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Introduction

The ability to shape light and manipulate beams is desired by scientist in many di�erent
�elds. Whether it is to modify the displayed image or rearrange data in an optical processor,
optical coordinate transformations using the spatial phase modulation o�er a simple method in
a system with only a few elements.

In the �rst chapter we investigate the light propagation from two di�erent perspectives, �rstly
in the scalar paraxial approximation and secondly the geometrical optics. Gaussian beams with
special properties are examined, because they can unite these two approaches as is demonstrated
on an example.

The introduction of the Fresnel di�raction integral in the �rst chapter is followed by presenting
the Fraunhofer integral in the second chapter. Another example of phase modulation on a tilted
displaced Gaussian beam is computed.

The third chapter focuses on optical coordinate transformations. A general transformation
is described mathematically and its realizability by optical elements is investigated.

The OAM is presented in the last chapter with a review of an experiment about its mea-
surement. Several techniques for arithmetic operations with the value of the OAM are proposed,
including division by a natural number n, multiplication by 2 and addition of a set amount.
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Chapter 1

Gaussian beams in geometrical optics

Gaussian beam is very useful representative of the light propagation, not just because of
its wide practical applicability. Gaussian beams are introduced as the simplest solution to the
paraxial equation in the �rst section. Then the behaviour of rays and their interaction with
optical elements via ABCD-matrices is brie�y explained. After limiting the dimensions of a
Gaussian beam according to the geometrical optics, it can be treated in similar fashion as a ray
and the same methods can be applied. With that, in the last section we compare a Gaussian
beam as a wave and as a ray in an example where it propagates trough a thin lens.

1.1 Gaussian beams in the paraxial approximation

The scalar wave theory describes behaviour of individual components of electro-magnetic
�eld without taking into account vector properties of the �eld, like polarization. Additionally,
we limit our research to coherent monochromatic waves. Any such wave can be written as a
complex function of position and time in the form

u(x, y, z, t) = U(x, y, z)e−iωt, (1.1)

where ω is the angular frequency of the wave. (In the following text, the time dependency e−iωt

will be omitted and only the function of position U(x, y, z) will be of interest.)
The focus of this paper is on the transformation of optical beams, which are usually studied

in the paraxial approximation. Assuming that the beam propagates along z axis, the dominant
factor eikz (k = 2π/λ is the wave number) can be extracted out of U(x, y, z)

U(x, y, z) = Ũ(x, y, z)eikz. (1.2)

Paraxial approximation means that the remainder Ũ(x, y, z) satis�es (in free space) the paraxial
equation [1, p. 628]

∂2Ũ

∂x2
+
∂2Ũ

∂y2
+ 2ik

∂Ũ

∂z
= 0 (1.3)

with the following restrictions. First, the �eld distribution should vary slowly in the z direction
compared to the transverse variations on the scale of a wave length. Written in mathematical
terms ∣∣∣∣∣∂2Ũ

∂z2

∣∣∣∣∣�
∣∣∣∣∣2k∂Ũ∂z

∣∣∣∣∣ or

∣∣∣∣∣∂2Ũ

∂x2

∣∣∣∣∣ or

∣∣∣∣∣∂2Ũ

∂y2

∣∣∣∣∣. (1.4)
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Furthermore, the paraxial approximation deals with such focused beams that all trigonometric
functions of small angles, as shown on Fig.1.1, can be expressed only by their �rst order expansion.
In other words, each plane wave making up the optical beam can only diverge from z axis by
angle up to

θ ≤ 0, 5 rad. (1.5)

Figure 1.1: A plane wave propagating with a small angle θ. Taken from [1, p. 629].

One of the most useful family of solutions of the paraxial equation are Gaussian beams. In
general, Gaussian beam centred on the z axis travelling in the positive direction can be written
as [2, p. 269]

U(x, y, z) =
w0

w(z)
exp

[
−x

2 + y2

w(z)2

]
exp

[
i

(
kz +

k(x2 + y2)

2R(z)
+ ψ(z)

)]
, (1.6)

where w0, w(z), R(z) and ψ(z) are the waist, the spot size, the radius of curvature and the Gouy

phase shift, respectively. All these properties can be expressed by two characteristic parameters
of the Gaussian beam, the waist w0 and the Rayleigh range zR (related to the wavelength λ in
the medium by λ = πw2

0/zR)

w(z) = w0

√
1 +

(
z

zR

)2

R(z) = z +
z2
R

z

ψ(z) = arctan

(
z

zR

)
.

(1.7)

The Fig.1.2 illustrates the practical meaning of some of the parameters, including the angle of
divergence θ expressed as

θ =
λ

πw0
. (1.8)
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Assuming the small angle condition (1.5) is satis�ed, combining it with (1.8) gives us an important
relation of the waist and the wavelength of the beam

λ ≤ πw0

2
. (1.9)

Additional restrictions arise from geometrical optics presented in the next section.

Figure 1.2: Illustration of some important parameters characterizing a Gaussian beam. Taken
from [2, p. 271].

A more general form of (1.6) would be a slightly tilted Gaussian beam transversally displaced
to the location (x0, y0). Any beam tilted in the direction of the transversal vector (a, b) and with
the �eld distribution U(x, y, 0) is given by

Ut(x, y, 0) ≈ eik(ax+by)U(x, y, 0). (1.10)

Explanation of this additional phase can be summarized as follows. Suppose a beam U(x, y, z)
is travelling parallel to the z axis (and satis�es the paraxial equation). If the direction of prop-
agation is slightly changed, the coordinates x, y will be transformed and the beam gains an
additional phase, because it propagates a di�erent distance. Focussing only on one transversal
coordinate x, let a be the angle between the z axis and the direction of propagation. According
to [3], the tilted beam becomes

Ut(x) = eikx sin aU(x cos a). (1.11)

Under the condition of the paraxial approximation, that the angle a is small, all trigonometric
functions can be expressed in the �rst order as

sin a ≈ a and cos a ≈ 1, (1.12)

which leads to the expression (1.10).
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Returning to our general beam, we can use the formula (1.10) on the transversally shifted
x→ x− x0, y → y − y0 Gaussian beam (1.6) to obtain displaced tilted Gaussian beam at z = 0

Ut(x, y, 0) = exp

[
−(x− x0)2 + (y − y0)2

w2
0

]
exp[ik(a(x− x0) + b(y − y0))], (1.13)

that will be used in future calculations.

1.2 Geometrical optics and ray matrices

Geometrical optics is a branch of electro-magnetic wave theory studying behaviour of rays.
An optical ray is a model of light with negligible wavelength, often expressed as a limit λ →
0. Geometrical optics describes the trajectory of rays, including media boundary re�ection,
transmission and changes in polarization [4, p. 116].

A Gaussian beam can, under certain conditions, behave as a ray. The �rst restriction (1.9)
mentioned in the previous section comes from the paraxial approximation and limits the waist
size of the beam to be greater than its wavelength. The inequality can be made even more strict
(≤→�) and with the de�nition of the Rayleigh range zR = πw2

0/λ rewritten as

w0 � zR. (1.14)

We introduced the quantity zR, because the second condition is connected to the distance
the Gaussian beam travels before signi�cantly diverging, which is precisely the Rayleigh range.
Written mathematically, the Gaussian beam is a valid model of a ray only on the distance L
from the waist satisfying

L ≤ zR. (1.15)

At last, unlike a ray, the Gaussian beam is not in�nitesimally thin. Therefore all optical
elements need to be su�ciently large, so that the beam ��ts inside� of them. For example, any
lens interacting with the Gaussian beam should have a diameter d much larger than the beam
waist w0.

To describe behaviour of Gaussian beams representing rays, we �rst introduce a formalism
for working with rays propagating through various optical elements, similarly as in [1, p. 581].
Afterwards we generalize the methods to be compatible with Gaussian beams and compute a
simple example.

An optical ray travelling approximately in the z direction can be described by its distance
r(z) from the axis and by its slope dr/dz, as in Fig.1.3. Considering propagation in free space,
the ray travels in a straight line from a plane at z1 to a plane at z2 = z1 +L, where its coordinates
can be derived from (see Fig.1.3)

r2 = r1 + L
dr1

dz
dr2

dz
=

dr1

dz
.

(1.16)

For simplicity we work in only 2 dimensions, in 3 dimensional space and rectangular coordinates
one would need to calculate x, dx/dz and y, dy/dz separately. Additionally, instead of writing
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the slope as a derivative, we de�ne variable r′(z) (reduced slope) as a product of the actual slope
and local index of refraction

r′(z) = n(z)
dr(z)

dz
. (1.17)

Figure 1.3: De�nition of an optical ray. Taken from [1, p. 582].

Equation (1.16) gives a linear transformation between the input and output values (displace-
ment and slope) of the rays. Most of the basic optical elements in ray optics (free space being
the simplest one) can be described by similar linear transformation in general form

r2 = Ar1 +Br′1

r′2 = Cr1 +Dr′1,
(1.18)

where the coe�cients A, B, C, D characterize the paraxial focusing properties of this element.
Naturally, equation (1.18) can be rearranged to matrix form

r2 ≡
(
r2

r′2

)
=

(
A B
C D

)(
r1

r′1

)
≡Mr1, (1.19)

where M represents the ray matrix for the optical element. For example, the ray matrix for
propagation in free space with index of refraction n0 over distance L is(

1 L/n0

0 1

)
, (1.20)

as can be seen from equation (1.16). Other matrices for wide variety of optical elements can be
found in literature. However, for a future discussion in the following chapter, we will mention
one more example, that is the ray matrix of a thin lens.

Input coordinates r1, r′1 of an arbitrary paraxial ray directly in front of a lens of focal length
f are transformed into output coordinates r2, r′2 directly behind the lens according to the lens
law [1, p. 585]

r2 = r1

r′2 = −(1/f)r1 + r′1.
(1.21)

Consequently, the ray matrix of a thin lens of focal length f is(
1 0
−1/f 1

)
. (1.22)
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Generalization of the ray matrix method for Gaussian beams is a powerful tool capable of
handling many di�erent systems. Rigorous explanation and proofs can be found in [1, p. 777],
here we only brie�y summarize the results and use them on an example.

Working again in only one transversal dimension, we introduce a �two-dimensional� Gaussian
beam at z = 0

u1(x1) = exp

[
−(x1 − x0)2

w2
0

]
exp [ika(x1 − x0)] . (1.23)

E�ects of a ray matrix on the Gaussian beam (or a general paraxial beam) are computed by the
Huygens-Fresnel integral [1, p. 783]

u2(x2) =

√
1

iBλ

∫
R

u1(x1) exp

[
ik

2B

(
Ax2

1 − 2x1x2 +Dx2
2

)]
dx1. (1.24)

In case of a thin lens, the element B = 0 and a trick is needed to evaluate the integral [1, p. 795].
First, a matrix of propagation in free space over a distance ∆z is introduced behind the matrix
of an optical element (

1 0
−1/f 1

)(
1 ∆z
0 1

)
=

(
1 ∆z
−1/f 1−∆z/f

)
. (1.25)

Then the Huygens-Fresnel integration is performed and �nally a limit ∆z → 0 is done. The
integral (1.24) with the new matrix gives

u2(x2) = lim
∆z→0

√
1

i∆zλ

∫
R

u1(x1) exp

[
ik

2∆z

(
x2

1 − 2x1x2 + (1−∆z/f)x2
2

)]
dx1. (1.26)

To calculate the limit a substitution x1 = x2 + y is performed

u2(x2) = lim
∆z→0

√
1

i∆zλ

∫
R

u1(x2 + y) exp

[
ik

2∆z

(
(x2 + y)2 − 2(x2 + y)x2 + (1−∆z/f)x2

2

)]
dy

= lim
∆z→0

√
1

i∆zλ

∫
R

u1(x2 + y) exp

[
ik

2∆z

(
y2 − x2

2∆z/f
)]

dy.

(1.27)

A formula for a delta function can be seen in the last expression (after we switch the order of
limit and integration and manipulate the constants λ = 2π/k)

u2(x2) = exp

[
− ik

2f
x2

2

] ∫
R

u1(x2 + y) lim
∆z→0

√
k

2πi∆z
exp

[
ik

2∆z
y2

]
dy

= exp

[
− ik

2f
x2

2

] ∫
R

u1(x2 + y)δ(y) dy

= exp

[
− ik

2f
x2

2

]
u1(x2).

(1.28)

As a result, the e�ect of a thin lens on a Gaussian beam (1.23) in geometrical optics at z = 0 is

u2(x2) = exp

[
− ik

2f
x2

2

]
exp

[
−(x2 − x0)2

w2
0

]
exp [ika(x2 − x0)] . (1.29)
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To propagate the beam further (say over the distance z), the matrix of the optical element would
have to be multiplied from the right by the matrix of propagation in free space. However, rest of
the calculation is left for the next section, where we compare the results with a phase modulation
technique. The �eld distribution directly behind the lens will be equal in both methods and the
free space propagation shows to be the same as well. As a proof, take the propagation in
geometrical optics. It can be performed by either multiplying the corresponding ABCD-matrices
and than integrating or by calculating the Huygens-Fresnel integral separately for each matrix.
In the second case the Huygens-Fresnel integral (1.24) with a matrix of free space propagation(

1 z
0 1

)
becomes the Fresnel di�raction integral used in the phase modulation technique.

To summarize, under certain conditions a Gaussian beam can behave and be manipulated as
an optical ray. The beam needs to be in the paraxial approximation, cannot diverge too rapidly
and its cross section has to be small compared to the elements it is interacting with.

1.3 E�ects of spatial phase modulation

Now we propagate the same Gaussian beam trough the thin lens as in the previous calculation,
but with the method of phase modulation.

Consider a monochromatic wave propagating in the z direction and a di�racting structure
located at z = 0. If the scalar �eld immediately in front of the structure is Ui(x, y) and the �eld
immediately behind Uo(x, y), than we can de�ne the transmittance function of the aperture as
[5, p. 59]

t(x, y) =
Uo(x, y)

Ui(x, y)
. (1.30)

In practical cases, a common optical element (for example di�raction grating, hologram or phase
plate) is used as the di�raction structure and its representing transmittance function is known.

In the following calculation, we illustrate the e�ects of the transmittance function approxi-
mating a thin lens [5, p. 98]

tl(x, y) = exp

[
− ik

2f
(x2 + y2)

]
. (1.31)

Note that the added phase is the same as we obtained from the geometrical optics calculation
(1.29) using a ray matrix.

Assume a slightly tilted transversally displaced Gaussian beam (1.13) at z = 0

U1(x1, y1) = exp

[
−(x1 − x0)2 + (y1 − y0)2

w2
0

]
exp
[
ik
(
x′1(x− x0) + y′1(y − y0)

)]
, (1.32)

where we changed the notation for the angles a ≡ x′1, b ≡ y′1 in order to easily compare the
results of our calculations in the next chapters.

At z = 0 the di�racting structure is introduced and the Gaussian beam gains additional
phase

U2(x1, y1) = U1(x1, y1)tl(x1, y1). (1.33)
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Propagation in the near �eld of the aperture is governed by the Fresnel di�raction integral (which
is a special case of Huygens-Fresnel integral (1.24)) [5, p. 67]

U3(x2, y2, z) =
eikz

iλz

∫
R2

U2(x1, y1) exp

[
ik

2z

(
(x2 − x1)2 + (y2 − y1)2

)]
dx1 dy1, (1.34)

where U3(x2, y2, z) is the desired �eld distribution at location (x2, y2, z) in the positive z region.
Skipping the details of the calculation (shown in Appendix A), the resulting expression be-

comes

U3(x2, y2, z) =
fkw2

0

fkw2
0 + 2ifz − kw2

0z

× exp

[
−2kf − ik2w2

0

2fkw2
0 + 4ifz − 2kw2

0z

(
(x2 − x̃0(z))2 + (y2 − ỹ0(z))2

)]
× exp

[
ik(x′2x2 + y′2y2)− ik

2
(x′2x̃0(z) + y′2ỹ0(z) + x′1x0 + y′1y0)

]
,

(1.35)

where the new variables are de�ned as

x̃0(z) = x′1z + x0(1− z/f)

ỹ0(z) = y′1z + y0(1− z/f)

x′2 = x′1 − x0/f

y′2 = x′1 − y0/f.

(1.36)

Even though the calculation in the previous section using ray-matrices was not completed
fully, for the reasons explained at the end of the section, the results would be same as (1.35) in
this example with the phase modulation.

Under certain conditions (narrow Gaussian beam propagating with small angle over a short
distance) both methods are equal and perform the same transformations. That means, instead
of computing Fresnel integrals with a phase modulation, a multiplication of ABCD-matrices and
the application of the Huygens-Fresnel integral can be done (which may save some computation).
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Chapter 2

Phase modulation

General spatial phase modulation can be examined from another point of view. In practice,
many optical problems rely on knowing the light disturbance very far away from the aperture
[4, p. 426]. For that reason we want to determine what e�ects the phase manipulation has on
a wave propagating to in�nity. Instead of making measurements of a �eld on in�nitely distant
image screen, a converging lens can be used to display the output into the focus plane.

2.1 Fraunhofer di�raction

The optical system is simply a phase �lter with a transmittance t(x1, y1) placed directly
against a converging lens of the focal length f . In an ideal scenario of an in�nitesimally thin lens
and a �lter directly next to it, the relative position of the �lter has no e�ect. In other words,
whether is the �lter in front of or behind the lens is irrelevant [5, p. 103].

The incident wave U(x1, y1) (with a cross-section smaller than that of the optical system in
order to ��t inside�) is transformed by the lens and �lter into

U1(x1, y1) = U(x1, y1)t(x1, y1) exp

[
− ik

2f
(x2

1 + y2
1)

]
. (2.1)

The desired �led distribution in the focal plane (z = f) at location (x2, y2) is found using the
Fresnel di�raction formula (1.34)

U2(x2, y2) =
eikf

iλf

∫
R2

U1(x1, y1) exp

[
ik

2f

(
(x2 − x1)2 + (y2 − y1)2

)]
dx1 dy1. (2.2)

After substituting (2.1) into (2.2), dropping the constant phase factor eikf and manipulating the
quadratic phase terms we get

U2(x2, y2) =
1

iλf
exp

[
ik

2f
(x2

2 + y2
2)

] ∫
R2

U(x1, y1)t(x1, y1) exp

[
− ik
f

(x1x2 + y1y2)

]
dx1 dy1.

(2.3)
The expression (2.3) is called the Fraunhofer di�raction integral and is usually derived from

the Fresnel integral as a far-�eld approximation. Note that the formula is basically a Fourier
transform of the input wave and transmittance function which is then multiplied by additional
quadratic phase.
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2.2 Phase modulation

We will investigate the e�ects of the phase modulation on the general Gaussian beam (1.13).
The modulation performed by the transmittance function will be given by
t(x1, y1) = exp[ikφ(x1, y1)]. Putting everything into the Fraunhofer integral (2.3) results in

U2(x2, y2) =
1

iλf
exp

[
ik

2f
(x2

2 + y2
2)

] ∫
R2

exp

[
−(x1 − x0)2 + (y1 − y0)2

w2
0

]

× exp
[
ik(x′1(x1 − x0) + y′1(y1 − y0))

]
exp[ikφ(x1, y1)] exp

[
− ik
f

(x1x2 + y1y2)

]
dx1 dy1.

(2.4)

The presence of the general function φ(x1, y1) renders the calculation of the integral to be rather
di�cult.

To solve it analytically, certain assumptions about the Gaussian beam and φ(x1, y1) need
to be made. The width of the Gaussian beam, already limited by the paraxial and geometrical
approximations, is assumed to be so small, that the variance of the phase function φ(x1, y1)
across the beam can be approximated by the �rst order Taylor expansion

φ(x1, y1) ≈ φ(x0, y0) +
∂φ

∂x
(x0, y0)(x1 − x0) +

∂φ

∂y
(x0, y0)(y1 − y0), (2.5)

for φ(x1, y1) with both partial derivatives �nite. With (2.5) the integral (2.4) becomes similar to
the last calculation in the previous chapter and can be computed following the same steps. The
�nal expression then becomes

U2(x2, y2) =
kw2

0

2if
exp

[
2ifk − k2w2

0

4f2

(
(x2 − x̃0)2 + (y2 − ỹ0)2

)]
× exp

[
ik(x′2x2 + y′2y2)− ik

2

(
x̃2

0 + ỹ2
0

f
− 2φ(x0, y0)

)]
,

(2.6)

where the new variables are de�ned as

x̃0 = f

(
x′1 +

∂φ

∂x
(x0, y0)

)
ỹ0 = f

(
y′1 +

∂φ

∂y
(x0, y0)

)
x′2 = x′1 +

∂φ

∂x
(x0, y0)− x0/f

y′2 = y′1 +
∂φ

∂y
(x0, y0)− y0/f.

(2.7)

Now we compare the transformations from our two calculations, (2.7) with (1.36). Since the
phase modulation case was computed in the focal plane, the transformations (1.36) need to be
evaluated for z = f . The only di�erences left are in the angle of propagation. Whenever there
is x′1 in (1.36), the transformation (2.7) has x′1 + ∂φ

∂x (x0, y0) and similarly for the other direction,
y′1 → y′1 + ∂φ

∂y (x0, y0). In other words, if we imagine the beam as a bundle of rays, the phase
modulation allows us to change the angle of propagation of each ray passing trough the �lter by
the amount (∂φ∂x (x0, y0), ∂φ∂y (x0, y0)).

The conclusion is, the phase modulation in the Fraunhofer di�raction greatly improves the
possibilities of manipulations in optical systems compared to the ray-matrices. Instead of using
just a quadratic terms in the ABCD-matrices, the general phase modulation with φ(x, y) is
mostly limited only by the smoothness and di�erentiability of the function.
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Chapter 3

Coordinate transformation

In the previous sections we have introduced a method of phase modulation as a powerful
tool for manipulation with an optical beam. The same method can be used in imaging technolo-
gies for geometrical image modi�cations such as general coordinate transformations, translation,
re�ection and local stretching. Following the work of [6],[7] two techniques are introduced.

The �rst scheme of phase modulation performs coordinate transformation between an object
plane O and a frequency plane F in a single lens setup as shown in Fig.3.1 using holographic opti-
cal elements (HOE's). We will examine this method mathematically, whether all transformations
are possible and what are the conditions of realizability.

The second scheme is a modi�ed imaging system consisting of two elements from the �rst
case. As illustrated in Fig.3.2, the telecentric arrangement of two lenses (L1 and L2) forms an
image I of the object O. If we think of the object as a collection of di�erent points, then the �rst
lens would display them all into a single point in the focus (in F ). To avoid this problem, a �lter
is placed in plane O to separate the points in the frequency plane. Now individual points can be
in�uenced di�erently by a second phase �lter (placed in F ) to produce a transformed image in
I.

Figure 3.1: Illustration of transformation scheme between object plane P1 and frequency plane
P2 with a lens L with an optical element (in P1) introducing a phase φ(x, y). Taken from [8].
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Figure 3.2: A telecentric optical system with two lenses (L1 and L2) transforming object O on to
the image plane I using two optical elements, one in O second in the frequency plane F . Taken
from [7].

3.1 Conditions for general transformations

Focusing on the �rst technique, our task is following. For an input uniphase �eld with an
amplitude distribution a1(x, y) and given coordinate transformation(

x
y

)
→
(
s
t

)
=

(
s(x, y)
t(x, y)

)
(3.1)

�nd a phase function φ(x, y), which performs the desired transformation in the �rst scheme. Are
all transformations possible? What are the restrictions on functions s(x, y) and t(x, y)? How
many optical elements are necessary to perform the transformation?

The phase modulation is introduced with a holographic optical element in the front focal
plane P1 of the lens L and the resulting �eld a2(s, t) is found in the back focal plane P2 as shown
in Fig.3.1. The complex amplitude distribution a2(s, t) can be calculated with the method of ray
matrices from the �rst chapter. The input beam a1(x, y) with the added phase φ(x, y) propagates
over the distance f , is transformed by the lens and propagates again over f , which gives the �nal
matrix (

1 f
0 1

)(
1 0
−1/f 1

)(
1 f
0 1

)
=

(
0 f
−1/f 0

)
. (3.2)

After substituting this matrix into the Huygens-Fresnel integral (1.24) (performed for each co-
ordinate separately and the results multiplied) the output distribution becomes

a2(s, t) = − i

λf

∫
R2

a1(x, y) exp

[
iφ(x, y)− ik

f
(xs+ yt)

]
dx dy. (3.3)

Following the steps from [8], the method of stationary phase is used [4, p. 888] to approximate
this integral. For large k, the phase of the expression inside the integral varies rapidly except
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for the saddle-points, where the partial derivatives of the exponent are zero. That means the
contribution to the integral is insigni�cant almost everywhere apart from the neighbourhood of
the saddle-points

∂φ(x, y)

∂x
− k

f
s = 0 and

∂φ(x, y)

∂y
− k

f
t = 0. (3.4)

If there are multiple saddle-points, each area containing a saddle-point adds to the �nal value
of the integral. However, our prime interest is in the new relative locations of the image points
transformed from the original object distribution. The new coordinates can be easily found from
the saddle-point equation (3.4)

s =
f

k

∂φ(x, y)

∂x
and t =

f

k

∂φ(x, y)

∂y
. (3.5)

By applying our desired transformation (3.1), we obtain a system of partial di�erential equations
for the phase φ(x, y), which we want to �nd.

Now we will make a few assumptions about the functions (3.1). For simplicity and future
calculations we consider only such s(x, y) and t(x, y), which are continuously di�erentiable and
their domain (region in x, y plane to be transformed) is simply connected. On top of that we
assume all transformations are one-to-one, that is no two points (x1, y1), (x2, y2) can be mapped
to the same point (s, t).

With these conditions the system of equations (3.5) has a solutions if and only if

∂2φ(x, y)

∂x∂y
=
∂2φ(x, y)

∂y∂x
, (3.6)

which is equivalent to
∂s(x, y)

∂y
=
∂t(x, y)

∂x
. (3.7)

To conclude, a coordinate transformation given by (3.1) is said to be realizable with a single
HOE in the stationary phase approximation if and only if the equation (3.7) is satis�ed.

3.2 Two element transformation

Condition (3.7) is very strict and limits our choices of transformation with only one HOE too
much. However, it can be shown, that two elements in series may perform most of coordinate
transformations of interest.

The desired transformation is again(
x
y

)
→
(
s
t

)
=

(
s(x, y)
t(x, y)

)
, (3.8)

for which (3.7) doesn't hold. If there exists decomposition into two transformations(
x
y

)
→
(
u
v

)
=

(
u(x, y)
v(x, y)

)
(3.9)

and (
u
v

)
→
(
s
t

)
=

(
p(u, v)
q(u, v)

)
, (3.10)
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that satisfy
∂u(x, y)

∂y
=
∂v(x, y)

∂x
(3.11)

and
∂p(u, v)

∂v
=
∂q(u, v)

∂u
, (3.12)

then the whole transformation can be done with two HOE's in series. Of course the second
transformation highly depends on the �rst one and its realizability is not guaranteed. Without
going into much detail (found in [8]), the �rst transformation needs to be one-to-one, continuously
di�erentiable, to satisfy (3.11), to have a di�erentiable inverse and to be onto a simply connected
region. On top of that, for the second transformation to be realizable (i.e. satisfy equation
(3.12)), the �rst one has to satisfy

∂t

∂x

∂v

∂y
=
∂t

∂y

∂v

∂x
+
∂s

∂y

∂u

∂x
− ∂s

∂x

∂u

∂y
. (3.13)

Solution to the system of partial di�erential equations given by (3.11) and (3.13) exists, if the
system is linear hyperbolic. A su�cient condition for the system to be linear hyperbolic is that the
total transformation (3.8) has a negative Jacobian determinant. Note that any transformation
with positive Jacobian determinant everywhere can be made negative by simply reversing the
direction of one of its output coordinates (details in [8]).

In summary, a total coordinate transformation given by (3.8) is realizable by two HOE's
in series, if there exists a solution to the system (3.11) and (3.13) and the �rst transformation
(3.9) is one-to-one. Such a solution always exists, if the total transformation has a negative (or
positive with mandatory rede�ning of an output coordinate) Jacobian determinant everywhere
in the transformed region.

3.3 Example

As a demonstration of the coordinate transformation method via phase modulation an illus-
trative example is presented [8]. The goal is to perform polar formatting between two orthogonal
coordinate sets x-y and s-t with the transformation functions(

x
y

)
→
(
s(x, y)
t(x, y)

)
=

(
x cos y
x sin y

)
. (3.14)

In order for the transformation to be one-to-one, the domain needs to be limited to x > 0 or
x < 0.

First we determine, whether the transformation is realizable with a single HOE, i. e. if the
equation (3.7) is satis�ed

∂s(x, y)

∂y
= −x sin y ,

∂t(x, y)

∂x
= sin y. (3.15)

The partial derivatives are not equal, meaning that two HOE's will be necessary.
The second step is to verify the positivity/negativity of the Jacobian determinant. It is easily

shown that the Jacobian is positive and the trick with reversing an output coordinate is needed.
One of the possible choices for x > 0 is

s(x, y) = x cos y,

t(x, y) = −x sin y.
(3.16)
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In the third step we �nd the decomposition into two intermediate transformations (3.9) and
(3.10). The �rst transformation is a solution to the system of partial equations (3.11) and (3.13),
which for this example (3.16) are

∂u

∂y
− ∂v

∂x
= 0,

∂v

∂y
+ (− sin y)−1

[
x sin y

∂u

∂x
+
(
(x+ 1) cos y

)∂v
∂x

]
= 0.

(3.17)

Although this system may seem complicated, one solution can be found with the additional
assumption that u = u(x) and v = v(y). The equations (3.17) are then simpli�ed to

dv

dy
− xdu

dx
= 0. (3.18)

The solution gives the �rst transformation in the form(
x
y

)
→
(
u
v

)
=

(
c1 lnx+ c2

c1y + c3

)
, (3.19)

where c1,2,3 are constants. As can be easily veri�ed, the transformation is one-to-one, contin-
uously di�erentiable with a di�erentiable inverse and is onto a simply connected region. The
second transformation is calculated from (3.16) and (3.19) with the constants c1 = 1, c2 = c3 = 0(

u
v

)
→
(
s
t

)
=

(
eu cos v
−eu sin v

)
. (3.20)

The given transformation (3.16) has been successfully split into two separate transformations
each realizable with a single HOE.

The last step is to create the optical elements performing the transformations, or rather
determine the input of the HOE's. The phase pro�le of the transformations is found by solving
(3.5) with the proper variables each time. For the �rst transformation

lnx =
f

k

∂φ1

∂x
and y =

f

k

∂φ1

∂y
(3.21)

results in

φ1(x, y) =
k

f

(
y2

2
+ x(lnx− 1)

)
. (3.22)

The second one is
eu cos v =

f

k

∂φ2

∂u
, −eu sin v =

f

k

∂φ2

∂v
(3.23)

with the result
φ2(u, v) =

k

f
eu cos v. (3.24)

Plots of both phase pro�les are illustrated in Fig.3.3. Note that the assumption of separable
variables u(x), v(y) was only made to solve (3.17) more easily, other solutions to the system of
PDE's are possible as well.

Usefulness of this method is proven even more when we realize that to perform the inverse
transformation, the direction of propagation needs to be simply reversed [8].
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In practice, the optical coordinate transformations and modi�cations can be mostly found
in imaging technologies. The possibilities span from local stretching and imaging onto curved
surfaces to correcting distortions and producing optical components like zoom lenses [7]. In the
next chapter our focus will be on a completely di�erent application, the manipulation the orbital
angular momentum of light, i.e. arithmetic operations with polar coordinates.

Figure 3.3: (a) phase pro�le for φ1, (b) phase pro�le for φ2.
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Chapter 4

OAM manipulation

There are many applications of optical transformations introduced in the previous chapters,
manipulation of the orbital angular momentum is one of them. In general, angular momentum of
light has two separate parts: the spin, originating from the circular polarization, and the orbital
angular momentum (OAM), the quantity of interest in this text.

The OAM is produced by a helically deformed wavefront. For example a paraxial beam
with a planar wavefront has no OAM, but a beam with a phase front deformed into a helix is
carrying an orbital angular momentum. The value of the OAM is proportional to the number l
of intertwined helices (as shown in Fig.4.1) and is equal to ±l~ (the minus corresponds to a helix
twisted in the other direction).

Figure 4.1: An illustration of wavefronts for di�erent values of l: (a)l = 0, (b)l = 1, (c)l = 2,
(d)l = 3. Taken from [9].
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An optical beam with an OAM in the paraxial approximation is most easily described in
Laguerre-Gaussian (LG) modes. LG modes form a complete orthogonal basis of solutions to the
paraxial equation (1.3) in cylindrical coordinates and are characterized by two numbers p ∈ N0,
l ∈ Z. They can be written as [9]

LGlp(r, ϕ, z) =

√
2p!

π(p+ |l|)!
w0

w(z)

(√
2r

w(z)

)|l|
L|l|p

(
2r2

w(z)2

)
exp

[(
−1

w(z)2
+

ik

2R(z)

)
r2

]
× exp(ilϕ) exp[i(1 + |l|+ 2p)ψ(z)],

(4.1)

where the only dependence on the azimuthal coordinate ϕ is in the phase exp(ilϕ) responsible
for the value of the OAM (and the shape of the phase front).

4.1 Arithmetic manipulation with the OAM

With the tools from the previous chapters it is possible to transform the beam and manipulate
the OAM it is carrying. Since the value of the orbital momentum is given by l connected to the
coordinate ϕ in exp(ilϕ), we propose a transformation

ϕ→ nϕ (4.2)

that divides the OAM by n. For every n ∈ Z and l divisible by n, a beam with the OAM l~ is
transformed into a beam with l

n~. In case of non-divisibility the transformed beam has no longer
strictly de�ned value of l and the OAM cannot be determined.

For the transformation to be one-to-one, the domain of the transformation needs to be limited.
Since n points on a circle would display onto a single point, we restrict the possible input to be
only one nth of the circle, i.e. {(r, ϕ)|ϕ ≤ 2π

n }.
Without a detailed explanation (found in Appendix B), the transformation can be written as

(
x
y

)
→
(
s(x, y)
t(x, y)

)
=


bn2 c∑
j=0

(−1)j
(
n
2j

)
xn−2jy2j

bn2 c∑
j=0

(−1)j+1
(

n
2j+1

)
xn−(2j+1)y2j+1

 . (4.3)

Following the steps from chapter 3, �rst we compare the partial derivatives (see Appendix B)

∂s

∂y
=
∂t

∂x
. (4.4)

They are equal, meaning we can use a single HOE and skip the search for the intermediate
transformation.

In the last step, the phase function φn(x, y) is determined from the formula (3.5) as

bn2 c∑
j=0

(−1)j
(
n

2j

)
xn−2jy2j =

f

k

∂φn
∂x

,

bn2 c∑
j=0

(−1)j+1

(
n

2j + 1

)
xn−(2j+1)y2j+1 =

f

k

∂φn
∂y

. (4.5)

These equations can be integrated and with a bit of manipulation of the summation bounds the
phase pro�le becomes

φn(x, y) =
k

f

dn2 e∑
j=0

(−1)j
(

n

2j − 1

)
1

2j
xn−2j+1y2j . (4.6)
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A few examples of the phase pro�les for small n

n =2 → φ2(x, y) =
k

f

(
x3

3
− xy2

)
n =3 → φ3(x, y) =

k

f

(
x4

4
− 3

2
x2y2 +

y4

4

)
n =4 → φ4(x, y) =

k

f

(
x5

5
− 2x3y2 + xy4

) (4.7)

are illustrated in Fig.4.2.

Figure 4.2: Phase pro�les for φ1,2,3. Red lines represent how the domain is limited.

An alternative to (4.2) would be transformation

ϕ→ ϕ

n
(4.8)

which multiplies the value of the OAM n times. In this case there are no restrictions on the
numbers n and l. However, �nding a general transformation for all n is di�cult. Therefore we
present only the case with n = 2.

With help of complex numbers (the same argumentation as in Appendix B) the square root
of a complex number z = x+ iy ∈ C is given by [12, p. 17]

√
z =

√
1

2

(√
x2 + y2 + x

)
+ i sgn y

√
1

2

(√
x2 + y2 − x

)
. (4.9)

The proposed transformation is

(
x
y

)
→
(
u(x, y)
v(x, y)

)
=


√

1
2

(√
x2 + y2 + x

)
−
√

1
2

(√
x2 + y2 − x

)
 , (4.10)

where we have already changed the sign of the second coordinate for the Jacobian determinant

J =
− sgn y

4
√
x2 + y2

(4.11)
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to be negative. To use the methods from chapter 3, we limit the domain to {(x, y)|y > 0} and
check the condition (3.7). The partial derivatives

∂u

∂y
=

y

2
√

2
√
x2 + y2

√√
x2 + y2 + x

=
∂v

∂x
(4.12)

are equal and we can use a single optical element. Its phase pro�le φ(x, y) is given by the
equations (3.5) in the form of√

1

2

(√
x2 + y2 + x

)
=
f

k

∂φ

∂x
, −

√
1

2

(√
x2 + y2 − x

)
=
f

k

∂φ

∂y
. (4.13)

To �nd φ(x, y) we �rst use the substitution

a = x2 + y2 , b = x, (4.14)

which transforms (4.13) into√
1

2

(√
a+ b

)
=
f

k

(
2b
∂φ

∂a
+
∂φ

∂b

)
, −

√
1

2

(√
a− b

)
=
f

k
2
√
a− b2 ∂φ

∂a
. (4.15)

These equations can be manipulated to the form

−2
√

2f

k

√√
a+ b

∂φ

∂a
= 1 ,

√
2f

k

√√
a+ b

∂φ

∂b
=
√
a+ 2b (4.16)

solvable with a computational software (Mathematica). The result becomes

φ(a, b) = −k
f

√
2

3

(√
a− 2b

)√√
a+ b, (4.17)

where it is possible to substitute the original variables (4.14) to get the �nal phase pro�le

φ(x, y) = −k
f

√
2

3

(√
x2 + y2 − 2x

)√√
x2 + y2 + x, (4.18)

which is illustrated in Fig.4.3.

4.2 Measuring the OAM with reverse polar transformation

The article [10] presents a Cartesian to log-polar coordinate transformation to sort beams by
their di�erent value of the OAM. The principle of the transformation is to map concentric rings
in the input to parallel lines in the output, which translates to LG beams as a transformation
from helical phase to transverse phase gradient. A little complication arises from di�erent optical
path lengths between the circles and the lines. This introduces an unwanted phase distortion
needful of correction by another optical element.
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Figure 4.3: Phase pro�le for multiplying the OAM by 2.

The coordinate transformation is given by

(
x
y

)
→
(
u(x, y)
v(x, y)

)
=

−a ln

(√
x2+y2

b

)
+ x

a arctan
( y
x

)
 , (4.19)

where a is a constant determined by the geometry of the system and b is an independent value
used for scaling the image in the u direction. The partial derivatives

∂u

∂y
=
−ay

x2 + y2
=
∂v

∂x
(4.20)

are equal, meaning only one HOE is necessary. The phase pro�le of (4.19) is given by

φ1(x, y) =
ka

f

[
y arctan

(y
x

)
− x ln

(√
x2 + y2

b

)
+ x

]
. (4.21)

The phase correcting element is required to collimate the transformed beam. Each output ray
needs to have its angle of propagation corrected by the opposite of what the phase �lter and the
lens introduced. The corresponding phase pro�le can be derived from the inverse transformation
[11] (

u
v

)
→
(
x(u, v)
y(u, v)

)
=

(
b exp

(
−u
a

)
cos
(
v
a

)
b exp

(
−u
a

)
sin
(
v
a

)) , (4.22)

which leads to
φ2(u, v) = −kab

f
exp
(
−u
a

)
cos
(v
a

)
. (4.23)

Note, that this is the same pro�le as we have already found in (3.24).
The optical setup starts with an iris allowing only the desired light to enter the �rst HOE,

which in this case was (for both transformations) a spatial light modulator. Then the beam
travels trough a lens and the second transformation is performed in the Fourier plane of that
lens. Finally, a second lens focuses the output beam on a display.
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In the experiment several LG beams with di�erent values of the OAM were used. Each OAM
state was displayed in the output as a distinct line. A beam without angular momentum showed
as a line in the center, with the increase of l the lined moved more to the right to its speci�c
position (and for negative l to the left). Even an example of a combination of OAM states was
performed and from the two bright spots in the output it was possible to correctly identify a
superposition of l = −1 and l = 2. Although some overlap between the di�erent output lines
was observed, the method proved to be successful.

4.3 Alternative OAM manipulation

The previous experiment gives us an idea for an alternative method to perform arithmetic
operations with the OAM. The principle is to transform the beam into orthogonal coordinates
as was done in the experiment and display each value of the OAM as a separate line. Then shift
the line by a prede�ned amount to a di�erent position and perform the inverse transformation.
Since each position of a line corresponds to a speci�c value of the OAM, the output beam will
carry that OAM. In other words, this method can add (or subtract) the OAM l~→ (n+ l)~.

The �rst transformation is going to be again(
x
y

)
→
(
u
v

)
=

(
− ln

(√
x2 + y2

)
+ x

arctan
( y
x

) )
, (4.24)

which turns the beam into parallel lines (or a line in case of one value of the OAM). The phase
pro�le is (4.21) with the constants a, b = 1.

If we want to add n to the OAM, we need to shift the line by n positions to the right. (This of
course depends on the orientation of the system. Following the experiment, if the negative values
were displayed on the left and positive on the right, then shifting to the right means addition
and shifting to the left subtraction.) The distance between the lines can be derived from their
position [10]

t1 =
λf

d
l, (4.25)

where d is a parameter of the system. The transformation adding n to the OAM is given by(
u
v

)
→
(
s
t

)
=

(
u+ λf

d n
v

)
. (4.26)

Before making the phase pro�le for this transformation, we need to remember that the previous
one (4.24) required an additional phase correction (4.23). According to [8], such corrections can
be combined with the transformation that follows immediately after into a single element giving
us phase pro�le for (4.26) as

φ2(u, v) = −k
f
e−u cos v +

k

2f

(
u2 + v2 + u

λf

d
n

)
. (4.27)

Last step is to transform the beam back into the polar coordinates. The inverse to (4.24) is
given by (

s
t

)
→
(
p
q

)
=

(
es cos t
−es sin t

)
. (4.28)

28



Again, the phase pro�le will be a combination of the correcting and the transforming part in the
form

φ3(s, t) =
k

2f

(
s2 + t2 − sλf

d
n

)
+
k

f
es cos t. (4.29)

This completes the transformation l~→ (n+l)~ of the OAM. All the phase pro�les are illustrated
in Fig.4.4 for n = 1.

Note that instead of shifting by a set amount (4.26), it would be possible to transform the
�rst coordinate as

u→ s = nu or u→ s =
u

n
, (4.30)

which would perform the OAM multiplication and division, respectively. In the second case, if
the parameter l of the input beam was not divisible by n, the transformed line would be located
in an incorrect position not corresponding to any value of l.

To conclude, each operation described in the sections 4.1 and 4.3 presents a theoretical pos-
sibility to manipulate the OAM. From the practical side, their applicability is not certain and
even though the methods are simple in design, there are some complications. In the �rst case,
the division of the OAM limits its input domain. This can be achieved by blocking a portion
of the input, but that may, at the same time, introduce unwanted di�raction e�ects. The last
method in section 4.3 uses many di�erent optical elements, each reducing the intensity of the
output and weakening the precision of the approximations.

Figure 4.4: Phase pro�les for φ1,2,3, respectively, in the setup to add a value (n = 1) to the
OAM.
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Conclusion

The goal of this work was to introduce the spatial phase modulation as a tool to manipulate
and shape beams. First, the paraxial approximation and the geometrical optics were presented.
The example with the tilted displaced Gaussian beam was meant to show that under certain
conditions the beam can behave as a ray and that techniques from both approximations can be
used.

Understanding of the e�ects of the phase modulation lead us to the mathematical descrip-
tion of the optical coordinate transformations. For any given transformation its conditions of
realizability were investigated as well as the number of optical elements needed to perform it.

Some of these results were used to manipulate the OAM of a Laguerre-Gaussian beam. We
proposed several theoretical possibilities how to perform arithmetic operations with the value of
the OAM.

The division of the OAM was fully described for all positive integers n and phase pro�les for
n = 2, 3, 4 were designed. However, change in the size of the beam (connected to loosing the
strict de�nition of the parameter p) had to be neglected for the transformation to be realizable
with a single optical element.

Another presented operation was the OAM multiplication. Since we were unable to �nd a
transformation performing polar angle division in Cartesian coordinates for general n, only the
case of n = 2 (doubling of the OAM) was investigated.

The OAM addition (l~→ (n+ l)~) was the last proposed method. In contrast to the previous
ones, the addition was achieved by �rst transforming the beam into the Cartesian coordinates,
shifting the value of the OAM and then transforming back into the polar coordinates.

Since this text focused only on the theoretical description of the optical coordinate transfor-
mations, the applicability of the presented techniques is left to be discussed by experimenters.

Future works may follow on improving the approximations to �nd better formulas usable on
a broader range of beams or continue the search for optical elements manipulating the value of
the OAM. Another option is to verify the current results, preferably in a lab on a real optical
system or at least from behind a computer with numerical simulations.
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Appendix A

We want to propagate a Gaussian beam

U1(x1, y1) = exp

[
−(x1 − x0)2 + (y1 − y0)2

w2
0

]
exp
[
ik
(
x′1(x− x0) + y′1(y − y0)

)]
, (4.31)

with the additional phase from a thin lens

U2(x1, y1) = U1(x1, y1) exp

[
− ik

2f
(x2

1 + y2
1)

]
(4.32)

with the Fresnel di�raction integral

U3(x2, y2, z) =
eikz

iλz

∫
R2

U2(x1, y1) exp

[
ik

2z

(
(x2 − x1)2 + (y2 − y1)2

)]
dx1 dy1. (4.33)

The integral can be, in principle simply, evaluated using the standard formula for computing
Gaussian integrals [1, p. 783]∫

R

exp
(
−ax2 − 2bx

)
dx =

√
π

a
exp

(
b2

a

)
, (4.34)

where a, b ∈ C and Re(a) > 0.
In practice, the help of a computing software (Mathematica) was used to perform the calcu-

lations to obtain (after few algebraic manipulations)

U3(x2, y2, z) =
eikz

iλz

2π
ik
f + 2

w2
0
− ik

z

exp

[
−ik

2fkw2
0 + 4ifz − 2kw2

0z

(
kw2

0(x2
2 + y2

2)
)]

× exp

[
−ik
. . .

(
fkw2

0z(x
′
1

2
+ y′1

2
) + 2iz(x2

0 + y2
0)− 2if((x2 − x0)2 + (y2 − y0)2)

)]
× exp

[
−ik
. . .

(
2kw2

0x
′
1(f(x0 − x2)− x0z) + 2kw2

0y
′
1(f(y0 − y2)− y0z)

)]
.

(4.35)

From here we manipulate the expression into a form of a Gaussian beam with easy to read
displacement (which will be a function of z), angle of propagation and some additional phase

U3(x2, y2, z) = c1 exp
[
c2

(
(x2 − x̃0(z))2 + (y2 − ỹ0(z))2

)]
exp

[
ik(x′2x2 + y′2y2) + phase

]
,

(4.36)
where the variables x̃0(z), ỹ0(z), x′2, y

′
2 are real.
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The �nal expression than becomes

U3(x2, y2, z) =
fkw2

0

fkw2
0 + 2ifz − kw2

0z

× exp

[
−2kf − ik2w2

0

2fkw2
0 + 4ifz − 2kw2

0z

(
(x2 − x̃0(z))2 + (y2 − ỹ0(z))2

)]
× exp

[
ik(x′2x2 + y′2y2)− ik

2
(x′2x̃0(z) + y′2ỹ0(z) + x′1x0 + y′1y0)

]
,

(4.37)

with the new variables are de�ned as

x̃0(z) = x′1z + x0(1− z/f)

ỹ0(z) = y′1z + y0(1− z/f)

x′2 = x′1 − x0/f

y′2 = x′1 − y0/f.

(4.38)
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Appendix B

Our goal is to perform a transformation ϕ→ nϕ in Cartesian coordinates. A solution can be
found in complex numbers, if we treat the transversal x, y plane of a beam as a complex plane.

Let z ∈ C be written in two forms, a Cartesian z = x + iy and in a polar form
z = |z|(cos(ϕ) + i sin(ϕ)). De Moivre's identity states, that powers of a complex number can be
easily computed from its polar form

zn = |z|n(cos(nϕ) + i sin(nϕ)), (4.39)

where n can be any real number, but we consider only integers. In this identity, we can see our
desired transformation, since taking nth power of a complex number multiplies its polar angle
by n. To convert the identity into a Cartesian form, we need to compute �the complex binomial
expansion� with a positive integer n [12, p. 16]

zn =(x+ iy)n

=

[
xn −

(
n

2

)
xn−2y2 +

(
n

4

)
xn−4y4 − . . .

]
+

+ i

[(
n

1

)
xn−1y −

(
n

3

)
xn−3y3 +

(
n

5

)
xn−5y5 − . . .

]
.

(4.40)

First few examples are

z2 =(x2 − y2) + i(2xy)

z3 =(x3 − 3xy2) + i(3x2y − y3)

z4 =(x4 − 6x2y2 + y4) + i(4x3y − 4xy3).

(4.41)

At last a scaling factor is needed to compensate for the change in magnitude introduced by |z|n
in (4.39) in order for the transformed points to stay on the same circle.

The �nal transformation is then(
x
y

)
→
(
s(x, y)
t(x, y)

)
=

1

(x2 + y2)
n−1
2

(
xn −

(
n
2

)
xn−2y2 +

(
n
4

)
xn−4y4 − . . .(

n
1

)
xn−1y −

(
n
3

)
xn−3y3 +

(
n
5

)
xn−5y5 − . . .

)
, (4.42)

which multiplies the polar angle by n (ϕ→ nϕ).
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The partial derivatives are

∂s

∂x
=
−(n− 1)x

(x2 + y2)
n−3
2

bn2 c∑
j=0

(−1)j
(
n

2j

)
xn−2jy2j+

+
1

(x2 + y2)
n−1
2

bn2 c∑
j=0

(−1)j
(

n

2j + 1

)
(2j + 1)xn−2j−1y2j

∂s

∂y
=
−(n− 1)y

(x2 + y2)
n−3
2

bn2 c∑
j=0

(−1)j
(
n

2j

)
xn−2jy2j+

+
1

(x2 + y2)
n−1
2

bn2 c∑
j=0

(−1)j+1

(
n

2j + 2

)
(2j + 2)xn−2j−2y2j+1

∂t

∂x
=
−(n− 1)x

(x2 + y2)
n−3
2

bn2 c∑
j=0

(−1)j
(

n

2j + 1

)
xn−2j−1y2j+1+

+
1

(x2 + y2)
n−1
2

bn2 c∑
j=0

(−1)j+1

(
n

2j + 2

)
(2j + 2)xn−2j−2y2j+1

∂t

∂y
=
−(n− 1)y

(x2 + y2)
n−3
2

bn2 c∑
j=0

(−1)j
(

n

2j + 1

)
xn−2j−1y2j+1+

+
1

(x2 + y2)
n−1
2

bn2 c∑
j=0

(−1)j
(

n

2j + 1

)
(2j + 1)xn−2j−1y2j .

(4.43)

With a computational software it can be shown that the Jacobian determinant is∣∣∣∣∣ ∂s∂x ∂s
∂y

∂t
∂x

∂t
∂y

∣∣∣∣∣ = n, (4.44)

i.e. for every n the determinant is positive and equal to n. The process of �nding the phase pro�le
requires the Jacobian determinant to be negative and therefore one of the coordinates in the �nal
transformation (4.42) needs to change sign. Another step is to compare partial derivatives ∂s

∂y ,
∂t
∂x .

If they were equal, only one HOE would be needed and we could avoid computing complicated
system of partial derivatives. Although that is not the case in (4.43), the only problematic term
arises from di�erentiating the scaling pre-factor. Omitting the factor 1

(x2+y2)
n−1
2

in (4.42) would,

on one hand, result in the transformation no longer being norm-preserving (the transformation
would be (r, ϕ) → (r|n|, nϕ)), on the other hand, the calculations would be greatly simpli�ed
thanks to ∂s

∂y = ∂t
∂x . Changing the radius of the beam would not e�ect the value of its OAM as

it is determined only by exp(ilϕ). With these modi�cations the �nal transformation is given by

(
x
y

)
→
(
s(x, y)
t(x, y)

)
=


bn2 c∑
j=0

(−1)j
(
n
2j

)
xn−2jy2j

−
bn2 c∑
j=0

(−1)j
(

n
2j+1

)
xn−(2j+1)y2j+1

 . (4.45)
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