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Introduction

The first to observe synchronisation was reportedly Christiaan Huygens who noticed the ten-
dency of two pendulum clocks to adjust to anti-phase oscillations when mounted on a common
support bar, and described the discovery in his letters as early as in February 1665 [1]. Since
then synchronisation has been thoroughly explored in a great variety of classical systems [2],
yet it was not until very recently that the study of this ubiquitous phenomenon entered the
quantum realm.
In both classical and quantum domain, synchronisation is a very broad term. Various view-
points and hence definitions and measures have been introduced [3], [4], [5], [6], [7], and
systems investigated are numerous. The first works on the subject were typically concerned
with the case of a forced synchronisation induced by an external field, or entrainment, exam-
ples include a driven oscillator [8], an oscillator coupled to a qubit [9] or combinations of van
der Pol oscillators [10]. Another noteworthy field of research is represented by synchronisa-
tion protocols, proposals of how to exploit system properties such as entanglement to achieve
clock synchronisation between two parties [11]. Finally, the main focus in current literature is
on spontaneous synchronisation, the situation when two or more individual subsystems tune
their local dynamics to a common pace due to the presence of coupling. Prevalent is the study
of so called transient synchronisation, the emergence of synchronous behaviour in dissipative
systems as a result of time-scale separation of decay rates of single modes [12]. In such a case
the system goes through a long-lasting yet temporal phase of sychronised evolution, eventu-
ally approaching relaxation in the asymptotics. Among the examples of examined systems
are oscillator networks [13], [14], spin systems [15], atomic lattices [16], qubits in bosonic
environment [17] or collision models [18]. It was nonetheless demonstrated that synchroni-
sation and quantum correlations can arise temporarily as well as asymptotically, and that
such an asymptotic behaviour can be associated with the presence of synchronous modes in
the decoherence-free subspaces of the state space [15], [19]. Very recently, a different kind of
non-vanishing synchronised evolution was presented in the form of an analogue of the classical
phase space limit cycles for a spin system of purely quantum nature [20]. The same authors
also discuss the minimal quantum system which can exhibit this type of synchronisation [7],
providing a promising baseline for studying limit cycles synchronisation in more complex spin
networks. Synchronisation can even occur as a concomitant of other phenomena. In one
particular instance it was shown to be an accompanying effect of super- and subradiance [17].
There have been various atempts to establish a link between spontaneous synchronisation
and several possible local or global indicators such as entanglement [13], classical or quantum
correlations [15] and discord [14]. To give a specific example, in [20] a synchronisation of two
spins solely through their mutual interaction was demonstrated to always come with a creation
of entanglement, the converse not necessarily true. While the results might be promissing
in some specific cases, so far no general connection between the emergence of spontaneous

6



7

synchronisation and any other phenomena has been found and the plausible mechanisms of
quantum synchronisation and its very nature remain to great extend unknown.
An endeavour to understand the phenomenon of synchronisation on the quantum level moti-
vates this work. The main idea is based on Huygens’ original observation of two clocks. We
investigate the emergence of spontaneous synchronisation between two individual identical sys-
tems with their own inner dynamics that are coupled together, with the aim of understanding
the underlying synchronising mechanism. Identical systems have identical inner dynamics
and natural frequencies, hence when it comes to synchronisation we talk about phase syn-
chronisation. We are not concerned with temporal transient phases of synchronous behaviour
preceeding dissipation and relaxation, as is often the case in the current literature, see the
brief overview above, rather we look into systems exhibiting sychronised dynamics in the
asymptotics.
For the process of synchronisation it is necessary to consider not only the possible mutual
interaction of the individual constituents of the composite system in question but also the
effects of the environment. Apart from the contact with the environment being practically
inevitable, a closed system alone is not enough for the study of the phenomenon since unitary
evolution in finite dimensions is at least quasiperiodic [21]. A thrid party is essential for
non-trivial occurence of synchronisation. To account for possible environments and their
interactions with the system it is best to view it as an open quantum system. One of the
simplest and most convenient approaches used to describe the open dynamics and to study
asymptotic behaviour is Markovian approximation. Within the Markovian approximation a
framework of quantum mechanical dynamical semigroups and Lindblad dynamics represents
a suitable tool, and is employed in this work.
We begin with an introduction to the formalism and several key elements of the theory.
Discussion of the concept of synchronisation follows together with suitable definitions for our
setup. In the main part of the work in chapter 3 we investigate in depth a system of two coupled
non-interacting qubits, explore and classify all synchronising maps in the studied model and
describe their properties. To do so we make use of a theorem presented in the theoretical part
in chapter 1 which links generators of the evolution map in the Lindblad form and the attractor
space via commutation relations. Firstly we assume all possible attractors corresponding to
non-trivial synchronised asymptotic evolution and find generators of the evolution map which
permit the existence of such attractors. From the resulting set of evolution generators we
then pick those that enforce synchronisation on the entire attractor space and hence lead to
synchronous asymptotic behaviour irrespective of initial conditions. Subsequently, we study
their properties and conclude with the obtained results.



Chapter 1

Theoretical background

The evolution of an open quantum system is in general described by an irreversible linear
completely positive trace non-increasing map acting on the space of linear operators on a
Hilbert space. The open dynamics is often too complex for analytical solutions and certain
additional simplifying assumptions need to be applied. A common approach is the use of
Markovian approximation to describe dynamics of the system. This is suitable e.g. in the case
that the changes in the surrounding environment, if present, arising from the interaction with
the system dissipate very quickly and thus can be neglected. Two main classes of quantum
Markovian processes are commonly studied, namely discrete quantum Markov chains and
continuous quantum Markov dynamical semigroups. With the latter being utilized throughout
the rest of the work, this section gives a brief introduction to the necessary theory.

1.1 Preliminary

Assume a quantum system is represented by a finite-dimensional Hilbert space H , let B (H )
be the associated space of all bounded linear operators on H . For A,B ∈ B (H ), (A,B) =
Tr
{
A†B

}
stands for the corresponding scalar product and ‖A‖ the induced norm thereof,

with A† being the adjoint operator of A defined via the scalar product 〈 , 〉 on H . A state of
such a system is described by a density operator ρ ∈ B (H ), a (generally not stricly) positive
self-adjoint operator with a unit trace.

1.2 Quantum dynamical semigroups

Among all possible evolutions of a state of an open quantum system special attention is paid
to the so called quantum Markovian dynamical semigroups. By the Markov property it is
meant that the evolution depends only on the present state and is completely independent of
its past. Further, we assume that the process is homogenous, that is the evolution from t1
to t2 depends solely on the time difference ∆t = t2 − t1 and not on the actual points in time
themselves. With these properties combined we arrive at the following definition.

Definiton 1.2.1. A one-parameter family of completely positive (CP) trace non-increasing
maps Tt : B (H )→ B (H ), parameterized by t ∈ R+

0 , satisfying

TtTs = Tt+s and T0 = I (1.1)

8



CHAPTER 1. THEORETICAL BACKGROUND 9

is called a quantum Markovian dynamical semigroup (QDMS).

1.3 Generators of QMDS and Lindblad operators

In the case of continuous quantum dynamical semigroups we make use of the results of [22],
further discussed in [23].

Theorem 1.3.1. Let Tt be a continuous quantum dynamical semigroup (continuous in the
parameter t above). Then the superoperator Tt ≡ T is differentiable in t and is of the form

Tt = exp(Lt), (1.2)

where L : B (H )→ B (H ) is a conditional completely positive1 map called the generator. The
generator L can be split into

L(ρ) = φ(ρ)−Kρ− ρK†, (1.3)

where φ is completely positive and K ∈ B (H ).

The master equation governing the evolution of an arbitrary state ρ in this model reads

dρ(t)

dt
= L(ρ(t)). (1.4)

A CP map φ admits a decomposition into Kraus operators [24], denoted here as {Lj}, and
together with further splitting of K into hermitian and antihermitian (denoted iH) part and
the introduction of an optical potential B = B†, B ≥ 0 defined via

K = iH +
1

2
φ†(I) +B (1.5)

we arrive at the final expression of the generator, namely

L(ρ) = −i[H, ρ] +
∑
j

LjρL
†
j −

1

2

{
L†jLj , ρ

}
−Bρ− ρB†. (1.6)

Here the operator H can be identified with the hamiltonian. Indeed in the case of Li =
B = 0 equations (1.6) and (1.4) reduce to dρ

dt = −i[H, ρ], standard expression for the unitary
evolution of a closed system. It is to mention that an arbitrary choice of a self-adjoint operator
H, positive operator B and operators {Lj} satisfying

∑
j L
†
jLj ≤ I gives a valid generator

L leading to a CP trace non-increasing map T and as such describes a physically possible
evolution of an open system.
The relation (1.6) simplifies in case of trace-preserving QMDS. A condition equivalent to
the trace-preserving property T †(I) = I directly implies 0 = L†(I) = φ†(I) − K† − K and
subsequently B = 0. The resulting equation is known as the Lindblad equation and reads

L(ρ) = −i[H, ρ] +
∑
j

LjρL
†
j −

1

2

{
L†jLj , ρ

}
. (1.7)

1Meaning its exponential is a completely positive map. This condition is for example equivalent to (I −
|Ω〉〈Ω|)(L⊗ I) |Ω〉〈Ω| (I−|Ω〉〈Ω|) ≥ 0 for a maximally entagled state |Ω〉 〈Ω| of arbitrary finite dimension greater
than dimB (H ).
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In this context, Kraus operators {Lj} are usually reffered to as Lindblad operators. In calcu-
lations in chapter 3 we only deal with trace-preserving quantum operations.

Note: So far we have only been working with time-evolving states in Schrödinger picture;
the evolution of observables in Heisenberg picture can be described in a similar way, see [23],
[25].

1.4 Attractor space and asymptotic dynamics

The dynamics of an open system is typically complicated to analyze compared to a closed
system as the generally non-unitary generator of the evolution may not be diagonalizable.
However, should we only be concerned with the asymptotic dynamics of the system, there
is an algebraic method developed in [26], [25] at hand. For details the reader is advised to
study the original papers, for the purpose of this work we only state the most important results.

The asymptotic spectrum σas(L) of a generator L is the set of all purely imaginary points of
its spectrum σ(L) and eventually zero, i.e.

σas(L) = {λ ∈ σ(L),Reλ = 0}. (1.8)

The attractor space Att(T ) of superoperator T = exp(Lt) is the subspace spanned by the
eigenvectors of its generator corresponding to purely imaginary eigenvalues,

Att(T ) =
⊕

λ∈σas(L)

Ker(L − λI). (1.9)

We commonly refer to an element X ∈ Att(T ) as attractor. An eigenvector Xλ of L associated
with eigenvalue λ is also an eigenvector of Tt = exp(Lt) associated with eigenvalue exp(λt).
It holds |exp(λt)| = 1, ∀λ ∈ σas, ∀t ∈ R+

0 . It has been shown in [26] that it is always possible
to diagonalize the part of generator L responsible for the asymptotic dynamics and therefore
we can decompose (as a direct sum) the Hilbert space B (H ), which represents a superset of
the set of all possible states, into two subspaces Att(T ) and Y . The former accounts for the
asymptotic dynamics and the latter represents the part dying out during the evolution, i. e.

B (H ) = Att(T )⊕ Y. (1.10)

Assume {Xλ,i} to be a basis of the attractor space Att(T ), {Xk} to be a basis of B (H ) contain-
ing {Xλ,i} and {Xk} to be the basis of B∗(H ) dual to {Xk}, i.e. Tr

{
X†kX

k′
}

= δkk′ . Denoting

Xλ,i the elements of {Xk} which constitute the basis dual to {Xλ,i}, Tr
{
X†λ,iX

λ′,j
}

= δλλ′δij ,
and play the role of determining coefficients in the asymptotic dynamics, we can express the
asymptotic dynamics of an initial state ρ(0) as

ρas(t) =
∑

λ∈σas(L),i

exp(λt) Tr

{(
Xλ,i

)†
ρ(0)

}
Xλ,i (1.11)

and it holds

lim
t→∞
‖ρ(t)− ρas(t)‖ = 0. (1.12)
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In general the construction of a suitable basis and its dual remains a challenging task.
To state the final structure theorem revealing a possible way of how to find the attractor space
of a given continuous QMDS one more definition is needed.

Definiton 1.4.1. A state σ satisfying σ > 0 is called a faithful T -state if

Tt(σ) ≤ σ, ∀t > 0. (1.13)

For a trace-preserving superoperator of the form (1.2) the condition reduces to L(σ) = 0.
Finally, due to [25] the following holds.

Theorem 1.4.2. Let Tt : B (H ) → B (H ) be a QMDS with generator L of the form (1.6)
equipped with a faithful T -state σ and let X ∈ B (H ) be an attractor of Tt in Schrödinger
picture associated with eigenvalue λ. Then the following set of equations holds[

Lj , Xσ
−1
]

=
[
Lj , σ

−1X
]

=
[
L†j , Xσ

−1
]

=
[
L†j , σ

−1X
]

= 0, (1.14)[
B,Xσ−1

]
=
[
B, σ−1X

]
= 0, (1.15)[

H,Xσ−1
]

= iλσ−1X,
[
H,Xσ−1

]
= iλXσ−1. (1.16)

If Tt is either trace-preserving or the faithful T -state is stationary the reverse statement applies.

This theorem will be employed as a starting point of our calculations.

1.5 Special case of unitary Lindblad operators

In the application in chapter 3 we use a simplifying assumption that all the Lindblad operators
Lj in (1.7) are proportional to some unitary operator Uj , i.e. Lj =

√
pjUj and

∑
j pj = 1.

The Lindblad equation takes the form

L(ρ) = −i[H, ρ] +
∑
j

pjUjρU
†
j − ρ (1.17)

and clearly the identity, proportional to the maximally mixed state, is preserved under evolu-
tion and satisfies I > 0, T (I) = I ≤ I. In this particular case, the choice of a suitable basis
and construction of its dual becomes a trivial task. The eigenspaces Ker(L− λI), λ ∈ σas(L),
forming the attractor space Att(T ) are mutually orthogonal and the same holds for AttT and
Y (see [26])

Ker(L − λiI) ⊥ Ker(L − λjI) for λi, λj ∈ σas(L), λi 6= λj , (1.18)

Att(T ) ⊥ Y. (1.19)

Furthermore, the theorem 1.4.2 reduces to

Theorem 1.5.1. An element X ∈ B (H ) is an attractor of Tt with generator L of the form
(1.17) associated with eigenvalue λ if and only if it holds

[Uj , X] =
[
U †j , X

]
= 0, (1.20)

[H,X] = iλX. (1.21)
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In a case where we deal with just a single operator U1 with weight p1 = 1 we denote it simply
as U . The explicit stating of both commutators in (1.20) is rather redundant as one follows
from the other for unitary operators, however, evaluating both of them will help to simplify
calculations later on.



Chapter 2

Synchronisation and measures

In order to be able to talk about synchronisation we should first clearly define what we mean
by saying a quantum system is synchronised. In this chapter we first introduce our viewpoint
of synchronisation and definitions suitable for our work, an itroduction of the most common
synchronisation measures and a discussion of several other concepts of synchronisation follows.

2.1 Synchronisation and antisynchronisation

Let us first emphasize that quantum synchronisation does not refer to any newly discovered
phenomenon of quantum nature, unwitnessed in the classisal domain. It refers to the synchro-
nisation of quantum systems in the classical understanding. Various concepts and measures of
synchronisation applicable in the quantum realm appear in the current literature, see [3], [4],
[5] for a brief overview. In the classical domain, the notion and measures of synchronisation are
typically built upon comparing systems trajectories in the phase space. In quantum systems,
there are two different main approaches to consider. The first one is to look at the dynamics
of local observables and their expectation values, the second is to directly compare the local
density matrices or other representations of the quantum states using a suitable criterion.
We choose the second approach based on the states themselves rather than observables but
before we move to the actual definitions of synchronisation for the purpose of this work,
we should motivate them briefly by discussing in layman’s terms what it is we want to be
synchronous and how to choose a suitable criterion, as the choice needs to be done accordingly
to the investigated system.
Imagine a case of two detuned oscillators operating at two distinc frequencies. The intuitive
understanding of their synchronisation is an evolution towards oscillations at a single com-
mon frequency, possibly with a resulting constant phase shift bethween the two oscillators.
However, this understanding brings at least two difficulties. First, the resulting common fre-
quency will be set by and dependent on the outer synchronisation mechanism. Second, once
this mechanism is turned off the inner dynamics of the oscillators will tend to desynchronise
their frequencies again. On the other hand, in the case of two identical pendulum clocks which
from the very beginning oscillate with the same frequency, the natural is synchronisation of
their phases. When synchronised, they should move with a given phase difference, typically
in-phase or anti-phase, irrespective of the initial shift.

13
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The idea behind this works originates from the Huygens’ clock experiment. As a result we are
interested in the case of two or potentially more identical systems with their own inner dy-
namics, same for all of them. An example of such systems is a qubit network. To synchronise
is not a specific observable, but rather the actual states of the systems in question. This is an
analogue to the phase synchronisation of the classical clocks. With identical inner dynamics,
the systems will continue to evolve synchronously after the synchronisation process even if
the coupling and mutual interactions are interrupted, resembling two clocks taken apart. For
the most part we are interested in the asymptotic dynamics and not in any transient effects,
consequently we can make use of a more restrictive absolute understanding of synchronisa-
tion rather than a measure that would describe the process leading to synchronised evolution.
Hence our choice of setup and following definitions.

Assume a quantum system with an associated Hilbert space H . For an n-component compos-
ite system of identical subsystems associated with Hilbert space H ⊗n = H1⊗· · ·⊗Hn, Hi =
H , ∀i ∈ {1, . . . , n}, in a state ρ ∈ B(H ⊗n) let us denote ρk the reduced state of the kth

component, obtained as a partial trace over all the remaining n-1 subsystems,

ρk = Tr⊗j 6=kHj
ρ. (2.1)

Definiton 2.1.1. Assume a n-component composite system in a state ρ(t) ∈ B(H ⊗n) in time
t. We say that the n individual systems in the reduced states ρ1(t), . . . , ρn(t) are synchronised
if ∀j, k there exist stationary states ρcjk ,

∂ρcjk
∂t = 0, such that

ρj(t)− ρk(t) = ρcjk , ∀t, (2.2)

and that they achieve (or that the entire composite system achieves) an asymptotic synchro-
nisation if

lim
t→∞

∥∥ρj(t)− ρk(t)− ρcjk∥∥ = 0. (2.3)

We say that the operation T and its generating operators {Lj} or {Uj , pj} respectively syn-
chronise or lead to synchronisation if all the asymptotic reduced states limt→∞ ρj(t) of the
evolution are synchronised for an arbitrary initial state ρ(0). We call the operation T itself
and its generating operators synchronising.

According to this definition, the subsystems are synchronised if their non-stationary parts
undergo the same evolution. We allow for a constant difference between the synchronised
states, imposing constraints only on the dynamical part. To be able to distinguish we introduce
a more restrictive second definition.

Definiton 2.1.2. We speak of total synchronisation if the reduced states ρ1(t), . . . , ρn(t) of
all systems in question are the same,

ρj(t)− ρk(t) = 0, ∀j, k, t, (2.4)

or respectively of asymptotic total synchronisation if

lim
t→∞
‖ρj(t)− ρk(t)‖ = 0, ∀j, k. (2.5)
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The rest of the terminology is defined analogously.

With this definition we want not only the dynamical parts of the systems to be the same, but
also for the systems to oscillate around the same state.

Assuming only two systems we label them with letters A and B and, again denoting ρ(t) ∈
B(H ⊗2) the global state of the composite system, write the condition of total synchronisation
as

TrA ρ(t) = TrB ρ(t). (2.6)

For two systems it also makes sense to speak of antisynchronisation. We again introduce two
definitions, the first one requiring the systems’ dynamical parts to evolve in anti-phase, the
second imposing an additional restriction of oscillating around the same stationary state.

Assuming two systems A and B in reduced states TrB ρ(t) = ρA(t) and TrA ρ(t) = ρB(t) of
a global state ρ(t) we denote the stationary part of the state of system X ∈ {A,B} as ρX,st
and the dynamical part as ρX,dyn,

ρA(t) = ρA,st + ρA,dyn(t), (2.7)

ρB(t) = ρB,st + ρB,dyn(t), (2.8)

∂ρA,st
∂t

=
∂ρB,st
∂t

= 0. (2.9)

Definiton 2.1.3. We say that the systems A and B are antisynchronised if

ρA,dyn(t) = −ρB,dyn(t), (2.10)

and totally antisynchronized if in addition to (2.10) it holds

ρA,st = ρB,st. (2.11)

The remaining terminology is defined in a similar fashion.

Note: To satisfy our definition of a synchronisation the quantum states need not be evolving
in time, for example the maximally mixed state proportional to identity cleary satisfies (2.4)
and simultaneously is stationary in the studied dynamics (1.4),(1.6). In this work, however,
we focus on systems with non-trivial asymptotic evolution, i.e. on situations when the syn-
chronisation mechanism does not kill the inner dynamics.

Contrary to our definitions of (anti-)synchronisation, it is possible to address the matter purely
via observables of the system, a way which in fact seems prevalent in the current literature. The
dynamics of two or more systems are characterized by the expectation values of chosen local
observables and their time evolutions are compared by a classical criterion. The advantage
is that this provides not only a definition of synchronisation, but also a measure thereof. It
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is also well suited for the study of imperfect transient synchronisation and for the study of
synchronisation of nonidentical subsystems.
The problem with taking only observables into account and not the states themselves is that
it only makes use of partial information about the systems in question. Synchronisation of one
observable does not imply synchronisation of other ones, nor does it guarantee that the systems
are not in substantially different states. The two concepts are, nonetheless, interwined.
Again assume a n-component composite system of identical subsystems in a state ρ ∈ B(H ⊗n).
Synchronisation with respect to a local observable σ ∈ B (H ) can be understood as a situation
when the expectation value of σ is the same on all of the individual subsystems

Tr (σρ1) = · · · = Tr (σρn) , (2.12)

or if we denote σ(l) = I⊗l−1⊗σ⊗I⊗n−l the local operator corresponding to the lth component〈
σ(1)

〉
= · · · =

〈
σ(n)

〉
. (2.13)

Clearly the synchronisation of states, specifically the total synchronisation in the sense of
definition 2.1.2, implies synchronisation of any local observable σ ∈ B (H ). The converse is not
true, unless we extend the requirement on all possible observables σ ∈ B (H ) simultaneously.
Formally, if a system in a state ρ ∈ B(H ⊗n) has equal expectation values Tr

(
σ(i)ρ

)
on all

its components i for all observables σ ∈ B (H ), then the reduced states ρi of individual
component subsystems are the same. This follows immediatly from the fact that the trace is
a scalar product on B (H ).
Therefore, when not restricting ourselves to a small set of predetermined observables we actu-
ally require synchronisation of states when requiring synchronisation of observables, and vice
versa.

We might even impose additional requirements on synchronisation. Imagine the question is
when two clocks are synchronised, knowing they should actually be used in application. It is
reasonable to ask not only for the expectation values and probabilities of measuring different
possible outcomes to match, but also for the clocks to always provide the same information
to both parties, that is for the measurements to be prefectly correlated. This requirement
is, however, too restrictive. For a given system and a variable there might not exist states
that would guarantee correlated measurement. It is not suitable for a generally applicable
definition of synchronisation.

2.2 Synchronisation measures

Synchronisation measures provide a way of quantifying synchronisation and describing the
synchronisation process. They can also account for possible errors in synchronisation of the
established states. Typically, an observable is chosen and a suitable criterion is applied to its
expectation values on the subsystems.
Such a criterion is the Pearson’s correlation coefficient defined for two real-valued time-
dependent functions f, g via

Cf,g(t,∆t) =
(f − f̄)(g − ḡ)√
(f − f̄)2(g − ḡ)2

, (2.14)
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where t ∈ R is used to denote time and f̄ = 1
∆t

∫ t+∆t
t f(t′)dt′ is the mean value of f at time

t calculated over a time window ∆t, similarly for g, [4], [2]. The coefficient ranges from −1
to 1 with 1 corresponding to synchronisation of f and g and −1 to antisynchronisation of the
two, irrespective of a possible constant difference between them. It was successfully applied for
example to position and momentum operator expectation values for two dissipating oscillators
[14], in oscillator networks [13] or to spin operators in various spin systems [15], atomic lattices
[16] or collision models [18]. It will also be used later in this work in illustrating numerical
simulations.
Another criterion of the same kind is the so called synchronisation error typically used for the
study of chaotic systems [4]. It is defined for two systems as

Sc(t) =
〈
(q2
−(t) + p2

−(t)
〉−1

, (2.15)

where q− = 1√
2
(q1−q2) is the difference in position, the same for momentum p, trajectiories in

the classical case and operators in the quantum one. This measure is bounded in the quantum
domain by the uncertainity relations. It was employed for example in [3] to compare a pair of
coupled optomechanical oscillators.

2.3 Other concepts

Last but not least, there is a very recent insight into the topic of synchronisation of quantum
systems to be mentioned. In [7], [20] the Husimi Q representation is presented as a suitable
tool for description and detection of synchronisation. Husimi Q representation is related to
the arguably better known Wigner-Weyl representation. The authors use this phase-space
formulation to discuss emergence of limit cycles in a two-node network of spin one oscillators
and they also show it to be a minimal system for the study of the phenomenon.



Chapter 3

Two-qubit system

In this chapter we examine in detail the simplest case possible - a system of two identical two-
level subsystems, a system of two identical qubits, with the evolution of its state ρ described
by QMDS whereof the generator takes the form (1.17) with just a single unitary operator U
with weight 1, i.e.

L(ρ) = −i[H, ρ] + UρU † − ρ. (3.1)

Let H1 be the Hilbert space corresponding to a single qubit and

H1 =

(
E1 0
0 E2

)
, (3.2)

E1, E2 ∈ R, be the Hamiltonian in the basis of its eigenvectors |1〉 and |2〉. For a closed system
the evolution of an initial state |ψ〉 ∈H1,

|ψ〉 = a |1〉+ b |2〉 , (3.3)

a, b ∈ C, is generated by the Hamiltonian H1 and given by

|ψ(t)〉 = e−iE2t
(
e−i(E1−E2)ta |1〉+ b |2〉

)
. (3.4)

Here e−iE2t represents an overall phase prefactor, irrelevant as far as the qubit alone is con-
cerned, while the intrinsic frequency of the system dynamics is ω = E1 − E2, given as the
difference of eigenvalues.

Let (|11〉 , |12〉 , |21〉 , |22〉) be the basis of the entire system with the Hilbert space H =
H1 ⊗H1 and Hamiltonian H = H1 +H2 ≡ H1 ⊗ I + I ⊗H1, explicitly

H =


2E1 0 0 0

0 E1 + E2 0 0
0 0 E1 + E2 0
0 0 0 2E2

 . (3.5)

Note that we use the standard notation |ij〉 = |i〉 ⊗ |j〉. We will stick to this computational
basis throughout the entire chapter.

18
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3.1 Two-qubit synchronisation

Applying the theorem 1.5.1 to find all elements of the attractor space for a given evolution
map we first make use of the commutation relation (1.21) to separate the space of all states
B (H ) into five subspaces Xiλ based on the corresponding associated eigenvalue λ,

X0 = span{|11〉〈11| , |22〉〈22| , |12〉〈12| , |21〉〈21| , |12〉〈21| , |21〉〈12|}, (3.6)

X2E1−2E2 = span{|11〉〈22|}, (3.7)

X2E2−2E1 = span{|22〉〈11|}, (3.8)

XE1−E2 = span{|11〉〈12| , |21〉〈22| , |11〉〈21| , |12〉〈22|}, (3.9)

XE2−E1 = span{|21〉〈11| , |22〉〈12| , |12〉〈11| , |22〉〈21|}. (3.10)

The first one, X0, corresponds to the stationary part of a possible asymptotic state that does
not evolve in time and as such a vector from this subspace automatically satisfies our condi-
tion of synchronisation (2.1.1). It plays, however, an important role in the question of total
synchronisation discusssed in the next section.

The following two subspaces, namely X2E1−2E2 and X2E2−2E1 , are trivial from the point of
view of synchronisation in the sense that any vectors X1 ∈ X2E1−2E2 and X2 ∈ X2E2−2E1 sat-
isfy TrAX1 = TrBX1 = 0 and TrAX2 = TrBX2 = 0 respectively. They however contribute
to the asymptotic evolution of the composite system.

Finally, the last two subspaces XE2−E1 and XE1−E2 correspond to the non-trivial evolution of
the reduced one-qubit states. The two subspaces are connected by the operation of complex
conjugation. Solving the commutation relations (1.20) and (1.21) for one of the subspaces
provides the solution for the other one.
It holds that X is an eigenvector of a linear map φ with eigenvalue λ iff X† is an eigenvector
of φ with eigenvalue λ̄,

φ(X) = λX ⇐⇒ φ(X†) = λ̄X†. (3.11)

It can also be seen from the fact that for the commutation relations it holds

[X,U ] =
[
X,U †

]
= 0 ⇐⇒

[
X†, U

]
=
[
X†, U †

]
= 0, (3.12)

[H,X] = iλX ⇐⇒
[
H,X†

]
= iλ̄X†, (3.13)

for any matrices X,U , H, where H is self-adjoint, λ ∈ C, and for which the expressions make
sense.

Thus we restrict to work only with the space XE1−E2 and choose to parameterize its arbitrary
element X ∈ XE1−E2 as

X = α |11〉〈12|+ β |21〉〈22|+ γ |11〉〈21|+ δ |12〉〈22| , (3.14)
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equivalently also

X =


0 α γ 0
0 0 0 δ
0 0 0 β
0 0 0 0

 , (3.15)

where α, β, γ, δ ∈ C. The partial trace condition (2.2) of synchronisation reduces to

α+ β = γ + δ. (3.16)

In light of theorem 1.5.1, our goal is to find all possible unitaries U in (3.1) such that the
solution to the commutation relations

[U,X] =
[
U †, X

]
= 0 (3.17)

for X ∈ XE1−E2 is non-trivial and satisfies the condition of synchronisation. Stated less for-
mally, we want to find all possible two-qubit couplings that can be represented by a single
unitary operator in the Lindblad equation such that the evolution described by the corre-
sponding QMDS leads to an asymptotically synchronized state.

To achieve this we will go through all such possible solutions X and find the unitaries that
permit them to subsequently pick out those unitaries that permit exclusively such solutions.
We will work in the parameterization given by (3.14) and discuss separatelly all possible at-
tractors X ∈ XE1−E2 satisfying the synchronisation condition (3.16), sorted by the number of
non-zero coefficients (denoted α, β, γ, δ) in the parametrization. Evaluating of the commuta-
tion relations (3.17) will give us a set of unitaries U for each possible attractor X and from
these sets we will extract those operators U that not only commute with the synchronised
attractor X, but also enforce the synchronisation condition on the entire associated attractor
space. Since by our definition the synchronisation condition is also necessary for the total
synchronisation, we will make use of the results in the next section where we further extract
those operators U that enforce total synchronisation.
Before we begin note that any two unitary operators that differ only by an arbitrary overall
phase factor lead to the same evolution map due to the form of the generator (3.1), we will
therefore omit the phase prefactor in the expressions below for simplicity. Now for the actual
calculations.

I. One non-zero coefficient:

This situation cannot occur as the synchronisation condition (3.16) requires at least two non-
zero coefficients for non-trivial solutions.

II. Two non-zero coefficients:

a) α = −β 6= 0 ∧ γ = δ = 0 or γ = −δ ∧ α = β = 0

This corresponds to a stationary asymptotic evolution of the resulting reduced states of in-
dividual qubits. Indeed, it can be seen from the parameterization (3.14) that both reduced
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operators of such attrator X reduce to zero. Consequently, it can only contribute to the evo-
lution of mutual correlations.

b) β = γ = 0 and α = δ 6= 0

The attractor X now reads

X =


0 α 0 0
0 0 0 α
0 0 0 0
0 0 0 0

 . (3.18)

Denoting uij the matrix elements of U we can explicitly evaluate the commutation relations
(3.17) in the form XU = UX and XU † = U †X, resulting straightforwardly into a set of
equations

uij = 0 for i 6= j, (3.19)

u11 = u22 = u44, (3.20)

giving U of the form

U =


1 0 0 0
0 1 0 0
0 0 a 0
0 0 0 1

 , (3.21)

where a ∈ C, |a| = 1, since we further require UU † = U †U = I and factor out an arbitrary
phase prefactor.

We have found our first candidate for a synchronising map, yet so far we have only shown that
if the attractor X is suppposed to have a certain form satisfying synchronisation condition
(3.16) and the commutation relations (3.17) hold, then U has to have the form (3.21). How-
ever, for U to lead to synchronisation, the existence of a synchronised attractor X is only a
necessary condition, not a sufficient one. There might be other elements of the corresponding
attractor space that do not satisfy the synchronisation condition. To show that an operator U
generates a synchronising map, we need to prove the opposite relation, that is given an oper-
ator U , here by equation (3.21), and a general attractor X ′ ∈ XE1−E2 satisfying commutation
relations [U,X ′] =

[
U †, X ′

]
= 0, then X ′ necessarily satisfies the synchronisation condition

TrAX
′ = TrBX

′.

Given the diagonal form of U close to identity, it is no surprise that this converse statement
does not hold and that our candidate does not lead to a synchronising map. We postpone the
proof of our claim to the section 3.3 where a counterexample is provided.

c) α = δ = 0 and β = γ 6= 0

Analogously to the previous case we arrive at relations

uij = 0 for i 6= j, (3.22)

u11 = u33 = u44, (3.23)
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giving U of the form

U =


1 0 0 0
0 b 0 0
0 0 1 0
0 0 0 1

 (3.24)

for b ∈ C, |b| = 1.

Similarly to the previous case, this candidate for U does not lead to synchronisation.

d) β = δ = 0 and α = γ 6= 0

Noticing that
X = α |11〉 (〈12|+ 〈21|) , (3.25)

we introduce a new orthonormal basis (e1, e2, e3, e4) where

e1 = |11〉 , (3.26)

e2 =
1√
2

(|12〉+ |21〉), (3.27)

e3 =
1√
2

(|21〉 − |12〉), (3.28)

e4 = |22〉 , (3.29)

so that the transition matrix

T =


1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1

 (3.30)

is unitary and the attractor X in the new basis reads

X̃ =


0 α 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (3.31)

Using the fact that the commutation relations (3.17) are invariant with respect to the change
of basis we evaluate them directly to obtain Ũ , the operator U in the new basis, which can
then be transformed back into the original computational basis as U = TŨT †. (3.17) implies

ũ11 = ũ22, (3.32)

ũ12 = ũ13 = ũ14 = ũ21 = ũ23 = ũ24 = ũ31 = ũ32 = ũ41 = ũ42 = 0, (3.33)

leaving the lower right 2x2 submatrix arbitrary. The unitarity condition Ũ Ũ † = Ũ †Ũ = I can
be written in blocks implying that the 2x2 submatrix is also unitary and we can factor out a
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global phase factor such that its determinant is equal to one, enabling us to parameterize it
as an element of SU(2). Put together we get

Ũ =

(
c I2×2 0

0 A

)
, (3.34)

where c ∈ C, |c| = 1 and A ∈ SU(2). Consequently

U =


1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1



c 0 0 0
0 c 0 0
0 0 a b
0 0 −b̄ ā




1 0 0 0
0 1√

2
1√
2

0

0 − 1√
2

1√
2

0

0 0 0 1

 , (3.35)

where a, b, c ∈ C, |c| = 1 and |a|2 + |b|2 = 1.

For U given by (3.35) to be synchronising two additional conditions need to be imposed,
namely that

a 6= c, (3.36)

a 6= ±1. (3.37)

As the proof is analogous to the one presented below when discussing the case II.e), we skip
it here.

e) α = γ = 0 and β = δ 6= 0

This case can be solved similarly to the previous one. We only make a small change switching
the second element of the new basis (3.27) for the third one (3.28) and multiplying the latter
by minus one, that is taking (e1,−e3, e2, e4), with e1, e2, e3, e4 given by equations (3.26) to
(3.29), to be the new basis. The result in a familiar form U = T ŨT † reads

U =


1 0 0 0
0 1√

2
1√
2

0

0 − 1√
2

1√
2

0

0 0 0 1



a b 0 0
−b̄ ā 0 0
0 0 c 0
0 0 0 c




1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1

 (3.38)

where again a, b, c ∈ C, |c| = 1 and |a|2 + |b|2 = 1.

To see if our candidate for U leads to a synchronising map, assume a general attractor X ′ ∈
XE1−E2 parameterized by α′, β′, γ′, δ′ ∈ C as follows

X ′ = α′ |11〉〈12|+ β′ |21〉〈22|+ γ′ |11〉〈21|+ δ′ |12〉〈22| . (3.39)

In our new basis it can be expressed using X̃ ′ = T †XT , resulting in

X̃ ′ =


0 1√

2
(α′ − γ′) 1√

2
(α′ + γ′) 0

0 0 0 1√
2
(δ′ − β′)

0 0 0 1√
2
(δ′ + β′)

0 0 0 0

 . (3.40)
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As X̃ is assumed to be an attractor,
[
Ũ , X̃ ′

]
=
[
Ũ †, X̃ ′

]
= 0 holds. Written explicitly in the

chosen parameterization and comparing matrix elements it gives the following set of equations.

c(δ′ − β′) = ā(δ′ − β′) (3.41)
0 = b(δ′ − β′) (3.42)

c(α′ + γ′) = a(γ′ + α′) (3.43)
ā(α′ − γ′) = a(α′ − γ′) (3.44)

0 = b̄(α′ − γ′) (3.45)
0 = b(α′ + γ′) (3.46)

The first two comprise conditions on β′ and δ′. It follows directly from (3.42) that b 6= 0
implies β′ = δ′ and from (3.41) that also c 6= ā implies β′ = δ′. If on the contrary c = ā
held it would imply b = 0 since |a|2 + |b|2 = |c| = 1, meaning that if c 6= ā is not satisfied,
nor is b 6= 0. Furthermore, b 6= 0 implies c 6= ā, leaving (3.42) redundant, all the information
is contained in (3.41). The remaining equations impose no constraints on parameters β′, δ′.
Consequently, for c = ā the operator U does not enforce synchronisation condition on X ′.
Hence the requirement

c 6= ā (3.47)

is necessary for U to be synchronising. It is, however, not sufficient. Assume (3.47) holds.
It follows β′ = δ′ and the synchronisation condition we want to be enforced on X ′ by the
commutation relations

[
Ũ , X̃ ′

]
=
[
Ũ †, X̃ ′

]
= 0 reduces to α′ = γ′. From (3.45) and (3.46)

it follows that b 6= 0 implies α′ = γ′ = 0 and from the equation (3.44) that a 6= ā implies
α′ = γ′. In these cases the synchronisation condition is enforced. If on the contrary b = 0 and
a = ā (if and only if a = ±1), the equations (3.44), (3.45), (3.46) vanish and (3.43), (3.47)
imply α′ = −γ′, contradicting the synchronisation condition. To achieve synchronisation the
requirement

a 6= ±1 (3.48)

is necessary and together with (3.47) also sufficient.

To sum up, the operator U of the form (3.38) generates a synchronising map if and only if
c 6= ā and a 6= ±1.

III. Three non-zero coefficients:

Remarkably, choosing any three of the coefficients non-zero and one equal to zero, the com-
mutation relations (3.17) simply lead to

uij = 0 for i 6= j, (3.49)

u11 = u22 = u33 = u44, (3.50)

so that the only unitary matrices U such that both U and U † commute with X are multiples
of identity,
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U = I. (3.51)

Since the identity operator commutes with any other operator, the commutation relation
[X ′, I] = 0 trivially holds for any X ′ ∈ XE1−E2 and there are no constraints for X ′. This case
provides us with no synchronising operators U .

IV. Four non-zero coefficients:

The attractor X takes the form

X =


0 α γ 0
0 0 0 δ
0 0 0 β
0 0 0 0

 (3.52)

with α, β, γ, δ 6= 0. Looking for submatrices with nonzero determinant in the upper right
corner of X we see immediately that rankX = 2. Thus, to simlify evaluation of the commu-
tation relations we introduce a new basis (e1, e2, e3, e4) such that e1, e2 ∈ KerX, spanning the
two-dimensional kernel, and e3, e4 ∈ (e1, e2)⊥. Let

e1 = |11〉 , (3.53)

e2 = γ |12〉 − α |21〉 , (3.54)

e3 = ᾱ |12〉+ γ̄ |21〉 , (3.55)

e4 = |22〉 , (3.56)

and without loss of generality the parameters α, γ are supposed to satisfy a normalization
condition |α|2 + |γ|2 = 1. This only impacts rescalling of the attractor X and is thus irrelevant
for the result. The reason behind is that at the same time the normalization ensures that the
new basis is orthonormal, the transition matrix

T =


1 0 0 0
0 γ ᾱ 0
0 −α γ̄ 0
0 0 0 1

 (3.57)

is unitary and it holds Xe3 = e1, with no additional numerical prefactor, which further
simplifies the form of X in the new basis. For the remaining basis element e4 = |22〉, which
comes from the original computational basis in order not to unnecessarily make the transition
matrix T more complicated, we have Xe4 = δ |12〉+ β |21〉. Clearly Xe4 ∈ span(e2, e3), a fact
that can be used to define two new parameters s, r ∈ C via

Xe4 = se2 + re3 (3.58)

to take over the role of the parameters β = −sα + rγ̄ and δ = sγ + rᾱ. This change of
parameterization merely helps structurize the disscusion below in simpler terms. The attractor
X in the new basis reads



CHAPTER 3. TWO-QUBIT SYSTEM 26

X̃ =


0 0 1 0
0 0 0 s
0 0 0 r
0 0 0 0

 (3.59)

and the partial trace condition of synchronisation (3.16) takes the form

(1− s)α− rᾱ = (1 + s)γ − rγ̄. (3.60)

This way we only need to examine the dependence on two parameters s and r while the other
two, α and γ, keep their role of defining a unitary change of basis (3.57). Again, the result
will be of the form U = TŨT †. In the folllowing we explore all possible situations one can meet.

a) s 6= 0

Rewriting both matrices X̃ and Ũ in a block form

X̃ =

(
0 S
0 R

)
, Ũ =

(
A B
C D

)
, (3.61)

introducing 2x2 matrices A,B,C,D, S,R ∈ C2x2, the commutation relations (3.17) imply
SC = 0 = SB†. Hence C = B = 0 and the block-diagonal form of Ũ further simplifies the
commutaion relations into SD = AS and TD = DT . Note the same constraint holds for
A†, D† as well. Comparing matrix elements of the former, denoting A = (aij), D = (dij), we
obtain

a11 = d11, (3.62)

a22 = d22, (3.63)

d12 = sa12, (3.64)

d21 =
1

s
a21, (3.65)

s̄ =
1

s
=⇒ |s| = 1. (3.66)

If furthermore r 6= 0, by comparing matrix elements of the latter we get

d12 = d21 = 0 =⇒ a12 = a21 = 0, (3.67)

d11 = d22, (3.68)

and thus the only solutions for Ũ and consequently for U are multiplies of identity. The conse-
quence heeded we set r = 0 and since the matrices A and D are unitary we can parameterize
them up to a phase prefactor as elements of SU(2). From (3.60) and (3.66) it follows that

ᾱ

γ̄
= −α

γ
, (3.69)

consequence of which is that the difference in phase between α and γ is ±i, and further that

s =
α− γ
α+ γ

. (3.70)
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Note that the seemingly problematic cases α = γ, implying s = 0, and α = −γ, for which
neither the equation (3.70) is defined nor the synchronisation condition (3.60) is satisfied un-
less s = 0, are excluded due to the consequence of (3.69). This reflects the fact that setting
s = r = 0 is equivalent to e4 ∈ KerX and β = δ = 0, the situation discussed in II.d).

Together with the normalization condition |α|2 + |γ|2 = 1, (3.69) and (3.70) show that the
choice of the parameter α determines two non-equivalent pairs (γ, s), the two possibilities
stemming from the two possible phase differences between α and γ, non-equivalent in the
sense that they correspond each to a different attractor X. Hence there exist two distinct
classes of unitaries U ,

U =


1 0 0 0
0 γ ᾱ 0
0 −α γ̄ 0
0 0 0 1




a s̄b 0 0
−sb̄ ā 0 0

0 0 a b
0 0 −b̄ ā




1 0 0 0
0 γ̄ −ᾱ 0
0 α γ 0
0 0 0 1

 , (3.71)

given by parameters a, b, α, γ, s ∈ C, |a|2 + |b|2 = 1, 0 < |α|2 < 1,

γ = ±iα

√
1− |α|2

|α|
, (3.72)

s = 2|α|2 − 1∓ i
(

2|α|
√

1− |α|2
)
, (3.73)

that commute each with the corresponding non-trivial attractor X of the form

X =


0 α γ 0
0 0 0 sγ
0 0 0 −sα
0 0 0 0

 . (3.74)

Not apparent at first sight, the parameter s runs around the entire unit circle except for the
points ±1 and it holds

|α|2 =
(s+ 1)2

4s
. (3.75)

Due to (3.72), (3.73), the attractor X is entirely determined by a single parameter α, taking
into account the choice of the class of unitaries U , i. e. the choice of ± in (3.72), (3.73).

One can multiply the matrices in (3.71) to see that the phase of α can be included in the pa-
rameter b, whether b 6= 0 or not, without affecting the attractor X, as can be seen e. g. from
the fact that the attractor X itself scales by α. We could therefore choose α ∈ R, α ∈ (0, 1),
removing a small redundancy in our description.

In order to determine whether the operators U of the form (3.71) truly lead to synchronisation
we once again parameterize X ′ ∈ XE1−E2 as in (3.39). In the new basis X̃ ′ reads

X̃ ′ =


0 γα′ − αγ′ ᾱα′ + γ̄γ′ 0
0 0 0 γ̄δ′ − ᾱβ′
0 0 0 αδ′ + γβ′

0 0 0 0

 . (3.76)
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The commutation relations (3.17), which now take the form
[
X̃ ′, Ũ

]
=
[
X̃ ′, Ũ †

]
= 0, give rise

to the following set of equations

0 = −sb̄(γα′ − αγ′), (3.77)
a(γα′ − αγ′) = ā(γα′ − αγ′), (3.78)
s̄b(γ̄δ′ − ᾱβ′) = b(ᾱα′ + γ̄γ′), (3.79)
sb̄(ᾱα′ + γ̄γ′) = −b̄(γ̄δ − ᾱβ′), (3.80)

0 = −b̄(αδ′ + γβ′), (3.81)
a(αδ′ + γβ′) = ā(αδ′ + γβ′). (3.82)

Let us first assume the case b 6= 0. It follows from (3.77) that

γ′ =
γ

α
α′ (3.83)

and from (3.81) that

δ′ = −γ
α
β′. (3.84)

Inserting these results into (3.79) yields

α′ = −s̄β′. (3.85)

The fact that the synchronisation condition α′ + β′ = γ′ + δ′ holds follows, using the inverse
of relation (3.70). This shows that

b 6= 0 (3.86)

is a sufficient condition for U to be synchronising.

On the other hand, consider the case b = 0. If also a = ā, U is a multiple of identity and
as such does not enforce synchronisation. Assume therefore a 6= ā. The equations (3.78) and
(3.82) are the only non-trivial remaining constraints and they retrieve the results (3.83) and
(3.84) respectively. The commutation relations between U and X ′ as well as between U † and
X ′ are hereby satisfied. However, equation (3.85) is not enforced in this case and consequently
the synchronisation condition does not hold. For example, α′ = β′ 6= 0 results in an attractor
X ′ commuting with U and not satisfying the synchronisation condition as

α′ + β′ = 2α′ 6= 0 (3.87)

does not equal

γ′ + δ′ =
γ

α
(α′ − β′) = 0, (3.88)

where we used equations (3.83) and (3.84). This proves that U of the form (3.71) is synchro-
nising if and only if b 6= 0.

b) r 6= 0
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We have already demonstrated that if both s and r are non-zero, the only commuting unitary
operators U are multiples of identity. Therefore we assume s = 0 further on. This case is
solved analogously to the previous one. Using the block-matrix form (3.61) one immediately
arrives at C = B† = 0 and from the relations SD = AS and RD = DR gets

α11 = d11 = d22, (3.89)

a12 = a21 = d12 = d21 = 0. (3.90)

Hence, U simlifies into the form

U =


1 0 0 0
0 γ ᾱ 0
0 −α γ̄ 0
0 0 0 1




1 0 0 0
0 a 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 γ̄ −ᾱ 0
0 α γ 0
0 0 0 1

 (3.91)

where |a| = 1. For the parameter r it holds

r =
α− γ
ᾱ− γ̄

for α 6= γ (3.92)

and r can be arbitrary for α = γ. Note α = γ implies β = δ due to (3.58). In the case α = γ,
r arbitrary, the parameter r does not affect the operator U nor the transition matrix T , it
merely parameterizes attractors X which are given by the parameters α and r. We use the
plural here as different values of parameter r correspond to different attractors X. In the case
α 6= γ, the attractor is fully determined by the parameters α, γ.

The operator U of the form (3.91), however, does not lead to a synchronising map for α 6= γ,
section 3.3 gives a counterexample, and it reduces to an already discovered form (3.38) for
α = γ.

c) s = r = 0

By the definition of s and r, see equation (3.58), this is equivalent to e4 ∈ KerX and β = δ = 0.
The case was already discussed.

3.2 Two-qubit total synchronisation

In this part we investigate continuous quantum Markovian dynamical semigroups with a gen-
erator of the form (3.1) which enforce asymptotical total synchronisation of two qubits for
an arbitrary initial state. As this requirement is stronger than that of synchronisation, it is
sufficient to inspect the unitaries U found in section 3.1 to pick out those that lead to total
synchronisation. We proceed with assuming a general stationary attractor Xst ∈ X0 given by

Xst = A |11〉〈11|+B |22〉〈22|+ C |12〉〈12|+D |21〉〈21|+ E |12〉〈21|+ F |21〉〈12| (3.93)

parameterized by six variables A,B,C,D,E, F ∈ C. The condition of total synchronisation
(2.6) reduces to

C = D. (3.94)
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We now require that for a given operator U the commutation relations (3.17) impose the
condition of total synchronisation (3.94) on Xst. As we only consider operators synchronising
the dynamical part of asymptotic evolution, the result will be a total synchronisation of the
entire system. To discuss are the cases II.d), II.e) and IV.a) from section 3.1. We will stick
to the notation used.

The first two can be solved in a similar fashion and therefore only the case II.d) is presented
in detail. Using the same change of basis as introduced in the respective part of section 3.1,
the attractor Xst in the new basis reads

X̃st =


A 0 0 0
0 1

2(C +D + E + F ) 1
2(−C +D + E − F ) 0

0 1
2(−C +D − E + F ) 1

2(C +D − E − F ) 0
0 0 0 B

 . (3.95)

Given operator U of the form (3.35), the commutation relations (3.17) written explicitly in
the new basis give rise to a set of equations

c(C −D − E + F ) = a(C −D − E + F ), (3.96)
0 = b(C −D − E + F ), (3.97)

a(C −D + E − F ) = c(C −D + E − F ), (3.98)
2bB = b(C +D − E − F ), (3.99)

b̄(C −D + E − F ) = 0, (3.100)
b̄(C +D − E − F ) = 2b̄B. (3.101)

Since a 6= c and c 6= 0, equations (3.96) and (3.98) imply

C −D − E + F = 0, (3.102)

C −D + E − F = 0, (3.103)

which combined together gives C−D = 0, so that the condition (3.94) is always satisfied. We
find out that the whole class of unitary operators U (3.35), originally designed to synchronise
the two subsystems, actually enforces total synchronisation.
The same holds for the oprators U given by (3.38), found in II.e). The proof is analogous to
the previous one and as such is not presented here.

For the case IVa) we consider U of the form (3.71). The stationary part of attractor Xst in
the respective basis reads

X̃st =


A 0 0 0

0 |γ|2C + |α|2D − αγ̄E − ᾱγF ᾱγ̄C − ᾱγ̄D + γ̄2E − ᾱ2F 0

0 αγC − αγD − α2E + γ2F |α|2C + |γ|2D + αγ̄E + ᾱγF 0
0 0 0 B

 (3.104)

and the commutation relations (3.17) yield the following set of equations
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|γ|2C + |α|2D − αγ̄E − ᾱγF = A, (3.105)

ᾱγ̄C − ᾱγ̄D + γ̄2E − ᾱ2F = 0, (3.106)

αγC − αγD − α2E + γ2F = 0, (3.107)

|α|2C + |γ|2D + αγ̄E + ᾱγF = B. (3.108)

We can express the difference C −D from (3.106) and (3.107) to obtain

C −D =
γ̄

ᾱ
E − ᾱ

γ̄
F, (3.109)

C −D =
γ

α
F − α

γ
E, (3.110)

equations which in general admit non-trivial solutions (two linear equations for four variables).
Summed together after some manipulations using (3.69) and (3.72) yield

C −D =
α

2γ

1− 2|α|2

|α|2
(E − F ). (3.111)

Consequently, for

|α| = 1√
2

=⇒ γ = ±iα, s = ∓i (3.112)

the condition (3.94) is satisfied and U leads to total synchronisation.

To show that this condition is not only sufficient, but also necessary, a simple counterexample
can be given. Let |α| 6= 1√

2
which immediately implies |α| 6= |γ| due to imposed normalization,

and simplify by choosing E = −F . The equations (3.106), (3.107) merge into

C −D = −
(
α

γ
+
γ

α

)
E, (3.113)

which can be solved for E 6= 0 implying C − D 6= 0. Moreover, (3.105) and (3.108) can be
seen as only introducing new variables A and B respectively, hence they trivially hold. A
non-zero attractor Xst not satisfying the condition (3.94) exists. The operator U leads to
total synchronisation if and only if |α| = 1√

2
. With this condition we can write

U =


1 0 0 0
0 ±iα ᾱ 0
0 −α ∓iᾱ 0
0 0 0 1




a ±ib 0 0
±ib̄ ā 0 0
0 0 a b
0 0 −b̄ ā




1 0 0 0
0 ∓iᾱ −ᾱ 0
0 α ±iα 0
0 0 0 1

 (3.114)

where |α| = 1√
2
, |a|2 + |b|2 = 1 and b 6= 0.

This can be simplified as mentioned before, noticing that the phase of α plays no role in the
form of the resulting attractor X and can be included in the parameter b when matrices in
(3.114) are multiplied, meaning we can choose α ∈ R. Thus the result
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U =


1 0 0 0
0 ±i 1√

2
1√
2

0

0 − 1√
2
∓i 1√

2
0

0 0 0 1




a ±ib 0 0
±ib̄ ā 0 0
0 0 a b
0 0 −b̄ ā




1 0 0 0
0 ∓i 1√

2
− 1√

2
0

0 1√
2
±i 1√

2
0

0 0 0 1

 (3.115)

where |a|2 + |b|2 = 1 and b 6= 0.

3.3 Two-qubit antisynchronisation

The derivation in section 3.1 can easily be modified to achieve antisynchronisation in the sense
of definition 2.1.3. We impose antisynchronisation condition (2.10), which in our parameteri-
zation reads

α+ β + γ + δ = 0. (3.116)

The calculation itself can be done in a similar fashion with following minor changes. In II.b)
δ → −δ, in II.c) γ → −γ and in IV.b) r = α−γ

ᾱ−γ̄ → r = α+γ
−ᾱ−γ̄ as a result of γ → −γ, δ → −δ,

leave the rest of the calculation and the resulting form of the operator U unchanged, confirm-
ing the fact that those candidates for U are not maps that would lead to synchronisation, nor
antisynchronisation.

In II.d) γ → −γ, we can make a slight modification in the definition of new basis (reasoning
is the same, we want to simplify X̃) by replacing e2 = 1√

2
(|12〉 + |21〉), e3 = 1√

2
(|21〉 − |12〉)

with e2 = 1√
2
(|12〉 − |21〉), e3 = 1√

2
(|21〉 + |12〉), effectively changing T → T †, to achieve the

very same form of the attractor X̃, the rest follows. Same approach works for II.e) with the
modification of the result again being merely T → T †,

U II.das =


1 0 0 0
0 1√

2
1√
2

0

0 − 1√
2

1√
2

0

0 0 0 1



c 0 0 0
0 c 0 0
0 0 a b
0 0 −b̄ ā




1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1

 (3.117)

where a, b, c ∈ C, |c| = 1, |a|2 + |b|2 = 1, a 6= c and a 6= ±1. Analogously

U II.eas =


1 0 0 0
0 1√

2
− 1√

2
0

0 1√
2

1√
2

0

0 0 0 1



a b 0 0
−b̄ ā 0 0
0 0 c 0
0 0 0 c




1 0 0 0
0 1√

2
1√
2

0

0 − 1√
2

1√
2

0

0 0 0 1

 , (3.118)

where a, b, c ∈ C, |c| = 1, |a|2 + |b|2 = 1, ā 6= c and a 6= ±1.

For IV.a) the change becomes s→ s̄,
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U IV.aas =


1 0 0 0
0 γ ᾱ 0
0 −α γ̄ 0
0 0 0 1




a sb 0 0
−s̄b̄ ā 0 0

0 0 a b
0 0 −b̄ ā




1 0 0 0
0 γ̄ −ᾱ 0
0 α γ 0
0 0 0 1

 , (3.119)

where |a|2 + |b|2 = 1, b 6= 0, 0 < |α|2 < 1, equations (3.72) and (3.73) hold and we can again
choose α ∈ R to remove redundancy.

All the other remaining cases are analogous as well, leading only to trivial results.

3.4 Two-qubit total antisynchronisation

Using the results of sections 3.3 and section 3.2, we arrive at the generators of totally an-
tisynchronising maps. Starting from antisynchronising maps obtained in section 3.3, we are
once again only concerned with the condition of total antisynchronisation (2.11) applied to
the stationary part. This constraint happens to coincide with the condition of total synchro-
nisation (2.6) applied to the stationary part, which is expressed by the equation (3.94) in the
parameterization (3.93). Consequently, we can exploit the close similarity between the forms
of synchronising and antisynchronising maps and follow the derivation of section 3.2. The
reader is welcomed to easily verify that the calculations remain unaffected up to an occasional
change of sign if we exchange synchronising for antisynchronising maps.
Hence the antisychronising generating unitaries U given by (3.117) and (3.118) also enforce
total antisynchronisation, and the unitary U given by (3.119) generates a totally antisynchro-
nising map if and only if |α| = 1√

2
, implying γ = ±iα, s = ∓i, or explicitly

U =


1 0 0 0
0 ±i 1√

2
1√
2

0

0 − 1√
2
∓i 1√

2
0

0 0 0 1




a ∓ib 0 0
∓ib̄ ā 0 0
0 0 a b
0 0 −b̄ ā




1 0 0 0
0 ∓i 1√

2
− 1√

2
0

0 1√
2
±i 1√

2
0

0 0 0 1

 , (3.120)

where |a|2 + |b|2 = 1 and b 6= 0.

3.5 Attractor spaces of synchronising maps on two qubits

Previously, we established three distinct classes of unitary Lindblad operators U that induced
total synchronisation of two qubits. We did, however, only partially discussed the correspond-
ing attractors, whereof the role is essential in determining asymptotic dynamics of the system.
Having a basis of the attractor space we can write the asymptotic evolution of an arbitrary
initial state via (1.11). Revealing the entire structure of the attractor spaces of the respective
maps is the subject of this section.

We will go through all the synchronising maps we found and describe all their attractors, con-
secutively considering elements of the subspacesXE1−E2 , XE2−E1 , X0, X2E1−2E2 andX2E2−2E1

of the respective attractor spaces. Reminding that attractors corresponding to different eigen-
values are mutually orthogonal, see (1.18), these subspaces are to be dealt with separately.
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Starting with the unitaries U of the form (3.38), earlier referred to as case II.e), we already
have some partial results. Let us first assume a 6= c, the case a = c will later be discussed
seperately. It was shown that the first dynamical part of the attractor Xd1 ∈ XE1−E2 has the
form

Xd1 =


0 0 0 0
0 0 0 β
0 0 0 β
0 0 0 0

 (3.121)

for β ∈ C. Consequently, the second dynamical part of the attractor Xd2 ∈ XE2−E1 , related
to the previous one by the operation of complex conjugation, has the form

Xd2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 η η 0

 (3.122)

for η ∈ C. The parameters β and η are unrelated, the complex conjugation is merely a
connection between the two subspaces XE1−E2 and XE2−E1 .
The attractors corresponding to the stationary part of the asymptotic state were already
discussed for a similar generating operator U given by (3.35), referred to as case II.d). Anal-
ogously, having parameterized Xst ∈ X0 again via (3.93), we arrive at the set of constraints

2bA = b(C +D − E − F ), (3.123)
−2b̄A = −b̄(C +D − E − F ), (3.124)

0 = b(C −D + E − F ), (3.125)
0 = −b̄(C −D − E + F ), (3.126)

ā(C −D + E − F ) = c(C −D + E − F ), (3.127)
ā(C −D − E + F ) = c(C −D − E + F ). (3.128)

Combining (3.127) and (3.128) we arrive at

C = D, (3.129)

E = F, (3.130)

making equations (3.125) and (3.126) trivial and equations (3.123) and (3.124) for b 6= 0
(consequently a 6= c) imply

A = C − E. (3.131)

Hence any stationary element of the attractor space has the form

Xst =


A 0 0 0
0 C E 0
0 E C 0
0 0 0 B

 (3.132)
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for A,B,C,E ∈ C, and in case b 6= 0, A = C−E is determined, otherwise A is a free parameter.

Lastly, assume possible attractors Xc1 ∈ X2E1−2E2 and Xc2 ∈ X2E2−2E1 , associated purely
with system correlations, with parameterization of the former given by

Xc1 = σ |11〉 〈22| (3.133)

for σ ∈ C. The commutation relations give rise to constraints

aσ = cσ, (3.134)

−b̄σ = 0, (3.135)

which result in

σ = 0 (3.136)

for every but the excluded case a = c (which implies b = 0). It follows that both Xc1 and Xc2

are trivial.

Put together, an element X of the attrator space of the synchronising map generated by U of
the form (3.38) has a general form

X =


A 0 0 0
0 C E β
0 E C β
0 η η B

 , (3.137)

where β, η,A,B,C,E ∈ C and in case b 6= 0 for the parameter of U in (3.38) it holds A = C−E.

Deliberately, we postpone the discussion of the special case a = c and first state the results
for the case of U given by (3.35), previously reffered to as II.d), which can be obtained by
the same reasoning as above. Keeping the notation and sticking to the computational basis,
assuming ā 6= c, the individual parts of the attractor space read

Xd1 =


0 α α 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (3.138)

Xd2 =


0 0 0 0
ζ 0 0 0
ζ 0 0 0
0 0 0 0

 , (3.139)

Xst =


A 0 0 0
0 C E 0
0 E C 0
0 0 0 B

 , (3.140)

Xc1 = Xc2 = 0, (3.141)
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where α, ζ, A,B,C,E ∈ C and B = C − E if b 6= 0 in the parameterization of U (3.35).

Together, an element X of the attractor space of the totally sychronising map generated by
U of the form (3.35) has a general form

X =


A α α 0
ζ C E 0
ζ E C 0
0 0 0 B

 , (3.142)

with parameters defined above.

To address the aforementioned special case, the situation a = c in (3.38) is of particular
interest. We already noted that U of the form (3.38) with the choice of a = c coincides with U
given by (3.91) with the choice of α = γ, the case excluded from otherwise not synchronising
maps (3.91). In addition it coincides with U of the form (3.35) with the choice of ā = c.
This can be seen from multiplying the matrices in the expressions mentioned. Such an operator
U can be parameterized by a single parameter c ∈ C, |c| = 1, c 6= ±1, as

U =


c 0 0 0
0 Re c iIm c 0
0 iIm c Re c 0
0 0 0 c

 (3.143)

and marks the overlap of the otherwise distinct classes of totally synchronising maps (3.35) and
(3.38). The discussion around (3.47), (3.44) and (3.43) in section 3.1 already revealed yet not
pointed out the noticeably more complex structure of the attractor space of the corresponding
generated map, needed for consistency and going hand in hand with the overlap. From the
equations (3.41), (3.44), (3.127), (3.128) together with the vanishing of (3.134), (3.135) and
all the remaining constraints it follows

Xd1 =


0 α α 0
0 0 0 β
0 0 0 β
0 0 0 0

 , (3.144)

Xd2 =


0 0 0 0
ζ 0 0 0
ζ 0 0 0
0 η η 0

 , (3.145)

Xst =


A 0 0 0
0 C E 0
0 E C 0
0 0 0 B

 , (3.146)

Xc1 =


0 0 0 σ
0 0 0 0
0 0 0 0
0 0 0 0

 , (3.147)
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Xc2 =


0 0 0 0
0 0 0 0
0 0 0 0
τ 0 0 0

 , (3.148)

where α, β, ζ, η, A,B,C,E, σ, τ ∈ C.

Combined, an element X of the attractor space of the totally synchronising map generated by
U given by (3.143) has a general form

X =


A α α σ
ζ C E β
ζ E C β
τ η η B

 , (3.149)

parameters defined above.

Once we finish the discussion below regarding the attractor space of the remaining class of
synchronising maps it will have been demonstrated that the operators U of the form (3.143)
are associated with the highest possible and exclusively achieved dimension of the attractor
space among all synchronising maps, as well as that they are the only ones preserving the
subspaces X2E1−2E2 and X2E2−2E1 . In a sense they can preserve the greatest piece of infor-
mation about the initial state. Indeed, in terms of attractors the resulting asymptotic state
is given by (1.11). Furthermore, to each linearly independent attractor one can associate one
linearly independent constant of motion, whereof expectation value remains unchanged along
all trajectories.

It is worth mentioning that for c = ±i the operator U in (3.143) reduces to

U = ±i


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (3.150)

which up to an irrelevant phase prefactor is the well-known and studied SWAP operator [6],
acting simply as the exchange of states on two qubits, i. e. |i〉 ⊗ |j〉 SWAP←−−−→ |j〉 ⊗ |i〉. In fact,
to show the connection to the SWAP operator we can rewrite (3.143) as

U = cos(φ)I + isin(φ)SWAP, (3.151)

where we parameterized c = cos(φ)+isin(φ) for φ ∈ R. This operator U is sometimes referred
to as a partial swap operator in the literature [18].
From the point of view of asymptotic dynamics, (3.143) constitues a certain generalisation
of the SWAP operator as it represents the maximal set of unitary Lindblad operators that
result in the same asymptotic behaviour as the SWAP operator in the studied type of evolution.

Last but not least we examinate in detail the attractor spaces of synchronising maps gener-
ated by operators U of the form (3.71). The dynamical part was already found and is given
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by (3.72), (3.73), (3.74). The stationary part is, in parameterisation (3.93), constrained by
equations (3.105) to (3.108). We distinguish between two cases.

Firstly, for totally synchronising maps it holds |α| = 1√
2
which implies γ = ±iα, s = ∓i. This

simplifies (3.74) into

Xd1 =


0 α ±iα 0
0 0 0 α
0 0 0 ±iα
0 0 0 0

 (3.152)

and the equations (3.105) to (3.108) into

C +D ± iE ∓ iF = 2A, (3.153)
C −D ∓ iE ∓ iF = 0, (3.154)
C −D ± iE ± iF = 0, (3.155)
C +D ∓ iE ± iF = 2B, (3.156)

implying after summation

C = D, (3.157)

E = −F, (3.158)

A = C ± iE, (3.159)

B = C ∓ iE. (3.160)

For Xc1 ∈ X2E1−2E2 in parameterisation (3.133) the commutation relations give rise to

aσ = āσ, (3.161)
−sb̄σ = 0, (3.162)
−b̄σ = 0, (3.163)

resulting in simple

σ = 0, (3.164)

since b 6= 0 was required for U to posses synchronising property. Put all together, an element
of the attractor space associated with the totally synchronising map generated by U of the
form (3.115) can be parameterised as

X =


C ± iE α ±iα 0

ζ C E α
∓iζ −E C ±iα

0 ζ ∓iζ C ∓ iE

 , (3.165)

where α, ζ, C,E ∈ C. We remind that ± and ∓ in the expression above correlate with the two
distinct classes of operators U in (3.115).
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Secondly, we discuss the synchronising but not totally synchronising maps generated by U of
the form (3.71), where |α| 6= 1√

2
. As mentioned before, the dynamical part Xd1 of an attractor

X is up to rescaling given by (3.74), (3.72), (3.73), i. e.

Xd1 =


0 α γ 0
0 0 0 sγ
0 0 0 −sα
0 0 0 0

 , (3.166)

where α, 0 < |α| < 1, is a parameter of the operator U in (3.71) and γ, s are determined by
α by the expressions (3.72), (3.73). Introducing a new parameter β ∈ C to account for the
possible scaling and to give a full parameterization we can write

Xd1 =


0 β ±iβ

√
1−|α|2
|α| 0

0 0 0 ±iβ
(

2|α|2 − 1
) √

1−|α|2
|α| + 2β

(
1− |α|2

)
0 0 0 β

(
1− 2|α|2

)
± 2iβ|α|

√
1− |α|2

0 0 0 0

 . (3.167)

For the stationary part Xst, the constraints (3.105) to (3.108) can be rewritten in a simpler
form, denoting

ω =

√
1− |α|2

|α|
. (3.168)

This results in

ω2C +D ± iω(E − F ) = (1 + ω2)A, (3.169)

∓iω(C −D)− ω2E − F = 0, (3.170)

±iω(C −D)− E − ω2F = 0, (3.171)

C + ω2D ∓ iω(E − F ) = (1 + ω2)B. (3.172)

The equations (3.170) and (3.171) can be summed together to yield

E = −F, (3.173)

simplifying themselves into

E =
±iω

1− ω2
(C −D), (3.174)

or equivalently

E = ∓i|α|
√

1− |α|2(C −D). (3.175)

We then insert these results into (3.169) and (3.172) to obtain
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A =
(

1− |α|2 ± 2|α|2 ∓ 2|α|4
)
C +

(
|α|2 ∓ 2|α|2 ± 2|α|4

)
D, (3.176)

B =
(
|α|2 ∓ 2|α|2 ± 2|α|4

)
C +

(
1− |α|2 ± 2|α|2 ∓ 2|α|4

)
D. (3.177)

The remaining parts Xc1, Xc2 are again trivially zero.

Hence, an element X of the attractor space associated with the synchronising map generated
by U of the form (3.71) has a general form

X =



(1−|α|2±2|α|2∓2|α|4)C
+(|α|2∓2|α|2±2|α|4)D

β ±iβ
√

1−|α|2

|α| 0

ζ C ∓i|α|
√

1−|α|2(C−D) ±iβ(2|α|2−1)

√
1−|α|2

|α|

+2β(1−|α|2)

∓iζ
√

1−|α|2

|α| ±i|α|
√

1−|α|2(C−D) D
β(1−2|α|2)±

2iβ|α|
√

1−|α|2

0 ∓iζ(2|α|2−1)

√
1−|α|2

|α|

+2ζ(1−|α|2)

ζ(1−2|α|2)∓

2iζ|α|
√

1−|α|2
(|α|2∓2|α|2±2|α|4)C+

(1−|α|2±2|α|2∓2|α|4)D


,

(3.178)
where β, ζ, C,D ∈ C and α, 0 < |α| < 1, |α| 6= 1√

2
, is a parameter of the operator U .

To sum up, we observe that the attractor space of a synchronising or totally synchronising
map generated by unitary Lindblad operators U given by (3.35), (3.38) or (3.71) is in general
four- to ten-dimensional, subject to several additional conditions, with these conditions and a
precise structure of the attractor space explicitly presented above.

Note: Due to the close similarity of the form of synchronising and antisynchronising maps,
one could follow the same scheme of calculations and with only minor changes obtain attractor
spaces of antisynchronising and totally antisynchronising maps as well.



Chapter 4

Properties of synchronising maps on
two qubits

In chapter 3 we found and described the generators of all possible evolution maps that enforce
(anti-)synchronisation or total (anti-)synchronisation of two qubits in the studied dynamics.
We further found their respective attractor spaces and provided their full parameterization.
This chapter is devoted to the study of their other properties.

4.1 Visibility

Synchronisation is mediated by the interaction of subsystems with their common environment.
Such an irreversible process is typically accompanied by decoherence and dephasing, i. e. with
information leak into the environment. Thus in this part we address the following question.
Once an initial state is synchronised by one of the evolution maps described in the previous
chapter, how visible and detectable the resulting time evolution of the individual qubit states
is? To what extend does the internal dynamics of qubits survive the process of synchronisation?

For a global two-qubit state ρ(t) ≡ (ρij)(t) ∈ B(H ⊗2
1 ) the reduced states ρA(t), ρB(t) ∈ B(H1)

read

ρA =

(
ρ11(t) + ρ22(t) ρ13(t) + ρ24(t)
ρ31(t) + ρ42(t) ρ33(t) + ρ44(t)

)
, (4.1)

ρB =

(
ρ11(t) + ρ33(t) ρ12(t) + ρ34(t)
ρ21(t) + ρ43(t) ρ22(t) + ρ44(t)

)
. (4.2)

A general density matrix ρ(t) ∈ B(H1) describing a state of a qubit has the form

ρ(t) =

(
x yeiEt

ȳe−iEt 1− x

)
, (4.3)

where y ∈ C, x,E ∈ R, and from the positivity of ρ(t) it holds |y| ≤
√
x− x2. In our case

E = E1 − E2 as given by the Hamiltonian (3.2). In the asymptotics, the evolution is driven
by (1.11) and hence the coefficents x, y are determined by the projection of the initial state
on the generators of the attractor space.

41
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Remark: The asymptotic state and evolution are strongly dependent on initial conditions.
Seemingly, for a given synchronising map we could choose such an initial state that when
projected onto the attractor space, the part responsible for non-trivial asymptotic time evo-
lution vanishes. In such case the synchronisation mechanism kills the internal dynamics in
spite of the presence of an attractor associated with a non-zero eigenvalue in the attractor
space. This in inevitable since quantum evolution always has a fixed point. However, this
would require a very specific choice of the initial state as it would have to lie in the orthogonal
complement of the mentioned attractor in the space of all operators on the system Hilbert
space. This orthogonal complement is a set of codimension at least one (there might exist
more independent such attractors) and will consequently constitute a set of measure zero in
the space of all states. We can conclude that a synchronising map enforces synchronisation
with non-trivial asymptotic evolution for almost every initial condition.

The question remains how perceptible this asymptotic evolution will be. To extract the infor-
mation about the time evolution we can calculate the expectation value 〈σ1〉 (t) = Tr

{
ρ†(t)σ1

}
of the observable

σ1 =

(
0 1
1 0

)
, (4.4)

proportional to the spin operator in the first axis for a spin-1
2 particle. After manipulation

〈σ1〉 (t) = |y| cos(Et+ φ), (4.5)

where φ ∈ R accounts for the phase of y. Equivalently, we could express the probabilities
p1 = Tr{ρ(t)M1}, p2 = Tr{ρ(t)M2} of the corresponding projective measurements M1 =
1
2(|1〉+ |2〉)(〈1|+ 〈2|) and M2 = 1

2(|1〉 − |2〉)(|1〉 − |2〉). It holds

p1(t) =
1

2
{1 + 2|y| cos(Et+ φ)} , (4.6)

p1(t) =
1

2
{1− 2|y| cos(Et+ φ)} , (4.7)

(p1 − p2) (t) = 2|y| cos(Et+ φ). (4.8)

Therefore, the visibility of the time evolution in the asymptotics is scaled with |y|, the absolute
value of the off-diagonal parameter y. The greater the |y|, the bigger the amplitude in (4.5)
and the easier it is to distinguish ρ(t) from a stationary state.

We will now compare the attractor spaces of synchronising maps described in section 3.5, as
they limit the possible asymptotic states, to see if the choice of the evolution map in general
affects how well the internal dynamics is preserved. Our aim is to study visibility indepen-
dently of the initial conditions, despite the fact that they play a crucial role in determining the
asymptotic state and hence a very few conclusions may be drawn without specifying them.
It will be shown that in some cases the evolution map may actually limit or suppress the
visibility of the time evolution of the resulting synchronised asymptotic states, irrespective of
the initial conditions.
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If we keep the parameterizations (3.14), (3.93) for the dynamical and the stationary part of
an element X of the attractor space and assume X is a state, then its reduced states are of
the form (4.3) with

x = A+ C or x = A+D, (4.9)

y = α+ β, (4.10)

and additional conditions for A,C,D, α, β may apply. Note that the other parameters appear-
ing in the parameterization of attractor spaces in section 3.5 are given by the synchronisation
condition and requirement on X to be a state.

Regardless of the particular synchronising map, the constraints on the stationary part yield
effectively no limitations on the value of parameter x. It varies dependently on the initial
conditions. For all totally synchronising maps, described in section 3.2, the parameters α
and β determining y are either independent, as is the case for generating operators U of the
form (3.35), (3.38), or linearly dependent for (3.115) where β = ±iα. They are simply coeffi-
cients specified by the initial condition and its projection onto the attractor space. As such the
evolution map does not in general put any limitations on the value of the visibility parameter y.

We conclude that all totally synchronising maps show the same visibility of the asymptotic
evolution.

On the other hand, for the synchronising maps generated by U given by (3.71), the form of the
attractor (3.167), (3.178) results in the value of y depending not only on the initial conditions,
but also on a parameter of U itself. It holds

y ∝ 2|α|
√

1− |α|2, (4.11)

where α is a parameter of U in (3.71). Remember α may be chosen real. At the same time,
varying |α| does not change the norm of the attractor (3.167) onto which the initial state is
projected. We can plot the factor above as a function of |α|.
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Figure 4.1: Plot of the proportional factor 2|α|
√

1− |α|2 of the off-diagonal parameter y in
the parameterization (4.3) of the asymptotic reduced states for synchronising maps generated
by U given by (3.71), characterizing the asymptotic states time evolution visibility.

We can see that in case of Lindblad operators U with |α| close to 0 or 1 the asymptotic dy-
namics will be strongly suppressed. The asymptotic reduced states will resemble stationary
ones, irrespective of the initial conditions. On the contrary, the plotted function reaches its
maximum for |α| = 1√

2
when the map generated by U becomes totally synchronising. From

this point of view it appears that the total synchronisation results in, perhaps counterintu-
itively, better visibility than the less restrictive synchronisation.

Expectedly, analogous results can be obtained for antisychronising and totally antisynchronis-
ing maps from sections 3.3 and 3.4. Again, in the case of the totally antisynchronising maps
visibility is determined solely by the initial conditions. Antisynchronising maps with U given
by (3.119) behave exactly as their synchronising counterparts (3.71), with the visibility of the
asymptotic time evolution being limited by the proportional factor (4.11) depending on the
parameter |α| of U in (3.119), as visualised in the figure 4.1.

4.2 Global symmetry of synchronised states

The total synchronisation mechanism makes both qubits locally indistinguishable. But does
it mean that the two become indistinguishable from a global point of view as well? It turns
out to depend on the particular synchronising mechanism.

Indistinguishability of a bipartite quantum state means that at any time of its evolution it is
described by a permutationally state. Consequently, no measurement can discern the order of
the subsystems. By permutation invariance we mean that the global state is invariant with
respect to the exchange of the two qubits.
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For a map to enforce asymptotic permutation invariance for arbitrary initial conditions, any
state lying in its attractor space need be permutation invariant. Formally an attractor X ∈
B(H ⊗2

1 ) is permutation invariant if it is invariant with respect to conjugation by the SWAP
operator, denoted here as Π = Π† = Π−1 = |11〉 〈11|+ |12〉 〈21|+ |21〉 〈12|+ |22〉 〈22|,

X = ΠX Π−1. (4.12)

Denoting (Xij) ≡ X, this condition simplifies into

X12 = X21, (4.13)
X34 = X24, (4.14)
X22 = X33, (4.15)
X23 = X32, (4.16)

(4.17)

or equivalently, in the parameterization (3.14), (3.93) previously used, into

α = γ, (4.18)
β = δ, (4.19)
C = D, (4.20)
E = F. (4.21)

We do not explicitly state the condition of permutation invariance (4.12) for the dynamical part
of the attractor X lying in the subspace XE2−E1 , related to the subspace XE1−E2 by complex
conjugation, as it is satisfied if and only if the conditions (4.13), (4.14), or equivalently (4.18),
(4.19), are.
Having fully described the attractor spaces of all synchronising maps in section 3.5, we can
directly conjugate a general element X of each of them by Π to see whether (4.12) holds.

Firstly, the equations (4.18), (4.19) together give the synchronisation condition (3.16) which
contradicts the antisynchronisation one (3.116), unless the reduced states of the attractor X
in question are stationary. Consequently, no antisynchronising map is compatible with per-
mutation invariance of the asymptotic state, as is to be expected.

Moving to the synchronising maps, consider a map generated by U given (3.71), including its
special case of a totally synchronising map (3.115). An element X of its attractor space has
the form (3.178) or (3.165) respectively, that violates (4.13), (4.14) and (4.16) unless all coeffi-
cients involved are zero, which is the case of X stationary with an additional restriction. That
would also require very specific initial condition. In general, any non-stationary asymptotic
state of an evolution map generated by U of the form (3.71), including (3.115), is guaranteed
not to be permutation invariant.

On the other hand, in case of a totally synchronising map generated by U of the form (3.35),
(3.38), including the overlap of this two classes represented by the partial swap operator
(3.143), an arbitrary element X of the corresponding attractor space has the form (3.142),
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(3.137) or (3.149) respectively, which always satisfies (4.12). For arbitrary initial conditions
the resulting asymptotic state is permutation invariant.

We can sumarize these observations. A non-stationary asymptotic two-qubit state is permu-
tation invariant if and only if the evolution map is generated by U of the form (3.35), (3.38),
including the partial swap operator (3.143). The reduced one-qubit states of a global non-
stationary permutation invariant states are totally synchronised, however, the global state of
totally synchronised one-qubit reduced states does not need to be permutation invariant.

4.3 Algebraic structure of synchronising mechanisms

Each of the classes of the unitary Lindblad operators U generating (anti-)synchronising maps
described in chapter 3 resemble a group structure. In a sense the operators U form robust
structures preserving the asymptotic dynamics under perturbations and operator composition
within the respective class. Furthermore, nearly a group structure offers a possibility to study
corresponding generators (algebras), which might provide an additional insight into the mech-
anism of synchronisation.

Firstly, take a look at U given by (3.35). In this case U has a block diagonal structure (3.34)
with a phase multiplied identity c I2×2 and a special unitary matrix A ∈ SU(2), conjugated
by a special unitary matrix T ∈ SU(4) which accounts for a change of basis between the
computational basis and another orthonormal basis given by T . Furthermore, all the operators
U correspond to the same attractor space (with the only exception being an overlap (3.143)
with the class of operators U given (3.38), a set of measure zero withing U given by (3.35), in
which case the resulting attractor space is a union of the two attractor spaces). As such, they
generate the same asymptotic dynamics, irrespective of the particular choice of U within the
class. If we reintroduce the identity operator, then the unitaries U given by (3.35) form a group
structure with respect to map composition (matrix multiplication), up to a set of measure zero
given by the additional condition c 6= a in the parameterization. The condition is necessary for
U to enforce synchronisation, not however for U to commute with the elements of the attractor
space. For a given phase c multiplying the identity operator I in the block form, it excludes
only a single element of the SU(2) group. This is roughly a structure of SU(2) × U(1), or
U(2). Note the limiting condition is not necessarily preserved under composition.
Nonetheless, it holds that for a given U of the form (3.35), U † is also of the form (3.35), and
for almost every two U1,U2 given by (3.35), U1 U2 is also of the form (3.35). As such, U , U †

and U1U2, for almost all U1,U2 of the same class, lead to the very same asymptotic dynamics.

The same can be said about the unitaries U of the form (3.38). The reasoning is, just as
the form, analogous to the previous case. Consequently, it holds for the overlap of the two
classes, resulting in the partial SWAP operator (3.143), that such unitaries U roughly form a
structure of U(1).

Secondly, consider U given by (3.71). The parameter α, which can be chosen positive real and
in such case satisfies α ∈ (0, 1) ' R, determines the special unitary matrix T accounting for
a basis change, the parameter s in the parameterization of U and the form of the attractor
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X corresponding to the part of the attractor space responsible for non-stationary asymp-
totic evolution of the reduced states. Recall that there are two distinct classes of operators
U , generating maps with two distinct attractor spaces, associated with a single value of α,
distinguished only by the ± sign in (3.71) and corresponding parameterizations of elements
of the attractor spaces. With α fixed, there are two classes of Lindblad operators U of the
form (3.71), each corresponding to their respective attroctor space. They both have a block
diagonal form with two copies of a 2 × 2 special unitary matrix A, with the off-diagonal ele-
ments multiplied by the parameter s in one instance and a condition b 6= 0 required to enforce
synchronisation. This restriction excludes diagonal matrices and is again not preserved under
composition. Still approximately a structure of SU(2).
Just as in the previous case it holds that for U of the form (3.71) with α fixed, U † is also of
the form (3.71) with the same α, and for almost all U1,U2 given by (3.71) with α fixed, U1U2

is also of the form (3.71) with the same α. U , U † and U1U2, for almost all U1,U2 of the same
class, result in the very same asymptotic dynamics.
The coefficient α ∈ (0, 1) parameterizes a family of classes of unitary Lindblad operators with
the described properties.

Analogous results hold for antisynchronising maps.

4.4 Synchronisation with more than one Lindblad operator

Up to now we have studied synchronisation mechanisms generated by an evolution generator
L with a single unitary Lindblad operator U with weight 1, that is (3.1). However, the
obtained solutions allow us to address a more general problem, namely, which Lindbladians
of the type (1.17) with an arbitrary number of unitary Lindblad operators lead to evolution
(anti-)synchronising qubits.
It follows from the governing equation (1.11) and the theorem 1.5.1 that the asymptotic
evolution is determined by the projection of the initial state on the attractor space and that
the attractor space is in turn determined by the commutation relations with the Lindblad
operators (1.20). Hence for several Lindblad operators in the generator an attractor of the
evolution needs to commute with all of them. In other words, the resulting attractor space
is given by the intersection of the attractor spaces of the maps with generators (3.1) with
individual operators U apearing in (1.17).
We described several classes of the operators U leading to (anti-)synchronisation and discussed
their structure, discovering that the attractor space and consequently the asymptotic dynamics
is preserved within each of the classes. As a result, we can arbitrarily combine any number
of the operators U within the same class without affecting the asymptotic evolution, as they
satisfy the same commutation relations and result in the same attractor space. We can even
include any number of unitaries U of the same type which do not satisfy the respective
conditions needed to enforce (anti-)synchronisation, as they still commute with all elements
of the attractor space. From the construction, where we began with the attractor and found
all commuting unitaries to subsequently pick out the ones that enforce (anti-)synchronisation,
those are all unitary Lindblad operators we can include in the generator without making
changes to the asymptotic dynamics. Weights assigned to the individual operators do not
affect the resulting asymptotic evolution either. They determine merely the first stages of
evolution and convergence rate towards the asymptotic regime.
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If, on the other hand, operators U from two or more distinct classes are combined in the
generator, the evolution will always result in a stationary state, irrespective of the initial
conditions. This is due to the fact that in the subspace (in intersection with)XE1−E2 ⊂ B (H ),
responsible for the non-trivial asymptotic evolution of the reduced states, the intersection of
the attractor spaces associated with unitaries U from different classes is trivial.

4.5 Entanglement generation and destruction

Synchronisation is a form of correlation between the involved parties. It is natural to ask
whether during the evolution towards a synchronised state another form of correlation, such
as entanglement, arises. The connection between synchronisation and entanglement formation
has been tackled in the literature without much success, so far it remains an open question.
This section briefly addresses the relation between two-qubit (anti-)synchronisation mecha-
nisms and entanglement of the asymptotic states.

For quantification of the entanglement of two-qubit states we used concurrence, an explicitly
calculable entanglement monotone, monotonously related to the entanglement of formation
[27], [28]. The two concepts are defined as follows.

Given a pure state ρ = |ψ〉 〈ψ|, the entropy of entanglement E is defined as the entropy of
either subsystem

E(ρ) = −Tr(ρA log ρA) = −Tr(ρB log ρB). (4.22)

For a mixed state ρ the entanglement of formation is defined to be the average entropy of
entanglement of the pure states in a pure state decomposition, minimized over all possible
decompositions

E(ρ) = inf
∑
i

piE(ρi), (4.23)

where ρ =
∑

i piρi =
∑

i pi |ψi〉 〈ψi| stands for the pure state decomposition. It turns out that
for two-qubit states this quantity can be explicitly expressed and calculated.

For a pure state |ψ〉 the concurrence C is defined as

C(|ψ〉) =
∣∣∣〈ψ∣∣∣ψ̃〉∣∣∣, (4.24)

where ψ̃ stands for the result of applyting a spin-flop operation (σy ⊗ σy)
∣∣ψ̄〉, ∣∣ψ̄〉 being the

complex conjugation of |ψ〉 in the standard basis and

σy =

(
0 −i
i 0

)
. (4.25)

The concurrence of a mixed state ρ is defined to be the average concurrence of the pure states
in a pure state decomposition, minimized over all possible decompositions

C(ρ) = inf
∑
i

piC(ρi), (4.26)
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where ρ =
∑

i piρi =
∑

i pi |ψi〉 〈ψi| is a pure state decomposition of ρ. Remarkably, there
exists an explicit formula for the concurrence C. Denote ρ̃ the spin-fliped operator ρ

ρ̃ = (σy ⊗ σy)ρ̄(σy ⊗ σy), (4.27)

where ρ̄ stands for the complex conjugation of ρ in the standard basis. Then

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (4.28)

where λi are the square roots of eigenvalues of ρρ̃ in descending order1 .

Concurrence is related to the entanglement of formation via

E(C) = f

(
1 +
√

1− C2

2

)
, (4.29)

f(x) = −x log x− (1− x)log(1− x). (4.30)

The entanglement of formation E as a function of concurrence C is monotonous, hence the
concurrence is a suitable measure of entanglement and the quantifying of entanglement of two
qubits reduces to the problem of finding the eigenvalues of ρρ̃. We used this tool to study the
mechanisms of synchronisation.

Basically, one of the following options occurs during an evolution

a) An initially separable state remains separable throughout the evolution and in the asymp-
totics.
b) A separable state temporarily becomes entangled during the evolution yet results in a
separable state again.
c) A separable state becomes entangled.
d) An initially entangled state evolves towards a separable asymptotic state.
e) An entangled state remains entangled with the entanglement remaining the same according
to the chosen measure.
f) An entangled state remains entangled and the entanglement increases or decreases, possibly
nonmonotonously, according to the chosen measure.

Analytically, however, we were unable to obtain any conclusive results regarding for what
initial conditions does any of the (anti-)synchronising mechanisms enforce one of the cases
described above. The concurrence of the asymptotic state is strongly dependent on initial
conditions in a manner theoretically simple yet practically too complicated to draw any con-
clusions.
In numerical simulations, we witnessed all possible scenarios for each of the classes of
(anti-)synchronisation generating Lindblad operators, based on the initial conditions. See
appendix A for examples.

Every single (anti-)synchronisation mechanism described in this work is capable of creating,
destroying, preserving and both increasing and decreasing entanglement of a pair of qubits.
No form of synchronisation studied is in a simple relation to entanglement and neither is
entanglement a suitable indicator of synchronisation.

1All the eigenvalues are real non-negative as ρρ̃ is a product of two positive-semidefinite matrices.



Conclusion

The work addressed the question of synchronisation in quantum systems. We dealt with
the concept of synchronisation of quantum systems in the current literature and provided
suitable definitions of (anti-)synchronisation and total (anti-)synchronisation for composite
systems of identical subsystems with internal dynamics. Within the formalism of quantum
Markovian dynamical semigroups and Lindblad dynamics with unitary Lindblad operators we
then extensively investigated a system of two qubits.
Using a theorem that connects Lindblad operators and the attractor space of the associated
evolution map via commutation relations we found all unitary Lindblad operators that enforce
(anti-)synchronisation of the asymptotic reduced states of a pair of qubits, and described their
respective attractor spaces. From the (anti-)synchronisation mechanisms we subsequently
picked out those which not only (anti-)synchronise the dynamically evolving parts of the
asymptotic states, but which also lead to synchronisation of the stationary parts, resulting in
the case of synchronisation in identical reduced states of the individual qubits.
From the construction, the Lindblad operators were separated into several classes based on the
corresponding asymptotic evolution, which was shown to be preserved within each class. Apart
from that, each of the classes was found to roughly have a group structure. Respectivelly, to
have a stucture of a group if we include a set of measure zero containing the operators that do
not enforce (anti-)synchronisation themselves but do have the same form and do not further
affect the asymptotic evolution when added to the Lindbladian. Using the results obtained
for a single Lindblad operator in the generator it was possible to generalize the situation to
an arbitrary combination of unitary operators.
We also studied some additional properties of the two qubit (anti-)synchronising maps and
of the asymptotic states they lead to. It turned out that not all of the synchronisation
processes necessarily make the resulting global state permutation invariant, in fact same do the
exact opposite. We were able to demonstrate that the visibility of the non-trivial asymptotic
evolution of the reduced one-qubit states depends mostly merely on the initial conditions, with
an exception of a family of classes of (anti-)synchronising Lindblad operators for which it it
suppressed by a factor depending on a parameter of the operator. Last but not least, we tackled
the question of connection between synchronisation and entanglement, using concurrence as
a measure. However, we were unable to analytically obtain any conclusive results due to the
strong and rather complicated dependence on the initial conditions.
A numerical model was created to get a better idea about the (anti-)synchronisation pro-
cess and to verify the analytical results. It showed, among other things, that each of the
(anti-)synchronising mechanisms is capable of both generating and destroying of entangle-
ment, based on the initial state. Hence, to uncover the possible relation between the two
phenomena a further research is necessary.
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By having thoroughly explored the two qubit system, this work might serve as a starting point
for future study of synchronisation in more complex systems and contribute to understanding
of the nature of the phenomenon.
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Appendix A
Numerical simulation, illustrating examples

In order to get a better idea about the evolution towards asymptotic (anti-)synchronised states
and to verify the analytical results, a numerical simulation in MATLAB was created. Some
examples are provided on the following pages.

The evolution map is generated by a Lindbladian (1.17), the particular classes of Lindblad
operators Ui and their weights pi are always specified. Within the classes the operators Ui
are chosen randomly. The initial conditions are randomly generated, either from the space of
separable states or from the space of entangled states, as indicated.

In each step we calculate the reduced states ρA(t), ρB(t) from the global state ρ(t) and plot
the distance of the reduced states from a fixed randomly generated non-evolving test state
ρtest (red and blue), i.e. ‖ρA(t)− ρtest‖ and ‖ρB(t)− ρtest‖, together with the norm of their
difference (green) ‖ρA(t)− ρB(t)‖ in the first graph. The second plot shows the expectation
values

〈
σ

(A)
1 (t)

〉
,
〈
σ

(B)(t)
1

〉
of a local observable σ1 (4.4) for both reduced states (green and

blue). The third plot displays the value of Pearson’s correlation coefficient (2.14) for the
expectations values of σ1 taken over a time window ∆t of 25 time units (black) and the
concurrence C (4.28) of the global state ρ(t) (red). The time axes are aligned and equally
scaled.
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The first example shows a situation of a single Lindblad operator U1 given by (3.143) (the
partial swap), weight p1 = 1, with an entangled initial state ρ(0). The evolution results in a
separable totally synchronised state, entanglement is not preserved.

Figure 4.2: Numerical simulation of the evolution of a pair of qubits. A single Lindblad
operator U1 given by (3.143) (the partial swap) with weight p1 = 1, an entangled initial state.
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The second example displays evolution of an initially separable state with two Lindblad oper-
ators in the generator, U1 of the form (3.38) with weight p1 = 0.7 and U2 of the form (3.143)
with weight p2 = 0.3. Entanglement is generated during the synchronisation process. Low
visibility of the resulting totally synchronised states.

Figure 4.3: Numerical simulation of the evolution of a pair of qubits. Two Lindblad operators,
U1 of the form (3.38) with weight p1 = 0.7 and U2 of the form (3.143) with weight p2 = 0.3.
Separable initial state.
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The third example depicts evolution towards an antisynchronised state. A single Lindblad op-
erator U1 given by (3.119) with weight p1 = 1 is found in the generator. An initially separable
state temporarily becomes entangled only to further evolve into a separable state again. The
whole process is nearly instantaneous, which is not uncommon.

Figure 4.4: Numerical simulation of the evolution of a pair of qubits. A single Lindblad
operator U1 given by (3.119) with weight p1 = 1 and a separable inital state.


