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Introduction

Consider the second order partial differential equation
utt—l—aut—Au:O

for some function v where a is an arbitrary function and —Au = — Z?Zl Ug,e; With d being the
dimension of the space. Let us call it the damped wave equation with the damping a. It can be
used to model various physical systems in a more realistic manner than can be achieved by the
standard wave equation without any damping. It describes namely the vibrations of an elastic
string, membrane or any other object in a viscous liquid or some other medium which affects
the vibration. It is a special case of the telegraph equations which describe the current and
voltage on an electrical transmission line and moreover it is being used in relativistic quantum
mechanics and cosmology.

In this thesis we aim to provide spectral bounds for the non-self-adjoint operator associated
with the damped wave equation, the damped wave operator. This will be done using the
correspondence between this operator and the self-adjoint Schrodinger operator. The behavior
of the spectrum the provides some information about the time evolution and stability of the
solutions of the damped wave equation.

In the first chapter we properly define the damped wave operator. First we analyze the ex-
plicitly computable example of vibrations of a string with constant damping. We show that in
this case the operator generates a Cy-semigroup which implies that the solutions of the equa-
tion are generated by this Cp-semigroup and also that they are unique and sufficiently regular.
Moreover using the growth bound of the Cy-semigroup we are able to obtain a uniform optimal
damping for which the system returns to equilibrium in the shortest time. This example serves
as a motivation for the next part of the chapter where we define the damped wave operator
on an arbitrary domain in R? and with bounded damping. We again show that it generates a
Co-semigroup and finally we state some results on the stability of the solutions.

In the second chapter we define the Schrodinger operator as a bounded perturbation of
the Dirichlet Laplacian by some real potential. We state some of its spectral properties which
will be needed in the next chapter. Then we parameterize the potential of the Schrodinger
operator and establish the formulas for the first and second derivative of the first eigenvalue
with respect to the parameter. We provide an example of the behavior of the spectra with
respect to the parameter when the potential is the finite rectangular well. At the end of this
chapter we state Theorem 2.4.1 which gives us the connection between the spectrum of the
Schrodinger operator and the damped wave operator.

In the third and most important chapter of the thesis we establish our own results for the
damped wave operator using the well-known results for the Schrodinger operator. The ob-
tained results consist of proving the absence of some part of the spectrum and of upper and
lower bounds for the eigenvalues. In particular the Lieb-Thirring inequalities were used to
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prove Theorems 3.1.1 and 3.1.3. Moreover to obtain Theorems 3.2.1, 3.2.2 and 3.2.3 we em-
ployed the Buslaev-Faddeev-Zakharov trace formulae. Finally we lowered the assumptions
on the damping enabling it to be complex but still bounded and we established the Birman-
Schwinger principle for the damped wave operator, Theorem 3.3.1, using which we were able
to obtain further results, namely Theorems 3.3.2 and 3.3.3, some of them generalizing the pre-
vious ones.

In the final part of the thesis we consider the damped wave operator with the potential
being the finite potential well and compute the implicit equation for its eigenvalues. Using
this we plot the behavior of the point spectra when the well becomes more deep or narrow.
Moreover we plot the dependence of the bounds obtained in the previous chapter and com-
pare them with the numerically computed values of the eigenvalues. Finally we provide a
numerical evidence that the bound of Theorem 3.1.1, respectively 3.1.1 is sharp when the well
is taken infinitely deep and narrow which can be interpreted as the Dirac delta function. This
corresponds to the well-known result for the Schrodinger operator.

12



Chapter 1

Damped wave operator

1.1 Derivation

In this section we introduce the operator approach for the damped wave equation. Let
Q C R? be an arbitrary domain and let a : @ — R be a damping function. Consider a system
governed by the damped wave equation for some function u subject to the initial conditions,
ie.
Uy +aug —Au=0, inQ, ¢t>0
u=uy, inQ, t=0 (1.1)

up =u, in€, t=0
where —Au = — 2?21 Uz,z;- Moreover we impose the Dirichlet boundary condition
u=0 ond, t>0. (1.2)
To cast this system into the operator form it is customary to use the Hilbert space
W= (H3(Q) x L2(Q), (- )n) (13)

where the Sobolev space H{ (€2) is the closure of the subset of smooth functions with compact
support C5°(£2) in the Sobolev space H'(£2), a member of the family of the Sobolev spaces

H*(Q) .= ({f € L*(Q) : D*f € L*(Q), V|a| <k}, () gr)

where D stands for the weak derivative of order £ € N. The inner product (-, )y« is defined
as
(f,9) e := Y (D*f,D%)

| <k

where (-, -) denotes the standard inner product on L?(€2). Accordingly the norm on L?(2) will
be denoted by || - ||, i.e. without any subscript. However the same notation will also be used for
the operator norm, the two to be distinguished from the context.

H*(Q) is complete and therefore a Hilbert space. Hence the spaces H'(2) and H}(f2) are
complete and equipped with the inner product

Frg)m = (V£.Vg) + (fg) = /Q VIV + . (1.4)
13
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Note that H}(R?) = H!(R?) (see [1, Corollary 3.23]). The inner product on the whole space H
is just the inner product on the Cartesian product of the two Hilbert spaces, i.e.

(0, @)y = <<Z;> , (z;»H - /lewl + D11 + Bads. (1.5)
Next denoting
Up = <Z;) and U(t) = (:jt) (1.6)
we can formally write

d o (7 o Ut o 0 I Uu

&U(t) a <utt> a (—aut + Au) o <A —CL) <ut>
where [ is the identity operator on L?(§2) and thus we obtain an evolution problem (or abstract
Cauchy problem) with a matrix valued operator

—a

%U(t) - (g I ) U, U0) = U

Motivated by the formal derivation we define the damped wave operator A on # as

A= (2 _Ia> , Dom(A) :=Dom(—A) x H}(Q) (1.7)

where the definition by matrix means (and in the whole thesis would mean)

P\ (05
A (%) o (AT/M - 617/)2)

for <:il> € Dom(A). Moreover the differential Laplace operator A is meant in the weak sense
2

and Dom(—A) stands for the domain of the self-adjoint Dirichlet Laplacian 7 defined in Section
2.1 below. The evolution problem for .4 which is thanks to (1.6) associated with (1.1), (1.2) and
in which we are thus interested is

%U(t) — AU(1), U(0) = Up. (18)

1.2 Bounded (2 C R and constant damping a > 0

As a motivation for the next section we will now analyze the explicitly computable case
when Q is a bounded domain in R, to be precise an interval (0, L) and where the damping
coefficient a is a positive constant. This can be the model for example for the damped vibrations
of a string of length L with fixed edges.

Our aim is to show that the operator A is an infinitesimal generator of a Cy-semigroup
of contractions and then see what it implies primarily for the time evolution. For this it is
necessary to take a different inner product in H than the standard (1.5). More precisely we
define a new inner product in H}(0, L) as

_[Mdfdg  (df dg
(f,9)m -—/O Qi (dx,dx>. (1.9)
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The norm || - || ;73 corresponding to this inner product is equivalent to the norm || - {| ;1 induced
by inner product (1.4) which is inherited from H'(0, L). Indeed using the Poincaré inequality

2

aise< || v e o) 110

where \; > 0 is the first eigenvalue of the self-adjoint Dirichlet Laplacian 7 in one dimension
and therefore the lowest eigenvalue A of the following eigenvalue problem

d2
—@Tﬁ =M, z€(0,L)
b=0, z=0,L

a::{(?:)2}+w, (1.12)

n=1

(1.11)

whose spectrum is known to be

we can immediately see that these two norms are equivalent:
1 2

2 2

df 2 2
< || == — < N
_de + 1111 \f\|H1—<1+A1)‘

1
— (145 ) Il v € Hi0.D)

df

df
2 _
HfHHé o de dz

The space H} (0, L) equipped with inner product (1.9) is denoted as
: PO ALAL
130.2) = (CFO. 0", () ) -

The two norms thus induce the same topology and the space H} (0, L) is complete since H2 (0, L)
is. In the whole section we consider the Hilbert space being the same as H when considering
vector spaces but with different inner product

(" ¢1 A T
(\117(1))?{ - ((11}2) ) <¢2)>H _/0 dr dr +¢2¢2 (113)

?(::(HSULL)XIFULLL(HJﬂ). (1.14)

and denoted as

1.2.1 Damped wave operator

~ Considering the domains of 7, Remark 2.1.1 below, the damped wave operator A : Dom(A4) C
‘H — H is thus defined as

,4=:<;l I), Dom(A) = (H*(0,L) N H{(0,L)) x Hy(0, L) (1.15)

daz?

where the second derivative is meant in the weak sense. Since C§°(0, L) is dense in L?(0, L) the
domain of this operator is dense in 7 and thus A is densely defined. It is also unbounded since
it has compact resolvent (which will be shown further) and since # is an infinite-dimensional
space. This is a trivial consequence of the fact that compact operators form an ideal in the
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algebra of bounded operators and of the fact that the identity operator is compact if and only
if the space is finite-dimensional. The adjoint of A is

A* = < %2 :i) ,  Dom(A*) = (H?(0,L) N Hj(0,L)) x Hy(0,L). (1.16)

"~ da?

Indeed we want to find ® € H such that there exists ®* € H for which

(AT, ®),, = (U, D7),

holds for all ¥ € Dom(A). Let & — (Zﬁl) €A @1) € 7 then
2 2

L P2 ¢1 _ (dy2 doy d*¢
(AV, @), = ((d;;j;l _a%) ) <¢2>>% = <dm e ) + < 2 —a¢27¢2>

() - () - atvnen

(1.17)

de ' dx dz ' dx

where we used integration by parts. This has to be equal to

dyy do¢j
0,0 = (2 ) + ()

for some and ®* = <¢1> € H. By choosing ¢} := —¢ and ¢ := _ Loy agps we get

(25; da?
dipy doy o (dY1 dee dipo doy
(dx’ d:c1> + (Y2,05) = — (d:c’ dx) + <d:U’dx> — a2, $2)

which is equal to (1.17) and proves (1.16). Therefore we deal with a non-self-adjoint operator.

1.2.2 Basics of semigroup theory
Now we state some basics of the semigroup theory. Henceforth let X be a Banach space.

Definition 1.2.1 (Cp-semigroup of bounded linear operators). A one parameter family T'(t), 0 <
t < +oo, of bounded linear operators on X is a Cy-semigroup of bounded linear operators on X (a
Co-semigroup) if

1. T(0) = I (I is the identity operator on X)
2.T(t+s)=T(t)T(s), WVt,s> 0 (thesemigroup property)
3. lim;_,o+ T'(t)x =z, Va € X (the strong continuity).

An infinitesimal generator of a Cy-semigroup 7'(t) is a linear operator A satisfying

T(t)yr —x  dYT(t)x
t—0+ t o dt

t=0

Dom(A) = {:U € X: lim T(t)f_x exists}.
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Also for every Cj-semigroup T'(t) we have the following growth estimate [16, Theorem 1.2.2].
There exists constants w > 0 and M > 1 such that

IT#)|| < Me*t, 0<t< +oo. (1.18)

The value w is called a growth rate. Whenever w = 0 we talk about uniformly bounded Cj-
semigroup and moreover if M/ = 1 then we have a Cy-semigroup of contractions (||7°(¢)|| < 11is
the so called contraction property). Also for all v > w, « is again the growth rate, i.e. ||T'(¢)|] <
Me™'. The growth rate is therefore not unique.

Remark 1.2.2 (Motivation for the definition). To see the motivation for the definition of the Cy-
semigroup let us consider an evolution problem with a complex matrix A € C%4

d
V() = Av(®), v(0) =y (1.19)

where v(t),vg € C for t € [0, +00) and vy is the initial state. We know that the solution of this problem
is
v(t) = etug, 0<t <400

where the term et is the exponential of a matrix defined as
+oo
A’n n
D (1.20)

n!
n=0

This sum always converges and satisfies the following properties (see for example [10, Section 1.4])
1. A0 =1
2. Altts) — At As

At + At
eMv—w dTew
3. Av =1lim =
t—)0+ t dt

t=0

4. gem = Aeht = AlA,
dt
In these we can see the semigroup property and the definition of the infinitesimal generator. It is also from
this reason why the Cy-semigroup is being denoted using the exponential of its infinitesimal generator
A, ie. T(t) = e, even though the operator A can be unbounded (and therefore sum (1.20) can be
divergent in general). The Cy-semigroups whose infinitesimal generator is a bounded operator and
therefore T'(t) = et is not only formal denotation are called uniformly continuous [16, Theorem 1.1.2].
An equivalent definition is that the Cy-semigroup T'(t) is uniformly continuous if lim, o+ ||T'(t)— 1| =
0.

1.2.3 Generation of semigroup and its consequences

To show that A is an infinitesimal generator of some Cy-semigroup we will use the charac-
terization by the Lumer-Phillips theorem instead of the direct computation. This requires for
the operator to be m-dissipative.

Definition 1.2.3. A linear operator A on a Hilbert space H with inner product (-,-)g is called m-
dissipative if R(AY, )y < 0, Vip € Dom(A) and Ran(I — A) = H.
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The notion of m-dissipativness can be defined for Banach spaces in general using the so
called duality set [16, Definition 1.4.1]. Since our operator A is defined on the Hilbert space H
we are able to use its inner product instead.

Theorem 1.2.4 (Lumer-Phillips, [16, Theorem 1.4.3]). A dense operator A is the infinitesimal gen-
erator of a Cy-semigroup of contractions if and only if it is m-dissipative.

First we show that Ran(I — A) = #, i.e. that the operator A : Dom(A) ¢ H — H is

surjective. Given (g) € H we want to find (i;) € Dom(A) such that (I — A) <¢1> = (fl).

This leads to the following system of equations

Y1 — 2= fi (1.21a)

2
b (L a)n = fy (1.21b)
P1(0) =¢1(L) =0 (1.21c)
P2(0) = ¢2(L) = 0. (1.21d)

Substituting from (1.21a) into (1.21b) we obtain

2
~ St a = fot (L o) (122)

and the solution of this equation can be easily obtained using the method of variation of con-
stants

P1(x) = Crexp(V1+ ax) + Coexp(—v1 + ax)

B w /0 “exp(—vIFas)((L+ a)fis) + fals)ds
+ exp;ﬂl/\/%?x) /Off exp(V1+as)((1 +a)fi(s) + fa(s))ds

where the constants can be obtained from (1.21c) which is a non-homogeneous linear system
of two linearly independent equations for C; and C5 and thus it has exactly one solution. The
function 1/ has the derivative

% = C1vV1+aexp(V1+ax) — Cov1+ aexp(—v1+ ax)

e | (VT as) (1 + i) + uls))ds

exp(—y/1 + ax)
* 2

/0 " exp(VITas)((1+a)fi(s) + fols))ds

and since the integral as a function of the upper bound is an absolutely continuous function
both ¢ and %@bl belong to L?(0, L). From (1.22) we see that Cf%?l)l also belongs to L?(0, L) and
thus ¢, € H?(0,L) N Hg (0, L). Equation (1.21d) and moreover the fact that ¢»» € Hg (0, L) are

satisfied by (1.21a), (1.21c), the fact that ¢»; € H}(0, L) and by using <§1> cH.
2
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Finally we show that R(AP, ¥),, < 0 forall ¥ € Dom(A) € H. Let ¥ = (1111) € Dom(A)

() (), = () (),

Ldipy dypy | 4%,
.
I

then

dz dx + da? V2 — a2ty

Pdgydyn  dipydyy -
_%/0 dz dz  dz dw v

:%/{)Ld¢1d¢2 %/OL(M—%/OLG%%

dr dx

L
——a [ <0
0

where we used integration by parts and the fact that ¢ € H}(0, L). Hence the linear operator
A is m-dissipative and using the Lumer-Phillips theorem we obtain that it generates a Cp-
semigroup of contractions which we will denote by e’

For such a generator (not necessarily of contractions) we have the following properties. Let
A : Dom(A) C X — X be an infinitesimal generator of Cj-semigroup. Then Dom(A) is dense
in X and A is closed [16, Corollary 1.2.5]. Our operator A is thus closed and densely defined
where the latter was already shown before. Next we have a result on continuity. It holds that
for every Cp-semigroup 7'(t) and for every x € X the function ¢t — T'(t)z is continuous as a
function from [0, +00) — X [16, Corollary 1.2.3]. This is a simple consequence of the existence
of growth rate (1.18). Therefore for Uy H,

dx dx

U(t) := e*Uy (1.23)

is a continuous function mapping [0, +00) — . Finally we state one of the most important
theorems for the applications of the semigroup theory.

Theorem 1.2.5 ([16, Theorem 1.2.4]). Let A : Dom(A) C X — X be an infinitesimal generator of
Co-semigroup T'(t) then for every x € Dom(A)

T(#) € Dom(A) and %T(t)w — AT(t)z = T(t) Ax.

In our setting this means that for every initial condition Uy € Dom(.A), the function U (t)
defined in (1.23) belongs to Dom(.A) and

Yo = ave (1.24)
dt

which is exactly evolution problem (1.8) stated in the beginning. We see that the Cy-semigroup
et generated by A generates the solution U(t) of problem (1.8) using the initial value Up. In
other words by showing that .4 generates a Cy-semigroup we solved our evolution problem in
the terms of . However we do not yet know whether U (#) is continuously differentiable or
not. But fortunately we can say something about the regularity and uniqueness of the solution.
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Theorem 1.2.6 ([16, Theorem 4.1.3]). Let A be a densely defined linear operator with non-empty
resolvent set p(A). The initial value evolution problem for the operator A

d

ay(t):AY(t) and Y (0) =Yy

has for every initial value Yy € Dom(A) a unique continuously differentiable solution Y (t) on [0, 4+00),
if and only if A is the infinitesimal generator of the Cy-semigroup T'(t).

To show the non-emptiness of the resolvent set p(.A) in our case we can use for example the
famous Hille-Yosida theorem. In fact the Lumer-Phillips theorem 1.2.4 is only a consequence
of this theorem.

Theorem 1.2.7 (Hille-Yosida, [16, Theorem 1.3.1]). A linear operator A : Dom(A) C X — X is the
infinitesimal generator of a Cy-semigroup of contractions T'(t) if and only if

1. Ais closed and densely defined

2. The resolvent set p(A) contains (0, +o00) and for every A > 0

[EA(A)]] <

> =

where the family Ry(A) = (A — A)™1, X € p(A) denotes the resolvent of A.

Hence we see that the operator A has non-empty resolvent set. Thus the solution U(t) =
e'Uy is continuously differentiable on [0, +-00) and unique. Returning back to damped wave
equation (1.1) we see that using notation (1.6) we obtained a unique solution

(i) = ()

of the problem
U + auy — Uy, =0, x € (0,L), t>0
u=0, z=0,L, t>0
u=wuy, z€(0,L),t=0
ug=u2, =€ (0,L),t=0
where

u(t, ) € C°([0,+00), H?(0, L) N HL(0, L)) N CY([0, +00), HL(0, L))
N C%([0,400), L*(0, L))

for every initial value ug € H2(0, L) N H(0, L) and vy € HE(0, L). The derivatives with respect
to t are thus classical but the derivative with respect to x is still meant in the weak sense.
Since this problem is explicitly solvable we are able to provide an explicit formula for the
Co-semigroup . Indeed using the Fourier method and assuming u(z,t) = X (x)®(t) we get
d?® do X

X(J:‘)W + aX(:n)E - @(t)@ =0
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which can be separated into two equations by dividing it by u(z,t) since both sides of the
equation now depend on a different independent variable and therefore they are equal to some
constant denoted by —A\:

d2x

d?¢  do
— — d(t) = 0. 1.25b
dt2+adt+)\ (t)=0 (1.25b)
Boundary condition (1.2) transforms to
X(0)=X(L)=0 (1.26)

and we can see that this equation together with (1.25a) is exactly the eigenvalue problem for
Dirichlet Laplacian (1.11) for which the eigenvalues form a countable set indexed by n € N and

e (5

and the corresponding eigenfunctions are thus

nmnx
" - ‘ (7>
(x) = Csin 7
Equation (1.25b) can be solved using the assumption ®(t) = ¢™'. We obtain the characteristic

equation for m

m?+am—+ A\, =0 (1.27)
with the solution
—a++a? -4\,
m172 = 9 .

This solution can be either negative or complex depending on the size of a corresponding to
either under-damped or over-damped solutions. The whole solution u(z, t) is hence

+00
ey~ 5 G o 72

n=1
where the constants can be determined from the initial conditions uy and u;. Finally we get the

action of the Cp-semigroup on <ZO) € Dom(A):
1

400
Z (C’1em1t + 02€m2t) sin (mm>

eAt uO — n=1 L
Uy > nwT

Z (Cimie™* + Cymoe™?") sin ( 7 )

n=1

1.24 Growth bound and the spectrum

The theory of semigroups can give us even more. Recall the growth rate w for some Cp-
semigroup 7'(t) with the infinitesimal generator A defined in (1.18). We already know that w is
not unique. Therefore we define the lowest growth rate by

wo(A) := inf{w : IM(w), |T(t)| < M(w)e“'}. (1.28)
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The lowest growth rate wy(A) is usually called a growth bound or a growth abscissa. It can be
shown [14, Theorem 2.19] that wy(A) is equal to

log || T’ log || T
o) =t IO _ s 7O 129

One can imagine that such a quantity is not easily computable. Fortunately it can be shown that
this quantity is related to the so called spectral abscissa. In particular for every Cy-semigroup
T(t) with the infinitesimal generator A we have

wo(A) > we(A) :=sup{RA: A€ o(A)} (1.30)

where o(A) is the spectrum of A and w,(A) is the spectral abscissa [14, Theorem 2.20]. Fur-
thermore for some special Cy-semigroups we can get equality in (1.30) and we say that the
Co-semigroup has a spectrum determined growth property. One of such cases is when the
Co-semigroup is actually an analytic semigroup [14, Theorem 2.21].

Definition 1.2.8 (Analytic semigroup). Let Z = {z € C : ¢ < arg(z) < ¢2,¢1 < 0 < ¢2} and let
T'(z) be a bounded linear operator on X for every z € Z. Then the family T(z), z € Z is an analytic
semigroup if the following is satisfied

1. z — T'(z) is analytic function in Z

2. T(0) =1 and liné T(z)x =z forevery x € X
z—
z€Z

3. T(z1 + z2) = T'(21)T (22) for every z1, z2 € Z.

Another case when the equality in (1.30) holds is when the eigenvectors of the infinitesimal
generator of the Cy-semigroup of bounded operators in a Hilbert space H form an orthonormal
basis in H and the supremum of the set of the real parts of eigenvalues of the infinitesimal
generator is less than infinity [14, Theorem 2.22].

The last and for us the most important case mentioned here when the equality holds is when
the infinitesimal generator is a Riesz-spectral operator and again the supremum of the set of the
real parts of eigenvalues of the infinitesimal generator is less than infinity [3, Theorem 2.3.5].
The Riesz-spectral operator is a linear, closed operator on the Hilbert space H with simple
eigenvalues {\,, : n > 1} and the corresponding eigenvectors {¢,, : n > 1} which form a Riesz
basis in H and moreover the closure of {)\,, : n > 1} is totally disconnected, meaning that no
two points from the closure can be joined by a segment lying entirely in it.

Definition 1.2.9 (Riesz basis). A Riesz basis is a set of vectors {¢y, : n > 1} in a Hilbert space H for
which the following conditions hold

1. span{¢p :n>1}=H

2. There exists m, M > 0 such that for any N € N and any numbers a,, n € {1,2,...,N}

N 2 N
Zan¢n < MZ ‘an’2‘
n=1 n=1

N
m ) lanl* <
n=1
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An equivalent definition would be that Riesz basis is an image of an orthonormal basis in
H under a bounded linear operator with bounded inverse. The fact that the eigenvectors of
our operator A form a Riesz basis and moreover that A is a Riesz-spectral operator and that
the supremum of the set of the real parts of eigenvalues of A is less than infinity was shown by
Cox and Zuazua in [2, Theorem 2.1]. Therefore

wolA) = wy(A).

To obtain the growth bound we thus have to calculate the spectrum of A. First we show that
A has purely discrete spectrum ogisc(A). This in the non-self-adjoint setting means that A €
odisc(A) if and only if it is an isolated eigenvalue with finite algebraic multiplicity and with
Ran(A — AI) closed. Moreover for the rest of the thesis we define the essential spectrum of the
non-self-adjoint operator A to be gess(A) = p(A) \ disc(A).

The discreteness of the spectrum of A follows from the fact that it has compact resolvent.
Indeed we first show that the undamped operator, i.e. with a = 0, has compact resolvent
and then we conclude that the bounded perturbation via the damping a does not affect the
compactness.

Let Ag be the undamped operator, i.e.

Ao = ( (?2 I) , Dom(Ag) = (H*(0,L) N Hy(0,L)) x Hy(0,L).
dz?

It is a known fact that a closed operator A on a Hilbert space H has compact resolvent if and
only if the embedding (Dom(A), || - ||4a) < H is compact. Here || - || 4 is the graph norm of the
operator 4, i.e. given ¢ € Dom(A), [|[¢||4 = [|[¥]|% + ||A¢||%. Thus we have to show that the
embedding of (Dom(Ayp), || - ||.4,) which is the domain of Ay understood as a Hilbert space with
the graph norm || - || 4, (it is complete provided that Aj is closed) into H is compact.

First we show that there is a norm on Dom(.A) equivalent to the graph norm. It is the norm
of the Cartesian product of the two Sobolev spaces H?(0, L) N HE(0, L) and H}(0, L) denoted

by || - |- Let ¥ € Dom(Ag), ¥ (1”1) then

(&
191 = W+ ol = | 00 | |2 e+ |22 i,
We can immediately see the first inequality
Hw\ioz\d% o Hfff2+\|w2\|2
L N e

and the opposite inequality can be obtained using Poincaré inequality (1.10)

d2 d 1 dyr ||? || des ||?
913, = | a S Es a T e I e L
d2 dy || 1 daps || (1.31)
o e L R L]

> O w2
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where ' = min {%, %} Hence the norms are equivalent and thus the identity map I :

(Dom(Ayp), || - [l.4y) = (Dom(Ap), || - |lc) is bounded. In fact for the boundedness of I it would
be sufficient to show only the validity of second inequality (1.31).
Next we use the fact that the embeddings

H*0,L) — HY(0,L) and H}(0,L) < L*(0, L)

are compact. This is a consequence of the Rellich-Kondrachov theorem [5, Theorem 5.7.1].
From the former we obtain that

(H?(0,L) N H (0, L)) — H{(0,L)

is also compact since HZ (0, L) is by definition a closed subspace of H!(0, L) and the norms on
H(0, L) and H{ (0, L) are equivalent. Also the Cartesian product of the two maps

(H*(0,L) N Hg(0,L)) < H}(0,L) and Hy(0,L) — L*(0,L)
is compact, i.e. the embedding
J: (H*(0,L) N Hg(0,L)) x Hj(0,L) — Hy(0,L) x L*(0,L)

is compact.
Since the composition of a compact map with a bounded map is again compact we obtain
that the embedding '
Jol: (Dom(Ap),| - [la) = H

is compact which proves the statement that Ay has a compact resolvent.
Now we state the stability theorem.

Theorem 1.2.10 ([10, Theorem IV.1.16]). Let T and A be operators on Banach space X. Let T~ exist
and be bounded. Let A be bounded and satisfying the inequality

AT < 1. (1.32)

Then S = T + A is closed and invertible and S~ is bounded. If in addition T~ is compact then S~*
is also compact.

Let z be an arbitrary point from the resolvent set of 4. Then zI — A plays the role of the
operator 7' in the theorem (7! thus exists), and the perturbation of Ay denoted by B stands
for —A. In particular

0 O -
B = (O —a> , Dom(B) :=H.

To prove (1.32) we will use the following bound for the norm of B. Let ¥ = (¢1) then

o
B — ay al|ts
1B1= i o = b s dL H = ek ) o =
W£0 A0 H 1 +||¢2||2 W40

hence B is a bounded operator and inequality (1.32) transforms to

IB[I(2 — Ao) ™' = all (=1 — Ao) ™'l < 1.
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Recall the Hille-Yoshida theorem 1.2.7. Since Ay is an infinitesimal generator of Cp-semigroup
of contractions the theorem implies that for every A > 0, A € p(Ap) and

1
— 71 —
[T = Ao) ) < -

For given a > 0 we choose z > a and get

1 1

I—A) Y <=<=

T~ ) < - <

which proves inequality (1.32). Hence the operator (21 — Ay — B)~! = (21 — A)~! is compact.

It holds that if (21 — A)~! is compact for some point z € p(A) then (A — A)~! is compact for

all A € p(A). Thus A has compact resolvent which we wanted to prove. Its spectrum is purely
discrete.

We move on to determining the discrete spectrum. Let ¥ € Dom(A), ¥ = <zl> and
2
AV =\, ie.

= iy (1.33a)
2
le — athy = My (1.33b)
x
’(/Jl(O) = ’(/Jl(L) =0 (1.33C)
P2(0) = 9a(L) = 0. (1.33d)
Substituting from (1.33a) into (1.33b) we get
d2
51— Aaghy = A2y = 0. (1.34)
After rearranging terms and denoting i := —\? — \a we see that together with equation (1.33c)

we obtained eigenvalue problem (1.11) for the eigenvalue

2

d
_@wl =1, x€ (OvL) (135)
lpl = 0, xr = 0, L.

But we know that the spectrum of this problem is (1.12) and so it holds

which is a quadratic equation for A which is actually the same equation as equation (1.27) for
m. The solution, i.e. the spectrum of A is then

1 N 2 e
O'(A):{Q <—aj: a2—4(f) )} .
n=1

To find out the spectral abscissa we now analyze the behavior of the spectrum with respect to
the damping a.

e For a = 0, i.e. no damping, all the eigenvalues are symmetrically and equidistantly
distributed on the imaginary axis, see Figure 1.1.
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Figure 1.1: Plot
from o(A) witha =0

of first six eigenvalues Figure 1.2: Plot of first

from o(A) witha =1
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.
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Figure 1.3: Plot of first six eigenvalues
from o(A) with a = 2. One conjugate pair
collides on the real axis and creates a de-
generate eigenvalue

. . ) . .
-3 -2 -1 -4 -3 -2 -1

Figure 1.4: Plot of first six eigenvalues
from o(A) with a = 3. The collided eigen-
values separate again each one moving to
another side of the real axis

e For a € (0,2F) the eigenvalues form complex conjugate pairs located on a sphere origi-

nated in 0 of the complex plane with radius equal to “* as shown on Figure 1.2. Indeed
let \,, € 0(A), then

(RA)2 + (TM)? =

2
a\ 2 1 nm\ 2 n 2
_Z Z 2TV g2 = (22
(2>+<i2 4(L> “) (L)
The larger is the damping a, the larger is the distance from the imaginary axis.

For the critical value a = 2 the two conjugate eigenvalues which were on the sphere
with the smallest radius collide, see Figure 1.3.

For a € (22, 4%) the two eigenvalues which previously collided are now separated again

with one moving on the real line towards 0 and the second towards —oc while the others
continue with the motion on the spheres until the next two eigenvalues collide when

a= 47“, see Figures 1.4 and 1.5.

e The whole process continues in analogous way.
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2k

_3F

Figure 1.5: Plot of first six eigenvalues
from o(A) with a = 4. Another conjugate
pair collides

From this behavior it can be seen that the spectral abscissa and hence the growth bound is

a 2m
) =T
wo(A) =sup{RA: Ae€o(A)} = a1 2 o (1.36)
——+ = a2—4<—>, a>—.
2 2 L L

This means that there exists M = M(wg(A)) > 0 such that [et|| < Me<0(! and moreover
from the contraction property (||e|| < 1) we have M < 1. From (1.29) we get

log HeAtH = wo(A)t + o(t)

where o stands for the standard small o notation in the asymptotic regime ¢ — +o00. Exponen-
tiating, this leads to ||e"t|| = e<0(A)te0(t) and thus

HeAt” ~ e (At ag 1o (1.37)
where ~ has the meaning f(t) ~ g(t), t — +oc if and only if f(t) — g(t) T 0. Indeed

0 (At || At = gwo(A)t _ o (wo(a)+2

>t —— 0.
t—-+o0

Given the initial value Uy € Dom(.A) we thus obtain for the solution U(t) = e“*U, the bound
1T @)l < A [Tol-

which is uniform (with respect to the initial condition). Next recall notation (1.6). We obtain
2

L
u
( ) = [ el

which is a well-known expression for the energy of a string at time ¢, i.e. E(t) = ||U(t)||%, and

1), = '

E(t) < E(0)eX0(A)t,
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We see that using the semigroup theory we obtained a uniform bound for the energy of the
system.

Finally we can find an optimal damping for which the system returns to the equilibrium
(u = 0) in the shortest time. Viewing wy(.A) as a function of the damping a we can find its

minimum which according to formula (1.36) is achieved at a = 2%:
. ™
min wolA) = -7

Thus for a = 2F the solution has the fastest decay uniformly with respect to the initial condition

U (@)l < 67%\\0})”;{ as t— +o0.

1.3 Arbitrary Q C R? and bounded damping a € L>(1)

In this crucial section we move on to the definition of the damped wave operator for arbi-
trary domain 2 C R¢ and for bounded damping function a, in particular a € L>(). We again
show that this operator generates a Cy-semigroup but now without the contraction property
in general since we work on # instead of H and moreover without the spectrum determined
growth property. Nevertheless we will still be able to deduce some consequences for the time
evolution and stability of the system. Note that there is a recent paper [8] where the generation
of a Cp-semigroup even in the case of unbounded damping is proved by working in a different
Hilbert space.

1.3.1 Damped wave operator

We work in Hilbert space H (1.3) and consider damped wave operator (1.7). Since the
Dirichlet Laplacian is densely defined (see Section 2.1) for arbitrary © and C§°(€2) is dense in
L%((2) the operator A is also densely defined. The operator is again non-self-adjoint as in the
preceding case. Next we show that A is closed.

Let Ay denote the undamped operator A with a = 0. We first show that Ay is closed and
then since the sum of bounded and closed operator is again a closed operator the damping
does not violate the closedness. Given ¥, ® € H and a sequence V¥,, € Dom(Ay), n € N, let

v, —— ¥ inH

n—-+oo

. (1.38)
AoV, —— & inH.
n—-+o00

We have to show that ¥ € Dom(Ap) and Ay¥V = ®. Denoting ¥ = <zl>, U, = <zm>,
2 n2

¢ = (Zl> and rewriting limits (1.38) we get
2

Un1 —— 1 in H'(Q)

n—-+00

Yn2 m Y9 in LQ(Q)

Y2 m ¢1 in Hl(Q)

Atpyy —— ¢ in L3(Q)

n—-+o00
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which means

V41 = V1|2 + oms = 1 [* ——— 0 (1.39)
[9hn2 — 2|2 — (1.39b)

1V4n2 = Vr* + [lma = 411> —— 0 (1.390)
1A = do* —— 0. (1.39d)

Equation (1.39c) implies that also ||1n2 — ¢1]|? —_:——) 0 which together with (1.39b) gives

Yo = ¢1 € Hi(Q) provided that the limit in L?(f) is unique. As a next step we integrate by
parts getting

(Ap, Y1) = =(V, Vip1)

where ¢ € C5°(2). From (1.39a) we get that Vi,,1 — Vi1 in L23(Q) and thanks to the

continuity of the inner product we have
Another integration by parts leads us to

— lim_(Ve, Vo) = lim(p, Amr)

n—+00 —+00

where finally (1.39d) implies
lim (907 qunl) = ((pa ¢2)

n——+0oo
Hence for all ¢ € C§°(Q2) it holds (Ap, 1) = (¢, ¢2) which from the definition means that ¢
is the distributional Laplacian of 1; on L?(Q), i.e. Ay = ¢o € L*(Q) and the operator Ay is
thus closed. Next we have to show that the perturbation of Ay denoted by B is bounded. In

particular
0 O
B:= <0 _a>, Dom(B) := H
and A= Ay + B. Let ¥ = <Zl> then
2
. |BY| | — as|
H H_\IIGDom(B) ||‘ll|| _\IJEDom(B) 2 2 2
Dom Don(8) /9|2 + |2 + 1l
lalloo e
sup ————— = ||a|loo
e
T£0

where ||a||« is the norm in L*°((2) in particular the essential supremum of |a|. Since the sum of
bounded and closed operator is again a closed operator we obtained that A is closed.
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1.3.2 Generation of semigroup and consequences

Now we will move on to the proof that A is an infinitesimal generator of some Cy-semigroup.
This will be done by entirely different means than in the previous chapter. We first show that
it generates a Cy-semigroup in the case of zero damping, i.e. a = 0 and then we use a pertur-
bation theorem which states that the generation is still preserved with the non-zero damping
present.

Therefore let Ay denote the undamped operator A with a = 0. We will use the following
characterization for the generator of the Cy-semigroup which will give us also the growth rate
of the Cy-semigroup.

Theorem 1.3.1 ([16, Theorem 1.5.3]). A linear operator A on Banach space X is an infinitesimal
generator of a Co-semigroup T'(t) satisfying | T'(t)|| < Me“" if and only if

1. Ais closed and densely defined

2. The resolvent set p(A) contains (w, +o0) and

IRA(A)"] < YA>w, neN. (1.40)

M
=)

The first condition of this theorem is already proven so it remains to prove inequality (1.40)
for some w. For this we will need the following lemmas. This approach was used in [7] in a
more general setting where they were inspired by [16, Section 7.4].

Lemma 1.3.2. Let € € (0,1). Then for any ¢ € L*(Q) there exists a unique function 1) € Dom(—A)
which satisfies the equation
(1—€e2A)p = ¢. (1.41)

Proof. This proof is based on [11, Remark 2.3.2]. First we establish an a-priori bound. Let
¢ € L?(Q2) and € € (0,1) and assume that there exists ¢ € H{ () satisfying (1.41) then

1
1ol < —llll- (1.42)
Indeed multiplying (1.41) with ¢ and integrating over Q2 we get

)2 + €IV ||? = (¥, ¢)

where we used integration by parts. Moreover
lI? < lel? + eI Vel? = (v,0) < Ilvli¢l
which implies ||| < ||¢|| and thus
min {1, ¢} [[[F < [l

Finally for € € (0, 1) we get (1.42).

Next we take a sequence (£, )nen such that €, C Q41 and |,y Qn = Q. From [11, Section
2.3] we know that there exists a unique weak solution ¢ € HZ(Q,) N H*(Q,) of (1.41) with
N =Q,, ie. forall p € C§°(12,) it holds

(307 wn) - 62(307 Ad)n) = (307 d)) (143)
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We extend 1), to the whole domain ) with zero outside €2,, and retain the same notation for
it. For all such v, bound (1.42) holds and thus (¢, )en is uniformly bounded in H}(2). This
implies that there exists a subsequence (¢, ) reny Which converges weakly to some function [20,
Theorem 4.25]. Let us denote this function by . Fixing some ¢ € C§°(12) being zero outside
2, and taking limit £ — 400 in the subsequence (¢, )nen in (1.43) with n < nj, we obtain

(907 7?) - 62(907 A"L/’) = (SO, ¢) (144)

Since these ¢ form a dense set in H{ (Q) the function 1) satisfies (1.44) for all ¢ € H{ () and
thus it is a weak solution of (1.41). The uniqueness follows from bound (1.42) and it implies
that (¢ )nen — ¢ in H(Q). The fact that ¥ € Dom(—A) = {f € HJ(Q) : Af € L*(Q)}

follows from ¢ € L?(£2) since

Ab = (6 + ).

®2
U — Ayl = & (1.45)

Lemma 1.3.3. Let e € (0,1) and & = <¢1) € C3°(2) x C3°(2). Then the equation

has a unique solution ¥ = <j;1> € Dom(.Ay) and moreover
2

1
9 < T
€
Proof. Let ¢1 € Dom(—A) be the unique (thanks to the previous lemma) solution of
(1-A)p1 =
and let ¢ € Dom(—A) be the unique solution of
(1 - 62A)(p2 = ¢2.

Define
Y1 =1+ epa, Yo i=eApr + 2

such that ¥ := <Zl> satisfies (1.45), i.e.
2

Y1 — e = @1, —€AY 4Py = P2

from which it can be seen that ¥ € Dom(.A4). Next let & = <21) then
2
1213, = o117 + 2l = llen — ewballfp + | — eAgpr + 2?
= 1ll5n + || — evallip + 2R(W1, —€ha) i
+ | = A |+ [[® + 2R (—eAgn, 92)
> [1llgp + lall? — 26R (Vebr, Vi) + (1, 2) + (Aebn, 92)).
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Now we use integration by parts and the fact that ¢, s € HJ(Q)

1113 + [[92]® — 2R ((Vpr, Vapo) + (11, 9b2) + (Avpr, )
= |17 + v2ll* — 2¢R (W1, 1h2)

and using Cauchy-Schwarz and Young inequality we get

lalFn + all® — 2eR(1, v2) = lalGn + [al® = el + lve]?)
> (1 - €)Wl

Since 1 — 2 > (1 — x)? for x € (0, 1) we can conclude with

1
[P][n < ﬁHq’HH

O
Corollary 1.3.4. Let € € (0,1) and ® € H. Then the equation
U —eA¥ =0
has a unique solution ¥ € Dom(.Ag) and moreover
] < 5 @] (1.46)

Proof. Lete € (0,1). Then the Lemma 1.3.3 implies that C§°(€2) x C§°(12) lies in the range of the
operator I — e Ap. From the closedness of 4 it then follows that I — €A is surjective. O

Now we are able to prove the validity of inequality (1.40) for 4. Since from Corollary 1.3.4
we have that I — eAp : Dom(Ay) C H — H is a bijection for € € (0, 1) the operator (I — eAp)~*
exists. This implies that also the operator (21 — Ag) ! exists for z € (1, +00) where z = 1/¢ with

I(zI = Ag) M < (z =)™

provided that (1.46) holds for all functions from Dom(.Ay) and the norm of the inverse of some
bounded operator 7' can be computed as

||

|77 = sup { ITz] :x € Dom(T), x # 0} .

Since || AB|| < ||Al|||B|| for arbitrary bounded operators A and B we have that
1((z] = A)) )" < (z—=1)"", neN (1.47)

for all z € (1, 400) which proves inequality (1.40) where M = 1. Thus according to Theorem
1.3.1 the undamped wave operator A is the infinitesimal generator of a Cy-semigroup denoted
by e“o! with growth rate w = 1, i.e.

et <ef, 0<t< +o0.

Remark 1.3.5 (A as an infinitesimal generator of a Cy-group). Moreover it can be shown that Ay
generates a Co-group at least in the case Q = RY.
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Definition 1.3.6 (Co-group). Let X be a Banach space. A one parameter family T'(t), —oo < t < +00
is a group of bounded linear operators on X is a Cy-group of bounded operators if the following is satisfied

1. T(0)=1
2. T(t+s)=T{t)T(s), —00 < t, s < 400
3. im0 T'(t)r =z, z € X.

Being a Cy-group is a stronger property than being a Cy-semigroup, meaning that every Cy-group
is a Cy-semigroup. The fact that Ay generates also a Cy-group can be obtained in a similar way using
the following theorem.

Theorem 1.3.7 ([16, Theorem 1.6.3]). A linear operator A on Banach space X is an infinitesimal
generator of a Co-group T (t) satisfying || T(t)|| < Me“I*l if and only if

1. Ais closed and densely defined

2. Every real \, |\| > w lies in the resolvent set p(A) and it satisfies

. M
HRAA)Hgaﬂtzy, VneN. (1.48)

This has been proven in [16, Section 7.4] by a similar method which was used here to prove the

generation of the Cy-semigroup.

Finally we use a perturbation theorem to prove that also the damped wave operator A
generates a Cp-semigroup.

Theorem 1.3.8 ([16, Theorem 3.1.1]). Let X be a Banach space and let A be the infinitesimal generator
af a Cy-semigroup T(t) satisfying | T(t)|| < Me*". If B is a bounded linear operator on X then A+ B
is an infinitesimal generator of a Co-semigroup S(t) satisfying ||S(t)|| < Mew+MIBIE,

Since we already know that B is a bounded operator A is the infinitesimal generator of a
Co-semigroup e\ with the growth rate

||€At|| < e(1tllalleo)t

Remark 1.3.9. For comparison we provide the result from [7, Theorem 5] where they obtained a different
growth bound for the Cy-semigroup et using a different method

|et]| < e2UHlamint 0 < t < 4o0.
Here ap, is the essential infimum of the damping a.

Remark 1.3.10 (Complex damping). As can be seen from Theorem 1.3.8 we could have assumed that
the damping function a is complex in general and we would still get the generation of the Cy-semigroup.

Recalling Theorem 1.3.1 we see that p(A) D (1 + ||a||s, +00). Moreover [16, Remark 1.5.4]
implies that every complex p such that SRy > 1 + ||al/« lies in the resolvent set of A. The
following proposition summarizes the results obtained so far.
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Proposition 1.3.11. Let 2 be an arbitrary domain in R?. The damped wave operator A with bounded
damping generates a Co-semigroup et with the growth bound 1 + ||a||oo. Moreover

o(A) C {1 e C: Ry <1+ [|afl}.

Next we move on to the regularity and uniqueness of the solutions. Since A is the infinites-
imal generator of e we already know from the previous section that given Uy € Dom(.A) we
have d
&U(t) =AU(t), U(0)=Uo
where U(t) := e*Up and thus using the C-semigroup we obtain a weak solution of evolution
problem (1.8) for A. Also we know that U(¢) is a continuous function from [0, +00) — H.
Moreover if Uy € Dom(.A) then U(t) € Dom(.A) and according to Theorem 1.2.6, U (t) is unique

and continuously differentiable on [0, +00). Recall U(t) = <Zj> and Uy = <ZO>' In particular
t 1

given Uy € Dom(.A) this means that there exists a unique solution u(t, z) of (1.8) satisfying
u(t,) € C%([0, +00), Dom(=A)) N C([0, +00), Hy(2)) N C*([0, +00), L*(2)).

1.3.3 Time evolution

Our aim now is to show that under a sign-changing condition evolution system (1.8) with
the operator A possesses an unstable solution for sufficiently large damping in some sense. In
particular we parameterize the damping a by a positive multiplication constant ¢, i.e. a = ab
and accordingly we denote the operator .A with damping ab, the parameterized damped wave

Operator, bs/ Aa, i.e.
’ A —Oéb )

and of course the domain of A, remains unchanged. Henceforth we assume the sign-changing
condition for the damping to be

essinfb(x) <0 and esssupb(x) > 0.
Sy z€QN

To prove the instability we would need the existence of at least one positive point in the spec-
for a > o there is at least one positive point in the spectrum of 4,. Denote this point by . If
A lies in the point spectrum then the evolution problem transforms to

d
SUM =), U(0)=Uo

and thus U(t) = UpeM. Since A > 0 we see that there exist initial conditions Uy for which the
solution grows exponentially in time and thus is unstable.

On the other hand if ) lies in the essential spectrum we obtain the instability from a result
by Sola-Morales in [18, Theorem 1]. It states that since A generates a Cp-semigroup evolution
problem (1.8) has the so called global instability property if there is a positive point in the
essential spectrum of A. The global instability property means that for every residual subset
of initial values in Dom(.A) and for every initial value Uy from such a set the corresponding
semiorbit vy (Up) := {U(t) : U(0) = Uy, t € [0,+00)} is unbounded. A residual set is the
complement of the set formed by a countable union of nowhere dense sets (sets where the
interior of the closure is an empty set). Moreover this implies that Dom(.A) has no positively
invariant bounded sets with points stable in the sense of Lyapunov [18].



Chapter 2

Schrodinger operator

Henceforth let Q be an arbitrary domain in R? as in the previous chapter. In this chapter we
state the definition of the self-adjoint Laplace operator on L?(2) with Dirichlet boundary condi-
tions (the Dirichlet Laplacian) and afterwards we properly define the self-adjoint Schrodinger
operator as a perturbation of the Dirichlet Laplacian for suitable class of potentials. Further-
more we state some of its spectral properties needed in the rest of the thesis.

2.1 Dirichlet Laplacian

The Dirichlet Laplacian on L?(f2) is defined as the Friedrichs extension of the minimal op-
erator

T :=—A, Dom(T) := C(N)

where —Ay = — Zf-l:l 32715 and the derivatives are meant in the weak sense. C§°({2) denotes
the space of smooth functions with compact support in 2. Since C§°(f2) is dense in L?(Q) this

operator is densely defined. Moreover for ¢, ¢ € C5°(2) using the integration by parts we get

(¥, —Ad) = (V§),V¢) = (=AY, ¢) (2.1)

where V stands for the weak gradient. Hence T is symmetric. Plugging ¢ := ¢ into (2.1) we
get (1, —AY) = (Vip, V) = [|[Vo||? > 0 from which it follows that 7" is a positive operator.
Moreover the quadratic form induced by 7T is

QY] = (¥, T¥) = |[V¥[?, Dom(Qy) := C§°(%)

which is again densely defined, symmetric and positive (more specifically bounded from below
with the bound equal to 0) using the same arguments as before. Since this form is induced by
a positive and symmetric operator it is closable [4, Theorem 4.4.5] and its closure is

Qrly] = [Vy[?, Dom(Qr) := Hj(%).

Indeed since Q- is bounded from below by 0 it induces an inner product on Dom(Q.;-) which
is equal to the inner product defined on H'(Q2) and moreover the closure of Dom(Q) in H'(12)
is by the definition the space H} (), see [20, Section 5.5].

Finally using the Representation theorem [20, Theorem 5.37] we get that there exists a self-
adjoint and bounded from below operator 7 associated with Q7 defined as

T4 := ~Ad, Dom(T):= {¢ € Dom(Qr) : 3¢ € L*(Q), ¥y € Dom(Q7), Qr(p,¥) = (12,0}
35
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where Q7(-,-) is the sesquilinear form determined uniquely by the quadratic form Q7[-] via
the polarization identity. In this particular case Q7 (v, ¢) = (Vi, V¢). Looking at the domain
of 7 we see that it can be rewritten using the definition of the weak Laplacian, i.e.

T :=—Av¢, Dom(T):={¢ € HI(Q): Ay € L*(Q)}.

The operator 7 will be called as the Dirichlet Laplacian. Further specifications of the domain
of 7 are possible however they require some regularity of 2.

Remark 2.1.1 (Domain of 7). Here we state some examples of the domains of T. This list is not
complete, another examples are known.

e For arbitrary Q C R it holds
Dom(7) = {¢ € H)(Q) : A € L*(Q)} .

e For Q C R? bounded and of class C* we have
Dom(T) = H} () N H*(Q)
which follows from the elliptic regularity theory.

e For Q = R? we get
Dom(7) = H?*(R?)

since it can be shown that H} (R?) = H'(R?).

Remark 2.1.2 (Spectrum of 7). We state some known facts about the spectrum of T depending on §2
which will be useful in the following.

e For arbitrary Q C R it holds that o(T) C [0, +o0) since T is a positive operator.
e For bounded Q C R? we know that the spectrum is purely discrete, i.e. o(T) = oqisc(T).

e For Q = (0, L) (and also for every other bounded interval) we know the explicit formula for the

spectrum
=)

e For Q = R the spectrum is purely continuous and equal to the upper half-line, in particular

“+o00

n=1

o(T) = 0e(T) = 0ess(T) = [07 +00). (2.2)

2.2 Schrodinger operator

Now we move on to the definition of the Schrodinger operator being a perturbation of
the Dirichlet Laplacian. Henceforth let V5 € L*°(,R) denote the potential. We define the
multiplication operator V), associated with Vj as

Vo := Voo, Dom(Vy) := L*(Q)
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and with the quadratic form

Q] = (10, Vo) = /Q Volto2,  Dom(Qy,) := L3(2).

For the norm of V), we can easily obtain the following bound

V \% Volloo
vepomvo) 10l yerz@) 191 7 yerz@ 19l
$7#0 P#0 Y#0
hence V) is a bounded operator (in fact it holds that ||Vy|| = ||Vb||oc). Now we state the pertur-

bation theorem which will enable us to define the self-adjoint Schrodinger operator.

Theorem 2.2.1 (Kato-Rellich, [17, Theorem X.12]). Let A be a self-adjoint operator on Hilbert space
H bounded from below by M. Let B be a symmetric and A-bounded operator on H with the rela-
tive bound less than 1. Then A + B is self-adjoint on Dom(A) and bounded from below by M —
max {12, a|M| + b} where a,b are defined in (2.3).

The property of A-boundedness from the theorem means that Dom(B) > Dom(A) and that
there exist a, b € R such that
1By < all Al + bl|4|| (2.3)

holds for all ¥ € Dom(A). The infimum of such a is called a relative bound. Since V) is
bounded, it is certainly 7-bounded with relative bound equal to 0. Thus using the Kato-Rellich
theorem (in fact since ;) is bounded this could be done more easily) we can define the self-
adjoint and bounded from below Schrédinger operator S := 7 + V. In particular

St = —AY + Vb, Dom(S) := {¢ € H}(Q) : Ay € L*(Q)}

with the corresponding quadratic form

- / VYl + / Volg?.  Dom(Qs) := HL(S).
Q Q

This operator is bounded from below by —||Vj||sc. The Theorem 2.2.1 allows us to define the
self-adjoint Schrodinger operator for larger class of the potentials however this is not needed
in the thesis.

According to [4, Section 4.5] we define the numbers

S
Ap = inf sup (W, ;ﬂ) inf sup QS[Q@] (2.4)
LpCDom(S) yeL, [Pl LnCDom(Qs) yeL, V]|
dim L,=n PY#0 dim L,=n P#0

for n € N. It holds that A} < Ay < -+ < A with Ao := limy 400 Ay = inf 0ess(S) and with
the convention Ao := +00 if 055(S) = 0. These numbers represent either a discrete eigenvalue
of § (which is below the essential spectrum) or the threshold of oc(S). It also holds that
A1 = inf o(S).

Now we will state selected spectral properties of the operator S which will be needed in
the rest of the thesis. First we will state a well-known result in the case 2 = R? The proof
of this statement is made by showing that under some assumptions V) is relatively compact
with respect to 7 which ensures that the essential spectrum of the Schrodinger operator S with
potential V) is equal to the essential spectrum of the operator without potential (2.2).
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Definition 2.2.2 (Relative compactness). Let A be a self-adjoint operator on a Hilbert space H. Let
C be an operator on H such that Dom(C') D Dom(A). Then C' is relatively compact with respect to A
if and only if CR 4 () is compact for some A € p(A).

If CRA(\) is compact for some A\ € p(A) then it is compact for all points in p(A). This
follows easily from the first resolvent identity [17, Theorem VI.6]

RA()\l) — RA()\Q) = ()\1 — )\Q)RA()\l)RA()\Q), )\1, Ay € p(A)

Moreover every compact operator is relatively compact with respect to a self-adjoint operator
whose domain is included in the domain of the compact operator.

Theorem 2.2.3 (Weyl, [17, Corrolary XII1.4.2]). Let A be a self-adjoint operator on a Hilbert space H
and let C be a relatively compact with respect to A. Then A + C'is a closed operator and oess(A) =
Oess(A+ C).
We now prove the relative compactness of Vy provided that Vj I\—> 0. First consider
T|—+00
the operator Ry () for some A € p(7). For concreteness we choose A = —1. Then using the
properties of the Fourier transform F on L?(R%) we get

1

_ o1
Fo=Re(-1w = (<1

(Fo)(n) )

where | - | now stands for the standard form on R?. Hence define the function
fRESR:p—s ———
1+ |pf?

which is certainly bounded and tends to 0 as |p| — +o00. Denote the restrictions of the functions
f and V; on the ball By in R with radius R centered at the origin extended by zero on the rest
of RY by fr and Vg respectively. Moreover denote the associated multiplication operators by
Fr and VR respectively. The functions fz and Vx lie in L?(R?) thus

Frip(a) == FH ((frp)(FY)(p))) ()

is a Hilbert-Schmidt operator which is known to be compact. Next we estimate

VoF = VorFRll = [Vo(F — Fr) + Vo — Vor) Frl < [[Vollsollf = fRrlloo + Vo — VRlooll fRl o0

(2.5)
e Moyl [Vollsoll#ll
Voll = Ol < gup 2P — 11 oe
YeL2(RY) 14l EL2(RY) Il]]
p#0 P40
as well as
Vo — Vi Vo — Villso
Vo= Vorl = sup W < sp W \I@IZ\'I' 0 _ v~ Vil
wGLQ(Rd) ’l/JELQ(Rd)
»#0 »#£0
and moreover
F1(fpF -
|Frl| = sup IE= (frE) | = sup I Rllooll% [} = I fzlls
YeL?(RY) KAl verr@y I

$#0 »#0
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and
IF = Fall = sup |F~2((f — fr)FY) || ~ s If = frlloolloll _ If — fal
peL?(RY) [l weL2(RY) [l
$#0 h#0

provided that the Fourier transform is a linear and unitary operator. From

Vo ———0 and f—-30

|z|—+o00 |p|—=+o0
it follows that
|f = fRlloo ——0 and |[Vh — Vg|]| —— 0.
R—+o00 R—+o00
Thus from (2.5) we get

”V()]:— VOR]:RH — 0.
R—+o00

Since Vg is a bounded operator Vyr Fr is compact. Finally we see that VyF is a limit of compact
operators hence a compact operator provided that the space of compact operators is closed in
the space of bounded operators. Thus from Weyl theorem 2.2.3 we get that gess(S) = 0ess(T)
which is in the case Q = R? equal to [0, +00), see (2.2). Thus we have just proven the following
theorem.
Theorem 2.2.4. Let Q = R% and Vy € L>®(RY). If Vj ||4+> 0 then oess(S) = [0, +00).
T|—+00

This theorem implies that under its assumptions ogisc(S) C (—o0,0) thus all the numbers
An, are nonpositive. It follows that one needs Vj to be strictly negative at least somewhere on
R? for S to have non-empty discrete spectrum (otherwise S would be a positive operator).
Summarizing the assumptions on V we have

QO=RY VoeL®RLR) and Vo — 0. (2.6)
|z| =400
We conclude with the following propositions. Some of them require weaker assumptions on
the potential however this will not be needed in the thesis.

Proposition 2.2.5. Assume (2.8). If A\ is an eigenvalue then it is non-degenerate and the corresponding
eigenfunction can be chosen to be strictly positive. If V. < 0 and ), defined in (2.4) is a discrete
eigenvalue then it is strictly negative.

Proof. The property that )\, is strictly negative was already discussed in the previous para-
graph. Let A\; be an eigenvalue. The positivity of its eigenfunction v; follows directly from the
definition of A\; (2.4) which in the case n = 1 simplifies into

\V 2+/ Vol |?
- st _/Rd! 1] y ol
A1 = Inf 5 =
veH RY 9] [
$#£0 Re'

and we see that if ¢ is an eigenvalue then [¢1] is also an eigenvalue. The fact that [¢1| > 0
follows from the so called Harnack inequality. For more details see [9, Theorem 8.38]. From
this it also follows that \; is simple since its eigenfunction is either strictly positive or strictly
negative and two such functions cannot be orthogonal. O
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Proposition 2.2.6. Let d < 2 and let Vy € L' (R?). If [ Vo < 0 then inf o(S) < 0.

Proof. Let d < 2 and consider the test function

1 r<n
2_
wn(x> = Spn(‘xDv Q;On(r> = % n<<r< Tl2 .

0 r > n?

direct computation shows that 1, € H}(R?) for every n € N. Moreover it holds

Yp(z) —— 1, Yz eR? and |Vi,| —— 0.
n—-+o0o n—-+00

Recall that for all 1y € H}(RY) we have

[vet+ [ valup
info(S) =\ < 28 R :

/ [¥I®
Rd
Hence plugging 1/, into this formula we get

/|vwn|2+/ e

Rd Rd
/ [ |2 e Jre
Rd

and thus inf ¢(S) can be made negative by taking n sufficiently large. O

Vo <0

2.3 Schrodinger operator with energy dependent potential

In this section we will analyze the Schrodinger operator with energy dependent potential.
The fact that it is energy-dependent will be seen at the end of this section. We parameterize
the potential of the operator S by a multiplication constant. In particular we define Vj := pV'
for i € R and denote the operator S with the potential xV by S,, := T + uV where V is the
multiplication operator generated by V, i.e.

Sy = —Ap + Ve, Dom(S,) := {1 € Hy(Q) : Ay € L*(Q)} (2.7)

with the associated quadratic form

s, 1] == /Q Vol 4 p /Q VIP, Dom(Qs,) = HA(Q).

Moreover we denote numbers (2.4) corresponding to S,, by A, (1). The assumptions on 1 from
the previous section now transform to formally same assumptions since multiplication by a
constant does not affect them. Therefore we assume
Q=RY VelL*RLR), V——0 and peR. (2.8)
|z|—+o0
Now we state some results concerning A, (1). Some of them again require weaker assump-
tions than (2.8) however this will not be needed in the thesis.
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Proposition 2.3.1. Assume (2.8). Then p — A, (1) is Lipschitz continuous function on R.

Proof. Let u11, 12 € R. Then from definition (2.4) we have

Lol [ vive

>\ = 1 f 5
nlin) = Il o P 2
dim Lp=n  =£0 Rd
/d \V”LMQ + (,ul _ MQ) /d VW‘Q —i—,MZ/d VW‘Q
—  inf  sup 2R - -
L, CDom(S) oL, W\Q

< An(p2) + (1 = p2| |V ]| so-

Therefore interchanging the roles of ;11 and ji2 we obtain

[An(p1) = Anlp2)] < 1 = palllV [loo
which means that A, () is Lipschitz continuous. O
Moreover there exists an asymptotic formula for A, () as i — 400 respectively p — —oc.

Proposition 2.3.2 ([7, Theorem 4]). Assume (2.8). Then A, () satisfies the uniform asymptotics (not
depending on the parameter n)

() = Vinint + o(1), 1 — +o0o
" Vinaxit + 0(1),  pp— —00

where Viyin = essinf, cpa V() and Vipax = esssup,cra V().

As a next step we derive the formula for the first derivative of the function p — A; (). For
this we need to show that S, is an analytic family of type (A) which will ensure that \; (1) and
the corresponding eigenfunction are differentiable in p.

Definition 2.3.3 (Analytic family of type (A)). Let R be a connected domain in the complex plane
and let T'(/3) be a closed operator on Hilbert space H with non-empty resolvent set for every 5 € R.
Then T'(3) is an analytic family of type (A) if and only if

1. Dom(T'(B)) is independent of (3
2. T(B)vy is a vector-valued analytic function of /3 for every 1» € Dom(T'(3)).

There exists a useful criterion which states that in the case where 7'(5) = H + W, the
family T'(3) of closed operators with non-empty resolvent set is an analytic family of type (A)
if W is a bounded operator, see the Lemma and the corollary of its proof of Section XII.2 in [17].
Assuming that V is bounded, S,,, i € R satisfies the criterion and hence is an analytic family of
type (A).

Now assume (2.8) and V' < 0,V # 0, i.e. V is non-trivial. From Theorem XII.9 in [17] it
follows that A1 (y) is an eigenvalue and an analytic function of the parameter i provided that
it is non-degenerate and inf o(S,) < 0. The non-degeneracy follows from Proposition 2.2.5.
Moreover the fact that inf 0(S,,) < 0 holds for all V and p > 0 if d < 2, see Proposition 2.2.6.
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For d > 2 we see from Proposition 2.3.2 that for sufficiently large ;x > 0 the number \; (1) is
strictly negative. Combining we have the analyticity of A (u) for p > 0ifd < 2orpu > pg >0
if d > 2. The fact that the corresponding eigenvector is analytic in u follows from [10, Section
7.3.2]. We can therefore compute the derivatives of A; (1) and its eigenfunction. Note that we
could have also assumed V positive and p < 0.

First we provide a formula for the first derivative of A\;(x). Let A1 (x) be an eigenvalue and
Y = (z, ) € HY(RY) its eigenfunction. From the Representation theorem we have that for all
¢ € Dom(Qs,) = H*(R?)

0s,(0:0) = [ FaVou [ Vo=l | Fo=M((v.0) 29)

We compute the derivative of this formula with respect to u. For every ¢ € H*(R?) (differ-
ent ¢ than before in general) we get
—dy
—. 2.10
D) /R K (2.10)

Vd)f—l— / ¢+/ Vnp =

Both formulas hold for all ¢ € H'(RY) and thus we are able to substitute ¢ = @ in (2.9)

and ¢ = % in (2.10). Indeed % € H}(RY) since the analyticity of S,¢» means that there exists
functions 9" such that for every ;x> 0and e > 0

R4

V=) =90+ (p— ey’ + (“_26) 2+
Thus taking ;1 = € we get that ¢° € H}(R?). Moreover
0

and since H{ (R?) is a closed subspace of L2(R?) we obtain that % € H}(RY).
By substituting we obtain

a0 a0 I
— — =\ 2.11
[ vovesn [ V= [ S @1

and

Rdw—+ /vw /vww dAl /mwm( )/Rdwjﬁ. (2.12)

Now we subtract (2.11) from complex conjugate of (2.12) and get

— dAi(p) -
Vi = 1\
[ Vow =3 /]R K

2

di(p) _ /Rd Vivl
du 2
L w

which proves the following statement.

from which it follows
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Theorem 2.3.4. Assume (2.8) and let V' < 0 and non-trivial. Let A1 () be an eigenvalue with eigen-
function 1) for all € [po, +00). Then the function p — \i(p) is analytic on (uo, +00) and its first

derivative is
2
D / Viyl

W Lk

This statement implies that A (1) is decreasing. This can be shown easily for all p — A, (1)
using definition (2.4). Indeed let 111 > p2 > 0 then

Ry Ay s
(11) anﬁmS)ngn 2
dim Lp=n =40 ‘w‘
,ul K2 / V|¢|2
— 2, + inf Su
(k) dnf o) sup L
dim Ln=n_ 0

Since the last term is negative whenever V' < 0 we have A, (u1) — A (p2) < 0 which implies
that o — A, (1) is decreasing.

Proposition 2.3.5. Assume (2.8) and let V' < 0 and non-trivial. The function y — A, () is decreasing
on (0, +o0) forall n € N.

In the case of \; (1) which is analytic on a suitable interval we are also able to compute the
higher derivatives. We will now derive the formula for the second derivative. First we compute
the derivative of (2.10), i.e. the second derivative of (2.9). For all ¢ € H'(R?) we have

w 2W+2/ V¢+/ ¢2¢

d>\1 /¢+A /¢d2¢ d2>\1 /W

Now we substitute ¢ = “ Y into (2.9) (i Y c H}(R?) using the same arguments as before) and
¢ = 1 into (2.13) obtaining

(2.13)

_d2y d% d2y
Rdvva+ / du gt =l )/]Rdd/iQw

and

Vo 2W’+2/ vw+/ w

R4 du?

) [ ody 2y d%() _
. Rdw LW /w /Rdw

Subtracting the complex conjugate of the former from the latter we obtain

dap d)\l(u) —dyp d*M(p)
2/ ij du /Rdwdqu dp? W
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which implies

—dy A [ Y
A2\ () /Rdw) dp /qu’bdu.

Q2 2 -
g [ ur
Rd
Now we substitute ¢ = % into (2.10) obtaining
s A / ¢ / / dep|?
— = — h A ekl
/ duw dp  Jra duw du — dp + 1) rd | dp

which is negative from the definition of \; (,u) Indeed from (2.4) it holds

dy |?
Vi
Qs Jee| Y du +“/ 'du
A(p) = inf 5 <
veHLRY ([P /
$#0 MFm

Recalling Proposition 2.3.4 we have just proven the following statement.

Theorem 2.3.6. Assume (2.8) and let V' < 0 and non-trivial. Let \1(u) be an eigenvalue with eigen-
function 1 for all ju € [pg, +00). Then

Pl / of [ vage - [ v [ 55
e ([, W)

Moreover 4 d>‘ ) s negative for all j € [pg, +00) and therefore j — A1 () is concave.

Finally we provide an example of the family S,, where the potential is the so called finite
rectangular well. Consider the Schrédinger operator denoted by S4, 1 > 0, a < 0 on L*(R)
with the potential V, generated by the function

0, z<a
Va(x)=1a, a<z<-—a
0, > —a.

Since uV, suffices the assumptions of Theorem 2.2.4 the essential spectrum of S, is [0, 00). We
will now find the discrete spectrum. For this we compute the point spectrum thus we have to
solve the equation

A%
W2 + Vo) = A

for some 0 # ¢ € Dom(S}}) = H 2(R) and A € R (since Sy, is self-adjoint) which involving the
definition of V' implies

d?y
—@:Aw, r<a
d2
df"‘ﬂ&@[)—)\?f), a<z<-—a

a2y

—@ = )\¢, xTr > —a.
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The general solution of these equations is

P1(x) = CreV N 4 eV, 2 <a
Po(z) = CygeV—AHa)z L Cye=V=Ompaz g g
P3(x) = Cse¥ ™ + Coe ™, 2> —a

where we denoted the partial solutions by ;. For 1 to lie in L*(R) we need A < 0 (which
implies there are no eigenvalues embedded in the essential spectrum) and also Cy = C5 = 0.
Since Sy, is bounded from below by —u[|V; || = pa (which follows for example from 2.2.1) we
have that inf 0(S}}) > pa therefore we are looking for A € (pa,0).

Moreover since from the Sobolev embedding theorem it follows that H2(R) ¢ C*(R) we
need to assure that

i

s 4% ang W2y =9y

Y1(a) = a(a), Y2(—a) = 3(—a), dx dx dx

(a)

Hence
Clea\/j _ C3eai\//\—ua + C4e—ai\/)\—ua

Cge_ai\/m + C4€ai\/m e Cﬁea\/j/\
Civ/—X eV = Csin/A — pua e®VATHY — Cyin/ N — pa e”@VAHA

Ciin/\ — pa e VAR _ Cyin/X — pa eWVATHE — _ O /=X eV A

which is a linear homogeneous system for the four constants Cy, C3, C4 and Cg. It has a non-
trivial solution only if the corresponding determinant is zero, i.e.

ea\/j _eaz‘x/k—,ua _e—ai\/A—,ua 0
0 e—0iVA—pa eV A—pa VAN
VeV A i A= pa eBVATHE G SN g e T MVATRA 0 =0
0 iV — pa e—aiVA—pa —i/A = pia e®VA—Ba /TN eV =A

Computing the determinant we get

2/ A(—A + pa) cos(2ar/ A — pa) + (2X — pa) sin(2ay/ A — pa) = 0.

Using the double-angle formulas for sine and cosine we obtain

2\ —
cos?(ar/\ — pa) — sin®(a\/\ — pa) + AT HE sin(ay/\ — pa) cos(ay/A — pa) = 0.

A=A+ pa)

which is equivalent to
cos?(ar/A — pa) — sin?(a/\ — pa)
A — pa A )
+ A sin(ay/A — pa) cos(ay/A — pa) =0

_Ma
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—10_— °

-12

Figure 2.1: Plot of the eigenvalues of S, ! for 1 € (0,13)

and thus

(Cos(a\//\ — pa) — —A sin(ay/A — ,ua))

A — ua

X (Cos(a\/z\ — pa) + A :)/\m sin(ay/A — ,ua)> =0.

Now we divide the equation by the term sin(ay/A — pa) cos(ay/A — pa). This is possible for if
sin(ay/A — pa) = 0 then from the equation also cos(ay/A — pa) = 0 and vice versa. This cannot
happen at the same time. Hence

A — pa

(cot(a\//\—ua) - A ) <1—|— A—/(m tan(a\/)\—,ua)> =0.

Employing the oddness of tangent and cotangent we get that the eigenvalues A can be found
as the solutions of the following two equations

tan(—a\/ A — pa) = A and  cot(—ay/A — pa) = — —

A — pa A —pa’

The eigenvalues have finite multiplicity and no limit point therefore they coincide with the
discrete spectrum and we would denote them by A, (1) as before. On Figures 2.1 and 2.2 we
provide the dependence of \,(x) on the parameter p for various values of a. It can be seen
that in accordance with 2.3.5 and 2.3.2 the functions p — A, (u) are decreasing and behave
like linear functions as 1 — +o00. Moreover the first eigenvalue appears immediately as p is
non-zero. This corresponds with Proposition 2.2.5.
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Figure 2.2: Plot of the eigenvalues of S, %*® for 11 € (0,2)

2.4 Correspondence with damped wave operator

In this section we state a theorem of crucial importance for this thesis. It provides a con-
nection between the spectrum of the self-adjoint Schodinger operator S,, with bounded poten-
tial V and the spectrum of the non-self-adjoint parameterized damped wave operator A, on
H}(R?) x L2(R?) defined in (1.49) with bounded damping b := V. In particular

Aq = (2 _i V) . Dom(A,) = H*(RY) x HL(R?). (2.15)

The discrete and essential spectrum of a non-self-adjoint operator were defined in Subsection
1.2.4.

Theorem 2.4.1 ([7, Lemma 2]). Let A, be damped wave operator (2.15). Then for p € Rand o > 0 it
holds

1. - (g)Q € op(S) = £ € op()

(Y [ad
2. (a) € 0ess(S) = £ € uss(Aa).

This theorem justifies the fact that we call S, the energy dependent Schrédinger operator
since y is the eigenvalue (energy) of the non-parameterized damped wave operator A. Next

we have the following useful proposition.

Proposition 2.4.2. Let A, be defined by (2.15) and assume that the damping V is nonpositive. Then
forall p € op(Aq) it holds Ry > 0.

Proof. Let u € 0,(Ay). Then there exists 0 # ¥ € Dom(A,) such that A, ¥ = p¥. Denoting
v = <$> we get

d2
@wl —paVipy = pupy and o = phy
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which together gives
d2
@1/11 — paVipy — N2¢1 =0.

Note that this equation can be viewed as a problem for a quadratic operator pencil, see [15].
Nevertheless multiplying by v, and integrating over R? implies

/rwn?wa/ V|¢1I2+M2/ il =0
Rd Rd Rd

where we used the integration by parts. This is a quadratic equation for ;» hence we can com-
pute the solution

—Q fRd VW}lP +vD
2fRd |¢1’2

Ht =
where the discriminant D is

=0=us+r >0

2
D:cﬂ(/ w) [l [P 205 e 20
Rd Rd Rd

<0=Rus >0.

O]

Finally we can immediately see from Theorem 2.4.1 that since Sp = 7 and 0 € o0.(7) it
holds that 0 € 0css(Aq). Moreover we know that 0 € o.(7") which implies that 0 ¢ o,(Aq).

Proposition 2.4.3. Let A, be defined by (2.15). Then 0 ¢ op,(Aq).



Chapter 3

Bounds for eigenvalues of damped
wave operator

In this chapter we derive numerous bounds for the eigenvalues of damped wave operator
A (2.15) using the correspondence between the spectrum of the damped wave operator and
the Schrodinger operator S, provided by Theorem 2.4.1. We use selected known bounds for
the spectrum of the Schrodinger operator namely the Lieb-Thirring inequalities, the Buslaev-
Faddeev-Zakharov trace formulae and the Birman-Schwinger principle.

Before proceeding recall the already obtained upper bound stated in Proposition 1.3.11
which follows directly from the fact that A generates a Cy-semigroup.

Next we consider the non-parameterized damped wave operator A = A;. We are able to
obtain a simple bound for ;1 € 0,(A), ¢ € R using only Theorem 2.4.1 and the property of
bounded from below self-adjoint operators which for S, states that

inf 0(8,) 2 =1V ]|oo-

Assume (2.8). Then we know that 0es(S,) = [0, 4+00). All A\, (1) defined in (2.4) thus coincide
with the strictly negative part of the point spectrum of S, and we have A, (1) > —|u|||V||co-
Since from Proposition 2.4.3 we know that i # 0 we get from Theorem 2.4.1

p € op(A) = —p € 0p(S,) <= Fj €N, Nj(n) = —pi* = —|uf?
hence

—[ul? = =[ullV s

and we conclude with the following statement.

Proposition 3.0.1. Let A be damped wave operator (2.15) with o = 1 and the damping V' satisfying
assumptions (2.8). Let p € op(A), u € R. Then it holds that |p| < ||V co-

3.1 Lieb-Thirring inequalities

Consider a self-adjoint Schrédinger operator —A + V on L?(R¢) with real potential V and
negative eigenvalues {\,, : n € N, n < N} where the number of eigenvalues N can be finite or
infinite. The Lieb-Thirring inequalities (see for example the summarizing paper [12]) provide
an upper bound for the moments (sums of various powers) of the negative eigenvalues in

49
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terms of the integral of some power of the negative part of the potential V_ := 1(|V| — V). In
particular it holds
N d
S < Lo [ VI G1)
n=1 R?

where L, ; € R and the parameter v can be chosen in the following way depending on the
dimension d:

ed=1,7>3,
e d=2,v>0,
e d>3 v>0.

The values of v satisfying this properties will be called the suitable values of . The sharp values
of L, 4 (the less possible for which (3.1) holds) are known only in some cases, specifically

— cd _ 1
° Lé,l fQL%71 =3

ed>1,y>3thenL, =1L,

where the so called classical constants Lgl 4 arising from the Weyl’s asymptotic formulae for the
sum of negative eigenvalues A, () of the Schrodinger operator —A + gV as 8 — +oo

d
li 7= Aa(B)] = LY Yotz
L QZ' =t [V

satisfy the explicit formula
r 1
= — 0+ (3.2)
T 2dreT(y 4+ 4 4+ 1)

The remaining sharp constants are not known.

Assume (2.8). As was shown in the previous chapter the numbers A, (;) coincide with
the discrete and thus strictly negative part of the point spectrum of operator S,, (2.7) with the
potential 1. Thus we have the Lieb-Thirring bound

Z\A P < L [ )7 (33)

for all suitable . Here IV, denotes the number of negative eigenvalues of S,,. A trivial conse-
quence is that for all n it holds

M)l < Lo [ )T 4

Now we would like to use this bound to obtain a bound for some eigenvalues of damped
wave operator A, (2.15). For this the parameterization of A, by a would not be necessary
therefore we choose a = 1 and denote this operator by A; = A as in the first chapter.

We will consider only the real part of the point spectrum of A. Thus let ;1 € o,(.A) and let
p € R. We proceed as above. From Proposition 2.4.3 we know that p # 0. Using Theorem 2.4.1
we get

p€ op(A) = —p € 0p(S,) <= Fj €N, Nj(n) = —p*. (3.5)
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Next let ;x> 0. Using (3.4) we compute

d

)
+
S]]

d
12 = [\ ()] < Ly 173 /R v-
If on the other hand i < 0 we have
d v+$
P = Pyl < Lol [ VI

where V, := 1(|V|+ V). Choosing v = ¢ which can be done for all d > 1 we obtain

[
Rd L'd

)

[N]isH

in the case when p > 0 and

[

Ve >
Rd +_L

5 —

[N]ISW

,d

for p1 < 0. Since the potential can surely be chosen such that it satisfies our assumptions and is
less than the right-hand side of the two formulas we see that the assumption that there exists
some strictly positive or negative point in o},(A) was false in this case. Therefore we have just
proven the following theorem.

Theorem 3.1.1. Let A be non-parameterized damped wave operator (2.15) with the damping V which
satisfies (2.8). If V_ € LY(R?) and
1
[ i<
Rd Lé7d

2

then A has no positive eigenvalues. On the other hand if V.. € L4(R%) and

1
Ve <
/Rd + La,

29

then A has no negative eigenvalues.

Remark 3.1.2 (Explicit bounds). Using the sharp values of L~ 4 the explicit upper bounds for the
integral of the potential V' such that A has no positive respectively negative eigenvalues are known
except for d = 2. Here W denotes V_ respectively V.

e Ford=1
/W < 2.
R
e Ford >3
d
— 2d7r2dF(d+ 1)

Equation (3.1) and (3.1) also provide a bound for p for all suitable . Dividing them by
| u]'”g we conclude with the following theorem.
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Theorem 3.1.3. Let A be non-parameterized damped wave operator (2.15) with the damping V which
satisfies (2.8). Let 1 be its positive eigenvalue and V_ € e (R%). Then

[SIIcH

d
<L [ V7 (36)

on the other hand let 1 be negative eigenvalue and V. € e (R%). Then
d
Pt < Ly / yt (3.7)
Rd

for all suitable ~ # %.

We see that for d > 2 this theorem provides a lower bound for the absolute value of the
eigenvalue if v < ¢, in particular

27 > o
d
Ly / Wt

Rd

and upper bound (3.6) respectively (3.7) if v > 4 where W denotes V_ respectively V.. Never-
theless for v < ¢ the sharp values of L. 4 are known only if d > 4.

The answer to the question which + to choose to obtain the best bound depends on the size
of ;4 and on the dimension d.

In the past few years there arose the so-called non-self-adjoint Lieb-Thirring inequalities
which provide an upper bound for the sum of absolute values of the eigenvalues of Schrodinger
operator with complex potential (which is non-self-adjoint) see [6]. These together with the
generalized version of Theorem 2.4.1 for ;1 € C could provide another results for the spectrum
of A. This will be the aim of our next work.

3.2 Buslaev-Faddeev-Zakharov trace formulae

Consider again a self-adjoint Schrédinger operator —A + V on L?(R) with real potential
V' and negative eigenvalues {)\, : n € N, n < N} where the number of eigenvalues N is
finite. Then the Buslaev-Faddeev-Zakharov trace formulae [21] which follows from applying
the inverse scattering method on the Korteweg-de Vries equation provides a lower bound for
the sum of square roots of the eigenvalues. In particular

N 1 1
Snlizg v
n=1 4 R

Assume (2.8). Consider operator S,, (2.7) on L?(R). Moreover assume N, < 400, ie. the
number of negative eigenvalues is finite. Then the operator satisfies the above assumptions
and we get

ST (w2 > —Z/RV (3.8)

for numbers (2.4). Now we cannot use the little trick as before where we obtained (3.4) from
(3.3). First we have to ensure that IV, (the number of negative eigenvalues of S,) is exactly 1.
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This will be achieved using the Bargmann bound [17, Problem 22] which provides an upper
bound for the number of negative eigenvalues of S,

N, <1 +,u/ |V (z)||z| dz.
R

Moreover for y > 0 the assumption [, V' < 0 thanks to Proposition 2.2.6 implies that A;(u) is

an eigenvalue. Thus for
-1
pe ([ W@l ar) 39)

the number of negative eigenvalues N, is exactly 1. Consider non-parameterized (with o = 1)
damped wave operator A (2.15) on Hg (R) x L%(R). Let 11 be its strictly positive eigenvalue and

recall consequence (3.5) of Theorem 2.4.1. Hence for 1 < ([ |V (2)]|z| d:z:)_1 we get

Im=wwﬁz—lév (3.10)

/V2—4.
R

On the other hand let 1 < 0. Then S, has exactly one negative eigenvalue if [, V > 0 and

!u%<<AUV@HMMM>_1 (3.11)

holds and thus we again obtain (3.10) from which it now follows

[v=a
R

Theorem 3.2.1. Assume (2.8). Let A be damped wave operator (2.15) on H} (R) x L*(R) with a = 1
and V € LY(R, |z|dz). Let p be its real eigenvalue. If > 0 and [,V < —4orp < Oand [V >4

then »
wz(éwmmmﬁ .

Now recall parameterized damped wave operator A, (2.15) on H}(R) x L?(R). Assuming
Jz V < 0and taking p > 0 such that (3.9) holds we have exactly one eigenvalue A; () and it

follows that
vt [v
4 Ja 2 Ju

from (3.4), (3.8) and the fact that L

RS

which implies

Finally the theorem follows.

1= 1. In the case of A, Theorem 2.4.1 now gives

- <g>2 € 0p(Sp) = g € op(Aa)

which proves the following theorem.
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Theorem 3.2.2. Let A, be damped wave operator (2.15) on HJ(R) x L?(R) with the damping V €
LY(R, |x|dx) satisfying (2.8) and JxV < 0. Then for any yu > 0 such that (3.9) holds there exists

exactly one o satisfying
-1 -1
() sos (1)
R R

such that £ is an eigenvalue of A,.

This theorem gives us the existence of a positive eigenvalue of A, with specific damping.
From the comments on time evolution in the first chapter we see that this implies that there exist
initial conditions for which the solution of damped wave equation (1.1) which is generated by
A, is unstable. Assuming p < 0 and [ V' > 0 leads us to analogous statement.

Theorem 3.2.3. Let A, be damped wave operator (2.15) on H} (R) x L*(R) with the damping V €
LY(R, |z|dz) satisfying (2.8) and [, V > 0. Then for any p < 0 such that (3.11) holds there exists

exactly one o satisfying
-1 ~1
() se5+([1)
R R

such that £ is an eigenvalue of A,.

3.3 Birman-Schwinger principle

This section will use completely different techniques than the preceding parts. We will ob-
tain some results for the spectrum of the damped wave operator on Hi(R?) x L?(R9) with
complex damping in general. This will be done by generalizing the Birman-Schwinger princi-
ple for the damped wave operator.

Thus consider a bounded complex-valued damping function V' € L*°(R¢, C) and define the
corresponding damped wave operator

A= (2 _IV> , Dom(A) = H*(R?) x H}(RY). (3.12)

Since the perturbation by V' is again bounded this operator is closed as in the real case.
Now we move on to the bound for the eigenvalues of A. Let pn € o,(A), Ry # 0. Then

AV = pW for some ¥ € Dom(.A). Hence denoting ¥ = <:§1> we have
2

Atpy — pVapy — Py = 0.

Moreover we write V1 := sgn(V) ]V|% where the complex signum function is defined as sgn(V') :=
2

e'@e(V), Thus V = |V| 2V, and the equation transforms to
2

(T + W2 Db = —plV]2 Vi (3.13)

where 7 is the Dirichlet Laplacian on L?(R?) defined in Section 2.1 and we use the same nota-

tion for the multiplicative operator and its generating function. Next denote ¢ := |V/| 24/1. This
function lies in L?(R%). Indeed recall that o(7") = [0, +-00). Therefore for any > 0 we have that
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(T +nI)~! is a bounded bijection and thus there exists ¢ € L*(R?) such that (7 +nI) "1y = 14
and we have

1 1 . 1 _
lgll < MV Izl < MVIET + 0D~ ell < NVIE(T + D) llel < +oo.
Therefore equation (3.13) implies
ulVIA(T + @’ D)7 Vig = —¢

provided that Sip # 0. We are able to define the bounded Birman-Schwinger operator K, on
L%(R?) (being a composition of three bounded operators) by

Ky = plVI2 (T + p2D) Vi, Dom(K,) = L*(R). (3.14)

We immediately see that —1 € o,(K,). Thus we have just proven that for ; such that 9 # 0 it
holds ;1 € o,(A) = —1 € 0,(K,,).

Theorem 3.3.1 (Birman-Schwinger principle for damped wave operator). Let A be the damped
wave operator with complex-valued bounded damping V and let K, be the Birman-Schwinger operator
defined in (3.14). For p € C, Ry # 0 it holds

p € op(A) = —1 € op(Ky).

If some bounded operator 7" has the number —1 in its point spectrum with the correspond-
ing eigenfunction ¢ then certainly

ITol _
ol

Also we have a formula for the integral kernel of K,

T[] > 1. (3.15)

K,u(2,y) = ulV]? (@) Gz, ) Vi (y)

where G, (z,y) is the integral kernel of the resolvent (7 + u?I)~!. This is explicitly known for
d =1 and d = 3. First we focus on the case d = 1. We have (see [19, Section 2.7.5])
e—Hlz—yl

20

Gu(xv y) =

and thus
1 eflu‘lzfy|
Kylw.y) = VI (@)

Using [17, Theorem VI1.23] we can write for V € L!(R)

Vi(y).

e_)u'lz_y| 2
1 1% < 11K s :/ | | [V (y)|dedy

RxR

Kulog)Pdady = [Pyl

RxR 4l
where || - ||us is the Hilbert-Schmidt norm. Further we assume PRy > 0 to be able to estimate
the exponential and we get

e Hlz—yl ‘2

2 ‘ 2|V (2)|[V(y)]
u|*|V(x V(y)|dxdy </ " dxdy
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since |e?| = ¢¥* for z € C. Using the Fubini theorem we arrive at
1
157 < 31V I3

and employing (3.15) we conclude with the following statement.

Theorem 3.3.2. Let d = 1 and A be the damped wave operator with complex-valued bounded damping
Ve LYR). If||[V]|11 < 2then op(A) C {p € C: Ru < 0}.

We see that this theorem is a generalization of the first statement of Theorem 3.1.1 for taking
V' < 0 we know that for ;1 € o,(A) we have 5ip > 0, see Proposition 2.4.2. This together with
Proposition 2.4.3 implies the first statement of Theorem 3.1.1.

Now we analyze the case d = 3. The integral kernel of the resolvent (7 + p?I)~! is now

e—Hlz—yl
Gu(z,y) = m
and hence
" e—Hlz—yl
Ku(z,y) = N’Wﬂ@m‘% (y)-

Moreover we assume that V € R(R?®) where R(R?) is the Rollnik class which consists of all

V € L] _(R?) such that
Wi [ Oy < o
RIxR? [T — Y

As in the previous case we write

‘ —plz— y\‘
|2\V( y)|dzdy

2 2 2
e SHKAL”HS_/ el IV(w)!W

R3xR
and assuming Ry > 0 we get

’ Vix )HV( )| _ wP
K, 2 1] / | dzdy VI,

This proves the following theorem.

Theorem 3.3.3. Let d = 3 and A be the damped wave operator with bounded complex-valued damping
V € R(R3). Then

op(A) C {MEC Ru <0V |u| > HVH }

Consider now V € L2 (R3). From the sharp Hardy-Littlewood-Sobolev inequality [13, The-
orem 4.3] we know that L2 (R?) < R(R3). In particular

IVII% < Vit V]2,
from which the following corollary follows.
Corollary 3.3.4. Let d = 3 and A be the damped wave operator with bounded complex-valued damping
V € L2(R3). Then

op(A) C {u €C:Ru<0OVul >

4y }
C V2V



Chapter 4

Finite rectangular well

In the final chapter we provide an explicitly computable example of the behavior of the
point spectrum of the damped wave operator A on H} (R) x L?(R) with the damping governed
by the so called finite rectangular well. In particular let a < 0, b > 0 and let W denote the
damping function

0, z<—-b
W(x)=<¢a, -b<z<b
0, x=>0b.

The damped wave operator with the potential W is denoted by Ay, i.e.
0 1 2 1(pd
Aw = g2 , Dom(A) = H*(R) x Hy(R%).
oz W
Let i« € C be an eigenvalue of Ay then
Aw V¥ = u¥

for some 0 # ¥ € Dom(Ay ) which means
S — uWep — 2 =0
dew pWip — pyp

where v denotes the first component of ¥. Employing the definition of W we get

@1?—,“1#:07 r<—b
2
@@b—uad}—;ﬂw:(}, —b<xz<b

The general solution of these equations is

P1(z) = Cret + Coe™ M, x < —b
¢2(~’U):C3€V”a+“2x+c4efvua+“2‘r, —b<zxz<b
wg(x) = Cse™ +Cge ™™, >0
57
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where we denoted the partial solutions by ;. The potential W satisfies assumptions (2.8) and
thus Proposition 2.4.2 implies that Ru > 0. Hence for ¢ to lie in L?(R) we need Cy = C5 = 0.
Moreover since the Sobolev embedding theorem implies that H2(R) C C'(R). This means we
need to assure that

(b = Un(), a) = (), (b= 2(b) and T2 = )

Iherefore
_ _ 2 2
Che “b:C3€ pa ’Ub—i-C4€ patp=b

CeVHatI?h L CuemVHatih — cge=nb
Crpe ™ = O3\/a + p2 e VHatet _ oy Jua + p2 eV ratu?h
7 pa + p pa + p
Csv/pa + p2 eVHtTr _ Cua + p2 e VIR — _ g e

which is a linear homogeneous equation for the four constants C, C3, Cs and Cs. Therefore it
has a non-trivial solution only if the the corresponding determinant is equal to 0, in particular

e—Hb _e—\/mb _e\/ua—&-,tﬂb 0
0 e\/,ua+/12b e*\/,uaﬁu% —e—Hb

=0.

Me—ub _ /,ua—l—,uQ e~ pna+pu2b ’,ua+,u2€ pna+p2b 0
0 fua + p2 e pa+p2b _ /Na+ﬂ2 e—V na+p?b ,ue_’“‘b

Computing the determinant we arrive at

. R (2 pa + p? cosh(2by/ pa + p2) + (a + 2p) sinh(2b+/ pa + uz)) =0
which is equivalent to

2/ pa + p2 cosh(20y/a + pi2) + (a + 2u) sinh(2by/pa + p2) = 0.

In the special case when ;. € R this reduces to

2v/ —(pa + p?) cos(2bn/—(pa + p?)) + (a + 2p) sin(2by/—(pa + p2)) =0

since cosh(iz) = cos(x) and sinh(iz) = isin(x).

Hence the latter two equations determine the eigenvalues of Ay,. On Figures 4.1, 4.2, 4.3,
44,45, 4.6, 4.7 and 4.8 we can see their behavior with respect to different values of a when
b = 1. We can see that the eigenvalues emerge from the imaginary axis and the deeper the well
is the greater is their number.

Now we compare the bounds for the real eigenvalues obtained in the previous chapter. We
analyze their behavior for different values of a with b fixed. In particular we employ the bound
of Proposition 3.0.1 which for Ay has the form

< Wlloo = =Winin

where Wo,in denotes the essential infimum of W as before. Moreover we use the bound of
Theorem 3.1.3 which states that

r 1 -1
n< L’y,l/ |W|7+% - T (v +1 ) b(_a)wr% 2
R 7T2F(’Y + 5 + 1)
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Figure 4.1: Plot of eigenvalues of Ay with
a=—-15andb=1

Figure 4.3: Plot of eigenvalues of Ay, with
a=—-2andb=1

Figure 4.5: Plot of eigenvalues of Ay, with
a=—-25andb=1
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Figure 4.2: Plot of eigenvalues of Ay, with
a=-18andb=1
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Figure 4.4: Plot of eigenvalues of Ay with
a=-23andb=1
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Figure 4.6: Plot of eigenvalues of Ay with
a=-28andb=1
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Figure 4.7: Plot of eigenvalues of Ay, with Figure 4.8: Plot of eigenvalues of Ay, with

a=-3andb=1 a=-33andb=1
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Figure 4.9: Plot of the bounds for eigenvalues of Ay withb=1and a € (-4, —1.1)

for all v > 3 where we used explicit formula for L. ; (3.2) since in this case L, = L,Cylyl. We plot
these bounds for v = 3 and v = 3 denoted by LT(3/2) and LT'(5/2) respectively. Since these
bounds holds for every eigenvalue of Ay we compare them with the numerically computed
greatest real eigenvalue denoted by fimax. The results can be seen on Figures 4.9 and 4.10 for
b =1and b = 2 respectively.

It can be seen that in both cases the bound LT'(3/2) is the best for the smallest values of
la| for which Ay has a real eigenvalue. Then as |a| grows the function L7(3/2) is crossed by
LT (5/2) which thus starts to be the best bound. Finally for the largest values of |a| the bound
—Whin wins and provides the best estimate for any real eigenvalue ;.. Also note that for small
enough dampings there is no eigenvalue which is in agreement with Theorem 3.1.1.

Considering the case when a is fixed and b changes we obtain the behavior which can be
seen on Figures 4.11 and 4.12 for a = —1 and a = —2 respectively. The quality of the bounds
is the same as in the preceding, i.e. for the lowest values of b the bound LT'(3/2) is the best.
Then with growing b the bound LT'(5/2) becomes better and with yet other growth the bound
—Whin possesses the best information about .
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Figure 4.10: Plot of the bounds for eigenvalues of Ay withb=2and a € (-2.5,0.5)
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Figure 4.11: Plot of the bounds for eigenvalues of Ay witha = —1and b € (1.2,5)
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Figure 4.12: Plot of the bounds for eigenvalues of Ay witha = —2and b € (0.5, 5)

The last phenomena we are going to discuss is the sharpness of the bound of Theorem
3.1.1 respectively Theorem 3.3.2. The Birman-Schwinger principle can be used to obtain an
analogous result for the Schrodinger operator which moreover states that the corresponding
bound is sharp when the potential is the Dirac delta function. We would like to obtain such a
result also for the damped wave operator at least from the numerical point of view. This will be
done by parameterizing the delta function by an infinitely deep and narrow rectangular well
whose L! norm converges to 2. More specifically we take the potential W and set

1+ %
h

a=—-h and b=

for some h > 0. On Figure 4.13 we can see the plot of the eigenvalue (which is unique and real)
of Ay depending on the parameter h. We see that the larger is the parameter % the smaller is
the eigenvalue and it is still present. Moreover for deep and narrow wells whose L! norm is
slightly less than 2 the numerics show that there is no eigenvalue. This together with the fact
that ! > 0 suggests that for the Dirac delta function the bound of Theorem 3.1.1 could be
sharp. This of course has to be proven analytically which will be the goal of our next work.
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Figure 4.13: Plot of the eigenvalue of Ay depending on the parameter A
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Conclusion

In this thesis we properly defined the damped wave operator as a generator of a Cp- semi-
group which provided us with unique and regular solutions of the damped wave equation.
We stated some known results on the time evolution and stability of these solutions. After-
wards we defined the Schrodinger operator with real potential as a bounded perturbation of
the Dirichlet Laplacian and stated some of its spectral properties. We obtained the formulas
for the first and second derivative of the first eigenvalue of this operator with respect to a mul-
tiplicative parameter which parameterizes its potential. In the main chapter of the thesis we
obtained numerous bounds and criteria of existence of the eigenvalues of the damped operator
using the correspondence between its spectrum and the spectrum of the Schrodinger opera-
tor and know results for the latter. We used namely the Lieb-Thirring inequalities, Buslaev-
Faddeev-Zakharov trace formulae and the Birman-Schwinger principle. The last mentioned
was used to establish the Birman-Schwinger principle for the damped wave operator even in
the case of complex damping. Finally we demonstrated some of the obtained results in the case
when the damping is the finite rectangular well.

In the future work we would like to focus on the connection between the Schrodinger op-
erator with complex potential and the damped wave operator with complex damping and use
the numerous number of results for the former to obtain some information about the latter.
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