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Chapter 1

Foreword

In the dark ages, enhanced and more efficient language in combination

with biological versatility caused victory of Homo Sapiens Sapiens in bio-

logical battle over Europe resources with Homo Sapiens Neanderthalensis,

according to one possible evolution theory. Specially, the language allows

to exchange ideas and coordination of the groups of people and coordina-

tion of the individuals. Better coordination can facilitate creation of bigger

organizationals. The society evolved from small communities to small vil-

lages to the cities, where civilization has been born and the cities allow

to form first city states and after then empires. All that was allowed by

forming of the formal organizations that are based on communication.

Scientific understanding of natural processes since late the 18th century

in combination with its practical usage allowed extraordinary progress of

mankind ability including exploration of space but it brings new problems

- energy consumption, pollution and overcrowding of cities - as it is men-

tioned for example byMeadows in [1], Mesarovic et al. in [2], Fromm in [3]

and Schweitzer in [10]. Although, the first alarming messages were pub-

lished in early 70s of the 20th century, almost nothing has been done since

1



CHAPTER 1. FOREWORD 2

its publication. Many authors f.e. Fromm in [3] or Keller in [5] showed

global irresponsibility of mankind against foretold crisis that could burst

out before 2050 and they proposed system change of moral values and im-

peratives. They also mentioned that such shift is improbable due to the

radical personal requirements. Nevertheless, it can be reasonable to try

to change external parameters of the society what would prepare society

to fix the problems. The very first point to fix problems is to understand

what are the processes in the society and Game Theory shows to be excel-

lent tool [8], [9] and [10].

Mathematician von Neumann and economist Morgenstern published

the first book about the Game Theory [8], where they focused on under-

standing of the economical behavior. Their original imagine later inspired

sociologists, biologist, psychologist and philosophers to use and to under-

stand processes their field of study through prism of the Game Theory

what can be illustrated by famous book by R. Dawkins [9].

The author thinks that this extraordinary success of the Game Theory

in understanding of wide spectrum of problems can be the possible tool,

in combination with the other tools and the faith, to solve the global prob-

lems ahead. There is one visible large-scale application (ABM treaty and

détente policy). Briefly, the author hopes that the thesis will contribute to

formulation of more accurate models that can be used to formulate a pol-

icy that would help preventing the problems on the threshold of the 21st

century.



CHAPTER 1. FOREWORD 3

1.1 Organization of the thesis

The thesis is divided into four parts. The first part deals with complex net-

works which are the base bricks of models that being simulated. The next

part has three chapters which are focused on models of human behavior

based on the networks. The first chapter deals with opinion formation

and voting process. In the following chapter, we study a model that can

explain structure and evolution of organizations. Finally, wealth distri-

bution within society is investigated in the last chapter. The third part of

the thesis describes the simulation platform within which all the results

presented in this thesis were obtained. In the final part we deal with con-

clusions of the thesis.



Chapter 2

Contemporary state of the

research

In the last few years, there has been huge development in the mathemat-

ical understanding of society where certain subsystem of society was in-

vestigated and mapped to a graph. It allows to view society as a set of net-

works, f.e., contacts of the actors and some of the networks is the substrate

for processes running within the society1. Thus, it seems to be natural that

multi-agent systems (MAS) is used in the investigation the processes. Due

to complicated structure of the networks we are forced to use models of

complex networks and the dynamic of the process can be specified using

the following mental processes:

• Inductive understanding of the process from microlevel to macro-

level

• Application of a model to a system without detailed understanding

1That view completely neglects spatial behavior of actors which nowadays uses long
distance communication devices like a telephone or Internet, where no direct contact is
possible.

4
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of interactions atmicrolevel but giving qualitatively the same results.

Inductive understanding is based on knowledge of internal behavior of

the key elements (agents). It will be used for the opinion formation process

that can mainly influence votes and Minority Game with imitation.

Application of a new model and a data comparison of simulation and

reality with final reasoning is used when internal properties of the key ele-

ments are not known. It is used for the analysis of wealth distribution and

this involved the use of scattering models, where a qualitative comparison

with the data is done. Generally, we are trying to use the tools taken from

physics and apply them on society.

We are attempting to imagine society as an evolving complex system,

where some certain subsystems can be modeled on a computer. However,

this point of view does not take into account the psycho-social base of

human behavior and this field of study are called Sociophysics or Econo-

physics respectively depending on application of themodel. Themain aim

is to answer a question how socio-economic and the political organization

of system works by using statistical physics methods.

2.1 General state of the research

Computers that form computer networks simplified communication and

allowed to access huge storages of data of physical experiments. It al-

lowed as well to access the data from the other fields of study, e.g., econ-

omy, sociology or psychology, and we can use analyze them in a similar

way like data from physical experiments. Moreover, the experiment can

bring new results that attacking on mainstream theoretical explanations

and it allows to formulate alternative theories that mainly ignore psycho-
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social base of behavior.

The thesis deals with three agent-based models that are implemented

on complex networks. The investigated models are

• Sznajd model as model of opinion formation

• Minority Game with imitation

• Scattering model as model of wealth distribution.

Briefly, the complex networks were described in review article [16] by

Albert et al., in books like [15] by Dorogovtsev et al. or at Wikipedie[14]

2. We can find broad area of different systems that are mapped to a graph

going far behind main focus of the thesis.

Sznajd model is a model that is allowed to explain opinion formation.

It and its modifications was reviewed by Stauffer in [106] and compar-

isons with real experiments (votes) are discussed. Success of the model

to explain experiments allowed to present articled in public journals and

newspapers.

Minority Game is formalization of bar attendance that have many vari-

ants and modifications. The model was formulated in 1997 by Zhang and

Challet in [127]. The model was widely investigated and modified and

the summary of articles by Challet et al. can be found in [126]. Easy-to-

understand introduction to Minority Game is in [14]3.

Wealth distribution was investigated during last century in, e.g., [150]

by Pareto, [152] by Gibrat, [159] by Dragulescu et al. and explained in,

e.g., [166] by Solomon or [171] by Bouchaud et al. using different base

mechanisms. So, the models are able to explain the main characteristics

2using key-phrases Scale-free network, Small-world network
3using key-phrase Minority Game
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of wealth distribution but they are unable to form a policy due to internal

incompatibility.



Part I

Networks

8



Chapter 3

Complex networks

3.1 Introduction

The first investigation of social contacts was performed by Stanley Mil-

gram in [95], which motivated scientists to question the structure of net-

work of social contacts. Moreover, they started to question human behav-

ior that lay on the substrate of social contacts, e.g., a sexual contact net-

work, a network of co-authorship in different fields of studies, network

of contacts made by long telephone calls and network of collaboration

of movie actors. Then, power grid structure, Internet structure (WWW

pages, routers or domains) and structure of word cooccurence and word

synonyms were investigated. Finally, network structure is not privileged

only for human behavior but nature gives us many examples of networks,

e.g., metabolic network in an organism, protein network in a cell or food

chain networks.

The first paragraph deals with empirical networks and their proper-

ties, where the mapping of the system is to a graph. Using such mapping

we completely ignore some qualities of the system like interaction with

9
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neighborhood (other systems) or other level of interaction. The mapping

is usually maps the objects to vertices and interaction (collaboration, coop-

eration, connection or communication) of the objects is an edge between

two vertices. This simplification of the system transforms the problem

to investigation of a graph. Thus, it is natural to question to investigate

properties of graphs like average of the shortest distance (number of edges

between initial and final vertex), the connectivity distribution or the clus-

tering coefficient.

The results of the experiments were challenge for Graph Theory to ex-

plain such properties. One of the first questions to arise is the random-

ness of the networks. The networks are products of a complex behavior

of complex system and so the topology of the network must display some

organization principles. Due to fact that the system is interconnected with

neighborhood the graph must also contain certain level of disorderliness.

So it means that randomness plays one of the key roles in the construc-

tion. So modeling of the graph forces us to use of stochastically generated

graphs.

The following paragraphs begin to deal with empirical results. The

question is how to get qualitative correspondence with empirical graphs.

The simplest model of stochastic graphs is Erdös-Renyi random network.

Properties of the model differs from empirical results and so it forces us to

search for the other models that are introduced in the next paragraphs.
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3.2 Empirical results

Empirical results are the base of models that allows to build theories [14]1.

In particular, measurement of properties of a society allows us to under-

stand principles of organization of society. To proceed we define a graph,

then measured variables are introduced and finally, results of measure-

ments of wide spectrum of examples are discussed.

3.2.1 Graph theory

A graph G = (V, E, ǫ) with oriented edges is defined in book by Demel

[13], where V is a set of vertices, E is a set of the edges and ǫ is mapping

ǫ : E → V × V . VG(i) is a set of nodes that are neighbors (in sense of

directed connection by a single edge) of node i. Finally, EG(i) is a set of

edges connecting node i with its neighbors.

The original definition involves consideration of the oriented edges.

However, the orientation of the edges can be redundant information in

some models and in such a situation orientation can be neglected. Such a

structure is called a graphwith non-oriented edges.

Both definitions of the graphs include multiple edges2 but effectively

single edges3 are sufficient. This property does not influence functions

that are defined on graphs. Finally, the graph can be generalized to carry

extra information. These graphs can be defined as G = (V, E, ǫ, νV ), G =

(V, E, ǫ, νE) and G = (V, E, ǫ, νV , νE), where νV : V → OV , νE → OE and

OV , OE are sets of the extra object which can be a real or natural number4

1Using key-phrase Theory
2A pair of vertices is connected by many edges.
3A pair of vertices can be connected once at most.
4It is weighted graph.
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or, more generally, an extra object can be a set of agents playing a game5.

The crucial variable of the thesis is connectivity ki of a vertex i what

number of elements of EG(i). Lattices that are used in physics for mod-

eling materials, have usually ki = c where c is constant and the lattice

is periodical without irregularities. On the other hand, we can observe

graph-like structures in society but the connectivities ki are random vari-

ables with certain fixed probability distribution in contrast to the lattices

in physics. Thus we are forced use tools of probability and mathematical

statistics to Graph Theory.

3.2.2 Measured variables

The networks are represented by graphs and analyzed variables must be

defined on graphs where 3 main properties of graphs are investigated:

• small world property (average distance between vertices of graph)

• clustering

• degree distribution (probability distribution of connectivities).

Small worlds The small-world effect shows that although, the number

of nodes can be hundreds of millions but the average of the distance of two

nodes, which is defined as a number of edges along the shortest path con-

necting them, is relatively short. The first manifestation of the property on

the networks was shown by psychologist Stanley Milgram in paper [95].

However, the small-world property is not an indicator of organization in

the system, because the property is held by random networks.

5It is generalized weighted graph.
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Figure 3.1: Effect of clusterization. The blue edges are connections of the
actual person and the red edges are counted as connection (acquaintance)
between friends.

Clustering All social networks hold a property that it is very probable to

find a common friend of a pair of friends, as it can be seen from figure 3.1.

The property is measured by a clustering coefficient C, which is defined

as the average of clustering coefficients Ci of node i.

C =
1

|V |
∑

i∈V

Ci (3.1)

The definition of Ci is

Ci =

∑
j∈VG(i)

∑
k∈VG(i)\j ω(j, k)

|VG(i)| (|VG(i)| − 1)
(3.2)
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where

ω(j, k) = |
⋃

l∈EG(j)
T

EG(k)

{l}|. (3.3)

|A| means a number of members in the set A. The denominator of the

equation 3.2 number of possible connections between neighbors of node i

and the numerator is real number of connections (Non-oriented edges are

counted twice.).

Watts and Strogatz published in [22] results which showed that for a

real network, that clustering is typically larger than in random networks

of an equal number nodes and edges.

Degree distribution The number of edges can differ from a node to the

another node, thus it seems reasonable to ask for the distribution of con-

nectivities P (k). In the case of random graphs with maximal value and the

mean value at P (〈k〉) it is Poisson distribution.

However, a huge real network has a distribution of connectivities sig-

nificantly different and this is characterized with a ”fat-tail.” It means that

the higher end of the distribution P (k) has property

P (k) ∼ k−α, (3.4)

where α is a power-law exponent. Some networks display an exponen-

tial tail which still deviates from the Poisson distribution of the random

network model.
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3.2.3 Examples of networks

Networks were observed in many field of studies but the most significant

network is the Internet. It is described as a symbol of Globalization. How-

ever, humans are not the only ones who can produce complex networks as

the production of the networks can also be by nature.

Internet

The hardware of the Internet is formed by the physical links between the

computers and the other communication devices. There are two different

level of observation of the Internet. At the router level, routers are men-

tioned as nodes and the edges are the physical connections between a pair

of routers. At the inter-domain (or autonomous system) level, each node

represents a domain, which includes many routers and computers, and

the edge is constructed if two domains have at least one physical connec-

tion.

The power-law exponent around year 1998 fluctuates between αas
I =

2.15 and αas
I = 2.2 for the inter-domain level but the exponent for the

router level is αr
I = 2.48, which was recorded by Faloutsos et al. in [23].

However, another set of routers give a power-law exponent of αr
I ≃ 2.3.

A question of emergence of small average path length and the cluster-

ing coefficient C was investigated by Yook et al. in [25] and by Pastor-

Satorras in [26] between 1997 and 1999 and these authors found that the

clustering coefficient C is between 0.18 and 0.3. It can be compared with

Crand ≃ 0.001 for random graph with similar parameters.

The average path length was between 3.7 and 3.77 at the domain level

in [25] and [26] and it was around 9 at the router level in [25].
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World-Wide Web

The World Wide Web is the largest network for which topological infor-

mation is available. The number of nodes was close to 109 as reported by

Lawrence et al. in [27], [28] but at present it is now close to 1010. The web

pages are represented by nodes and the edges are the hyper-links (URLs6)

which point from one page to the another.

The hyper-links are oriented such that it can be plotted as 2 degree

distributions - for outgoing pages Pout(k) and incoming pages Pin(k). Both

of them show a power-law degree distribution over several magnitudes -

Pout(k) ∼ k−αWWW
out and Pin(k) ∼ k−αWWW

in . It was found that αWWW
out = 2.45

and αWWW
in = 2.1 in [29] by Albert et al. However, another group found

that αWWW
out = 2.38 and αWWW

in = 2.1 in [30] by Kumar et al. Broder et al. in

[31] used Altavista and they observed that αWWW
out = 2.72 and αWWW

in = 2.1.

Another definition of the graph was reported by Adamic et al. in [33],

where the nodes are the domains and the edges are present if there is a

web page with the URL to a web page at the second domain. The in-

coming degree distribution is the power-law with exponent αdom
in = 1.94,

which is stable. However, the distribution of outgoing edges follows the

power-law but the exponent αdom
out grows up during couple years between

measurements.

The WWW networks have the small world property and the first mea-

surement of the WWW is reported by Albert et al. in [29] and their data

(approximately 3 · 105 nodes) show an average path length at 11.2 and the

extrapolation for whole Internet (assumed size of 8 · 108 nodes) in 1999, is

19. Broder et al. reported in [31] that they acquired different data (around

2 · 108 nodes) with an average path length 16, which is in a good agree-

6Universal Resource Locator
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ment with previous measurements. The domain level network displays

an average path length of 3.1 as reported by Adamic et al. in [32].

URLs are directed objects so is not possible to use formula 3.2. Adamic

et al. of [33] transformed the directed edges to the undirected edges and

they dropped web pages with only one edge and the final network con-

sisted of approximately 1.5·105 nodes. The clustering coefficient with these

modifications of the network was shown CWWW = 0.1078. This value is

larger than Crand = 0.00023 for the random graph with the same size and

the average degree.

Movie actor collaboration network

The Internet Movie Database shows a interesting network of movie-actor

collaboration. The network is still growing from approximately 2 · 105

[22] in 1998 reported by Watts et al. to 4.5 · 105 [34] by Newman et al.

by May 2000. These networks have a small world property with average

path length 3.65 whereas a random network with the same parameters has

value of 2.9. However, the clustering coefficient is more than 100 times

larger than a random graph. The degree distribution Pactor(k) follows the

power-law with exponent around αactor ≃ 2.3. It was reported by Barabási

et al. in [35], [36] and Amaral et al. [37].

Science collaboration network

The science collaboration network is very similar to the movie collabora-

tion network. The scientists are the nodes and the edge is participation in

a paper. A community of physicists, biomedicine researchers, high-energy

physicists, computer scientists , neuroscientists and mathematicians were

investigated in papers by Newman et al.[38], [39], [40] and by Barabási
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et al. [41] during the 5 years between 1995 and 1999. The small world

property was observed in all cases. The higher end of the degree dis-

tribution follows the power-law and, finally, the clustering coefficient is

significantly higher than for a random network with similar parameters.

Network of human sexual contacts

Human sexuality is a delicate theme, whichwas investigated and reported

in papers by Liljeros et al. [42] and [43]. A network was constructed from

a survey carried out in Sweden in 1996 with a population of 2810 individu-

als. The duration of the survey was relatively short but one year seemed to

be enough to support the conclusion that the degree distribution follows

the power law where Pfemale(k) and Pmale(k) for males as well as females

with exponents around αfemale = 3.5 and αmale = 3.3.

Cellular networks

The metabolism of 43 organisms was studied in paper by Jeong et al. [44].

A network was constructed from chemical substances and an edge repre-

sent when two chemical substances reacting. All the networks follow the

power law with exponents between 2.0 and 2.4. The average path length

was almost the same for all organisms giving a value of 3.3.

The complex networks properties were investigated in papers by Fell

et al.[45] and by Wagner et al. [46], where the authors focused on energy

and biosynthesis of the Escherichia Coli bacterium. A short average path

length, a higher clustering and the power-law behavior were all observed.

Another important network can be extracted from protein-protein in-

teractions. The nodes are proteins produced from DNA7 and the edges are

7Deoxyribose Nucleic Acid
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present when two proteins bind together. The degree distribution follows

the power-law with an exponential cutoff

P (k) ∼ (k + k0)
−α exp

(
−k + k0

kc

)
(3.5)

with k0 = 1, kc = 20 and α = 2.4 as was reported by Jeong et al. in [47] .

Ecological networks

Ecologists use food webs to present interaction between the species as re-

ported by Pimm et al. in [11]. A food web has nodes, which mean different

species, and the edges represent predator-prey relationship. The topology

of seven of the largest and the most documented food webs were studied

by Williams et al. in [48]. The small-world property was observed.

Food webs are highly clustered if the edges are taken as non-oriented

[49] by Montoya et al., [50] by Camacho et al. The first research on de-

gree distribution was reported by Montoya et al. in [49]. However, the

networks were relatively small - the largest having N = 186 nodes. The

authors fit the food web by the power law with exponent αfood ≃ 1.1 but

an exponential fit was also reported as being used [50], [51] by Camacho

et al.

Phone-call networks

Telephone numbers as the nodes and long-distance telephone calls during

one day between the numbers can produce a huge network which was

investigated by Abello et al. in [52] and Aiello et al. in [53]. Degree dis-

tributions P in
phone(k) and P out

phone(k) follow the power law with exponents

αout = αin = 2.1
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Citation networks

An article published in a journal, could be taken as a node in a citation

network and an oriented edge is the citation of an article by another one.

Orientation is from the citing article to the cited article. Redner in [54] ex-

amined papers cataloged by the Institute of Scientific Information (almost

8 · 105 papers) and by Physical Review D (almost 2.5 · 104) between 1975

and 1994. The data shows a power-law degree distribution P inco
cite (k) with

the power-law exponent αinco
cite = 3.

Vázquez reported in [55] investigation of a similar network where an

edge is present in the network if an article cite another one but the edge

is oriented from citing article to the cited article. The degree distribution

P outgo
cite has an exponential tail.

Networks in linguistics

Human languages provide a very interesting system due to the complex-

ity and there are many possibilities to define and study such complex net-

works. English was investigated by Ferrer et al. in [56], where the British

National Corpus was taken as source of a network. A word is a node

in the network and an edge connects two words if they were observed

in the sentences next to or one word apart. This network size is around

4.5 · 105 nodes. The network has the small-world property with average

path length 2.67 and a large clustering coefficient Cling = 0.437 and, finally,

the degree distribution P cooc
ling (k) follows the power law in two regimes. The

first relates to low connected words k ≤ 103 with the power-law exponent

αcooc <
ling = 1.5 and the word with 103 ≤ k ≤ 105 follows the power law with

the exponents αcooc >
ling ≃ 2.7.

In another study by Yook et al. in [57], the authors reported the con-
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struction of a network from Merriam-Webster Dictionary. Here, a word

is represented as a node and an edge is present if a pair of word are syn-

onyms. The size of the network was 2.4 · 104 but the giant cluster was

formed by 2.2 · 103 nodes. The average path length was l = 4.5, the clus-

tering coefficient was Csyn
ling = 0.7 and the degree distribution P sym

ling (k) has

the power law with the exponent αsyn
ling = 2.8.

Power and neural networks

The power grid of the USA forms a complex network, where generators,

substations and transformers are nodes in the network and an edge is

made when a connection between a pair exists. The networks were stud-

ied by Watts et al. in [22] where its size was shown as N ≃ 5000, within

average connectivity of k = 2.67. The average path length is a longer than

that for a random network, but a higher clustering coefficient was mea-

sured. However, the degree distribution follows exponential decay.

Another example of a network is a neural network of the nematode

Caenorhabditis elegans reported by Watts et al. in [22]. This network con-

sisted of nodes which represent neurons and an edge is present if two

neurons are connected by a synapse or a gap junction. The average path

length was relatively small and the clustering coefficient was larger than

that found for a random network of similar parameters. The degree distri-

bution also follows an exponential decay.

Protein folding networks

The folding of proteins can also give an interesting network, where the

nodes are conformations of a protein and an edge is made between two

conformations if one can be transformed to the second by an elementary
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move. The network was investigated for a 2D lattice polymer in paper by

Scala et al. [58] and the small-world property was found with a higher

clustering coefficient. However, the degree distribution was reported by

Amaral et al. to be Gaussian in [36].

3.3 Models of Complex networks

Graph Theory was based as the work of Leonhard Euler and early inves-

tigation was focused to a small graph with a high degree of regularity as

reported by Albert et al. in [16] and such graphs are useful in physics.

On the other hand, previous section showed networks in various fields of

studies and its mapping to a graph produce irregular graphs contrasting

with regular lattices on physics. Modeling of these networks requests to

use stochastic graphs where the edges of the graph are placed with certain

level of randomness.

3.3.1 Random networks

The theory of random graphs was introduced by Paul Erdös and Alfréd

Rényi in a series of papers [59], [60], [61]. Afterthen, probabilistic approach

to Graph Theory was introduced.

Construction

Erdös and Rényi in the first article on random graphs define it as a graph

with N nodes and the edges are taken randomly from N(N−1)
2

possible

edges [59]. In a set of such graphs, there are C
N(N−1)

2
n =

(N(N−1)
2
n

)
graphs.

Where n is number of edges.
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An alternative definition of a random graph is called a binomial model.

We start with N nodes and a node is connected to the other node with

probability p. Total number of edges E is a random variable with expecta-

tion value 〈E〉 = pN(N−1)
2

. Lets have a graph G0 with N nodes and n edges

then probability obtaining the graph G0 using the random construction is

P (G0) = pn(1 − p)
N(N−1)

2
−n.

The random graph theory study graphswithN nodes but its properties

are questioned in limit N → +∞. Such ensemble of graphs can be investi-

gated having property Q. The ensemble have property Q if for almost all

elements of the ensemble have property Q in limit N → +∞.

Properties

Small-world Fronczak et al. in [62] derive the general formula for aver-

age path length on a graph

l =
ln (〈k2〉 − 〈k〉) − 2〈ln k〉 + lnN − γ

ln
(

〈k2〉
〈k〉

− 1
) +

1

2
, (3.6)

where γ is Euler’s constant. However, an exact value of the average path

length for a random graph cannot be acquired from 3.6 and simplification

must be used to give the following

lrand =
ln N − γ

ln (pN)
+

1

2
, (3.7)

which scales the same way like the diameter of a random graph, which

means the maximal distance between a pair of nodes. The theoretical

value of the diameter of a random graph is shown by Albert et al. in [63]
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and by Dorogovtsev et al. in [64] to be

drand =
ln N

ln (pN)
. (3.8)

Clustering coefficient Using equation 3.2, the clustering coefficient can

be computed and in [16], they obtain

Crand = p =
〈k〉
N

. (3.9)

Simple comparison of real networks and a random network show a large

deviance for the clustering coefficient [16].

Degree distribution The founders of random graph theory, Erdös and

Rényi studied the degree distribution [59] but the whole distribution was

derived by Bollobás in [65]. He found that the distribution approximately

followed the Poisson distribution

P (k) ≃ exp (−pN)
(pN)k

k!
= exp (−〈k〉) 〈k〉

k

k!
, (3.10)

where 〈k〉 is constant and it is parameter of Poisson distribution.

3.3.2 Watts-Strogatz model

In the previous section, there were many examples of complex networks

and all of them had the small-world property in combination with the

clustering coefficient higher than in a random network of the same pa-

rameters.

Watts and Strogatz in [22] suggest the following algorithm. The algo-

rithm starts with an ordered network, which had a high clustering coeffi-
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Figure 3.2: Algorithm of Watts-Strogatz model, which can be tuned by
parameter p ∈ [0, 1]. Increasing of the parameter p produce randomness in
the network.

cient and a high average path length. Finally, the network is randomized,

which produces shortcuts in the structure.

Construction

Watts and Strogatz [22] introduced an one-parameter model which inter-

polates between an ordered lattice and a random graph and its root is in

social systems where most people have friends, which are common in a

community, e.g., in a house, in a street, in a workplace or an interest group.

Start with order The algorithm starts with an ordered network, which

can be a one-dimensional lattice with periodic boundary conditions where

node has connection to the K closest nodes (see figure 3.2). The assumed
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initial network has the clustering coefficient

Cinit =
3

4

K − 2

K − 1
. (3.11)

However, low-dimensional regular lattices do not have the short path length

- for a d-dimensional hyper-cubic lattice, the average path length scales as

N
1
d , which grows faster for increasing N than logarithmic increase, which

was observed in a random network or real networks.

Randomization In this case the edges of a graph are rewired with prob-

ability p ∈ [0, 1], but self-connections and duplicate edge are disabled. The

process creates pNK

2
long range connection (shortcuts), which significantly

decrease the average path length.

Properties

The research reported in [22] by Watts et al. discusses the influence of re-

search on the properties of small-world networks and the Watts-Strogatz

model. The next investigated variant is only with adding more edges than

simple rewiring [66], [67] by Newman et al. This model is easier to analyze

than the original Watts-Strogatz model because it does not lead to the for-

mation of isolated clusters. However, for high N and small p, the models

are equivalent.

Small-world As it was mentioned above, in the Watts-Strogatz model, a

change of scaling take place for the average path length l. For a small p,

l linearly increases but a large p tends to logarithmic scaling. Appearance

of shortcuts influences of behavior of l [68] by Watts et al., [69] by Pandit

et al., where a shortcut connects widely separated communities. Thus, the
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shortcut has significant impact on the length of path between persons in

the communities.

We may ask about dependence of the small-world property on the sys-

tem size as in statistical physics. The first remark about that was reported

by Watts [68], where it was noticed that l cannot decrease until bound-

ary p0 = 2
NK

is reached. The nonexistence of a shortcut in the system

in region p ∈ [0, p0] leads to the permanence of the average path length.

The property implies that transition p0 depends on system size, or con-

versely there exists N∗, which is depended on p which was introduced by

Barthélémy et al. in [70]. l ∼ N if N is the region N < N∗ and l ∼ ln N

if N > N∗. Barthélémy and Amaral reported in [70] that the average path

length should scale as

l(N, p) ∼ N∗F (
N

N∗
), (3.12)

where

F (u) =





u if u ≪ 1;

ln u if u ≫ 1.

From investigations reported by Newman et al. in [67], by Barthélémy

et al. [70], by Barrat et al. [71], by Argollo et al. [73], by Barrat et al. [74], it

can be concluded that the crossover length N∗ scales with p as N∗ ∼ p−τ ,

where τ = 1
d
. dmeans dimension of starting lattice where random rewiring

is used. In the simplest case d = 1, it can be got p0 ∼ 1
N
.

Now, it is accepted that l has the general scaling form as

l(N, p) ∼ N

K
f(pKNd), (3.13)
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where f(u) is universal scaling function with property

f(u) =





constant if u ≪ 1;

lnu
u

if u ≫ 1.

Further comments are reported by Albert et al. in [16].

Clustering coefficient If an initial lattice of the model has a large clus-

tering coefficient C(0) then it still can be high after the rewiring process.

Thus, cooccurence of the small-world property and the high clustering co-

efficient can be found for region of parameter p.

Calculation of C(p) needs to keep in mind that if p > 0 then a triplet

of nodes which were connected decay as (1 − p)3. So, the clustering coef-

ficient dependence is

C(p) ≃ C(0) (1 − p)3 . (3.14)

Verification of the deviance from 3.14 vanish in limit N → ∞ and it was

done in [74] by Barrat et al.

Degree distribution The degree distribution is a delta function for p = 0

because every node has the same degree. Non-zero p causes disorder in

the network and it influences the degree distribution. Only the single end

of an edge is changed. Thus, a node can minimally have K
2
edges after

rewiring process. For K > 1, there are no isolated nodes and the network

is usually connected.

The following computation was reported by Barrat and Weigt in [74].

For p > 0, the degree ki of vertex i can bewritten as ki = K
2
+ci, where ci can

be decomposed into two parts cleft
i , crewired

i . cleft
i is connected with edges,
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which were not rewired with probability 1 − p and crewired
i is connected

with incoming connections during rewiring towards i (with weight 1
N
).

The probability of distributions for cleft
i , crewired

i are

P left
1 (c) = Cc

K
2

(1 − p)cp
K
2
−c (3.15)

P rewired
2 (c) = C pNK

2

(
1

N

)c(
1 − 1

N

) pNK

2
−c

≃
(

pK

2

)c

c!
e

−pK

2 (3.16)

A combination of the factors led to

P (k) =

f(k,K)∑

n=2

Cn
K
2

(1 − p)n p
K
2
−n

(
pK

2

)k−K
2
−n

(
k − K

2
− n

)
!
e−

pK

2 , (3.17)

for k ∈ N with condition k ≥ K
2
, where f(k, K) = min

(
k − K

2
, K

2

)
.

The topology of the network is relatively homogeneous because 〈k〉 =

K and it exponentially decays. The connectivity distribution was simu-

lated by the author of the thesis and the results are in the figure 3.3.

3.3.3 Barabási-Albert model

Some empirical studies of the real networks show an exponential decay

for the degree distribution but mainly, the decay follows the power-law

with exponent α. The random network model and Watts-Strogatz model

did not allow the power-law degree distribution

P (k) ∼ k−α (3.18)
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Figure 3.3: Comparison of the connectivity distributions for the Watts-
Strogatz model of networks with various rewiring probabilities and the
Erdös-Renyi random graph.

What is the mechanism of the emergence of the power-law degree dis-

tribution. This section should give an answer that shifts from modeling

topology to modeling the network assembly and evolution. Generally,

these aspects are not counter to each other.

There is the fundamental difference between the modeling approach

used for random graphs and the Watts-Strogatz model and an algorithm

which can reproduce the power-law degree distribution. The previous

models try to fit correct topological features but the following model is

described by the dynamic of the model.

Construction

Barabási and Albert defined an algorithm in [75] which has two common

properties with the real networks. The first one is growth, continuous ad-
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dition of new nodes and new edges to the network and starting with a

small kernel network. An example of such mechanism can be found in

the WWW network, where the number of pages grows exponentially. The

second property of most networks is preferential attachment. It means that a

new node is more likely to be connected to a node with more connections

than less connections. For example, a web page often includes hyper-links

to popular documents.

The two properties mentioned above inspired the introduction of the

Barabási-Albert model in following formulation.

Growth The algorithm starts with small number of N0 of nodes. At the

every time-step, a new node is added until final size of network N is

reached (We must fulfill N0 ≤ N). The initial network can be generated

as a random graph or a fully-connected graph, because if N0 ≪ N then it

does not depend on initial network.

Preferential attachment When a node is added to a network, it is as-

sumed in [75] that the probability Π(ki), which means that the probability

to be connected to a node i, depends on ki and ki is degree of node i. The

form of Π(ki) initially suggested linearly which depended on ki and its full

form is

Π(ki) =
ki∑

j∈cN ′
kj

, (3.19)

where N̂ ′ = {x ∈ N|x < N ′} and N ′ = N0 + Ntime, where Ntime is the

number of nodes that were added to the kernel network of the size N0.

Every time-step, it is connected by m new edges to the kernel network

and every connection influences Π(ki). However, the parameter m does
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not influence the power-law exponent αBA so it is an internal parameter of

the model.

Properties

Paper by Watts et al. [22] influenced research of small-world networks

and paper by Barabási [75] stimulated research of scale-free networks and

it inspired the investigation of their properties in papers by Dorogovtsev

et al. [76], by Krapivsky et al. [77] and by Barabási [78].

Small-world Simulations of the Barabási-Albert model showed in paper

[16] that the average path length is smaller than for a random graph and

this property is due to the heterogeneous structure of the scale-free net-

works. Barabási and Albert in [16] showed in simulations that the average

path length follows a generalized logarithmic form

lBA = A log(N − B) + C, (3.20)

where A, B andC are constants. It can be concluded that a scale-free struc-

ture of the network decreases the average path length but the behavioral

dependence remain the same as in the random networks - lBA ∼ lrand. So

far there is no theoretical explanation relating to small-world property for

the Barabási-Albert model. However some comments on it can be found

in paper [16].

Clustering coefficient There is also no theoretical prediction for the clus-

tering coefficient but simulations in [16] showed that the clustering coeffi-

cient is higher than in a random network and it behaves as Crand ∼ N−1.

The actual model behaves as CBA ∼ N− 3
4 , which leads to a slower decay
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Figure 3.4: Connectivity distribution for the Barabási-Albert model of net-
works for different sizes of system.

than in random graphs. However, it still decreases with the network size.

Degree distribution It was shown in the simulations that the degree dis-

tribution PBA(k) follows the power law PBA(k) ∼ k−αBA , with the power-

law exponent αBA = 3. These results were simulated by the author of the

thesis in the figure 3.4.

Several theoretical studies by Barabási et al. [75], [78], by Dorogovtsev

et al. [76] and by Krapivsky et al. [77] agree with the size of the power-

law exponent obtained in the simulations. The papers used three different

approaches using continuum theory, master equation and rate equation. A

summary of the computations is shown in paper [16].
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3.4 Conclusions

This chapter introduces elementary information about complex networks.

Real networks have special properties which are simulated using stochas-

tic graphs. These graphs will be used as substrates of the agent-based

models that were investigated, where the agents are bound to the vertices

of a graph. In the special case of binding to the vertices, the edges are used

for collaboration, cooperation, connection or communication between the

agents.

The author of the thesis shows comparable character variables like the

other authors in figures 3.3 and 3.4 that we obtained using Zarja simula-

tion library.
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Socio-economic models
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Chapter 4

Sznajd model

4.1 Introduction

Opinion formation process is responsible for creating consensus in soci-

ety. In particular, it can be found as a result of the sharing of personal phi-

losophy (religion), public relation (market propaganda) or political pro-

paganda due to Internet, transportation, urbanization, economical com-

petition, meetings etc. Every of these processes could have some distin-

guished specific properties but the key point is change of persuasion due

to interaction.

In this chapterwe deal with the opinion formation from the perspective

of convincing, where some dispositions (psychological and social disposi-

tions of the participant) are neglected. We also forbid external interven-

tions of neighborhood in the model.

36
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4.2 Path to the Sznajd model

Political changes in east Europe during year 1989 stimulated some of physi-

cists to search parallels of socio-political behavior and physics, e.g., Galam

in [97]. Physics was used to investigate systems which consisted of small

elements that constitute global behavior. The metaphors of socio-political

behavior would be like: a man - an agent, manipulation - interaction. On

every step we have to keep in mind that such a metaphor has limits -

psycho-social base of a man, only qualitative description of a phenomenon

and non-predictability of reality.

Galam in [97] discussed a model of a state (organization) with votes

in many levels. He investigated a state where citizens were organized

into groups, 3 independent persons, and where each group could vote

for one of two options using majority rule at level n. Similar groups are

constructed at level n + 1 from voted options at level n. The question

was how big support to option A has to be at level 1 to become the ruling

option at infinite level. In [97] the author showed, using renormalization

transformation, that it is necessary to be 50% of the A option. Moreover, it

was demonstrated, that in a real organization (finite number of levels) the

minority option lost its power in the organization very rapidly.

The next interesting questionwhichwas answered in [97] was the prob-

lem of emergence of new ideas and how large its support has to be to

become the leading idea, when groups are consisted of 4 persons and 3

persons are necessary for majority (in reality, there could be a prefect to

avoid fast changes of power). It was found that 77% support is needed

to get full power. After that the formula for majority in bigger groups is

derived and its stable points are investigated. There are only three points

fixed in infinite level structure 0%, 100%, when are stable, and 50% that is
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unstable. So, the dynamics of the system lead to totalitarianism. In real

systems, there is a constitution, which determines the number of levels to

n. Moreover, we are interested in ”democratic” regime, where the proba-

bility to get majority at nth level is not 100%. The existence of the regime

is proved in [97] and a lower and upper threshold is derived. Below the

lower and above the upper threshold are ”totalitarian” regimes.

In the end, a model, where there are three groups in three cells vot-

ing rooms, is introduced in paper [97]. When parity occurs then the third

group is elected (this is known by polimetrician as model of 2.5 parties

and this really happened in Germany in the 80s of 20th century). Galam

obtained in infinite level model such, that when one of two opinions be-

comes more than 50%, then the opinion wins, otherwise the third opinion

gets the majority.

Having knowledge of the analysis of impacts of the voting processes

for the political system, makes it possible investigate different strategies

for the manipulation of the agents and its impact on the dynamics of the

voting process.

The model of Sznajd-Weron and Sznajd reported in [98] was designed

to explain certain features of opinion dynamics. Well known slogan ”United

we stand, divided we fall” or in Arabic culture ”Union is force and divi-

sion is weakness” leads to simple dynamics, in which individuals placed

on a string can choose between two different opinions (political parties,

products etc.) and in each update step a pair of neighbors sharing a com-

mon opinion can persuade their neighbors to join their opinion. This kind

of majority game can be compared to Ising model which was formulated

in the 1920s and also simulated during the last 40 years. In contrast to

the Ising model, information does not flow from the neighborhood to the
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selected spin, but conversely, it flows out from the selected cluster to its

neighbors.

In the original article [98], the opinions of the agents are numbers +1

and −1 and the agents are placed on string and Monte Carlo step is char-

acterized by choosing two neighbors and if both opinions agree then their

neighbors are (ferromagnetic) convinced to share the same opinion and if

the pair of agents don’t agree then (anti-ferromagnetic) disagreement is

spread. There are three limiting points

• all agents share the same opinion +1,

• all agents share the same opinion −1,

• both opinions share 50% of agents.

The results of the simulations of dependence of probabilities of the lim-

iting cases on the initial concentration is shown and no phase transition

is found in [98]. Next, correspondence of the model and reality using

autocorrelation function is presented. After that, a question of distribu-

tion of time intervals needed to change opinion of random chosen agent

were submitted and it was shown that the time intervals are distributed

as power law with exponent close to 3
2
and it is independent of the initial

concentration of +1s and −1s. Finally, the problem, where the agents are

not able to follow dynamic rules and make random choices with probabil-

ity p, was simulated. The simulations suggests that there is some critical

value p∗, where if p < p∗ then the system reaches one of the three steady

states whereas if p > p∗ it is completely disordered. After that, the depen-

dence of the distribution of time intervals needed to swap opinion on the

noise probability p, was then investigated. In the case where p < p∗, the
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distribution follows the power law and, in case p > p∗, the distribution

follows the exponential law.

Using this as our starting point the model can be enhanced in many

ways as follows;

• different social structure of the agents,

• generalization of the interactions and

• allowing more possible states of the agents.

The model was simulated in 2 dimensions in [99] by Stauffer et al.,

[100] by Moreira et al., [101] by Bernardes et al., [103] by Chang et al.,

[108] and [109] by Stauffer et al., [113], [114] by Stauffer, in 3 dimensions,

in [107] by Bernardes et al. and [109] by Stauffer et al. and in higher di-

mensions, in [109] by Stauffer et al. Generalization of the Sznajd model on

small-world networks was made in [110] by Elgazzar and simulations on

Barabási-Albert network were done in [107] by Bernardes et al. and [120]

by Bonnekoh et al. Finally, the fully-connected network was described by

Slanina in [123].

When we move from a one-dimensional case of the underlying net-

work to a higher dimension, then there are various possible definitions of

interactions. If these changes are ignored then the following cases of in-

teraction can be considered: the Ochrombel case in [102]; the advertising

effects in [113] by Schultze and in [116] by Sznajd; the long-range interac-

tion in [115] by Schultze; the simultaneous updating in [114] by Stauffer

and [119] by Sabatelli et al. and the simple model of elections shown by

Bernardes et al. in [101] and [107].

The standard definition of the Sznajd model supposes two possible

opinions. Generalization of the rule is discussed in a range of papers by
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Bernardes et al. [107], by Stauffer et al. [108], [112] and by Schultze et al.

[115].

As has been discussed, the model was simulated in various variants.

Analytical investigation of the Sznajdmodel variants was shown in papers

by Krapivsky et al. [118] and by Slanina et al. [123].

Themodel is general and application of its modification to explain elec-

tions is shown by Bernardes et al. in [107] with discussion of the results

process by Lyra et al. in [105]. Its application to the market is investi-

gated by Sznajd et al. in [104] and comparison with the results of the real

sociological investigation was shown by Sznajd et al. in [98].

Generalization of the model on a square lattice was discussed with six

different rules by Stauffer et al. in [99] and fixed points of dynamics and

relaxation times were investigated and a phase transition was observed

for an initial concentration of 50% of +1s and −1s.

The Sznajd model on an incipient cluster of the square lattice at perco-

lation threshold was simulated by Moreira et al. in [100] and it was shown

that the phase transition is fixed to equal concentration of the opinions and

it is robust against changes in geometry.

The Isingmodel with Glauber kinetics is compared to the Sznajdmodel

using cluster size of s in [101] by Bernardes et al. and the differences were

found in time evolution. In the Sznajd model, the cluster sizes perma-

nently decrease with time. Distribution of sizes of clusters corresponds

each other as well as distribution of time-scaled distribution of sizes of

clusters. Next, the simple model of elections was introduced and its agree-

ment with experimental data described in papers by Costa Filho et al. [96]

and by Bernardes et al. [107] was shown.

In paper by Chang et al. [103], twomodels of the spreading of opinions
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on a triangular lattice are discussed. The first one, in where spreading

mixed opinions and the second one is the spreading anti-ferromagnetic

opinions. Mixed spreading always leads to a fixed point for all values of

the initial concentrations and the spreading of disagreement is irrelevant.

The second model has always fixed points except for special cases of the

lattice. Relaxation times fit to the same curve, so the initial conditions do

not affect the model. No phase transition was found in either models.

A cubic lattice and the Barabási-Albert network were used in [107].

The model was a 2-step process and the agents have a finite set of possible

opinions. In the first step, the agents are manipulated to accept a candi-

date and, in the cubic lattice case, the candidates have different skills to

convince the others. The second step means to run the Monte Carlo simu-

lation in the system. Both cases give a good approximation to the results

from elections, but the case of Barabási-Albert network is more realistic,

because there is no more assumptions of skills of the candidates as in the

cubic model.

The Sznajdmodel with limited persuasionwas described in [108]. Lim-

ited persuasion means ability to change an opinion of an agent with q pos-

sible states only for ±1. In case of q = 3, the dynamics nearly always lead

to a fixed point where all opinions were a central opinion. In rare cases,

the dynamics lead to the inhomogeneous fixed configuration. In the case

q = 4, almost always the dynamics lead to an inhomogeneous fixed point

and rarely lead to never-ending dynamics or an parallel fixed point. Next,

cyclicity of the opinions was discussed. Case q = 3 is trivial, but for the

case q = 4 the dynamics lead to a inhomogeneous fixed point.

A ratio of never changed opinions and its comparison with the Ising

model were studied in [109]. Generally, the ratio decays as t−θ, where t
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means time. In one dimension, the exact result for the Ising model com-

pares well with θ = 0.2, which was obtained from simulations, but in

higher dimensions these two models differ very much when we compare

the θs.

Amodification of the Sznajdmodel on small-world networks was stud-

ied in [110]. First of all, simple analytical results of the small-world net-

work are derived. This showed two fixed points and the time needed to

change the opinion of an agent decays as a power-law with exponent of

1.36. Thereafter, a model with leaders is introduced. In this case no fixed

points are observed and this result is independent of the initial concentra-

tion of the opinions and the leaders don’t influence the exponent of time

needed to change opinion. Finally, an analysis of the time series of mag-

netization is made and in [110] it was found that it decays as a power-law

with exponent 0.934 and this means a Hurst exponent close to 0.5. Thus,

the results are very close to the normal distribution, which is widely ob-

served in social phenomena.

In [111], the Sznajd model is generalized to look similar to the Glauber

dynamics of the Isingmodel and this model is described as a two-component

model. Hamiltonian of the model for one dimension is

H = −J1

∑

i

SiSi+1 − J2

∑

i

SiSi+2. (4.1)

The dynamics lead to several fixed points which depends on the constants

J1 and J2, which could be;

• ferromagnetic and anti-ferromagnetic fixed points,

• ferromagnetic fixed points,
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• anti-ferromagnetic fixed points,

• (2,2) anti-phase.

In [111] the author provides a detailed phase diagram and relaxation to-

ward the fixed points are discussed. For the first pair of the cases relax-

ation is very slow or sometimes very fast. For the second pair, the system

fluctuates around the final state and the fluctuations decrease in time.

A simple effect of advertising and feedback of advertising on society

and diffusion of the agents on the square lattice are discussed in [113]. An

advertising effect is significant when advertising is sufficiently strong. A

master of submission of an advertising campaign must start its campaign

fast with a small time lag, otherwise themarket will be lost for theminority

company.

The Sznajd model with simultaneous updating which is traditional in

cellular automata is investigated in [114]. The agents, which are influenced

by different opinions, do nothing. Simultaneous updating prevents reach-

ing complete dominance one of the opinions in sufficient long time. When

the dominance was reached, initial majority leads to its total dominance.

Long range interaction with multiple options in the Sznajd model was

studied in [115]. A fraction of the agents follow the Sznajd rule and the

next part follows the Ochrombel rule and one of the options is chosen

and its ratio in the system is varied. A phase transition was observed

for different strength of long range interaction when the author of [115]

increases bias probability. In strictly Ochrombel case, no phase transition

is observed.

Theoretical explanation in the mean-field limit of the Majority Rule

model, which is strongly related to the Sznajd model in [98], is done in
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[118]. Two types of networks were used, the fully-connected network and

a string and two questions were solved:

• Function probability reaching total dominance one of the opinions

from a given initial state of initial concentrations of the opinions.

• Function, that returns time needed to reach consensus, of system size

and initial ratio of the opinions.

The authors in [118] derive Master equations of the processes. On the

fully-connected network (mean-field approximation), an exponential de-

cay of the probability reaching total dominance was observed in the finite

system for an initial concentration of less than 1
2
. The maximal time to

reach consensus scale as 2 lnN , where N is size of the system and the lead-

ing behavior is ln N . On a string, equations of motion for the mean spin

and for the number of domains are derived and the number of the domain

decreases as t−
1
2 in time t. Computer simulations showed the power-law

behavior of the most probable consensus time in different dimension of

the hyper-cubic lattice.

In [119], the Sznajd model was investigated with simultaneous updat-

ing and the agents have a memory. The system ends up at a fixed point

when there is asymmetry and the concentrations of the agents are higher

than△pc, which in turn depends on the memory length and the size of lat-

tice. Phase transition could be observed from simulations for a fixed size,

various initial concentrations and memory lengths.

Simulation of the Ising model and the Sznajd model on a growing

Barabási-Albert network is developed in [120]. Simulations were com-

pleted for these models using:

• one randomly chosen node
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• two randomly chosen neighbors

• four randomly chosen neighbors

The previous pattern of agent then is able to convince all their neigh-

bors. Significant differences inmagnetization were found between the first

model and the last two models, where consensus was always found and

where an area of coexistence of both opinions is present. When limited

persuasion is present in the model and a prior distribution of opinions of

new agents is taken, we can see that even opinions almost lose supporters.

Reformulation of the Sznajd model on a string as a linear voting model

and new simulations of the Sznajd model are shown in [122]

4.3 Sznajdmodel on the fully-connectednetwork

A mean-field solution of Sznajd model is used as the starting point to un-

derstand the dynamics of opinion formation in a society.

4.3.1 Definition of the Sznajd model on a network

1 Consider a system with N agents placed on the nodes of graph Λ (net-

work of social contacts) , which is defined by G = (V, E, ǫ, νV ). V is a set of

nodes and E is a set that is mapped using ǫ to unordered pairs (i, j), where

i, j ∈ V , of nodes (edges). νV is a mapping to an opinion of an agent.

An opinion of an agent can be, in sense of the paper [123], can be de-

noted as σi, i ∈ V and in case of only 2 options it is σi ∈ {−, +} = S. The

state of whole system at time t is described byΣ(t) = [σ1(t), σ2(t), . . . , σN(t)] ∈
1Theoretical solution were derived by coauthor in [123]
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SV . Σ(t) performs Markov process, where the dynamics could be evolved

in three ways:

• two against one,

• Ochrombel simplification,

• edge initiated dynamics.

Two against one

First, i ∈ V are chosen with a uniform distribution. Next, j ∈ EG(i) are

selected with the uniform distribution. If σi (t) = σj (t) then an agent k ∈
EG(i)∩EG(j) \ {i, j} is manipulated by players i and j σk (t + 1) = σi (t) =

σj (t), otherwise opinions remain unchanged.

Ochrombel simplification

First, an agent i ∈ V is chosen with the uniform distribution. Then, an

agent j ∈ EG(i)with the uniform distribution is used and his (her) opinion

is set to σj (t + 1) = σi (t), otherwise the others do not change opinion.

Edge initiated dynamics

An edge (i, j) is randomly chosen with the uniform distribution from E.

If σi (t) = σj (t) then an agent k ∈ EG(i)∩EG(j) \ {i, j} is set to σk (t + 1) =

σi (t) = σj (t), the others remain unchanged.

The models two against one and the edge initiated model could lead

in many cases of networks to the same dynamics, especially for the fully-

connected network, the string and the hyper-cubic lattices.
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4.3.2 Theoretical solution

When a graph is random and densely connected, it can be approximated

by the fully-connected graph. In fact, it is a kind of mean-field approxima-

tion.

The social network, where the agents are placed, is the fully-connected

network. The state of the system is described by the occupation numbers

Nσ =
∑N

i=1 δσiσ or by densities nσ = Nσ

N
, for the opinion σ and its dynamic

fully describes the evolution of the model, where the total number of the

agents is conserved. Thus it is in the system q − 1 independent dynamical

variables.

Two against one

Lets start only with q = 2 and so S = {−, +}. My system will be described

by only one dynamical variable

m =
N+ − N−

N
. (4.2)

There are only three possible events at each turn and their probabilities are

P

(
m → m +

2

N

)
=

1 − m2

8

(
1 + m +

1 + 3m

N

)

P

(
m → m − 2

N

)
=

1 − m2

8

(
1 − m +

1 + 3m

N

)

P (m → m) = 1 − 1 − m2

4

(
1 +

1

N

)
, (4.3)

where any term of a higher order than 1
N

can be neglected. The proba-

bilities are not symmetric and this has significant consequences (similar a

phase transition).
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The discrete master equation for the process for probability P (m, t) re-

trieval the system at time t with variable m is

P (m,t+δt)−P (m,t)
δt

=

−P (m, t)
(
P
(
m → m + 2

N

)
+ P

(
m → m − 2

N

))

+P (m − 2
N

, t)P
(
m − 2

N
→ m

)
+ P (m + 2

N
, t)P

(
m + 2

N
→ m

)
(4.4)

and if N → ∞, δt → 0 and δt = 2Nδτ then it leads to the Fokker-Planck

equation up to diffusion term

∂

∂τ
P (m, τ) = − ∂

∂m

((
1 − m2

)
mP (m, τ)

)
+

∂2

∂m2

((
1 − m2

)
P (m, τ)

)
. (4.5)

Next, when I start to investigate q 6= 2 and q ≫ 1. The distribution of

occupation numbers are defined by

D(n) =
N

q

q∑

σ=1

δ(n − nσ), (4.6)

where δ(x) = 1 for x = 0 and otherwise zero. It would be difficult to

write a dynamic equation for all possible D(n), so we start to investigate

Pn(n) = 〈D(n)〉. Assuming limit N → ∞ and q → ∞ and substitution

x = 2n − 1, I get

∂

∂τ
Pn(x, τ) =

∂2

∂x2

((
1 − x2

)
Pn(x, τ)

)
. (4.7)

Ochrombel simplification

Probabilities of the three possible events are
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P

(
m → m +

2

N

)
=

1 − m2

4

(
1 +

1

N − 1

)

P

(
m → m − 2

N

)
=

1 − m2

4

(
1 +

1

N − 1

)

P (m → m) = 1 − 1 − m2

2

(
1 +

1

N − 1

)
. (4.8)

So, the master equation is

P (m,t+δt)−P (m,t)
δt

=

−P (m, t)
(
P
(
m → m + 2

N

)
+ P

(
m → m − 2

N

))

+P (m − 2
N

, t)P
(
m − 2

N
→ m

)
+ P (m + 2

N
, t)P

(
m + 2

N
→ m

)
, (4.9)

in limit N → ∞ and assuming δt = N2δτ , it could be rewritten to

∂

∂τ
P (m, τ) =

∂2

∂m2

((
1 − m2

)
P (m, τ)

)
. (4.10)

Thus in 4.10we describe the dynamics of the Sznajdmodel withOchrombel

simplification on the fully-connected network. The dynamic is written in

form of the Fokker-Plank equation with position-depended diffusion con-

stant.
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4.3.3 Solution of the dynamics

Two against one

The equation which describes the dynamics in this case is 4.7, but I only

take the equation without diffusion term

∂

∂τ
P (m, τ) = − ∂

∂m

((
1 − m2

)
mP (m, τ)

)
. (4.11)

General solution of equation 4.11 is

P (m, τ) =
1

m (1 − m2)
f

(
exp (−τ)

m√
1 − m2

)
, (4.12)

where f is arbitrary function of one variable and it is influenced by initial

conditions. The equation 4.12 provides the following estimation for the

average time 〈τst〉 to reach the stationary state

〈τst〉 ≃ − ln

(
|2p − 1|√
p (1 − p)

1√
N

)
(4.13)

The relaxation time towards the uniform state is τrelax ≃ N and when I use

scaling t = 2Nτ , I get the tail of the distribution

P (τst) ∼ exp

(
− τst

τrelax

)
, τst → ∞, (4.14)

τrelax ≃ 1

2
. (4.15)

The most interesting result of the model is the presence of the dynamic

phase transition similar to that found in numerical simulations. When I

start with any fixed positive magnetization, the dynamic lead to the state
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with uniform opinion of the society with meaning +1. When the initial

magnetization is negative then the stationary state is uniformwith opinion

−1. The possible deviations close to p = 1
2
are neglected in 4.11. The

presence of the dynamical phase transition can be seen in the average time

to reach the stationary state 4.13 for p → 1
2
.

Ochrombel simplification

The Ochrombel simplification of the Sznajd model and the Sznajd model

with q ≫ 1 are governed by

∂

∂τ
P (m, τ) =

∂2

∂m2

((
1 − m2

)
P (m, τ)

)
. (4.16)

The solution of the equation 4.16 is achieved using the expansion in eigen-

vectors. The eigenvectors corresponding to eigenvalue −c will be denoted

by Φc(m) and they are governed by equation

(1 − m2)Φ′′
c (m) − 4mΦ′

c(m) + (c − 2)Φc(m) = 0. (4.17)

So, the full solution of the equation 4.16 is

P (m, τ) =
∑

c

Ac exp (−cτ) Φc(x) (4.18)

where the coefficients Ac are determined by initial conditions.

What is the space where equations 4.12 and 4.17 are solved? These

functions are the probability densities, so theymust be normalizable
∫

Φ(m)dm <

∞ and only relevant interval is [−1, 1] and finally, it is useful to use δ-

function as an initial condition. All these conditions lead to the space of

distributions with restricted support to the interval [−1, 1].
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Figure 4.1: Probability of reaching the stationary state in times larger that
τ in case of the two against one for q = 2 and N = 2000.

4.3.4 Results from simulations

The author of the thesis performed the simulation of the Sznajd model us-

ing two variants of updating and with algorithms described in the section

2.4.1. The simulation program provided the distribution of times needed

to reach the fixed point of the dynamics P >
st (τ). It can be found in the

figures 4.1 and 4.2 and it can be easily seen that the distribution decays

exponentially.

Two against one

Taking into account the analytical results shown at 4.14 then the author

was able to fit an exponential tail of the distribution obtained from simu-

lations by

P >
st (τ) ≃ exp

(
−τ − 〈τst〉

τrelax

)
, τ → ∞. (4.19)
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Figure 4.2: Probability of reaching the stationary state in times larger that
τ for various initial concentrations in case of Ochrombel simplification for
q = 2 and N = 2000.

Both, the results from simulations for 〈τst〉 and the analytical prediction

can be found in the figure 4.3 and good agreement is observed between

the theory and the simulations as well as the results from simulations and

the theory 4.15 for τrelax in the figure 4.4 except such initial ratio p close

to the point of the phase transition p0 = 1
2
. The deviations are caused by

finite size effects.

Ochrombel simplification

The analytical predictions, which were shown in [123], could provide the

leading term of the tail of the distribution P >
st (τ). The expected behavior is

P >
st (τ) ≃ exp

(
−τ − τ0

τr0

)
, τ → ∞, (4.20)
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Figure 4.3: The average time to reach the stationary state for two against
one in case q = 2 and N = 2000. The solid line is the analytic prediction
4.13.

Figure 4.4: The relaxation time towards the stationary state in case q = 2
and N = 2000. The solid line is the analytic prediction 4.15
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Figure 4.5: Average time to reach the stationary state for Ochrombel sim-
plification in case q = 2 and N = 2000. The solid line is the analytic
prediction 4.21.

where the theoretical expectation for τr0 is τr0 = 1
2
and the expectation for

τ0 could be derived from equation 30 in [123] and this leads to

τ0 ≃ ln
√

6p(1 − p). (4.21)

In the figure 4.5, there could be found a good agreement between the the-

ory and the results from simulations.

4.4 Conclusions

The theoretical mean-field solution of twomodifications of the Sznajdmodel

were introduced in this chapter. It was shown that there is no phase tran-

sition in the Ochrombel simplification, in contrast to model two against

one, where the phase transition is present. In figures 4.1, 4.2, 4.34.4 and 4.5
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we can see results of simulations. The simulation was made by the author

using the Zarja simulation library and it verifies the theoretical solutions

of mean-field model.



Chapter 5

Minority Game

5.1 Introduction

Let us now imagine and simulate a world, where players try to choose the

minority option. This situation can bemotivated by simple scenario where

a person needs to reach a certain point. There are only two possible ways

to reach the point for example by car or by bicycle. The person does not

play the game alone but with the others. The right option is one whichwas

chosen by minority of the players because the majority freeze in crowd.

The person tries to edify herself and he/she is equipped with memory of

last success votes.

The scenario can be extended by imitation which is very common strat-

egy by psychologist, e.g., Fromm [3]. Thus, the person is able to follow one

of its acquaintances. The players, when they are not successful in choos-

ing the right option, follow the most valuable source of information which

can be the source of advantages and wealth. The source is chosen on social

network of human contacts. At the top of the pyramid are the leaders who

make orders which are executed by the followers and the followers pay a

58



CHAPTER 5. MINORITY GAME 59

fee to their own advisers as counter-value.

Such a society was studied in papers by Slanina [145] and [146] on ring

and in [147] by Anghel et al. for the Erdös-Renyi network and the tree

structures of leader-follower on networks which have a structure similar

to the structure of human contacts.

5.2 Review of the Minority Games

The Minority Game is an evolutionary game, whose states depend on pre-

vious states. It was introduced in paper by Challet et al. [127] where the

agents use inductive reasoning. The origin of the model was found in the El

Farol bar problem introduced by economist Arthur in [125].

Minority Game involves an odd number N of players. The agents self-

ishly try to choose one of two options. The agents, which chose an option

that was chosen by minority of all agents, can be rewarded. Every agent

keep at disposition S strategies which maps previous history of winning

votes to the next possible chosen vote. Official used vote of the agent is

chosen under the highest internal scores of strategies.

The Minority Game is a game with a non-zero sum. Challet et al. in

[127], [128] searched two extreme cases of attendance at one of sides be-

cause it is correlated with number of winners. If one of agents chooses one

option and the others the second one then there is only one winner and the

waste of the system is huge in contrast to the case with ⌊N
2
⌋ at one side and

with ⌈N
2
⌉ at the other side. So the agents can cooperate through memory

of winning votes and more effectively exploit the banker of the game. In

this sense, the collaboration decreases global waste.

When agents with different memory sizes are placed at the same bat-
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tlefield, the more intelligent agents are more successful and the success of

big-brain agents is saturated.

On the other hand, when the agents are equipped with a bigger idea

bag S then they behave worse in contrast to the population of the agents

with a smaller ”idea bag” and the players tend to switch strategies which

causes their failure.

A different payoff function which estimates less winners more than

more winners could cause a two-peak distribution of attendance. In [128]

by Challet et al., there is a general discussion of payoff functions when

the system can manage global payoff which can cause two peaks in the

distribution of the attendance. In general, when ρ = N
2M > ρc then the

histogram can have only one peak and when ρ < ρc then the could be

more peaks that are symmetric with respect to N
2
.

In [127], Challet et al. measured the average success of individual

strategies and they found that the strategies are equivalent (none of the

strategies have extra ability to win) in the t → ∞. An individual strategy

that play good in competition with the other strategies could be last in

next set of strategies. There is in the strategy space no risk-free strategy.

When Darwinism is introduced into the system and when cloning of

the most successful agents is not perfect with probability p then the total

waste of the system is decreased but when cloning is perfect p = 0 then

the behavior is worse than in the original system without Darwinism. In

the case of Darwinism of memory sizes when the length of memory of

an agent could rise up or fall down with small probability then average

memory of the agents saturates and the saturation values are not univer-

sal. In [128], the authors compare systems with various values of ρ with

Darwinism and in the original game without Darwinism and they found
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Figure 5.1: Volatility of attendance as function of the control parameter

ρ = 2M

N
for s = 2 in original Minority Game. Random players would

generate signal with volatility 1.

that the performance of the system is better and the figure of dependence

of volatility per agent against ρ was introduced and they obtain a simi-

lar picture to that shown in 5.1. Moreover, species lifetime (where species

means the agents with the same strategies) follow the power-law with an

exponent that is very close to real life evolution and the law does not de-

pend on p. Finally, observation of the power-law for species against their

rank was made for p < 1.

A phase transition was observed in [128] and it is illustrated by 5.1.

There are two phases which are separated by minimal volatility of atten-

dance per agent for ρc but there are two different regions in the first phase.

The first phase is for ρ < ρc, where are 2 regions, for ρ ≪ ρc,
σ2

N
∼ 1

ρ
and

so σ2

N2 ∼ 1
2M , when M is constant then different N causes dilatation of the
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system. The next region is ρ < ρc, close to ρc. In this phase in general,

increasing number N of agents causes increase of global waste of payoff

points. The second phase is for ρ > ρc, where increase of agents causes

decrease of global waste of payoff points. In case σ2

N
→ +∞, the play-

ers are not coordinated and they play as random players (players which

randomly votes one of the options). The explanation of the classification

based on investigation of strategy space is made in [128], and a similar

discussion is seen in [130] by Johnson et al. and [133] by Savit et al.

A more accurate discussion of phase transition was described by Chal-

let et al. in [129] where the Minority Game is described as a spin system

and when ρ = 2M

N
varies then a dynamical phase transition with symme-

try breaking can be observed. There are two phases, the symmetric one

(ρ < ρc) where both options are taken with the same frequency and the

asymmetric phase (ρ > ρc), where a minority of agents provide one action

more frequently for every of 2M possibilities of memory outcome and thus

there is opportunity to exploit information from the game and get profit.

It is called an arbitrage in economics. It means that a fraction of the agents

use only one strategy while the others switch between strategies. Approxi-

mative computation of variance of attendance lead to a term that is similar

to neural network models.

Later, spin glass theory was used in theMinority Game by Challet et al.

in [132], namely the replica method by Mezard et al. [124] combined with

the saddle point method. The results obtained using previous methods,

differ from Nash equilibrium of the game where agents maximize their

utility function. Challet et al. in [132] successfully computed the mini-

mal position of minimal variance of attendance as ρc
.
= 0.34. In [131] by

Challet et al., more general analysis of theMinority Gamewas shown with
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Figure 5.2: Structure of the types of the Minority Games.

detailed computations.

5.3 Review of modifications of Minority Game

In the previous section, there are fundamental properties of the Minority

Game, where the agents are placed in a complex world where no agent has

complete information for his/her next action. These properties stimulated

many authors to makemodifications of to the original rules. The evolution

of Minority Game can be imagined as in figure 5.2 where different payoff

functions in the original Minority Game were omitted.
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5.3.1 Minority Game with peer pressure

This model is based on an idea based on the fact, that in the original Mi-

nority Game, the agents use global information - memory but when the

agents are placed on a network then they can have local information at

disposal - memory of the local minority. The model was defined and sim-

ulated by Chau et al. in [134]. The agents have no overall strategy space at

their disposal with only reduced strategy space and the network is equiv-

alent to a 1-dimensional torus (ring). In general, the model exploits gain

better in then the Minority Game for small ρ so local information dilutes

the overcrowding effect but when ρ increases then the overcrowding effect

of both games will be suppressed but cooperation in the Minority Game

with peer pressure is problematic due to two sources of information.

For case of non-zero global memory size Mg and when Ml > Mg then

performance become better for a bigger memory size Ml irrespective of

value ρ. If Ml ∼ Mg then the performance is a similar like system of coin-

tossing players.

Case with memory size Mg = 0, it allows only the use of local informa-

tion and the global payoff is bigger than in the original Minority Game as

well as in case Mg 6= 0 for small ρ. Chau et al. in [134] revealed that the

players are frozen and it causes depression of global waste.

5.3.2 Evolutionary Minority Game

This model was defined in paper [135] by Johnson et al. as a system of N

agents. Every agent is equipped with one strategy but the strategy is used

with probability p and the opposite site with probability 1− p. Darwinism

is implemented such that when an agent’s points decrease below value d
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then he/she is eliminated and his/her place is occupied with a new agent

with the same strategy but different p. The new value of p is chosen with

uniform distribution centered in old p with radius of R.

Johnson et al. in [135] measured the distribution of values p distributed

among the agents. Most of probability is clustered close to 0 and 1 as

well as average life length and that behavior was successfully theoretically

explained and classified.

5.3.3 Time Horizon Minority Game

The definition of Time Horizon Minority Game was made by Hart et al. in

paper [140] and the model is based on fact that every trader knows only

limited time history of successes and failures. Thus, there is defined time

of τ when previous successes are kept in mind. Volatility is periodic in

2.2M time-steps and the authors concluded that this value corresponds to

the number of different paths in a De Bruijn graph linking 2M histories

and this is connected with the similarity of dynamic for t > τ when τ is

increased by multiples of 2.2M . The dynamic of Time Horizon Minority

Game for t < τ is similar to the original Minority Game but the time evo-

lution of the actual modification of Minority Game for t > τ is strictly

deterministic and it differs from case when random histories are gener-

ated. Finally, the theoretical explanation of previous mentioned features

was published in [140].

5.3.4 Local Minority Game

The LocalMinority Gamewas defined byMoelbert et al. in [136] as a game

of N agents that try to be in minority group. Every agent is placed on a
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network and in [136] there a ring and a two-dimensional lattice was taken.

In contrast to the original Minority Game, the agents play in the local area

of his/her neighbors and so every agent has available memory of local

winning sides. Moelbert et al. in [136] provide theoretical computation

of the problem with temperature T similar to [131] and they revealed a

phase transition from a phase of frozen agents that use only one of the

strategies but there are some frustrated agents on the boundaries of the

frozen-agent clusters which vanish in thermodynamic limit and a phase

of random-strategy-choosing agents. The organization of the agents in the

frozen phase is like antiferromagnetism whenwe look at actions taken and

the results is that everybody can win in contrast to the original Minority

Game where at most there are ⌊N
2
⌋winners.

5.3.5 Minority Game with local information

Kalinowski et al. in paper [138] defined the Minority Game with local

information where they were influenced by the results reported in paper

[137] by Paczuski et al. The agents in themodel are placed on a ring, where

every agent uses memory which contains information on previous actions

of his neighbors. It was found that left-right asymmetry of memory plays

no role .

First of all, Kalinowski et al. in [138] analyzed the dependence of the

performance of the game on the number of strategies and they found that

in case of S > 1, the performance is worse for constant M and N and

increasing S. For case S = 1 it behave randomly because the agents have

no possibility to adapt to the reality.

The standard deviation of attendance follows the power law with ex-

ponent 1
2
for increasing number N of agents in the system for memory
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M ∈ {1, 2} and it follows the power-law with exponent 1 for memory

M ≥ 3. Kalinowski et al. in [138] revealed phase transition between

M = 2 and M = 3 and the cooperation is based on connections between

the agents who provide the real previous option taken. Finally, Darwinism

is a positive factor for the decrease of global waste only if local evolution

has an effect. Local evolution is based on the copying of abilities of neigh-

bors.

5.3.6 Hierarchically Organized Minority Game

The definition of the Hierarchically Organized Minority Game was intro-

duced by Foldy et al. in [141] by Foldy et al. and the central idea is hi-

erarchical organization of society which should be reflected in a model.

Implementation of the main idea is done by playing the Minority Game in

two levels. The first level is where are the agents attended and there are

N ′ such playgrounds and it can be imagined as in the figure 5.3. The sec-

ond level is the Minority Game where the first level Minority Games are

attended and they use the option which was in minority at the first level.

The strength of the second level interaction is controlled by a payoff pa-

rameter C and if C = 0 then the model simplifies to the original Minority

Game. The similar hierarchical structure can be found in Galam’s paper

[97].

Research of the interaction between the agents and the first level Mi-

nority Games leads us to measuring of global waste which shows devi-

ation from the original game but the character of the curve is the same

whereas the order parameter in the original Minority Game from [129]

shows no more phase transition in the hierarchical structured Minority

Game and thus there exists optimal strategy.



CHAPTER 5. MINORITY GAME 68

Figure 5.3: Organization of Hierarchically Organized Minority Game.

Correlation of the first level and the second level shows for waste of

the system random behavior for weak global interaction but if the global

interaction is stronger then global coordination can be observed.

Finally, coordination of the agents and the second level Minority Game

show similar behavior for all values of parameter C.

5.3.7 Grandcannonical Minority Game

The Grandcannonical extension of the Minority Game was defined in pa-

pers by Slanina et al. in [142], Challet et al. in [143], Jefferies et al. in [144]

as models of a real market mechanism where the agents are able to par-

ticipate in a market that is introduced as a modified Minority Game and

there are 2 types of agents - producers and speculators. The above men-

tioned papers differ in properties of the agents as well as exact market

mechanism but the main conclusion, that is relevant to the original Minor-
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ity Game, is occurrence of phase transition from the asymmetric phase to

the symmetric phase (with different meaning from the original Minority

Game) for speculators and producers [143].

5.3.8 Minority Game with imitation

Imitation was introduced in the Minority Game by Slanina in [145], [146]

as a local information transmission when the agents could imitate each

other where they have a disposition for imitation. There are a fixed aver-

age ratio p of agents with disposition for imitation and probability p1 of

transmission from a state with disposition to a state without disposition.

The substrate network, where the agents are connected to the nodes, is a

one-dimensional torus with one-way oriented edges.

The number of imitated agents have an asymptotic value that is mono-

tonously reached for p1 = 0 and with maximum for p1 6= 0. Imitation

seems to be beneficial for global performance of the model in the symmet-

ric phase and harmful factor in the asymmetric phase where neighbors of

rich agents are abused paying fees for imitation. Evolution of social ten-

sion monotonously reaches asymptotic value for p = 0 and a minimum

value is asymtotically reached for p 6= 0.

Research of imitation structures using computer simulations was com-

pleted by Anghel et al. in [147] where the distribution of the average num-

ber of leaders with k followers undergo the power-law with sharp cut-off

due to using the random graph as a substrate network of the model.
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5.3.9 Other important modifications of Minority Game

Lo et al. in [148] studied a networkedMinority Gamewith agents who can

use the best of owned strategies and strategies of neighboring agents and

random network using crowd-anticrowd theory.

A special kind of Darwinism using a genetic algorithm was studied

by Sysi-aho et al. in [149] and the process seems to be useful for global

performance of the model.

5.4 Minority Game with imitation on complex

networks

The author defines the behavior of the agents in the game as follows:

the player use its own strategies if there is no richer friend otherwise the

player follows a vote of a richer individual. This kind of behavior is widely

spread in society because it is very effective and low cost social strategy.

5.4.1 Definition of the model

Consider a graph with an extra information G = (V, E, ǫ, νV ) that is bound

to the vertices V using scheme one-to-one (in our case one agent per one

vertex). ǫ is mapping to unordered pairs (i, j), where i, j ∈ V . Every agent

is bound to a vertex and every vertex carries only one agent. Every agent

carries an identifier that is natural number and it can be used to access the

data what is carried on him/her. We have an odd number N of agents

and each player has S = 2 strategies (setting up the variable to 2 due

to simplification), denoted sj ∈ {−1, 1}. A player can take two possible

actions. Agents which choose the option 1, win if the most of players
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take 0 and vice versa. The winning agents receive 1 point but the loser

agents will not improve their wealth. The players share the history of the

the winning sides of length M , and this can be written as µ ∈ {−1, 1}M .

The strategies are maps which transforms 2M possible strings of actual

memory µ to some possible option −1, +1. If the player j takes strategy

s at time t then the action will be denoted as aµ
j,s. The virtual points of

strategy s of agent j will change in the following way

Uj,s(t + 1) = Uj,s(t) + 1 − δ

(
a

µ(t)
j,s − θ

(
∑

i∈Ψ

ai(t)

))
, (5.1)

where aj(t) is the action the player j which has been taken at time t and Ψ

is a set of all agents. These virtual points are used by appropriate agents

for making decision - the agent use such vote as it is offered by the strategy

with the highest virtual points.

Two conditions are necessary in order that the agent can imitate his/her

neighbors. The player should have a disposition for being an imitator.

There are two possible states of imitation. Every player will have a state

l̃ ∈ {0, 1} indicating whether the player is a potential natural born leader

(l̃ = 0) or potential imitator (l̃ = 1). Initially, every agent will have proba-

bility p to be an imitator and probability 1−p to be a natural born leader at

the initial time. But the players should swap between imitators and natu-

ral born leaders and vice versa p1 is probability swapping from imitator to

natural born leader; p2 is probability swapping from natural born leader to

imitator which must fit p = p2

p1+p2
which comes from a condition where it is

desired to have the average number of imitators and natural born leaders

fixed. The second condition to be an imitator is - there is a neighbor in

the social network that has more points than the actual agent. The actual
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agent chooses the most successful agent - in sense of number of points.

The player with l̃ = 0 never imitates (he/she is natural born leader).

In brief, an agent uses their own strategy in two cases. Either the agent

has no disposition to imitate or the agent has a disposition to imitate others

but there is no richer agent among her neighbors. Otherwise, the agent is

an imitator.

The potential imitator copies action from his/hermost successful neigh-

bor via the edges in the network at time t. If there are more such agents,

the leader of the actual agent is randomly chosen with uniform distri-

bution. Wj is the wealth (number of points) of jth player, and the vari-

ables l̃j describing the potential state of imitation. It can be written as

lj = l̃jθ(maxi∈EG(j) Wi − Wj), with θ(x) = 1 for x > 0 and 0 otherwise,

where EG(j) is a set of agents that are neighbors on the social network

(represented by graph) G. lj is actual state of imitation at certain time. The

actions of the players are

aj = ljf (j, ak) + (1 − lj) aj,sM
, (5.2)

where the function f(j, ak) returns an action for the wealthiest neighbor of

the agent j with wealth maxi∈EG(j) Wi. The imitation is not free of charge.

The imitator loses a small fraction ε of his income to the imitated agent

(income fee) at time t. So, the rules account for allowing imitation (direct

interaction) to the imitators. So, we update the wealth of the players in

each time step is

Yj(t) = ε
∑

i∈Ω(j)

Yi (t) + 1 − δ

(
aj − θ

(
∑

i∈Ψ

ai(t) −
N

2

))
, (5.3)
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Figure 5.4: An example of two domains. The leaders dictate the next op-
tion and their followers point to them using black arrows. The followers
are aside the vertical line in the center. The grey lines show other possi-
bilities for imitation - social contacts. The levels of imitation are separated
by thin horizontal lines. The grey arrows on left specify different forking
values and finally, grey arrows on right specify different sizes of domains.

△Wj (t) = (1 − εlj)Yj (t) , (5.4)

where Yj(t) is an auxiliary variable that stores the change of wealth before

the agent pays for information if she imitates. Ω(j) is the set of all agents

that imitate the agent j and △Wj(t) = Wj(t) − Wj(t − 1), so it is a time

difference of wealth.

5.4.2 Interesting variables

All these rules support the formation of domains of agents which follow

the option of a leader of the domain. An example of two domains can be

seen in the figure 5.4. There are many variables that can be measured:
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• Social tension evolution,

• Domain size distribution,

• Leader domain size distribution,

• Imitation depth (level),

• Forking distribution,

• Leader forking distribution,

• Correlation of points and connectivity,

• Correlation of number (direct) imitators and connectivity,

• Correlation of number (direct) imitators and connectivity for leaders,

• Efficiency of habit exploitation.

The first interesting variable is social tension, which measures differ-

ences of number of points among society as follows

Tσ(t) =
1

W (t)

(
1

|V |
∑

i∈V

1

|Vi|
∑

j∈Vi

|Wi(t) − Wj(t)|σ
) 1

σ

, (5.5)

where W = 1
N

∑
i∈V Wi so it is the average1. In general, the author has as-

sumed that the social tension of a pair of poor agents with an appropriate

difference of wealth is higher than the social tension of rich ones with the

same difference of wealth. Such assumption is fulfilled for σ ∈ (0, 1). This

is a parameter set up to σ = 1
2
in our simulations.

1
Vi means nodes in a graph but there is one-to-one correspondence between agents

and nodes. Thus, Wi means corresponding agent.
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Domain sizes, leader domain sizes, imitation depths, forking and leader

forking are explained in figure 5.4 and the statistics of the variables are

marked as DA(s), DL(s), I(d), FA(f), FL(f) respectively. Correlation of

points and connectivity means

P (c) =

∑
i∈V Wiδ(ki − c)∑

i∈V δ(ki − c)
, (5.6)

where ki is connectivity of i-th agent and V are vertices of a graph. The

correlation of number (direct) imitators and connectivity, correlation of

number (direct) imitators and connectivity for leaders are defined as

IA(c) =

∑
i∈V fiδ(ki − c)∑
i∈V δ(ki − c)

, (5.7)

IL(c) =

∑
i∈V,li=0 fiδ(ki − c)
∑

i∈V δ(ki − c)
, (5.8)

respectively. Where fi means number of direct followers (imitators) and

li = 0 means that i-th agent is leader.

Finally, efficiency of habit exploitation H(c) is defined as

HX(c) =
IX(c)

c
, (5.9)

where X is A or L.

5.4.3 Results of simulations

The author of the thesis made simulations of the model for two kinds of

substrate social networks - Watts-Strogatz network and Barabási-Albert

network. The Watts-Strogatz network has one internal parameter which
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can tune the number of shortcuts in the network and the Barabási-Albert

network has no parameter.

After investigation of many variables of the model, the author found

that the most interesting parameter is income fee ε which can cause huge

changes in the imitation structures. The simulations of the system have

been done for case N = 1001 agents with memory M = 5 and probability

of initiation p = 0.995.

Results for Watts-Strogatz network

The evolution of social tension T 1
2
(t) is shown in figure 5.5 where it can be

seen that it decreases without asymptotic value for low values of ε for all

rewiring probabilities p or it finds its stable asymptotic value for nonzero ε

for all rewiring probabilities p. The shortcuts can speed down the decrease

of social tension for low values of ε.

The correlation of points and connectivity P (c) in the figure 5.6 is us-

able for higher rewiring probabilities p due to variability of connectivity

in society of agents. A flat function of connectivity c can be observed for

ε ≤ 0.001 and it is increasing function of connectivity c for ε ≥ 0.01.

The imitation depths distribution I(d) in the figure 5.7 behaves as a

Poisson distribution except in the region 0 < ε < 0.001 and 0 < p < 0.001

where the distribution is exponential and emergence of large imitation

depth are frequent.

The domain size distribution DA(s) in the figure 5.8 has a power-law

tail with exponent αdomains = 2.58 with exponential finite-size cutoff for

ε < 0.001 and p ∼ 0.1. However, where ε > 0.01 it causes exponential

decay for all rewiring probabilities p and the swap of tail is in an interval

0.001 < ε < 0.01 for all rewiring probabilities p.
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Figure 5.5: Evolution of social tension for different values income fee ε for
Watts-Strogatz network.

Figure 5.6: Correlation of points and connectivity for different values in-
come fee ε for Watts-Strogatz network after 6 · 106 time-steps.
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Figure 5.7: Distribution of imitation depths for different values income fee
ε for Watts-Strogatz network with rewiring probability p.

Figure 5.8: Distribution of domain sizes for different values income fee ε
for Watts-Strogatz network with rewiring probability p.
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Figure 5.9: Distribution of leader domain sizes for different values income
fee ε for Watts-Strogatz network with rewiring probability p.

The leader domain size distribution in the figure 5.9 follows exponen-

tial decay for income fee ε ≥ 0.01 but the behavior is destroyed in region

0.001 < ε < 0.01 for all rewiring probabilities p. Exponential decay be-

comes a finite size effect for ε < 0.001 and the power-law emerges with ex-

ponent αleader domains = 0.34 for p < 0.001 and Poisson distribution emerges

for p > 0.01.

Finally, correlation of number imitators and connectivity IA(c), correla-

tion of number imitators and connectivity for leaders IL(c), and efficiency

of habit exploitation HA(c), HL(c) is described in the figure 5.10. Leaders

have more imitators than common agent in terms of absolute and relative

numbers except for the case of ε < 0.001, where high connected leaders

have, in absolute and relative numbers, the same number of imitators as a

common agent.
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Figure 5.10: Correlation of number imitators and connectivity with combi-
nation with correlation of number imitators and connectivity for different
values income fee ε for leaders for Watts-Strogatz network with rewiring
probability p. There is efficiency of habit exploitation in the inset.

The forking distribution FA(f) and leader forking distribution FL(f)

are too noisy to provide sensible conclusions.

Results for Barabási-Albert network

Evolution of social tension T 1
2
(t) is shown in the figure 5.11 and it can be

seen that it decreases without asymptotic value for low values of ε or it

finds its stable asymptotic value for nonzero ε.

The correlation of points and connectivity P (c) in the figure 5.12 is sig-

nificant for higher rewiring probabilities p. A flat function can be observed

for ε < 0.02 and it is increasing function of connectivity c for ε > 0.1.

Imitation depths distribution I(d) in the figure 5.13 behave as exponen-

tial for ε ≥ 0.02. However, low imitation fees ε < 0.02 decays faster than

exponential.
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Figure 5.11: Evolution of social tension for different values income fee ε
for Barabási-Albert network.

Figure 5.12: Correlation of points and connectivity for different values in-
come fee ε for Barabási-Albert network after 106 time-steps.
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Figure 5.13: Distribution of imitation depths for different values income
fee ε for Barabási-Albert network.

Domain size distribution DA(s) in the figure 5.14 has a power-law tail

with exponent αdomains = 1.97 and exponential finite-size cutoff

The leader domain size distribution in the figure 5.15 follows the power-

law with exponent αleader domains = 1.9 decay for income fee ε ≥ 0.02 but

the behavior is destroyed for ε < 0.02 where the decay is faster than expo-

nential.

Forking distribution FA(f) is shown in the figure 5.16 and it has a

power-law tail with exponent αforking = 1.96 for values ε ≥ 0.001 and

exponential tail for ε around 0.

The leader forking distribution FL(f) in the figure 5.17 has a power-

law tail with exponent αleader forking = 1.74 for ε > 0.01 and the behavior is

changed to have exponential tail for ε < 0.002.

Finally, the correlation of number imitators and connectivity IA(c), cor-
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Figure 5.14: Distribution of domain sizes for different values income fee ε
for Barabási-Albert network.

Figure 5.15: Distribution of leader domain sizes for different values in-
come fee ε for Barabási-Albert network.
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Figure 5.16: Forking distribution for different values income fee ε for
Barabási-Albert network.

Figure 5.17: Leader forking distribution for different values income fee ε
for Barabási-Albert network.
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Figure 5.18: Correlation of number imitators and connectivity with combi-
nation with correlation of number imitators and connectivity for different
values of income fee ε for leaders for Barabási-Albert network. There is
efficiency of habit exploitation in the inset.

relation of number imitators and connectivity for leaders IL(c), and effi-

ciency of habit exploitation HA(c), HL(c) is shown in figure 5.18. Low con-

nected leaders play significantly better for ε < 0.001 but high connected

leaders are comparable with the effectivity of all agents in absolute as well

as relative numbers. However, leaders have significantly more imitators in

absolute as well as relative numbers than a common agent with the same

connectivity for ε ≥ 0.001.

5.5 Conclusions

Simulations of the Minority Game with imitation were made. Payment

for imitation is affecting imitation structures for both substrate networks.

Correlation of points and connectivity P (c) become a increasing function

for fee ε > 0.01. Thus, more connected agents benefit for high fees. Im-
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itation depth has a very different behavior in the substrate networks. In

the case of Watts-Strogatz network, the exponential tail for high probabil-

ity of rewiring and high fee is transformed into a Poissonian distribution

but increasing fee transforms faster decay than exponential to exponential

for the Barabási-Albert network. The domain sizes distribution follows

the power law for the Barabási-Albert network but the Watts-Strogatz net-

work causes complicated behavior which can be the power-law for high

probability of rewiring and small fee or exponential for other cases. The

correlation of number imitators and connectivity, correlation of number

imitators and connectivity for leaders, and the efficiency of habit exploita-

tion behave similarly in all cases. Small payments for imitation does not

seem to give an advantage leaders of domains in compared to all other

agents. High connectivity of leaders is an advantage only when high pay-

ments are present otherwise the is no significant difference between lead-

ers and imitators.



Chapter 6

Scattering model of wealth in

society

6.1 Introduction

The mass media reduce actual information on modern capitalist econo-

mies1 to various measures of individual or corporate wealth. Social ten-

sions are caused by disproportion in wealth which in turn is governed by

the market activity of people. That activity can cause changes in social

structure and, in revolutionary times, social catastrophes.

The origins of the investigation of wealth distribution can be found

by looking back for the 19th century when philosophers and scientists

started to investigate many natural as well as social and economical phe-

nomena. In fact, the 19th century was not only a revolutionary era for

natural sciences which were used in industry but this period led to the de-

velopment of the industrial revolution which changed society in the euro-

1The reader should strictly contra-distinguish between modern, classical and early
capitalist economy.

87
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american region from agricultural medieval structures to modern society

with new classes and new relations. The same process is expected in the

fast-developing and fast-growing regions.

The next generation of thinkers on the edge of the 20th century tried to

argue using more exact methods and the first ”natural law” of economics

(Pareto’s law) was formulated. The Italian plutonomist2 Vilfredo Pareto in

[150] observed that the higher end of wealth distribution follow power-

law. He thought that the power-law exponent for income distribution

(probability distribution) was α = 3
2
what was a universal constant for

all regions and all times. However, Shirras in [153] concluded that there is

no Pareto law. On the other hand, Mandelbrot [154] formulated a ”weak

Pareto law” applicable asymptotically to the higher end of incomes. Thus,

the majority of population is outside of the Pareto law.

6.2 Facts of distribution of wealth

The first measurement of wealth distribution was made by Pareto in a

book [150] and it later influenced the investigation of wealth distribution

in the late 20th century and the beginning of the 21st century by Drag-

ulescu et al. [159]. They analyzed low income data (below 120k$) for single

persons from USA from different sources and two-earners families from

USA. Individual annual income for single person follows the exponential

law

P1(r) =
1

R
exp

(
− r

R

)
, (6.1)

for two sources of data where R is mean income R =
∫ +∞

0
rP1(r)dr.

The next step is focused on families with 2 earners. The total income of

2Political economist
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Figure 6.1: Graph of net wealth on rank of the richest people in the world
with power-law fit with exponent α = 1.43. There are also the richest
people with its own appropriate power-law fits in USA with exponent
α = 1.29 and in Russia with exponent α = 0.92 in insets. The data was
taken from Forbes magazine in November 2005.

family is r = r1 + r2 and two person wealth distribution is convolution of

individual probability distributions, what lead to

P2(r) =

∫ r

0

P1(r
′)P1(r − r′)dr′ =

r

R2
exp

(
− r

R

)
, (6.2)

what fits experimental data for families with 2 children under 18 year old

very well. The next step was a discussion of all families and it was sug-

gested to have superposition of distributions 6.1 and 6.2 which fits data

well. Finally, the last step of the article was computation of the Gini coeffi-

cient measure of the inequality of wealth distribution. The computed Gini

coefficient fits theoretical values, but time evolution shows a small but vis-
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ible increase of the coefficient from beginning of the 70s. It can correspond

with changes in society accepted by sociologists, e.g., Keller in [4], [5] and

[6] or Wallerstein [7].

M.Levy et al. in [151] analyzed data from Forbes magazine of the 400

richest people with the power-law exponent α = 1.36 and this is in good

agreement with figures 6.1 and 6.2 as well as the power-law exponents.

However, the power-law exponent of richest people in USA has changed

from α1996 = 1.36 in [151] to α2005 = 1.29 in 6.1, which can be only a small

fluctuation or sign of deep structural changes of wealth distribution.

Wealth and income data from Great Britain and USA was investigated

byDragulescu [160]. Wealth distribution (probability distribution) in Great

Britain was reconstructed from Inland Revenue data and the exponential

fit is valid below 100k£ but the power-law fit is valid for wealth more than

100k£ with exponent α = 1.9. The Gini coefficient rose from 64% in 1984

to 68% in 1996. Income distribution in Great Britain from 1994 to 1999 can

be approximated by exponential function below 40k£, temperature of the

data rises with one exception to RUK = 11.7k£ between 1998 and 1999, and

the power-law function upon 40k£ with exponent α = 2.0 − 2.3, which is

valid only for 5% of all population.

The higher end of income distribution in the states forming the USA

follows the power law with exponent α = 1.7 ± 0.1, where 70% of all

states differs less than ±0.1. The lower end of income distribution (95% of

all population) follows the exponential law with US temperature RUS =

36.4k$. Temperatures of the states fluctuates ±25% from average US tem-

perature. If the exchange rate between dollars and pounds are used then

temperature in the USA is higher than in Great Britain and there is possi-

bility to construct profitable thermal machine. This could be origin of high
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Figure 6.2: Graph of income distribution in USA from 1996 to 2003. Gibbs-
Boltzmann fit is donewith temperature 39.6k$ and Pareto fit with α = 1.32.

trade deficit of USA with other countries with smaller temperatures.

Egyptian society in the 14th century BC which is investigated by Abul

Magd in paper [164], when Pharaoh Akhenaten founded a new monothe-

istic religion of god Aten. A new capital of Egypt was found and called

Akhenaten. Instability and permanent war related to previous religion re-

sulted in the new capital being populated only for 20-30 years and then it

has moved back to Thebes. Akhenaten can be considered as a represen-

tative of an accident urban society and modern excavations revealed the

distribution of house areas. It is assumed that area of a house is a measure

of the wealth. This revealed the power-law exponent is α = 3.76 for the

ancient society and the area of the houses was nearly proportional to the

wealth.

Aoyama et al. in [163] investigated the individual income and debts

of the bankrupt companies distributions. The Pareto law with exponent
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close to α = 2 was revealed for income distribution for 2 sources of data.

Debts of bankrupt companies follows Zipf law with the power-law expo-

nent close to α = 1.

Paper [165] by Sinha et al. is focused on wealth and income distribu-

tions in India. Net wealth distribution showed the Pareto exponent close

to α = 0.8 for the richest Indians but the worlds richest people have the

exponent close to α = 0.9. The next measurement was a correlation of

net worth over an interval of 6 months. The graph did not show signifi-

cant changes but the impact of stock exchange was discussed and wealth

gained or lost by agents was found to be proportional to their overall

wealth. The income of top Indian company executives was investigated

and the Pareto exponent α = 1.51 was revealed. However, lower-income

Indian households and individuals with 10 or more years experience of

working in IT industry showed log-normal distribution for the low- to

middle-income range.

Two sets of high quality income data, one fromUK and the second from

the USA, were investigated in [185]. Log-normal and Gibbs-Boltzmann

distribution can be a good fit of real data and authors prefer Gibbs-Boltzmann

distribution.

The author investigated the richest people (by the net worth) in the

world, in USA and in Russia and the results are shown in figure 6.1. It was

found that there is a power law in all data but the exponents are αworld =

1.43, αUSA = 1.29 and αRussia = 0.92 respectively. It seems that the highest

end of accumulated personal wealth is the power-law but the exponents

differ from one region to another.

The next data was investigated from the Income Revenue Service in

USA which is shown in figure 6.2. There is the power-law with αUSA =
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Figure 6.3: Graph of income distribution in Czech Republic in first six
months of 2005. Gibbs-Boltzmann fit is done with temperature of 16.5kKč
and Pareto fit with α = 3.08. Source ČSÚ.

1.32 for top 10% of population and Gibbs-Boltzmann with temperature

TUSA = 39.6k$/year for low 90% of population. Finally, the Czech Re-

public income data was obtained from ČSÚ3 and the data is shown in

figure 6.3. The power-law with exponent αCR = 3.08 is applicable for

60% of population and possible Gibbs-Boltzmann with temperature TCR =

16.5kCZK/month fits the lowest 40% of population. So, temperature in

Czech Republic is only 23% of temperature in USA using actual exchange

rate. These facts lead to conclusion that Gibbs-Boltzmann in combination

with the power-law tail shows the universal behavior of income distribu-

tion. However, the position of the transition point between the regions is

different as well as parameters of behavior.

3Český statistický úřad
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6.3 Models of distribution of wealth

A theoretical understanding of the results, which were obtained by mea-

surements of wealth distribution, form two schools:

• socio-economical,

• statistical.

The socio-economic school try to find a theoretical explanation of the ef-

fects of economic, political and demographic factors in, e.g., Levy et al. in

[155]. Later, it was suggested that stochastic process was able to explain

wealth distribution as well. Gibrat proposed in [152] in 1931 that income

is governed by a multiplicative random process what causes log-normal

wealth distribution (see also Montroll et al. in [156]). This idea suggests

that the width of the distribution is not stationary, but it is growing in time

(see Kalecki in [157]). This problem was fixed by Levy et al. in [158] where

a cut-off at lower incomes was proposed and it stabilizes the distribution

to the power law.

Following division into groups under origin of the model is only for

orientation. It is due to the fact that most of the models are stochastic

processes that are derived using intuitive understanding of microscopic

processes from different points of view in society which influence wealth

distribution.

6.3.1 Socio-economic models

Two toy stochastic models of capital exchange were investigated theoret-

ically and simulated by Ispolatov et al. in [169]. The first model is the

additive stochastic process which has 3 modifications - random exchange,
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when one point is exchanged, ”greedy” exchange, when one point is ex-

changed but rich is favored, and very ”greedy” exchange, when capi-

tal equal to difference of capitals of interacting agents is transfered to a

richer agent. Mean-field solutions wealth distributions which were made,

”greedy” models leads to finite-temperature Fermi distributions, with an

effective temperature that goes to zero in long-time limit. It is the case

where a small fraction of population is holding most of wealth and it can

be reflected as existence of monopolies and oligopolies.

Liquidation of the agents with no wealth lead to generalization, when

only a fraction of capital is exchanged. Twomodifications were introduced

- random exchange with no flavoring rich individuals, ”greedy” exchange

with favoritism of rich individuals. The random exchange model and

”greedy” exchange model exhibit in different regions of the parameters

of the exponential and power-law tail respectively.

A stochastic model, where total wealth is conserved, and interaction

transfers a small fraction of wealth from one to a second agent, where in-

teraction can be tuned by one parameter and global agent behavior is regu-

lated by saving propensity was investigated by Chakraborti et al. in [173].

The authors argue that the saving propensity is dictated by an individuals

self-interest, whichmakes themoney dynamics cooperative and the global

ordering is achieved. A kind of self-organization coming out of pure self-

interest of each agent is reminiscent of the ”invisible hand” effect in the

”free market” suggested originally by Adam Smith in 1776. Two regimes

emerge in the model, Gibbs-Boltzmann distribution and asymmetric and

phase transition in scaling of most probable money earned by an agent.

The Conservative Exchange Market Model (CEMM) was investigated

by Pianegonda et al. in [177], [178] and by Iglesias et al. in [179]. CEMM is
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zero-summodel of the economy gamewhich is placed on one-dimensional

lattice with periodic boundary conditions which produces exponential we-

alth distribution. Finally, comparison with real world data was completed.

The risk aversion factor of the agents was taken into account by Igle-

sias et al. in [180] with two modifications of dynamics and with two ex-

tra modifications which benefit poorer agents. In the first case when all

agents have the same risk aversion and benefit for poorer agents is the

same during the game. 5 regions were observed with its appropriate re-

sults - utopian socialism, liberal socialism, moderated capitalism, ruthless

capitalism and few rich land. The second modification is disordered risk

aversion and benefit for poorer agents, the power-law of wealth distribu-

tion was observed with α = 1 as well as the exponential distribution.

The money-based model that is an extension of the Equı́luz-Zimmer-

mann model, was presented by Xie in [181]. This model is based on two

simple rules. The first one is minimalization of costs and maximalization

of profits which lead to merging two corporations. The second is disasso-

ciation of big corporations into small ones. The power-law with various

exponents was observed and theoretically computed.

The nonlinear stochastic trade-investment model (NSTIM) was investi-

gated by Scafetta et al. in [182]. This model benefits the ”non-equilibrium”

base of the actual model according to neoclassic economy, which assumes

that all trades are done in ”equilibrium”, where price and value are equal

(law of one price). The model is based on three assumptions. First, trans-

fers of wealth from one agent to the another because the price paid fluc-

tuates around an equilibrium price (value) and the price can differ from

commodity transfered. The second assumption is that transactions are

limited to total wealth of agents. And finally, poorer agents give preferen-
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tial treatment according to rich agents that is necessary to avoid gambler’s

ruin. NSTIM have 3 independent parameters that can tune the strength of

the interactions between agents and this separates two investigated mod-

els - trade-investment model and trade-alone model. The power law was

revealed for the higher end of wealth distribution and the authors used

Gamma distribution for fitting the probability density of wealth distribu-

tions.

A family basedmodel of wealth distribution was investigated by Coelho

et al. in [183]. The model allows aging of agents including dead and born

of a new agent. The final wealth distribution has the power-law tail and

the network of social contacts has an exponential tail. However, no clus-

terization was observed.

6.3.2 General stochastic models

A model of wealth distribution with Gaussian noise that causes non-con-

servation of total wealth and exchange matrix that controls strength of

interaction between agents was defined in [171]. The simplest model in-

volved when everybody is in interaction with everybody else with the

same strength lead to the power-law tail of wealth distribution. An ex-

tension of this model to include income taxes showed wealth distribution

with reduced inequalities of wealth but capital taxes with no redistribu-

tion led to higher inequalities of wealth. A simulation of this model on

a fixed random network of possible interactions shows the power law as

well. The emergence of a phase transition was revealed in the model with

a randomly chosen random network at every step between the condensed

state and the power-law regime of wealth distribution. In the next step, the

d dimensional hyper-cubic lattice was investigated and d ≤ 2 gives α → 0
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but d > 2 gives a phase transition between a ”social” economy and a rich

dominated regime. Finally, a non-symmetric matrix was investigated and

an exponential (Boltzmann-Gibbs) distribution was revealed.

A stochastic model of wealth distribution was presented and discussed

by Bose et al. in [184] where the agents were in 2 possible states called inac-

tive (E) and active (E∗) and switching between them was allowed. These

two states have a different inflow of wealth but the outflow of wealth has

the same rate. The wealth distribution exhibited the beta distribution in

the steady state.

A different stochastic model of money distribution was introduced by

Dragulescu in [159]. The agents exchange small fixed amounts of money

and the random fraction of interacting agents of average money. The

Gibbs-Boltzmann distribution was observed for the money distribution.

The next step involved defining the ”thermodynamics” of a firm and ther-

modynamical view of the economy was presented. In the next step, a

model with possible debts was analyzed and a higher temperature in com-

parison with the same parameters was derived. The author believes that

the actual boom of bank loans for consumers causes ”heating” up of so-

ciety. Finally, a model of government which collects a value addition tax

for every transaction in the system causes the exponential tail of money

distribution.

A nonlinear stochastic model of wealth distribution with 3 parameters

was presented by Scafetta et al. in [175]. The model is based on article

of Bouchaud and Mezard [171] but Scafetta et al. introduced individual

investment index and nonlinear stochastic variable, that describe actual

exchange of wealth between individuals, whose standard deviation de-

pends on wealth of interacting individuals. Scafetta et al. simulated and
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obtained Pareto law.

Di Matteo et al. in [176] introduced an additive stochastic process of

wealth distribution on networks. The use of the Glauber-Kawasaki dy-

namics led to the average stationary wealth on each node being the Gaus-

sian distribution. The power-law wealth distribution with the exponential

cut-off was observed for networks with scale-free degree distribution.

6.3.3 Stock exchange models

The LLS (Levy-Levy-Solomon) stock exchange market model was defined

by Levy et al. in [172] and the Pareto law of wealth distribution was ob-

served by Solomon et al. in [170].

6.3.4 Game theory models

Two models of IFS (iterated function system) were investigated by Sinha

et al. in [174] - the first uses the ”Theft-and-Fraud” where the winner gets

a random fraction of the looser’s wealth and the second uses the ”Yard-

Sale” where the winner gets a random fraction of poorer agent’s wealth.

The strength of the interaction is controlled by one parameter. The 2-agent,

3-agent and N-agent models were also investigated and again the Pareto

law were observed.

6.3.5 Deterministic models

Solomon in [166] introduced the stochastic Lotka-Volterra system of com-

peting auto-catalytic agents with a focus on the stock exchange. The main

idea was taken from the late 20s of the 20th century when Lotka and

Volterra in [167] and [168] tried to explain fluctuations in the volume of
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Figure 6.4: Distribution of wealth among agents in the mean-field model.

the fish population in the Adriatic Sea. The generalization of the main

idea led to the power-law wealth distribution.

6.3.6 Physical models

A physical based interpretation of wealth distribution was completed in

[186] where a model of wealth exchange using inelastic scattering interac-

tion with positive balance of energy (wealth) was introduced. A theoreti-

cal mean-field solution of the model was investigated and the power-law

tail was derived for a subset of the 2-parameter space of the model. The

exponents are in good agreement with simulations made by the author in

figure 6.5 with social tension in figure 6.4.
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Figure 6.5: Evolution of social tension for the mean-field model. Parame-
ters α and ǫ are as in [186] or below in the text.

6.4 Inelastic scattering model on network

The main idea of the model is an assumption that society can be viewed

as ”gas-like” particles, which interact using an interaction which has been

known for 400 years - inelastic scattering interaction. But the main dif-

ference is that there is an inflow of energy (wealth) in contrast to the old

physical models.

6.4.1 Definition of the model

Let us imagine a society of N agents which are bound one-to-one to ver-

tices of a graph G = (V, E, ǫ, νV ) with non-oriented edges using νV . Each

agent has an identificator and one variable which signs his/her wealth w̃i,

i ∈ {1, 2, . . . , N}. Thus, the state of the system in a time-step t is described

by W (t) = {w̃1(t), w̃2(t), . . . , w̃N(t)}. The agents are able to interact and
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the interaction is essentially instantaneous. Of course, in a real society it is

more complicated and many economic interactions can take place at the

same time, pairwise, although some economic interactions can be taken as

multilateral rather than bilateral in a real society. Moreover, it is positive,

the interaction has a positive effect on the total wealth of the society of the

agents. Thus, the interacting agents become, in sum, more wealthy after

the interaction than at the beginning of the interaction.

When two agents i and j are chosen to interact, the dynamics of the

wealth of agents i and j is governed by interactions which can be formal-

ized as follows



 w̃i(t + 1)

w̃j(t + 1)



 =



 1 + ε − β β

β 1 + ε − β







 w̃i(t)

w̃j(t)



 (6.3)

and all other agents remain unchanged, so w̃k(t + 1) = w̃k(t) for k 6= i and

k 6= j where ε and β are parameters of the model. β ∈ (0, 1) measures

the strength of the exchange and ε > 0 measures the one-step inflow of

wealth.

The network is generated by the Watts-Strogatz algorithm [22], which

supports the network with basic features which has been found to describe

human networks. A rewiring algorithm is applied to a totally ordered

network, which means that each edge is rewired to a randomly chosen

agent with probability p. The resulting network can be imagined as in the

figure 3.2.

There are two possible ways to execute one Monte Carlo step, as fol-

lows

• an agent initiated model
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Figure 6.6: Scattering model with inelastic interaction. On the left, there is
set of all agents. On top, there is schematic scructure of an agent. In the
middle, schematic picture of interaction between 2 agents. Finally, on the
bottom we can find agents bound to a graph.

• an edge initiated model

6.4.2 Agent initiated model

The updating mechanism for the Monte Carlo step is based on the choice

of agents i.e., agent i ∈ V is chosen with a uniform distribution and a

second agent j is chosenwith uniform distribution from his/her neighbors

EG(i). It can be argued that the edges of the graph are only dispositions

that can be used by agents. A pair of agents that interact is interested in

collaboration. Finally, the collaboration is useful for them.

6.4.3 Edge initiated model

This model is based on the choice of an edge ǫ(e) = (i, j), e ∈ E with the

uniform distribution. The interacting agents are signed i and j, the rule of
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interaction is symmetric to the exchange of i for j, so there is no ambiguity.

It can be argued that every connection in society is used with the same

probability, and highly connected agents will interact very frequently.

6.5 Interesting variables

Measured wealth was normalized wi = w̃i

w
. This means that there are N

units of wealth in the society after normalization, and they are distributed

among the agents.

The first interesting variable is social tension, which measures differ-

ences in wealth as

Tσ =
1

w

(
1

|E|
∑

i∈E

1

|Γi|
∑

j∈Γi

|wi − wj|σ
) 1

σ

, (6.4)

where w = 1
N

∑
i∈E wi so it is the average. σ ∈ (0, 1) is a parameter set up

to σ = 1
2
in our simulations.

The second interesting variable is distribution of wealth

D(w) = P (w′ > w) . (6.5)

where P means the probability that a randomly chosen agent’s wealth is

greater than w.

The following variable is the correlation between wealth and connec-

tivity

H(c) = wP (w|c). (6.6)
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Value H(c) is computed as

H(c) =

∑
i∈V wiδ(ki − c)∑

i∈V δ(ki − c)
, (6.7)

where ki is connectivity of individual agent i and c is an integer value.

6.6 Results of simulations

The model was investigated with fixed interaction parameters which were

set up to fulfill equation (10) from [186]

2β = (α − 1) ε2. (6.8)

with α = 3
2
, i.e., the same interaction where the power-law exponent of

wealth distribution of the model on the fully-connected network was α =

3
2
. Now there is only one freedom, which is fixed by setting up ε = 0.01.

The simulations were performed with the following parameters:

General parameters of the Monte Carlo method

• Number of agents N = 10000

• Final time of the simulations T = 1.5 109

• Number of Monte Carlo runs R = 10

Parameters of the interaction

• β = 2.5 10−5

• ε = 0.01
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Parameters of the network

There are two parameters involved in the construction of the small-

world network using the Watts-Strogatz algorithm [22]:

• Initial number of edges from agent m = 4 (mean connectivity)

• Probability p ∈ [0, 1] of rewiring of the edge .

The initial wealth of the agents was set at 1, so the initial wealth dis-

persed in the society of N agents is N .

6.6.1 Agent initiated model

The model is based on a random choice of agents which will interact using

motion equation 6.3. The time evolution of social tension (figure 6.7) for

all p values rises and then decreases, but in the case of parameter p < pa,

0.00007 < pa < 0.0001, the process is slower and for the subset of cases

with p 6= 0 there is a trough or plateau in the time evolution after the peak

of social tension. For case with p > pa behaves differently: there is one

peak and then a rapid decrease in social tension.

The distribution of wealth (figure 6.8) has the power-law tail for p > pa

(the same symbol is used as a consequence of the power-law behavior and

the different social tension evolution) with exponent αagent = 0.96, which

is stable for the interval of p at the thermodynamic limit N → +∞, T →
+∞ and N

T
constant. The power-law is valid for approximately 1 - 5% of

the population, which is in quite good agreement with the measurements

recorded in [160] by Dragulescu et al. The deviation of the data from the

power-law for the higher end of the distribution is a finite-size effect. If p >

pa, the behavior of wealth distribution is no longer following the power-

law, and the initial power-law tail is spread by the dynamics of the model.
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Figure 6.7: Time evolution of social tension in the agent initiated model.
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Figure 6.8: Distribution of wealth among agents in the agent initiated
model.
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Figure 6.9: Correlation of wealth and connectivity in the agent initiated
model.

In figure 6.9, the average connectivity of the network was 4, and the

connectivity is dispersed around this value during the rewiring process.

In the case p < pc, there is a strong correlation between the average wealth

and connectivity, but for the case p > pa this enables less connected agents

to outperform agents with average connectivity.

6.6.2 Edge initiated model

This model is based on a random choice of an edge where the agents con-

nected to the vertices of the edge will interact using the motion equation

6.3. The time evolution of social tension (figure 6.10) seems very similar to

the previous case. In the case of p < pe, 0.00007 < pe < 0.0001, the dynamic

is slower than in the following case, and for p > 0 there is a peak and a

plateau, or a twin peak. This is in contrast to the case p > pe, where there
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Figure 6.10: Time evolution of social tension in the edge initiated model.

is only one peak followed by a rapid decrease.

The distribution of wealth (figure 6.11) allows the power-law behavior

with exponent αedge = 0.95 for the case p < pe and the power-law tail is

stable at the thermodynamic limit. As in the previous case it is valid for

1 - 5% of the population and the deviation from the power-law for the

higher end of the distribution is a finite-size effect. However, there is no

power-law for p > pe.

The correlation of wealth (figure 6.12) shows that the average wealth

is a strictly growing function of connectivity c. The average wealth of a

player with average connectivity (4) is better for p < pe, which is similar

to the previous case.
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Figure 6.11: Distribution of wealth among agents in the edge initiated
model.
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6.7 Conclusions

The models of distribution of wealth and the experimental measurements

of wealth distribution were discussed in this chapter. The author focused

on the inelastic scattering model with an inflow of energy (wealth), where

agent are placed on a complex network, which can be a good approxima-

tion to the structure of social contacts in a society. The model exhibits the

power-law tail for a subset of parameter space rewiring probability p < pe,

7 10−5 < pe < 10−4 in both the cases. However, the author thinks that this

model cannot be used in a real policy, but on the other hand it is a good

demonstration of using of physics to economics.
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Chapter 7

Computer simulation program

7.1 Introduction

During last quarter of the 20th century, computers became a popular and

universal tool which were used in science, industry and entertainment.

Now in society, there are many activities where computers now consid-

ered essential to society’s progress. This situation derives from the ex-

ceptional commercial success of computers. The main scientific and engi-

neering use of computers relates to simulations (but it is not only one) in

contrast to commercial storing and processing of information.

Simulations are a valuable tool in many engineering applications that

could fit possible states, cases of evolution of a problem or solutions. Typ-

ically, the problem is formulated by a stochastic process. This is caused by

our inability to get full information of the system and (or) processes inside

the system due to internal properties of the system or external influence on

the system. The way how to deal with the stochastic process modeling the

system is Monte Carlo method which was used for first time in statistical

physics.

113
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Especially, we intends to simulate socio-physical or econo-physical sys-

tems then our model is based on Game Theory. The model exhibits the

main aspect of a conflict situations in the system. Since than our central

object is a game that describes studied social or economical phenomenon.

Moreover, the systems are usually consisted of many peer objects that are

in the conflict. Thus, the model must also exhibit the fact what forces us

to focus on multi-agent systems. Specifically, humans are introduced as

the agents in the model and the conflict between them in society is in-

teraction in the model. Many kinds of conflict are allowed only between

limited number of objects rather than everybody can be in conflict with

everybody else. Mathematical structures that we can be used to exhibit

this situation are graphs.

7.1.1 Information in the models

From perspective of information, every object in the model can carry in-

formation which can be used in the interactions. Thus we have this kinds

of information:

• Internal information

• External information

• Social information.

Internal information is information that is carried by agents. External

information is available to every agent and it can be stored in the game as

public information. Social information is information which pair of agents

can interact.
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Figure 7.1: General structure of model of socio-physical or econo-physical
system with information sources.

7.2 Implementation

The main aim of good programming is the development of working, easy-

to-understand and extensible program. In particular for the thesis, the

author developed the simulation program of the models introduced in the

previous chapters. The main aim of development of the code was that it

must be able to be used and reused in future applications in science and

industry. The best solution to do so is to prepare a library1.

1Piece of code that is linked to the main program, but it is not executable and its func-
tionality lie in supporting of the main program with prefabricated functions and classes.
In general, there are two forms of linking. The first one is a statically-linked library where
the code of the supporting library is incorporated in the executable program. The second
one is dynamically-linked library where the code of the library is in a operating system
placed only once and the program have only links to the library in the code. There are
two types of loading the library when a dynamically-linked library is used. The code of
library is immediately loaded when the program starts in statically loaded dynamically-
linked library. Programmer could load needed library in program using system calls in
dynamically loaded dynamically-linked library. All of them are supported in the simula-
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The library then consisted of general tools which forms environment

where the simulations are embedded. This idea is not new andwe can find

on market many tools that are accompanied with GUI that are called CAS2

(Mathematica, Maple, Matlab) or specialized simulation programs (Swarm,

Anylogic). The main aim of this library is to focus simulation multi-agent

systems on supercomputers rather than desktops.

Since start of development of the library author prepared simulations

of this problem showing range of its abilities:

• Complex networks

• Sznajd model

• Minority Game

• Scattering models

• Percolation

• Quantum random walks

• Numerical solving of systems of ordinary differential equations

• General stochastic models.

7.2.1 Technical prerequisites

Data structure from figure 7.1 can be implemented in many different pro-

gramming languages or CASs. The author’s previous experience with dif-

ferent programming languages like Pascal, Basic, C, C++, Java or Python

tion program. However, the author prefers static linking.
2Computed Algebra System
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and with previous scientific work on simulations of charged particles in

plasma led him choose the C++ because of:

• Low level programming

• Object oriented programming

• Polymorphism

• Operator overloading

• Multi-fold inheritance

• Namespaces

• Templates

• Exceptions.

Low level programming is important for fast programs. Language C++ al-

lows to compile fast programs that is because it is based on language C.

Object oriented programming allows to logically encapsulate data struc-

tures with its own methods. Polymorphism allows to reuse code and

modify certain methods using virtual methods. Namespaces allows name-

structural programming that lead to better understanding of the code. Op-

erator overloading allows the reuse of standard operators in user-defined

operations. Multi-fold inheritance supports objects with multiple ances-

tors (in literature it is rarely mentioned as questionable ability). Templates

allows to writing of type-general and value-general code. Exceptions can

handle exceptional states of a program and libraries,. It allows to use dif-

ferent data structures and hardware enhancements (kernel threads, MPI,

XML, STL).
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These requirements are successfully fulfilled in other programming

languages like Python and Java but C++ was chosen due to standardiza-

tion, general UNIX support and mainly due to fast programs. Recent

developments of Python3 show that it can be interesting platform in near

future.

The main platform which was chosen for support was IA324 due to

its extensibility but UNIX like operation system with its own standardiza-

tion in combination with C++ allow to use it on the different platforms,

which are provided now or which will be developed in the future. Finally,

it allows the use of the simulation platform headers in different program-

ming languages like Python and write code in high level programming

languages including scripting languages.

7.2.2 General structure of simulation program

One of the first problems which has to be solved before writing some

source code involved finding out if the program will be a terminal pro-

gram or if it will be graphical application for the X-Window system. Keep-

ing in mind maximal simplicity of the program, the author chose the ter-

minal application but the source codes have a structure that is similar to

the structure of the source code of graphical applications which are gen-

erated from graphical RAD tools5 like C++ Builder or Delphi. This simu-

lation library could be accompanied with its own graphical RAD tool like

Simulink in Matlab) or Anylogic that fast helps to develop an appropriate

application. Moreover, the author believes that the RAD tool based on

3Please, check actual development at http://python.org/
432-bit Intel architecture
5Rapid Application Development
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Figure 7.2: General functionality of the simulation

UML6 is the right way for wider use of the platform with a combination

of rapid development.

All the pevious remarks on development and structure of code were

materialized in a computer library called Zarja7. The name was chosen

because of its extendibility and modularity which is the same as its preim-

age in space.

7.2.3 Programming models of multi-agent systems

Implementation of the previous remarks into the code has changed dur-

ing the scientific work of the author during development. It led to two

different styles of programming of the main code.

The first model was implemented the Minority Game and scattering

model and it’s structure is called classical8. The second structure is called

modern because it structure is similar to functionality asmodern program-

6Unified Modeling Language
7Zarja is the first module of ISS (International Space Station).
8Classical, because of structure of the code that is similar to C programming.
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Figure 7.3: Structure of simulation of Minority Game and scattering mod-
els

ming libraries9.

Classical simulation structure

The main program int main (int argc,char * argv[]) executes

which governs the whole simulation calling appropriate functions. The

Minority Game is based on deriving from class agency. However, scat-

tering models are derived from class network and it is connected with the

investigation of the possibility of the usability of the Zarja simulation li-

brary. The main aim of a different base class of the models lay in different

views of the incorporation of the network. The Minority Game has the

network incorporated as a variable but the scattering models are directly

based on class network.

9Modern, because using of the library is C++-like
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The general structure of simulations of theMinority Game and the scat-

tering models can be found in 7.3. It can be seen that the whole function-

ality is done by the main program which is called interface of class simu-

lation. First of all, standard inputs and outputs10 must be processed, then

the output directory must be set up and prepared for data storage and a

general log of the simulation is created. After then, class of the simulation

is created with many supporting classes and parameters of the simulation

are set up. The next step is the allocation of the memory is needed during

simulation. Themain simulation is executed and the whole simulation can

be broken down into 4 sub-steps. The first one is generation of graphs. The

second is the main execution of simulation calling function int Tick(),

that evolves the simulation by one step. Measurements are done by timers

and these must be evolved synchronously with simulation. Finally, the

simulation has to process the stored data. After finishing the main body of

simulation, the data stored in the main program, then processed and the

memory deallocated. Finally, the objects are allocated (destructed).

Modern simulation structure

The author describes this style as modern because the style is thought as

standard in C++ programming, although C++ is more than 20 years old.

So it is not surprising that the author found an amazing similarity of the

structure of the simulation library and graphical applications written in

MFC11, Borland Delphi12, QT library13 and Clanlib14. A general structure

10standard input - stdin, standard output - stdout and standard error output -
stderr

11Microsoft Foundation Classes
12and it’s clones like Kylix and Borland C++ Builder
13www.trolltech.org
14www.clanlib.org
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Figure 7.4: Structure of simulation of Quantum games and Sznajd model

of a simulation is shown in figure 7.4.

At beginning of the program, standard input, standard output and

standard error output need to be processed and parameters of a simulation

are then extracted. Next the output directory is prepared and a general log

of a simulation is created followed by the object of a simulation being cre-

ated and its parameters are set up. Finally comes the start of the simulation

using int Run() or int RunMPI() or int RunThread()15 followed

by the object being destructed.

When an object with the simulation is executed using int Run() or,

in future, int RunMPI() and int RunThread() then timers must be

created and memory must be allocated. The next step is preparation of

the graphs. Following this the simulation can be evolved and the timer

15int RunMPI() and int RunThread() will be allowed when the simulation
classes and timer classes will be MPI and thread ready.
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can store data. Finally the data obtained is postprocessed, the memory

deallocated, the timers destructed followed at the end of simulation with

the object being deallocated (destructed).

7.2.4 Components of the simulation library

A typical single-purpose library hasmany components which helps devel-

opers to successfully develop an application16. This library will be similar

but the components will be oriented for scientific work with a multi-agent

system on graphs. The structure of the library has to reflect this fact. Lan-

guage C++ supports encapsulation of the data into the objects which are

called classes in C++. The classes support inheritance which is a useful

tool for deriving more complex objects which can handle more complex

systems in the future. This can be useful for understanding social and

economic phenomena.

The whole work can be split into two parts; the first one is the library

and the second one consists of examples of using the library. Although

there are two parts it is regarded as one project and it can thus be described

as one compact tool.

The library should be consisted of the following components:

• Random generator

• Node

• Edge

• Network

• Agent

16e.g. libxml - xmlsoft.org, clanlib - www.clanlib.org, qt - www.trolltech.org
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• Game

• Timer

• Data storages

• Computing supporters

• Other tools

– Special game structures

– Directory tools

– Memory tools

– Processing tools

– Mathematical tools

The structure of collaboration of the main components of the Zarja library

is shown in the figure 7.5.

Random generator

Random generators form the core of all Monte Carlo simulations. The

structure should provide randomnumberswith different distributions and

its object encapsulation permits its substitution for a different kind of source

of coincidence. It means that robust results are obtained from the simula-

tions.

Every random generator is located in a namespace random generator

and it is derived from an abstract class general random generator. The

class provides the basic interface of a random generator and supports of

a different kind of output random numbers (int, long , long long, double,

long double) with different distributions are implemented. Recently the
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Figure 7.5: General UML scheme of structure of Zarja. The light arrows
are usual connections between components. The dark arrows are extra
connections that can be added to the model.

general random generator and its derived classes support various distri-

butions discreet or continuous.

Node

The node forms the building brick of the all networks. Its interpretation

in Graph Theory is a vertex in a graph. Inheritance supports the creation

of derived objects which have an extra structure which can support de-

veloping new agent-based models, where the agents will be connected to

the nodes but where the agents are only one of many applications of the

library. Included in the library is a model of percolation which is one of

the cases of different applications.

Each node is derived from class node general in math network::nodes

namespace as well as all its offsprings in the library Zarja. The class sup-

ports only features which facilitate the analogy of a general vertex in a
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graph. Each class have its identifier which is used for identifier and it is

unique in the graph.

Class node general was one of the first objects which were developed

in the library. It has two offsprings node and node weighted network.

Node is simple vertex of a graph which facilitates accessing an edge with-

out any information. Later, node with general link was derived and it

have a feature to connect to the agents in a game. Thereafter, more com-

plex nodes in a graph are implemented: class node with general link and-

dye infrastructure which encapsulates previous features with the abil-

ity to find clusters in a graph and finally, class node with caching infra-

structure, which is used by the Minority game to resolve the most success-

ful agents.

The next branch which is derived forms node weighted network and

it is oriented to allow graphs with extra information carried by the edges.

It has one offspring node weighted network with general link which al-

lows extra data on nodes to be carried.

Edge

An edge is a connection between vertices in sense of Graph Theory. The

vertices usually carry no extra information but recent papers by Barrat

et al. in [17], [18], [19], [21] and by Barthelemy et al. in [20] show that

weighted graphs are becoming more popular. Weighted networks are

structures where the edges can carry an extra information 17.

There are 2 abstract classes namely edge object and oriented edge in

the library. The first one is edge object and it is only a simple edge with

no future development. It is used in graphs with a list of edges without

17There is contained a real number in an edge in the cited papers
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Figure 7.6: An edge with an extra information

extra information. The next base class is oriented edge. It and its offspring

nonoriented edge plays the role of an edge in Graph Theory which can

carry any information as can be seen in the figure 7.6.

Up to now, there is only few simulations with the weighted networks

or more generally with networks with extra information on the edges.

None of the models, used in this thesis use the weighted networks. Fu-

ture work is going to be pointed to the weighted networks as it seems to

be a good base of modeling processes on complex networks.

Network

The class network encapsulates a graph as an object oriented programming

and it is an abstract class of all networks in namespace math network. Its

direct offsprings oriented network and weighted oriented network and

their offsprings can carry an extra information. A simple graph have struc-

ture as can be imagined from figure 7.7 is constructed from nodes which

are connected with edges. In general, programming language C++ sup-

ports one of the modern tools of object oriented programming - multiple in-
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heritance18 which allows the creation of classes with many base classes.

The first direct offspring of network is oriented network which sup-

ports the functionality of a graph with oriented edges without any extra

information. Its offspring is oriented network with edge list which has

an extra list of edges in a network, oriented network with links which is

able to make connections between agents and nodes, and finally nonori-

ented network. The latter is a base class for all networks with non-oriented

edges. In the next generation, there are nonoriented network with edge list

with ability to make connections between the agents in a game and the

nodes in a network andwith one offspring nonoriented network with lin-

ks and cache that is used by Minority Game with possibility use cache,

and nonoriented network with edge list. It is the parent of many use-

ful classes like network percolation which is used by percolation prob-

lems, nonoriented network with dye infrastructure which facilitates the

finding of connected clusters19. Finally, a structure called nonoriented-

network with edge list and links which implements a list of all links and

ability to have nodes connected with agents of a game. At the end of

the branch is nonoriented network for quantum game used by quantum

games and subbranch of scattering models based on scattering model.

Its offsprings are scattering model agent initiated which governs agent-

initiated simulations, scattering model bond initiated which governs edge-

initiated simulations, scattering model increasing energy which is base

class of all scattering models with increasing energy. The agent-initiated

simulations of the scatteringmodel with increasing energy is supported by

scattering model increasing energy agent initiated and the edge-initiated

18There is argued that multiple inheritance is questionable functionality in [82].
Notwithstanding, manymodern programming languages havemultiple inheritance im-
plemented, f.e., standard stream in C++ use the tool.

19A cluster is a subset of all vertices that are connected.
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simulations are governed by scattering model increasing energy bond -

initiated.

The next offspring of the class network is called weighted oriented-

network what is the base class of all network with extra information car-

ried by the edges. It has two offsprings namelyweighted oriented network-

with edge list what has a list of all edges, with one offspring weighted-

oriented network with edge list with link and the next offspring is wei-

ghted nonoriented network which is a base class of a network with nonori-

ented edges. The last class has one direct derived class weighted non-

oriented network with edge list having a list of all edges and one derived

class weighted nonoriented network with edge list with link with possi-

bility to connected nodes and agents. The is only one follower of the class

weighted nonoriented network for quantum game used by quantum ga-

mes.

The branch of the class network has all the necessary functionality for

future simulations although some more functionality could be necessary

in the future.

Agent

Every structure which can be handled as member of a game that is playing

the main role in multi-agent systems is derived from the base structure

agent general. This base structure is inherited from class agent general

which is the abstract class having an identifier that is unique in a game.

There are five offsprings of the base class. The first one is agent with wealth

with two offsprings agent with scattering interaction, which is used for

all scattering models, and agent minority game is used by the Minority

game simulations without network and its offspring agent minority game-
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Figure 7.7: Structure of class network

with link is used by the Minority Game with substrate network. The sec-

ond offspring is called agent general with link with one offspring agent-

sznajd model used by Sznajd model. The third offspring is called agent-

weighted network with link withmany offsprings used by quantum sim-

ulations. The fourth derivative is called agent general with multiple links

and the fifth one is called agent weighted network with multiple links,

these allow multiple links from agents to vertices.

A branch of class agent general has an abstract functionality and there

are no plans for future enhancements except the case of developing new

agents for new simulations.
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Game

A computer model of a game in Game theory is discussed here. The class

must provide the whole functionality that is expected by a model in Game

theory. Although, the author tried to write a code as reusable as it was

possible, there are more abstract classes that could be taken as a base of a

general game.

The first developed abstract class is derived from agency and it is the

base of all Minority game based games. In the next generation is mi-

nority game which is followed by minority game with general network

and next there are two derived of classes minority game with network

and minority game with oriented network and that, finally, are followed

by minority game with network random imitation and minority game-

with oriented network random imitation.

The second possible way to derive classes of a game from offstrings of

network. An example what has been derived is scattering model and its

offsprings scattering model agent initiated, scattering model bond initiat-

ed, scattering model increasing energy, scattering model increasing ener-

gy agent initiated and scattering model increasing energy bond initiated.

The third and themost general abstract classwhich encapsulatesmulti-

agent systems is general model. It has two offsprings but only one of them

is related to multi-agent simulations - agent based model. It has one off-

spring network based agent model which is followed by implementation

of quantum games quantum simulation, quantum simulation hexagonal-

lattice, implementation of Sznajd model sznajd model simulation and sz-

najd model with Ochrombel simplification simulation.

Future multi-agent simulations could be derived from the last men-

tioned classes. Every user of the library could develop his(her) own basis
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for the simulations. There is one more possibility to develop more ad-

vanced simulations of agent-based models on networks which has not

been investigated. This is multiple inheritance where agent-based sim-

ulation class and network class are used to derive a more complex class

with 2 parents20.

Timer

Timers are controlling, recording and measuring tools, see 7.2, which can

be plugged in a game which in turn is controlled and measured with the

results been stored on a memory media. Control of a game means starting

processes which can influence the state of the game. Recording is simple

storing interesting variables. Measuring is more advanced measurements

of the system using the data storages.

Every timer in the library is derived from an abstract class timer which

is followed by timer with return and general inheritance tree is followed

by timer with return and post-processing. These three timers form a skele-

ton covered by timers that are specific for different models. The Sznajd

model is processed by one timer timer sznajd model. The Minority game

is served by timer network log, timer repeat domain imitation log, timer-

repeat network log and timer repeat log network log. The scatteringmod-

els are supported by timer scattering model log, timer scattering model-

wealth log, timer scattering normalizer, timer scattering model agent -

wealth log, timer scattering model agent short time wealth log, and, fi-

nally, quantum simulations are recorded by timer quantum simulation.

The main structure of the inheritance tree of timers for one-process

20Similar process was used by scattering models but one one parent is a network with
list of edges and the second parent is network with possibility to dye clusters but the
difference is in using multiple virtual inheritance [82].
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(one-processor) simulations is completely done but multi-process (multi-

processor) simulation21 which needs more complex infrastructure which

has not been developed yet because of the number of weeks requested for

testing.

Data storages

Every simulation program needs to collect and store data what can be vi-

sualized. The data storages are constructed as flow-analyzers. This idea

is taken from general UNIX idea of programs22 illustrated by Raymond

in [81] . The library has one input, what is served by different functions

which in turn can process different kinds of input sources of data and two

outputs. The first output, is equivalent to stdout and this is used for the

output of processed data from the data storage. The second is redirected

to the standard error output stderr and every error in the storage is im-

mediately shown there.

The abstract parent of all data storages is called data logger. This class

has two offsprings. The first ismean data logger which provides comput-

ing averages and dispersions and the second is general histogram builder

which is an abstract parent of all the histograms. The last one has 3 deriva-

tives. The first is called average histogram builder and it is responsi-

ble for making histograms of the averages of the data. The second one

is called weighted histogram builder that can it allows the addition of

weights to the events. The third one is called histogram builder which is a

histogram with a fixed box-size, which is not growing under data distribu-

21Two biggest personal computer processor producers (Intel, AMD) announced pro-
cessors with multiple cores on a chip.

22General UNIX program have 3 input-output streams that are accessed in language C
by stdin, stdout, stderr.
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Figure 7.8: General scheme of cumulative histogram and its fitting the
data.

tion. The last one has three offsprings log histogram builder, log normal-

histogram builder has a fixed domain but different box sizes and his-

togram builder cumulative is the base for all histograms (see the figure

7.8) which have a domain undefined at the initial position but the domain

resize under incoming data23 and its followers log histogram builder cumu-

lative and log quadratic histogram builder cumulative have different box

sizes.

A base girder of future histograms has been laid down and it is robust

in so far as it can handle every kind of numeric data and it can be de-

veloped as a class with appropriate box sizes. Outputs of the classes are

variable from simple frequencies over probabilities to probability distri-

butions.

23When box sizes are chosen very small and data are over several magnitudes then it
can be observed memory-flooding which depends on memory size. The objects are par-
tiallymemory-flooding proofed - the data are deallocated and no more data are accepted
by the object.
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Figure 7.9: General scheme of parallelization of simulation program

Computing supporters

In the last 20 years it can be observed that there has been a concerted en-

deavor to increase the power of computers using multiprocessors and the

clustering of computers.

The classes, which would be associated in the section, would allow the

exploitation of such types of computers which are based on threads orMPI.

Parallelization of the simulation program would be based on Monte Carlo

simulations - a run of simulation = different process and structure of the

parallelized program will look as in figure 7.9.

This feature is planned for version 2.0 and it will need a lot of time for

writing and, especially, testing, which will be the most time consuming

process.
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Other tools

The following is a collection of all other functionality which supports func-

tionality of the library in many ways.

Special game structures Functionality that is supporting to build up

simulation is associated to the set. The scattering models and the Sznajd

model need not have extra functionality. The Minority Games are using

strategy and its offspring strategy nonrandom. The quantum games are

using classes quantum state and quantum transformation. Future simu-

lations will need more extra classeswhich are necessary for functionality.

Directory tools Data is product from the simulation program, which

has to be preferably stored in a place which can be a directory in a UNIX

system or in a directory and its sub-directories. A couple of functions

which set up output directory and functions which prepares output file-

names are in auxiliary function.h. There is one option to enhance

functionality - dynamical allocation of string in separate data structure.

Memory tools Functionality that allocates, loads and deallocates mem-

ory that is used by processing tools. The function are obsolete and they

will not be supported in future. The function are declared in auxiliary-

functions.h. No more functionality will be developed here.

Processing tools Functionality which is necessary to process out-coming

data from simulations. Nowadays, these function are obsolete and will

now be supported in future. The functions are implemented in auxiliary-

functions.h,derivation.h and statistical functions.h. No

more functionality is planned.
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Mathematical tools Functionality that is related tomathematics. Pack

of functions in math functions.h. Nomore functionality is planned but

there is possibility to find similar functions in other libraries and substitute

them with a library.

7.2.5 Structure of library

Every program should be decomposable to multi-purpose part and one-

purpose part. The multi-purpose part consists of tools which are general

and usable in similar simulations. Such tools are packed in libzarja.a

(.so)24 and it is accessible via zarja.h header. The header is a meta-

header which allows access to every random generator, general nodes,

general edges, general networks, general agents, general game infrastruc-

ture based on agent based model, general timers, data storages and other

tools which were described in previous section.

The one-purpose part differs from simulation to simulation but, in gen-

eral, it consists of parts which are specific for a simulation. Thus there

could bemodifications of nodes, edges, networks, games and timers. There

could be testing of the tools which would be put inside the multi-purpose

library Zarja.

7.2.6 General future plans

The author believes that the most interesting plan for the future is the

support of multi-computer simulation from the position of user of library.

From position of internal structure it must prevent problemswith allocation-

deallocation of memory due to copying of pointers and use method de-

24Suffix of the file depend on type of linking of the library.
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scribed by Koenig in [83] and in Clanlib [84] - sharing pointer25, possessive

pointer26 and copy-on-write pointer.27 From a mathematical point of view,

it would be interesting to implement algorithms from [13], especially the

Dijkster algorithm.

7.2.7 Legal notes

The simulation library and its additions are distributed under GPL28 which

allows modification and redistribution the package but the author does

not provide any warranty. In general, the author thinks that the GPL con-

tributes to a combination of juristic protection with ability to maximize

scientific progress.

7.2.8 Compatibility and release notes

The library is written in C++ such that it would pass all general rules to

be portable to other platforms where GCC29 is accessible. It was tested on

IA32 architecture because of its spreading. Especially for the architecture,

there is supported creation of different optimalization builds30 which are

usable for making the most optimal packages that would be run on dif-

ferent computers with slightly different structure of a processor than the

actual computer31. So, it exploits the power of the computer to the maxi-

mum.

25Sharing pointer is pointer that counts references to the object and deallocation is
made when counter is 0.

26Possessive pointer is pointer that copies the object on demand of cloning of pointers.
27Copy-on-write pointer is pointer that share data between of cloned pointers until

request of writing to the object is present.
28General Public License
29GNU C compiler - gcc.gnu.org
30f.e. for Pentium 4 - Prescott, Pentium 4, Athlon, i686, ...
31It is usable for static linking of the Zarja library.
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7.3 Conclusions

The simulation library which was developed by the author was intro-

duced component by component. It appears to be a very general and

multi-purpose tool which can be very helpful for making structurally dif-

ficult computer simulations based on graphs. Plans for the future develop-

ment are discussed focusing on MPI and thread support for Monte Carlo

simulation.
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Conclusions
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Chapter 8

General conclusions

The thesis examines the ideas of Sociophysics and Econophysics which

relate to the use of physical models in Sociology and Economics. This

idea was initiated by Vilfredo Pareto analyzing the wealth distribution.

Breakthroughs in the observation and the formalization of known conflict

situations in the last century has facilitated ways to formulate the Game

Theory models. The models are mainly stochastic and they possible quali-

tatively explain human behavior in various aspects: the structure of social

networks, opinion formation, the economics.

8.1 Comments of the models

This thesis should provide a basic understanding of processes in modern

society using the paradigm of network structure of society in combination

with analysis of simple games from Game Theory evolving on it. In par-

ticular we focused on Sznajd model of opinion formation, Minority Game

and inelastic scattering model of wealth.

Sznajdmodel is a model of opinion formation in society and it was sim-
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ulated on wide spectra of graphs including small-world network in [110]

and growing Barabasi-Albert network in [120] but author’s simulations on

fixed Barabasi-Albert network does not follow power law opinion distri-

bution. Thus, the author of the thesis does not think that Sznajd model

is simply the general mechanism of opinion formation but it is a good

approximation for a community in society. Placing Sznajd model on fully-

connected network give certain similarities with measured data [123].

Simulation of Minority Game provide interesting statistical properties

of imitation trees. If we let it to be a generalized model of attendance at a

bar then the imitation trees are only result. However, the authors of [142],

[143] and [144] provide interesting application of Minority Game on a real

market and the author of the thesis thinks that imitation trees can have

the same structure like word-of-mouth advertisement or the ownership

structure of companies.

The last model was inelastic scattering of wealth which was simulated

on Watts-Strogatz network and fully-connected graph and both networks

allow Pareto law. Authors simulation of the model on Barabasi-Albert net-

work does not lead to Pareto law the same way like simulation on Watts-

Strogatz network for high rewiring probability. Thus, it seems that the

model can be understand only like metaphor of the real functionality of

economy. Moreover, this model can be accepted only like toy model rather

test model for policy making. The next comment is pointed to all models

of wealth distribution because none of them takes into account existence

of formal organizations (corporations, institutions and offices).

The author provide few comments of actual economic situation related

to political economy. The comments are in agreement with sociological

observations by Keller [4], [5], [6] or Wallerstein [7].
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The author thinks that the thesis provides the necessary background of

real networks, their models, models of processes in society based on phys-

ical models and its simulations. Finally, the author provides a simulation

library Zarja with documentation which can be used by other authors. At

this point, the models are not able to support practical predictions or con-

clusions to prevent problems of the 21th century but they are impressive

metaphors of the important processes in the modern society.
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dat, Academia, ISBN 80-200-1008-4.

[95] S.Milgram, Psych. Today 2,1967, 60.

[96] R.N.Costa Filho, M.P.Almeida, J.S.Andrade Jr., J.E.Moreira,

Phys. Rev. E, 60 , 1999, 1067.

[97] S. Galam, Physica A 274, 1999, 132-139.

[98] K. Sznajd-Weron, J.Sznajd, Int. J. Mod. Phys. C, Vol.11, 6, 2000,

1157-1165.



BIBLIOGRAPHY 152

[99] D.Stauffer, A.O.Sousa, S. M. de Oliveira, Int. J. Mod. Phys. C,

Vol.11, 6, 2000, 1239-1245.

[100] A.A.Moreira, J.S.Andrare Jr. , D.Stauffer, Int. J. Mod. Phys. C,

Vol.12, 1, 2001, 39-42.

[101] A.T.Bernardes, U.M.S.Costa, A.D.Araujo, D.Stauffer, Int. J.

Mod. Phys. C 12 (2) ,2001, 157-167.

[102] R.Ochrombel, Int. J. Mod. Phys. C 12, 2001, 1091.

[103] I.Chang, Int. J. Mod. Phys. C 12 (10), 2001, 1091-1092.

[104] K.Sznajd-Weron, R.Weron, Int. Jour. Of Mod. Phys. C 13 (1),

2002, 115-123.

[105] M.L. Lyra, U.M.S.Costa, R.N.Costa Filho, J.S.Andrade Jr., Eu-

rophys. Lett. 62 (1), 2003, 131-137.

[106] D.Stauffer, J. of Artificail Societies and Social Simulation 5 (1),

2001.

[107] A.T.Bernardes, D.Stauffer, J.Kertész, Eur. Phys. Jour B 25 (1),

2002, 123-127.

[108] D.Stauffer, Int. Jour. Of Mod. Phys. C 13, 3, 2002, 315-317.

[109] D.Stauffer, P.M.C.de Oliveira, Eur. Phys. Jour. B 30 (4), 2002,

587-592.

[110] A.S.Elgazzar, Int. J. Mod. Phys. C12 (10), 2001, 1537-1544.

[111] K.Sznajd-Weron, Phys. Rev. E 66 (4), 2002, 046131.

[112] D.Stauffer, Comp. Sci. Engi. 5 (71), 2003.



BIBLIOGRAPHY 153

[113] C.Schultze, Int. J. Mod. Phys. C 14, (2003) 95-98.

[114] D.Stauffer, Jour. Of Math. Soc. 28 (1), 2004, 25-33.

[115] C.Schulze, Physica A, 324, (2003) 717-722.

[116] K.Sznajd-Weron, Physica A, 324, 2003, 437-444.

[117] R.N. Costa Filho, M.P.Almeida, J.E.Moreira, J.S.Andrare Jr.,

Physica A, 322, 2003, 698-700.

[118] P.L.Krapivsky, S.Redner, Phys. Rev. Lett. 90 (23), 2003, 238701.

[119] L.Sabatelli, P.Richmond, Int. J. Mod. Phys. C 14 (9), 2003.

[120] J.Bonnekoh, Int. J. Mod. Phys. C 14 (9), 2003.

[121] D.Stauffer, Preprint cond-mat/0307133.

[122] L.Behera, F.Schweitzer, Int. J. Mod. Phys. C 14 (10), 2003.
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