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Academic year: 2018/2019





- Zadání práce -



- Zadání práce (zadní strana) -



Acknowledgment:
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Klíčová slova: Birman-Schwingerův princip, C0-semigrupa, Lieb-Thirringovy nerovnosti, ope-
rátor vlnové rovnice s útlumem

Title:
Lieb-Thirring inequalities for the damped wave equation

Author: Tereza Kurimaiová

Abstract: The operator approach for the damped wave equation provides us with uniqueness
and regularity of its solutions since the operator generates a C0-semigroup. Moreover the
behavior of its spectrum gives us information about the stability of the solutions. Using the
correspondence between the spectra of this operator and the Schrödinger operator we obtain
numerous bounds on the eigenvalues and criteria for their existence or absence even in the
case of complex damping. These results are demonstrated on the analytically computable case
when the damping is a finite rectangular well.

Key words: Birman-Schwinger principle, C0-semigroup, damped wave operator, Lieb-Thirring
inequalities





Contents

Introduction 11

1 Damped wave operator 13
1.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Bounded Ω ⊂ R and constant damping a ≥ 0 . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Damped wave operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.2 Basics of semigroup theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 Generation of semigroup and its consequences . . . . . . . . . . . . . . . . 17
1.2.4 Growth bound and the spectrum . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Arbitrary Ω ⊂ Rd and bounded damping a ∈ L∞(Ω) . . . . . . . . . . . . . . . . . 28
1.3.1 Damped wave operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.2 Generation of semigroup and consequences . . . . . . . . . . . . . . . . . 30
1.3.3 Time evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Schrödinger operator 35
2.1 Dirichlet Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Schrödinger operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Schrödinger operator with energy dependent potential . . . . . . . . . . . . . . . 40
2.4 Correspondence with damped wave operator . . . . . . . . . . . . . . . . . . . . . 47

3 Bounds for eigenvalues of damped wave operator 49
3.1 Lieb-Thirring inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Buslaev-Faddeev-Zakharov trace formulae . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Birman-Schwinger principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Finite rectangular well 57

Conclusion 65

9



10



Introduction

Consider the second order partial differential equation

utt + aut −∆u = 0

for some function u where a is an arbitrary function and −∆u = −
∑d

i=1 uxixi with d being the
dimension of the space. Let us call it the damped wave equation with the damping a. It can be
used to model various physical systems in a more realistic manner than can be achieved by the
standard wave equation without any damping. It describes namely the vibrations of an elastic
string, membrane or any other object in a viscous liquid or some other medium which affects
the vibration. It is a special case of the telegraph equations which describe the current and
voltage on an electrical transmission line and moreover it is being used in relativistic quantum
mechanics and cosmology.

In this thesis we aim to provide spectral bounds for the non-self-adjoint operator associated
with the damped wave equation, the damped wave operator. This will be done using the
correspondence between this operator and the self-adjoint Schrödinger operator. The behavior
of the spectrum the provides some information about the time evolution and stability of the
solutions of the damped wave equation.

In the first chapter we properly define the damped wave operator. First we analyze the ex-
plicitly computable example of vibrations of a string with constant damping. We show that in
this case the operator generates a C0-semigroup which implies that the solutions of the equa-
tion are generated by this C0-semigroup and also that they are unique and sufficiently regular.
Moreover using the growth bound of theC0-semigroup we are able to obtain a uniform optimal
damping for which the system returns to equilibrium in the shortest time. This example serves
as a motivation for the next part of the chapter where we define the damped wave operator
on an arbitrary domain in Rd and with bounded damping. We again show that it generates a
C0-semigroup and finally we state some results on the stability of the solutions.

In the second chapter we define the Schrödinger operator as a bounded perturbation of
the Dirichlet Laplacian by some real potential. We state some of its spectral properties which
will be needed in the next chapter. Then we parameterize the potential of the Schrödinger
operator and establish the formulas for the first and second derivative of the first eigenvalue
with respect to the parameter. We provide an example of the behavior of the spectra with
respect to the parameter when the potential is the finite rectangular well. At the end of this
chapter we state Theorem 2.4.1 which gives us the connection between the spectrum of the
Schrödinger operator and the damped wave operator.

In the third and most important chapter of the thesis we establish our own results for the
damped wave operator using the well-known results for the Schrödinger operator. The ob-
tained results consist of proving the absence of some part of the spectrum and of upper and
lower bounds for the eigenvalues. In particular the Lieb-Thirring inequalities were used to
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prove Theorems 3.1.1 and 3.1.3. Moreover to obtain Theorems 3.2.1, 3.2.2 and 3.2.3 we em-
ployed the Buslaev-Faddeev-Zakharov trace formulae. Finally we lowered the assumptions
on the damping enabling it to be complex but still bounded and we established the Birman-
Schwinger principle for the damped wave operator, Theorem 3.3.1, using which we were able
to obtain further results, namely Theorems 3.3.2 and 3.3.3, some of them generalizing the pre-
vious ones.

In the final part of the thesis we consider the damped wave operator with the potential
being the finite potential well and compute the implicit equation for its eigenvalues. Using
this we plot the behavior of the point spectra when the well becomes more deep or narrow.
Moreover we plot the dependence of the bounds obtained in the previous chapter and com-
pare them with the numerically computed values of the eigenvalues. Finally we provide a
numerical evidence that the bound of Theorem 3.1.1, respectively 3.1.1 is sharp when the well
is taken infinitely deep and narrow which can be interpreted as the Dirac delta function. This
corresponds to the well-known result for the Schrödinger operator.
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Chapter 1

Damped wave operator

1.1 Derivation

In this section we introduce the operator approach for the damped wave equation. Let
Ω ⊂ Rd be an arbitrary domain and let a : Ω → R be a damping function. Consider a system
governed by the damped wave equation for some function u subject to the initial conditions,
i.e.

utt + aut −∆u = 0, in Ω, t > 0

u = u1, in Ω, t = 0

ut = u2, in Ω, t = 0

(1.1)

where −∆u = −
∑d

i=1 uxixi . Moreover we impose the Dirichlet boundary condition

u = 0 on ∂Ω, t > 0. (1.2)

To cast this system into the operator form it is customary to use the Hilbert space

H :=
(
H1

0 (Ω)× L2(Ω), (·, ·)H
)

(1.3)

where the Sobolev space H1
0 (Ω) is the closure of the subset of smooth functions with compact

support C∞0 (Ω) in the Sobolev space H1(Ω), a member of the family of the Sobolev spaces

Hk(Ω) :=
(
{f ∈ L2(Ω) : Dαf ∈ L2(Ω), ∀|α| ≤ k}, (·, ·)Hk

)
where Dα stands for the weak derivative of order k ∈ N. The inner product (·, ·)Hk is defined
as

(f, g)Hk :=
∑
|α|≤k

(Dαf,Dαg)

where (·, ·) denotes the standard inner product on L2(Ω). Accordingly the norm on L2(Ω) will
be denoted by ‖ · ‖, i.e. without any subscript. However the same notation will also be used for
the operator norm, the two to be distinguished from the context.

Hk(Ω) is complete and therefore a Hilbert space. Hence the spaces H1(Ω) and H1
0 (Ω) are

complete and equipped with the inner product

(f, g)H1 = (∇f,∇g) + (f, g) =

∫
Ω
∇f∇g + fg. (1.4)
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Note that H1
0 (Rd) = H1(Rd) (see [1, Corollary 3.23]). The inner product on the whole space H

is just the inner product on the Cartesian product of the two Hilbert spaces, i.e.

(Ψ,Φ)H :=

((
ψ1

ψ2

)
,

(
φ1

φ2

))
H

=

∫
Ω
∇ψ1∇φ1 + ψ1φ1 + ψ2φ2. (1.5)

Next denoting

U0 :=

(
u1

u2

)
and U(t) :=

(
u
ut

)
(1.6)

we can formally write

d

dt
U(t) =

(
ut
utt

)
=

(
ut

−aut + ∆u

)
=

(
0 I
∆ −a

)(
u
ut

)
where I is the identity operator on L2(Ω) and thus we obtain an evolution problem (or abstract
Cauchy problem) with a matrix valued operator

d

dt
U(t) =

(
0 I
∆ −a

)
U(t), U(0) = U0.

Motivated by the formal derivation we define the damped wave operator A onH as

A :=

(
0 I
∆ −a

)
, Dom(A) := Dom(−∆)×H1

0 (Ω) (1.7)

where the definition by matrix means (and in the whole thesis would mean)

A
(
ψ1

ψ2

)
:=

(
ψ2

∆ψ1 − aψ2

)

for
(
ψ1

ψ2

)
∈ Dom(A). Moreover the differential Laplace operator ∆ is meant in the weak sense

and Dom(−∆) stands for the domain of the self-adjoint Dirichlet Laplacian T defined in Section
2.1 below. The evolution problem for A which is thanks to (1.6) associated with (1.1), (1.2) and
in which we are thus interested is

d

dt
U(t) = AU(t), U(0) = U0. (1.8)

1.2 Bounded Ω ⊂ R and constant damping a ≥ 0

As a motivation for the next section we will now analyze the explicitly computable case
when Ω is a bounded domain in R, to be precise an interval (0, L) and where the damping
coefficient a is a positive constant. This can be the model for example for the damped vibrations
of a string of length L with fixed edges.

Our aim is to show that the operator A is an infinitesimal generator of a C0-semigroup
of contractions and then see what it implies primarily for the time evolution. For this it is
necessary to take a different inner product in H than the standard (1.5). More precisely we
define a new inner product in H1

0 (0, L) as

(f, g)H1
0

:=

∫ L

0

df

dx

dg

dx
=

(
df

dx
,

dg

dx

)
. (1.9)
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The norm ‖ · ‖H1
0

corresponding to this inner product is equivalent to the norm ‖ · ‖H1 induced
by inner product (1.4) which is inherited from H1(0, L). Indeed using the Poincaré inequality

λ1‖f‖2 ≤
∥∥∥∥df

dx

∥∥∥∥2

, ∀f ∈ H1
0 (0, L) (1.10)

where λ1 > 0 is the first eigenvalue of the self-adjoint Dirichlet Laplacian T in one dimension
and therefore the lowest eigenvalue λ of the following eigenvalue problem

− d2

dx2
ψ = λψ, x ∈ (0, L)

ψ = 0, x = 0, L

(1.11)

whose spectrum is known to be

σ =

{(nπ
L

)2
}+∞

n=1

, (1.12)

we can immediately see that these two norms are equivalent:

‖f‖2H1
0

=

∥∥∥∥df

dx

∥∥∥∥2

≤
∥∥∥∥df

dx

∥∥∥∥2

+ ‖f‖2 = ‖f‖2H1 ≤
(

1 +
1

λ1

)∥∥∥∥df

dx

∥∥∥∥2

=

(
1 +

1

λ1

)
‖f‖2H1

0
, ∀f ∈ H1

0 (0, L).

The space H1
0 (0, L) equipped with inner product (1.9) is denoted as

Ḣ1
0 (0, L) :=

(
C∞0 (0, L)

‖·‖H1
, (·, ·)H1

0

)
.

The two norms thus induce the same topology and the space Ḣ1
0 (0, L) is complete sinceH1

0 (0, L)
is. In the whole section we consider the Hilbert space being the same as H when considering
vector spaces but with different inner product

(Ψ,Φ)Ḣ :=

((
ψ1

ψ2

)
,

(
φ1

φ2

))
Ḣ

=

∫ L

0

dψ1

dx

dφ1

dx
+ ψ2φ2 (1.13)

and denoted as
Ḣ :=

(
Ḣ1

0 (0, L)× L2(0, L), (·, ·)Ḣ
)
. (1.14)

1.2.1 Damped wave operator

Considering the domains of T , Remark 2.1.1 below, the damped wave operatorA : Dom(A) ⊂
Ḣ → Ḣ is thus defined as

A =

(
0 I
d2

dx2
−a

)
, Dom(A) =

(
H2(0, L) ∩H1

0 (0, L)
)
×H1

0 (0, L) (1.15)

where the second derivative is meant in the weak sense. Since C∞0 (0, L) is dense in L2(0, L) the
domain of this operator is dense in Ḣ and thusA is densely defined. It is also unbounded since
it has compact resolvent (which will be shown further) and since Ḣ is an infinite-dimensional
space. This is a trivial consequence of the fact that compact operators form an ideal in the
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algebra of bounded operators and of the fact that the identity operator is compact if and only
if the space is finite-dimensional. The adjoint of A is

A∗ =

(
0 −I
− d2

dx2
−a

)
, Dom(A∗) =

(
H2(0, L) ∩H1

0 (0, L)
)
×H1

0 (0, L). (1.16)

Indeed we want to find Φ ∈ Ḣ such that there exists Φ∗ ∈ Ḣ for which

(AΨ,Φ)Ḣ = (Ψ,Φ∗)Ḣ

holds for all Ψ ∈ Dom(A). Let Ψ =

(
ψ1

ψ2

)
∈ A, Φ =

(
φ1

φ2

)
∈ Ḣ then

(AΨ,Φ)Ḣ =

((
ψ2

d2ψ1

dx2
− aψ2

)
,

(
φ1

φ2

))
Ḣ

=

(
dψ2

dx
,
dφ1

dx

)
+

(
d2ψ1

dx2
− aψ2, φ2

)
=

(
dψ2

dx
,
dφ1

dx

)
−
(

dψ1

dx
,
dφ2

dx

)
− a(ψ2, φ2)

(1.17)

where we used integration by parts. This has to be equal to

(Ψ,Φ∗)Ḣ =

(
dψ1

dx
,
dφ∗1
dx

)
+ (ψ2, φ

∗
2)

for some and Φ∗ =

(
φ∗1
φ∗2

)
∈ Ḣ. By choosing φ∗1 := −φ2 and φ∗2 := −d2φ1

dx2
− aφ2 we get

(
dψ1

dx
,
dφ∗1
dx

)
+ (ψ2, φ

∗
2) = −

(
dψ1

dx
,
dφ2

dx

)
+

(
dψ2

dx
,
dφ1

dx

)
− a(ψ2, φ2)

which is equal to (1.17) and proves (1.16). Therefore we deal with a non-self-adjoint operator.

1.2.2 Basics of semigroup theory

Now we state some basics of the semigroup theory. Henceforth let X be a Banach space.

Definition 1.2.1 (C0-semigroup of bounded linear operators). A one parameter family T (t), 0 ≤
t < +∞, of bounded linear operators on X is a C0-semigroup of bounded linear operators on X (a
C0-semigroup) if

1. T (0) = I (I is the identity operator on X)

2. T (t+ s) = T (t)T (s), ∀t, s ≥ 0 (the semigroup property)

3. limt→0+ T (t)x = x, ∀x ∈ X (the strong continuity).

An infinitesimal generator of a C0-semigroup T (t) is a linear operator A satisfying

Ax = lim
t→0+

T (t)x− x
t

=
d+T (t)x

dt

∣∣∣∣
t=0

Dom(A) =

{
x ∈ X : lim

t→0+

T (t)x− x
t

exists

}
.
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Also for every C0-semigroup T (t) we have the following growth estimate [16, Theorem 1.2.2].
There exists constants ω ≥ 0 and M ≥ 1 such that

‖T (t)‖ ≤Meωt, 0 ≤ t < +∞. (1.18)

The value ω is called a growth rate. Whenever ω = 0 we talk about uniformly bounded C0-
semigroup and moreover if M = 1 then we have a C0-semigroup of contractions (‖T (t)‖ ≤ 1 is
the so called contraction property). Also for all γ > ω, γ is again the growth rate, i.e. ‖T (t)‖ ≤
Meγt. The growth rate is therefore not unique.

Remark 1.2.2 (Motivation for the definition). To see the motivation for the definition of the C0-
semigroup let us consider an evolution problem with a complex matrix A ∈ Cd,d

d

dt
v(t) = Av(t), v(0) = v0 (1.19)

where v(t), v0 ∈ Cd for t ∈ [0,+∞) and v0 is the initial state. We know that the solution of this problem
is

v(t) = eAtv0, 0 ≤ t < +∞

where the term eAt is the exponential of a matrix defined as

eAt =
+∞∑
n=0

Antn

n!
. (1.20)

This sum always converges and satisfies the following properties (see for example [10, Section 1.4])

1. eA·0 = I

2. eA(t+s) = eAteAs

3. Av = limt→0+
eAtv − v

t
=

d+eAtv

dt

∣∣∣∣
t=0

4.
d

dt
eAt = AeAt = eAtA.

In these we can see the semigroup property and the definition of the infinitesimal generator. It is also from
this reason why the C0-semigroup is being denoted using the exponential of its infinitesimal generator
A, i.e. T (t) = eAt, even though the operator A can be unbounded (and therefore sum (1.20) can be
divergent in general). The C0-semigroups whose infinitesimal generator is a bounded operator and
therefore T (t) = eAt is not only formal denotation are called uniformly continuous [16, Theorem 1.1.2].
An equivalent definition is that theC0-semigroup T (t) is uniformly continuous if limt→0+ ‖T (t)−I‖ =
0.

1.2.3 Generation of semigroup and its consequences

To show that A is an infinitesimal generator of some C0-semigroup we will use the charac-
terization by the Lumer-Phillips theorem instead of the direct computation. This requires for
the operator to be m-dissipative.

Definition 1.2.3. A linear operator A on a Hilbert space H with inner product (·, ·)H is called m-
dissipative if R(Aψ,ψ)H ≤ 0, ∀ψ ∈ Dom(A) and Ran(I −A) = H .
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The notion of m-dissipativness can be defined for Banach spaces in general using the so
called duality set [16, Definition 1.4.1]. Since our operator A is defined on the Hilbert space Ḣ
we are able to use its inner product instead.

Theorem 1.2.4 (Lumer-Phillips, [16, Theorem 1.4.3]). A dense operator A is the infinitesimal gen-
erator of a C0-semigroup of contractions if and only if it is m-dissipative.

First we show that Ran(I − A) = Ḣ, i.e. that the operator A : Dom(A) ⊂ Ḣ → Ḣ is

surjective. Given
(
f1

f2

)
∈ Ḣ we want to find

(
ψ1

ψ2

)
∈ Dom(A) such that (I −A)

(
ψ1

ψ2

)
=

(
f1

f2

)
.

This leads to the following system of equations

ψ1 − ψ2 = f1 (1.21a)

− d2

dx2
ψ1 + (1 + a)ψ2 = f2 (1.21b)

ψ1(0) = ψ1(L) = 0 (1.21c)
ψ2(0) = ψ2(L) = 0. (1.21d)

Substituting from (1.21a) into (1.21b) we obtain

− d2

dx2
ψ1 + (1 + a)ψ1 = f2 + (1 + a)f1 (1.22)

and the solution of this equation can be easily obtained using the method of variation of con-
stants

ψ1(x) = C1 exp(
√

1 + ax) + C2 exp(−
√

1 + ax)

− exp(
√

1 + ax)

2
√

1 + a

∫ x

0
exp(−

√
1 + as)((1 + a)f1(s) + f2(s))ds

+
exp(−

√
1 + ax)

2
√

1 + a

∫ x

0
exp(
√

1 + as)((1 + a)f1(s) + f2(s))ds

where the constants can be obtained from (1.21c) which is a non-homogeneous linear system
of two linearly independent equations for C1 and C2 and thus it has exactly one solution. The
function ψ1 has the derivative

dψ1

dx
= C1

√
1 + a exp(

√
1 + ax)− C2

√
1 + a exp(−

√
1 + ax)

− exp(
√

1 + ax)

2

∫ x

0
exp(−

√
1 + as)((1 + a)f1(s) + f2(s))ds

+
exp(−

√
1 + ax)

2

∫ x

0
exp(
√

1 + as)((1 + a)f1(s) + f2(s))ds

and since the integral as a function of the upper bound is an absolutely continuous function
both ψ1 and d

dxψ1 belong to L2(0, L). From (1.22) we see that d2

dx2
ψ1 also belongs to L2(0, L) and

thus ψ1 ∈ H2(0, L) ∩ H1
0 (0, L). Equation (1.21d) and moreover the fact that ψ2 ∈ H1

0 (0, L) are

satisfied by (1.21a), (1.21c), the fact that ψ1 ∈ H1
0 (0, L) and by using

(
f1

f2

)
∈ Ḣ.
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Finally we show that R(AΨ,Ψ)Ḣ ≤ 0 for all Ψ ∈ Dom(A) ∈ Ḣ. Let Ψ =

(
ψ1

ψ2

)
∈ Dom(A)

then

R

(
A
(
ψ1

ψ2

)
,

(
ψ1

ψ2

))
Ḣ

= R

((
ψ2

d2ψ1

dx2
− aψ2

)
,

(
ψ1

ψ2

))
Ḣ

= R

∫ L

0

dψ2

dx

dψ1

dx
+

d2ψ1

dx2
ψ2 − aψ2ψ2

= R

∫ L

0

dψ2

dx

dψ1

dx
− dψ1

dx

dψ2

dx
− aψ2ψ2

= R

∫ L

0

dψ1

dx

dψ2

dx
−R

∫ L

0

dψ1

dx

dψ2

dx
−R

∫ L

0
aψ2ψ2

= −a
∫ L

0
|ψ2|2 ≤ 0

where we used integration by parts and the fact that ψ2 ∈ H1
0 (0, L). Hence the linear operator

A is m-dissipative and using the Lumer-Phillips theorem we obtain that it generates a C0-
semigroup of contractions which we will denote by eAt.

For such a generator (not necessarily of contractions) we have the following properties. Let
A : Dom(A) ⊂ X → X be an infinitesimal generator of C0-semigroup. Then Dom(A) is dense
in X and A is closed [16, Corollary 1.2.5]. Our operator A is thus closed and densely defined
where the latter was already shown before. Next we have a result on continuity. It holds that
for every C0-semigroup T (t) and for every x ∈ X the function t 7→ T (t)x is continuous as a
function from [0,+∞)→ X [16, Corollary 1.2.3]. This is a simple consequence of the existence
of growth rate (1.18). Therefore for U0 ∈ Ḣ,

U(t) := eAtU0 (1.23)

is a continuous function mapping [0,+∞) → Ḣ. Finally we state one of the most important
theorems for the applications of the semigroup theory.

Theorem 1.2.5 ([16, Theorem 1.2.4]). Let A : Dom(A) ⊂ X → X be an infinitesimal generator of
C0-semigroup T (t) then for every x ∈ Dom(A)

T (t)x ∈ Dom(A) and
d

dt
T (t)x = AT (t)x = T (t)Ax.

In our setting this means that for every initial condition U0 ∈ Dom(A), the function U(t)
defined in (1.23) belongs to Dom(A) and

d

dt
U(t) = AU(t) (1.24)

which is exactly evolution problem (1.8) stated in the beginning. We see that the C0-semigroup
eAt generated by A generates the solution U(t) of problem (1.8) using the initial value U0. In
other words by showing that A generates a C0-semigroup we solved our evolution problem in
the terms of eAt. However we do not yet know whether U(t) is continuously differentiable or
not. But fortunately we can say something about the regularity and uniqueness of the solution.
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Theorem 1.2.6 ([16, Theorem 4.1.3]). Let A be a densely defined linear operator with non-empty
resolvent set ρ(A). The initial value evolution problem for the operator A

d

dt
Y (t) = AY (t) and Y (0) = Y0

has for every initial value Y0 ∈ Dom(A) a unique continuously differentiable solution Y (t) on [0,+∞),
if and only if A is the infinitesimal generator of the C0-semigroup T (t).

To show the non-emptiness of the resolvent set ρ(A) in our case we can use for example the
famous Hille-Yosida theorem. In fact the Lumer-Phillips theorem 1.2.4 is only a consequence
of this theorem.

Theorem 1.2.7 (Hille-Yosida, [16, Theorem 1.3.1]). A linear operator A : Dom(A) ⊂ X → X is the
infinitesimal generator of a C0-semigroup of contractions T (t) if and only if

1. A is closed and densely defined

2. The resolvent set ρ(A) contains (0,+∞) and for every λ > 0

‖Rλ(A)‖ ≤ 1

λ

where the family Rλ(A) = (λI −A)−1, λ ∈ ρ(A) denotes the resolvent of A.

Hence we see that the operator A has non-empty resolvent set. Thus the solution U(t) =
eAtU0 is continuously differentiable on [0,+∞) and unique. Returning back to damped wave
equation (1.1) we see that using notation (1.6) we obtained a unique solution(

u
ut

)
= eAt

(
u0

u1

)
of the problem

utt + aut − uxx = 0, x ∈ (0, L), t > 0

u = 0, x = 0, L, t > 0

u = u1, x ∈ (0, L), t = 0

ut = u2, x ∈ (0, L), t = 0

where

u(t, ·) ∈ C0([0,+∞), H2(0, L) ∩H1
0 (0, L)) ∩ C1([0,+∞), H1

0 (0, L))

∩ C2([0,+∞), L2(0, L))

for every initial value u0 ∈ H2(0, L)∩H1
0 (0, L) and u1 ∈ H1

0 (0, L). The derivatives with respect
to t are thus classical but the derivative with respect to x is still meant in the weak sense.

Since this problem is explicitly solvable we are able to provide an explicit formula for the
C0-semigroup eAt. Indeed using the Fourier method and assuming u(x, t) = X(x)Φ(t) we get

X(x)
d2Φ

dt2
+ aX(x)

dΦ

dt
− Φ(t)

d2X

dx2
= 0
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which can be separated into two equations by dividing it by u(x, t) since both sides of the
equation now depend on a different independent variable and therefore they are equal to some
constant denoted by −λ:

−d2X

dx2
= λX(x) (1.25a)

d2Φ

dt2
+ a

dΦ

dt
+ λΦ(t) = 0. (1.25b)

Boundary condition (1.2) transforms to

X(0) = X(L) = 0 (1.26)

and we can see that this equation together with (1.25a) is exactly the eigenvalue problem for
Dirichlet Laplacian (1.11) for which the eigenvalues form a countable set indexed by n ∈ N and

λn =
(nπ
L

)2

and the corresponding eigenfunctions are thus

Xn(x) = C sin
(nπx
L

)
.

Equation (1.25b) can be solved using the assumption Φ(t) = emt. We obtain the characteristic
equation for m

m2 + am+ λn = 0 (1.27)

with the solution

m1,2 =
−a±

√
a2 − 4λn
2

.

This solution can be either negative or complex depending on the size of a corresponding to
either under-damped or over-damped solutions. The whole solution u(x, t) is hence

u(x, t) =
+∞∑
n=1

(
C1e

m1t + C2e
m2t
)

sin
(nπx
L

)
where the constants can be determined from the initial conditions u0 and u1. Finally we get the

action of the C0-semigroup on
(
u0

u1

)
∈ Dom(A):

eAt
(
u0

u1

)
=


+∞∑
n=1

(
C1e

m1t + C2e
m2t
)

sin
(nπx
L

)
+∞∑
n=1

(
C1m1e

m1t + C2m2e
m2t
)

sin
(nπx
L

)
 .

1.2.4 Growth bound and the spectrum

The theory of semigroups can give us even more. Recall the growth rate ω for some C0-
semigroup T (t) with the infinitesimal generator A defined in (1.18). We already know that ω is
not unique. Therefore we define the lowest growth rate by

ω0(A) := inf{ω : ∃M(ω), ‖T (t)‖ ≤M(ω)eωt}. (1.28)
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The lowest growth rate ω0(A) is usually called a growth bound or a growth abscissa. It can be
shown [14, Theorem 2.19] that ω0(A) is equal to

ω0(A) = lim
t→+∞

log ‖T (t)‖
t

= inf
t>0

log ‖T (t)‖
t

. (1.29)

One can imagine that such a quantity is not easily computable. Fortunately it can be shown that
this quantity is related to the so called spectral abscissa. In particular for every C0-semigroup
T (t) with the infinitesimal generator A we have

ω0(A) ≥ ωσ(A) := sup{Rλ : λ ∈ σ(A)} (1.30)

where σ(A) is the spectrum of A and ωσ(A) is the spectral abscissa [14, Theorem 2.20]. Fur-
thermore for some special C0-semigroups we can get equality in (1.30) and we say that the
C0-semigroup has a spectrum determined growth property. One of such cases is when the
C0-semigroup is actually an analytic semigroup [14, Theorem 2.21].

Definition 1.2.8 (Analytic semigroup). Let Z = {z ∈ C : φ1 < arg(z) < φ2, φ1 < 0 < φ2} and let
T (z) be a bounded linear operator on X for every z ∈ Z. Then the family T (z), z ∈ Z is an analytic
semigroup if the following is satisfied

1. z 7→ T (z) is analytic function in Z

2. T (0) = I and lim
z→0
z∈Z

T (z)x = x for every x ∈ X

3. T (z1 + z2) = T (z1)T (z2) for every z1, z2 ∈ Z.

Another case when the equality in (1.30) holds is when the eigenvectors of the infinitesimal
generator of theC0-semigroup of bounded operators in a Hilbert spaceH form an orthonormal
basis in H and the supremum of the set of the real parts of eigenvalues of the infinitesimal
generator is less than infinity [14, Theorem 2.22].

The last and for us the most important case mentioned here when the equality holds is when
the infinitesimal generator is a Riesz-spectral operator and again the supremum of the set of the
real parts of eigenvalues of the infinitesimal generator is less than infinity [3, Theorem 2.3.5].
The Riesz-spectral operator is a linear, closed operator on the Hilbert space H with simple
eigenvalues {λn : n ≥ 1} and the corresponding eigenvectors {φn : n ≥ 1} which form a Riesz
basis in H and moreover the closure of {λn : n ≥ 1} is totally disconnected, meaning that no
two points from the closure can be joined by a segment lying entirely in it.

Definition 1.2.9 (Riesz basis). A Riesz basis is a set of vectors {φn : n ≥ 1} in a Hilbert space H for
which the following conditions hold

1. span{φn : n ≥ 1} = H

2. There exists m,M > 0 such that for any N ∈ N and any numbers αn, n ∈ {1, 2, . . . , N}

m

N∑
n=1

|αn|2 ≤

∥∥∥∥∥
N∑
n=1

αnφn

∥∥∥∥∥
2

≤M
N∑
n=1

|αn|2.
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An equivalent definition would be that Riesz basis is an image of an orthonormal basis in
H under a bounded linear operator with bounded inverse. The fact that the eigenvectors of
our operator A form a Riesz basis and moreover that A is a Riesz-spectral operator and that
the supremum of the set of the real parts of eigenvalues ofA is less than infinity was shown by
Cox and Zuazua in [2, Theorem 2.1]. Therefore

ω0(A) = ωσ(A).

To obtain the growth bound we thus have to calculate the spectrum of A. First we show that
A has purely discrete spectrum σdisc(A). This in the non-self-adjoint setting means that λ ∈
σdisc(A) if and only if it is an isolated eigenvalue with finite algebraic multiplicity and with
Ran(A− λI) closed. Moreover for the rest of the thesis we define the essential spectrum of the
non-self-adjoint operator A to be σess(A) = ρ(A) \ σdisc(A).

The discreteness of the spectrum of A follows from the fact that it has compact resolvent.
Indeed we first show that the undamped operator, i.e. with a = 0, has compact resolvent
and then we conclude that the bounded perturbation via the damping a does not affect the
compactness.

Let A0 be the undamped operator, i.e.

A0 =

(
0 I
d2

dx2
0

)
, Dom(A0) =

(
H2(0, L) ∩H1

0 (0, L)
)
×H1

0 (0, L).

It is a known fact that a closed operator A on a Hilbert space H has compact resolvent if and
only if the embedding (Dom(A), ‖ · ‖A) ↪→ H is compact. Here ‖ · ‖A is the graph norm of the
operator A, i.e. given ψ ∈ Dom(A), ‖ψ‖2A := ‖ψ‖2H + ‖Aψ‖2H . Thus we have to show that the
embedding of (Dom(A0), ‖ · ‖A0) which is the domain ofA0 understood as a Hilbert space with
the graph norm ‖ · ‖A0 (it is complete provided that A0 is closed) into Ḣ is compact.

First we show that there is a norm on Dom(A0) equivalent to the graph norm. It is the norm
of the Cartesian product of the two Sobolev spaces H2(0, L) ∩ H1

0 (0, L) and H1
0 (0, L) denoted

by ‖ · ‖c. Let Ψ ∈ Dom(A0), Ψ =

(
ψ1

ψ2

)
then

‖Ψ‖2c = ‖ψ1‖2H2 + ‖ψ2‖2H1 =

∥∥∥∥d2ψ1

dx2

∥∥∥∥2

+

∥∥∥∥dψ1

dx

∥∥∥∥2

+ ‖ψ1‖2 +

∥∥∥∥dψ2

dx

∥∥∥∥2

+ ‖ψ2‖2.

We can immediately see the first inequality

‖Ψ‖2A0
=

∥∥∥∥d2ψ1

dx2

∥∥∥∥2

+

∥∥∥∥dψ1

dx

∥∥∥∥2

+

∥∥∥∥dψ2

dx

∥∥∥∥2

+ ‖ψ2‖2

≤
∥∥∥∥d2ψ1

dx2

∥∥∥∥2

+

∥∥∥∥dψ1

dx

∥∥∥∥2

+ ‖ψ1‖2 +

∥∥∥∥dψ2

dx

∥∥∥∥2

+ ‖ψ2‖2 = ‖Ψ‖2c

and the opposite inequality can be obtained using Poincaré inequality (1.10)

‖Ψ‖2A0
=

∥∥∥∥d2ψ1

dx2

∥∥∥∥2

+
1

2

∥∥∥∥dψ1

dx

∥∥∥∥2

+
1

2

∥∥∥∥dψ1

dx

∥∥∥∥2

+

∥∥∥∥dψ2

dx

∥∥∥∥2

+ ‖ψ2‖2

≥
∥∥∥∥d2ψ1

dx2

∥∥∥∥2

+
1

2

∥∥∥∥dψ1

dx

∥∥∥∥2

+
1

2
λ1 ‖ψ1‖2 +

∥∥∥∥dψ2

dx

∥∥∥∥2

+ ‖ψ2‖2

≥ C‖Ψ‖2c

(1.31)
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where C = min
{

1
2 ,

λ1
2

}
. Hence the norms are equivalent and thus the identity map I :

(Dom(A0), ‖ · ‖A0) → (Dom(A0), ‖ · ‖c) is bounded. In fact for the boundedness of I it would
be sufficient to show only the validity of second inequality (1.31).

Next we use the fact that the embeddings

H2(0, L) ↪→ H1(0, L) and H1
0 (0, L) ↪→ L2(0, L)

are compact. This is a consequence of the Rellich-Kondrachov theorem [5, Theorem 5.7.1].
From the former we obtain that(

H2(0, L) ∩H1
0 (0, L)

)
↪→ Ḣ1

0 (0, L)

is also compact since H1
0 (0, L) is by definition a closed subspace of H1(0, L) and the norms on

H1
0 (0, L) and Ḣ1

0 (0, L) are equivalent. Also the Cartesian product of the two maps(
H2(0, L) ∩H1

0 (0, L)
)
↪→ Ḣ1

0 (0, L) and H1
0 (0, L) ↪→ L2(0, L)

is compact, i.e. the embedding

J :
(
H2(0, L) ∩H1

0 (0, L)
)
× Ḣ1

0 (0, L)→ H1
0 (0, L)× L2(0, L)

is compact.
Since the composition of a compact map with a bounded map is again compact we obtain

that the embedding
J ◦ I : (Dom(A0), ‖ · ‖A0)→ Ḣ

is compact which proves the statement that A0 has a compact resolvent.
Now we state the stability theorem.

Theorem 1.2.10 ([10, Theorem IV.1.16]). Let T and A be operators on Banach space X . Let T−1 exist
and be bounded. Let A be bounded and satisfying the inequality

‖A‖‖T−1‖ < 1. (1.32)

Then S = T + A is closed and invertible and S−1 is bounded. If in addition T−1 is compact then S−1

is also compact.

Let z be an arbitrary point from the resolvent set of A0. Then zI − A0 plays the role of the
operator T in the theorem (T−1 thus exists), and the perturbation of A0 denoted by B stands
for −A. In particular

B :=

(
0 0
0 −a

)
, Dom(B) := Ḣ.

To prove (1.32) we will use the following bound for the norm of B. Let Ψ =

(
ψ1

ψ2

)
then

‖B‖ = sup
Ψ∈Dom(B)

Ψ6=0

‖BΨ‖
‖Ψ‖

= sup
Ψ∈Dom(B)

Ψ 6=0

‖ − aψ2‖√∥∥∥dψ1

dx

∥∥∥2
+ ‖ψ2‖2

≤ sup
Ψ∈Dom(B)

Ψ6=0

a‖ψ2‖
‖ψ2‖

= a

hence B is a bounded operator and inequality (1.32) transforms to

‖B‖‖(zI −A0)−1‖ = a‖(zI −A0)−1‖ < 1.
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Recall the Hille-Yoshida theorem 1.2.7. Since A0 is an infinitesimal generator of C0-semigroup
of contractions the theorem implies that for every λ > 0, λ ∈ ρ(A0) and

‖(λI −A0)−1‖ ≤ 1

λ
.

For given a > 0 we choose z > a and get

‖(zI −A0)−1‖ ≤ 1

z
<

1

a

which proves inequality (1.32). Hence the operator (zI −A0 − B)−1 = (zI −A)−1 is compact.
It holds that if (zI − A)−1 is compact for some point z ∈ ρ(A) then (λI − A)−1 is compact for
all λ ∈ ρ(A). Thus A has compact resolvent which we wanted to prove. Its spectrum is purely
discrete.

We move on to determining the discrete spectrum. Let Ψ ∈ Dom(A), Ψ =

(
ψ1

ψ2

)
and

AΨ = λΨ, i.e.

ψ2 = λψ1 (1.33a)

d2

dx2
ψ1 − aψ2 = λψ2 (1.33b)

ψ1(0) = ψ1(L) = 0 (1.33c)
ψ2(0) = ψ2(L) = 0. (1.33d)

Substituting from (1.33a) into (1.33b) we get

d2

dx2
ψ1 − λaψ1 − λ2ψ1 = 0. (1.34)

After rearranging terms and denoting µ := −λ2−λa we see that together with equation (1.33c)
we obtained eigenvalue problem (1.11) for the eigenvalue µ

− d2

dx2
ψ1 = µψ1, x ∈ (0, L)

ψ1 = 0, x = 0, L.

(1.35)

But we know that the spectrum of this problem is (1.12) and so it holds(nπ
L

)2
= µn = −λ2 − λa

which is a quadratic equation for λ which is actually the same equation as equation (1.27) for
m. The solution, i.e. the spectrum of A is then

σ(A) =

{
1

2

(
−a±

√
a2 − 4

(nπ
L

)2
)}+∞

n=1

.

To find out the spectral abscissa we now analyze the behavior of the spectrum with respect to
the damping a.

• For a = 0, i.e. no damping, all the eigenvalues are symmetrically and equidistantly
distributed on the imaginary axis, see Figure 1.1.
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Figure 1.1: Plot of first six eigenvalues
from σ(A) with a = 0
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Figure 1.2: Plot of first six eigenvalues
from σ(A) with a = 1
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Figure 1.3: Plot of first six eigenvalues
from σ(A) with a = 2. One conjugate pair
collides on the real axis and creates a de-
generate eigenvalue
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Figure 1.4: Plot of first six eigenvalues
from σ(A) with a = 3. The collided eigen-
values separate again each one moving to
another side of the real axis

• For a ∈
(
0, 2π

L

)
the eigenvalues form complex conjugate pairs located on a sphere origi-

nated in 0 of the complex plane with radius equal to nπ
L as shown on Figure 1.2. Indeed

let λn ∈ σ(A), then

(Rλn)2 + (Iλn)2 =
(
−a

2

)2
+

(
±1

2

√
4
(nπ
L

)2
− a2

)2

=
(nπ
L

)2
.

The larger is the damping a, the larger is the distance from the imaginary axis.

• For the critical value a = 2π
L the two conjugate eigenvalues which were on the sphere

with the smallest radius collide, see Figure 1.3.

• For a ∈
(

2π
L ,

4π
L

)
the two eigenvalues which previously collided are now separated again

with one moving on the real line towards 0 and the second towards −∞while the others
continue with the motion on the spheres until the next two eigenvalues collide when
a = 4π

L , see Figures 1.4 and 1.5.

• The whole process continues in analogous way.
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Figure 1.5: Plot of first six eigenvalues
from σ(A) with a = 4. Another conjugate
pair collides

From this behavior it can be seen that the spectral abscissa and hence the growth bound is

ω0(A) = sup{Rλ : λ ∈ σ(A)} =


−a

2
, a ≤ 2π

L

−a
2

+
1

2

√
a2 − 4

(π
L

)2
, a >

2π

L
.

(1.36)

This means that there exists M = M(ω0(A)) > 0 such that ‖eAt‖ ≤ Meω0(A)t and moreover
from the contraction property (‖eAt‖ ≤ 1) we have M ≤ 1. From (1.29) we get

log ‖eAt‖ = ω0(A)t+ o(t)

where o stands for the standard small o notation in the asymptotic regime t → +∞. Exponen-
tiating, this leads to ‖eAt‖ = eω0(A)teo(t) and thus

‖eAt‖ ∼ eω0(A)t as t→ +∞ (1.37)

where ∼ has the meaning f(t) ∼ g(t), t→ +∞ if and only if f(t)− g(t) −−−−→
t→+∞

0. Indeed

eω0(A)t − ‖eAt‖ = eω0(A)t − e
(
ω0(A)+

o(t)
t

)
t −−−−→
t→+∞

0.

Given the initial value U0 ∈ Dom(A) we thus obtain for the solution U(t) = eAtU0 the bound

‖U(t)‖Ḣ ≤ e
ω0(A)t‖U0‖Ḣ.

which is uniform (with respect to the initial condition). Next recall notation (1.6). We obtain

‖U(t)‖2Ḣ =

∥∥∥∥(uut
)∥∥∥∥2

Ḣ
=

∫ L

0
|ux|2 + |ut|2

which is a well-known expression for the energy of a string at time t, i.e. E(t) = ‖U(t)‖2Ḣ, and

E(t) ≤ E(0)e2ω0(A)t.
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We see that using the semigroup theory we obtained a uniform bound for the energy of the
system.

Finally we can find an optimal damping for which the system returns to the equilibrium
(u = 0) in the shortest time. Viewing ω0(A) as a function of the damping a we can find its
minimum which according to formula (1.36) is achieved at a = 2π

L :

min
a≥0

ω0(A) = −π
L
.

Thus for a = 2π
L the solution has the fastest decay uniformly with respect to the initial condition

‖U(t)‖Ḣ ≤ e
−πt
L ‖U0‖Ḣ as t→ +∞.

1.3 Arbitrary Ω ⊂ Rd and bounded damping a ∈ L∞(Ω)

In this crucial section we move on to the definition of the damped wave operator for arbi-
trary domain Ω ⊂ Rd and for bounded damping function a, in particular a ∈ L∞(Ω). We again
show that this operator generates a C0-semigroup but now without the contraction property
in general since we work on H instead of Ḣ and moreover without the spectrum determined
growth property. Nevertheless we will still be able to deduce some consequences for the time
evolution and stability of the system. Note that there is a recent paper [8] where the generation
of a C0-semigroup even in the case of unbounded damping is proved by working in a different
Hilbert space.

1.3.1 Damped wave operator

We work in Hilbert space H (1.3) and consider damped wave operator (1.7). Since the
Dirichlet Laplacian is densely defined (see Section 2.1) for arbitrary Ω and C∞0 (Ω) is dense in
L2(Ω) the operator A is also densely defined. The operator is again non-self-adjoint as in the
preceding case. Next we show that A is closed.

Let A0 denote the undamped operator A with a = 0. We first show that A0 is closed and
then since the sum of bounded and closed operator is again a closed operator the damping
does not violate the closedness. Given Ψ, Φ ∈ H and a sequence Ψn ∈ Dom(A0), n ∈ N, let

Ψn −−−−−→
n→+∞

Ψ inH

A0Ψn −−−−−→
n→+∞

Φ inH.
(1.38)

We have to show that Ψ ∈ Dom(A0) and A0Ψ = Φ. Denoting Ψ =

(
ψ1

ψ2

)
, Ψn =

(
ψn1

ψn2

)
,

Φ =

(
φ1

φ2

)
and rewriting limits (1.38) we get

ψn1 −−−−−→
n→+∞

ψ1 inH1(Ω)

ψn2 −−−−−→
n→+∞

ψ2 in L2(Ω)

ψn2 −−−−−→
n→+∞

φ1 inH1(Ω)

∆ψn1 −−−−−→
n→+∞

φ2 in L2(Ω)



1.3. ARBITRARY Ω ⊂ Rd AND BOUNDED DAMPING a ∈ L∞(Ω) 29

which means

‖∇ψn1 −∇ψ1‖2 + ‖ψn1 − ψ1‖2 −−−−−→
n→+∞

0 (1.39a)

‖ψn2 − ψ2‖2 −−−−−→
n→+∞

0 (1.39b)

‖∇ψn2 −∇φ1‖2 + ‖ψn2 − φ1‖2 −−−−−→
n→+∞

0 (1.39c)

‖∆ψn1 − φ2‖2 −−−−−→
n→+∞

0. (1.39d)

Equation (1.39c) implies that also ‖ψn2 − φ1‖2 −−−−−→
n→+∞

0 which together with (1.39b) gives

ψ2 = φ1 ∈ H1
0 (Ω) provided that the limit in L2(Ω) is unique. As a next step we integrate by

parts getting

(∆ϕ,ψ1) = −(∇ϕ,∇ψ1)

where ϕ ∈ C∞0 (Ω). From (1.39a) we get that ∇ψn1 −−−−−→
n→+∞

∇ψ1 in L2(Ω) and thanks to the

continuity of the inner product we have

−(∇ϕ,∇ψ1) = − lim
n→+∞

(∇ϕ,∇ψn1) .

Another integration by parts leads us to

− lim
n→+∞

(∇ϕ,∇ψn1) = lim
n→+∞

(ϕ,∆ψn1)

where finally (1.39d) implies

lim
n→+∞

(ϕ,∆ψn1) = (ϕ, φ2).

Hence for all ϕ ∈ C∞0 (Ω) it holds (∆ϕ,ψ1) = (ϕ, φ2) which from the definition means that φ2

is the distributional Laplacian of ψ1 on L2(Ω), i.e. ∆ψ1 = φ2 ∈ L2(Ω) and the operator A0 is
thus closed. Next we have to show that the perturbation of A0 denoted by B is bounded. In
particular

B :=

(
0 0
0 −a

)
, Dom(B) := H

and A = A0 + B. Let Ψ =

(
ψ1

ψ2

)
then

‖B‖ = sup
Ψ∈Dom(B)

Ψ6=0

‖BΨ‖
‖Ψ‖

= sup
Ψ∈Dom(B)

Ψ 6=0

‖ − aψ2‖√
‖∇ψ1‖2 + ‖ψ1‖2 + ‖ψ2‖2

≤ sup
Ψ∈Dom(B)

Ψ6=0

‖a‖∞‖ψ2‖
‖ψ2‖

= ‖a‖∞

where ‖a‖∞ is the norm in L∞(Ω) in particular the essential supremum of |a|. Since the sum of
bounded and closed operator is again a closed operator we obtained that A is closed.
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1.3.2 Generation of semigroup and consequences

Now we will move on to the proof thatA is an infinitesimal generator of someC0-semigroup.
This will be done by entirely different means than in the previous chapter. We first show that
it generates a C0-semigroup in the case of zero damping, i.e. a = 0 and then we use a pertur-
bation theorem which states that the generation is still preserved with the non-zero damping
present.

Therefore let A0 denote the undamped operator A with a = 0. We will use the following
characterization for the generator of the C0-semigroup which will give us also the growth rate
of the C0-semigroup.

Theorem 1.3.1 ([16, Theorem 1.5.3]). A linear operator A on Banach space X is an infinitesimal
generator of a C0-semigroup T (t) satisfying ‖T (t)‖ ≤Meωt if and only if

1. A is closed and densely defined

2. The resolvent set ρ(A) contains (ω,+∞) and

‖Rλ(A)n‖ ≤ M

(λ− ω)n
, ∀ λ > ω, n ∈ N. (1.40)

The first condition of this theorem is already proven so it remains to prove inequality (1.40)
for some ω. For this we will need the following lemmas. This approach was used in [7] in a
more general setting where they were inspired by [16, Section 7.4].

Lemma 1.3.2. Let ε ∈ (0, 1). Then for any φ ∈ L2(Ω) there exists a unique function ψ ∈ Dom(−∆)
which satisfies the equation

(1− ε2∆)ψ = φ. (1.41)

Proof. This proof is based on [11, Remark 2.3.2]. First we establish an a-priori bound. Let
φ ∈ L2(Ω) and ε ∈ (0, 1) and assume that there exists ψ ∈ H1

0 (Ω) satisfying (1.41) then

‖ψ‖H1 ≤
1

ε
‖φ‖. (1.42)

Indeed multiplying (1.41) with ψ and integrating over Ω we get

‖ψ‖2 + ε2‖∇ψ‖2 = (ψ, φ)

where we used integration by parts. Moreover

‖ψ‖2 ≤ ‖ψ‖2 + ε2‖∇ψ‖2 = (ψ, φ) ≤ ‖ψ‖‖φ‖

which implies ‖ψ‖ ≤ ‖φ‖ and thus

min
{

1, ε2
}
‖ψ‖2H1 ≤ ‖φ‖2.

Finally for ε ∈ (0, 1) we get (1.42).
Next we take a sequence (Ωn)n∈N such that Ωn ⊂ Ωn+1 and

⋃
n∈N Ωn = Ω. From [11, Section

2.3] we know that there exists a unique weak solution ψ ∈ H1
0 (Ωn) ∩ H2(Ωn) of (1.41) with

Ω = Ωn, i.e. for all ϕ ∈ C∞0 (Ωn) it holds

(ϕ,ψn)− ε2(ϕ,∆ψn) = (ϕ, φ). (1.43)
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We extend ψn to the whole domain Ω with zero outside Ωn and retain the same notation for
it. For all such ψn bound (1.42) holds and thus (ψn)n∈N is uniformly bounded in H1

0 (Ω). This
implies that there exists a subsequence (ψnk)k∈N which converges weakly to some function [20,
Theorem 4.25]. Let us denote this function by ψ. Fixing some ϕ ∈ C∞0 (Ω) being zero outside
Ωn and taking limit k → +∞ in the subsequence (ψnk)n∈N in (1.43) with n ≤ nk we obtain

(ϕ,ψ)− ε2(ϕ,∆ψ) = (ϕ, φ). (1.44)

Since these ϕ form a dense set in H1
0 (Ω) the function ψ satisfies (1.44) for all ϕ ∈ H1

0 (Ω) and
thus it is a weak solution of (1.41). The uniqueness follows from bound (1.42) and it implies
that (ψn)n∈N −−−−−→

n→+∞
ψ in H1

0 (Ω). The fact that ψ ∈ Dom(−∆) =
{
f ∈ H1

0 (Ω) : ∆f ∈ L2(Ω)
}

follows from φ ∈ L2(Ω) since

∆ψ =
1

ε2
(φ+ ψ).

Lemma 1.3.3. Let ε ∈ (0, 1) and Φ =

(
φ1

φ2

)
∈ C∞0 (Ω)× C∞0 (Ω). Then the equation

Ψ− εA0Ψ = Φ (1.45)

has a unique solution Ψ =

(
ψ1

ψ2

)
∈ Dom(A0) and moreover

‖Ψ‖H ≤
1

1− ε
‖Φ‖H.

Proof. Let ϕ1 ∈ Dom(−∆) be the unique (thanks to the previous lemma) solution of

(1− ε2∆)ϕ1 = φ1

and let ϕ2 ∈ Dom(−∆) be the unique solution of

(1− ε2∆)ϕ2 = φ2.

Define
ψ1 := ϕ1 + εϕ2, ψ2 := ε∆ϕ1 + ϕ2

such that Ψ :=

(
ψ1

ψ2

)
satisfies (1.45), i.e.

ψ1 − εψ2 = φ1, −ε∆ψ1 + ψ2 = φ2

from which it can be seen that Ψ ∈ Dom(A0). Next let Φ =

(
φ1

φ2

)
then

‖Φ‖2H = ‖φ1‖2H1 + ‖φ2‖2 = ‖ψ1 − εψ2‖2H1 + ‖ − ε∆ψ1 + ψ2‖2

= ‖ψ1‖2H1 + ‖ − εψ2‖2H1 + 2R(ψ1,−εψ2)H1

+ ‖ − ε∆ψ1‖2 + ‖ψ2‖2 + 2R(−ε∆ψ1, ψ2)

≥ ‖ψ1‖2H1 + ‖ψ2‖2 − 2εR ((∇ψ1,∇ψ2) + (ψ1, ψ2) + (∆ψ1, ψ2)) .
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Now we use integration by parts and the fact that ψ1, ψ2 ∈ H1
0 (Ω)

‖ψ1‖2H1 + ‖ψ2‖2 − 2εR ((∇ψ1,∇ψ2) + (ψ1, ψ2) + (∆ψ1, ψ2))

= ‖ψ1‖2H1 + ‖ψ2‖2 − 2εR(ψ1, ψ2)

and using Cauchy-Schwarz and Young inequality we get

‖ψ1‖2H1 + ‖ψ2‖2 − 2εR(ψ1, ψ2) ≥ ‖ψ1‖2H1 + ‖ψ2‖2 − ε(‖ψ1‖2 + ‖ψ2‖2)

≥ (1− ε)‖Ψ‖2H.

Since 1− x ≥ (1− x)2 for x ∈ (0, 1) we can conclude with

‖Ψ‖H ≤
1

1− ε
‖Φ‖H.

Corollary 1.3.4. Let ε ∈ (0, 1) and Φ ∈ H. Then the equation

Ψ− εA0Ψ = Φ

has a unique solution Ψ ∈ Dom(A0) and moreover

‖Ψ‖H ≤
1

1− ε
‖Φ‖H. (1.46)

Proof. Let ε ∈ (0, 1). Then the Lemma 1.3.3 implies that C∞0 (Ω)×C∞0 (Ω) lies in the range of the
operator I − εA0. From the closedness of A0 it then follows that I − εA0 is surjective.

Now we are able to prove the validity of inequality (1.40) forA0. Since from Corollary 1.3.4
we have that I − εA0 : Dom(A0) ⊂ H → H is a bijection for ε ∈ (0, 1) the operator (I − εA0)−1

exists. This implies that also the operator (zI−A0)−1 exists for z ∈ (1,+∞) where z = 1/εwith

‖(zI −A0)−1‖ ≤ (z − 1)−1

provided that (1.46) holds for all functions from Dom(A0) and the norm of the inverse of some
bounded operator T can be computed as

‖T−1‖ = sup

{
‖x‖
‖Tx‖

: x ∈ Dom(T ), x 6= 0

}
.

Since ‖AB‖ ≤ ‖A‖‖B‖ for arbitrary bounded operators A and B we have that

‖((zI −A0)−1)n‖ ≤ (z − 1)−n, n ∈ N (1.47)

for all z ∈ (1,+∞) which proves inequality (1.40) where M = 1. Thus according to Theorem
1.3.1 the undamped wave operatorA0 is the infinitesimal generator of aC0-semigroup denoted
by eA0t with growth rate ω = 1, i.e.

‖eA0t‖ ≤ et, 0 ≤ t < +∞.

Remark 1.3.5 (A0 as an infinitesimal generator of a C0-group). Moreover it can be shown that A0

generates a C0-group at least in the case Ω = Rd.



1.3. ARBITRARY Ω ⊂ Rd AND BOUNDED DAMPING a ∈ L∞(Ω) 33

Definition 1.3.6 (C0-group). Let X be a Banach space. A one parameter family T (t), −∞ < t < +∞
is a group of bounded linear operators onX is aC0-group of bounded operators if the following is satisfied

1. T (0) = I

2. T (t+ s) = T (t)T (s), −∞ < t, s < +∞

3. limt→0 T (t)x = x, x ∈ X .

Being a C0-group is a stronger property than being a C0-semigroup, meaning that every C0-group
is a C0-semigroup. The fact that A0 generates also a C0-group can be obtained in a similar way using
the following theorem.

Theorem 1.3.7 ([16, Theorem 1.6.3]). A linear operator A on Banach space X is an infinitesimal
generator of a C0-group T (t) satisfying ‖T (t)‖ ≤Meω|t| if and only if

1. A is closed and densely defined

2. Every real λ, |λ| > ω lies in the resolvent set ρ(A) and it satisfies

‖Rλ(A)n‖ ≤ M

(|λ| − ω)n
, ∀ n ∈ N. (1.48)

This has been proven in [16, Section 7.4] by a similar method which was used here to prove the
generation of the C0-semigroup.

Finally we use a perturbation theorem to prove that also the damped wave operator A
generates a C0-semigroup.

Theorem 1.3.8 ([16, Theorem 3.1.1]). LetX be a Banach space and letA be the infinitesimal generator
af a C0-semigroup T (t) satisfying ‖T (t)‖ ≤Meωt. If B is a bounded linear operator on X then A+B
is an infinitesimal generator of a C0-semigroup S(t) satisfying ‖S(t)‖ ≤Me(ω+M‖B‖)t.

Since we already know that B is a bounded operator A is the infinitesimal generator of a
C0-semigroup eAt with the growth rate

‖eAt‖ ≤ e(1+‖a‖∞)t.

Remark 1.3.9. For comparison we provide the result from [7, Theorem 5] where they obtained a different
growth bound for the C0-semigroup eAt using a different method

‖eAt‖ ≤ e2(1+|amin|)t, 0 ≤ t < +∞.

Here amin is the essential infimum of the damping a.

Remark 1.3.10 (Complex damping). As can be seen from Theorem 1.3.8 we could have assumed that
the damping function a is complex in general and we would still get the generation of the C0-semigroup.

Recalling Theorem 1.3.1 we see that ρ(A) ⊃ (1 + ‖a‖∞,+∞). Moreover [16, Remark 1.5.4]
implies that every complex µ such that Rµ > 1 + ‖a‖∞ lies in the resolvent set of A. The
following proposition summarizes the results obtained so far.



34 CHAPTER 1. DAMPED WAVE OPERATOR

Proposition 1.3.11. Let Ω be an arbitrary domain in Rd. The damped wave operator A with bounded
damping generates a C0-semigroup eAt with the growth bound 1 + ‖a‖∞. Moreover

σ(A) ⊂ {µ ∈ C : Rµ ≤ 1 + ‖a‖∞}.

Next we move on to the regularity and uniqueness of the solutions. Since A is the infinites-
imal generator of eAt we already know from the previous section that given U0 ∈ Dom(A) we
have

d

dt
U(t) = AU(t), U(0) = U0

where U(t) := eAtU0 and thus using the C0-semigroup we obtain a weak solution of evolution
problem (1.8) for A. Also we know that U(t) is a continuous function from [0,+∞) → H.
Moreover if U0 ∈ Dom(A) then U(t) ∈ Dom(A) and according to Theorem 1.2.6, U(t) is unique

and continuously differentiable on [0,+∞). Recall U(t) =

(
u
ut

)
and U0 =

(
u0

u1

)
. In particular

given U0 ∈ Dom(A) this means that there exists a unique solution u(t, x) of (1.8) satisfying

u(t, ·) ∈ C0([0,+∞),Dom(−∆)) ∩ C1([0,+∞), H1
0 (Ω)) ∩ C2([0,+∞), L2(Ω)).

1.3.3 Time evolution

Our aim now is to show that under a sign-changing condition evolution system (1.8) with
the operator A possesses an unstable solution for sufficiently large damping in some sense. In
particular we parameterize the damping a by a positive multiplication constant α, i.e. a = αb
and accordingly we denote the operatorAwith damping αb, the parameterized damped wave
operator, by Aα, i.e.

Aα :=

(
0 I
∆ −αb

)
(1.49)

and of course the domain ofAα remains unchanged. Henceforth we assume the sign-changing
condition for the damping to be

ess inf
x∈Ω

b(x) < 0 and ess sup
x∈Ω

b(x) > 0.

To prove the instability we would need the existence of at least one positive point in the spec-
trum. It was proven by Krejčiřík and Freitas in [7, Theorem 2] that there exists α0 > 0 such that
for α > α0 there is at least one positive point in the spectrum of Aα. Denote this point by λ. If
λ lies in the point spectrum then the evolution problem transforms to

d

dt
U(t) = λU(t), U(0) = U0

and thus U(t) = U0e
λt. Since λ > 0 we see that there exist initial conditions U0 for which the

solution grows exponentially in time and thus is unstable.
On the other hand if λ lies in the essential spectrum we obtain the instability from a result

by Solà-Morales in [18, Theorem 1]. It states that since A generates a C0-semigroup evolution
problem (1.8) has the so called global instability property if there is a positive point in the
essential spectrum of A. The global instability property means that for every residual subset
of initial values in Dom(A) and for every initial value U0 from such a set the corresponding
semiorbit γ+(U0) := {U(t) : U(0) = U0, t ∈ [0,+∞)} is unbounded. A residual set is the
complement of the set formed by a countable union of nowhere dense sets (sets where the
interior of the closure is an empty set). Moreover this implies that Dom(A) has no positively
invariant bounded sets with points stable in the sense of Lyapunov [18].



Chapter 2

Schrödinger operator

Henceforth let Ω be an arbitrary domain in Rd as in the previous chapter. In this chapter we
state the definition of the self-adjoint Laplace operator onL2(Ω) with Dirichlet boundary condi-
tions (the Dirichlet Laplacian) and afterwards we properly define the self-adjoint Schrödinger
operator as a perturbation of the Dirichlet Laplacian for suitable class of potentials. Further-
more we state some of its spectral properties needed in the rest of the thesis.

2.1 Dirichlet Laplacian

The Dirichlet Laplacian on L2(Ω) is defined as the Friedrichs extension of the minimal op-
erator

Ṫ ψ := −∆ψ, Dom(Ṫ ) := C∞0 (Ω)

where −∆ψ = −
∑d

i=1
d2ψ
dx2i

and the derivatives are meant in the weak sense. C∞0 (Ω) denotes

the space of smooth functions with compact support in Ω. Since C∞0 (Ω) is dense in L2(Ω) this
operator is densely defined. Moreover for ψ, φ ∈ C∞0 (Ω) using the integration by parts we get

(ψ,−∆φ) = (∇ψ,∇φ) = (−∆ψ, φ) (2.1)

where ∇ stands for the weak gradient. Hence Ṫ is symmetric. Plugging φ := ψ into (2.1) we
get (ψ,−∆ψ) = (∇ψ,∇ψ) = ‖∇ψ‖2 ≥ 0 from which it follows that Ṫ is a positive operator.

Moreover the quadratic form induced by Ṫ is

QṪ [ψ] := (ψ, Ṫ ψ) = ‖∇ψ‖2, Dom(QṪ ) := C∞0 (Ω)

which is again densely defined, symmetric and positive (more specifically bounded from below
with the bound equal to 0) using the same arguments as before. Since this form is induced by
a positive and symmetric operator it is closable [4, Theorem 4.4.5] and its closure is

QT [ψ] := ‖∇ψ‖2, Dom(QT ) := H1
0 (Ω).

Indeed since QṪ is bounded from below by 0 it induces an inner product on Dom(QṪ ) which
is equal to the inner product defined onH1(Ω) and moreover the closure of Dom(QṪ ) inH1(Ω)
is by the definition the space H1

0 (Ω), see [20, Section 5.5].
Finally using the Representation theorem [20, Theorem 5.37] we get that there exists a self-

adjoint and bounded from below operator T associated with QT defined as

T ψ := −∆ψ, Dom(T ) := {ψ ∈ Dom(QT ) : ∃φ ∈ L2(Ω), ∀ϕ ∈ Dom(QT ), QT (ϕ,ψ) = (ϕ, φ)}
35
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where QT (·, ·) is the sesquilinear form determined uniquely by the quadratic form QT [·] via
the polarization identity. In this particular case QT (ψ, φ) = (∇ψ,∇φ). Looking at the domain
of T we see that it can be rewritten using the definition of the weak Laplacian, i.e.

T ψ := −∆ψ, Dom(T ) := {ψ ∈ H1
0 (Ω) : ∆ψ ∈ L2(Ω)}.

The operator T will be called as the Dirichlet Laplacian. Further specifications of the domain
of T are possible however they require some regularity of Ω.

Remark 2.1.1 (Domain of T ). Here we state some examples of the domains of T . This list is not
complete, another examples are known.

• For arbitrary Ω ⊂ Rd it holds

Dom(T ) =
{
ψ ∈ H1

0 (Ω) : ∆ψ ∈ L2(Ω)
}
.

• For Ω ⊂ Rd bounded and of class C2 we have

Dom(T ) = H1
0 (Ω) ∩H2(Ω)

which follows from the elliptic regularity theory.

• For Ω = Rd we get
Dom(T ) = H2(Rd)

since it can be shown that H1
0 (Rd) = H1(Rd).

Remark 2.1.2 (Spectrum of T ). We state some known facts about the spectrum of T depending on Ω
which will be useful in the following.

• For arbitrary Ω ⊂ Rd it holds that σ(T ) ⊂ [0,+∞) since T is a positive operator.

• For bounded Ω ⊂ Rd we know that the spectrum is purely discrete, i.e. σ(T ) = σdisc(T ).

• For Ω = (0, L) (and also for every other bounded interval) we know the explicit formula for the
spectrum

σ(T ) =

{(nπ
L

)2
}+∞

n=1

.

• For Ω = Rd the spectrum is purely continuous and equal to the upper half-line, in particular

σ(T ) = σc(T ) = σess(T ) = [0,+∞). (2.2)

2.2 Schrödinger operator

Now we move on to the definition of the Schrödinger operator being a perturbation of
the Dirichlet Laplacian. Henceforth let V0 ∈ L∞(Ω,R) denote the potential. We define the
multiplication operator V0 associated with V0 as

V0ψ := V0ψ, Dom(V0) := L2(Ω)
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and with the quadratic form

QV0 [ψ] := (ψ,V0ψ) =

∫
Ω
V0|ψ|2, Dom(QV0) := L2(Ω).

For the norm of V0 we can easily obtain the following bound

‖V0‖ = sup
ψ∈Dom(V0)

ψ 6=0

‖V0ψ‖
‖ψ‖

= sup
ψ∈L2(Ω)
ψ 6=0

‖V0ψ‖
‖ψ‖

≤ sup
ψ∈L2(Ω)
ψ 6=0

‖V0‖∞‖ψ‖
‖ψ‖

= ‖V0‖∞

hence V0 is a bounded operator (in fact it holds that ‖V0‖ = ‖V0‖∞). Now we state the pertur-
bation theorem which will enable us to define the self-adjoint Schrödinger operator.

Theorem 2.2.1 (Kato-Rellich, [17, Theorem X.12]). Let A be a self-adjoint operator on Hilbert space
H bounded from below by M . Let B be a symmetric and A-bounded operator on H with the rela-
tive bound less than 1. Then A + B is self-adjoint on Dom(A) and bounded from below by M −
max{ b

1−a , a|M |+ b} where a, b are defined in (2.3).

The property of A-boundedness from the theorem means that Dom(B) ⊃ Dom(A) and that
there exist a, b ∈ R such that

‖Bψ‖ ≤ a‖Aψ‖+ b‖ψ‖ (2.3)

holds for all ψ ∈ Dom(A). The infimum of such a is called a relative bound. Since V0 is
bounded, it is certainly T -bounded with relative bound equal to 0. Thus using the Kato-Rellich
theorem (in fact since V0 is bounded this could be done more easily) we can define the self-
adjoint and bounded from below Schrödinger operator S := T + V0. In particular

Sψ := −∆ψ + V0ψ, Dom(S) := {ψ ∈ H1
0 (Ω) : ∆ψ ∈ L2(Ω)}

with the corresponding quadratic form

QS [ψ] :=

∫
Ω
|∇ψ|2 +

∫
Ω
V0|ψ|2, Dom(QS) := H1

0 (Ω).

This operator is bounded from below by −‖V0‖∞. The Theorem 2.2.1 allows us to define the
self-adjoint Schrödinger operator for larger class of the potentials however this is not needed
in the thesis.

According to [4, Section 4.5] we define the numbers

λn := inf
Ln⊂Dom(S)
dimLn=n

sup
ψ∈Ln
ψ 6=0

(ψ,Sψ)

‖ψ‖2
= inf

Ln⊂Dom(QS)
dimLn=n

sup
ψ∈Ln
ψ 6=0

QS [ψ]

‖ψ‖2
(2.4)

for n ∈ N. It holds that λ1 ≤ λ2 ≤ · · · ≤ λ∞ with λ∞ := limn→+∞ λn = inf σess(S) and with
the convention λ∞ := +∞ if σess(S) = ∅. These numbers represent either a discrete eigenvalue
of S (which is below the essential spectrum) or the threshold of σess(S). It also holds that
λ1 = inf σ(S).

Now we will state selected spectral properties of the operator S which will be needed in
the rest of the thesis. First we will state a well-known result in the case Ω = Rd. The proof
of this statement is made by showing that under some assumptions V0 is relatively compact
with respect to T which ensures that the essential spectrum of the Schrödinger operator S with
potential V0 is equal to the essential spectrum of the operator without potential (2.2).
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Definition 2.2.2 (Relative compactness). Let A be a self-adjoint operator on a Hilbert space H . Let
C be an operator on H such that Dom(C) ⊃ Dom(A). Then C is relatively compact with respect to A
if and only if CRA(λ) is compact for some λ ∈ ρ(A).

If CRA(λ) is compact for some λ ∈ ρ(A) then it is compact for all points in ρ(A). This
follows easily from the first resolvent identity [17, Theorem VI.6]

RA(λ1)−RA(λ2) = (λ1 − λ2)RA(λ1)RA(λ2), λ1, λ2 ∈ ρ(A).

Moreover every compact operator is relatively compact with respect to a self-adjoint operator
whose domain is included in the domain of the compact operator.

Theorem 2.2.3 (Weyl, [17, Corrolary XIII.4.2]). Let A be a self-adjoint operator on a Hilbert space H
and let C be a relatively compact with respect to A. Then A + C is a closed operator and σess(A) =
σess(A+ C).

We now prove the relative compactness of V0 provided that V0 −−−−−→
|x|→+∞

0. First consider

the operator RT (λ) for some λ ∈ ρ(T ). For concreteness we choose λ = −1. Then using the
properties of the Fourier transform F on L2(Rd) we get

Fψ ≡ RT (−1)ψ = F−1

(
− 1

1 + |p|2
(Fψ)(p)

)
where | · | now stands for the standard form on Rd. Hence define the function

f : Rd → R : p 7→ − 1

1 + |p|2

which is certainly bounded and tends to 0 as |p| → +∞. Denote the restrictions of the functions
f and V0 on the ball BR in Rd with radius R centered at the origin extended by zero on the rest
of Rd by fR and VR respectively. Moreover denote the associated multiplication operators by
FR and V0R respectively. The functions fR and VR lie in L2(Rd) thus

FRψ(x) := F−1 ((fR(p)(Fψ)(p))) (x)

is a Hilbert-Schmidt operator which is known to be compact. Next we estimate

‖V0F − V0RFR‖ = ‖V0(F − FR) + (V0 − V0R)FR‖ ≤ ‖V0‖∞‖f − fR‖∞ + ‖V0 − VR‖∞‖fR‖∞
(2.5)

since

‖V0‖ = sup
ψ∈L2(Rd)
ψ 6=0

‖V0ψ‖
‖ψ‖

≤ sup
ψ∈L2(Rd)
ψ 6=0

‖V0‖∞‖ψ‖
‖ψ‖

= ‖V0‖∞

as well as

‖V0 − V0R‖ = sup
ψ∈L2(Rd)
ψ 6=0

‖(V0 − V0R)ψ‖
‖ψ‖

≤ sup
ψ∈L2(Rd)
ψ 6=0

‖V0 − VR‖∞‖ψ‖
‖ψ‖

= ‖V0 − VR‖∞

and moreover

‖FR‖ = sup
ψ∈L2(Rd)
ψ 6=0

‖F−1 (fRFψ) ‖
‖ψ‖

= sup
ψ∈L2(Rd)
ψ 6=0

‖fR‖∞‖ψ‖
‖ψ‖

= ‖fR‖∞
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and

‖F − FR‖ = sup
ψ∈L2(Rd)
ψ 6=0

‖F−1 ((f − fR)Fψ) ‖
‖ψ‖

= sup
ψ∈L2(Rd)
ψ 6=0

‖f − fR‖∞‖ψ‖
‖ψ‖

= ‖f − fR‖∞

provided that the Fourier transform is a linear and unitary operator. From

V0 −−−−−→
|x|→+∞

0 and f −−−−−→
|p|→+∞

0

it follows that
‖f − fR‖∞ −−−−−→

R→+∞
0 and ‖V0 − VR‖ −−−−−→

R→+∞
0.

Thus from (2.5) we get
‖V0F − V0RFR‖ −−−−−→

R→+∞
0.

Since V0R is a bounded operator V0RFR is compact. Finally we see that V0F is a limit of compact
operators hence a compact operator provided that the space of compact operators is closed in
the space of bounded operators. Thus from Weyl theorem 2.2.3 we get that σess(S) = σess(T )
which is in the case Ω = Rd equal to [0,+∞), see (2.2). Thus we have just proven the following
theorem.

Theorem 2.2.4. Let Ω = Rd and V0 ∈ L∞(Rd). If V0 −−−−−→
|x|→+∞

0 then σess(S) = [0,+∞).

This theorem implies that under its assumptions σdisc(S) ⊂ (−∞, 0) thus all the numbers
λn are nonpositive. It follows that one needs V0 to be strictly negative at least somewhere on
Rd for S to have non-empty discrete spectrum (otherwise S would be a positive operator).
Summarizing the assumptions on V0 we have

Ω = Rd, V0 ∈ L∞(Rd,R) and V0 −−−−−→
|x|→+∞

0. (2.6)

We conclude with the following propositions. Some of them require weaker assumptions on
the potential however this will not be needed in the thesis.

Proposition 2.2.5. Assume (2.8). If λ1 is an eigenvalue then it is non-degenerate and the corresponding
eigenfunction can be chosen to be strictly positive. If V ≤ 0 and λn defined in (2.4) is a discrete
eigenvalue then it is strictly negative.

Proof. The property that λn is strictly negative was already discussed in the previous para-
graph. Let λ1 be an eigenvalue. The positivity of its eigenfunction ψ1 follows directly from the
definition of λ1 (2.4) which in the case n = 1 simplifies into

λ1 = inf
ψ∈H1

0 (Rd)
ψ 6=0

QS [ψ]

‖ψ‖2
=

∫
Rd
|∇ψ1|2 +

∫
Rd
V0|ψ1|2∫

Rd
|ψ1|2

and we see that if ψ1 is an eigenvalue then |ψ1| is also an eigenvalue. The fact that |ψ1| > 0
follows from the so called Harnack inequality. For more details see [9, Theorem 8.38]. From
this it also follows that λ1 is simple since its eigenfunction is either strictly positive or strictly
negative and two such functions cannot be orthogonal.
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Proposition 2.2.6. Let d ≤ 2 and let V0 ∈ L1(Rd). If
∫
Rd V0 < 0 then inf σ(S) < 0.

Proof. Let d ≤ 2 and consider the test function

ψn(x) := ϕn(|x|), ϕn(r) :=


1 r < n
logn2−log r
logn2−logn

n < r < n2

0 r > n2

.

direct computation shows that ψn ∈ H1
0 (Rd) for every n ∈ N. Moreover it holds

ψn(x) −−−−−→
n→+∞

1, ∀x ∈ Rd and ‖∇ψn‖ −−−−−→
n→+∞

0.

Recall that for all ψ ∈ H1
0 (Rd) we have

inf σ(S) = λ1 ≤

∫
Rd
|∇ψ|2 +

∫
Rd
V0|ψ|2∫

Rd
|ψ|2

.

Hence plugging ψn into this formula we get∫
Rd
|∇ψn|2 +

∫
Rd
V0|ψn|2∫

Rd
|ψn|2

−−−−−→
n→+∞

∫
Rd
V0 < 0

and thus inf σ(S) can be made negative by taking n sufficiently large.

2.3 Schrödinger operator with energy dependent potential

In this section we will analyze the Schrödinger operator with energy dependent potential.
The fact that it is energy-dependent will be seen at the end of this section. We parameterize
the potential of the operator S by a multiplication constant. In particular we define V0 := µV
for µ ∈ R and denote the operator S with the potential µV by Sµ := T + µV where V is the
multiplication operator generated by V , i.e.

Sµψ := −∆ψ + µV ψ, Dom(Sµ) := {ψ ∈ H1
0 (Ω) : ∆ψ ∈ L2(Ω)} (2.7)

with the associated quadratic form

QSµ [ψ] :=

∫
Ω
|∇ψ|2 + µ

∫
Ω
V |ψ|2, Dom(QSµ) := H1

0 (Ω).

Moreover we denote numbers (2.4) corresponding to Sµ by λn(µ). The assumptions on V0 from
the previous section now transform to formally same assumptions since multiplication by a
constant does not affect them. Therefore we assume

Ω = Rd, V ∈ L∞(Rd,R), V −−−−−→
|x|→+∞

0 and µ ∈ R. (2.8)

Now we state some results concerning λn(µ). Some of them again require weaker assump-
tions than (2.8) however this will not be needed in the thesis.
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Proposition 2.3.1. Assume (2.8). Then µ 7→ λn(µ) is Lipschitz continuous function on R.

Proof. Let µ1, µ2 ∈ R. Then from definition (2.4) we have

λn(µ1) = inf
Ln⊂Dom(S)
dimLn=n

sup
ψ∈Ln
ψ 6=0

∫
Rd
|∇ψ|2 + µ1

∫
Rd
V |ψ|2∫

Rd
|ψ|2

= inf
Ln⊂Dom(S)
dimLn=n

sup
ψ∈Ln
ψ 6=0

∫
Rd
|∇ψ|2 + (µ1 − µ2)

∫
Rd
V |ψ|2 + µ2

∫
Rd
V |ψ|2∫

Rd
|ψ|2

≤ λn(µ2) + |µ1 − µ2|‖V ‖∞.

Therefore interchanging the roles of µ1 and µ2 we obtain

|λn(µ1)− λn(µ2)| ≤ |µ1 − µ2|‖V ‖∞

which means that λn(µ) is Lipschitz continuous.

Moreover there exists an asymptotic formula for λn(µ) as µ→ +∞ respectively µ→ −∞.

Proposition 2.3.2 ([7, Theorem 4]). Assume (2.8). Then λn(µ) satisfies the uniform asymptotics (not
depending on the parameter n)

λn(µ) =

{
Vminµ+ o(µ), µ→ +∞
Vmaxµ+ o(µ), µ→ −∞

where Vmin = ess infx∈Rd V (x) and Vmax = ess supx∈Rd V (x).

As a next step we derive the formula for the first derivative of the function µ 7→ λ1(µ). For
this we need to show that Sµ is an analytic family of type (A) which will ensure that λ1(µ) and
the corresponding eigenfunction are differentiable in µ.

Definition 2.3.3 (Analytic family of type (A)). Let R be a connected domain in the complex plane
and let T (β) be a closed operator on Hilbert space H with non-empty resolvent set for every β ∈ R.
Then T (β) is an analytic family of type (A) if and only if

1. Dom(T (β)) is independent of β

2. T (β)ψ is a vector-valued analytic function of β for every ψ ∈ Dom(T (β)).

There exists a useful criterion which states that in the case where T (β) = H + βW , the
family T (β) of closed operators with non-empty resolvent set is an analytic family of type (A)
ifW is a bounded operator, see the Lemma and the corollary of its proof of Section XII.2 in [17].
Assuming that V is bounded, Sµ, µ ∈ R satisfies the criterion and hence is an analytic family of
type (A).

Now assume (2.8) and V ≤ 0, V 6= 0, i.e. V is non-trivial. From Theorem XII.9 in [17] it
follows that λ1(µ) is an eigenvalue and an analytic function of the parameter µ provided that
it is non-degenerate and inf σ(Sµ) < 0. The non-degeneracy follows from Proposition 2.2.5.
Moreover the fact that inf σ(Sµ) < 0 holds for all V and µ > 0 if d ≤ 2, see Proposition 2.2.6.
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For d > 2 we see from Proposition 2.3.2 that for sufficiently large µ > 0 the number λ1(µ) is
strictly negative. Combining we have the analyticity of λ1(µ) for µ > 0 if d ≤ 2 or µ > µ0 > 0
if d > 2. The fact that the corresponding eigenvector is analytic in µ follows from [10, Section
7.3.2]. We can therefore compute the derivatives of λ1(µ) and its eigenfunction. Note that we
could have also assumed V positive and µ < 0.

First we provide a formula for the first derivative of λ1(µ). Let λ1(µ) be an eigenvalue and
ψ = ψ(x, µ) ∈ H1(Rd) its eigenfunction. From the Representation theorem we have that for all
φ ∈ Dom(QSµ) = H1(Rd)

QSµ(ψ, φ) =

∫
Rd
∇ψ∇φ+ µ

∫
Rd
V ψφ = λ1(µ)

∫
Rd
ψφ = λ1(µ)(ψ, φ). (2.9)

We compute the derivative of this formula with respect to µ. For every φ ∈ H1(Rd) (differ-
ent φ than before in general) we get∫

Rd
∇φd∇ψ

dµ
+ µ

∫
Rd
V φ

dψ

dµ
+

∫
Rd
V φψ =

dλ1(µ)

dµ

∫
Rd
φψ + λ1(µ)

∫
Rd
φ

dψ

dµ
. (2.10)

Both formulas hold for all φ ∈ H1(Rd) and thus we are able to substitute φ = dψ
dµ in (2.9)

and φ = ψ in (2.10). Indeed dψ
dµ ∈ H

1
0 (Rd) since the analyticity of Sµψ means that there exists

functions ψn such that for every µ > 0 and ε > 0

ψ = ψ(µ) = ψ0 + (µ− ε)ψ1 +
(µ− ε)2

2
ψ2 + . . . .

Thus taking µ = ε we get that ψ0 ∈ H1
0 (Rd). Moreover

dψ

dµ
= ψ1 = lim

µ→ε

ψ(µ)− ψ0

µ− ε
in L2(Rd)

and since H1
0 (Rd) is a closed subspace of L2(Rd) we obtain that dψ

dµ ∈ H
1
0 (Rd).

By substituting we obtain∫
Rd
∇dψ

dµ
∇ψ + µ

∫
Rd
V

dψ

dµ
ψ = λ1(µ)

∫
Rd

dψ

dµ
ψ (2.11)

and ∫
Rd
∇ψd∇ψ

dµ
+ µ

∫
Rd
V ψ

dψ

dµ
+

∫
Rd
V ψψ =

dλ1(µ)

dµ

∫
Rd
ψψ + λ1(µ)

∫
Rd
ψ

dψ

dµ
. (2.12)

Now we subtract (2.11) from complex conjugate of (2.12) and get∫
Rd
V ψψ =

dλ1(µ)

dµ

∫
Rd
ψψ

from which it follows

dλ1(µ)

dµ
=

∫
Rd
V |ψ|2∫

Rd
|ψ|2

which proves the following statement.
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Theorem 2.3.4. Assume (2.8) and let V ≤ 0 and non-trivial. Let λ1(µ) be an eigenvalue with eigen-
function ψ for all µ ∈ [µ0,+∞). Then the function µ 7→ λ1(µ) is analytic on (µ0,+∞) and its first
derivative is

dλ1(µ)

dµ
=

∫
Rd
V |ψ|2∫

Rd
|ψ|2

.

This statement implies that λ1(µ) is decreasing. This can be shown easily for all µ 7→ λn(µ)
using definition (2.4). Indeed let µ1 > µ2 > 0 then

λn(µ1) = inf
Ln⊂Dom(S)
dimLn=n

sup
ψ∈Ln
ψ 6=0

∫
Rd
|∇ψ|2 + (µ1 − µ2)

∫
Rd
V |ψ|2 + µ2

∫
Rd
V |ψ|2∫

Rd
|ψ|2

= λn(µ2) + inf
Ln⊂Dom(S)
dimLn=n

sup
ψ∈Ln
ψ 6=0

(µ1 − µ2)

∫
Rd
V |ψ|2∫

Rd
|ψ|2

.

Since the last term is negative whenever V ≤ 0 we have λn(µ1) − λn(µ2) ≤ 0 which implies
that µ 7→ λn(µ) is decreasing.

Proposition 2.3.5. Assume (2.8) and let V ≤ 0 and non-trivial. The function µ 7→ λn(µ) is decreasing
on (0,+∞) for all n ∈ N.

In the case of λ1(µ) which is analytic on a suitable interval we are also able to compute the
higher derivatives. We will now derive the formula for the second derivative. First we compute
the derivative of (2.10), i.e. the second derivative of (2.9). For all φ ∈ H1(Rd) we have∫

Rd
∇φd2∇ψ

dµ2
+ 2

∫
Rd
V φ

dψ

dµ
+ µ

∫
Rd
V φ

d2ψ

dµ2

= 2
dλ1(µ)

dµ

∫
Rd
φ

dψ

dµ
+ λ1(µ)

∫
Rd
φ

d2ψ

dµ2
+

d2λ1(µ)

dµ2

∫
Rd
φψ.

(2.13)

Now we substitute φ = d2ψ
dµ2

into (2.9) ,(d2ψ
dµ2
∈ H1

0 (Rd) using the same arguments as before) and
φ = ψ into (2.13) obtaining∫

Rd
∇d2ψ

dµ2
∇ψ + µ

∫
Rd
V

d2ψ

dµ2
ψ = λ1(µ)

∫
Rd

d2ψ

dµ2
ψ

and ∫
Rd
∇ψd2∇ψ

dµ2
+ 2

∫
Rd
V ψ

dψ

dµ
+ µ

∫
Rd
V ψ

d2ψ

dµ2

= 2
dλ1(µ)

dµ

∫
Rd
ψ

dψ

dµ
+ λ1(µ)

∫
Rd
ψ

d2ψ

dµ2
+

d2λ1(µ)

dµ2

∫
Rd
ψψ.

Subtracting the complex conjugate of the former from the latter we obtain

2

∫
Rd
V ψ

dψ

dµ
= 2

dλ1(µ)

dµ

∫
Rd
ψ

dψ

dµ
+

d2λ1(µ)

dµ2

∫
Rd
ψψ
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which implies

d2λ1(µ)

dµ2
= 2

∫
Rd
V ψ

dψ

dµ
− dλ1(µ)

dµ

∫
Rd
ψ

dψ

dµ∫
Rd
|ψ|2

.

Now we substitute φ = dψ
dµ into (2.10) obtaining∫

Rd
V

dψ

dµ
ψ − dλ1(µ)

dµ

∫
Rd

dψ

dµ
ψ = −

∫
Rd

∣∣∣∣∇dψ

dµ

∣∣∣∣2 − µ ∫
Rd
V

∣∣∣∣dψdµ

∣∣∣∣2 + λ1(µ)

∫
Rd

∣∣∣∣dψdµ

∣∣∣∣2
which is negative from the definition of λ1(µ). Indeed from (2.4) it holds

λ1(µ) = inf
ψ∈H1

0 (Rd)
ψ 6=0

QSµ [ψ]

‖ψ‖2
≤

∫
Rd

∣∣∣∣∇dψ

dµ

∣∣∣∣2 + µ

∫
Rd
V

∣∣∣∣dψdµ

∣∣∣∣2∫
Rd

∣∣∣∣dψdµ

∣∣∣∣2
.

Recalling Proposition 2.3.4 we have just proven the following statement.

Theorem 2.3.6. Assume (2.8) and let V ≤ 0 and non-trivial. Let λ1(µ) be an eigenvalue with eigen-
function ψ for all µ ∈ [µ0,+∞). Then

d2λ1(µ)

dµ2
= 2

∫
Rd
|ψ|2

∫
Rd
V ψ

dψ

dµ
−
∫
Rd
V |ψ|2

∫
Rd
ψ

dψ

dµ(∫
Rd
|ψ|2

)2 .

Moreover d2λ1(µ)
dµ2

is negative for all µ ∈ [µ0,+∞) and therefore µ 7→ λ1(µ) is concave.

Finally we provide an example of the family Sµ where the potential is the so called finite
rectangular well. Consider the Schrödinger operator denoted by Saµ, µ > 0, a < 0 on L2(R)
with the potential Va generated by the function

Va(x) =


0, x < a

a, a < x < −a
0, x > −a.

Since µVa suffices the assumptions of Theorem 2.2.4 the essential spectrum of Saµ is [0,∞). We
will now find the discrete spectrum. For this we compute the point spectrum thus we have to
solve the equation

−d2ψ

dx2
+ µVaψ = λψ

for some 0 6= ψ ∈ Dom(Saµ) = H2(R) and λ ∈ R (since Saµ is self-adjoint) which involving the
definition of V implies

−d2ψ

dx2
= λψ, x < a

−d2ψ

dx2
+ µaψ = λψ, a < x < −a

−d2ψ

dx2
= λψ, x > −a.
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The general solution of these equations is

ψ1(x) = C1e
√
−λx + C2e

−
√
−λx, x < a

ψ2(x) = C3e
√
−(λ−µa)x + C4e

−
√
−(λ−µa)x, a < x < −a

ψ3(x) = C5e
√
−λx + C6e

−
√
−λx, x > −a

where we denoted the partial solutions by ψi. For ψ to lie in L2(R) we need λ < 0 (which
implies there are no eigenvalues embedded in the essential spectrum) and also C2 = C5 = 0.
Since Saµ is bounded from below by −µ‖Va‖∞ = µa (which follows for example from 2.2.1) we
have that inf σ(Saµ) ≥ µa therefore we are looking for λ ∈ (µa, 0).

Moreover since from the Sobolev embedding theorem it follows that H2(R) ⊂ C1(R) we
need to assure that

ψ1(a) = ψ2(a), ψ2(−a) = ψ3(−a),
dψ1

dx
(a) =

dψ2

dx
(a) and

dψ2

dx
(−a) =

dψ3

dx
(−a).

Hence
C1e

a
√
−λ = C3e

ai
√
λ−µa + C4e

−ai
√
λ−µa

C3e
−ai
√
λ−µa + C4e

ai
√
λ−µa = C6e

a
√
−λ

C1

√
−λ ea

√
−λ = C3i

√
λ− µa eai

√
λ−µa − C4i

√
λ− µa e−ai

√
λ−µa

C3i
√
λ− µa e−ai

√
λ−µa − C4i

√
λ− µa eai

√
λ−µa = −C6

√
−λ ea

√
−λ

which is a linear homogeneous system for the four constants C1, C3, C4 and C6. It has a non-
trivial solution only if the corresponding determinant is zero, i.e.∣∣∣∣∣∣∣∣∣

ea
√
−λ −eai

√
λ−µa −e−ai

√
λ−µa 0

0 e−ai
√
λ−µa eai

√
λ−µa −ea

√
−λ

√
−λ ea

√
−λ −i

√
λ− µa eai

√
λ−µa i

√
λ− µa e−ai

√
λ−µa 0

0 i
√
λ− µa e−ai

√
λ−µa −i

√
λ− µa eai

√
λ−µa √−λ ea

√
−λ

∣∣∣∣∣∣∣∣∣ = 0.

Computing the determinant we get

2
√
λ(−λ+ µa) cos(2a

√
λ− µa) + (2λ− µa) sin(2a

√
λ− µa) = 0.

Using the double-angle formulas for sine and cosine we obtain

cos2(a
√
λ− µa)− sin2(a

√
λ− µa) +

2λ− µa√
λ(−λ+ µa)

sin(a
√
λ− µa) cos(a

√
λ− µa) = 0.

which is equivalent to

cos2(a
√
λ− µa)− sin2(a

√
λ− µa)

+

(√
λ− µa
−λ

−

√
−λ

λ− µa

)
sin(a

√
λ− µa) cos(a

√
λ− µa) = 0
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Figure 2.1: Plot of the eigenvalues of S−1
µ for µ ∈ (0, 13)

and thus (
cos(a

√
λ− µa)−

√
−λ

λ− µa
sin(a

√
λ− µa)

)

×

(
cos(a

√
λ− µa) +

√
λ− µa
−λ

sin(a
√
λ− µa)

)
= 0.

Now we divide the equation by the term sin(a
√
λ− µa) cos(a

√
λ− µa). This is possible for if

sin(a
√
λ− µa) = 0 then from the equation also cos(a

√
λ− µa) = 0 and vice versa. This cannot

happen at the same time. Hence

(
cot(a

√
λ− µa)−

√
−λ

λ− µa

)(
1 +

√
λ− µa
−λ

tan(a
√
λ− µa)

)
= 0.

Employing the oddness of tangent and cotangent we get that the eigenvalues λ can be found
as the solutions of the following two equations

tan(−a
√
λ− µa) =

√
−λ

λ− µa
and cot(−a

√
λ− µa) = −

√
−λ

λ− µa
.

The eigenvalues have finite multiplicity and no limit point therefore they coincide with the
discrete spectrum and we would denote them by λn(µ) as before. On Figures 2.1 and 2.2 we
provide the dependence of λn(µ) on the parameter µ for various values of a. It can be seen
that in accordance with 2.3.5 and 2.3.2 the functions µ 7→ λn(µ) are decreasing and behave
like linear functions as µ → +∞. Moreover the first eigenvalue appears immediately as µ is
non-zero. This corresponds with Proposition 2.2.5.



2.4. CORRESPONDENCE WITH DAMPED WAVE OPERATOR 47

0.5 1.0 1.5 2.0
μ

-6

-5

-4

-3

-2

-1

0

λ1(μ)

λ2(μ)

λ3(μ)

λ4(μ)

λ5(μ)

Figure 2.2: Plot of the eigenvalues of S−2.8
µ for µ ∈ (0, 2)

2.4 Correspondence with damped wave operator

In this section we state a theorem of crucial importance for this thesis. It provides a con-
nection between the spectrum of the self-adjoint Schödinger operator Sµ with bounded poten-
tial V and the spectrum of the non-self-adjoint parameterized damped wave operator Aα on
H1

0 (Rd)× L2(Rd) defined in (1.49) with bounded damping b := V . In particular

Aα =

(
0 I
∆ −αV

)
, Dom(Aα) = H2(Rd)×H1

0 (Rd). (2.15)

The discrete and essential spectrum of a non-self-adjoint operator were defined in Subsection
1.2.4.

Theorem 2.4.1 ([7, Lemma 2]). LetAα be damped wave operator (2.15). Then for µ ∈ R and α > 0 it
holds

1. −
(µ
α

)2
∈ σp(Sµ)⇐⇒ µ

α
∈ σp(Aα)

2. −
(µ
α

)2
∈ σess(Sµ) =⇒ µ

α
∈ σess(Aα).

This theorem justifies the fact that we call Sµ the energy dependent Schrödinger operator
since µ is the eigenvalue (energy) of the non-parameterized damped wave operator A. Next
we have the following useful proposition.

Proposition 2.4.2. Let Aα be defined by (2.15) and assume that the damping V is nonpositive. Then
for all µ ∈ σp(Aα) it holds Rµ ≥ 0.

Proof. Let µ ∈ σp(Aα). Then there exists 0 6= Ψ ∈ Dom(Aα) such that AαΨ = µΨ. Denoting

Ψ =

(
ψ1

ψ2

)
we get

d2

dx2
ψ1 − µαV ψ2 = µψ2 and ψ2 = µψ1



48 CHAPTER 2. SCHRÖDINGER OPERATOR

which together gives
d2

dx2
ψ1 − µαV ψ1 − µ2ψ1 = 0.

Note that this equation can be viewed as a problem for a quadratic operator pencil, see [15].
Nevertheless multiplying by ψ1 and integrating over Rd implies∫

Rd
|∇ψ1|2 + µα

∫
Rd
V |ψ1|2 + µ2

∫
Rd
|ψ1|2 = 0

where we used the integration by parts. This is a quadratic equation for µ hence we can com-
pute the solution

µ± =
−α

∫
Rd V |ψ1|2 ±

√
D

2
∫
Rd |ψ1|2

where the discriminant D is

D = α2

(∫
Rd
V |ψ1|2

)2

− 4

∫
Rd
|ψ1|2

∫
Rd
|∇ψ1|2


= 0⇒ µ± ≥ 0

≥ 0⇒ µ± ≥ 0

≤ 0⇒ Rµ± ≥ 0.

Finally we can immediately see from Theorem 2.4.1 that since S0 = T and 0 ∈ σess(T ) it
holds that 0 ∈ σess(Aα). Moreover we know that 0 ∈ σc(T ) which implies that 0 /∈ σp(Aα).

Proposition 2.4.3. Let Aα be defined by (2.15). Then 0 /∈ σp(Aα).



Chapter 3

Bounds for eigenvalues of damped
wave operator

In this chapter we derive numerous bounds for the eigenvalues of damped wave operator
Aα (2.15) using the correspondence between the spectrum of the damped wave operator and
the Schrödinger operator Sµ provided by Theorem 2.4.1. We use selected known bounds for
the spectrum of the Schrödinger operator namely the Lieb-Thirring inequalities, the Buslaev-
Faddeev-Zakharov trace formulae and the Birman-Schwinger principle.

Before proceeding recall the already obtained upper bound stated in Proposition 1.3.11
which follows directly from the fact that A generates a C0-semigroup.

Next we consider the non-parameterized damped wave operator A ≡ A1. We are able to
obtain a simple bound for µ ∈ σp(A), µ ∈ R using only Theorem 2.4.1 and the property of
bounded from below self-adjoint operators which for Sµ states that

inf σ(Sµ) ≥ −‖µV ‖∞.

Assume (2.8). Then we know that σess(Sµ) = [0,+∞). All λn(µ) defined in (2.4) thus coincide
with the strictly negative part of the point spectrum of Sµ and we have λn(µ) ≥ −|µ|‖V ‖∞.
Since from Proposition 2.4.3 we know that µ 6= 0 we get from Theorem 2.4.1

µ ∈ σp(A)⇐⇒ −µ2 ∈ σp(Sµ)⇐⇒ ∃j ∈ N, λj(µ) = −µ2 = −|µ|2

hence
−|µ|2 ≥ −|µ|‖V ‖∞

and we conclude with the following statement.

Proposition 3.0.1. Let A be damped wave operator (2.15) with α = 1 and the damping V satisfying
assumptions (2.8). Let µ ∈ σp(A), µ ∈ R. Then it holds that |µ| ≤ ‖V ‖∞.

3.1 Lieb-Thirring inequalities

Consider a self-adjoint Schrödinger operator −∆ + V on L2(Rd) with real potential V and
negative eigenvalues {λn : n ∈ N, n ≤ N}where the number of eigenvalues N can be finite or
infinite. The Lieb-Thirring inequalities (see for example the summarizing paper [12]) provide
an upper bound for the moments (sums of various powers) of the negative eigenvalues in

49
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terms of the integral of some power of the negative part of the potential V− := 1
2(|V | − V ). In

particular it holds
N∑
n=1

|λn|γ ≤ Lγ,d
∫
Rd
V
γ+ d

2
− (3.1)

where Lγ,d ∈ R and the parameter γ can be chosen in the following way depending on the
dimension d:

• d = 1, γ ≥ 1
2 ,

• d = 2, γ > 0,

• d ≥ 3, γ ≥ 0.

The values of γ satisfying this properties will be called the suitable values of γ. The sharp values
of Lγ,d (the less possible for which (3.1) holds) are known only in some cases, specifically

• L 1
2
,1 = 2Lcl1

2
,1

= 1
2

• d ≥ 1, γ ≥ 3
2 then Lγ,d = Lclγ,d

where the so called classical constants Lclγ,d arising from the Weyl’s asymptotic formulae for the
sum of negative eigenvalues λn(β) of the Schrödinger operator −∆ + βV as β → +∞

lim
β→+∞

β−γ−
d
2

N∑
n=1

|λn(β)| = Lclγ,d

∫
Rd
V
γ+ d

2
−

satisfy the explicit formula

Lclγ,d =
Γ(γ + 1)

2dπ
d
2 Γ(γ + d

2 + 1)
. (3.2)

The remaining sharp constants are not known.
Assume (2.8). As was shown in the previous chapter the numbers λn(µ) coincide with

the discrete and thus strictly negative part of the point spectrum of operator Sµ (2.7) with the
potential µ. Thus we have the Lieb-Thirring bound

Nµ∑
n=1

|λn(µ)|γ ≤ Lγ,d
∫
Rd

(µV )
γ+ d

2
− (3.3)

for all suitable γ. Here Nµ denotes the number of negative eigenvalues of Sµ. A trivial conse-
quence is that for all n it holds

|λn(µ)|γ ≤ Lγ,d
∫
Rd

(µV )
γ+ d

2
− . (3.4)

Now we would like to use this bound to obtain a bound for some eigenvalues of damped
wave operator Aα (2.15). For this the parameterization of Aα by α would not be necessary
therefore we choose α = 1 and denote this operator by A1 ≡ A as in the first chapter.

We will consider only the real part of the point spectrum of A. Thus let µ ∈ σp(A) and let
µ ∈ R. We proceed as above. From Proposition 2.4.3 we know that µ 6= 0. Using Theorem 2.4.1
we get

µ ∈ σp(A)⇐⇒ −µ2 ∈ σp(Sµ)⇐⇒ ∃j ∈ N, λj(µ) = −µ2. (3.5)
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Next let µ > 0. Using (3.4) we compute

µ2γ = |λj(µ)|γ ≤ Lγ,d µγ+ d
2

∫
Rd
V
γ+ d

2
− .

If on the other hand µ < 0 we have

|µ|2γ = |λj(µ)|γ ≤ Lγ,d |µ|γ+ d
2

∫
Rd
V
γ+ d

2
+

where V+ := 1
2(|V |+ V ). Choosing γ = d

2 which can be done for all d ≥ 1 we obtain∫
Rd
V d
− ≥

1

L d
2
,d

in the case when µ > 0 and ∫
Rd
V d

+ ≥
1

L d
2
,d

for µ < 0. Since the potential can surely be chosen such that it satisfies our assumptions and is
less than the right-hand side of the two formulas we see that the assumption that there exists
some strictly positive or negative point in σp(A) was false in this case. Therefore we have just
proven the following theorem.

Theorem 3.1.1. Let A be non-parameterized damped wave operator (2.15) with the damping V which
satisfies (2.8). If V− ∈ Ld(Rd) and ∫

Rd
V d
− <

1

L d
2
,d

then A has no positive eigenvalues. On the other hand if V+ ∈ Ld(Rd) and∫
Rd
V d

+ <
1

L d
2
,d

then A has no negative eigenvalues.

Remark 3.1.2 (Explicit bounds). Using the sharp values of Lγ,d the explicit upper bounds for the
integral of the potential V such that A has no positive respectively negative eigenvalues are known
except for d = 2. Here W denotes V− respectively V+.

• For d = 1 ∫
R
W < 2.

• For d ≥ 3 ∫
Rd
W d <

2dπ
d
2 Γ(d+ 1)

Γ(d2 + 1)
.

Equation (3.1) and (3.1) also provide a bound for µ for all suitable γ. Dividing them by
|µ|γ+ d

2 we conclude with the following theorem.
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Theorem 3.1.3. Let A be non-parameterized damped wave operator (2.15) with the damping V which
satisfies (2.8). Let µ be its positive eigenvalue and V− ∈ Lγ+ d

2 (Rd). Then

µγ−
d
2 ≤ Lγ,d

∫
Rd
V
γ+ d

2
− (3.6)

on the other hand let µ be negative eigenvalue and V+ ∈ Lγ+ d
2 (Rd). Then

|µ|γ−
d
2 ≤ Lγ,d

∫
Rd
V
γ+ d

2
+ (3.7)

for all suitable γ 6= d
2 .

We see that for d ≥ 2 this theorem provides a lower bound for the absolute value of the
eigenvalue if γ < d

2 , in particular

|µ|
d
2
−γ ≥ 1

Lγ,d

∫
Rd
W γ+ d

2

and upper bound (3.6) respectively (3.7) if γ > d
2 where W denotes V− respectively V+. Never-

theless for γ < d
2 the sharp values of Lγ,d are known only if d ≥ 4.

The answer to the question which γ to choose to obtain the best bound depends on the size
of µ and on the dimension d.

In the past few years there arose the so-called non-self-adjoint Lieb-Thirring inequalities
which provide an upper bound for the sum of absolute values of the eigenvalues of Schrödinger
operator with complex potential (which is non-self-adjoint) see [6]. These together with the
generalized version of Theorem 2.4.1 for µ ∈ C could provide another results for the spectrum
of A. This will be the aim of our next work.

3.2 Buslaev-Faddeev-Zakharov trace formulae

Consider again a self-adjoint Schrödinger operator −∆ + V on L2(R) with real potential
V and negative eigenvalues {λn : n ∈ N, n ≤ N} where the number of eigenvalues N is
finite. Then the Buslaev-Faddeev-Zakharov trace formulae [21] which follows from applying
the inverse scattering method on the Korteweg-de Vries equation provides a lower bound for
the sum of square roots of the eigenvalues. In particular

N∑
n=1

|λn|
1
2 ≥ −1

4

∫
R
V.

Assume (2.8). Consider operator Sµ (2.7) on L2(R). Moreover assume Nµ < +∞, i.e. the
number of negative eigenvalues is finite. Then the operator satisfies the above assumptions
and we get

Nµ∑
n=1

|λn(µ)|
1
2 ≥ −µ

4

∫
R
V (3.8)

for numbers (2.4). Now we cannot use the little trick as before where we obtained (3.4) from
(3.3). First we have to ensure that Nµ (the number of negative eigenvalues of Sµ) is exactly 1.
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This will be achieved using the Bargmann bound [17, Problem 22] which provides an upper
bound for the number of negative eigenvalues of Sµ

Nµ ≤ 1 + µ

∫
R
|V (x)||x| dx.

Moreover for µ > 0 the assumption
∫
R V < 0 thanks to Proposition 2.2.6 implies that λ1(µ) is

an eigenvalue. Thus for

µ <

(∫
R
|V (x)||x| dx

)−1

(3.9)

the number of negative eigenvalues Nµ is exactly 1. Consider non-parameterized (with α = 1)
damped wave operatorA (2.15) on H1

0 (R)×L2(R). Let µ be its strictly positive eigenvalue and
recall consequence (3.5) of Theorem 2.4.1. Hence for µ <

(∫
R |V (x)||x| dx

)−1 we get

|µ| = |λ1(µ)|
1
2 ≥ −µ

4

∫
R
V (3.10)

which implies ∫
R
V ≥ −4.

On the other hand let µ < 0. Then Sµ has exactly one negative eigenvalue if
∫
R V > 0 and

|µ| <
(∫

R
|V (x)||x| dx

)−1

(3.11)

holds and thus we again obtain (3.10) from which it now follows∫
R
V ≤ 4.

Finally the theorem follows.

Theorem 3.2.1. Assume (2.8). Let A be damped wave operator (2.15) on H1
0 (R)× L2(R) with α = 1

and V ∈ L1(R, |x|dx). Let µ be its real eigenvalue. If µ > 0 and
∫
R V < −4 or µ < 0 and

∫
R V > 4

then

|µ| ≥
(∫

R
|V (x)||x| dx

)−1

.

Now recall parameterized damped wave operator Aα (2.15) on H1
0 (R) × L2(R). Assuming∫

R V < 0 and taking µ > 0 such that (3.9) holds we have exactly one eigenvalue λ1(µ) and it
follows that

−µ
4

∫
R
V ≤ |λ1(µ)|

1
2 ≤ µ

2

∫
R
V−

from (3.4), (3.8) and the fact that L 1
2
,1 = 1

2 . In the case of Aα Theorem 2.4.1 now gives

−
(µ
α

)2
∈ σp(Sµ)⇐⇒ µ

α
∈ σp(Aα)

which proves the following theorem.
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Theorem 3.2.2. Let Aα be damped wave operator (2.15) on H1
0 (R) × L2(R) with the damping V ∈

L1(R, |x|dx) satisfying (2.8) and
∫
R V < 0. Then for any µ > 0 such that (3.9) holds there exists

exactly one α satisfying

2

(∫
R
V−

)−1

≤ α ≤ −4

(∫
R
V

)−1

such that µ
α is an eigenvalue of Aα.

This theorem gives us the existence of a positive eigenvalue of Aα with specific damping.
From the comments on time evolution in the first chapter we see that this implies that there exist
initial conditions for which the solution of damped wave equation (1.1) which is generated by
Aα is unstable. Assuming µ < 0 and

∫
R V > 0 leads us to analogous statement.

Theorem 3.2.3. Let Aα be damped wave operator (2.15) on H1
0 (R) × L2(R) with the damping V ∈

L1(R, |x|dx) satisfying (2.8) and
∫
R V > 0. Then for any µ < 0 such that (3.11) holds there exists

exactly one α satisfying

2

(∫
R
V+

)−1

≤ α ≤ 4

(∫
R
V

)−1

such that µ
α is an eigenvalue of Aα.

3.3 Birman-Schwinger principle

This section will use completely different techniques than the preceding parts. We will ob-
tain some results for the spectrum of the damped wave operator on H1

0 (Rd) × L2(Rd) with
complex damping in general. This will be done by generalizing the Birman-Schwinger princi-
ple for the damped wave operator.

Thus consider a bounded complex-valued damping function V ∈ L∞(Rd,C) and define the
corresponding damped wave operator

A =

(
0 I
∆ −V

)
, Dom(A) = H2(Rd)×H1

0 (Rd). (3.12)

Since the perturbation by V is again bounded this operator is closed as in the real case.
Now we move on to the bound for the eigenvalues of A. Let µ ∈ σp(A), Rµ 6= 0. Then

AΨ = µΨ for some Ψ ∈ Dom(A). Hence denoting Ψ =

(
ψ1

ψ2

)
we have

∆ψ1 − µV ψ1 − µ2ψ1 = 0.

Moreover we write V 1
2

:= sgn(V )|V |
1
2 where the complex signum function is defined as sgn(V ) :=

ei arg(V ). Thus V = |V |
1
2V 1

2
and the equation transforms to

(T + µ2I)ψ1 = −µ|V |
1
2V 1

2
ψ1 (3.13)

where T is the Dirichlet Laplacian on L2(Rd) defined in Section 2.1 and we use the same nota-
tion for the multiplicative operator and its generating function. Next denote φ := |V |

1
2ψ1. This

function lies in L2(Rd). Indeed recall that σ(T ) = [0,+∞). Therefore for any η > 0 we have that
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(T + ηI)−1 is a bounded bijection and thus there exists ϕ ∈ L2(Rd) such that (T + ηI)−1ϕ = ψ1

and we have

‖φ‖ ≤ ‖|V |
1
2ψ1‖ ≤ ‖|V |

1
2 (T + ηI)−1ϕ‖ ≤ ‖|V |

1
2 (T + ηI)−1‖‖ϕ‖ < +∞.

Therefore equation (3.13) implies

µ|V |
1
2 (T + µ2I)−1V 1

2
φ = −φ

provided that Rµ 6= 0. We are able to define the bounded Birman-Schwinger operator Kµ on
L2(Rd) (being a composition of three bounded operators) by

Kµψ := µ|V |
1
2 (T + µ2I)−1V 1

2
ψ, Dom(Kµ) := L2(Rd). (3.14)

We immediately see that −1 ∈ σp(Kµ). Thus we have just proven that for µ such that Rµ 6= 0 it
holds µ ∈ σp(A)⇒ −1 ∈ σp(Kµ).

Theorem 3.3.1 (Birman-Schwinger principle for damped wave operator). Let A be the damped
wave operator with complex-valued bounded damping V and let Kµ be the Birman-Schwinger operator
defined in (3.14). For µ ∈ C, Rµ 6= 0 it holds

µ ∈ σp(A)⇒ −1 ∈ σp(Kµ).

If some bounded operator T has the number −1 in its point spectrum with the correspond-
ing eigenfunction ψ then certainly

‖T‖ ≥ ‖Tψ‖
‖ψ‖

= 1. (3.15)

Also we have a formula for the integral kernel of Kµ

Kµ(x, y) = µ|V |
1
2 (x)Gµ(x, y)V 1

2
(y)

where Gµ(x, y) is the integral kernel of the resolvent (T + µ2I)−1. This is explicitly known for
d = 1 and d = 3. First we focus on the case d = 1. We have (see [19, Section 2.7.5])

Gµ(x, y) =
e−µ|x−y|

2µ

and thus

Kµ(x, y) = µ|V |
1
2 (x)

e−µ|x−y|

2µ
V 1

2
(y).

Using [17, Theorem VI.23] we can write for V ∈ L1(R)

‖Kµ‖2 ≤ ‖Kµ‖2HS =

∫
R×R
|Kµ(x, y)|2dxdy =

∫
R×R
|µ|2|V (x)|

∣∣e−µ|x−y|∣∣2
4|µ|2

|V (y)|dxdy

where ‖ · ‖HS is the Hilbert-Schmidt norm. Further we assume Rµ > 0 to be able to estimate
the exponential and we get∫

R×R
|µ|2|V (x)|

∣∣e−µ|x−y|∣∣2
4|µ|2

|V (y)|dxdy ≤
∫
R×R
|µ|2 |V (x)||V (y)|

4|µ|2
dxdy
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since |ez| = eRz for z ∈ C. Using the Fubini theorem we arrive at

‖Kµ‖2 ≤
1

4
‖V ‖2L1

and employing (3.15) we conclude with the following statement.

Theorem 3.3.2. Let d = 1 and A be the damped wave operator with complex-valued bounded damping
V ∈ L1(R). If ‖V ‖L1 < 2 then σp(A) ⊂ {µ ∈ C : Rµ ≤ 0}.

We see that this theorem is a generalization of the first statement of Theorem 3.1.1 for taking
V ≤ 0 we know that for µ ∈ σp(A) we have Rµ ≥ 0, see Proposition 2.4.2. This together with
Proposition 2.4.3 implies the first statement of Theorem 3.1.1.

Now we analyze the case d = 3. The integral kernel of the resolvent (T + µ2I)−1 is now

Gµ(x, y) =
e−µ|x−y|

4π|x− y|

and hence

Kµ(x, y) = µ|V |
1
2 (x)

e−µ|x−y|

4π|x− y|
V 1

2
(y).

Moreover we assume that V ∈ R(R3) where R(R3) is the Rollnik class which consists of all
V ∈ L1

loc(R3) such that

‖V ‖2R :=

∫
R3×R3

|V (x)||V (y)|
|x− y|2

dxdy < +∞.

As in the previous case we write

‖Kµ‖2 ≤ ‖Kµ‖2HS =

∫
R3×R3

|µ|2|V (x)|
∣∣e−µ|x−y|∣∣2

16π2|x− y|2
|V (y)|dxdy

and assuming Rµ > 0 we get

‖Kµ‖2 ≤
|µ|2

16π2

∫
R3×R3

|V (x)||V (y)|
|x− y|2

dxdy =
|µ|2

16π2
‖V ‖2R.

This proves the following theorem.

Theorem 3.3.3. Let d = 3 and A be the damped wave operator with bounded complex-valued damping
V ∈ R(R3). Then

σp(A) ⊂
{
µ ∈ C : Rµ ≤ 0 ∨ |µ| ≥ 4π

‖V ‖R

}
.

Consider now V ∈ L
3
2 (R3). From the sharp Hardy-Littlewood-Sobolev inequality [13, The-

orem 4.3] we know that L
3
2 (R3) ↪→ R(R3). In particular

‖V ‖2R ≤
3
√

4π4‖V ‖2
L

3
2

from which the following corollary follows.

Corollary 3.3.4. Let d = 3 andA be the damped wave operator with bounded complex-valued damping
V ∈ L

3
2 (R3). Then

σp(A) ⊂

{
µ ∈ C : Rµ ≤ 0 ∨ |µ| ≥ 4 3

√
π

3
√

2 ‖V ‖
L

3
2

}
.



Chapter 4

Finite rectangular well

In the final chapter we provide an explicitly computable example of the behavior of the
point spectrum of the damped wave operatorA onH1

0 (R)×L2(R) with the damping governed
by the so called finite rectangular well. In particular let a < 0, b > 0 and let W denote the
damping function

W (x) =


0, x < −b
a, −b < x < b

0, x > b.

The damped wave operator with the potential W is denoted by AW , i.e.

AW =

(
0 I
d2

dx2
−W

)
, Dom(A) = H2(R)×H1

0 (Rd).

Let µ ∈ C be an eigenvalue of AW then

AWΨ = µΨ

for some 0 6= Ψ ∈ Dom(AW ) which means

d2

dx2
ψ − µWψ − µ2ψ = 0

where ψ denotes the first component of Ψ. Employing the definition of W we get

d2

dx2
ψ − µ2ψ = 0, x < −b

d2

dx2
ψ − µaψ − µ2ψ = 0, − b < x < b

d2

dx2
ψ − µ2ψ = 0, x > b.

The general solution of these equations is

ψ1(x) = C1e
µx + C2e

−µx, x < −b

ψ2(x) = C3e
√
µa+µ2x + C4e

−
√
µa+µ2x, − b < x < b

ψ3(x) = C5e
µx + C6e

−µx, x > b
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where we denoted the partial solutions by ψi. The potential W satisfies assumptions (2.8) and
thus Proposition 2.4.2 implies that Rµ ≥ 0. Hence for ψ to lie in L2(R) we need C2 = C5 = 0.
Moreover since the Sobolev embedding theorem implies that H2(R) ⊂ C1(R). This means we
need to assure that

ψ1(−b) = ψ2(−b), ψ2(b) = ψ3(b),
dψ1

dx
(−b) =

dψ2

dx
(−b) and

dψ2

dx
(b) =

dψ3

dx
(b).

Therefore
C1e

−µb = C3e
−
√
µa+µ2b + C4e

√
µa+µ2b

C3e
√
µa+µ2b + C4e

−
√
µa+µ2b = C6e

−µb

C1µe
−µb = C3

√
µa+ µ2 e−

√
µa+µ2b − C4

√
µa+ µ2 e

√
µa+µ2b

C3

√
µa+ µ2 e

√
µa+µ2b − C4

√
µa+ µ2 e−

√
µa+µ2b = −C6µe

−µb

which is a linear homogeneous equation for the four constants C1, C3, C4 and C6. Therefore it
has a non-trivial solution only if the the corresponding determinant is equal to 0, in particular∣∣∣∣∣∣∣∣∣∣

e−µb −e−
√
µa+µ2b −e

√
µa+µ2b 0

0 e
√
µa+µ2b e−

√
µa+µ2b −e−µb

µe−µb −
√
µa+ µ2 e−

√
µa+µ2b

√
µa+ µ2 e

√
µa+µ2b 0

0
√
µa+ µ2 e

√
µa+µ2b −

√
µa+ µ2 e−

√
µa+µ2b µe−µb

∣∣∣∣∣∣∣∣∣∣
= 0.

Computing the determinant we arrive at

−2e−2bµµ
(

2
√
µa+ µ2 cosh(2b

√
µa+ µ2) + (a+ 2µ) sinh(2b

√
µa+ µ2)

)
= 0

which is equivalent to

2
√
µa+ µ2 cosh(2b

√
µa+ µ2) + (a+ 2µ) sinh(2b

√
µa+ µ2) = 0.

In the special case when µ ∈ R this reduces to

2
√
−(µa+ µ2) cos(2b

√
−(µa+ µ2)) + (a+ 2µ) sin(2b

√
−(µa+ µ2)) = 0

since cosh(ix) = cos(x) and sinh(ix) = i sin(x).
Hence the latter two equations determine the eigenvalues of AW . On Figures 4.1, 4.2, 4.3,

4.4, 4.5, 4.6, 4.7 and 4.8 we can see their behavior with respect to different values of a when
b = 1. We can see that the eigenvalues emerge from the imaginary axis and the deeper the well
is the greater is their number.

Now we compare the bounds for the real eigenvalues obtained in the previous chapter. We
analyze their behavior for different values of a with b fixed. In particular we employ the bound
of Proposition 3.0.1 which for AW has the form

µ ≤ ‖W‖∞ = −Wmin

where Wmin denotes the essential infimum of W as before. Moreover we use the bound of
Theorem 3.1.3 which states that

µ ≤ Lγ,1
∫
R
|W |γ+ 1

2 =

(
Γ(γ + 1)

π
1
2 Γ(γ + 1

2 + 1)
b(−a)γ+ 1

2

) 1

γ− 1
2
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Figure 4.1: Plot of eigenvalues of AW with
a = −1.5 and b = 1
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Figure 4.2: Plot of eigenvalues of AW with
a = −1.8 and b = 1
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Figure 4.3: Plot of eigenvalues of AW with
a = −2 and b = 1
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Figure 4.4: Plot of eigenvalues of AW with
a = −2.3 and b = 1
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Figure 4.5: Plot of eigenvalues of AW with
a = −2.5 and b = 1
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Figure 4.6: Plot of eigenvalues of AW with
a = −2.8 and b = 1
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Figure 4.7: Plot of eigenvalues of AW with
a = −3 and b = 1
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Figure 4.8: Plot of eigenvalues of AW with
a = −3.3 and b = 1
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Figure 4.9: Plot of the bounds for eigenvalues of AW with b = 1 and a ∈ (−4,−1.1)

for all γ ≥ 3
2 where we used explicit formula for Lγ,1 (3.2) since in this case Lγ,1 = Lclγ,1. We plot

these bounds for γ = 3
2 and γ = 5

2 denoted by LT (3/2) and LT (5/2) respectively. Since these
bounds holds for every eigenvalue of AW we compare them with the numerically computed
greatest real eigenvalue denoted by µmax. The results can be seen on Figures 4.9 and 4.10 for
b = 1 and b = 2 respectively.

It can be seen that in both cases the bound LT (3/2) is the best for the smallest values of
|a| for which AW has a real eigenvalue. Then as |a| grows the function LT (3/2) is crossed by
LT (5/2) which thus starts to be the best bound. Finally for the largest values of |a| the bound
−Wmin wins and provides the best estimate for any real eigenvalue µ. Also note that for small
enough dampings there is no eigenvalue which is in agreement with Theorem 3.1.1.

Considering the case when a is fixed and b changes we obtain the behavior which can be
seen on Figures 4.11 and 4.12 for a = −1 and a = −2 respectively. The quality of the bounds
is the same as in the preceding, i.e. for the lowest values of b the bound LT (3/2) is the best.
Then with growing b the bound LT (5/2) becomes better and with yet other growth the bound
−Wmin possesses the best information about µ.



61

-2.5 -2.0 -1.5 -1.0
a

0.5

1.0

1.5

2.0

μmax

-Wmin

LT(3/2)

LT(5/2)

Figure 4.10: Plot of the bounds for eigenvalues of AW with b = 2 and a ∈ (−2.5, 0.5)

1.5 2.0 2.5 3.0 3.5 4.0 4.5
b

0.5

1.0

1.5

2.0

μmax

-Wmin

LT(3/2)

LT(5/2)

Figure 4.11: Plot of the bounds for eigenvalues of AW with a = −1 and b ∈ (1.2, 5)
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Figure 4.12: Plot of the bounds for eigenvalues of AW with a = −2 and b ∈ (0.5, 5)

The last phenomena we are going to discuss is the sharpness of the bound of Theorem
3.1.1 respectively Theorem 3.3.2. The Birman-Schwinger principle can be used to obtain an
analogous result for the Schrödinger operator which moreover states that the corresponding
bound is sharp when the potential is the Dirac delta function. We would like to obtain such a
result also for the damped wave operator at least from the numerical point of view. This will be
done by parameterizing the delta function by an infinitely deep and narrow rectangular well
whose L1 norm converges to 2. More specifically we take the potential W and set

a = −h and b =
1 + 1

eh

h

for some h > 0. On Figure 4.13 we can see the plot of the eigenvalue (which is unique and real)
of AW depending on the parameter h. We see that the larger is the parameter h the smaller is
the eigenvalue and it is still present. Moreover for deep and narrow wells whose L1 norm is
slightly less than 2 the numerics show that there is no eigenvalue. This together with the fact
that Rµ ≥ 0 suggests that for the Dirac delta function the bound of Theorem 3.1.1 could be
sharp. This of course has to be proven analytically which will be the goal of our next work.
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Figure 4.13: Plot of the eigenvalue of AW depending on the parameter h
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Conclusion

In this thesis we properly defined the damped wave operator as a generator of a C0- semi-
group which provided us with unique and regular solutions of the damped wave equation.
We stated some known results on the time evolution and stability of these solutions. After-
wards we defined the Schrödinger operator with real potential as a bounded perturbation of
the Dirichlet Laplacian and stated some of its spectral properties. We obtained the formulas
for the first and second derivative of the first eigenvalue of this operator with respect to a mul-
tiplicative parameter which parameterizes its potential. In the main chapter of the thesis we
obtained numerous bounds and criteria of existence of the eigenvalues of the damped operator
using the correspondence between its spectrum and the spectrum of the Schrödinger opera-
tor and know results for the latter. We used namely the Lieb-Thirring inequalities, Buslaev-
Faddeev-Zakharov trace formulae and the Birman-Schwinger principle. The last mentioned
was used to establish the Birman-Schwinger principle for the damped wave operator even in
the case of complex damping. Finally we demonstrated some of the obtained results in the case
when the damping is the finite rectangular well.

In the future work we would like to focus on the connection between the Schrödinger op-
erator with complex potential and the damped wave operator with complex damping and use
the numerous number of results for the former to obtain some information about the latter.
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