of κ̂p;h0

are fitted by the Cauchy correlation

function κC(r; θ̂) with α̂ = 1.71, β̂ = 0.77, and θ̂ = 3.41 m.

Based a priory chosen initial value h0 we obtain the volume fraction estimate m̂h0
, correlation

function estimate κ̂p;h0
(r), parameter estimate θ̂h0

of the Cauchy fit κC(r; θ̂h0
) of the correla-

tion function, and consequently the covariance function estimate ˆcovh(x,y). Let MISEh0

(
m̂h

)

denote the mean integrated square error defined by (5.19) with m replaced by m̂h0
and cov by

ˆcovh0
. As a further step the numerical minimization of MISEh0

(
m̂h

)
is performed yielding the

minimizing value h1 that is taken as the optimal bandwidth. It is worth noting that the nu-
merical minimization of MISEh0

(
m̂h

)
with some reasonable accuracy is computationally very

demanding task since one has to calculate sixfold integrals in R. Finally, having the optimal
bandwidth h1 the estimation procedure is repeated yielding the volume fraction estimate m̂h1

,

correlation function estimate κ̂p;h1(r), and parameter estimate θ̂h1 of the Cauchy fit κC(r; θ̂h1)

In the analysis of the built-up structure h0 = 2000 m is used as the initial value for all
cities. Note that this choice corresponds to the optimal bandwidth from Proposition 4.3.3 for
Gaussian case with parameters B = 0.3, a = 10 km and exponential correlation function with
α = 1/50 m−1. Those parameters belongs to theoretical city with maximal volume fraction
0.3 and with approximately 40% of all build-up land within the a distance form the core and
approximately 86% within the 2a = 20 km distance from the core. The value α = 1/50 m−1

corresponds to situation when the correlation function at x = 50 m equals e−1 ≈ 0.37.

The estimated values of θ̂h0
, h1, and θ̂h1

for all cities are summarized in Table 5.6. The
volume fraction in Prague is shown in Figure 5.15, the correlation function in Figure 5.16,
and its fit by the Cauchy correlation function in Figure 5.17. In Figure 5.18 the difference
between volume fraction estimates m̂h1 and m̂h0 for Prague is shown. Since in Prague h1 < h0

the estimate m̂h1
is sharper leading to higher values in the city core and lower values in the

periphery. In Figure 5.19 we show the difference between the correlation function estimates in
Prague obtained for h0 and h1. The results of the isotropic adapted estimator κ̂AIp;h1

(r) based
on the optimal bandwidth h1 are for all cities shown in Figure 5.20.

It is also interesting to see how correlations depend on different locations of a city. This
means how plausible is the assumption κ(x,y) ≈ κ(‖x− y‖). In order to check this in Prague,
Boston, Paris, and Los Angeles we choose sampling regions B1, . . . , B4 ⊂W and estimate the
correlation function in each region separately. For each i = 1, . . . , 4 we denote by κ̂AIp;h1;Bi

the
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Table 5.6: Estimated parameters for all analysed cities: a is the sampling lattice constant;
α̂h0

, β̂h0
, and θ̂h0

are parameters of the best fit of κ̂p;h0
by the Cauchy correlation func-

tion κC(r; θ̂h0
); h1 is the optimal bandwidth obtained by the minimisation of MISEh0

(
m̂h

)
;

α̂h1
, β̂h1

, and θ̂h1
are parameters of the best fit of κ̂p;h1

by the Cauchy correlation function

κC(r; θ̂h1
).

City a [m] α̂h0
β̂h0

θ̂h0
[m] h1 [m] α̂h1

β̂h1
θ̂h1

[m]

Boston 1 2.00 0.68 2.57 2578 2.00 0.67 2.62
Chicago 1.5 2.00 0.62 2.47 5376 2.00 0.58 2.29
Los Angeles 3 2.00 0.67 2.23 3312 2.00 0.64 2.13
Pittsburgh 1.5 1.97 0.72 2.14 2439 2.00 0.69 2.06
Seattle 2 2.00 0.53 1.56 6070 2.00 0.52 1.58
Berlin 1 2.00 0.81 4.13 2636 2.00 0.79 4.09
Birmingham 1.5 2.00 0.80 2.88 2217 2.00 0.79 2.85
Milan 0.7 2.00 0.77 3.87 1907 2.00 0.78 3.91
Minsk 1 1.61 0.82 5.05 2727 1.76 0.78 4.70
Moscow 2 1.39 0.93 6.63 2220 1.41 0.91 6.45
Oslo 0.7 2.00 0.65 2.59 2723 2.00 0.61 2.50
Paris 2 1.12 0.88 4.73 2035 1.12 0.88 4.70
Prague 1 1.71 0.77 3.41 1775 1.65 0.80 3.63
St. Petersburg 1.5 1.85 0.83 4.96 2105 1.86 0.82 4.91

0.05 0.1 0.15 0.2 0.25

(a)

-0.005 0 0.005 0.01 0.015

(b)

Figure 5.18: (a): The volume fraction in Prague obtained using the kernel estimator m̂A;h1

with h1 = 1775 m. (b): The difference m̂A;h1
(x)−m̂A;h0

(x) between volume fractions obtained
for h0 = 2000 m (shown in Figure 5.16) and for h1.
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Figure 5.19: A comparison of correlation function estimates based on h0 = 2000 m and h1 =
1775 m in Prague.
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Figure 5.20: The results of the isotropic adapted estimator κ̂AIp;h1
(r) based on optimal band-

widths h1 for all analysed cites.
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isotropic adapted estimator based on h1 that is obtained in Bi. The positions of sampling
regions in W and the obtained estimators are shown in Figure 5.21. One can see that the
behaviour is relatively similar in all subregions. The only larger deteriorations are visible in
Prague and Paris where results corresponding to regions B2 in the range r ∈ (200, 2000) m
are larger then for other regions. This sampling regions partially cover areas with the highest
volume fraction.

In Boston and especially in Los Angeles one can further see small oscillations of the corre-
lation function in the range r ∈ (20, 400) m. The reason is the same as it was discussed in the
stationary approach in Section 5.3 on pages 111 and 124. Thus it is a result of the gridiron
urban plans that are common in many North American cities. Those oscillations, however,
do not influence the asymptotic behaviour of the correlation function as the waves blur and
eventually disappear for large values of r. This effect is also visible in Figure 5.20 for Los
Angeles, Chicago, and Seattle.

5.4.3 Justification of the window choice for the stationary approach

In Section 5.3 the built-up area was analysed using the stationary random closed set approach.
The stationarity is assumed to hold in a particular part of a city around the city core determined
by the observation window Ws. In order to justify the specific choice of Ws for a given city (see
Table 5.1 for coordinates of bounding boxes of windows used in the analysis) it is reasonable to
observe how the volume fraction m̂A;h1 based on the optimal bandwidth h1 changes inside Ws.
This is done by determining maxx∈Ws

m̂A;h1
(x), minx∈Ws

m̂A;h1
(x), and the relative maximal

difference of those values

∆rm̂A;h1
=

maxx∈Ws
m̂A;h1

(x)−minx∈Ws
m̂A;h1

(x)

maxx∈Ws m̂A;h1(x)
.

The results for analysed cities are shown in Table 5.7. It is interesting to compare values
of the volume fraction m̂A;h1 in Ws with values of p̂v summarized in Table 5.2 obtained in
the stationary approach. Since Ws is located around a city core, where the volume fraction is
highest, the values obtained from this small window are generally larger then values obtained
by the kernel estimator. The reason is in the fact that for large bandwidth the kernel estimator
is based on a large area meaning that it is influenced by changes of the volume fraction in large
distances. If this is combined with Ws of sides not much larger then h, it leads to generally
lower values of the volume fraction estimates obtained using m̂A;h. Thus for a volume fraction
that forms a peak with a sufficiently fast decrease on distances compared to the value of h and
with Ws having dimensions not much larger then h, the values of the stationary estimator p̂v
are larger then those of the kernel estimator m̂A,h. The smaller is h with respect to the size of
Ws the smaller is the difference between the maximal volume fraction estimated by the kernel
estimator and by the stationary estimator. This is clearly visible for Berlin and Los Angeles,
where the values are close together. On the other hand for Seattle and Oslo, where h is larger
then dimensions of Ws, there is a much bigger difference between p̂v and m̂A,h. A depiction of
the concrete situation for Prague and Pittsburgh is given in Figure 5.22.
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Figure 5.21: On the left: Selections B1, . . . , B4 together with the volume fraction m̂h1 in
a given city. On the right: Estimates κ̂AIp;h1;Bi

of the correlation function based on h1 and

B1, . . . , B4. The Cauchy correlation function with parameters α̂h1
, β̂h1

and θ̂h1
from Table 5.6

is also shown.
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Table 5.7: Maximal, minimal, and relative differences of values of the volume fraction estimator
m̂A;h1

inside the stationary selection window Ws used in Section 5.3.

City h1 [m] max m̂A;h1
min m̂A;h1

∆rm̂A;h1

Boston 2578 0.26 0.23 13.3%
Chicago 5376 0.28 0.27 4.1%
Los Angeles 3312 0.31 0.28 8.2%
Pittsburgh 2439 0.16 0.14 11.7%
Seattle 6070 0.20 0.19 2.9%
Berlin 2636 0.25 0.23 7.0%
Birmingham 2217 0.23 0.21 8.3%
Milan 1907 0.36 0.34 6.7%
Minsk 2727 0.16 0.15 6.5%
Moscow 2220 0.26 0.23 10.2%
Oslo 2723 0.21 0.20 6.5%
Paris 2035 0.44 0.38 14.5%
Prague 1775 0.25 0.23 11.0%
St. Petersburgh 2105 0.33 0.30 9.8%

0.14 0.16 0.18 0.2 0.22 0.24

(a) Prague

0.1 0.11 0.12 0.13 0.14 0.15

(b) Pittsburgh

Figure 5.22: (a): The volume fraction m̂A;h1
with h1 = 1775 m and the window Ws used in

the stationary analysis in Prague. (b): The volume fraction m̂A;h1
with h1 = 2439 m and Ws

in Pittsburgh.

5.4.4 Numerical simulations

In the following we check several numerical properties of the estimators used in first parts of
this section. As a suitable model of a built-up area we choose the level excursion set introduced
in Section 2.4 by Definition 2.4.5. In particular we take the 0-level excursion set X0(Z) of a
Gaussian random field Z determined by the mean function µZ(x) and covariance function
covZ(x,y) given by

µZ(x) = Φ−1
(
Ae−

x2

2σ2 +B
)



142 CHAPTER 5. BUILT-UP STRUCTURE PROPERTIES

and

covZ(x,y) = κC(‖x− y‖ ;θ) =

(
1 +

(‖x− y‖
θ

)α)− βα
, (5.22)

where Φ is a distribution function of a standard normal random variable, A,B, β, θ > 0,
A+ B ≤ 1, and α ∈ (0, 2]. By tuning parameters A,B, α, β, θ qualitative properties of X0(Z)
may be changed.

Again as in Section 4.4 Z has almost surely continuous sample functions since the covariance
function satisfies Corollary 2.4.1. Therefore X0(Z) = {x|Z(x) ≥ 0} is a non-stationary random
closed set. For the volume fraction m(x) of X0(Z) we use (2.12) and obtain

m(x) = 1− Φ (−µZ(x)) = Φ (µZ(x)) = Ae−
x2

2σ2 +B. (5.23)

The covariance function cov(x,y) of X0(Z) is from (2.13) given by

cov(x,y) =

κC(‖x−y‖)∫

0

1

2π
√

1− z2
e
− x̃2+ỹ2−2zx̃ỹ

2(1−z2) dz,

where x̃ = −µZ(x), ỹ = −µZ(y). In particular

cov(x,x) =

1∫

0

1

2π
√

1− z2
e−

µZ (x)

2(1+z) dz = m(x)
(
1−m(x)

)
.

The correlation function is thus

κ(x,y) =
1√

cov(x,x) cov(y,y)

κC(‖x−y‖)∫

0

1

2π
√

1− z2
e
−µZ (x)2+µZ (y)2−2zµZ (x)µZ (y)

2(1−z2) dz.

Since µZ(x) depends on x we see that in general κ(x,y) 6= κ(x−y,0). On a concrete example
in Figure 5.25 it is shown how large the difference may be.

For simulations of the Gaussian random field Z and corresponding excursion set X0(Z) the
circular embedding is used similarly as in Section 4.4. Thus we are able to simulate values of
Z on the regular grid of points {ak+ c|k1 = 1, . . . , n1, k2 ∈ 1, . . . , n2} for some a > 0, c ∈ R2,
and n = (n1, n2) ∈ N2. Hence we obtain a matrix Z ∈ Rn1,n2 with elements corresponding to
the values of Z at the grid points,

(Z)i = Z(ai+ c).

The values of the indicator of X0(Z) at the grid points form a matrix M ∈ {0, 1}n1,n2 with
elements

(M)i = 1X0(Z)(ai+ c) = 1
(
(Z)i ≥ 0

)
.

To estimate the volume fraction the discrete kernel estimator

m̂p;h(ak + c) =

∑n
i=(1,1)(M)iKh(ak − ai)
∑n
i=(1,1)Kh(ak − ai)

is used, where K is the Gaussian kernel and 1 ≤ k ≤ n.
The correlation function is estimated by κ̂p;h, which is defined, analogously to the previous

part, by (4.32), where the matrix G is now

(Gh)i =
(M)i − m̂p;h(ai+ c)√

m̂p;h(ai+ c)− m̂2
p;h(ai+ c)

.
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Table 5.8: Settings used in simulations. The volume fraction is defined through (5.23) with
parameters A,B, σ and the covariance through (5.22) with parameters α, β, θ. The simulations
are performed in the window W and discrete estimators are based on a regular grid scheme
determined by parameters a and c.

Volume fraction Window and sampling Correlation
Setting A B σ W a c α β θ

1–a 0.2 0.1 1800 [−5000, 5000]2 2 (−5002,−5002) 1.8 0.8 3
1–b 0.2 0.1 1800 [−5000, 5000]2 2 (−5002,−5002) 2 1.05 4
2–a 0.25 0.05 3000 [−2500, 2500]2 1 (−2501,−2501) 1.8 0.8 3
2–b 0.25 0.05 3000 [−2500, 2500]2 1 (−2501,−2501) 2 1.05 4

The rest of the estimation process remains the same as before with the only difference. Instead
of the Cauchy class of correlation functions, which is used to fit the values of κ̂p;h we take
the class of correlation functions of the 0-level excursion set based on a stationary standard
Gaussian random field with Cauchy covariance. Hence by (2.16), the general form of the
correlation function is

κL(r) ≡ κL(r;θ) =
2

π
arcsin

((
1 +

(r
θ

)α)− βα
)

(5.24)

for 0 < α ≤ 2 and β, θ > 0 with θ = (α, β, θ). Note that this class was already used in Section
4.4. Thus,

ˆcovh(x,y) = κL
(
‖x− y‖ ; θ̂h

)√
m̂p;h(x)− m̂p;h(x)2

√
m̂p;h(y)− m̂p;h(y)2 (5.25)

is taken as the approximate estimator (5.21) of the covariance function cov of X0(Z).
Since the extensive analysis of our estimation procedure is computationally demanding

we focus on four particular settings, 1–a, 1–b, 2–a, and 2–b, determined by specific set-
tings of µZ(x) and covZ(x,y). The first two, 1–a and 1–b, have a sharp volume frac-
tion profile determined by coefficients A = 0.2, B = 0.1, σ = 1800 in (5.23). They are
analysed in the window W = [−5000, 5000] × [−5000, 5000] and sampled with a = 2 and
c = (−5002,−5002). The last two, 2–a and 2–b, have a more flat volume fraction profile de-
termined by A = 0.25, B = 0.05, σ = 3000 in the window W = [−2500, 2500]× [−2500, 2500]
and sampled with a = 1 and c = (−2501,−2501). In the correlation structure we com-
bine two different settings. Settings 1–a and 2–a have slowly decaying correlations given by
α = 1.8, β = 0.8, θ = 3 in (5.22). Settings 1–b and 2–b have faster decaying correlations
given by α = 2, β = 1.05, θ = 4. The parameters of all four combinations are summarized
in Table 5.8 and corresponding volume fractions are shown in Figure 5.24. An example of one
realization in the setting 1–a is shown in Figure 5.23.

The dependence of the correlation function κ(x,x+r) on the location x inside the window
W for the first setting 1–a is shown in Figure 5.25. The figure suggests that the largest values
occurs when x = x4 = (0, 0), which is the point with highest volume fraction and the lowest
values occur when x = x1 = (5000, 5000) is on the boundary of W , i.e. for points with low
values of the volume fraction. The relative difference

∆(r) =
maxx∈W (κ(x,x+ r))−minx∈W (κ(x,x+ r))

maxx∈W (κ(x,x+ r))
≈ ∆κ4,κ1(r)

has a maximum that approximately equals 0.4. For the setting 1–b, which differs only in the
strength of correlations, the result is analogous. The overall slope of the correlation function
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Figure 5.23: A part of one realization of X0(Z) for the setting 1–a.

Table 5.9: Minimal and maximal values of the volume fraction m(x) and of the expectation
E m̂p;h0

(x) of its kernel estimator m̂p;h0
(x) for h0 = 2000 in W . For a visualisation see Figure

5.24.

Setting minx∈W m(x) maxx∈W m(x) minx∈W E m̂p;h0
(x) maxx∈W E m̂p;h0

(x)

1–a, 1–b 0.100 0.300 0.111 0.192
2–a, 2–b 0.175 0.300 0.249 0.259

has a power law decay with coefficient 1.05 instead of 0.8 but the relative error remains the
same. For settings 2–a and 2–b the result is similar with lower maximal value of the relative
difference since the volume fraction profile is more flat inside W . The maximal obtained relative
difference is 0.3 in both 2–a and 2–b. If one allows x to take arbitrary values then the maximal
relative difference in settings 1–a and 1–b remains to be approximately 0.4, whereas in settings
2–a and 2–b it increases up to 0.6. This is a consequence of the fact that the volume fraction
peak in settings 1–a, 1–b is relatively narrow and thus mostly contained in W . Hence, relaxing
the condition x ∈W does not lead to the possibility of reaching significantly smaller values of
the volume fraction. On the other hand in settings 2–a, 2–b the volume fraction outside W
still rapidly decreases to 0.05 as ‖x‖ → ∞. This leads to the increase of the relative difference
between the correlation function κ(x,x + r) with x at the centre of the peak and with x far
from from it.

For each of the four settings we generated N = 300 realizations. For each realization the
whole estimation process with initial bandwidth h0 = 2000 was performed. Thus the estimates
by m̂p;h0

, κ̂p;h0
, κ̂AIp;h0

, θ̂h0
, and ˆcovh0

were calculated. Then the minimisation of MISEh0
(m̂h)

was performed yielding the optimal bandwidth h1. Finally, h1 was used to calculate estimates
by m̂p;h1

, κ̂p;h1
, κ̂AIp;h1

, and θ̂h1
.

The expectation of the volume fraction estimator m̂h is according to (4.26) given by the
convolution of the true volume fraction m with the Gaussian kernel Kh. The expectation of
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Figure 5.24: A depiction of the true volume fractionm(x) in simulated settings. (a) corresponds
to (5.23) with A = 0.2, B = 0.1, σ = 1800 and (b) with A = 0.25, B = 0.05, σ = 3000. The
expectation E m̂p;h0 of the kernel estimator m̂p;h0 given by (5.26) with h0 = 2000 is plotted in
(c) for the first case and in (d) for the second case. For extremal values in all four settings see
Table 5.9.

the discrete version m̂p;h equals

E m̂p;h(x) =

∑n
i=(1,1)m(ai+ c)Kh(ak − ai)
∑n
i=(1,1)Kh(ak − ai) ≈ 1

eh(x)

∫

W

m(u)Kh(x− u) du = E m̂h. (5.26)

Since W is a rectangular window then by (5.15)

eh(x) =
(
Φh(u1 + x1)− Φh(v1 + x1)

)(
Φh(u2 + x2)− Φh(v2 + x2)

)
,

where v = (v1, v2) is the lower left corner of W , u = (u1, u2) is the upper right corner of
W and Φh is the cumulative distribution function of N(0, h). The expectation E m̂p;h0

for
all settings is shown in Figure 5.24. The extreme values of m(x) and E m̂p;h0

(x) inside W
are summarized in Table 5.9. The flattening effect of the convolution is clearly visible. The
variance of m̂p;h0

depends on the second order structure of X0(Z) similarly to (4.28), which
holds for the variance of m̂h0 . We estimate its value by calculating the sample variance, which
is according to (4.34) defined by

s2
N (m̂p;h0

)(x) =
1

N

N∑

i=1

(
m̂i;p;h0

(x)−E m̂p;h0
(x)
)2
,

where m̂i;p;h0
(x) denotes the result of the estimation on the i-th realisation. The estimator

of the standard deviation is then defined by sN (m̂p;h0
)(x) =

√
s2
N (m̂p;h0

)(x). The estimated
values of the standard deviation for our settings and h0 = 2000 are shown in Figure 5.26. High
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Figure 5.25: The dependence of the correlation function κ(x,x+rey) of X0(Z) on r for different
values of x ∈ W in the first setting 1–a, where ey = (0, 1) and κi(r) = κ(xi,xi + rey). The
points are x1 = (5000, 5000), x2 = (−2000,−3000), x3 = (−2000,−2000), and x4 = (0, 0).
The correlation function κL(r) of a stationary standard Gaussian 0-level excursion set given
by (4.40) with α = 1.8, β = 0.8, θ = 3 is plotted for the comparison. Finally, the relative

difference ∆κ4,κ1
(r) = κ4(r)−κ1(r)

κ4(r) is superimposed with axis on the right side of the figure.

values occur at locations where the individual estimators m̂i;p;h0(x) differ significantly from
the expectation E m̂p;h0(x). We may observe several properties. First, as can be expected,
the deviations are larger for larger values of E m̂p;h0

(x). Second, the deviations are larger for
stronger correlation dependence. Therefore settings 1–b and 2–b have larger deviations then
1–a and 2–a, respectively. Third, the deviations are generally larger for smaller observation
window. Finally, the deviations are larger for x close to the boundary of the observation
window.

Now we focus on the analysis of correlation function estimators κ̂p;h0 , based on the ini-
tial bandwidth h0, and κ̂p;h1

, based on the optimal bandwidth h1 obtained by minimising
MISEh0

(
m̂h

)
. As was already discussed, the correlation function κ(x,y) of X0(Z) depends

on both x and r = y − x. However, this is not reflected by estimators κ̂p;h0
(r) and κ̂p;h1

(r)
because they are actually estimating the spatial average κW (r) of κ(x,x+r) over the window
W ∩ (W − r) defined by

κW (r) =
1

ν2

(
W ∩ (W − r)

)
∫

W∩(W−r)

κ(x,x+ r) dx

as follows from relation (4.30) and discussion preceding it. The sample means defined by (4.35)
and estimates of 90% confidence bounds of κ̂p;h0

and of κ̂p;h1
along one concrete direction of

r together with superimposed spatially averaged values of κW (r) are shown in Figure 5.27 for
h0 and in Figure 5.29 for h1. The estimates sN (κ̂p;h0) and sN (κ̂p;h1) of standard deviations of
κ̂p;h0 and κ̂p;h1 defined by (4.36) are shown in Figures 5.31 and 5.32, respectively.

One can see that the estimators show typical deviations, which were observed already in the
stationary situation in Section 4.4 and also for the real built-up structure in this section. The
values of the spatially averaged correlation function κW (r) are almost always inside estimated
confidence bounds. For small and medium values of r they are also close to values of the sample
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Figure 5.26: A depiction of estimated standard deviations sN (m̂p;h0
) for all settings.

mean. This is especially true for κ̂p;h1 , where the improvement against κ̂p;h0 is clearly visible
in settings 1–b and 2–a.

For the isotropic adapted estimators κ̂AIp;h0
and κ̂AIp;h1

the sample mean and sample standard
deviations are again analysed. Both estimators should estimate the isotropised spatially aver-
aged correlation function κIW given by averaging κ(x,x + r) over the window W ∩ (W − r)
and over all directions, i.e.

κIW (r) =
1

2π

2π∫

0

κW
(
r · (cosφ, sinφ)

)
dφ.

The sample mean together with 90% confidence bounds and κIW are shown in Figure 5.28 for
κ̂AIp;h0

and in Figure 5.30 for κ̂AIp;h1
. Again there is a significant improvement of the estimator

based on h1 instead of h0, especially in midscale ranges of settings 1–b and 2–a. The estimates
of the standard deviations are plotted in Figures 5.31 and 5.32.

The result of estimations by κ̂p;h1
and κ̂AIp;h1

based on h1 for one realization in the setting
1–a is shown in Figure 5.33. By comparison to Figures 5.27 (a) and 5.28 (a) one can see the
clear qualitative similarity to the expected situation.

Finally, we study the performance of θ̂h = (α̂h, β̂h, θ̂h), which is an estimator of parame-
ters of the fit of the values of κ̂p;h by the parametric correlation function κL(r;θ). Based on
Figure 5.25, we may assume that the estimator should be able to find the true value β and
possibly also α of parameters of the underlying Gaussian random field Z. We may also expect
underestimation of θ comparing to the true value for Z, since the lower value of θ pushes the
corresponding curve κL(r;θ) in Figure 5.25 down leading to better intermediate approxima-

tion. In Table 5.10 the estimated statistical properties of θ̂h0
and θ̂h1

in all four settings are
summarized.
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Figure 5.27: The sample mean of κ̂p;h0(r) along r = (0, r) with estimated two-sided 90%
confidence bounds and the theoretical value κW (r).
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Figure 5.28: The sample mean of κ̂AIp;h0
(r) with estimated two-sided 90% confidence bounds

and the theoretical value κIW (r).
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Figure 5.29: The sample mean of κ̂p;h1(r) along r = (0, r) with estimated two-sided 90%
confidence bounds and the theoretical value κW (r).

100 101 102 103 104
10−4

10−3

10−2

10−1

100

r

κ(r)
(a) Setting 1–a

100 101 102 103
10−4

10−3

10−2

10−1

100

r

κ(r)
(b) Setting 2–a

100 101 102 103 104
10−5

10−4

10−3

10−2

10−1

100

r

κ(r)
(c) Setting 1–b

100 101 102 103
10−5

10−4

10−3

10−2

10−1

100

r

κ(r)
(d) Setting 2–b

κ̂AI
p;h1

(r) 90% conf. bounds κIW (r)

Figure 5.30: The sample mean of κ̂AIp;h1
(r) with estimated two-sided 90% confidence bounds

and the theoretical value κIW (r).
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Figure 5.31: Estimated standard deviations of κ̂p;h0(r) along r = (0, r) and of κ̂AIp;h0
(r).
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Figure 5.32: Estimated standard deviations of κ̂p;h1
(r) along r = (0, r) and of κ̂AIp;h1

(r).
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Figure 5.33: A result of correlation function estimators based on h1 calculated for one realiza-
tion in the setting 1–a. Here h1 = 2014 and α̂h1 = 2.00, β̂h1 = 0.78, θ̂h1 = 2.10.

Table 5.10: The summary of estimated properties of θ̂h0
= (α̂h0

, β̂h0
, θ̂h0

) based on h0 and of

θ̂h1 based on h1: α̂h0 is the sample mean; I0.9(α̂h0) the 90% confidence interval; dN (α̂h0 , α)
the deviation from the true value defined by (4.37); sN (α̂h0) the sample standard deviation
defined by (4.36); and analogously for β, θ, and h1.

Setting α α̂h0
I0.9(α̂h0

) dN (α̂h0
, α) sN (α̂h0

) α̂h1
I0.9(α̂h1

) dN (α̂h1
, α) sN (α̂h1

)

1–a 1.80 1.99 [1.91, 2.00] 0.19 0.04 1.98 [1.87, 2.00] 0.18 0.05
2–a 1.80 1.58 [1.47, 1.73] 0.23 0.08 1.68 [1.50, 1.90] 0.17 0.12
1–b 2.00 2.00 [2.00, 2.00] 0.00 0.00 2.00 [2.00, 2.00] 0.00 0.00
2–b 2.00 1.99 [1.92, 2.00] 0.03 0.03 1.99 [1.95, 2.00] 0.02 0.02

β β̂h0
I0.9(β̂h0

) dN (β̂h0
, β) sN (β̂h0

) β̂h1
I0.9(β̂h1

) dN (β̂h1
, β) sN (β̂h1

)

1–a 0.80 0.79 [0.72, 0.86] 0.04 0.04 0.81 [0.76, 0.88] 0.04 0.04
2–a 0.80 0.94 [0.83, 1.05] 0.16 0.07 0.90 [0.78, 1.04] 0.13 0.08
1–b 1.05 0.93 [0.86, 0.99] 0.13 0.04 1.03 [0.94, 1.10] 0.05 0.05
2–b 1.05 1.08 [0.98, 1.17] 0.06 0.06 1.06 [0.95, 1.16] 0.06 0.06

θ θ̂h0
I0.9(θ̂h0

) dN (θ̂h0
, θ) sN (θ̂h0

) θ̂h1
I0.9(θ̂h1

) dN (θ̂h1
, θ) sN (θ̂h1

)

1–a 3.00 2.09 [1.86, 2.33] 0.92 0.14 2.13 [1.94, 2.40] 0.88 0.14
2–a 3.00 3.55 [2.94, 4.18] 0.67 0.38 3.35 [2.72, 4.03] 0.53 0.41
1–b 4.00 2.71 [2.48, 2.95] 1.30 0.14 3.02 [2.74, 3.24] 1.00 0.15
2–b 4.00 3.82 [3.49, 4.15] 0.27 0.20 3.79 [3.45, 4.10] 0.29 0.20
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Table 5.11: Basic characteristics of h1: h1 is the sample mean; I0.9(h1) is the 90% confidence
interval; sN (h1) is the sample standard deviation.

Setting h1 I0.9(h1) sN (h1)

1–a 1934 [1731, 2125] 116
1–b 1596 [1512, 1705] 60
2–a 7667 [2288, 30416] 8059
2–b 3606 [2124, 5778] 2985

One can see the clear benefit of using h1 instead of just h0. In almost all analysed settings
deviations from true values of estimators based on h1 are smaller then deviations of estimators
based on h0. The only difference is for θ in the setting 2–b where dN (θ̂h1

, θ) is slightly larger

then dN (θ̂h0
, θ). The benefit may be also visualised by comparing mean based correlation

functions κL(r; θ̂h0) and κL(r; θ̂h1) with theoretical values of the correlation function κ(x,x+r)
for different choices of x and r. This is presented in Figure 5.34. One can see that the fit based
on h1 is generally much closer to the strip of real values then the fit based on h0.

Since h1 is by construction a random variable representing an estimator of the true optimal
bandwidth we may analyse its statistical properties. In Table 5.11 the basic characteristics
of h1 are summarized. Based on the results the following observation may be pointed out.
The variability of h1 is much larger for smaller window in settings 2–a, 2–b and especially
in the setting 2–a, where the correlation is stronger, which is consistent with larger standard
deviations of κ̂p;h1

, κ̂AIp;h1
in those settings as can be seen by comparing Figures 5.31 and 5.32.

As a final conclusion we may say that generally, there is a significant improvement in the
performance of estimators based on the optimal bandwidth h1 comparing to estimators based
on the initial bandwidth h0. This particularly holds for the estimator β̂ of β which is capable of
successful estimation of the value of the power law decay coefficient of the correlation function.
Such a result may be viewed as a partial confirmation of the validity of the proposed method
of obtaining the optimal bandwidth and estimators based on it. Moreover it also shows that
the approximation of the covariance function given by (5.20) leading to the estimator (5.25) is
useful.
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Figure 5.34: Correlation functions κL
(
r; θ̂h0

)
and κL

(
r; θ̂h1

)
defined by (5.24) and deter-

mined by sample mean parameters θ̂h0 and θ̂h1 , respectively. For comparison, κIW (r) and
κi(r) = κ(xi,xi + rey) for i = 1, . . . , 4, where ey = (0, 1), are also shown. The points
x1, . . . ,x4 in settings 1–a and 1–b are chosen to be x1 = (5000, 5000), x2 = (−2000,−3000),
x3 = (−2000,−2000), x4 = (0, 0) and in settings 2–a and 2–b they are chosen to be
x1 = (2500, 2500), x2 = (−1700,−2500), x3 = (0,−2000), x4 = (0, 0).

5.5 Discussion of random closed set approach results

In the previous two sections the built-up area of certain cities was analysed by studying second
order properties of its representation by random closed sets. In Section 5.3 the built-up area
was taken as a realization of a stationary random closed set. The second order properties were
analysed using two methods. The first is the direct estimation of the correlation function κ(r).
We found that under the assumption of isotropy the correlation function can be well fitted inside
the parametric class of Cauchy correlation functions κC(r,θ), where θ = (α, β, θ) is the vector of
parameters. The Cauchy correlation function has the power law asymptotic decay determined
by the coefficient β. Thus, by fitting of the estimated values of the correlation function we
were able to obtain the estimator θ̂ of the parameters and in particular the estimator β̂ of β,
which is from now on denoted by β̂s.

The second method used in the stationary scenario was the estimation of the variance in
balls var

(
νX(Br)

)
. We derived that if the correlation function has a power law decay with

coefficient β then the dependence of var
(
νX(Br)

)
on the ball radius r follows a power law with

coefficient 4− β. To obtain an estimator of β we thus analyse the power law behaviour of the
estimator v̂arv

(
νX(Br)

)
of the variance in balls on r using least squares log-linear fitting which

yields the estimator β̂, which is in the following denoted by β̂l.
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Table 5.12: Results of estimations of the coefficient β.

City β̂s β̂v β̂h0
β̂h1

Boston 1.01 0.85 0.68 0.67
Chicago 1.32 1.11 0.62 0.58
Los Angeles 1.33 1.07 0.67 0.64
Pittsburgh 1.05 0.61 0.72 0.69
Seattle 0.78 0.40 0.53 0.52
Berlin 0.84 0.67 0.81 0.79
Birmingham 0.78 0.56 0.80 0.79
Milan 0.84 0.70 0.77 0.78
Minsk 1.10 1.16 0.82 0.78
Moscow 1.07 1.02 0.93 0.91
Oslo 0.89 0.28 0.65 0.61
Paris 0.77 1.05 0.88 0.88
Prague 0.65 0.42 0.77 0.80
St. Petersburg 1.00 0.95 0.83 0.82

In Section 5.4 the built-up area was studied as a realization of a non-stationary random
closed set. Here the non-constant volume fraction was first estimated using the kernel estimator
m̂h0 for the initial bandwidth h0. Then, second order properties were analyse by the direct
estimation of the correlation function κ(x,y) under the assumption that it depends only on
the difference x − y. We saw that under the additional assumption of isotropy the best
fit of the estimated correlation function is again given by the Cauchy correlation function.
Thus, we obtain the estimator θ̂h0 of its parameters and in particular the estimator β̂h0 of
the power law decay coefficient β. Next, both the volume fraction estimate and correlation
function estimate were used to minimise the mean integrated square error MISEh0

(m̂h) and
consequently to obtain the bandwidth h1 that was taken as the optimal bandwidth. Based on
h1 the estimation of the volume fraction and of the correlation function was again performed.
This after fitting by the Cauchy correlation function leads to the estimator θ̂h1

and hence to

β̂h1
as the estimator of β.

Based on results of all three previously recapitulated approaches we conjecture that the
correlation function is asymptotically governed by the power law behaviour, i.e.

κ(x,y) ∼ C ‖x− y‖−β (r →∞).

Hence the built up structure as a random closed set exhibits isotropic long-range dependence
according to Definition 2.8.2. The overall summary of estimated values of β is given in Table
5.12. We see that the values are for some cities rather different. From the numerical analysis
performed in Section 4.4 follows that the estimator β̂s has a tendency to overestimate the true
values of β. On the other hand the numerical analysis in Subsection 5.3.2 suggests that β̂l
has a tendency to underestimate the true values. Both tendencies are observable in Table 5.12
for all cities except Minsk and Paris. It is also interesting to compare estimators β̂h0

and β̂h1
.

From numerical simulations in Subsection 5.4.4 follows that β̂h returns smaller values for larger
h, which is consistent with results in Table 5.6 (repeated in the above table) corresponding to
the built-up area. However, as follows from numerical simulations the more precise estimate is
always given by β̂h1

.

In the overall comparison the least reliable values are given by β̂v since the variance in balls
was estimated for only a limited range of radii. On the other hand β̂h1

should be preferable
since much larger window than in the other methods was used for its determination. The only
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possible weakness of the estimator β̂h1 is the fact that it is based on the approximation in which
the correlation function κ(x,y) depends only on ‖x− y‖. This property was not observed in
any non-stationary random closed set model in Chapter 2. However, from simulations in
Subsection 5.4.4 follows that this may not be a problem since the general underlying behaviour
of the correlation function, and particularly its power law decay, is well reflected by all used
correlation function estimators based on that approximation.

It is worth to discuss the possible confounding between the density and interaction which is
a well known phenomenon in the point process analysis. It was shown (see [82] and references
therein) that for point processes it is sometimes not possible to recognize the difference of
spatial inhomogeneities from clustering in a single realization of a point process. In the theory
of point processes it represents a fundamental limitation of the scope of statistical inference.
The natural question is whether this kind of misinterpretation may not be presented in our
analysis. In that case, when applied in the same observation window, the stationarity based
estimators compared to non-stationarity ones should produce larger correlations due to the
influence of the non-constant volume fraction and consequently of smaller values of the power
law coefficient β. In our analysis the non-stationarity based estimators are based on much
larger windows than the stationary ones, with more rapid volume fraction changes so that the
effect may be partially neglected. However, as can be seen in Table 5.12, the values of β̂h1

estimated under the non-stationarity assumption are comparable and often even smaller than
values of β̂s and β̂v obtained under stationarity assumption. From this we conclude that the
confounding is not presented in the built-up structure and thus the long-range correlations
are a vital part of the structure and not any misinterpretation of the influence of the non-
constant density. Moreover we conclude that the non-stationary approach is more suitable for
the analysis of large built-up areas whereas the stationary approach should be limited only to
neighbourhoods of true city centres.

Finally note that all long-range dependent models used for numerical simulations in Subsec-
tions 4.4.2, 5.3.2, and 5.4.4 were Gaussian level excursion sets. It should be mentioned that the
use this particular model is not new in connection to urban structures. Makse et al in [32, 33]
introduced a correlated percolation model which exactly corresponds to the digitalized level
excursion set on a regular grid of points. They used it for simulation of the urban structure on
large scales. However, they obtain the best results for strongly correlated case with β = 0.05,
which is a rather different value from our results.

5.6 Radial density analysis

In this section the radial dependence of the volume fraction is studied. We again take a built-up
area in a given city as a realization of the non-stationary random closed set X observed in some
observation window W . Let further νX be the volume measure of X given by νX(B) = ν(X∩B)
for all Borel B ⊂ R2, where ν is the Lebesgue measure on R2. In the following we are going
to analyse the dependence of

m̂r;x0
=
νX(Br(x0) ∩W )

ν(Br(x0) ∩W )

on r, where x0 is a suitably chosen centre point of the city. The values of r are taken such
that 0 < ν(Br ∩W ) < ν(W ), i.e. Br(x0) is included in W but does not fully contain W . The
expectation is given by

E m̂r;x0
=

1

ν(Br(x0) ∩W )

∫

Br(x0)

1W (x)m(x) dx =
Λ(Br(x0) ∩W )

ν(Br(x0) ∩W )
,

where m(x) is the volume fraction of X and Λ is the intensity measure of νX .
As is mentioned in the introduction of this thesis, it was observed (see e.g. [1, 8, 9, 10])

that the intensity measure on a ball of radius r centred at the city centre x0 behaves for large
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Table 5.13: GPS coordinates of the centre point x0 and coefficient γ of a power law decay of
m̂r;x0

.

City Latitude Longitude γ̂

Boston N 42◦ 21.466′ W 71◦ 03.759′ 0.25
Chicago N 41◦ 55.915′ W 87◦ 38.042′ ∼
Los Angeles N 34◦ 00.781′ W 118◦ 15.330′ 0.24
Pittsburgh N 40◦ 27.136′ W 79◦ 57.232′ 0.49
Seattle N 47◦ 37.837′ W 122◦ 20.012′ 0.23
Berlin N 52◦ 31.233′ E 13◦ 23.623′ 0.23
Birmingham N 52◦ 28.960′ W 1◦ 53.594′ 0.66
Milan N 45◦ 28.099′ E 9◦ 11.766′ 0.46
Minsk N 53◦ 54.400′ E 27◦ 35.093′ 0.25
Moscow N 55◦ 45.544′ E 37◦ 37.100′ 0.61
Oslo N 59◦ 55.019′ E 10◦ 41.659′ 0.45
Paris N 48◦ 51.984′ E 2◦ 20.684′ 0.59
Prague N 50◦ 04.861′ E 14◦ 25.831′ 0.78
St. Petersburg N 59◦ 56.073′ E 30◦ 19.081′ 0.61

r according to a power law, i.e.
Λ(Br(x0)) ≈ Cr2−γ

for large r and some C > 0, possibly with different values of γ in different ranges of r. Fur-
thermore, according to [1, 23], for certain initial range r ∈ (0, r0), there should be a plateau
with γ = 0 and then for r > r0 the power law behaviour continues with γ > 0.

Under this hypothesis one should obtain

E m̂r;x0 ∼ Kr−γ (5.27)

as r →∞ and E m̂r;x0
≈ K for values of r in some initial range (0, r0) and some K > 0.

To be able to perform the analysis, the city centre point x0 should be first determined.
We decided to choose a point with the highest volume fraction estimated by the kernel es-
timator m̂h1

, which corresponds to the optimal bandwidth h1 from the previous Section. In
papers mentioned in the beginning of this section the centroid is usually used as a centre
point. However, since our observation window W often does not cover the whole city with its
neighbourhood, the centroid based only on information from W may be significantly shifted
from the true centroid of the whole city. Moreover, we think that the centroid is actually not
suitable in et all, since for many geographically constrained cities, like e.g. Chicago or Seattle,
the downtown that should contain the centre point is located close to the boundary of the
excluded area (usually lake or sea). In this case the centroid is significantly shifted towards
the inland. On the other side, our kernel estimator uses edge corrections and as a result its
highest value is correctly located inside the downtown. The GPS coordinates of centre points
in analysed cities selected using our method are given in Table 5.13.

The resulting dependence of m̂r;x0
on r is shown in Figure 5.35. The range of values of r is

for each city chosen such that ν(Br(x0) ∩W ) ≈ Cr2 for some C > 0, meaning that we avoid
the systematic changes of m̂r;x0 due to the complicated geometry of the window W . We can
see that the expected behaviour is roughly followed. The plateau of constant volume fraction
seems to be presented in the range r ∈ (0, r0) for r0 being usually between 1 km and 5 km.
The fluctuations for small values of r are given by the large influence of individual buildings
in the vicinity of the centre point x0 and should not be misinterpreted as fluctuations of the
expected volume fraction. Note that based on previous sections we assume that the built-up
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Figure 5.35: The dependence of m̂r;x0 on r for all analysed cities.

area is long-range dependent. Hence the estimator m̂r;x0 has a large variance for small and
medium values of r. For large values of r the power law decay of m̂r;x0 is visible for all cities.
For some of them, e.g. Oslo, Birmingham, and Milan, the power law part is not very long. For
Chicago it is actually very short. Therefore, we are not able to surely confirm the hypothesis
of the power law decay. However, the suggestion is that it is true. Finally, we provide a least
squares log-linear fit of the power law dependence according to a relation

log(m̂r;x0
) = γ̂ log(r) + c

that holds for large values of r. Hence we obtain the estimator γ̂ of the coefficient γ from (5.27).
In Table 5.13 we show estimated values of γ for all analysed cities except Chicago. The fits
are also shown in Figure 5.35. The values of γ̂ are between 0.23 and 0.78 which corresponds to
those obtained in previous works. However, the values for individual cities are different (see [8]
for concrete values). This is probably a consequence of the scope of our analysis. Whereas the
previous works focused on large urban areas around analysed cities we deal with much smaller
neighbourhoods of city cores.

5.7 Distribution of building sizes

In Sections 5.3 and 5.4 the built-up area was analysed as a random closed set. This random
closed set was obtained as a union set of individual buildings that are represented by polygons.
Instead of the union set we may study the original collection of buildings as a particle process
defined in Section 2.7. Hence, the buildings in some area W are taken as the realization of



158 CHAPTER 5. BUILT-UP STRUCTURE PROPERTIES

some particle process Y in R2 observed in window W . In the following we restrict ourselves
to the assumption that Y is stationary.

Since all buildings have positive volume, Y may be restricted on the collection W of all
compact sets with positive Lebesgue measure, which is according to Theorem 3.1.1 measurable
set in C ′. Hence Y may be taken as a particle process in W. Furthermore, according to
Theorem 3.1.2 one may take the centroid defined by (3.1) as a suitable centre function z
on W. Given the centre function z, the grain space W0 is defined by (2.29). Finally, the
stationarity of Y implies the existence of the typical grain Y0 with grain distribution Q onW0.

In this section we focus only on the distribution of sizes of individual buildings, i.e. on a
random variable X = ν(Y0), where ν is the Lebesgue measure on R2. Our aim is to estimate
the distribution of X, which is connected to Q by

P(X ≤ x) = Q(ν(Y0) ≤ x).

Since Y is assumed to be stationary, we use buildings only inside the same observation window
as was used in the stationary random closed set approach in Section 5.3. It turns out that the
crucial role in estimating the distribution of X is played by the generalized beta distribution
of the second kind (GB2).

The GB2 distribution depends on four positive parameters, a, b, p, q, and its distribution
function F (x) is given by

F (x) =

{
Iz(p, q) for x ≥ 0,

0 for x < 0,
with z =

(
x
b

)a

1 +
(
x
b

)a ,

where Iz(p, q) is the regularized incomplete beta function that is for all p, q with <p,<q > 0
and all z ∈ [0, 1] defined by

Iz(p, q) =
1

B(p, q)

z∫

0

up−1(1− u)q−1 du

and B(p, q) is the beta function defined by

B(p, q) =

1∫

0

up−1(1− u)q−1 du, <p,<q > 0.

The probability density function f of GB2(a, b, p, q) is

f(x) =
1

B(p, q)

a

bap
xap−1

(
1 +

(
x
b

)a)p+q for x > 0 (5.28)

and f(x) = 0 otherwise. One can easily see that b is a scale parameter and a, p, q are shape
parameters. The density for x � 1 behaves like x−aq−1 and for x � 1 like xap−1. The
distribution is therefore capable of fitting different power law behaviours for large and small
values of x. Moreover it follows that moments exist for −ap < k < aq and are

E(Xk) =
bkB(p+ k/a, q − k/a)

B(p, q)
, (5.29)

where X ∼ GB2(a, b, p, q) is a random variable. In particular the second moment exists when
aq > 2.

The important property of the GB2 distribution is the invariance with respect to scaling
and raising to a positive power. To see this let us take X ∼ GB2(a, b, p, q) and try to find the
distribution of

Y = cXα,
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Table 5.14: Parameter estimates in the case R ∼ GB2(a, b, p, q) obtained by maximum likeli-
hood.

City â b̂ p̂ q̂

Birmingham 1.47 8.46 2.97 2.36
Milan 2.07 497.79 0.67 174.10
Minsk 4.99 15.18 0.48 0.66
Moscow 6.01 14.33 0.35 0.60
Oslo 9.99 10.83 0.22 0.33
St. Petersburgh 12.64 20.07 0.13 0.29

where c > 0 and α > 0. For the distribution function of Y we have

FY (y) = P(Y ≤ y) = P(cXα ≤ y) = P
(
X ≤ (c−1y)

1
α

)
= FX((c−1y)

1
α ) = Iz̃(p, q),

where

z̃ =

(
(c−1y)

1
α

b

)a

1 +

(
(c−1y)

1
α

b

)a =

(
y
cbα

) a
α

1 +
(
y
cbα

) a
α
.

Hence Y has again the GB2 distribution with parameters a/α, cbα, p, q, i.e.

X ∼ GB2(a, b, p, q) ⇐⇒ cXα ∼ GB2(a/α, cbα, p, q). (5.30)

The GB2 distribution is often used in economics, where it was introduced as an income
distribution in [108]. Therefore, it is not a surprise, that it may be appear in connection to the
distribution of building sizes. As a full four parameter family, it contains many other important
distributions as its sub-families. For details and further discussion see [109].

Now let us focus on the analysis of the distribution of building sizes. There are two scenarios.
The first holds for all analysed European cities except Paris, Berlin, and Prague. Here the
distribution of X is well, and best among other standard families of distributions, approximated
by the GB2 distribution. Since in the following part we would like to approximate buildings
by balls and use the distribution of their radii, we do not directly estimate GB2 parameters of
X, but instead we introduce a new random variable R given by

R =

√
X√
π
.

Thus R corresponds to the equivalent radius of a ball with area X. As was discussed previously,
it has again the GB2 distribution with the relation (5.30) between parameters. Hence in the
following results of the fit of the distribution of R are presented. The estimation was performed
using the maximum likelihood and estimated values of parameters are summarized in Table
5.14. The histograms and quantile-quantile (Q–Q) plots of fitted distributions for selected
cities are shown in Figure 5.36.

The second scenario holds for analysed cities in the USA and for Berlin, Paris, and Prague.
Here the distribution of X corresponds to a mixture of two random variables with GB2 distri-
butions. Such a distribution denoted by MGB2(a1, b1, p1, q1; a2, b2, p2, q2; p) is determined by
the probability density function

fMGB2(r) = pfGB2(r; a1, b1, p1, q1) + (1− p)fGB2(r; a1, b1, p1, q1),
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Figure 5.36: The visualisation of distributions of R compared to their GB2 fits obtained by
maximum likelihood. On the left: the histogram together with fitted theoretical probability
density function. On the right: the Q–Q plot comparing the empirical and fitted distributions.
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Table 5.15: Parameter estimates in the case R ∼ MGB2(a1, b1, p1, q1; a2, b2, p2, q2; p) obtained
by maximum likelihood.

City â1 b̂1 p̂1 q̂1 â2 b̂2 p̂2 q̂2 p̂

Berlin 10.23 8.10 0.76 0.27 51.14 14.23 0.035 0.055 0.55
Boston 43.24 5.74 0.085 0.049 2.99 40.39 0.47 2.41 0.67
Chicago 512 3.50 0.017 0.004 13.06 5.75 3.14 1.55 0.66
Los Angeles 0.46 0.04 78.45 8.99 27.53 7.53 0.14 0.42 0.54
Paris 2.82 1.29 1.19 0.67 6.04 8.61 0.63 0.60 0.12
Pittsburgh 4.70 17.96 0.33 0.65 0.53 3.61 63.44 51.72 0.088
Prague 0.70 26.83 6.86 16.54 7.54 5.73 19.94 0.47 0.49
Seattle 20.60 5.93 1.89 0.36 0.78 204 4.65 37.19 0.11

Table 5.16: Comparison of basic characteristics of the distribution ofR and of the corresponding
fit by GB2 or MGB2 distribution: N is the number of buildings; α, β are power law coefficients
of the fitted probability density function according to (5.31); µ and RN are the expectation of
the fitted distribution and the sample mean, respectively; σ2 and s2

N are the variance of the
fitted distribution and the sample variance, respectively.

City N α β µ RN σ2 s2
N

Berlin 8431 0.81 3.75 12.93 12.79 101 58
Boston 5047 0.42 3.13 12.56 12.51 283 137
Chicago 75297 7.91 3.24 5.85 5.83 41 13
Los Angeles 40747 2.81 5.16 6.83 6.80 35 28
Pittsburgh 13339 0.57 4.04 6.58 6.57 28 24
Seattle 2435 2.62 8.39 14.33 14.33 94 93
Birmingham 3280 3.35 4.47 12.79 12.68 117 87
Milan 665 0.39 360.52 28.37 28.27 319 323
Minsk 1776 1.38 4.28 15.43 15.44 109 101
Moscow 4244 1.08 4.62 13.18 13.15 66 59
Oslo 1960 1.21 4.29 10.71 10.64 46 35
Paris 23705 2.35 2.89 8.88 8.88 ∞ 30
Prague 3760 3.83 4.54 10.47 10.46 36 34
St. Petersburgh 2113 0.66 4.62 17.17 17.15 114 96

where fGB2(r; ai, bi, pi, qi) is a probability density function of GB2(ai, bi, pi, qi) given by (5.28).
For the MGB2 distribution the condition analogous to (5.30) is clearly valid. Hence we may
again analyse the equivalent radius R instead of X, because it has also the MGB2 distribution.
The results of the estimation performed using the maximum likelihood are summarized in Table
5.15. The histograms and quantile-quantile (Q–Q) plots of fitted distributions are shown in
Figures 5.37 and 5.38.

Now let us discuss the performance and properties of the fitting. As follows from presented
figures the estimated distributions in all cities except Chicago reasonably fit to empirical his-
tograms. It means that they perform well in regions with largest probability. The worse results
are usually obtained when one focus on the tail of the distribution, which can be seen in Q–Q
plots. Here the empirical quantiles of the data are for large probability generally smaller than
the theoretical quantiles. This means that there is a less number of buildings with very large
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Figure 5.37: The visualisation of distributions of R compared to their MGB2 fits obtained by
maximum likelihood. On the left: the histogram together with fitted theoretical probability
density function. On the right: the Q–Q plot comparing the empirical and fitted distributions.
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Figure 5.38: The visualisation of distributions of R compared to their MGB2 fits obtained by
maximum likelihood. On the left: the histogram together with fitted theoretical probability
density function. On the right: the Q–Q plot comparing the empirical and fitted distributions.
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values of R, than predicted by the estimated theoretical distribution. In the case of Chicago
the fit by the MGB2 is not precise even for small values of R, where it is unable to follow
the probability density function decay of the first peak. The tail of the distribution is again
overestimated.

As a simple verification of the performance of the fitted distribution we use the expectation
µ and the variance σ2. Let us denote the number of buildings by N . The expectation can be
directly estimated by the sample mean RN and the variance by the sample variance s2

N defined
by

RN =
1

N

N∑

i=1

Ri, s2
N =

1

N − 1

N∑

i=1

(Ri −RN )2.

Those estimators should lead to similar values as the theoretical expectation µ and variance σ2

of the fitted distribution. The theoretical vales for the GB2 distribution are from (5.29) given
by

µGB2 =
bB(p+ 1/a, q − 1/a)

B(p, q)
, σ2

GB2 =
b2B(p+ 2/a, q − 2/a)

B(p, q)
− µ2

GB2,

and for the MGB2 distribution by

µMGB2 = p
b1B(p1 + 1/a1, q1 − 1/a1)

B(p1, q1)
+ (1− p)b2B(p2 + 1/a2, q2 − 1/a2)

B(p2, q2)
,

σ2
MGB2 = p

b1B(p1 + 2/a1, q1 − 2/a1)

B(p1, q1)
+ (1− p)b2B(p2 + 2/a2, q2 − 2/a2)

B(p2, q2)
− µ2

MGB2.

The results are presented in Table 5.16, where we also show the power law coefficients α
and β of the estimated theoretical probability density function f in the vicinity of 0 and ∞
according to

f(r) ∼ rα (r → 0+) and f(r) ∼ r−β (r →∞), (5.31)

respectively. We can see that RN and µ are always very close to each other. The worse
situation is when comparing the variances s2

N and σ2. This is caused by the strong impact
of the tail of the distribution. Hence when the value of β is small, indicating the slow power
law decay, then the difference in the variance is large. This holds for Boston, Chicago, and
Berlin. Moreover, in Paris the fitted values correspond to β = 2.89. Here the power law decay
is dominated by the r−a1q1−1 term of the first component of the mixture. Since a1q1 = 1.89
then the second moment and the variance are infinite. On the other side, in Milan the large
value of β, indicating strong decrease of the probability density function, is probably caused
by the small size of the sample.

It is also interesting to discuss the influence of number N of buildings involved in the
estimation. In Table 5.16 we see that all values of N are relatively large. However, the buildings
in a city are correlated due to urbanisation plans and various social forces. Hence the observed
values of R are not independent, which limits the overall performance of the estimation process,
which is then lower compared to the estimation based on independent samples.

Finally, it is a question if one needs the full four parameter family GB2 or even the nine
parameter family MGB2 of distributions to describe the true distribution of R. During the
analysis we were not able to find any simplifying relations between parameters. The need for
the mixture MGB2 seems to be important, since it may indicate two different and partially
independent components involved in the built-up process. However, here the more detailed
analysis is needed before drawing any conclusions.

5.7.1 Covariance for small arguments

The knowledge of the distribution of building sizes can help us to determine the covariance of
the corresponding built-up area. To do this let again take buildings as particles of a stationary
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particle process Y . Let further Y 0 denote the stationary ground point process of Y and Y0 the
typical grain of Y , corresponding to the centroid centre function z, with distribution Q. The
built-up area taken as a stationary random closed set Z according to Section 5.3 is precisely
the union set of Y .

When the particles of Y do not overlap, which holds for buildings by principle, then the
volume fraction p of Z is given by

p = λE ν(Y0) = λEX,

where λ is the intensity of Y 0 and X = ν(Y0) is the area of the typical grain. To show this let
us take Ỹ as the stationary marked point process corresponding to Y by Theorem 2.7.3 and
use its representation by

Ỹ =

τ∑

i=1

δ(yi,Ci), τ = Ỹ (Rd ×W0)

according to (2.27). If the particles of Y do not overlap then

(yi + Ci) ∩ (yj + Cj) = ∅ for all i 6= j

with probability one. This implies that

p = E1Z(0) = E

τ∑

i=1

1yi+Ci(0) = E

τ∑

i=1

1Ci(−yi).

Using the Campbell theorem 2.5.2 and decomposition of the intensity measure Θ of Ỹ from
Theorem 2.6.1, we finally obtain

p = λ

∫

W0

∫

R2

1C(−y) dyQ(dC) = λ

∫

W0

ν(−C)Q(dC) = λE ν(Y0).

Now we focus on the covariance C of Z. For non-overlapping particles it may be decomposed
into two terms:

C(r) = C1(r) + C2(r),

where C1 corresponds to the interaction of particles with themselves and C2 to the interaction
between different particles. Clearly C2(r) is small for small r and it is even zero, when all par-
ticles are separated by some minimal positive distance. Hence the behaviour of the covariance
in the vicinity of 0 is primarily influenced by C1. The covariance C1 of particles with itself is
by analogous reasons as before given as the expectation of the intersection of the typical grain
Y0 with shifted copy of itself multiplied by the intensity λ, i.e.

C1(r) = λE ν
(
Y0 ∩ (Y0 − r)

)
= λE γY0

(r),

where γY0
(r) = ν

(
Y0 ∩ (Y0 − r)

)
is the set covariance of Y0.

Our aim is to determine the covariance C1 from the distribution of X. We introduce the
following simplification. From now on let us assume that the buildings are balls. Therefore,
the distribution Q of the typical grain is fully determined by the distribution of R =

√
X/π.

The covariance C1(y) then depends only on the norm y ≡ ‖y‖ and is given by

C1(y) = λE γR(y) = p
E γR(y)

πER2
, (5.32)

where γR(y) = ν
(
BR∩(BR−yu)

)
is the set covariance of a ball of radius R and u is an arbitrary

unit vector. The intersection area γr(y) is non-zero for y ∈ [0, 2r) and can be calculated as

γr(y) = 2r2 arccos
( y

2r

)
− yr

√
1−

( y
2r

)2

.
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Thus, in order to calculate the expectation, it is necessary to expand γr(y) into series in powers
of y/2r. We use the following Taylor expansions (see for instance [95]):

arccos(x) =
π

2
−
∞∑

n=0

(2n)!

4n(n!)2

1

(2n+ 1)
x2n+1, |x| < 1,

(1 + x)α =

∞∑

n=0

(
α

n

)
xn, |x| < 1.

Using the identity ( 1
2

n

)
=

(−1)n+1(2n)!

4n(n!)2

1

(2n− 1)
, n = 0, 1, 2, . . . ,

that can be easily proven by induction, one finally obtains

γr(y) = πr2 + 4

∞∑

n=0

(2n)!

22n(n!)2

1

(4n2 − 1)

y2n+1

22n+1r2n−1
. (5.33)

Up to the first four terms it reads

γr(y) = πr2 − 2ry +
y3

12r
+

y5

320r3
+O

(
y7

r5

)
.

As we have seen in the previous part, the distribution of R is given by the generalized beta
distribution of the second kind (GB2) or by the mixture of two GB2 distributions. Hence we
need to calculate both expectations in (5.32) with respect to the GB2(a, b, p, q) distribution.
Since γr(y) is 0 for y ≥ 2r, the expectation of γR(y) is given by

E γR(y) =

∞∫

0

γr(y)P(dr) =

∞∫

y
2

γr(y)P(dr) ≡ E (γR(y); 2R > y) .

Using expansion (5.33) of γr(y) we obtain

E γR(y) = πE(R2; 2R > y) + 4

∞∑

n=0

(2n)!

22n(n!)2

1

(4n2 − 1)

(y
2

)2n+1

E(R1−2n; 2R > y). (5.34)

Hence we need to calculate

E(Rk; 2R > y) =

∞∫

y
2

rkP(dr) =

∞∫

y
2

rkf(r) dr,

where f(r) is the probability density function of the GB2 distribution and k = 2, 1,−1,−3, . . . .
Using expression (5.28) for the density, the integral becomes

E(Rk; 2R > y) =

∞∫

y
2

rk
1

B(p, q)

a

bap
rap−1

(
1 +

(
r
b

)a)p+q dr.

After substitution
(
r
b

)a
= t we get

E(Rk; 2R > y) =
bk

B(p, q)

∞∫

( y2b )
a

tp−1+ k
a

(1 + t)p+q
dt
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and further substitution u = 1
1+t brings it to

E(Rk; 2R > y) =
bk

B(p, q)

x∫

0

uq−1− ka (1− u)p−1+ k
a du,

where

x =
1

1 +
(
y
2b

)a .

Using the incomplete beta function Bx(a, b), that is defined by

Bx(a, b) =

x∫

0

ua−1(1− u)b−1 du, 0 < x < 1, <a > 0, (5.35)

the expectation can be finally rewritten as

E(Rk; 2R > y) =
bk

B(p, q)
Bx

(
q − k

a
, p+

k

a

)
(5.36)

with the same x as before. We assume aq > 2, which means that the second moment
of the GB2(a, b, p, q) distribution exists. The expression is therefore correct for all k =
2, 1,−1,−3, . . . . It may, however, diverge as x → 1 and thus as y → 0+. The divergence
occurs when k < −pa. In order to extract the behaviour for x close to 0 and 1 we use the
following relations between the incomplete beta function and the hypergeometric function (see
e.g. [110]):

Bx(a, b) =
xa

a
F (a, 1− b; a+ 1;x), (5.37)

=
xa(1− x)b

a
F (a+ b, 1; a+ 1;x). (5.38)

Here F (a, b; c;x) is the hypergeometric function defined by the following series

F (a, b; c; z) =

∞∑

i=0

(a)n(b)n
(c)n

zi

n!
, |z| < 1,

where

(a)n =

{
1 for n = 0,

a(a+ 1)· · · (a+ n− 1) for n > 0.

Now let us inspect individual terms in E γR(y). The first term

πE(R2; 2R > y) =
πb2

B(p, q)
Bx

(
q − 2

a
, p+

2

a

)

can be further rewritten as

πE(R2; 2R > y) =
πb2

B(p, q)

(
B

(
p+

2

a
, q − 2

a

)
−B1−x

(
p+

2

a
, q − 2

a

))
,

which follows from the property

B(a, b) = Bx(b, a) +B1−x(a, b)
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of the incomplete beta function that can be easily checked. Using (5.37) we finally obtain

πE(R2; 2R > y) =

πb2B
(
p+ 2

a , q − 2
a

)

B(p, q)
− πb2

B(p, q)

(
y
2b

)ap+2

(
1 +

(
y
2b

)a)p+ 2
a

F

(
p+

2

a
, 1− q +

2

a
; p+ 1 +

2

a
;

(
y
2b

)a

1 +
(
y
2b

)a
)
.

Remaining terms in E γR(y), that depend on n, can be divided into two groups by the
condition 2n − 1 < ap. The usefulness of this division will be seen later and it is based on
the fact that the range of the hypergeometric function F (a, b; c;x) is bounded and the limit as
x→ 1 can be evaluated when <c > <(a+ b). The limit is then given by Gauss’s theorem (see
e.g. [110]) as

lim
x→0+

F (a, b; c;x) = F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) .

If n < (ap+ 1)/2, then we use relation (5.37) and obtain the n-th term of (5.34) as

4
(2n)!

22n(n!)2

1

(4n2 − 1)

b2
(
y
2b

)2n+1

(
1 +

(
y
2b

)a)q+ 2n−1
a

F

(
q + 2n−1

a , 1− p+ 2n−1
a ; q + 1 + 2n−1

a ; 1

1+( y2b )
a

)

B(p, q)
(
q + 2n−1

a

) ,

with bounded range of the hypergeometric function. If n > (ap + 1)/2 then we use relation
(5.38) and obtain the n-th term of (5.34) as

4
(2n)!

22n(n!)2

1

(4n2 − 1)

b2
(
y
2b

)ap+2

(
1 +

(
y
2b

)a)p+q
F

(
p+ q, 1; q + 1 + 2n−1

a ; 1

1+( y2b )
a

)

B(p, q)
(
q + 2n−1

a

) .

Again the values of the hypergeometric function are bounded.
In order to obtain the expansion of the covariance C1(y) we need to calculate the denomi-

nator in (5.32). It is just the second moment of the GB2 distribution, which is by (5.29) equal
to

ER2 = b2
B
(
p+ 2

a , q − 2
a

)

B(p, q)
.

Now let n0 be an integer such that (ap + 1)/2− 1 < n0 < (ap + 1)/2. Taking all together we
finally obtain

C1(y) = p− p
(
y
2b

)ap+2

(
1 +

(
y
2b

)a)p+ 2
a

F

(
p+ 2

a , 1− q + 2
a ; p+ 1 + 2

a ;
( y2b )

a

1+( y2b )
a

)

B
(
p+ 2

a , q − 2
a

)

+
4p

π

n0∑

n=0

(2n)!

22n(n!)2

1

(4n2 − 1)

(
y
2b

)2n+1

(
1 +

(
y
2b

)a)q+ 2n−1
a

F

(
q + 2n−1

a , 1− p+ 2n−1
a ; q + 1 + 2n−1

a ; 1

1+( y2b )
a

)

B
(
p+ 2

a , q − 2
a

) (
q + 2n−1

a

)

+
4p

π

(
y
2b

)ap+2

(
1 +

(
y
2b

)a)p+q
∞∑

n=n0

(2n)!

22n(n!)2

1

(4n2 − 1)

F

(
p+ q, 1; q + 1 + 2n−1

a ; 1

1+( y2b )
a

)

B
(
p+ 2

a , q − 2
a

) (
q + 2n−1

a

) . (5.39)

The convergence is quite fast with increasing n. Hence the sum may be truncated to only first
few terms and it still approximates the result well.

From the covariance C1 we may obtain the correlation function κ1 by

κ1(r) =
C1(r)− p2

p(1− p) .
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It is interesting to compare the values of κ1(r) with correlation function κ(r) estimated directly
in Section 5.3. In further we use notation κ1 ≡ κ1(r; a, b, p, q) for the correlation function κ1

based on the GB2 distribution with parameters a, b, p, q. For the cities with GB2 distribution
of R we use the estimated values of parameters that are given in Table 5.14. For cities with R
distributed according to the mixture MGB2(a1, b1, p1, q1; a2, b2, p2, q2; q) it can be easily shown
that the correlation function κ1(r) is given by

κ1(r) = Cκ1(r; a1, b1, p1, q1) + (1− C)κ1(r; a2, b2, p2, q2),

where

C =
qb21

B
(
p1+ 2

a1
,q1− 2

a1

)

B(p1,q1)

qb21
B
(
p1+ 2

a1
,q1− 2

a1

)

B(p1,q1) + (1− q)b22
B
(
p2+ 2

a2
,q2− 2

a2

)

B(p2,q2)

.

For those cities we use estimated values of parameters from Table 5.15. The comparison is
performed visually by plotting both κ1 and κ together. The results for all cities except Paris,
where the distribution of R do not have finite second moment, are shown in Figures 5.39 and
5.39. The quality of the interpolation of κ by κ1 seems to be mainly influenced by the validity
of the assumption that the buildings are balls. For many cities the assumption is more or less
broken since there are many buildings given by large, complicated polygons often with holes.
In that case the inter particle covariance decrease faster than for circular grains of equivalent
sizes. This phenomenon is clearly observable for the majority of analysed cities.

Finally, let us look on the asymptotic behaviour as y → 0+. Clearly the argument of the
hypergeometric function in the second term of C1(y) is close to 0 leading the hypergeometric
function to be close to 1. On the other hands arguments of hypergeometric functions in the
remaining terms are close to 1 leading them close to the limiting value mentioned before. The
smallest coefficient of the power law terms is y1 and it appears in the first term of the sum
corresponding to n = 0. Taking just this term we get

C1(y) = p− 4p

π

Γ
(
q + 1− 1

a

)
Γ
(
p+ 1

a

)
(
q − 1

a

)
B
(
p+ 2

a , q − 2
a

)
Γ(p+ q)

( y
2b

)
+O(y2) (y → 0+).

Using Γ(x+ 1) = xΓ(x) it can be further simplified to

C1(y) = p− 4p

π

Γ
(
q − 1

a

)
Γ
(
p+ 1

a

)

Γ
(
p+ 2

a

)
Γ
(
q − 2

a

)
( y

2b

)
+O(y2) (y → 0+).

For the correlation function κ1(r) one easily obtains

κ1(y; a, b, p, q) = 1− 4

π(1− p)
Γ
(
q − 1

a

)
Γ
(
p+ 1

a

)

Γ
(
p+ 2

a

)
Γ
(
q − 2

a

)
( y

2b

)
+O(y2) (y → 0+).
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Figure 5.39: The comparison of the correlation function estimated by κ̂•AIp and of the inter-
particle correlation function κ1.



5.7. DISTRIBUTION OF BUILDING SIZES 171

100 101 102

10−1

100

r

κ(r) Milan

100 101 102

10−1

100

r

κ(r) Minsk

100 101 102

10−1

100

r

κ(r) Moscow

100 101 102

10−1

100

r

κ(r)
St. Petersburgh

κ̂•AI
p (r) κ1(r)

100 101 102

10−1

100

r

κ(r) Oslo

Figure 5.40: The comparison of the correlation function estimated by κ̂•AIp and of the inter-
particle correlation function κ1.
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5.8 Fractality versus long-range dependence

As was discussed in the introduction, the structural properties of the built-up area are often
described in context of fractal geometry. On scales of large urban areas there appear several
scaling relations that are usually shared by fractal objects. Generally, the fractality is a local
rather than global concept. It is often connected with certain properties that are namely: the
fine structure, i.e. details on an arbitrary scale, irregularity to be described by traditional lan-
guage of geometry, some form of the self-similarity, and a fractal dimension, usually Hausdorff,
greater than the topological dimension.

In the analysis of the built-up area, however, the fractality observed on medium-large scales
is not reflected on small scales. When decreasing the scale then individual buildings appear and
finally they fully dominate the overall geometry. Since the buildings are standard geometrical
objects, i.e. a connected closed set of the positive Lebesgue measure with piecewise smooth
boundary of finite length, they clearly do not follow any of the basic characteristics of fractals.
Hence on small scales the built-up area is not fractal. This fact is usually overlooked by urban
scientists.

As we have seen in previous sections there is, however, a scaling relation that persists even
under the full detailed analysis. It is the power law decay of the correlation function that
represents a manifestation of the so called long-range dependence. For a built-up area it starts
at distances of several tens of meters and is clearly observed in the whole range of our analysis
which is usually up to 10-30 kilometres.

In principle the long-range dependence and fractality mean something completely different.
Fractal behaviour is very much a local property, whereas the power law decay of the correlation
function is a global characteristic. However, in many systems those two properties are closely
related as the result of the self-similarity (see e.g. [25, 58] for details). On the other hand it is
possible to construct models, where the fractal dimension can be varied independently on the
power law coefficient. Such a model is for example given by a Gaussian random field in Rd

with the Cauchy covariance function introduced by Gneiting and Schlather in [96]. Here the
fractal behaviour means the Hausdorff dimension of the graph of a realization. It was shown
in [51] that the Hausdorff dimension D of the graph is given by the power law behaviour of the
covariance function in the vicinity of 0. In particular if C(0)−C(r) ∼ c |r|α as r → 0 for some
α ∈ (0, 2], then D = d+ 1− α/2 with probability one. This is exactly the case of the Cauchy
covariance function given by (4.39). Clearly it is independent of the coefficient β of the power
law decay when r →∞.

It also interesting to look at the 0-level excursion set based on the previous Gaussian random
field. From the fact that sample paths are with probability one continuous, as was discussed in
Section 4.4, and the volume fraction is positive clearly follows that with probability one every
non-empty realization of the 0-level excursion set has positive Lebesgue measure. Hence its
Hausdorff dimension is d. On the other side the power law decay remains the same as for the
original Gaussian random field as follows from (4.40).

From our analysis of second order properties of the built-up area follows that it should
be viewed as a long-range dependent structure. This indicates that one should be aware of a
generally lower performance of various estimators. It may also provide an important insight
into the built-up structure, where the long-range dependence may help to explain observed
fluctuations of the built-up area and other phenomena. On the other hand, the non-stationarity
on large scales is not a result of fluctuations and it represents a complication in the estimation
procedure. In Section 5.4 proposed a method how to overcome this problem with the help
of kernel density estimators and with assuming the special form of the correlation function.
Numerical simulations indicate that this approach is appropriate.



Conclusion and final remarks

In this thesis we study the built-up structure in cities using the framework of stochastic ge-
ometry. Let us now briefly recapitulate the content and major findings of our analysis. The
introductory chapter provides a short summary of standard approaches to the urban analysis
and especially to the analysis of the built-up structure in cities.

Chapter 2 is devoted to the recapitulation of essential parts of stochastic geometry. We
particularly focus on random closed sets and random measures as their extension. For both
of of them the first and second order characteristics, ergodicity, and Bartlett spectrum are
introduced. As an important model of random closed sets the level excursion set of a random
(Gaussian) field is correctly defined by showing its measurability. Furthermore, we derived
several formulas for the basic first and second order characteristics that are extensively used
in subsequent parts. With regards to random measures we focus on the correct definition of
the (reduced) second order (factorial) covariance measure and the Bartlett spectrum as its
Fourier transform. For the convenience of the reader the relevant parts of the theory of Fourier
analysis of positive-semi definite measures are recapitulated in Section A.2, where some less
known results are proven. In the following sections marked processes and particle processes
together with their relations are recapitulated and a second important random closed set model
given by the union set of a particle process, and in particular by the Boolean model as its special
case, is defined. The last section deals with the long-range dependence. Here we developed
an extension of the usually treated long-range dependence of random measures in R to Rd

that was indicated in [43]. Thus, the general definition for both random measures and random
closed sets is given and the important connection to the Bartlett spectrum is derived. As a
special case we also defined the isotropic long-range dependence, which is characterized by
the asymptotic power law decay of the correlation function cov(r) as r → ∞. The equivalent
formulation given through the power law behaviour of the Bartlett spectrum in the vicinity of
0 was also shown.

Chapter 3 deals with the construction of a specific centre function based on the centroid of
a set. The aim of the construction is to generalize the classical notion of the centroid from sets
with positive Lebesgue measure to certain sets with zero Lebesgue measure. The generalization
is developed in two ways. The first is given by the limit of centroids of ε-neighbourhoods of the
given set as ε→ 0+. By explicit counterexample it was shown that this generalization does not
exist for an arbitrary set. Further, we proved several sufficient conditions of its existence. The
most important one, given by Corrolary 3.3.1, is based on the Minkowski measurability. In
particular it is possible to prove the existence of the generalized centroid for compact subsets
of m-dimensional C1 (or Lipschitzian) submanifolds of Rd and their finite unions, which was
done in Section 3.4. The measurability on many important subclasses of sets was also proven.
The second generalization of the centroid is based on the Hausdorff measure. Its existence
and measurability on certain subclasses of sets was also proven and its relation to the previous
generalized centroid was discussed. It should be noted that the first generalization is much
more natural in connection to the numerical estimation than the second.

In Chapter 4 some statistical issues concerning the estimation of basic characteristics of
random closed sets are treated. After a brief recapitulation of statistics for point processes
in the first section we focused on stationary random closed sets. The detailed discussion of
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the volume fraction and second order characteristics estimators was provided. In particular
the intrinsically balanced estimator of the correlation function was introduced. In Subsection
4.2.3 the use of the fast Fourier transform that may significantly decrease the computational
time of discrete second order estimators was discussed. Then we proceeded with statistical
issues for non-stationary random closed sets. Here the kernel volume fraction estimator was
proposed and its basic asymptotic properties and the problem of the bandwidth choice were
discussed. For a specific example of a random closed set with the Gaussian volume fraction and
exponential correlation function, the approximate explicit formula for the optimal bandwidth
was derived. Finally, in the last section several numerical simulations were performed to analyse
basic properties of previously proposed estimators in the stationary case. Those simulations
were based on the Boolean model and on the 0-level excursion set of a Gaussian random field
with the Cauchy correlation function, which is a suitable model of a long-range dependent
random closed set.

Chapter 5 provides a detailed analysis of the built-up structure in cities. In the beginning
the built-up structure as a collection of buildings represented by polygons was introduced and
then the formulae for the area and centroid of polygons were derived. Section 5.3 is devoted
to the analysis of the built-up area taken as the realization of a stationary random closed set.
The stress is put on second order properties that were analysed by two methods. The first was
the direct estimation of the correlation function κ(r). We observed that under the additional
assumption of isotropy, the estimation of the correlation function may be well fitted by the
Cauchy correlation function, which asymptotically follows a power law decay. This observation
leads to the preliminary assumption of the long-range dependence of the built-up area. The
second method was the analysis of the variance in balls. The theoretical behaviour of the
variance in balls as a function of the ball radius was discussed in various cases depending on
the value of the integral range and on the behaviour of the Bartlett spectrum in the vicinity
of 0. We particularly derived that if the correlation function asymptotically follows a power
law with coefficient β, then the dependence of the variance in balls on the ball radius follows
a power law with coefficient 4 − β. Estimating the variance in balls for the built-up area in
different cities the clear power law behaviour was observed with coefficients β smaller than 2,
that is, with coefficients typical for long-range dependence.

Next, in Section 5.4, the built-up area was analysed as a realization of a non-stationary
random closed set. We introduced a one step iterative estimation method that enables us
to approximately determine the optimal bandwidth needed for the kernel volume fraction
estimator and consequently for other second order estimators based on the volume fraction.
The method uses a priory chosen bandwidth h0 to calculate the preliminary estimates of the
volume fraction and correlation function. The volume fraction is estimated by the kernel volume
fraction estimator m̂A;h0

. The correlation function κ(x,y) is further assumed to depend only
on the norm ‖x− y‖, where the validity of this assumption is also discussed later in the same
section. Under this approximate assumption the observed results of the discrete correlation
function estimator κ̂p;h0 may be well fitted by the Cauchy correlation function, which is then
taken as the preliminary estimator of the true correlation function. Those preliminary estimates
enables us to approximate the mean integrated square error function as a function of the
bandwidth h and consequently to numerically find its minimizing value h1. Based on h1,
which is taken as the optimal bandwidth, we finally performed the analogous estimation of
the volume fraction and of the correlation function. The results of the discrete correlation
function estimator κ̂p;h1 based on the optimal bandwidth h1 were again well fitted by the
Cauchy correlation function. This may be interpreted as another evidence for the long-range
dependence of the built-up structure. Finally in this section, numerical simulations based
on non-stationary level excursion sets were performed to confirm the previously introduced
iterative method. The results clearly reflected the benefit of performing such a procedure.

Section 5.5 contains a brief summary of both stationary and non-stationary random closed
set approaches to the analysis of the built-up area. We argued that based on the results the
built-up structure should be viewed as a long-range dependent structure.
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In Section 5.6 the radial density dependence was analysed. The power law decay men-
tioned in previous works (e.g. [9, 10, 1, 18]) was visible on large distances from the city centre.
The next section is devoted to the study of the distribution of individual building sizes. The
privileged position is given by the generalized beta distribution of the second kind (GB2).
We observed two different situations. For the first part of cities the building sizes are ap-
proximately distributed according to the GB2 distribution, whereas for the rest of the cities
the best approximation is given by the mixture of two GB2 distributions. Using this result
and under the additional assumption that individual buildings are balls we further derived an
approximate analytic expression for the covariance C(r) and consequently for the correlation
function κ(r) for small values of r. This expression was then compared with observed values
of the correlation function.

In the last section we discussed the relation of the observed long-range dependence on
the fractal behaviour that is probably the most often mentioned morphological characteristic
in previous studies (see the introduction for references). Based on our observations we can
conclude that the built-up structure in cities is a long range dependent meaning that the
correlation function of its random closed set representation has a power law decay. From the
physical point of view this corresponds to the very important similarity with critical systems,
i.e. systems at the critical point of the second order phase transition ([27, 28]). This fact
supports the hypothesis of the self-organized criticality of urban systems mentioned by some
earlier works (see e.g. [9, 1, 10, 26, 18, 16]).

A possible further extension of the analysis of the built-up structure may be given by using
the theory of Gibbs point processes. Here, it may be interesting to determine the energy and
thus the potential of the interaction between individual buildings.





Appendix A

Selected parts from Topology and
Measure theory

For the convenience of the reader we repeat in this chapter the relevant material from various
sources with references, thus making our exposition self-contained. The proofs are given only
when we present a new extension of known results or when they are important for later use.

In the following we shall use the set of extended real numbers

[−∞,+∞] = R ∪ {−∞,+∞}

with obvious ordering and with algebraic operations defined in an usual way. The undefined
expressions are ±∞+∓∞ and ±∞ · 0.

A.1 General measure theory

Here we mention only the vital part of measure theory. For more details we refer the reader
to [46, 111]. Measures are constructed on σ-algebras.

Definition A.1.1. A collection A of subsets of some space Ω is a σ-algebra if

(a) Ω ∈ A,

(b) A ∈ A implies Ac ∈ A (complement),

(c) if A1, A2, . . . ∈ A, then A1 ∪A2 ∪ . . . ∈ A.

We also recall the definition of a measure.

Definition A.1.2. Let Ω be a space and A a σ-algebra of subsets of Ω. A measure µ on Ω
or on (Ω,A) is a map µ : A → [0,∞] that satisfies the two conditions:

(a) µ(∅) = 0,

(b) if A1, A2, . . . ∈ A is a disjoint sequence, then

µ

( ∞⋃

k=1

Ak

)
=

∞∑

k=1

µ(Ak).

A measure µ is finite if µ(Ω) < ∞ and it is a probability measure if µ(Ω) = 1. If
Ω = A1 ∪A2 ∪ . . . for some finite or countable sequence of sets from A satisfying µ(Ak) <∞,
then µ is called σ-finite.
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Let E be a topological space. The smallest σ-algebra containing all open sets of E is called
a Borel σ-algebra and we denoted it by B(E). The sets from B(E) are called Borel sets.
A measure µ defined on the σ-algebra that contains all Borel sets is called a Borel measure.
A Borel measure µ is locally finite if for every x ∈ E there is an open neighbourhood U of x
such that µ(U) <∞. Thus, a locally finite Borel measure is finite on compact sets.

It is useful to recall the basic continuity properties of measures. If {An} is a sequence of
sets increasing in the sense of inclusion (i.e. An ⊂ An+1 for all n) and A =

⋃
nAn, we use the

notation Ai ↗ A. Similarly, if {An} is a sequence of sets decreasing in the sense of inclusion
(i.e. An ⊃ An+1 for all n) and A =

⋂
nAn, we use the notation Ai ↘ A.

Theorem A.1.1. Let µ be a measure on a measurable space (Ω,A).

(a) (monotonicity) If A,B ∈ A and A ⊂ B, then µ(A) ≤ µ(B).

(b) (continuity form below) If A,A1, A2, . . . ∈ A and Ai ↗ A, then µ(Ai)↗ µ(A).

(c) (continuity form above) If A,A1, A2, . . . ∈ A and Ai ↘ A and if µ(A1) < +∞, then
µ(Ai)↘ µ(A).

(d) If µ is σ-finite on A, then A cannot contain an uncountable, disjoint collection of sets of
positive µ-measure.

Proof. Theorem 10.2 in [46].

An important example of a finite Borel measure is a Dirac measure at x denoted by δx,
which is defined for every Borel set B by

δx(B) =

{
1 if x ∈ B,
0 otherwise.

(A.1)

More generally, we say that a Borel measure µ on a separable metric space E has an atom
at x ∈ E if µ({x}) > 0. If µ is σ-finite, then it can have at most countably many atoms
{xj |j ∈ N}. Writing bi = µ({xi}), the measure µ can be uniquelly decomposed into

µ = µa + µd,

where µa =
∑∞
i=1 biδxi is the atomic component of µ and νd is the diffuse component of µ.

Now let us introduce the concept of an outer measure, which is necessary for the geometric
measure theory, discussed in the following section.

Definition A.1.3. A set function η : {A|A ⊂ Ω} → [0,∞] is called an outer measure on Ω
if

(a) η(∅) = 0,

(b) η(A) ≤ η(B) whenever A ⊂ B ⊂ Ω,

(c) µ (
⋃∞
k=1Ak) ≤∑∞k=1 µ(Ak) whenever A1, A2, . . . ⊂ Ω.

Note that every measure µ defined on (Ω,A) may be extended to an outer measure µ∗ on
Ω by

µ∗(A) = inf{µ(B)|A ⊂ B ∈ A}.
On the other side, an outer measure gives an ordinary measure when restricted to a collection of
the so called measurable sets. Let µ be the outer measure on Ω. A set A ⊂ Ω is µ measurable
if

µ(B) = µ(B ∩A) + µ(B \A) for all B ⊂ Ω.
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Theorem A.1.2. Let µ be an outer measure and let M be the collection of all µ measurable
subsets of Ω. Then M is a σ-algebra. Moreover if µ(A) = 0, then A ∈M.

Proof. Theorem 11.1 in [46].

Let E be a topological space. An outer measure µ on E is called Borel if all Borel sets of
E are measurable. Furthermore, µ is Borel regular if µ is Borel and for every A ⊂ E there
is a Borel set B ⊂ E such that A ⊂ B and µ(A) = µ(B). By a Radon measure we mean a
Borel regular measure µ on a locally compact second countable topological space E such that
µ(C) < ∞ for compact sets C ⊂ E, µ(U) = sup{µ(C)|C ⊂ U is compact} for every open set
V ⊂ E, and µ(A) = sup{µ(U)|U ⊂ A is open} for every A ⊂ E.

The map f : Ω → G from some space with σ-algebra A to a topological space G is
measurable if f−1(A) ∈ A for every open set A in G. The map f : E → G from some
topological space E to a topological space G is called Borel measurable if f−1(A) is a Borel
set in E for every open set A in G. When checking the Borel measurability of some mapping
the following theorem is often useful.

Theorem A.1.3. Let f : E → G be a map from a topological space E to a topological space
G. Let further Γ be the system of sets from G that generates the Borel σ-algebra B(G) on G,
i.e. B(G) is the minimal σ-algebra containing Γ. Then f is Borel measurable if and only if
f−1(A) ∈ B(E) for every A ∈ Γ.

Proof. See 2.3.2 in [65].

Note that one can particularly take Γ = B(G) and conclude that f is Borel measurable if and
only if f−1(A) ∈ B(E) for all Borel sets A in G.

We often use the concept of the weak convergence in metric spaces. Let S be a metric space
and B(S) be a Borel σ-algebra generated by the open sets of S. From now on, all measures
are taken on (S,B(S)).

The sequence of finite measures {µn}n∈N converges weakly to a measure µ , µn
w−→ µ, if

∫

S

f dµn →
∫

S

f dµ for every f in Cb(S), (A.2)

where Cb(S) denote all bounded, continuous real functions on S.

The following theorem provides useful conditions equivalent to the weak convergence. Usu-
ally it is mentioned only for the weak convergence of probability measures but we need it in
the more general form.

Theorem A.1.4 (Portmanteau theorem). Let µ, µ1, µ2, . . . be finite measures on (S,B(S)).
Then the following conditions are equivalent:

(a) µn
w−→ µ,

(b)
∫
f dµn →

∫
f dµ for all bounded, uniformly continuous real f ,

(c) lim supn→∞ µn(F ) ≤ µ(F ) for every closed F and µn(S)→ µ(S),

(d) lim infn→∞ µn(G) ≥ µ(G) for all open G and µn(S)→ µ(S),

(e) limn µn(A) = µ(A) for every Borel A such that µ(∂A) = 0.
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Proof. The proof in the case of probability measures is given in [111] as a proof of Theorem 2.1.
Here we give arguments only when there is a difference from that proof. In (b)⇒(c): Taking
f ≡ 1 in (b) gives µn(S)→ µ(S). In (c)⇔(d): From complementation G = S \ F we have

lim inf
n→∞

µn(G) = lim inf
n→∞

(
µn(S)− µn(F )

)
≥ lim inf

n→∞
µn(S) + lim inf

n→∞

(
− µn(F )

)

≥ lim inf
n→∞

µn(S)− lim sup
n→∞

µn(F ) = µ(S)− µ(F ) = µ(G).

The opposite implication is analogous. Proofs of (a)⇒(b), (c)&(d)⇒(e), (e)⇒(a) and the rest
of (b)⇒(c) can be done exactly in the same way as for probability measures.

The following theorem ensures the existence of a continuous bounded function that equals
1 on a given set and vanishes outside of the ε-neighbourhood of it. If d(x, y) is a distance of
points in S then the distance from x to F is given by d(x, F ) = inf{d(x, y)|y ∈ F}.
Theorem A.1.5. Let F be a closed set in S with metric ρ(x, y) and ε > 0. Then there is
a uniformly continuous function f ∈ Cb(S) such that f(x) = 1 for x ∈ F , f(x) = 0 for
d(x, F ) ≥ ε, and 0 ≤ f(x) ≤ 1 for all x ∈ S.

Proof. From the triangle inequality for distance d follows that d(x,A) ≤ d(x, y) + d(y,A) and
d(x,A) is therefore uniformly continuous. If we define

f(x) =

{
1− d(x,F )

ε , if d(x, F ) ≤ ε,
0, if ε < d(x, F ),

then f has the required properties.

In the special case S = Rd there is another equivalent criterion of the weak continuity for
probability measures. Before presenting the statement let us recall one important object. The
distribution function F of a probability measure P is given by

F (x) = P
(
(−∞,x]

)
= P

(
(−∞, x1]× . . .× (−∞, xd]

)

for all x = (x1, . . . , xd) ∈ Rd. The properties of distribution functions can be formulated as
follows.

Lemma A.1.1. A distribution function F (x) have the following properties

(a) F is continuous from above (i.e. limx→y+
F (x) = F (y) for all y),

(b) 0 ≤ F (x) ≤ 1 for all x ∈ Rd, F is non-decreasing in each coordinate, and for each
d-dimensional rectangle (a, b] holds

∑

(θ1,...,θd)∈{0,1}d
(−1)

∑
θiF
(
a1 + θ1(b1 − a1), . . . , ad + θd(bd − ad)

)
≥ 0.

(c) F (x) → 0 as any one coordinate of x goes to −∞, and F (x) → 1 as all coordinates of x
goes to +∞.

Moreover, if F is a real function satisfying those properties, there exists a unique probability
measure P on Rd such that F is a distribution function of P.

Proof. Theorem 12.5 in [46].

Theorem A.1.6. A sequence of probability measures {Pi}i∈N on Rd converges weakly to a
probability measure P on Rd if and only if

lim
n→+∞

Fn(x) = F (x) for all continuity points x ∈ Rd of F, (A.3)

where Fi, F for all i ∈ N are distribution functions of probability measures Pi,P, respectively.

Proof. Theorem 29.1 in [46].
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A.2 Fourier analysis of positive semi-definite measures

In order to be able to correctly define the covariance measure and the Bartlett spectrum of
a random measure, the generalized theory of signed measures have to be used. It is based
on the view of a measure as a continuous liner functional on the space Cc(E) of continuous
complex-valued functions on a locally compact, Hausdorff space E having compact support,
see e.g. [112]. The continuity of a linear functional µ means the following condition: for every
compact subset K of E, there is a positive number MK such that, for every function f ∈ Cc(E)
whose support is contained in K,

|µ(f)| ≤Mk sup
x∈E
|f(x)| . (A.4)

A complex measure µ on E is a continuous linear functional on Cc(E). A signed
measure µ on E is a complex measure taking only real values on real functions, i.e. µ(f) ∈ R
for all f ∈ Cc(E) such that f(x) ∈ R for every x ∈ E. A positive measure µ on E is a
signed measure taking only non-negative values on non-negative functions, i.e. µ(f) ≥ 0 for
all f ∈ Cc(E) such that f ≥ 0. We say that a complex measure µ is bounded if there exists
a finite number M ≥ 0 such that, for every function f ∈ Cc(E),

|µ(f)| ≤M sup
x∈E
|f(x)| .

Bounded measures are continuous in the topology of uniform convergence in E. For details see
[112, Chapter III §1.8]. Note that the previously defined terminology is not mixed with the
terminology of ordinary measure theory from previous section.

Given a locally finite Borel measure µ̃ (in the sense of the previous section) on E, it follows
from the linearity of the Lebesgue integral that a functional µ defined for every f ∈ Cc(E) by

µ(f) =

∫

E

f dµ̃

is a positive linear functional and thus a positive measure. The converse statement that a
positive measure corresponds, in the sense of previous formula, to a unique locally finite Borel
(Radon) measure is a result called the Riesz representation theorem, see e.g. [113, Theorem
2.14]. Hence every positive measure is an ordinary locally finite Borel measure in the sense of
the previous section. The same holds for complex measures ([113, Theorem 6.19]). From this
reason, given a signed (positive) measure µ we use the notation

∫
f dµ,

∫
f(x)µ(dx) for µ(f).

It is clear that a positive measure µ is bounded if and only if µ̃ is bounded, i.e. µ̃(E) <∞.
For a complex measure µ its total variation |µ| is defined by

|µ| (f) = sup
|g|≤f, g∈Cc(E)

|µ(g)|

for all f ∈ Cc(E). It can be shown (e.g. [112, Chapter III §1.6]) that |µ| is a positive measure.
The complex measure µ is bounded if and only if |µ| is bounded. From the definition follows

|µ(f)| ≤ |µ| (|f |)

for every f ∈ Cc(E). The upper variation µ+ and lower variation µ− of a signed measure
µ are positive measures given by

µ+ =
1

2
(|µ|+ µ) and µ− =

1

2
(|µ| − µ),

respectively. It is clear that

µ = µ+ − µ− and |µ| = µ+ + µ−.
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If µ is a positive measure, then µ = |µ| = µ+.
In order order to extend the integration outside of Cc(E) for a signed measure µ we use

the notation f ∈ L1(E,dµ) if f ∈ L1(E,d |µ|) (in the usual sense for the Borel measure |µ|)
meaning ∫

|f | d |µ| <∞.

Thus by definition L1(E,dµ) = L1(E,d |µ|). For every f ∈ L1(dµ) we set

∫
f dµ =

∫
f dµ+ −

∫
f dµ−.

Both integrals are finite so their difference is well defined.
The theory of the Fourier transform of complex measures in the previous sense is developed

on locally compact abelian groups. The basic references are [114] and [115]. In the following
we restrict ourselves only on Rd.

Note that on Rd every measurable function g that is locally integrable with respect to the
Lebesgue measure νd defines a complex measure gνd by

gνd(f) =

∫

Rd

g(x)f(x) dx (A.5)

for every f ∈ Cc(Rd). The involution f∗ of a complex function f on Rd is

f∗(x) = f(−x) for all x ∈ Rd. (A.6)

The convolution of functions f, g ∈ L1(Rd, νd) is

(f ∗ g)(x) =

∫

Rd

f(y)g(x− y) dy for all x ∈ Rd.

If one of functions f, g is continuous and one, possibly the same, has compact support, then
f ∗ g is continuous and if f, g ∈ Cc(R

d), then f ∗ g ∈ Cc(R
d), see [116, Chapter VIII §4.5

Proposition 11].

Proposition A.2.1. Let f ∈ L1(Rd, νd) and g ∈ L∞(Rd, νd). Then f ∗ g exists at every point
x and is uniformly continuous.

Proof. Proposition 14 in Chapter VIII §4.5 in [116].

Now the positive semi-definiteness may be defined. Let us begin with a notion for functions.
We say that a complex valued function f defined on Rd is positive semi-definite if

∑

i

∑

j

λiλjf(xi − xj) ≥ 0

for all n ∈ N, x1, . . . ,xn ∈ Rd and λ1, . . . , λn ∈ C.

Proposition A.2.2. A continuous function g : Rd → C is positive semi-definite if and only if

∫

Rd

g(x)(f ∗ f∗)(x) dx ≥ 0

for all f ∈ Cc(Rd).

Proof. Proposition 4.1 in [115].
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Definition A.2.1. A complex measure µ is positive semi-definite if for every f ∈ Cc(Rd)

µ(f ∗ f∗) =

∫

Rd

(f ∗ f∗)(x) µ(dx) ≥ 0.

It is clear that a complex measure gνd which corresponds to a continuous function g ac-
cording to (A.5) is positive semi-definite if and only if g is positive semi-definite.

Proposition A.2.3. A complex measure µ is positive semi-definite if and only if for every
bounded measurable function f with bounded support

µ(f ∗ f∗) =

∫

Rd

(f ∗ f∗)(x) µ(dx) ≥ 0.

Proof. One implication is obvious. We prove that if µ is positive semi-definite, then the integral
is positive for every bounded measurable function with bounded support. Since Cc(R

d) is dense
in L1(Rd, νd), there exist a sequence {fn} with fn ∈ Cc(Rd), such that fn → f in L1(Rd, νd) as
n → ∞. Moreover, as follows from Luzin’s theorem [113, Theorem 2.23], {fn} can be chosen
such that there is a positive number K > 0, a compact set C ⊂ Rd, and for all n holds:
fn(x) = 0 for all x ∈ Rd \ C and |fn(x)| ≤ K for all x ∈ C. Without loss of generality we
assume that the same holds for f , i.e. f(x) = 0 for all x ∈ Rd \ C and |f(x)| ≤ K for all
x ∈ C.

Therefore

|(fn ∗ f∗n)(x)− (f ∗ f∗)(x)| ≤ |(fn ∗ f∗n)(x)− (fn ∗ f∗)(x)|+ |(fn ∗ f∗)(x)− (f ∗ f∗)(x)|

≤ ‖f∗n‖∞
∫
|f∗n(x− y)− f∗(x− y)| dy

+ ‖f∗‖∞
∫
|f∗n(x− y)− f∗(x− y)| dy

≤2K ‖fn − f‖1 ,

where ‖·‖1 is the norm in L1(Rd, νd) and ‖f‖∞ = supx∈Rd |f(x)|. We have used the obvious
property of isometry of the involution f 7→ f∗ on L1. The sequence {fn ∗ f∗n} thus converges
to f ∗ f∗ uniformly. Proposition A.2.1 implies that fn ∗ f∗n for all n and f ∗ f∗ are uniformly
continuous. Moreover they all have bounded support that is included in the support of 1C ∗1∗C .
The continuity (A.4) of µ yields

∫

Rd

(fn ∗ f∗n)(x) µ(dx)→
∫

Rd

(f ∗ f∗)(x) µ(dx) as n→∞.

Hence the assertion follows.

Before the definition of the Fourier transform of a measure we present some know results
from the Fourier analysis on Rd. The Fourier transform f̂ ≡ Ff and the inverse Fourier
transform f̌ ≡ F−1f of a function f ∈ L1(Rd, νd) are given by

f̂(ξ) = (2π)−d/2
∫

Rd

e−iξ·xf(x) dx, (A.7)

f̌(x) = (2π)−d/2
∫

Rd

eiξ·xf(ξ) dξ. (A.8)

Note that f̂(−ξ) = f̌(ξ), F−1f∗ = f̌ , and F−1(f ∗ f∗) = (2π)d/2
∣∣f̌
∣∣2, which is a well known

property (see e.g. [92, Theorem IX.3]).
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The Fourier transform can be naturally extended to any bounded complex measure µ by
setting

f̂µ(ξ) = (2π)−d/2
∫

Rd

e−iξ·xµ(dx) (A.9)

for all ξ ∈ Rd. It can be shown that f̂µ is a uniformly continuous, bounded function. Thus

f̂µνd is a complex measure.

Theorem A.2.1 (The inversion formula). Let µ be a bounded, complex measure on Rd. If the

Fourier transform f̂µ ∈ L1(Rd, νd), then the measure µ is absolutely continuous with respect to
νd, and its density fµ is given by

fµ(x) = (2π)−d/2
∫

Rd

eiξ·xf̂µ(ξ) dξ.

Proof. Theorem 2.6 in [115].

If we restrict ourselves to positive bounded measures, the Fourier transform is positive
semi-definite function. Moreover, the following equivalence holds.

Theorem A.2.2 (Bochner). A continuous function f is positive semi-definite if and only if
there exists a positive bounded measure σ on Rd such that

f(x) = (2π)−d/2
∫

Rd

eiξ·x σ(dξ).

Proof. Theorem IX.9 in [92].

Now we may define the Fourier transform of a generally unbounded, positive semi-definite,
complex measure µ. The base of the definition is stated by the following theorem.

Theorem A.2.3. Let µ be a positive semi-definite measure on Rd. Then there exists a unique
positive measure µ̂ on Rd such that

µ(f ∗ f∗) = (2π)d/2µ̂
(
|f̌ |2

)

for all f ∈ Cc(Rd).

Proof. Theorems 4.5 and 4.7 in [115].

Definition A.2.2. The Fourier transform Fµ of a positive semi-definite measure µ on Rd

is the positive measure µ̂ on Rd associated with µ by the previous theorem.

It can be shown that if µ is absolutely continuous with respect to the continuous pos-
itive semi-definite function fµ, then the Fourier transform µ̂ is the same as the measure σ
corresponding to fµ from the Bochner theorem, see [115, Proposition 4.3]. Thus

fµ(x) = (2π)−d/2
∫

Rd

eiξ·x µ̂(dξ).

The connection between the Fourier transform and the extension of the Fourier transform
on bounded measures defined by (A.9) is given by the following proposition.

Proposition A.2.4. The bounded complex measure µ is positive semi-definite if and only if
f̂µ(ξ) ≥ 0 for all ξ ∈ Rd, where f̂µ is defined by (A.9). If µ is a bounded positive semi-definite

complex measure, the Fourier transform µ̂ of µ is equal to f̂µνd.
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Proof. Proposition 4.14 in [115].

The Fourier transform of a bounded positive semi-definite complex measure is therefore
absolutely continuous with respect to νd, and its density is given by (A.9). By the Inversion

formula A.2.1 follows that if f̂µ ∈ L1(Rd, νd), then µ is also absolutely continuous with density

fµ = F−1f̂µ.

Proposition A.2.5. Let µ̂ be the Fourier transform of a positive semi-definite measure µ on
Rd and f be a bounded measurable function with bounded support. Then f̌ ∈ L2(Rd, µ̂) and

µ(f ∗ f∗) = (2π)d/2µ̂
(
|f̌ |2

)
.

Proof. Analogously as in the proof of Proposition A.2.3 there exist a sequence {fn} with
fn ∈ Cc(Rd) such that fn → f in L1(Rd, νd) as n→∞, fn ∗ f∗n converges to f ∗ f∗ uniformly
on Rd, and

µ(fn ∗ f∗n)→ µ(f ∗ f∗) as n→∞. (A.10)

For every n we have supx∈Rd |f̌n(x)| ≤ (2π)−d/2 ‖fn‖1, where ‖·‖1 is the norm in L1(Rd, νd).
Hence f̌n → f̌ uniformly on Rd as n → ∞, which yields |f̌n|2 → |f̌ |2 uniformly as n → ∞.
From Theorem A.2.3 follows that for every n is f̌n ∈ L2(Rd, µ̌) and

µ(fn ∗ f∗n) = (2π)d/2µ̂
(
|f̌n|2

)
.

From (A.10) follows that {|f̌n|2} is a Cauchy sequence in L1(Rd, µ̂). Finally, the statement is
a consequence of the completeness of L1(Rd, µ̂), see e.g. [113, Theorem 3.11].

This particularly gives that the Fourier transform of an indicator of a bounded Borel set
A is µ̂ squared integrable, the result presented in [117]. It is easy to see that both the Dirac
measure δ0 at 0 and the Lebesgue measure νd are positive semi-definite.

Proposition A.2.6. The Fourier transform of δ0 is νd and vice versa.

Proof. This easily follows from Theorem A.2.3 and Parseval’s identity implied by the Plancherel
theorem (see e.g. [92, Theorem IX.6]).

The complex measure µ is said to be translation bounded if for every compact set C ⊂ Rd

sup
x∈Rd

|µ| (C + x) <∞.

Proposition A.2.7. The Fourier transform µ̂ of a positive semi-definite measure µ on Rd is
translation bounded.

Proof. Proposition 4.9 in [115].

Finally, we introduce the concept of the approximation of the identity. Let φ be an inte-
grable function on Rd such that

∫
Rd
φ(x) dx = 1 and for a > 0 let take φa(x) = a−dφ(a−1x).

The set {φa|a > 0} is called an approximation of the identity. The well known result of
approximations of the identity is their convergence to delta function.

Theorem A.2.4. Let µ be a complex measure and {φa|a > 0} be an approximation of the
identity. If f is bounded, uniformly continuous, then

lim
a→0+

(φa ∗ f)(x) = f(x)

uniformly and if f ∈ Cc(Rd), then also in Lp(Rd, µ).
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Proof. We follow the proof of Theorem 2.1 in [118]. Since φ has integral 1,

(φa ∗ f)(x)− f(x) =

∫

Rd

φ(y)
(
f(x− ay)− f(x)

)
dy.

By the uniform continuity of f , given ε > 0 one can choose δ > 0 such that if ‖h‖ < δ,

|f(x+ h)− f(x)| ≤ ε

2 ‖φ‖1

for all x ∈ Rd, where ‖φ‖1 is the L1(Rd, νd) norm of φ. Let K = supx∈Rd f(x) <∞. For now
fixed δ, by integrability of φ, we can take sufficiently small t > 0 such that

∫

‖y‖≥δ/t

|φ(y)| dy ≤ ε

4K
.

Finally by the triangular inequality for the absolute value,

|(φa ∗ f)(x)− f(x)| ≤
∫

‖y‖<δ/t

|φ(y)| |f(x+ h)− f(x)| dy + 2K

∫

‖y‖≥δ/t

|φ(y)| dy < ε.

The proof for the Lp(Rd, µ) norm ‖·‖p;µ is analogous. We just use the first bound

‖f(x+ h)− f(x)‖p;µ ≤
ε

2 ‖φ‖1
,

the second bound with K = ‖f‖p;µ, and the Minkowski inequality in the last relation.

Corollary A.2.1. Let µ be a complex measure, {φa|a > 0} be an approximation of the identity,
and f ∈ Cc(Rd). Then there is a0 > 0 such that (φa ∗ f) ∈ L1(Rd, µ) for all 0 < a < a0.

Now we may state the important proposition for translation bounded measures.

Proposition A.2.8. Let µ̂ be the Fourier transform of a translation bounded positive semi-
definite measure µ on Rd. If f is a bounded measurable function with bounded support in Rd,
then f̌ ∈ L1(Rd, µ̂) and

µ(f) = µ̂(f̌).

Proof. First note that

1̂[−1,1]d(y) = (2π)−d/2
∫

[−1,1]d

e−ix·y dx = (2π)−d/22d
d∏

j=1

sin(yj)

yj
.

Let take the approximation of the identity (sometimes called the Fejér kernel) given by

φ(y) =

∣∣1̂[−1,1]d
∣∣2 (y)

2d
=

d∏

j=1

sin2(yj)

πy2
j

.

Clearly φ∗(y) = φ(y) for all y ∈ Rd. Theorem A.2.4 yields
∫
f ∗ φ∗aµ →

∫
fµ as a → 0+ for

every f ∈ Cc(Rd). The inverse Fourier transform φ̌a of φa is, with b = 1/a,

φ̌a(ξ) =
(2π)−d/2

2dbd
1[−b,b]d ∗ 1∗[−b,b]d(ξ) =

νd
(
[−b, b]d ∩ ([−b, b]d − ξ)

)

(2π)d/2νd([−b, b]d)
,



A.3. GEOMETRIC MEASURE THEORY 187

because 1̂[−1,1]d(by) = b−d1̂[−b,b]d(y). Clearly φ̌a(ξ) ∈ Cc(R
d) and φ̌a(ξ) → (2π)−d/2 as

a→ 0+ for every ξ ∈ Rd.
Using polarization identities on the relation µ(f ∗ f∗) = (2π)d/2µ̂

(
|f̌ |2

)
for f ∈ Cc(R

d)
leads to

µ(f ∗ g∗) = (2π)d/2µ̂
(
f̌ ǧ
)

for f, g ∈ Cc(R
d). Let fix a > 0 small enough such that Corollary A.2.1 yields (f ∗ φ∗a) ∈

L1(Rd, µ). Since φa ∈ L1(Rd) and Cc(R
d) is dense in L1(Rd), [113, Theorem 3.14], there

exists a sequence {gn}, gn ∈ Cc(Rd) for all n, such that g∗n → φ∗a in L1(Rd) as n→∞ and as

a consequence ǧn → φ̌a pointwise (uniformly) as n→∞. For the left side we have

|(f ∗ g∗n)(x)− (f ∗ φ∗a)(x)| ≤
∫

Rd

|f(x− y)| |g∗n(y)− φ∗a(y)| dy.

From the translation boundedness of µ follows that there exists K such that ‖f(· − y)‖µ;1 ≤
K ‖f‖µ;1, where ‖f‖µ;1 is the L1(Rd, µ) norm of f . From this follows

‖(f ∗ g∗n)(x)− (f ∗ φ∗a)(x)‖µ;1 =

∫

Rd

|(f ∗ g∗n)(x)− (f ∗ φ∗a)(x)| |µ| (dx)

≤ K ‖f‖µ;1 ‖g∗n(y)− φ∗a(y)‖1 .

Hence µ(f∗g∗n)→ µ(f∗φ∗a) as n→∞ and therefore f̌ ǧn is a Cauchy sequence in L1(Rd, µ̂) that,

by previous considerations, converges pointwise to f̌ φ̌a. From a completeness of L1(Rd, µ̂),

[113, Theorem 3.11], follows µ̂
(
f̌ ǧn

)
→ µ̂

(
f̌ φ̌a

)
as n→∞. Thus we finally obtain

µ(f ∗ φ∗a) = (2π)d/2µ̂
(
f̌ φ̌a

)

for every f ∈ Cc(Rd). Now we use Theorem A.2.4 and obtain µ(f ∗ φ∗a)→ µ(f) as a→ 0+ on
the left side. Consequently, the right side also converges to the point-wise limit f̌ , which is in
L1(Rd, µ̂) as a consequence of the completeness of L1(Rd, µ̂). Letting a→ 0+ leads to

∫

Rd

f(x)µ(dx) =

∫

Rd

f̌(ξ)µ̂(dξ)

for every f ∈ Cc(R
d). The statement for f bounded with bounded support follows by the

similar arguments as in Proposition A.2.5.

A.3 Geometric measure theory

Here we recapitulate some important results from the Geometric measure theory in Rd. For a
thorough treatment we refer the reader to [65, 101, 119]. First let us introduce the Hausdorff
measure and Hausdorff dimension. We follow the usual Carathéodory’s construction.

The diameter of a set A ⊂ Rd is defined to be

diamA = sup{‖x− y‖ |x,y ∈ A}.

The countable (or finite) collection of sets {Ui} is a δ-cover of A if diamUi ≤ δ for all i and
A ⊂ ⋃i Ui. Suppose that α is a non-negative number and B is a subset of Rd. Then the
α-dimensional Hausdorff measure Hα(B) of B is given by

Hα(B) = lim
δ→0+

(
inf

{ ∞∑

i=1

cα2−α(diamUi)
α
∣∣∣{Ui} is a δ-cover of B

})
,
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where

cα =
π
α
2

Γ
(
1 + α

2

) for α > 0, c0 = 1.

The formula for cα is the generalization of the expression for the α-dimensional volume of a
unit ball in Rα when α is a natural number. It can be shown that Hα is an outer Radon
measure.

The following theorem gives the connection between the d-dimensional Hausdorff measure
and d-dimensional Lebesgue measure.

Theorem A.3.1. Let B be a Borel set in Rd. Then νd(B) = Hd(B).

Proof. Theorem 2.10.35 in [65].

Next important property of the Hausdorff measure is its invariance with respect to Lipschitz
functions.

Theorem A.3.2. Suppose α ≥ 0 and n,m are positive integers. If f : Rm → Rn satisfies

‖f(x)− f(y)‖ ≤ L ‖x− y‖ for all x,y ∈ Rm,

i.e. if f is a Lipschitz function with Lipschitz constant not exceeding L, then for any A ⊂ Rn

Hα(f(A)) ≤ LαHα(A).

Proof. Theorem 3.1.16 in [101].

The Hausdorff dimension of a set A ⊂ Rd is defined to be

dimH A = inf{α ≥ 0|Hα(A) = 0} = sup{α|Hα(A) =∞}.

A simple analysis (see for instance [25]) shows that Hα(A) = 0 for α > dimH A and Hα(A) =
∞ for α < dimH A. If α = dimH A, then Hα(A) may be zero or infinite, or may satisfy
0 < Hα(A) <∞. In the last case A is called an α-set.

For latter use it is important to introduce the Minkowski content of a set. The ε-neighbourhood
of a set A is given by

Aε = {x | d(x, A) < ε},
where d(x, A) is the distance from x to A defined in the previous section.

Definition A.3.1. Let assume A ⊂ Rd and 0 ≤ α ≤ d. The α-dimensional upper and
lower Minkowski contents of A, denoted by M∗α(A) and Mα

∗ (A), are defined by

M∗α(A) = lim sup
ε→0+

νd(Aε)

cd−αεd−α
and Mα

∗ (A) = lim inf
ε→0+

νd(Aε)

cd−αεd−α
,

respectively. IfM∗α(A) =Mα
∗ (A), their common value is called the α-dimensional Minkowski

content of A and denoted by Mα(A).

It is easy to see that M∗α(A) = M∗α(Ā), where Ā is the topological closure of A, and
similarly for the lower content. Therefore the Minkowski contents do not distinguish between
a set and its closure. If B is the Borel set of positive volume νd(B) > 0, then obviously
Md(B) = νd(B).

Analogously to the Hausdorff dimension one can define the upper and lower Minkowski
dimensions by

dimMA = inf{α ≥ 0|M∗α(A) = 0} and dimMA = inf{α ≥ 0|Mα
∗ (A) = 0},
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respectively. If both dimensions coincide we call their common value the Minkowski di-
mension of A and denote it by dimM (A). We say that A is Minkowski measurable if
0 < Mα

∗ (A) = M∗α(A) < ∞, where α is the Minkowski dimension of A. It turns out that
upper and lower Minkowski dimensions equal to upper and lower box dimensions that are used
quite often in fractal analysis. For a further discussion of fractal dimensions and their relations
we refer the reader to [25].

It is worth noting that the upper and lower Minkowski contents are not outer measures,
and not Borel measures when restricted to Borel sets, as they are not countably sub-additive.
Actually only the upper Minkowski content is finitely sub-additive. The finite additivity can be
shown for Minkowski content and Minkowski measurable sets that are separated by a positive
distance. A deeper discussion of problems related to Minkowski content can be found in [120].

There is no general relation between the Minkowski content and Hausdorff measure. The
best result is the following lower bound.

Proposition A.3.1. For 0 ≤ α ≤ d and any set A ⊂ Rd, we have

Hα(A) ≤ 3α
cd−αcα
cd

Mα
∗ (A).

Proof. Proposition 3.3.3 in [101].

From this follows that for every set A

dimH A ≤ dimMA ≤ dimMA.

Even though one generally cannot link the Hausdorff measure and Minkowski content, for
nice sets both are the same. First, let us recall the concept of rectifiability. We follow the
construction in [65, 101].

Definition A.3.2. Suppose B ⊂ Rd, φ is an outer measure on Rd, and m is a positive integer:

(a) B is m-rectifiable if B is the image of some bounded subset of Rm under a Lipschitz
function.

(b) B is countably m-rectifiable if B equals the countable union of m-rectifiable sets.

(c) B is countably (φ,m)-rectifiable if there is some countably m-rectifiable set containing
φ almost all of B.

(d) B is (φ,m)-rectifiable if B is countably (φ,m)-rectifiable and φ(B) <∞.

Familiar examples of rectifiable sets are rectifiable curves and C1 manifolds in Rd. We
are particularly interested in (Hm,m)-rectifiable sets since there is a nice connection to C1

submanifolds in Rd. First recall the definition of C1 submanifolds of Rd.

Definition A.3.3. Let m be a non-negative integer. By an m-dimensional C1 submanifold of
Rd we mean a subset M of Rd that satisfies: For each x ∈M there exists a neighbourhood T
of x in Rd, a C1 diffeomorphism ϕ : T → Rd, and an m-dimensional vectorsubspace Z of Rd

such that
ϕ(M ∩ T ) = Z ∩ ϕ(T ).

Clearly, a subset of Rd is a 0-dimensional submanifold if and only if all of its points are
isolated. The relation between submanifolds and rectifiability is given by the following theorem.

Theorem A.3.3. Let m be a positive integer. A subset of Rd is countably (Hm,m)-rectifiable
if and only if, except for a set of Hm measure zero, it is contained in a countable union of
m-dimensional C1 submanifolds of Rd.
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Proof. Theorem 3.2.29 in [65] or Lemma 5.4.2 in [67].

The 1-rectifiability is often much easier to obtain than the higher dimensional rectifiability
because of the following result.

Theorem A.3.4. Every compact connected set C ⊂ Rn with H1(C) <∞ is a Lipschitz image
of a subinterval of R.

Proof. Theorem 1.1.8 in [121].

Besides the global connection to C1 submanifolds one can formulate rectifiability in terms
of the local structure.

Theorem A.3.5 (Besicovitch-Marstrand-Matilla). Let M ⊂ Rd be an Hm measurable set with
Hm(M) <∞. Then, M is (Hm,m)-rectifiable if and only if

lim
ε→0+

Hm
(
M ∩Br(x))

)

(2ε)m
= 1

for Hm-almost all x ∈M .

Proof. See [122] or Theorem 17.6 in [119].

A.4 Fell topology

In the following two sections some topological and measurability aspects connected with the
theory of random closed sets from Section 2.2 are recapitulated. For a fuller treatment we refer
the reader to [39, 40, 42].

Let E be a locally compact second countable topological space. From now on the Hausdorff
separation property of topological spaces is always assumed. By F = F(E), C = C(E), and
G = G(E) we mean the system of closed, compact, and open subsets of E, respectively. Empty
set is always included: ∅ ∈ F , C,G. Corresponding systems of non-empty sets are denoted by
F ′, C′, and G′.

The most important topological properties of E are summarized in the following theorem.
We use the abbreviation Ā for the topological closure of a set A ⊂ E.

Theorem A.4.1. Let E be a locally compact topological space with a countable base. Then:

(a) For every point x ∈ E and every open neighbourhood G of x there exists an open, relatively
compact neighbourhood D of x such that D̄ ⊂ G.

(b) The topology of E has a countable base D consisting of open, relatively compact sets such
that every open set G ⊂ E is the union of sets D ∈ D satisfying D̄ ⊂ G.

(c) There is a sequence {Gi}i∈N of open, relatively compact sets in E satisfying Ḡi ⊂ Gi+1

for all i and
⋃
iGi = E.

(d) For every compact set C ⊂ E there exists a decreasing sequence {Gi}i∈N of open, relatively
compact neighbourhoods of C such that to every open set G ⊂ E with C ⊂ G there is an i
with Gi ⊂ G.

Further, there is a decreasing sequence {Hi}i∈N of open, relatively compact sets with
H̄i+1 ⊂ Hi and

⋂
iHi = C.

(e) If C ⊂ E is compact and G1, G2 ⊂ E are open sets with C ⊂ G1 ∪ G2, then there are
compact sets C1 ⊂ G1 and C2 ⊂ G2 with C = C1 ∪ C2.

Proof. Theorem 12.1.1 in [40].
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The theory of random closed sets is based on a special topology on the system F = F(E) of
closed subsets of E. It is useful to present here the most important properties of this topology.
For each A ⊂ E let us define

FA = {F ∈ F|F ∩A 6= ∅},
as the system of closed sets with non-empty intersection with A (sets that hit A) and

FA = {F ∈ F|F ∩A = ∅},

as the system of closed sets with empty intersection (sets that miss A). It is easy to see that

FA ∩ FB = FA∪B , FA ∪ FB = FA∪B , and (FA)c = FA.

It is further convenient to define the system

B = {FCG1,G2,...,Gn |C ∈ C, Gi ∈ G, n ∈ N0},

where
FCG1,G2,...,Gn = FC ∩ FG1

∩ . . . ∩ FGn , n > 0

and
FCG1,G2,...,Gn = FC , n = 0.

FCG1,G2,...,Gn
is the system of closed sets that miss compact C and hits all the open Gi. In

particular F∅G = FG and

FCG1,...,Gn ∩ FC
′

G′1,...,G
′
m

= FC∪C′G1,...,Gn,G′1,...,G
′
m
.

The family B of such closed sets contains F = F∅ and is closed under finite intersections.
Therefore it constitutes a base of the so called Fell or hit-or-miss topology on F . Recall that
a base of the topology means a collection of open sets such that every open set from topology
can be written as a union of elements from the base. Throughout this thesis we always assume
that F is equipped with this topology.

Theorem A.4.2. F is a Hausdorff separable compact space with a countable base. F ′ is a
Hausdorff separable locally compact space with a countable base.

Proof. Theorem 12.2.1 in [40] or Theorem 1-2-1 in [39] for the first part and a trivial conse-
quence in Remark (b) after Theorem 12.2.1. in [40] for a second part.

It is useful to characterize the convergence in the space F .

Theorem A.4.3. Let {Fi}i∈N be a sequence in F and let F ∈ F . Then Fi → F as i→ +∞
if and only if it satisfies the following two conditions:

(a) If x ∈ F , then for almost all i (except for a finite number) there is xi ∈ Fi so that xi → x
as i→ +∞ in E,

(b) if {Fjk}k∈N is a subsequence and the points xjk ∈ Fjk are such that x = limk→+∞ xjk
exists, then x ∈ F .

Proof. See Theorem 12.2.2 in [40] or Theorem 1-2-2 in [39].

The important corollary of this theorem is that every closed set F ∈ F can be obtained as
a limit of finite subsets in E.

Corollary A.4.1. Let T be the class of the finite subsets in E and T ′ = T \ {∅} the class of
the non-empty finite subsets in E. Then T is dense in F , T ′ is dense in F ′ = F \ {∅}, and,
if E is not compact, T ′ is dense in F .
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Proof. See Corollary 2 after Theorem 1-2-2 in [39].

In the next corollary we show one special type of convergence in F that is used later.

Corollary A.4.2. Let {Fn} be a sequence in F and Fn ↘ F (i.e. Fn is decreasing in the
sense of inclusion and F =

⋂
n Fn). Then Fn → F in F .

Proof. The set F is given by F =
⋂
n Fn and therefore it is closed, F ∈ F . To show the

convergence, it is sufficient to check both conditions of Theorem A.4.3. In (a) one can for each
x ∈ F take the constant sequence xi = x since x ∈ Fi for all i.

Let now assume that {Fjk}k∈N is a subsequence and that points xjk ∈ Fjk are chosen such
that x = limk→+∞ xjk exists. For each n there exists k0 such that jk > n for all k > k0.
Therefore xjk ∈ Fn for all k > k0. Since Fn is closed, we have x ∈ Fn. Hence x ∈ ⋂n Fn = F ,
which proves (b).

When working with mappings related to random closed sets it is necessary to prove their
measurability. For many of them the measurability follows from their continuity or semi-
continuity.

A map ϕ : T → F from a topological space T into F is called upper semi-continuous
if for any C ∈ C, the set ϕ−1

(
FC
)

is open in T , and ϕ is lower semi-continuous if for

any G ∈ G, the set ϕ−1
(
FG
)

is open in T . In the following we summarize the continuity and
semi-continuity properties of the most important mappings.

Lemma A.4.1. (a) The union mapping (F, F ′) 7→ F ∪F ′ from the product space F ×F onto
F is continuous.

(b) The intersection mapping (F, F ′) 7→ F ∩ F ′ from F × F onto F is upper semi-continuous
(and not continuous).

(c) The mapping F 7→ F c from F to itself is upper semi-continuous.

(d) If E is locally connected, the boundary mapping F 7→ ∂F from F to itself is lower semi-
continuous.

(e) If the topological group G acts continuously on E, then the map (g, F ) 7→ gF from G×F
to F is continuous.

Proof. (a) Theorem 12.2.3 in [40] or Corollary 1 after Theorem 1-2-2 in [39].
(b) - (d) Theorem 12.2.6 in [40] or Corollaries 1-3 after Proposition 1-2-4 in [39].
(e) Theorem 13.1.1 in [40].

For the next assertion let us recall the upper (lower) semi-continuity of a real function. A
function f : E → [−∞,+∞] from a topological space E into the extended real line [−∞,+∞]
is said to be lower semi-continuous (resp. upper semi-continuous), if for each finite real
number h, f−1

(
(h,+∞]

)
(resp. f−1

(
[−∞, h)

)
) is an open set in E.

It is a standard result (see e.g. [113]) that every lower (upper) semi-continuous function is
Borel measurable, i.e. f−1(V ) is a Borel set (with respect to the topology of E) for every open
V .

Proposition A.4.1. A real-valued function f : E → [−∞,+∞], defined on a topological space
E, is lower semi-continuous (resp. upper semi-continuous) if and only if lim infx→a f(x) ≥ f(a)
(resp. lim supx→a f(x) ≤ f(a)) for all a ∈ E.

Proof. Proposition 3 in [123].

A useful characterization of the upper semi-continuity of a real function on F(E) is given
by the following lemma.
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Lemma A.4.2. Let ϕ be an increasing mapping (i.e. F1 ⊂ F2 in F implies ϕ(F1) ≤ ϕ(F2))
from F into [−∞,+∞]. Then ϕ is upper semi-continuous if and only if Fn ↘ F (decreasing in
the sense of inclusion and F =

⋂
n Fn) in F implies ϕ(Fn)↘ ϕ(F ) (decreasing and ϕ(Fn)→

ϕ(F )).

Proof. See Corollary 5 after Proposition 1-2-4 in [39].

For a finite measure µ defined on the Borel σ-algebra B(F) the previous lemma can be used
to show upper semi-continuity of the function F 7→ µ(F ).

Theorem A.4.4. Any finite measure µ on E is upper semi-continuous on F .

Proof. Let {Fi}i∈N be a sequence in F that is decreasing in the sense of inclusion,

Fi ⊃ Fi+1 for all i ∈ N,

such that F =
⋂
i Fi ∈ F . From the σ-additivity of µ follows that µ is increasing, i.e. F1 ⊃ F2

implies µ(F1) ≥ µ(F2). Since µ(F1) < +∞, Theorem A.1.1 (a) implies

µ(Fi)↘ µ(F ).

Finally, Lemma A.4.2 yields the result.

This result does not hold for general measures (see [40] for more details and references), e.g.
the Lebesgue measure on E = Rd is neither upper nor lower semi-continuous and therefore not
continuous. The non-continuity of the Lebesgue measure also directly follows from Corollary
A.4.1.

An important example of an upper semi-continuous function is the set indicator.

Theorem A.4.5. The indicator function map 1 : F × E → R, given by (F, x) 7→ 1F (x), is
upper semi-continuous.

Proof. Theorem 12.2.7 in [40].

The previous theorem particularly says that for each fixed x ∈ E, the indicator function
1F (x) is an upper semi-continuous function from F(E) to R. In the special case E = Rd there
are other natural mappings that are also continuous or semi-continuous.

Theorem A.4.6. Let E = Rd. Then the mappings

(a) F 7→ −F from F to itself,

(b) (α, F ) 7→ αF from R+ ×F onto F

are continuous and the mapping

(c) (F, F ′) 7→ F + F ′ from F × F to F

is lower semi-continuous.

Proof. See Theorem 12.3.1 in [40] or Proposition 1-5-1 in [39].

Let us now discuss the connection between measurability and semi-continuity. First, it is
appropriate to mention the following lemma.

Lemma A.4.3. The σ-algebra B(F) of Borel sets of F is generated by either of the systems

{FC |C ∈ C} and {FG|G ∈ G}.

Proof. Lemma 2.1.1 in [40].
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From this lemma and Theorem A.1.3 follows that if ϕ : T → F is a lower (upper) semi-
continuous map from a topological space T into F , then ϕ is Borel measurable. If f : T →
[−∞,+∞] is a lower (upper) semi-continuous real function from a topological space T into the
extended real line [−∞,+∞], then it is also Borel measurable. This follows from the fact that
the collection of all intervals of the form (h,∞] (or [−∞, h)) generates the Borel σ-algebra of
[−∞,+∞].

The next assertion is that C, a collection of all compact sets in F , is a Borel set in F .

Lemma A.4.4. C is a Borel set in F .

Proof. Lemma 2.1.2 in [40].

The same holds for a collection Xm ⊂ F of (Hm,m)-rectifiable closed sets in Rd.

Theorem A.4.7. For each integer m, 0 ≤ m ≤ d, Xm is a Borel set in F .

Proof. Theorem 2.2.1 in [124].

A.5 Hausdorff metric

In this section we assume E = Rd, the d-dimensional Euclidean space. Let d(·, ·) denote the
Euclidean metric on Rd which is for x, y ∈ Rd defined using the standard scalar product and
the corresponding norm ‖·‖ as d(x, y) = ‖x− y‖. We use it to define the Hausdorff metric on
the collection C′ = C \ {∅} of non-empty compact subsets of Rd.

Definition A.5.1. The Hausdorff distance δ(C1, C2) of C1, C2 ∈ C′ is defined by

δ(C1, C2) = max

{
max
x∈C1

min
y∈C2

d(x, y),max
x∈C1

min
y∈C2

d(x, y)

}
.

This can be equivalently written as

δ(C1, C2) = min

{
ε ≥ 0

∣∣∣C1 ⊂ C2 + εBd, C2 ⊂ C1 + εBd
}
,

where Bd is the closed d-dimensional unit ball centred at the origin.

The Hausdorff distance constitutes a metric, called the Hausdorff metric, on C′ and can
be extended on C by putting δ(C1, C2) = +∞ if exactly one of the sets C1, C2 is empty set and
δ(∅, ∅) = 0. Empty set ∅ is therefore an isolated point. In the following we mean by (C, δ) the
topological space with topology induced by the Hausdorff metric δ on C.

Theorem A.5.1. The space C′ of non-empty compact sets is complete and locally compact in
the Hausdorff metric.

Proof. Theorem 1.8.2 and Theorem 1.8.4 in [125].

Since we deal with the theory of random closed sets, it is important to present the connection
between the topology on C induced by the Hausdorff metric and the trace topology on C induced
by the Fell topology of F .

Theorem A.5.2. The topology of the Hausdorff metric on C is strictly finer than the trace
topology induced by F .

Proof. Theorem 12.3.2 in [40] or Proposition 1-4-1 and 1-4-4 in [39].

Therefore every sequence in C that is converging in the Hausdorff metric is also converging
in the trace topology of F . The following theorem gives the strict equivalence.
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Theorem A.5.3. The convergence of a sequence {Ci}i∈N in (C, δ) is equivalent to the following
conditions taken together:

(a) {Ci}i∈N converges in F ,

(b) {Ci}i∈N is uniformly bounded, that is, there exists a set K ∈ C with Ci ⊂ K for all i.

Proof. Theorem 12.3.3 in [40] or Theorem 1-4-1 in [39].

The same assertion as in Corollary A.4.1 holds in (C, δ).

Corollary A.5.1. The set T ′ = T \ {∅} (the class of the non-empty finite subsets of Rd) is
dense in C′ = C \ {∅}.

Proof. Corollary 4 after Theorem 1-4-1 in [39].

It follows from the definition of lower (upper) semi-continuity of a real function that every
real function on C lower (upper) semi-continuous with respect to the trace topology of F is also
lower (upper) semi-continuous on (C, δ). One can prove the useful analogue of Lemma A.4.2.

Lemma A.5.1. Let ϕ be an increasing real-valued function from C into [−∞,+∞]. Then
ϕ is upper semi-continuous if and only if Cn ↘ C (decreasing in the sense of inclusion and
C =

⋂
n Cn) implies ϕ(Cn)↘ ϕ(C).

Proof. Every sequence Cn ↘ C of compact sets converges in the trace topology induced by F
as a consequence of Corollary A.4.2 and as a consequence of Theorem A.5.3, also in topology
induced by the Hausdorff metric since {Cn} is uniformly bounded. The assertion is then an
immediate consequence of Lemma A.4.2.

Now we can obtain the extended version of Theorem A.4.4.

Theorem A.5.4. Any Borel σ-finite measure µ on Rd is upper semi-continuous on (C, δ).

Proof. The proof using a decreasing sequence {Ci}i∈N is analogous as the proof of Theorem
A.4.4. The crucial condition µ(C1) < +∞ follows from σ-finiteness of µ.

The continuity properties of most important mappings with respect to the Hausdorff metric
are summarized in the following theorem.

Theorem A.5.5. If C is equipped with the topology of the Hausdorff metric, then the following
maps are continuous:

(a)
C × F → F
(C,F ) 7→ C ∪ F and

C × C → C
(C,C ′) 7→ C ∪ C ′,

(b)
C × F → F
(C,F ) 7→ C + F

and
C × C → C

(C,C ′) 7→ C + C ′,

(c) the symmetrical reflection mapping C 7→ −C from C to itself,

(d) the multiplication mapping (α,C) 7→ αC from R+ × C to C.

Proof. Theorem 12.3.5 in [40].

From Theorem A.5.2 we know that the topology on C induced by the Hausdorff measure
is strictly finer than the trace topology on C induced by the topology on F . The question is
whether the difference holds also for the induced Borel σ-algebras.



196 APPENDIX A. SELECTED PARTS FROM TOPOLOGY AND MEASURE THEORY

Theorem A.5.6. Let BF (C) be the Borel σ-algebra on C, when C is equipped with trace topology
induced by the topology of F , and let Bδ(C) be the Borel σ-algebra on C, when C is equipped
with topology induced by the Hausdorff metric. Then BF (C) = Bδ(C).

Proof. Theorem 2.4.1 in [40].

From now on we write B(C) for the σ-algebra from the previous theorem. The previous
theorem holds in the same way for C′.

Corollary A.5.2. C′ is a Borel set in both F ′,F , and BF ′(C′) = Bδ(C′).

Proof. Follows from Lemma A.4.4, the previous theorem, and the fact that ∅ is an isolated
point in the topology of the Hausdorff metric.

We may use the same argumentation as after Lemma A.4.3 to see that every continuous or
upper (lower) semi-continuous real function is Borel measurable. Now lets look at the Hausdorff
measure Hα. Here, Theorem A.5.4 cannot be used since for α < d the Hausdorff measure Hα
is not σ-finite. One can hovewer still show measurability.

Theorem A.5.7. The functions Hα : C → [0,∞] and dimH : C′ → [0, d] are Borel measurable.
Moreover, for any closed B ∈ F , Hα(C ∩B) as a function of C is Borel measurable.

Proof. The first part follows from Theorem 2.1 in [126], which shows that they are Baire’s class
2. From 2.2.15 in [65] we know that every Baire function is Borel measurable. The second part
is Theorem 2.1.3 in [124].

The following proposition shows the measurability of the measures that are absolutely
continuous with respect to Hα. Note that from the previous theorem follows that the class
C′Hα of non-empty compact α-sets is a Borel set in C′ since C′Hα = (Hα)−1

(
(0,∞)

)
.

Proposition A.5.1. Let 0 ≤ α ≤ d be fixed, f be a non-negative Borel measurable function on
Rd, and µ be a Borel measure on Rd defined by µ(B) =

∫
B
f(x)Hα(dx) for all Borel B ⊂ Rd.

Let further C′Hα be equipped with trace topology induced by the Hausdorff metric on C′. Then
µ : C′Hα → [0,∞] is Borel measurable.

Proof. Let us denote FHα the class of all closed subsets F of Rd for which Hα(F ∩ ·) is a
locally finite measure on Rd. Clearly C′Hα ⊂ FHα . By Corollary 2.1.4 in [124], FHα is a Borel
set in F and for any Borel B ∈ Rd is Hα(· ∩ B) : FHα → [0,∞] measurable with respect to
the trace σ-algebra of F . The Borel σ-algebra Bδ(C′Hα) of the trace topology is clearly the
trace σ-algebra Bδ(C)∩C′Hα and by Theorem A.5.6 also the trace σ-algebra BF (C)∩C′Hα which
further equals to the trace σ-algebra B(F) ∩ C′Hα . Since C′Hα is a Borel set in C′ by Theorem
A.5.2 it is a Borel set in F . Hence for any Borel B ∈ Rd is Hα(· ∩ B) : C′Hα → [0,∞] Borel
measurable with respect to Bδ(C′Hα). From the basic construction of the Lebesgue integral
(e.g. [113, Theorem 1.17]) we know that there is a pointwise increasing sequence {sn}n∈N of
simple measurable functions on Rd such that sn(x) → f(x) as n → ∞ for every x ∈ Rd.
Moreover, for a simple function s =

∑k
i=1 ai1Ai with ai ≥ 0 and A1, . . . , Ak Borel, we have∫

C
s(x)Hα(dx) =

∑k
i=1 aiHα(C ∩Ai) which is by previous considerations measurable on C′Hα

as a function of C. Since by the Lebesgue monotone convergence theorem
∫
C
sn(x)Hα(dx)→

µ(C) as n→∞ for every C ∈ C′Hα the measurability of µ on C′Hα follows.

The prominent role in (C, δ) is played by the subset of convex bodies K, i.e. compact convex
sets.

Theorem A.5.8. On the set K′ of non-empty compact convex sets, the topology of the Haus-
dorff metric and the trace topology induced by F coincide.

Proof. Theorem 12.3.4 in [40].
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From the topological point of view it may be shown that convex sets are a closed subset of
compact sets.

Theorem A.5.9. K is a closed subset of C.

Proof. Theorem 1.8.5 in [125] or Corollary after Proposition 1-5-4 in [39].

The d-dimensional Lebesgue measure was upper semi-continuous on C as a consequence of
Theorem A.5.4. The following theorem tells us that on K′ the Lebesgue measure is actually
continuous.

Theorem A.5.10. The d-dimensional Lebesgue measure νd is continuous on K′.

Proof. Lemma 3-5-2 in [39] or Theorem 1.8.16 in [125].

Finally we look at the convex ring R given by the finite unions of sets from K. The
non-empty convex ring R is defined by R′ = R \ {∅}. Obviously R ⊂ C.

Theorem A.5.11. R is a Borel set in F and in C. R′ is a Borel set in F ′ and in C′.

Proof. Theorem 2.4.2 in [40] and Corollary A.4.4 resp. A.5.2.





Appendix B

Dataset details

The OpenStreetMap data in ESRI shapefile format can be downloaded from http://osmdata.thinkgeo.com.
The GIS sources for the USA cities are given in Table B.1. The unit conversion factor is in
Table B.2.

Table B.1: Building-footprints GIS dataset sources and length units.

Location URL Original Unit

Boston http://www.mass.gov Meter
Chicago https://data.cityofchicago.org Foot US
Los Angeles http://egis3.lacounty.gov Foot US
Pittsburgh http://www.alleghenycounty.us Foot US
Seattle https://data.seattle.gov Foot US

Table B.2: Units conversion table.

Unit label meter [m]

Meter 1 m
Foot US 0.3048006096012192 m
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http://osmdata.thinkgeo.com/openstreetmap-data/
http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/ftpstructures.html
https://data.cityofchicago.org/Buildings/Building-Footprints/6mpq-sfwi
http://egis3.lacounty.gov/dataportal/2011/04/28/countywide-building-outlines/
http://www.alleghenycounty.us/dcs/gis/available.aspx
https://data.seattle.gov/browse/select_dataset?nofederate=true&q=building&sortBy=relevance&suppressed_facets
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Table B.3: Coordinate reference systems (CRS) used for different countries and cities.

Country City Code Name

Belarus Minsk 2525 Pulkovo 1942 / 3-degree Gauss-Kruger
zone 9

Czech Republic Prague 2065 S-JTSK (Ferro) / Krovak
France Paris 2154 RGF93 / Lambert-93
Germany Berlin 31468 DHDN / 3-degree Gauss-Kruger zone 4
Great Britain Birmingham 27700 OSGB 1936 / British National Grid
Italy Milan 3003 Monte Mario / Italy zone 1
Norway Oslo 27393 NGO 1948 (Oslo) / NGO zone III
Russia Moscow 2705 Pulkovo 1995 / 3-degree Gauss-Kruger CM

39E
Saint Petersburg 2702 Pulkovo 1995 / 3-degree Gauss-Kruger CM

30E
USA Boston 2894 NAD 1983 HARN StatePlane Mas-

sachusetts Mainland FIPS 2001
Chicago 3443 NAD 1983 HARN StatePlane Illinois East

FIPS 1201
Los Angeles 2874 NAD 1983 HARN StatePlane California V

FIPS 0405
Pittsburgh 3365 NAD 1983 HARN StatePlane Pennsylva-

nia South FIPS 3702
Seattle 2926 NAD 1983 HARN StatePlane Washington

North FIPS 4601
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