
Adiabatic quantum computing and adiabatic algorithm

design

Filip Němec

2019
July

Abstract

The adiabatic theorem in quantum mechanics enables us to derive new algorithms
in quantum computation (QC) and gives us a new perspective on QC itself. Using the
adiabatic theorem we are able to find ground eigenstates of a potentially complicated
Hamiltonian H1 by constructing a time dependent Hamiltonian H(t). If H0 = H(0)
is suitably chosen, its eigenstates may be constructed easily; the adiabatic evolution
then uncovers the eigenstates of the examined Hamiltonian H1. We introduce the
basic concepts of adiabatic quantum computation (AQC), examine Grover’s problem
and show the relation between AQC and the adiabatic theorem in quantum mechanics.
We will also relate AQC to the standard circuit model.

Keywords: Adiabatic evolution, adiabatic theorem, circuit model, Grover‘s algo-
rithm, quantum computing, qubit, unitary gates, universal quantum computing.

1

Contents

1 Introduction, basic concepts 3
1.1 Bachmann-Landau O-notation . 4
1.2 Introduction to Complexity Theory . 8

2 Quantum Computing 12
2.1 Qubit . 14
2.2 Quantum Gates and the Circuit Model . 16

3 Adiabatic Quantum Computation 23
3.1 Adiabatic Theorem in Quantum Mechanics 25
3.2 Adiabatic solution for problems of the type f(x) = 1 29

3.2.1 Grover’s algorithm . 29
3.3 Known Relations Between Different Models of Quantum Computing 35

4 Further steps 38

2

1 Introduction, basic concepts

While trying to solve various kinds of problems we are usually interested in their solution
(or solutions). Even though this might sound as a completely obvious fact it is convenient
to elaborate the statement more profoundly as it contains ambiguities and some implicit
assumptions.

Firstly, we need to say what a problem means to us. In everybody’s intuition there
is a clear meaning to the word problem; it could represent questions such as how much is
2 + 20, how to get from the airport to a hotel, what structure should a company network
have etc. In our intuitive perspective problems are connected with question words: how
(many, much), what, which etc.; although we are mostly able to agree with other people
on their meaning such intuition is subjective and can be misleading. It has been the aim
of formalization to give exact meaning to such questions; from contemporary perspective,
formalization is the key concept in mathematics [1] [2]. In this text we will deal with
formal problems or with formalized versions of problems. For example the problem of
travelling form an airport to a hotel can be formally described in the language of the
graph theory and the task is given as an optimization problem. We can translate intuitive
questions to a formalized ones, try to find a solution in the language governed by the chosen
formalism and then translate the solution(s) to something we can grasp (e.g the most
convenient path on a map). We would need to make the statement ’the most convenient’
more precise so that we could somehow capture the convenience; it could be the shortest
walking route or the shortest way in terms of time spent in public transport. Even these
simple reformulation enable us to specify the convenience formally.

Secondly, it is desirable to refine what is meant by solution(s). Using the previous
example: we may express the solution of the ”most suitable path from the airport to the
hotel”-problem as a path on a map or as a set of instructions (starting from the airport,
go..., turn left etc.). We implicitly expect that there is some solution to the problem.
Sometimes the existence of a solution itself is an interesting question; then we talk about
satisfiability problems or SAT-problems. On the other hand the existence of a solution to
our transportation problem is not very helpful. We would appreciate a particular solution
(we wanted to find the optimal route) or even more solutions that are nearly optimal so
that we can choose the one we pick up by our subjective preferences. The precise form of
an answer has to be know prior to any attempts to find a solution to a problem given as
we might end up with an unwanted answer or we can get more information than needed
and pay for such a fanciness by unacceptable amount of time.

Time and resources consumption have not been discussed yet. After having formalized
a given problem and having specified the desired kind (form) of answer we would like
to know the solution as soon as possible. This is not always feasible: some problems are
considered as hard and their solution takes a huge effort. Time and space consumption are
crucial factors while trying to solve problems. We believe that problems may be classified
in terms of time or space required in a useful way; such a classification is the subject of
complexity theory.

Imagine that you pass by two chess players and one of them asks for the best move
1 he can play. Not only you have to get some insight in the game but you also have to
check reasonable moves and imagine what the opponent might play. According to our
intuition this is a hard problem; complexity theory confirms our expectations [3]. Further,

1Defining what is the best chess move is not an easy task.

3

we are not able to check our solution easily: deciding whether the move we proposed is the
best is extremely complicated even when we know it. The game of chess, respectively its
generalised version on n×n board, has been theoretically investigated. It was shown that
for the n×n version exponential time resources are reqired in order to find the best chess
move and even to confirm whether a given move is the best one, see [3]. Such problems
belong to a class called EXP.

The problems we want to solve are sometimes scalable: the game of chess can gener-
alized in such way that we allow different board sizes (or even rectangular chess boards).
We can ask how does the necessary effort (time consumption) vary while using n×n chess
boards where n is considered to be a free parameter. In a similar way we can generalize
Sudoku: instead of playing Sudoku on 9x9 board we can pick any number n and play the
game on n× n board. We would like to get an estimate on required resources in terms of
n and we expect n to be of a considerable value. Such an approach might not appear to
be useful for any practical purpose but for theoretical study of problems (or games). This
is not true: consider the shortest route from the airport problem. We use graph theory to
describe the possible routes; the obvious relation between the size of city considered and
size of graph needed for describing of the city leads us to considerations like: how does the
size of graph affect the time that our algorithm consumes while we search for our route?
The algorithm should work independently of the size of the city we landed in but its run
time may vary. If the algorithm consumed so much time we could not run it effectively
we might not be very pleased in big cities. For example in London there are about 60,000
streets or roads within the 6 mile radius of Charing Cross [4]. When we need to estimate
required resources for problems of such a great size we usually do not need an exact num-
ber of steps. Having a nice upper estimate depending on the size of our problem seems
more useful in practise. For instance, Dijkstra’s algorithm solves the shortest path in a
graph in approximately c1n

2 + c2n+ de+ k steps for some constants c1, c2, d and k where
n is the number of vertices and e the number of edges [5]. We also know that the number
of edges e is less then n2. The estimate we have given is still somehow complicated: for
big n’s the contribution from linear terms will be minor and the expression will be lead by
c1n

2. A suitable constant c such that from a certain n0 we have: for all n ≥ n0 the number
of steps for the Dijkstra algorithm is less than or equal to cn2, can be surely found. This
expression is more straightforward and does not hide any piece of information. The steps
we have just made are studied in asymptotics, a branch of mathematics we shall briefly
examine right now.

1.1 Bachmann-Landau O-notation

Begining with the expression for number of steps required to perform Dijkstra’s algorithm

c1n
2 + c2n+ de+ k, (1)

where c1, c2, d and k are some positive constants, n is the number of vertices and e counts
the edges, we would like to estimate the error caused by replacing (1) by

cn2, (2)

where c is a constant. Dividing (2) by (1) we obtain the relative error E:

E =
c1n

2 + c2n+ de+ k

cn2
=
c1

c
+
c2

n
+
de

n2
+

k

n2
. (3)

4

We can use our upper bound estimate for e:

e ≤ c3n
2. (4)

By choosing c = (c1 + c3) we estimate the upper bound for the relative error (3) as follows

E(n) ≤ c1 + c3

c
+
c2

n
+

k

n2
= 1 +

c2

n
+

k

n2
, thus |E(n)− 1| ≤ c2

n
+

k

n2
, (5)

where we consider E(n) as a function of the size of our problem. The relative error E(n)
is bounded from above by 1 for all naturals n. It is a basic result of calculus that for any
ε > 0 we can find a natural number n0 such that for all integers n greater than n0 we
have:

|E(n)− 1| < ε. (6)

Thus, provided that we choose n big enough, we are guaranteed that the relative error E
can be made arbitrarily small. Elaborating equation (5) we find a dependency of n0 on ε
as follows

n0 =

⌈
1

2ε
(
√

4kε+ c2
2 + c2)

⌉
, (7)

where the d e brackets denote the ceiling function that returns the smallest integer greater
or equal to its argument. From this perspective our statement about arbitrarily small
relative error may be refined: there is a function n0(ε) depending on ε such that for all
integers n greater than n0(ε) equation (6) holds. All the requirements of the well known
limit notation were met. The crucial part required for making an assumption about
the limit for n → +∞ was the existence of a suitable function n0(ε). Even though we
started with a numerical estimate (5) we used it only to show the existence of a function
n0(ε). Furthermore, we wrote all the constants explicitly so that we demonstrated how
cumbersome such a task can be even for very simple limits. (Majority of readers knew
the trivial answer instantly; we investigated the example in a great detail and thus the
clumsiness could be accented.) The resulting limit of (5) obviously does not depend on
the constants c2 and k: after having changed them we could use function n0(ε) given by
(7) again.

Yet there is another way of expressing limit behaviour of functions. On one hand it
does not suppress so much information as limits but it still remains useful in practice, the
Bachmann-Landau O-notation.

Definition 1.1. A function f(n) where n are naturals is said to be O(g(n)) if there is
a constant c not depending on n such that |f(n)| ≤ c|g(n)| for all naturals n. We write
f(n) = O(g(n)).

Example 1.1. Equation (5) says that |E(n)− 1| = O(c2n + k
n2) = O(c2n) for all n > n0.

Note 1.1. (i) In fact, we can go back to the (1) and say that:

c1n
2 + c2n+ de+ k = O(n2), (8)

where we profited from the definition 1.1: we do not have to specify any constant c
as we did in our previous steps.

5

(ii) The equality sign may be slightly misleading: being O(g(n)) for a function g : N→ R
is a relation on functions. It is reflexive and transitive (such relations are called pre-
order). We shall check this assertion. Surely, g(n) = O(g(n)), for the required
constant from the definition 1.1 is 1; thus big-O relation is a pre-order. If it was
symmetric we could conclude that we arrived at a relation of equivalence. This is
not the case and we would have to add more restrictions if wanted a relation of
equivalence.

(iii) We can generalize the definition 1.1: only functions on the naturals considered:
f : N → R. We could have chosen any reasonable domain and range. The only
requirements are: we need to have a notion of convergence in the domain and we
need to be able to compare size of elements in the range and lastly, we should be able
to multiply functions by numbers; thus the domain may be any topological space
and the range might be any normed space.

Based on previous notes the definition of big-O symbol may be generalised.

Definition 1.2. Let M be a topological space, N be a normed space, f, g are functions
from M → N . Let a be any point of M and let A be a set of all sequences (an)n∈N
converging to x. Then we say that the function f is O(g) as x approaches to a if there is
a constant c not depending on a and not depending on sequence (an)n∈N chosen such that
|f(an)| ≤ c|g(an)| for all naturals n greater that a certain n0 and the constant n0 depends
only on the sequence considered. We write f = O(g) as x→ a.

We could equivalently say that f = O(g) as x → a if there exists a neighbourhood U
of the point a ∈M such that for all x ∈ U the inequality |f(x)| ≤ c|g(x)| holds.

The big-O relation can be used to estimate upper bounds on the number of steps
required to perform an algorithm; we will see the importance of such an estimate in
chapters concerning complexity theory. From the equation (8) may be seen that the
Dijstra’s algorithm is comparable to an algorithm that needs n2 steps for a problem of
size n. That means that Dijkstra’s algorithm is an algorithm that takes at most polynomial
number of steps depending on the problem size. Such problems are called P problems.
This class will be further elaborated in the section dedicated to complexity classes 1.2.

We shall return to our study of asymptotics. After having seen the notion of bound-
edness of a function by another, one may want to introduce the notion of dominance. It
was showed that c0 + c1n+ c2n

2 = O(n2) as n tends to +∞. But c0 + c1n+ c2n
2 = O(n3)

also holds. We can exploit the obvious difference between the two expressions: c0+c1n+c2n2

n2

tends to c2 as n goes to +∞, on the other hand c0+c1n+c2n2

n3 tends to zero as n goes to
+∞. We see that c0 + c1n + c2n

2 is asymptotically as large as c2n
2 and neither of c2n

2

and c0 + c1n+ c2n
2 grows much faster than the other. Though the limit of c0 + c1n+ c2n

2

is dominated by n3 in a stronger manner: n3 grows much faster. This phenomenon gives
rise to a definition of small-o symbol [6].

Definition 1.3. We say that a function f(n) where n are naturals is o(g(n)) if for any
constant ε there is n0 such that for all n > n0 |f(n)| < ε|g(n)| holds. We write f(n) =
o(g(n)) as n→ +∞.

6

Adequate generalisations of the definition 1.3 can be easily derived if needed. We shall
elaborate the definitions 1.1 and 1.3 more thoroughly:

f(n) = O(g(n)) as n→ +∞ ⇐⇒ (∃c > 0)(∃n0)(∀n > n0)(|f(n)| ≤ cg(n)), (9)

f(n) = o(g(n)) as n→ +∞ ⇐⇒ (∀c > 0)(∃n0)(∀n > n0)(|f(n)| < cg(n)), (10)

where both f and g are functions from N to R.

Note 1.2. (i) If the function g(n) from the definition 1.3 is not vanishing as n tends to
+∞ the condition that f(n) = o(g(n)) may be restated as follows: f(n) is o(g(n)) if

the limit limn→+∞
f(n)
g(n) = 0. This can be easily seen from expressions in ((ii)). Some

authors use this limit condition as definition of being small-o [6].

(ii) The comparison of big-O and small-o symbols in the equations and reveals that
small-o is more restrictive than big-O.

The aim of this section was to give a precise definition of basic asymptotic notation so
that we can beneficiate our discussion of complexities of given problems. We have already
seen big-O and small-O symbols. Yet there is another useful notion. While introducing
the big-O symbol we pointed out that rather than equality big-O is to be conceived as the
pre-order relation. In fact, we may refine the definition of big-O and gain an equivalence
relation.

Definition 1.4. We say that two functions f, g from naturals N are asymptotically equiv-
alent if for any ε > 0 there is an n0 such that for all n > n0 ∈ N |f(n)

g(n) − 1| < ε holds. We

write f(n) ∼ g(n) as n→ +∞.

How can one possibly come up with such a definition? Recall that according to the
note 1.2 the big-O relation is reflexive and transitive however it is not symmetric. The
definition 1.4 of asymptotic equivalence is clearly symmetric. It fact, if f ∼ g, then
f(n) = O(g(n)) and g(n) = O(f(n)) [6].

The definition of the asymptotic equivalence may be further generalised if needed.
The latter definition 1.4 is suitable for our purposes: we will be interested in comparing
number of steps of algorithms or a programs and these are often given in terms of naturals.
Imagine generalised Sudoku with m2×m2 board, city with m streets where we would like
to optimize routes etc.

Before moving to the most common complexity classes we will summarize basic rela-
tions between asymptotic symbols defined in this section and give few examples [6].

7

Example 1.2.

cosx = O(1) (x→ +∞), (11)

cosx = O(1) (x ∈ R), (12)

x2 = O(x) (x→ 0), (13)

x2 + x+ 15 = O(x2) (x→ +∞), (14)

x2 + x+ 15 = o(x3) (x→ +∞), (15)

x2 + x+ 15 ∼ (x2) (x→ +∞), (16)

(∀k > 0)

((
f(x) + g(x)

)k
= O

(
fk(x)

)
+O

(
gk(x)

))
(x ∈ S), (17)

n! ∼ e−nnn
√

2πn (n→ +∞), (18)

cos(x) = 1 + o(x) (x→ 0), (19)

x+ 1 ∼ x (x→ +∞), (20)

f(x) = g(x)(1 + o(x)) ⇐⇒ f(x) ∼ g(x) (x ∈ S), (21)

where we denote by S the domain of real functions f and g. Note that in (12) we used
(x ∈ R) to express that the relation holds for any x ∈ R. We shall express this fact more

precisely: (∀x ∈ R)
(

cos y = O(1) as y → x)
)

.

1.2 Introduction to Complexity Theory

One feels that some tasks are harder than others. The field of complexity theory studies
how to describe the hardness formally and how to classify certain problems according
to their hardness into classes. In the previous section we mentioned the basics of the
asymptotic notation. In this section we will use some of it to describe the dependence of
resources needed to perform a computation depending on a problem size.

The dependence just stated lies at the heart of the complexity theory. Recall our
discussion of being able to pose problems and measure their size. It was mentioned how
important are our questions: do we ask for a certain solution to a given problem, or do
we need to know how many of them are there? It seems plausible that these discrepances
affect the resources required to find an answer. Imagine for example two similar questions:
(1) is a natural number n composite or prime and (2) what are the factors of a natural
number n. Both questions are found relevant in certain contexts (e.g. cryptography) and
both take different time to solve: in 2004 M. Agrawal, N. Kayal and N. Saxena presented
an improved version 2 of algorithm deciding whether a given n-bit 3 number x is prime,

requiring O(log
15
2 n) steps [8]. On the other hand we are not aware of any algorithm

factorizing an n-bit number x in polynomial number of steps [2].
We shall return to the discussion of a problem size: in the paragraph above we had

to somehow capture that it is harder to factorize big integers than small ones. We did so
by counting number of bits in their binary representation which is the same as counting
the number of digits in their decimal representation up to a constant factor. Such a
factor may be absorbed while using the big-O notation and the results mentioned are

2They had published the original algorithm in 2002 [7].
3By counting bits of a number we mean the number of bits in binary representation.

8

independent of numeral system used (it would be impractical if one had to rely on specific
numeral system while describing results in the complexity theory). Finding a suitable
description of a problem size might be quite complicated and we should be certain that
while reformulating our problems using different notation (e.g. numeral systems etc.) the
size scales at most up to a reasonable multiple (e.g. constant). Then, using the big-O
notation together with a suitable set of functions we may forget about such factors as they
do not play any role (e.g. polynomial overhead and set of all polynomial functions in a
given variable).

As we said earlier: the theory of computational complexity studies how the resources
needed to solve a given problem depends on its size. What do we mean by resources?
The latter example of primality testing gave us the following relation: size of a number –
number of steps required to perform the task. We might also ask how many calculations do
we need to remember during our computation; then we arrive at the question of memory
resources given as: size of a number – size of memory 4 (While considering the primality
testing or any other problem, the choice of different number of tapes results in at most
polynomial overhead. In order to have useful classes of problems they should rather be
invariant under such overheads.)

Other types of resources such as time necessary to perform an algorithm 5 or energy
needed to power a computer while computing may be discussed but the latter two: number
of steps and size of memory are usually the most important [9].

The meaning of ”an algorithm requires O(f(n)) steps to solve a problem of size n”
should be further elaborated. Does that mean that a program needs to perform O(f(n))
step not depending on its input? Certainly, not always! It means that at most O(f(n))
steps has to be made to obtain a solution but there might be certain inputs such that the
program ends sooner. We will return to the question of primality testing for a moment.
We can try to decide whether number 1768790 is composite or prime. How many steps did
our answer take? And how many steps would be needed if the number given had 30 digits
and was even? Someone can pose a question whether the AKS algorithm [8] performs
like that. Even numbers greater than 2 will not certainly be primes. If the algorithm
did not recognize such even numbers as not primes we could upgrade it: we would have
to say whether the last digit is even and this takes just a few steps. That means we
could add this procedure in the beginning of the original program without affecting the
asymptotic complexity and in the best case we would be able to get results after constant
number of steps. Usually, we take the worst case scenario while dealing with problem
complexities: we try to find upper bound for number of steps and/or memory resources
not thinking about how relevant such scenarios are. People sometimes need to capture
average complexity of a problem (e.g. in cryptography [10] or while examining search
problems) but the topic is complex and some theory is needed in order to define average
hardness of a problem [9].

4Our model of memory should not have any impact on the complexity. In general we consider memory
a place to store data together with read and (re-)write operations. In the classical theory of computa-
tional complexity we consider a machine equipped with (for example magnetic) infinite tape together with
read/write head and set of instructions (internal states) called Turing machine. (See [9] for further de-
tails.) The memory of such a device consist of the tape and read-write operations. It can be shown that
the resulting complexities are independent of number of tapes etc. [9].

5We will see that time dependency on problem size is convenient for describing algorithm for adiabatic
quantum computers.

9

When we discussed the hypothetical upgrade of AKS algorithm we saw that the pro-
cedure that added constant number of steps did not affect its asymptotic complexity as

O(log
15
2 n) = O(log

15
2 n+c), where c is a constant. From this example can be seen how the

basic properties of big-O notation help us describe complexities: the big-O blurs constant
factors that may be present due to implementation details 6. But here comes an important
question we have not discussed yet: how does an architecture of a machine performing an
algorithm e.g. a computer affect the resulting complexities? Defining complexities that
would be too sensitive to an architecture design would result in not very clear theory.
That is the reason why A. Turing invented an ingenious model of computation that cap-
tures just enough to be able to compute everything we consider computable but not too
powerful. Turning’s model is still interesting to study in context of nowadays computers,
even though one may consider its concept rather simple. The details may be found in C.
Papadimitriou’s great book Computational complexity: [9]. Basically, the Turing’s ma-
chine seems like a primitive computer 7. It consists of a control device containing finitely
many states and a tape equipped with moving head. We imagine labels on squares on
the tape and regard read-write operations as moves of the head square by square, writing,
erasing etc. Each square can contain either a letter from a given alphabet or a special
symbol (blank space, the begin of the tape...). Each step goes like this: the machine reads
a symbol at current position, possibly rewrites it with a different one and according to
the current state of the control device switches the internal state and possibly moves the
read/write head one square left or right. At this time we accomplished one cycle: the
machine works in discrete cycles that consist of basic steps described above. Although the
device seems elementary, we can see that it may perform any algorithm [9], [2]. Turing
machine gives us a model of computation to which all classical computers are somehow
similar not taking their architecture design etc. in account: any classical computer may be
efficiently simulated by a Turing machine described above. We could introduce multi-tape
machines and discuss the effects of choosing different alphabets etc., thorough discussion
is available in [9], [2]. For our purposes we will end up with conclusion: there exists a
Universal Turing machine such that any other Turing machine may be efficiently simu-
lated using the Universal one. Thus we have a simple yet powerful model of computation
described by a machine called the Universal Turing machine (UTM).

We have just used word efficiently. What does that mean? Formally, by efficiently we
mean: if a program with input of size n requires O(f(n)) steps on machine A, we need
to perform O(p(f(n))) steps while simulating machine A using machine B, where p is a
chosen function (e.g. polynomial or logarithmic). In other words: the simulation takes at
most p-more steps than the original calculation.

The word efficiently in the context above is often meant as ’at most polynomial’. From
where does such selection of function p arise? Is there any reason why should be a program
that takes 10000 +n steps considered more efficient than o program requiring d1.000001ne
8 steps? For n = 10 the first algorithm needs 10010 steps but the second will do its work
in 1 steps. On the other hand, as the size of a given problem increases we find that from
certain point the exponential dominates the polynomial. Whether the problem of size for
which the difference matters is of any use is not the point; we would like to capture some

6if we exclude trivial cases like O(0)
7Not to be confused by the word primitive: Turing machine is as powerful as any classical computer

we can construct.
8By dxe we mean the smallest integer greater or equal to x.

10

sense of efficiency not depending on input size. There is also another reason why we do
not consider d1.000001ne as a problematic case: in practice we do not arrive at algorithms
requiring such a strange number of steps [2].

The idea of simulation leads us to an interesting classification of problems. Imagine
that given algorithm require polynomial number of steps on a Turing machine A. But here
comes the great advantage of the UTM: we can simulate the Turing machine A using the
UTM with at most polynomial overhead. So that if we were given any realisation of UTM
we would know that anything the Turing machine A performs, the UTM performs with
at most polynomial overhead.

So here emanates an idea: we can assume all the algorithms requiring at most poly-
nomial number of steps on some Turing machine at once, as a class of problems, and the
concept of simulation and UTM guarantees that the UTM may perform any such task
in polynomial time. Further, we can see that such a class is closed under composition of
problems.

We denote the class of problems solvable using a Turing machine in at most polynomial
time 9 by P. This class is closed under the same operations under which the big-O of
polynomial is. When someone needs to verify a solution given by an algorithm it is possible
to rerun the algorithm and verify the result in polynomial time. This seems obvious. But
there is another way how to define a well behaved class of problems, the class of NP 10

problems: such a problem may have resource expensive algorithm, we only demand the
possibility to be able to check the solution in at most polynomial time. Clearly, P ⊂ NP.
Whether P equals NP is an open question and we believe that the equality does not hold
11.

9We sometimes use time – number of steps interchangeably even though there is a difference in meaning.
For any practical purposes the two aspects seems to be closely related.

10NP stands for nondeterministic polynomial.
11For interesting overview what would that imply in physics and mathematics one can consult the

essay Why Philosophers Should Care About Computational Complexity written by S. Aaronson’s [11].
Papadimitriou’s Computational Compliexity offers more profound logical analysis [9]

11

2 Quantum Computing

Historically, there have been several different approaches to computing. We may start with
intuitive concepts of computation and devices suitable for making computations more
feasible for humans such as mechanical computers such as slide rule; then one usually
meant computable in the sense computable using paper and a pen (and possibly the
slide rule). First theoretical approaches to computability and computing theory proposed
different formal models of computation and different points of view on what may be
computed. We present a brief list of first theoretical concepts: Gödel’s general recursive
functions, Church’s lambda calculus or Turing’s concept of computing machines nowadays
called Turning machines together with the universal computing machine (UTM). In 1936
and 1937 Church and Turing proved that the latter approaches to computing coincide, i.e.
any λ-computable function is effectively computable on a Turing machine and it is also an
element of Gödel’s general recursive functions etc. According to the Church-Turing thesis
any function on natural numbers N is computable, if and only if it may be computed using
a Turing machine, and by the latter equivalences of computation models we get equivalent
statements after interchanging the Turing model with Church’s or Gödel’s. Computable
functions on natural numbers are computable by an algorithm (this can be seen most
easily from the Turing’s concept). Such an approach may be limiting in the sense that
one’s calculation is restricted to only finitely many discrete steps concerning elementary
operations. We can try to weaken (or even abandon if possible) both restrictions (i.e.
discreteness of steps and finite number of steps) as they may seem too strict 12. What if
we were allowed to perform computation based on a physical processes. Such a definition
clearly absorbs the latter one as any physical realisation of a Turing machine is a concrete
realisation of the physical process required. The other inclusion is not decided yet but it is
believed that it does not hold [2]. Computers based on the weakened definition are called
analog computers.

For physicist the possibility of being able to effectively simulate evolution of a physical
system has been an important question. Predictions of classical physics (i.e. not quan-
tum) are based on ordinary and partial differential equations, finding extremas of certain
functionals etc. The classical analog computers are not very suitable for such tasks as
they require extremely precise setting and control over external conditions (i.e. baths,
shielding, mechanical isolation etc.) in order to provide sufficiently reliable results. More-
over the setting of the initial data may be complicated and our inability to gather precise
control over all components 13 may result in poor precision [2]. The idea of using the real
world reappeared in Feynman’s article Simulating Physics with Computers from 1982 [12];
here was the the question of simulating physics, as the title suggests, the main topic. The
difference from the previous analog computers was that Feynman suggested performing
simulations of quantum systems using other quantum systems: what we call nowadays a
quantum computer (QC).

The key difference between classical analog computers and quantum computers is that
classical analog computations are governed by the laws of classical physics and their quan-
tum counterparts operate in the framework of the quantum physics. As Feynman pointed

12Both, discreteness and finality, are discussed in Aaronson’s essay [11] or in [2].
13Such inability is in practise often summarized as a presence of noise. For example, one can try to

perform analog addition as addition of two DC voltages. How precise are our power supplies? Is the
voltage really DC, or are there some oscillations? And what about the presence of voltmeters etc.?

12

out [12], classical analog computers, similarly as classical Turing machines, are not able to
perform calculations regarding the quantum world effectively: classical devices inherently
work in the classical framework governed by the classical physics 14.

In contrast to macroscopic analog computers, quantum experiments (and possibly cal-
culations) can be done with high precision. Further, exploring limits of such calculations
seems interesting because we believe that our world is described by the laws of quantum
mechanics and these laws should pose the only limits in questions of what can be com-
puted and what can be computed effectively. We shall return to the second topic – the
effectivity – later. For now, we briefly examine the Church-Turing thesis and revisit the
computability with regard on the quantum computing. We mention two basic aspects of
quantum computability.

In 1985 Deutch wrote an article Quantum Theory, the Church-Turing Principle and the
Universal Quantum Computer where he pointed out that any quantum computer based
on circuit made of gates 15 can be simulated using a Turing machine. The simulation
would suffer from great overhead but any calculation could be performed in finite number
of steps provided that the quantum circuit has finite number of gates. Thus the set
of computable functions remains the same after having introduced the universal circuit
model of quantum computing. Why are the quantum computers interesting then? The
criterion of computability seems too coarse: both classical approach to computability and
quantum approach lead to the same set of computable functions, thereby we need to find
something finer: and here comes the complexity theory. Computer scientist found several
very interesting quantum algorithm such as Shor’s algorithm for integer factorisation,
quantum Fourier transform and Grover’s search algorithm that outperform any known
classical algorithms (i.e. algorithms not based on quantum computing) [2] [13] [11]. We
shall examine known results comparing the computation resources of classical and quantum
computers later; the key point is that complexity theory is fine enough to capture the
difference between quantum and classical.

We promised to present two aspects of Church-Turing thesis in regard to quantum com-
puting. The second point of view concerns physical ability to compute and asks whether
there might be a physical motivation for a thesis like that of Church and Turing. This
topic has been studied classically by Gandy in the article Church’s Thesis and Princi-
ples for Mechanisms from 1980 [14] and in regard to the quantum mechanics by Holevo
(Information-theoretical aspects of quantum measurement from 1973 [15]) and later in
1977 by Prugovečki [16] who discussed the quantum theory of information and our ability
to gain information from a measurement. In 2012 Arrighi and Dowek discussed the quan-
tum version of Church-Turing thesis in their article The physical Church-Turing thesis and
the principles of quantum theory [17]. They stated a set of reasonable physically motivated
arguments under which we may restate a quantum version of the classical Church-Turung
thesis.

14This reasoning also implies further discussion of the Church-Turing thesis for it was stated in the
classical setting.

15We shall return to the question of the universal quantum computer later. Here we, rather anachro-
nistically, use the terms quantum circuit and quantum gate. For now it suffices to mention: the model
of quantum computing may be realized as a sequence of quantum gates – unitary operators – together
with the set of ancilla bits set to zero – bits that enable us to perform some classical irreversible logical
operations in reversible way. Such a model was shown to be universal [13].

13

2.1 Qubit

We shall review the basic principles underlying the description of the simplest non-trivial
example of a quantum object: a binary quantum object, quantum version of a bit, called
qubit. In order to exploit the advantage of quantum computing at least a bit, we will
go through the description of a qubit rather thoroughly. For anyone who is familiar with
basics of the quantum mechanics the description: two state quantum particle suffices.
Such a description does not uncover why the usage of qubits might add any computational
advantage [10].

We distinguish three basic concepts of computation: classical deterministic, classical
non-deterministic, classical probabilistic and quantum. Each of them has many models
and each model can be realized in many particular ways. Models help us to understand
basic properties and basic steps of computation. We have already encountered the Turing
machine as the example of the classical deterministic approach 16, we mentioned the
circuit model as one approach to the quantum computing and we will see adiabatic model
later. To have at least one example of non-deterministic classical computer, consider non-
deterministic Turing machine [2]. Probabilistic Turing machine chooses at each step the
following one according to a probability distribution [2].

Not paying attention to concrete models the four concepts of computation are distin-
guished in the way they treat knowledge and certainty: deterministic bit is set as either 0
or 1. Classical probabilistic bit may be set to 0 with the probability p and to 1 with prob-
ability 1− p provided that p ∈ [0, 1] 17. Is there any other way how to capture the nature
of the probabilistic bit? We may consider the probabilistic bit b as a (probabilistic) vector

of the form b =

(
p

1− p

)
together with assumptions that: the 1-norm of b is equal to 1 18

and p is non-negative. Any operation mapping such a vector to a vector of the same form
should be taken into account as a legal operation on one non-deterministacal bit. The most
general linear transformations of probabilistic vectors are governed by stochastic matrices
(i.e. matrices whose columns add up to the unity).

What if we did not use the 1-norm and considered a 2-norm for example 19? Than a

bit may be described by a vector b =

(
α
β

)
, where α2 + β2 = 1. Two immediate questions

arises: what do we gain by such a construction and how to connect the numbers α and β
to a relevant outcome. If we were to obtain a piece of information resembling a probability
we should map α and β to two non-negative numbers. But we set them in such way that
their squares add up to 1 exactly, so that we can postulate: the probability of seeing the
2-norm bit in state 0 is α2 and for the state 1 it is β2. Note that α and β could be real or
complex. But now the construction collapsed to the previous one, one could think. Not
in general: the set of transformations on a 2-norm bit is different than for 1-norm bit 20.
At this time we introduce the quantum bit (qubit) as a 2-norm bit in a 2 dimensional

16Other models are for example: matrix model, Post Machine, λ-calculus etc.
17Fuzzy logic is based on similar assumptions [2].
18‖b‖1 = 1 and ‖·‖1 is equal to the sum of absolute values of vector entries)
19Or any other p-norm...
20I we chose p-norm for p /∈ {1, 2} the set of resulting linear transformations would be restricted severely.

In fact only the 1-norm and 2-norm provide interesting transformations. [10]

14

complex 21 Hilbert space 22. The set of allowed transformations on a qubit are unitary
transformations 23.

We present a few examples of logical operations on a probabilistic bit (1-norm bit)
and a qubit (2-norm bit). At first we begin with bit-flip operation. Let b1 be 1-norm

bit of the form b1 =

(
p

1− p

)
24. Bit flip operation is governed by a stochastic matrix

Mf =

(
0 1
1 0

)
. We see that: (

0 1
1 0

)
·
(

p
1− p

)
=

(
1− p
p

)
, (22)

thus we obtain the expected result.
Not only the matrix Mf providing the bit flip is stochastic but it is also a unitary

matrix 25: Mf ·M∗F = I 26. For a qubit (2-norm bit) b2 =

(
α
β

)
we may write:(

0 1
1 0

)
·
(
α
β

)
=

(
β
α

)
, (23)

thus for the bit-flip works for both p-norms, where p = 1, 2 27.
The main advantage of the 2-norm concept can be summarized in a phrase: quantum

interference. We shall see that the possibility of having negative (and even complex)
amplitude coefficients together with the set of unitary transformations almost enables us
to switch between probabilistic and deterministic. Consider a qubit b2 initialised in the

state b2 =

(
1
0

)
in a given basis B = (|0〉, |1〉) 28 and a transformation H governed by the

Hadamard matrix of the form

(
1√
2

1√
2

1√
2
− 1√

2

)
[2]. The transformation of b2 may be written

21It is highly non-obvious why we would not be able to describe physics just by the real numbers. In
fact, we are. And we can choose different fields associated to the physical space. The advantage of complex
numbers are mainly two: the field is algebraically closed (this reason is rather aesthetic) and the resulting
description seems easier than while using other fields.

22One can ask whether the linearity of the underlying space does not restrict us too much. There
has been non-linear approaches to the quantum mechanics but the linear model seems to agree with
experimental data well (and it does not seem unacceptable intuitively). If one did not want to lean himself
just against phenomenology he may be interested in theoretical aspects of linearity in context of quantum
physics, e.g. Gleason’s theorem and related theoretical works.

23We do not consider any transformations but the linear ones as our space is framed by linearity: we
work in a Hilbert space.

24In this section we will denote the corresponding norm by upper indices, e.g. b1 for a 1-norm bit
25Matrices that are both unitary and stochastic are called unistochastic. Easy examples are permutation

matrices. The task of writing a general unistochastic matrix is not trivial, one may see for example [18].
26The adjoint of M is written as M∗

27The bit-flip actually works for any reasonable p.
28We adopt standard physical notation for basis vectors written as so-called ket-vectors |·〉. Linear

functionals are called bra-vectors and are denoted by 〈·|.

15

as follows:

b2 =

(
1
0

)
(the initial state) (24)(

1√
2

1√
2

1√
2
− 1√

2

)
·
(

1
0

)
=

(
1√
2

1√
2

)
(the first transformation) (25)(

1√
2

1√
2

1√
2
− 1√

2

)
·

(
1√
2

1√
2

)
=

(
1
0

)
(the transformation H applied once again). (26)

If we used bra-ket notation instead, the steps 24 to 26 would proceed: |0〉 7→ 1√
2
|0〉+ 1√

2
|1〉

and then 1√
2
|0〉+ 1√

2
|1〉 7→ |0〉. Observe that if we performed a measurement of the qubit

b2 in the basis B, we would always obtain the value 0 corresponding to the ket |0〉, thus
we would have a deterministic bit. However after having applied the transformation H

to b2 we would have a vector 1√
2
|0〉 + 1√

2
|1〉 with coefficients

(
1√
2

1√
2

)
. The measurement

postulate of the quantum mechanics [13] or our postulate of measurement of a 2-norm bit
both implies that the resulting probability of measuring 0 is 1

2 . The interesting feature of
qubits is that the second application of H results in deterministic state again (which is
impossible in classical probabilistic setup).

The word almost in: ”almost enables us to switch between probabilistic and determin-
istic” was italicised; it is necessary to take care about the selection of measurement basis.
If we chose a different basis after each application of H we could get different results.

2.2 Quantum Gates and the Circuit Model

In order to obtain interesting (quantum) computation results it is convenient to introduce
systems of more than one qubit and describe the set of allowed operations properly. We
shall proceed as follows: at first we describe a multiple-quibits system, then we introduce
two common models of quantum computing: the circuit and the adiabatic approach. Even
though we are mainly focused on the adiabatic quantum computing, skipping the circuit
model would be restricting as there are many interesting results based on this model and
a straightforward way how to prove them for the adiabatic model is to show equivalences
of both schemas.

We shall begin with the description of a multiple-qubits system 29. Each measurement
of a set of n qubits should yield a result containing n classical bits for if we choose to
measure one separate qubit we receive a classical bit of information and having more of
them should not change our observations principally 30. How many results may we get?
It is 2n and an easy exercise for n = 2 and n = 3 enable us to see what they are. We
have a correspondence of 2-tuples of bits and basis vectors (representing certain qubits in
ket-notation), see tables 1 and 2.

29One who is familiar with postulates of the quantum mechanics already know that we need to consider
tensor product space. We decided to show a semi-intuitive way of how to invent this construction

30Such an argument may be misleading for no one can easily predict how nature works. It is our
intuition and possibly our endeavours to achieve something aesthetic while stating such assumptions. On
the other hand we did not find (experimentally) any situation where such an assumption had not worked;
in the quantum mechanics we state it as a postulate [19] [20].

16

classical bit string corresponding ket

00 |00〉
01 |01〉
10 |10〉
11 |11〉

Table 1: Two bit strings and corresponding
basis vectors.

classical bit string corresponding ket

000 |000〉
001 |001〉
010 |010〉
011 |011〉
100 |100〉
101 |101〉
110 |110〉
111 |111〉

Table 2: Three bit strings and corresponding
basis vectors.

Tables 1 and 2 suggests that the basis elements can be chosen as tensor products
of 1-qubit basis elements. A general n-quibit state x is a superposition of basis states
satisfying the normalizing condition (2-norm). We may write x as follows:

x =
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}

αb1b2...bn |b1〉 ⊗ |b2〉 ⊗ · · · ⊗ |bn〉 (27)

=
∑

b1...bn∈{0,1}n
αb1b2...bn |b1 . . . bn〉, (28)

where α’s satisfy the normalising condition:∑
b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bn∈{0,1}

|αb1b2...bn |2 = 1 (29)

and where we suppressed the tensor product sign and shrunk all kets to one ”tensored”
ket.

Note that a qubit is a unit element of C2 Hilbert space and allowed transformations are
governed by 2× 2 unitary matrices. A set of n qubits is represented by a unit element of(
C2
)⊗n

and allowed transformations are again the unitary 31 matrices. Two questions arise
immediately: are the elements of the tensor product space the most general objects we may
obtain by joining multiple qubits? Unitarity of available transformations implies that any
computation we perform may be reversed. On the other hand irreversible operations are
performed frequently using classical logical gates (e.g. and or nand operations). Does
that mean we are not able to perform classical logical operations on qubits? We shall
answer both questions briefly in the following paragraphs.

A further uncertainty of multiple-qubits states may be introduced as follows [10]: imag-
ine we are not sure what kind of state we have, we may have some candidates but none of
us is sure about a particular choice. Say 1

2 probability of a state 1√
2
(|1〉+ |0〉) and 1

2 prob-

ability of 1√
2
(|1〉 − |0〉). Such states are called mixed states and they may be represented

31Unitary with respect to inner product induced by the inner products of C2. We show how to establish
the inner product on tensor product space of H1 and H2 equipped with respective inner products 〈·|·〉1
and 〈·|·〉2. Let |a1〉, |b1〉 ∈ H1 and |a2〉, |b2〉 ∈ H2; we set (|a1〉 ⊗ |a2〉, |b1〉 ⊗ |b2〉) = 〈a1|b1〉〈a2|b2〉. The
the mapping (·, ·) : (H1 ⊗H1) × (H1 ⊗H1) → C satisfies all properties of the inner product. Similar
construction may be applied for any finite number of tensor products.

17

bit a bit b a and b a nand b

0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

Table 3: Operation of two bit gates and and nand.

by so-called density matrices: convex combination of outer 32 products of given vectors.
For the latter case it would be:

ρ =
1

2

(
1√
2

(|1〉+ |0〉)⊗ 1√
2

(〈1|+ 〈0|)
)

+
1

2

(
1√
2

(|1〉 − |0〉)⊗ 1√
2

(〈1| − 〈0|)
)

(30)

=
1

4
(|1〉+ |0〉)⊗ (〈1|+ 〈0|) +

1

4
(|1〉 − |0〉)⊗ (〈1| − 〈0|) (31)

=
1

4
(|1〉+ |0〉)(〈1|+ 〈0|) +

1

4
(|1〉 − |0〉)(〈1| − 〈0|) (32)

=
1

4
(|1〉〈1|+ |1〉〈0|+ |0〉〈1|+ |0〉〈0|+ |1〉〈1| − |1〉〈0| − |0〉〈1|+ |0〉〈0|) (33)

=
1

2
(|1〉〈1|+ |0〉〈0|). (34)

Same steps can be done in matrix notation:

1

2
(|1〉+ |0〉)⊗ (〈1|+ 〈0|) =

1

2

(
1 1
1 1

)
, (35)

1

2
(|1〉 − |0〉)⊗ (〈1| − 〈0|) =

1

2

(
1 −1
−1 1

)
. (36)

Thus we write the resulting mixed state as a matrix ρ:

ρ =
1

2

1

2

(
1 1
1 1

)
+

1

2

1

2

(
1 −1
−1 1

)
(37)

=
1

4

(
2 0
0 2

)
=

1

2

(
1 0
0 1

)
. (38)

The density matrix formalism governing mixed states may be seen as another proba-
bility layer: it is like stacking classical probability over the underlying 2-norm (quantum)
probability 33.

At this point we return to the question of reversibility. Even 2-bit irreversible classical
gates such as and or nand may be constructed easily; their operation is described by the
table 3. Clearly, such classical gates are not realizable as quantum gates. We would not be
building a promising computation model if it were not able to capture even basic logical

32Sometimes also called dyadic product. It in fact is a tensor product but some caution is necessary:
we take a ket-vector |a〉 from a Hilbert space H and tensorize it with its dual 〈a| which yields: |a〉 ⊗ 〈a|.
The tensor-product sign is often not mentioned explicitly: |a〉 ⊗ 〈a| = |a〉〈a|.

33One may ask whether such a construction is the ultimate one – the most general one. Certainly, it is
not, for one can choose a random p ∈ [1,+∞), pick p-norm probability and layer it on top of the mixed
states. On the other hand, we are not aware of any use of such construction; thus we may conclude that
for all we need, mixed states are general enough.

18

blocks. Yet here comes a fundamental information-theoretical observation: irreversible
gates may be replaced by reversible ones without a significant overhead [2].

We shall try to safe the reversibility of the logical gates in the table 4. Surely, gates
mapping a certain number of inputs, say n, to two the same number of outputs will be
needed. The reversibility is equivalent with a statement: the mapping is a bijection. If
we chose n to be 2 we would not be able to succeed, for it is needed to distinguish three
zeros (in the case of and) and only a single bit may be attached. After having pasted an
additional bit we could map uniquely 3 states. But there are 4 of them in total thus for
n = 2 there is no prospect of fulfilling our requirements. Let n be 3, table 4 summarizes
our possibilities. The control bit c is sometimes called an ancilla bit. At this time, we

bit c bit a bit b conditional a and b g1 g2

0 0 0
0 0 1
0 1 0
0 1 1

1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 4: After having introduced an additional control bit c we analyse possible outcomes.
We opt to perform a and b provided that c is set to 1. How many reversible gates are
available? Note that the condition may be reversed, i.e. we may perform a and b if c = 0.

have no option but applying combinatorics. There has to be 4 zeros and 4 ones in the
column named conditional a and b. We have already used 3 zeros, so as soon as the
last one is placed there is no freedom (permuting ones does not yield a different result).
That accounts for 4 possibilities. Then we need to fill two 2 × 4 blocks with zeros and
ones in such way that the mapping described by the table 4 is one to one. The blocks
can be actually filled uniquely up to a row permutation, see table 5. We may count 4!
permutations for each of the the blocks. In total we are left with 4 ·4! ·4! = 2, 304 available
gates.

The introduction of a control bit c was a major step forward. Even though we con-
sidered only 2 bit operation and it was necessary to introduce the control bit in order
to preserve the reversibility. Another important discrepancy should be noted: we are left
with bits g1 and g2 that may be considered as ”garbage”.

bit g1 bit g2

0 0
0 1
1 0
1 1

Table 5: Other choices of filling the rest space in table 4 are permutations of the rows
above.

19

bit i1 bit i2 bit i1 bit o1 bit o2 bit o3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Table 6: Operation of the Toffoli gate. Input bits are denoted by i1, i2 and i3, output bits
are marked as o1, o2 and o3.

Yet it would not be very convenient to have multiple possible definitions for reversible
gates derived from their classical counterparts (e.g. 2,304 possibilities for and, see table
4). That is why a canonical way of deriving reversible gates from classical ones has been
invented. The task – transform an irreversible classical gate to a reversible one – may
be reforumlated as follows: we have to be able to derive the initial state after having
performed an operation. The input could be just stored and glued together with the
original result [2].

Classical irreversible gates on n bits may be generated by a very restrained set of
elementary gates: identity id, 2-bit nand together with usage of ancilla bits, copying and
ability to direct any pair of bits to any part of the circuit provides all gates in general. For
the case of reversible computing we need to select the so-called Toffoli gate, a three-bit
permutation gate [13]. Its operation is summarized in the table 6; the generality has to
be proven carefully, see [13] or [2] for further details.

We shall proceed directly to discussion of quantum gates and circuits 34 skipping the
classical non-deterministic models as they are not directly related to our study of quantum
computing and their description is rather complicated. On the other hand interesting
results may be proven within different non-deterministic frameworks, see for example [21].

A straightforward approach to any computation model is to present available opera-
tions, give rules how to combine them and describe how they relate (e.g. unitary trans-
formations in quantum computing). Natural questions like: are such models closed under
given operations (they should better be)? Is there any minimal set of operations that
allows us to perform any operation? Are there more such sets? And how complicated it
is to perform an arbitrary operation using only the elementary ones, in other words: do
we have a bearable overhead under such restrictions (e.g. polynomial overhead)?

Firstly, we examine the circuit model of quantum computation. This approach has
several reasons: it resembles classical reversible computation and possibly even the clas-
sical deterministic computation. Another aspect is that historically, this model has been
theoretically examined profoundly as the first universal model of quantum computing; see
Benioff’s article The computer as a physical system: A microscopic quantum mechani-
cal Hamiltonian model of computers as represented by Turing machines from 1980 [22],
Deutsch’s articles Quantum Theory, the Church-Turing Principle and the Universal Quan-
tum Computer from 1985 [23] and Quantum Computational Networks from 1989 [24]. We

34We have not introduced the term quantum circuit formally. It is basically a composition of quantum
gates.

20

will proceed along the lines sketched in Nielsen’s Quantum Computation and Quantum
Information [13].

Nielsen shows that any unitary operation may be expressed using Hadamard gate H,
phase gate S, π/8 gate T and cnot gate to arbitrary accuracy. These gates are expressed
by matrices:

H =
1√
2

(
1 1
1 −1

)
, (39)

S =

(
1 0
0 i

)
, (40)

T =

(
1 0

0 eiπ/4

)
, (41)

cnot =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (42)

The construction proceeds as follows: it is shown that any unitary n × n matrix may be
decomposed to a product of so-called two-level unitary matrices. These are characterised
by the property that they act non-trivially on a subspace spanned by at most two basis
vectors, i.e. they affect at most two vector components. Then it is shown that any two-level
matrix can be expressed as composition of single-bit operations and cnot gate. Lastly,
Nielsen shows that any single-qubit operation can be approximated by the gates H,S, T
to arbitrary accuracy (only the last step is not exact).

We will show the first step in more theoretical way than Nielsen. Let U be unitary.
Then we can apply a sequence of Givens rotations [25] resulting in decomposition of the

form: U = G1G2 . . . GkI where k is at most n(n−1)
2

35 and I denotes the n × n identity
matrix.

We perform a rather shortened (but clear) proof of the second step. Any Givens
rotation act on at most two basis vectors, say vα and vβ, which results in change in at
most two vector components (α’th and β’th). If we were able to swap basis vectors in
such way that the α’th and β’th vectors sit next to each other and they are, say, placed
as the first two basis vectors, then there would be a single one-quibit unitary operator ŨG
(2× 2 matrix) corresponding to the initial Givens rotation G (n× n matrix). ŨG may be
obtained as a restriction of G to the space in which G acts non-trivially.

So the task is to swap basis vectors, perform a controlled single qubit operation and
then swap all the vectors back. But swapping is exactly what cnot does. For any Givens
rotation we may estimate the switching process by at most 4n operations (imagine, we
interchange the last two basis vectors with the first two and then back again). At this

time we require at most n(n−1)
2 · 4n = O(n3) transformations. The latter construction is

described in Nielsen’s monograph [13] in more detailed manner; on the other hand, the
idea remains the same.

We are approaching to the last step: the approximation of an arbitrary single qubit
unitary gate. An explicit construction will not be presented here because it is rather
insightful and requires a lot of technical details. It can be found in Nielsen’s book Quantum
Computation and Quantum Information [13] as Solovay-Kitaev theorem or in [26]. The

35For the case n = 2 we do not need any decomposition.

21

important result is: we are able to create an universal quantum computer using a finite
set of gates of the form (39), (40), (41) and (42) to an arbitrary accuracy with at most
polynomial overhead in the number of qubits (in comparison to the direct calculations
using any unitary circuit). Do the gates H,S, T and cnot from (39), (40), (41) and (42)
form a minimal set? Certainly not for we may write S = T 2. On the other hand there is
no difference in considering 3 or 4 gates from the theoretical point of view, so why not to
consider 4 of them and gain some flexibility. The key property is that the set is finite and
reasonably small.

22

3 Adiabatic Quantum Computation

We have already seen a model of the quantum computation called the circuit model. In
this section we will examine a different approach to quantum computing that resembles
classical analog computing is some way: the adiabatic quantum computing (AQC). It is
based on a straightforward idea: a solution of a computationally hard problem may be
encoded as a ground state of a Hamiltonian, say H1. Then we might be able to find
a Hamiltonian H0 with known ground state and evolve H0 to H1. Provided that the
evolution is slow enough and we do not change the (non)-degeneracy of the ground state
during the evolution, we will be able to track the path of the lowest energy eigenstates
and possibly obtain desired results. This idea is formally governed by adiabatic theorems
of the quantum mechanics (there are several versions and each is suitable under different
circumstances).

The design of encoding a result of a computation as a ground state appeared in 1988
[27] in the article Quantum Stochastic Optimization written by Apolloni, Carvalho, and
de Falco [28]. Their approach was later considered as a branch of quantum annealing
(QA) [27]. QA was understood as a quantum counterpart to the simulated annealing [29].
Later, in 1999, Brooke et al. published an article Quantum Annealing of a Disordered
Magnet where they investigated an implementation of QA in experimental configurations
of disordered quantum ferromagnets. Their experiments provided a step towards construc-
tion of devices enabling to perform QA and this approach became interesting from the
perspective of the quantum computing [27]. In 2000 Farhi et. al. proposed a solution of
SAT-3 problem based on quantum adiabatic algorithm: an algorithm that performs calcu-
lations based on adiabatic evolution of the ground state of a suitably chosen Hamiltonian
[30]. The term adiabatic quantum computing was introduced [27] by van Dam, Mosca
and Vazirani at Symposium on Foundations of Computer Science in 2001 [31].

The initial phase of research in algorithm design has become surrounded by the theo-
retical background. In 2007 Aharonov et. al. answered in their article Adiabatic quantum
computation is equivalent to standard quantum computation [32] fundamental theoreti-
cal questions like: is there any difference in computation resources between the adiabatic
approach and the circuit model? And how to define the model of computation known as
the adiabatic computing? What steps are needed to transform an algorthm design and
optimisation technique to a model of computation? We shall see answers to all of them in
the following paragraphs.

In order to define AQC it is suitable to introduce a k-local Hamiltonian [32].

Definition 3.1. We say that a hermitian matrix H acting on a space of p-state particles
(e.g. binary particles) that may be written as H =

∑r
i=1Hi, where each Hi acts non-

trivially on at most k particles, is a k-local Hamiltonian. We suppose that p ≥ 2.

The adiabatic quantum computing is defined as follows [32].

Definition 3.2. A k-local adiabatic quantum computation is specified by two k-local
Hamiltonians H0 and H1 acting on p-state particles and by a description of the adiabatic
evolution. We pose additional conditions on the Hamiltonian: the ground state of H0

is unique and it is a product state. The adiabatic evolution is described by a constant
T : total runtime and time-evolution function s(t) : [0, T] → [0, 1], an increasing smooth-
enough bijection.

23

We set the time dependent Hamiltonian H(s) to be

H(s) = (1− s)H0 + sH1.

Both T and s(t) have to be adjusted in such way that the final state of the adiabatic
evolution generated by H(s) = (1− s)H0 + sH1 at time T , say |ψ(T)〉 is ε close in l2 norm
to the ground state of H1, say |ϕ〉: ‖|ϕ〉 − |ψ(T)〉‖ < ε, where ε is a parameter from (0, 1]
describing the precision of our computation.

The output of the adiabatic computation is the evolved vector |ψ(T)〉.

The latter definition 3.2 shall be commented in a few notes:

Note 3.1. (i) As soon as an adiabatic evolution is given (i.e. the function s(t) is
known), ε can be counted (for example as an estimate on the computation error).
Usually, in practise, one would like to perform a calculation and given a parameter
ε ∈ (0, 1] design the evolution function s(t). On the other hand, the computation
itself is defined using only the evolution function s(t).

(ii) Even though the definition 3.2 supposes non-degenerate ground states of the Hamil-
tonian H(s) we may suppress this assumption, for the adiabatic theorem of the
quantum mechanics holds also for degenerate spectra (but it is necessary to track
the path not of eigenvector but rather that of the whole eigenspace belonging to the
lowest energy). On the other hand Aharonov showed in [32] that the more general
case is not required in order to obtain a computation model of the equal strength as
the quantum circuit model.

(iii) The definition 3.2 supposes that only the evolution of the ground state is tracked.
In practise it may be useful to track the evolution of excited states (e.g. the glued
trees problem). Although, strictly speaking, such a computation does not belong to
the class AQC defined 3.2, it is generally considered as a variation on AQC.

(iv) The evolution prescribed by 3.2 is not the most general. In fact, we are aware of
examples where we need to use a different type. Aharonov proposed introduction of
an ”intermediate catalyst” – a Hamiltonian Hc(s) depending on s ∈ [0, 1] that satis-
fies: Hc(0) = Hc(1) = 0 [32]. Having introduced the catalyst Hamiltonian, we may
be able to guarantee non-degeneracy of the first two eigenvalues from the spectrum
of H(s) := (1− s)H0 + sH1 +Hc(s) despite the fact that the ground eigenvalues of
H(s) := (1− s)H0 + sH1 would become degenerate during the evolution.

Farhi et. al. investigated the use of an intermediate catalyst in the article Quantum
computation by adiabatic evolution [30] while solving the SAT-3 problem with use
of the adiabatic evolution.

(v) An intuitive way how to understand the value of k may be that it somehow manages
the interconnection between degrees of freedom of the given system. So that it may
be compared to memory requirements from the classical computing theory. During
the time there has been investigation of the value k and its relation to computation
resources. In 2007 Aharonov et. al. showed that k = 6 suffices to create a universal
AQC. Then it was shown that k has to be at least 2, see [33] and [34].

Further details concerning the history of our knowledge of the impact of k to com-
putation resources are summarized in [27].

24

While introducing the quantum model of computation (adiabatic or circuit) we hope
that it may be possible to perform some tasks faster that in classical computing. In order
to capture a speed-up Rønnow et. al. introduced various ”orders” of speed-up [35]:

(i) A so-called ”provable” quantum speed-up is the case where there exists a proof that
no classical algorithm can outperform a given quantum algorithm. The best known
example is Grover’s search algorithm [36], which, in the query complexity setting,
exhibits a provable quadratic speed-up over the best possible classical algorithm [37].

(ii) A ”strong” quantum speed-up was originally defined by Papageorgiou and Traub
[38] by comparing a quantum algorithm against the performance of the best classical
algorithm, whether such a classical algorithm is explicitly known or not. This aims to
capture computational complexity considerations allowing for the existence of yet-
to-be discovered classical algorithms. Unfortunately, the performance of the best
possible classical algorithm is unknown for many interesting problems (for example,
for factoring).

(iii) A ”quantum speed-up” (unqualified, without adjectives) is a speed-up against the
best available classical algorithm (for example, Shor’s polynomial-time factoring al-
gorithm [39]). Such a speed-up may be tentative in the sense that a better classical
algorithm may eventually be found.

(iv) A ”limited quantum speed-up” is a speed-up obtained when compared specifically
with classical algorithms that ”correspond” to the quantum algorithm in the sense
that they implement the same algorithmic approach, but on classical hardware. This
definition allows for the existence of other classical algorithms that are already better
than the quantum algorithm. The notion of a limited quantum speed-up will turn
out to be particularly useful in the context of StoqAQC 36.

3.1 Adiabatic Theorem in Quantum Mechanics

In 1916 Ehrenfest stated a hypothesis that the laws of quantum physics would allow only
motions invariant under adiabatic perturbations [41]. Later, in 1928, Born and Fock
investigated adiabatic evolution governed by operators with discrete spectra [42]. Their
results were enriched by Kato, who stated a rigorous version of the adiabatic theorem
holding for operators with non-discrete and possibly degenerate spectra [43] satisfying
that as time t tends to infinity, operators ”consolidate” 37.

Firstly, we shall comment so-called ”approximate” or classical versions of the adiabatic
theorem. The attribute ”approximate” arises from the fact that additional assumptions
have to be added in order to make the statements valid. On the other hand, after doing so,
the criteria become complicated and cumbersome. For critique of the classical statements
see, for example: [44], [45] or [46]. Later, we will point where might be the weak points and
state more robust alternatives. It is important to note that the first versions are applicable
in practise for AQC because because the time dependency of suitable Hamiltonians is

36StoqAQC is a subclass of AQC. StoqAQC uses Hamiltonians of a specific kind: not only they are
k-local but their matrices have real non-positive off-diagonal elements in the computational basis [40].

37The requirement for a suitable ”consolidation” has to be added [44]; otherwise it is possible to con-
struct Hamiltonians with a so-called oscillatory driving terms satisfying all the conditions imposed by Kato
violating the adiabatic evolution. For further comments on Kato’s proof and for examples of oscillatory
Hamiltonians, see [44].

25

”nice”. Second reason why to start with ”approximate” statements is that historically,
they came first and the refined rigorous versions we usually derived from them.

After the Born’s and Fock’s formulation for Hamiltonians with discrete and non-
degenerate spectra Messiah presented in his monograph Quantum Mechanics [19] a gen-
eralised version for Hamiltonians with possibly degenerate spectra. Except for the degen-
eracy, the both statements are analogous. Let |εj(t)〉, where j ranges possibly over all
naturals including zero N0, be an instantaneous eigenstate of H(t) with energy εj(t), i.e.

H(t)|εj(t)〉 = εj(t)|εj(t)〉. (43)

Assume ordering of the eigenstates; for all j : εj(t) ≤ εj+1(t). When we initialize the
system subjected to the time dependent Hamiltonian H(t) in one of the eigenstates |εj(0)〉,
the evolved state will follow the path 38 of instantaneous eigenstates |εj(t)〉 for all times
t ∈ [0, T], where T denotes the total time of the evolution, provided that 39 [19]

max
t∈[0,T]

|〈εi|∂tεj〉|
|εi − εj |

= max
t∈[0,T]

|〈εi|∂tH|εj〉|
|εi − εj |2

� 1 ∀j 6= i. (44)

In 2009, Amin found a way how to change the assumptions (44) for the adiabatic
theorem to hold generally [46]. The evolution of a physical systems in the quantum
mechanics is governed by the Schödinger equation [19], [20]

i
∂|ψ(t)〉
∂t

= H(t)|ψ(t)〉, (45)

where we set ~ = 1. Amin showed that a suitable reparametrisation of the time scale t
may lead to a criterion that guarantees the validity of the adiabatic theorem analogous to
the Messiash’s (44) [19]. Let s be from the interval [0, 1]. We may see that the Schrödinger
equation (45) can be rewritten using s = t

T as follows

i

T

∂|ψ̃(s)〉
∂s

= H̃(s)|ψ̃(s)〉, (46)

where H̃(s) = H(sT) and |ψ̃(s)〉 = |ψ(sT)〉. The variable s is called dimensionless time
and we will further omit tildes while expressing dependency on it unless someone may be
led to confusion.

The adiabatic theorem holds provided that the H(s) parametrized by the dimensionless
time s does not explicitly depend on T and if

max
s∈[0,1]

|〈εi(s)|∂sH(s)|εj(s)〉|
|εi(s)− εj(s)|2

� T ∀j 6= i. (47)

For the interpolating Hamiltonians of the form

H(s) = sH0 + (1− s)H1, (48)

suitable for the AQC, we are usually able to guarantee the above conditions if the time
scale s grows monotonically and provided that the final Hamiltonian H1 does not depend
on the runtime T 40.

38up to global phase factor
39It is also necessary to add a requirement that the Hamiltonian does not oscillate in time [46].
40When it does, additional investigation has to be performed.

26

Consider an example with Hamiltonian [27]

H(t) = aσz + b sin (ωt)σx (49)

After substituting H(t) from the equation (49) above to (44), the condition reduces to

|bω| � a2. (50)

Although we can set a and b in such way that the condition (50) holds, when ω ≈ 2a
a resonance occurs and the system undergoes Rabi oscillations with period π

b . Thus, for
the total runtime T � π

b additional increase in the upper bound for T does not help
in satisfying the adiabaticity [27]. On the other hand Amin commented the adiabatic
condition and its relevance for T � TR, where TR denotes the Rabi period [46].

Let us examine the refined version of the adiabatic theorem (47) on the example of
oscillatory Hamiltonian (49); after having changed the variables t 7→ s with s = t

T we
obtain:

H(s) = aσz + b sin (ωTs)σx (51)

and the Hamiltonian H(s) depends on the total runtime T explicitly; thus we are not able
to use the adiabatic theorem.

Recall the adiabatic condition (47); if the operator ∂sH is bounded 41 we may set
B(s) = ‖∂sH‖. Then we arrive at a useful bound for the total runtime T , ∀j 6= i:

max
s∈[0,1]

|〈εi(s)|∂sH(s)|εj(s)〉|
|εi(s)− εj(s)|2

< max
s∈[0,1]

|〈εi(s)|B(s)εj(s)〉|
|εi(s)− εj(s)|2

(52)

< max
s∈[0,1]

B(s)
1

|εi(s)− εj(s)|2
(53)

= max
s∈[0,1]

B(s)
1

εij(s)2
� T, (54)

where εij(s) stands for |εi(s)− εj(s)|. An (ij)-th spectral gap may be defined as

∆ij = min
s∈[0,1]

εij(s). (55)

With the use of (55) the equation (52) can be further estimated as follows:

max
s∈[0,1]

1

εij(s)2
B(s) < max

s∈[0,1]

1

∆2
ij

B(s). (56)

An estimate on the operator ∂sH was used together with the fact that T is a lot greater
than the left-hand side (52). An inverse-square dependence may bee seen in (52) and (56);
from here arise names for such bounds: ”inverse square spectral gap” etc [27].

Various more precise bounds may be found; the are usually of the form O 1
Tn for n ∈ N

[47] or [48]. We will not present a proof of any of the refined alternatives as (52) and (56)
suffices for our purposes. For a deeper analysis and alternative statements of the ”inverse
spectral gap” rule see, for example [48].

41Up until now we have been implicitly presuming existence of required derivatives and in cases where
operators have been derived boundedness.

27

We will conclude this section by adding two remarks: one concerning a structural
aspect of the proof, second regarding a possibility of achieving an arbitrarily small error
in the resulting state.

Ad 1: While introducing the adiabatic theorem, a note regarding a phase factor was
added. We shall return to the discussion of the phase evolution in this remark. Let H(s)
be a Hamiltonian 42 with an eigenvector ψ(s). Physically, for any parameter κ, a vector
|φ(s)〉 defined as |φ(s)〉 = eiκs|ψ(s)〉 is equally suitable eigenvector, for the phase factor
is not of observable significance. One may easily see that unless κ = 0 it is not possible
to make ψ(s) and φ(s) arbitrarily close in l2 norm as desired in the adiabatic theorem.
Several solutions are available.

(i) One approach is based on switching the investigated objects – vectors with physically
insignificant global phase – to objects without such an attribute – for example, rays
or projections. Then the adiabatic theorem becomes a statement about evolution of
projectors to the eigenstates. This approach was investigated by Kato’s proof from
1950 [43] and later by various authors: for instance [49] and [50].

(ii) The other approach is based on elimination of the ”rotational” phase factor. A clear
investigation of a suitable selection of complex factors is presented in [47]. We will
only point a lemma from [47] enabling us to regard evolution of eigenvectors:

Lemma 3.1. Let ψ(s), 0 ≤ s ≤ 1, be a time-dependent unit vector in some Hilbert
space H, such that ψ(s) is a differentiable function of s. Then, there is another
time-dependent unit vector φ(s) that is identical to ψ(s) up to phase such that

〈dφ(s)
ds |φ(s)〉 = 0 and φ(0) = ψ(0).

Using the lemma 3.1, Ambainis and Regev fix a certain phase factor: 〈dφ(s)
ds |φ(s)〉 = 0

and φ(0) = ψ(0); after having imposed these conditions the adiabatic theorem holds
for vectors [47].

Ad 2.: In the criteria (52) and (56) we imposed rather imprecise conditions on the
total runtime T : we were only advised to pick T a lot greater than something. Is there
any way how to make the estimate how precise is the resulting state?

These questions were investigated in Nenciu’s work [49] and later in [51]. We will not
go through the derivation of statements presented in the latter articles nor will we state
them precisely as they are rather complicated and some theoretical background is needed.

The major result of [51] will be summarized in the following lines. Assume for simplicity
that we investigate conditions for the two lowest eigenvalues and suppose further that
ε0(s) = 0, i.e. the eigenvalue corresponding to the ground state is zero during the evolution.

Let the phase be fixed as in the lemma 3.1: 〈dε0(s)
ds |ε0(s)〉 = 0. Under these conditions the

theorem 3.2 holds [51] [27]

Theorem 3.2. Assume that all derivatives of the Hamiltonian H(s) vanish at s = 0, 1, and
moreover that it satisfies the following Gevrey condition: there exist constants C,R, α > 0
such that for all k ≥ 1,

max
s∈[0,1]

‖H(k)(s)‖ ≤ CRk (k!)1+α

(k + 1)2
. (57)

42H(s) is considered to be a reparametrization of a Hamiltonian H(t) that uses a dimensionless time.

28

Then the adiabatic error is bounded as

min
θ
‖|ψ(1)〉 − eiθ|ε0(1)〉‖ ≤ c1

C

∆
exp

((
−c2∆3T

C2

)1/(1+α)
)
, (58)

where c1 = eR(8π2/3) and c2 = 3/4π2

4eR2 .

Thus, as long as T � C2

∆3 and as long as the conditions of the theorem 3.2 holds and
with latter prerequisites, the adiabatic error is exponentially small in T [27].

Further comments on the estimates of error is available in [27].

3.2 Adiabatic solution for problems of the type f(x) = 1

Many computationally interesting problems may be transformed to investigation of func-
tions and especially questions concerning functions of the the type:

f : {0, 1}n → {0, 1}. (59)

An easy way how to transform almost any problem to the form (59) is the following.
We may consider set of all potential solutions (call it S) 43 as a space through which we
perform a search. Let n be a large enough constant so that there is an injection ι from S
to {0, 1}n; set A to be the image of S under ι: A = ι(S). Then we define the function f
from (59) according to rule:

f(ι−1(a)) =

{
1 iff a ∈ A ∧ ι−1(a) = s ∈ S satisfies the original problem,

0 otherwise.
(60)

The function ι is used only as translation between zeros and ones and the original problem
space S. Such an approach is usually not the most effective one unless ι has a special form.
It may exhibit some symmetries etc. The main aim of introducing f in (59) is that it allows
to study only a very specific classes of tasks, namely investigating multi-variable binary
functions, and we know that all reasonable tasks can be represented by a suitable choice
of f .

In the following subsections we will present a few examples of the use of AQC. We will
outline basic ideas behind the algorithm design but leave the technical details out.

3.2.1 Grover’s algorithm

Suppose we are given an unsorted list of N items and our task is to find an element
satisfying certain criteria. It is guaranteed that there is only one match in the list. A
matching function f : {0, 1, . . . N − 1} → {0, 1} 44 is introduced; the single match may be
formally expressed as follows:

(∃m ∈{0, 1, . . . N − 1})(f(m) = 1) ∧ (61)

(∀l,m ∈{0, 1, . . . N − 1})(f(m) = 1 ∧ f(l) = 1 =⇒ l = m). (62)

43The size of the set usually depends on the size of our problem and it should be finite.
44The function f could be rewritten in a way that matches the definition (59) exactly but it is not

necessary.

29

Note that as long as we do not know precise definition of f , its complexity can not be
analysed. Our task is thus to find an algorithm querying f the minimum number of times.
In this ”black-box” view f plays a role of an oracle [13] whose implementation details are
omitted and whose complexity is not counted in the complexity of the algorithm designed.

Classically, it would be necessary to query f N
2 times on average and at most N − 1

times. Assume uniformity of the distribution of marked items in search lists 45, then:

q :=
N−1∑
i=0

1

N
(i+ 1) =

N(N − 1)

2N
=
N − 1

2
= O(N), (63)

where we sum over all elements in {0, 1, . . . N − 1} and adjust the counter by adding one.
The Grover’s algorithm was originally developed in the framework of the circuit model

of quantum computing based on a discrete sequence of unitary gates and it is able to
perform the same task using only

√
N queries [36]. In 1998 Farhi et. al. investigated in

[52] a different approach: they applied a time-independent Hamiltonian H on a suitably
chosen initial state for a time T . Their resulting complexity (measured as time required
to perfom a computation) is of order T = O(

√
N).

Later, in 2000, Farhi et. al. used an adiabatic evolution in order to evolve a ground
state of an initial Hamiltonian H0 to a ground state of the final Hamiltonian H1 encod-
ing the solution to the computation problem [30]. In contrast to the method of time-
independent Hamiltonian [52] the resulting complexity was of the same order as the clas-
sical approach. We shall present their steps in the following paragraphs and then try to
improve the complexity with the use of optimized time schedule [53].

Assume an unsorted list of 2n = N items together with a ”quantum matching oracle”
F are given. The Hilbert space of consideration has dimension N and each basis element
may be written as |i〉, where i ∈ {0, . . . , N − 1}. The marked state, say |m〉, is not known,
but we are given an oracle F represented by a self-adjoint operator 46:

F = I− |m〉〈m| =
N−1∑
i=0

f(i)|i〉〈i|. (64)

One can easily check that f from (64) has two eigenvalues: 0 corresponding to |m〉 47 and
1 corresponding to the rest of basis vectors. When one compares possible outputs of F
chosen for the purpose of the adiabatic approach (64) with (59), it is clear that the current
F is chosen to be a negation of (59). Why was F defined in such a ”strange” way? While
introducing the AQC we specified that the result is encoded as a ground state of a certain
Hamiltonian. And the ”negated” oracular function of the form (64) matches this criterion
exactly. On the other hand, if we used the straightforward way as in (59), the result would
be encoded as an excited state. Thus we choose the final Hamiltonian H1 to be:

H1 = F = I− |m〉〈m|. (65)

Are we aware of any candidate initial Hamiltonian? Not a priori. But we may try to
use the uniformity of the list given and the fact that the final Hamiltonian is a projector.

45A probability that a random item is marked equals 1
N

.
46In the quantum mechanics, any physically measurable function f is represented by a self-adjoint

operator F . The outcome of evaluation of a function (or rather a measurement) is a value from the
spectrum of F ; for more profound analysis, one can see, for example, [13], [20] or any book studying the
quantum mechanics.

47not yet known

30

And here comes an important note: the following choice of the initial Hamiltonian is
”reasonable” and the computation works, but we have not deduced its shape in any way,
we just guessed it (with some insight). Let a uniform superposition vector |ψ0〉 be defined
as

|ψ0〉 =
1√
N

N−1∑
i=0

|i〉; (66)

then, the initial Hamiltonian H0 is set to be:

H0 = I− |ψ0〉〈ψ0| = I− 1

N

N−1∑
i,j=0

|i〉〈j|. (67)

Along the lines of [30] we opt for a linear time evolution of the time-dependent Hamiltonian:

H(t) =

(
1− t

T

)
H0 +

t

T
H1, (68)

or, after having set s = t
T :

H(t) = (1− s)H0 + sH1. (69)

T acts as a parameter describing the length of the adiabatic evolution and s is chosen to
be a rescaled time.

We prepare the system in the state |ψ(0)〉 = |ψ0〉 and after applying the Hamiltonian
H(t) (68) for time T we obtain an evolved vector |ψ(T)〉. Provided that the spectral gap
g(t) between the lowest eigenvalues of H(t) is large enough, we may estimate T . The
highest eigenvalue of H(t) is 1 with degeneracy (N − 2) for t ∈ (0, T) and degeneracy
(N − 1) at times t = 0 and t = T . Then there are two lowest eigenvalues E0 and E1 with
degeneracy 1 (for t ∈ (0, T)). Time dependency of spectrum of H(s) is plotted in the
figure 1.

31

Figure 1: Eigenvalues of the time-dependent Hamiltonian H(s) as a function of the di-
mensionless time s for N = 64. With the convention ~ = 1, the energy is a dimensionless
quantity. [53].

The two lowest eigenvalues are separated by a gap

g(s) =

√
1− 4

(
1− 1

N
s(1− s)

)
, (70)

where we used the rescaled time s [30]. According to the adiabatic theorem [46] (47) we
are guaranteed to obtain a reasonably close approximation of the final Hamiltonian H1

ground state, provided that the spectral gap g(s) is not small. In our case (70) g(s) attains
its minima of gmin = 1√

N
at s = 1

2 .

The matrix element in the equation (52) may be expressed using:

max
0≤t≤T

〈
ψ0(t)

∣∣∣∣dHdt
∣∣∣∣ψ1(t)

〉
=

〈
dH

dt

〉
1,0

=
ds

dt

〈
dH

ds

〉
1,0

=
1

T

〈
dH

ds

〉
1,0

, (71)

where ψ0(t) and ψ1(t) are eigenvectors corresponding to the eigenvalues E0, E1 respectively.
Note that we used dimensionless parametrisation and after a change of variables t 7→ s

the Hamiltonian H(s) does not explicitly depend on the total runtime T ; we thus satisfied
all the necessary conditions as stated in Amin’s proof [46].

Equation (69) impies:
dH

ds
= H1 −H0 (72)

and thus
〈
dH
ds

〉
1,0

can be bounded as follows:

dH

ds
= H1 −H0 =⇒

∣∣∣∣∣
〈
dH

ds

〉
1,0

∣∣∣∣∣ ≤ 1. (73)

Substituting the bound on
〈
dH
ds

〉
1,0

(74) and the formula for spectral gap g(s) (70) into

(47) we obtain

T ≥ N

ε
(74)

which means that the time dependency of the adiabatic algorithm with Hamiltonian (68)
is of order N . Hence we did not overcome the classical version of the search algorithm.

The linear time evolution proposed in (68) shall be reconsidered; a priori, there was
not any reason why should a linear – a uniform – time evolution be used. The estimates
we made restrict the speed of change of the Hamiltonian H(s) in the same way for all
times t although the spectral gap attains its minima only at s = 1

2 . What if we tried to
account the non-uniformity of the spectral gap g(s) (70) and look for an optimized time
evolution?

The time interval [0, T] can be split into smaller ones and the rate of the adiabatic
evolution may be optimized on each of them separately. Note that if we chose a linear
time evolution on each of the intervals separately, we would end up with a piecewise linear
function. The more intervals we consider, the more suitable would the evolution rate be.
In the limit case we arrive at a differential equation for s(t):∣∣∣∣dsdt

∣∣∣∣ ≤ ε g2∣∣∣〈dHds 〉1,0

∣∣∣ , (75)

32

for all times t. After substituting for g(s) from the equation (70) and estimating
〈
dH
ds

〉
1,0

from above by 1 we obtain 48

ds

dt
= εg2(s(t)) = ε

(
1− 4

N − 1

N
s(t) (1− s(t))

)
, (76)

where ε is a positive parameter smaller than one. Following the steps of [53] and integrating
we are led to:

t(s) =
1

2ε

N√
N − 1

(
arctan

(√
N − 1(2s− 1)

)
+ arctan

√
N − 1

)
. (77)

Having inverted t(s) from the equation (77) we arrive at s(t) as plotted in the figure 2
[53]. We may observe that the time dependency of s(t) agrees with our intuition: its slope
is the lowest around s = 1

2 , when the two lowest eigenvalues are close, and the highest at
t = 0 or t = 1, when the eigenvalues are not very close.

Figure 2: Dynamic evolution of the Hamiltonian that drives the initial ground state to
the solution state: plot of the evolution function s(t) for N = 64. The global adiabatic-
evolution method of [36] would appear here as a straight line between s(0) = 0 and
s(1) = 1. [53].

Setting s = 1 in the equation (77) leads to the total required time T

T =
1

ε

N√
N − 1

arctan
√
N − 1. (78)

Estimating the equation (78) for N a lot greater than 1 we find an approximation on T

T =
π

2ε

√
N, (79)

48The absolute value on the left may be omitted due to monotonicity of s(t).

33

which means that the optimized algorithm scales as
√
N . We thus improved the linear

dependency on N (74) by switching from the linear schedule to non-linear one. According
to [52] and [53] optimality was achieved.

Up until now only the case of single match has been considered. We will show that a
straightforward extension to a case of multiple matches may be derived provided that the
number of matches is known.

Let M be the number of matches; then the equation for the final Hamiltonian (65)
transforms

H1 = I−
∑
k∈S
|k〉〈k|, (80)

where S is the set of marked items – solutions to the search problem. The adiabatic is
described by

H(s) = (1− s)H0 + sH1, (81)

an equation analogous to (69). The multiple-marked-items case differs from the single-
match case: the two lowest eigenvalues E0, E1 have degeneracy 1, eigenvalue E2 = 1 is now
(N −M − 1) degenerated and lastly, there is a new (M − 1) times degenerated eigenvalue
E3. The two eigenvalues E0 and E1 are separated by the spectral gap:

g(s) =

√
1− 4

(
1− M

N

)
s(1− s). (82)

The time dependency of the eigenvalues E0, . . . , E3 is plotted in the figure 3.

Figure 3: Eigenvalues of the time-dependent Hamiltonian H(s) as a function of the reduced
time s for N = 64 for the case of multiple marked items: M = 4. [53].

Clearly, the eigenvalue E3 meets the E2 at t = 0 and E0 at t = T . Is the adiabatic theorem
still applicable? Both H0 and H1 are invariant under permutation of any two solution
states and under permutation of any two non-solution states. Thus the time dependent

34

Hamiltonian H(s) (81) also exhibits the same symmetry. Due to this observation we see
that the eigenstates belonging to E0 and E1 are uncoupled from the eigenstates belonging
to E2 and E3. That is why we may use the same reasoning as in the single-marked-item
case and by formal substitution N 7→ N

M in (70) we obtain the minimal spectral gap

gmin =

√
N

M
. (83)

The total time T required to perform the optimized adiabatic evolution 79 becomes

T =
π

2ε

√
N

M
. (84)

3.3 Known Relations Between Different Models of Quantum Computing

We have summarized basic concepts of the adiabatic quantum computing in the previous
subsections and presented the quantum circuit model in section 47. A straightforward
questions arise immediately: how related are the two concepts? Has one model an advan-
tage over the other?

In 2000, Farhi et. al. showed that the circuit model can efficiently simulate AQC [30].
Let H(t) be a time dependent Hamiltonian of the form:

H(t) = (1− t

T
)H0 +

t

T
H1, (85)

We will find the time-evolution operator 49 of the physical system subjected to the Hamil-
tonian (85). The time evolution operator of a time-dependent Hamiltonian H(t) may be
written as

U(t2, t1) = T exp

(
−i
∫ t2

t1

dtH(t)

)
, (86)

where the symbol T is to be read as a time ordering symbol and where we set ~ = 1 [20].
After having picked t1 = 0 and t2 = T we arrive at a unitary operator U(T, 0) describing
the adiabatic evolution and due to the universality of the circuit model, we are guaranteed
to be able to find a corresponding set of elementary unitary gates. Thus any adiabatic
calculation may be performed using a circuit quantum computer. But how efficient is such
a simulation?

An explicit construction of a sequence of operators converging to (86) is given by Farhi
et. al. [30]. They assume a linear time schedule in the Hamiltonian (85) 50. We will
sketch the construction in the following lines.

A constant MN is picked and the time interval [0, T] is split into M parts of the same

length ∆ = T
M : [0, T] = [0, TM] ∪ [TM ,

2T
M] ∪ · · · ∪ [(M−1)T

M , T]. We approximate the time
evolution on each interval separately; but instead of using time dependent Hamiltonian
(85) we will assign to each interval a time-independent Hamiltonian Hm of the form:

Hm = H(m∆), (87)

49Also called unitary propagator [20].
50If the schedule was non-linear, we could still perform a suitable change of variables resulting in linear

schedule. This is guaranteed due to monotonicity of time schedules we imposed in the definition of AQC.

35

where m ranges through {1, 2, . . . ,M}. The m-th respective unitary propagator is then 51

of the form
U ((m+ 1)∆,m∆) = exp (−i∆Hm). (88)

Thus, we replace U(T, 0) by U
(1)
app =

∏M
m=1 Um (we added a superscript 1 to denote the

first step of the approximation). The task is to estimate the error introduced by such a
discretization; van Dam, Mosca and Vazirani gave an estimate [31]:∥∥∥∥∥U(T, 0)−

M∏
m=1

Um

∥∥∥∥∥ = ‖U(T, 0)− U (1)
app‖ = O

(√
T · poly(n)

M

)
, (89)

where n stands for the dimension of the underlying Hilbert space.
Right now we know that if M is large enough, the error incurred by discretization (89)

can be made arbitrarily small; the important thing to note is that M has to grow as a
polynomial times total runtime T .

Each individual term Um may be approximated using only H0 and H1: due to the
Baker-Cambpell-Hausdorff formula [20] we may write

Um 7→ Ũm = exp

(
−i∆

(
1− m∆

T

)
H0

)
exp

(
−i∆m∆

T
H1

)
, (90)

which introduces an error proportional to the neglected leading commutator 52.

‖Um − Ũm‖ = O

(
T 2

M2
‖H0H1‖

)
. (91)

We set U2
app to be U

(2)
app =

∏M
m=1 Ũm; the total error introduced by the latter sequence of

approximations is [31]:∥∥∥∥∥U(T, 0)−
M∏
m=1

Ũm

∥∥∥∥∥ = ‖U(T, 0)− U (1)
app‖ = O

(
T 2 · poly(n)

M

)
. (92)

We are thus able to begin with a time dependent HamiltonianH(t) (85) and find a sequence
of M unitary operators Ũm; if M scales faster than T 2 · poly(n), we the error (92) can
be made arbitrarily small. It is important to note that such M can still be chosen as a
polynomial in T and n, thus the simulation of AQC using gates takes at most polynomial
overhead.

The other way – showing that AQC can efficiently simulate the circuit model is rather
complicated and requires few ingenious steps. The key fact is that it is possible to efficiently
simulate the circuit model using AQC; a complete proof is described in detail in [32] by
Aharonov et. al. A short but comprehensive review is available in [27].

As we have already seen, the circuit model is universal. The latter assertions lead us
to a conclusion: AQC is up to a polynomial overhead equivalent to the circuit model and
thus AQC is also universal.

51The time-independence of each Hm enables us to omit the time-ordering symbol T .
52The Baker-Cambpell-Hausdorff formula states that: the solution Z of the equation eXeY = eZ , where

X,Y, Z come from a possibly non-commutative algebra, may be expressed as Z = X + Y + 1
2
[X,Y] + . . .

[20]. In other words, the formula expresses Z = log
(
eXeY

)
as a series composed of X,Y and their repeated

commutators. The question of convergence of such series (unless we restrict X and Y , they are rather
formal) has to be discussed; for further details see [20] and for comments on our use in the proof see [31].

36

Yet there are other proposal how to perform quantum computations. We shall briefly
present two other computation approaches, namely the Topological quantum computing
[54] and measurement based quantum computing [55].

Ad measurement based QC: in the framework of measurement based QC a given fixed
entangled state is our starting point. We then apply a sequence of measurements while
keeping track of individual outcomes (outcomes are of the form of classical data). We can
possibly use previous measurements to decide what to perform in the next step (e.g. what
basis is chosen to perform a measurement). Such an approach differs principally from the
models we have already seen: it is inherently irreversible.

Two principal schemes of measurement base computation have been developed: tele-
portation quantum computation [56] and so-called ”one-way quantum computer” (1WQC)
[57]. The relationship between the two designs is discussed in [58].

Even though it may, at first sight, seem that the inherent irreversibility disqualifies
the measurement based QC from competition against the reversible models (e.g. AQC
or circuit model), it is not the case. In 1999, Gottesman and Chuang showed that the
measurement based approach is able to perform universal quantum computation [56].

Ad topological QC: the topological quantum computer is a theoretical computation
model based on so-called braid gates [54]. It uses two-dimensional quasi-particles called
anyons. Their world lines form braids 53 in a three-dimensional spacetime (we have two
spatial and one temporal dimension). These braids are used as equivalents of logic gates
and make up a computer [54].

Anyons are quasi-particles living in a two-dimensional space. In a three-dimensional
space, we classify indistinguishable particles as fermions (obeying Fermi-Dirac statistics)
and bosons (obeying Bose-Einstein statistics). Say, we have two particles |ψ1〉|ψ2〉 and that
we exchange them; there should not be any observable difference, for our numbering of
indistinguishable particles should not change any physical observables. Thus, |ψ1〉|ψ2〉 =
eiφ|ψ2〉|ψ1〉, where φ ranges in [0, 2π). For fermions we have φf = π (i.e. eiφf = −1)
whereas for boson φb = 0 (i.e. eiφb = 1) [20].

In contrast, for two-dimensional space there need not to be such bifurcation: anyons,
being interchanged, underlie a phase shift of a different value.

In 2002, Fredman, Kitaev and Larsen showed that topological quantum computing
forms a model of universal quantum computer [54].

53Algebraically, braids were studied by Artin, see e.g. Artin’s Algebra [59].

37

4 Further steps

Our aim was to present a brief introduction into the area of quantum computing, governing
especially the adiabatic quantum computing. We believe that while discussing quantum
computers, it is useful to begin with basic principles of computing, namely with classi-
cal computing theory, computability, complexity theory; and then move towards different
classical computation models. We presented inherent differences in the treatment of cer-
tainty and knowledge of classical deterministic computers (Turing machines) and classical
probabilistic computers. Such an approach enables us to introduce quantum computing
as a model of computation leaning against the laws of quantum mechanics – a framework
where information an knowledge obeys quite a different rules than we are used to observe
in the macroscopic world. While comparing the three models we uncover principal dif-
ferences and find possible advantages or disadvantages of each model. And here comes
a motivation for further development of this article: it is our great desire to enrich the
latter paragraphs by adding more theoretical details regarding computation theory (either
classical or quantum) and by presenting further examples exploiting differences between
particular models of computation.

Being an introductory text, this article does not provide much technical details nor
does it examine the latter topics profoundly. We would be pleased to develop the major
themes further; namely the discussion of complexity theory in regard to the quantum
computing, theory of information, algorithm design, error correction, physical realisations
etc. In our opinion, the world of quantum physics and quantum computing differs form
classical subjects of physics, for it involves unimaginable wide area of mankind’s knowledge
connecting a variety of, at the first sight unrelated, subjects. In order to uncover at least
some important relations, it is inevitable to change our attitude to its study (comparing
to study of e.g. classical mechanics).

38

References

1. Bourbaki, N. Théorie des ensembles (Springer, 2006).

2. Pudlák, P. Logical foundations of mathematics and computational complexity: a gentle
introduction (Springer Science & Business Media, 2013).

3. Fraenkel, A. S. & Lichtenstein, D. Computing a perfect strategy for n × n chess
requires time exponential in n in International Colloquium on Automata, Languages,
and Programming (1981), 278–293.

4. London Taxi Services http : / / www . the - london - taxi . com / london _ taxi _

knowledge (2019).

5. Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische
mathematik 1, 269–271 (1959).

6. De Bruijn, N. G. Asymptotic methods in analysis (Courier Corporation, 1981).

7. Agrawal, M., Kayal, N. & Saxena, N. PRIMES is in P (2002).

8. Agrawal, M., Kayal, N. & Saxena, N. PRIMES is in P. Annals of mathematics, 781–
793 (2004).

9. Papadimitriou, C. H. Computational complexity (John Wiley and Sons Ltd., 2003).

10. Aaronson, S. Quantum computing since Democritus (Cambridge University Press,
2013).

11. Aaronson, S. Why philosophers should care about computational complexity. Com-
putability: Turing, Gödel, Church, and Beyond, 261–328 (2013).

12. Feynman, R. P. Simulating physics with computers. International journal of theoret-
ical physics 21, 467–488 (1982).

13. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information
(2010).

14. Gandy, R. in (1980).

15. Holevo, A. S. Information-theoretical aspects of quantum measurement. Problemy
Peredachi Informatsii 9, 31–42 (1973).

16. Eduard, P. Information-theoretical aspects of quantum measurement. International
Journal of Theoretical Physics 16 (5 May 1977).

17. Arrighi, P. & Dowek, G. The physical Church-Turing thesis and the principles of
quantum theory. International Journal of Foundations of Computer Science 23,
1131–1145 (2012).

18. Gutkin, E. On a multi-dimensional generalization of the notions of orthostochastic
and unistochastic matrices. Journal of Geometry and Physics 74 (Dec. 2013).

19. Messiah, A. Quantum mechanics, volume II. Appedix C (Section IV)(North-Holland
Publishing Company, Amsterdam, 1969) (1962).

20. Jiŕı Blank Pavel Exner, M. H. Hilbert Space Operators in Quantum Physics Theoret-
ical and Mathematical Physics 2nd ed (Springer ; Melville, N.Y., 2008).

21. Hearn, R. A. & Demaine, E. D. PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation.
Theoretical Computer Science 343, 72–96 (2005).

39

http://www.the-london-taxi.com/london_taxi_knowledge
http://www.the-london-taxi.com/london_taxi_knowledge

22. Benioff, P. The computer as a physical system: A microscopic quantum mechani-
cal Hamiltonian model of computers as represented by Turing machines. Journal of
Statistical Physics 22 (5 May 1980).

23. Deutsch, D. Quantum Theory, the Church-Turing Principle and the Universal Quan-
tum Computer. Proceedings Mathematical Physical & Engineering Sciences 400
(1818 1985).

24. Deutsch, D. Quantum Computational Networks. Proceedings Mathematical Physical
& Engineering Sciences 425 (1868 Sept. 1989).

25. Burden, R. L. & Faires, J. D. Numerical Analysis, Brooks. Cole Pub 7 (1997).

26. Dawson, C. M. & Nielsen, M. A. The solovay-kitaev algorithm. arXiv preprint quant-
ph/0505030 (2005).

27. Albash, T. & Lidar, D. A. Adiabatic quantum computation. Reviews of Modern
Physics 90, 015002 (2018).

28. Apolloni, B., Carvalho, C. & De Falco, D. Quantum stochastic optimization. Stochas-
tic Processes and their Applications 33, 233–244 (1989).

29. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing.
science 220, 671–680 (1983).

30. Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adia-
batic evolution. arXiv preprint quant-ph/0001106 (2000).

31. Van Dam, W., Mosca, M. & Vazirani, U. How powerful is adiabatic quantum compu-
tation? in Proceedings 42nd IEEE Symposium on Foundations of Computer Science
(2001), 279–287.

32. Aharonov, D. et al. Adiabatic quantum computation is equivalent to standard quan-
tum computation. SIAM review 50, 755–787 (2008).

33. Bravyi, S., DiVincenzo, D. P., Loss, D. & Terhal, B. M. Quantum simulation of many-
body Hamiltonians using perturbation theory with bounded-strength interactions.
Physical review letters 101, 070503 (2008).

34. Kempe, D. A. D. G. S. I. J. The Power of Quantum Systems on a Line. Communi-
cations in Mathematical Physics 287 (1 Apr. 2009).

35. Rønnow, T. F. et al. Defining and detecting quantum speedup. Science 345, 420–424
(2014).

36. Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack.
Physical review letters 79, 325 (1997).

37. Bennett, C. H., Bernstein, E., Brassard, G. & Vazirani, U. Strengths and weaknesses
of quantum computing. SIAM journal on Computing 26, 1510–1523 (1997).

38. Papageorgiou Anargyros; Traub, J. F. Measures of quantum computing speedup.
Physical Review A 88 (2 Aug. 2013).

39. Shor, P. [IEEE Comput. Soc. Press 35th Annual Symposium on Foundations of Com-
puter Science - Santa Fe, NM, USA (20-22 Nov. 1994)] Proceedings 35th Annual
Symposium on Foundations of Computer Science - Algorithms for quantum compu-
tation: discrete logarithms and factoring in (1994).

40

40. Bravyi Sergey; Terhal, B. Complexity of Stoquastic Frustration-Free Hamiltonians.
SIAM Journal on Computing 39 (4 Jan. 2010).

41. Ehrenfest, P. Adiabatische invarianten und quantentheorie. Annalen der Physik 356,
327–352 (1916).

42. Born, M. & Fock, V. Beweis des adiabatensatzes. Zeitschrift für Physik 51, 165–180
(1928).

43. Kato, T. On the adiabatic theorem of quantum mechanics. Journal of the Physical
Society of Japan 5, 435–439 (1950).

44. Marzlin, K.-P. & Sanders, B. C. Inconsistency in the application of the adiabatic
theorem. Physical review letters 93, 160408 (2004).

45. Tong, D., Singh, K., Kwek, L. C. & Oh, C. H. Quantitative conditions do not guar-
antee the validity of the adiabatic approximation. Physical review letters 95, 110407
(2005).

46. Amin, M. H. S. Consistency of the Adiabatic Theorem. Physical Review Letters 102
(22 June 2009).

47. Ambainis, A. & Regev, O. An elementary proof of the quantum adiabatic theorem.
arXiv preprint quant-ph/0411152 (2004).

48. Jansen, S., Ruskai, M.-B. & Seiler, R. Bounds for the adiabatic approximation with
applications to quantum computation. Journal of Mathematical Physics 48, 102111
(2007).

49. Nenciu, G. Linear adiabatic theory. Exponential estimates. Communications in math-
ematical physics 152, 479–496 (1993).

50. Elgart, A. & Hagedorn, G. A. A note on the switching adiabatic theorem. Journal
of Mathematical Physics 53, 102202 (2012).

51. Ge, Y., Molnár, A. & Cirac, J. I. Rapid adiabatic preparation of injective peps and
gibbs states, 2015. arXiv preprint arXiv:1508.00570.

52. Farhi Edward; Gutmann, S. Analog analogue of a digital quantum computation.
Physical Review A 57 (4 Apr. 1998).

53. Roland Jérémie; Cerf, N. J. Quantum search by local adiabatic evolution. Physical
Review A 65 (4 Mar. 2002).

54. Freedman, M., Kitaev, A., Larsen, M. & Wang, Z. Topological quantum computation.
Bulletin of the American Mathematical Society 40, 31–38 (2003).

55. Jozsa, R. An introduction to measurement based quantum computation. NATO Sci-
ence Series, III: Computer and Systems Sciences. Quantum Information Processing-
From Theory to Experiment 199, 137–158 (2006).

56. Gottesman, D. & Chuang, I. L. Quantum teleportation is a universal computational
primitive. arXiv preprint quant-ph/9908010 (1999).

57. Nielsen, M. Universal quantum computation using only projective measurement,
quantum memory, and preparation of the— 0¿ state, 2001. arXiv preprint quant-
ph/0108020.

58. Raussendorf, R. & Briegel, H. J. Quantum computing via measurements only. arXiv
preprint quant-ph/0010033 (2000).

41

59. Artin, M. Algebra United States ed (Prentice Hall, 1991).

42

	Introduction, basic concepts
	Bachmann-Landau O-notation
	Introduction to Complexity Theory

	Quantum Computing
	Qubit
	Quantum Gates and the Circuit Model

	Adiabatic Quantum Computation
	Adiabatic Theorem in Quantum Mechanics
	Adiabatic solution for problems of the type f(x)=1
	Grover's algorithm

	Known Relations Between Different Models of Quantum Computing

	Further steps

