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Abstrakt: V této práci nejprve vybudujeme teoretický základ nutný ke studiu problémů
v kvantitativńıch finanćıch a následně představ́ıme některé pokročilé koncepty z tohoto
odvětv́ı. Ačkoliv naš́ım ćılem je konstruovat sofistikované modely, je vhodné zač́ıt od těch
známěǰśıch, méně složitých model̊u. Tento postup nám umožńı lépe zd̊uraznit rozd́ıly
mezi modely a také je dostatečně zasadit do kontextu. Významný prostor je věnován
stochastickému integrálu a stochastickým diferenciálńım rovnićım (SDR). V textu také
představ́ıme základy teorie opčńıch trh̊u a klasifikujeme př́ıstupy k modelováńı volatility.
Protože si klademe za ćıl implementovat subordinačńı metody, za účelem stochastického
modelováńı volatility, představ́ıme také Lévyho procesy a jejich vlastnosti. V této práci
představ́ıme známé modely Blacka-Scholese-Mertona (BSM) a také Heston̊uv model. V
posledńı kapitole subordinaci použijeme, abychom zavedli čistě skokové modely - variance
gamma model a jeho rozš́ı̌reńı s náhodným př́ıchodem skok̊u. Ukážeme také, že Heston̊uv
model je vlastně BSM model subordinovaný náhodnému času. V pr̊uběhu poukážeme
na spojitosti mezi subordinaćı, stochastickou volatilitou, SDR př́ıstupem a procedurou
marginalizace známou např́ıklad ze superstatistiky.
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Introduction

This is a text about stochastic analysis and about mathematical finance. Both of these
subjects were deeply intertwined from the very beginnings. Stochastic analysis is a study
of random processes, which are mathematical objects used to model random behavior of
certain systems. A random (stochastic) process encompasses all the possible and impos-
sible (from the perspective of probability) futures of the particular system in question.
One realization of such process is then a trajectory representing a course of events for the
particular happenstance. These concepts are (for example) utilized to model reaction of
chemical compounds in a solution or to model moves of a stock price on an exchange. In
what is to follow, we shall be focusing on applications related to the latter.

An eminent topic in stochastic analysis are the stochastic differential equations (SDEs).
Just as ordinary differential equations are used in physics to describe a law or a model
for an evolution of a physical system, stochastic differential equations are used to model
the random behavior of a system. In the case of an ordinary differential equation, if a
solution exists, it is a deterministic function, so that given an initial condition, according
to this solution, the system will behave always the same. On the other hand, a solution
(if it exists) of a stochastic differential equation

dXt = α(t,Xt) dWt

is a stochastic process {Xt} in the sense described above1; here α = α(·, ·) is an a priori
known coefficient function. Given an initial condition, the stochastic process will evolve
differently every time. This might be viewed as quite a hindrance in employing such
objects for the purposes of modeling. Au contraire, for systems, that we perceive as
inherently random, this is actually a desirable property. Furthermore, the SDEs and their
solutions (the stochastic processes) are not intended to predict the future, but rather to
pronounce quantitative and qualitative statements that answer questions such as ”What
is the behavior of the system on average?” or ”How differently does the system behave
for each particular realization?”.

In the above equation there is the term dWt that we have not introduced yet. Here
{Wt} is a stochastic process as well, and it is the ”driving noise” for the SDE, i.e. it
is the source of randomness in this equation. This process is usually taken to be the
so-called Brownian motion, the rigorously defined mathematical concept, that is behind
the physical phenomenon of the same name2. In what follows, we devote some significant
space to the theory of Brownian motion as well as to what actually the ”differential” dWt

represents.

1In fact, what we have introduced here, is a strong solution to an SDE, which implies there is also a
concept of a weak solution. For details, see the corresponding chapter.

2For historical remarks, see the section on Brownian motion.
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First to implement some of the concepts described above was L. Bachelier [1], however
the field of mathematical finance took notice of his approach and appropriated it much
later, in the second half of the 20th century. The stochastic processes, defined as solutions
of SDEs are usually employed as models for the behavior of some underlying asset, which
then serve to value financial derivatives written on these underlyings3. This method
was pioneered by F. Black, M. Scholes [2] and R. Merton [3] in the famous Black-Scholes-
Merton (BSM) model. In the chapter on the topic, we present the two original derivations
of the related formulae. Although the BSM model is inherently flawed, for it incorporates
many simplifying assumptions which are inconsistent with the reality, it is important to
understand it for two main reasons (taking into account purposes of this text). Firstly,
the model serves as a language in which facts about the markets may be expressed - in
particular, many quantities are quoted in the BSM parameters. Secondly, it is necessary
to be familiar with the model one is aiming to generalize and improve upon.

One of the assumptions made by Black, Scholes and Merton, is that the volatility (i.e.
the standard deviation of logarithmic returns) of a given (underlying) asset is a constant
parameter in the model. This is clearly in disagreement with empirical evidence4. For
this reason almost all the generalizations of the model strive to abandon that assumption
and instead regard the volatility at least as a deterministic function (the local volatility
model) or even more generally as a stochastic process. The often used and very well-
known model in this direction is the Heston model [4] on which we derive some of the
results in the chapter bearing the same name.

All the models we have mentioned so far have one thing in common - the continuity of
the trajectories generated by them. Although (with the exception of BSM) these models
are used in practice to price derivative contracts, sometimes with large exposures, they do
not incorporate price jumps in their processes for underlying. In the last two chapters of
this text we present motivation for models with discontinuities and develop some theory
for them. One approach that we shall not pursue here is to develop even more general
framework for stochastic differential equations, where the Brownian motion is substituted
by processes with more sophistication as the source of randomness. The path that we
shall follow is utilizing the technique of change of time and subordination.

A stochastic process {Xt} depends on the parameter t, usually called time, to which
it assigns realizations of random variables (for a particular event). The idea behind the
change of time method is that the parameter t is itself a random variable so that we have
the structure of the original process but with time evolving non-deterministically. This is
often interpreted as t being the ordinary clock time, {T (t)} being the random change of
time process and its realization T (t) = θ being the perceived business (or trading) time.
In this interpretation, it is still the well-behaved market data arriving X̂ = {X̂θ}, but
in the randomly (at times erratically) changing time θ, so that the signal on the output
is actually the more chaotic one, {X̂T (t)}, that one receives in the real markets. This
kind of interpretation adds to the tractability of the resulting model. We shall utilize
the change of time procedure with {T (t)} being a Lévy process, which allows for better
behaved properties; in this case, the process T is called a subordinator, and the process
X resulting of composition of X̂ and T is said to be subordinate to X̂. Subordination

3Terminology of financial derivatives is summarized in the first appendix.
4Various empirical facts are presented in the chapter on volatility together with the classification of

models.
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for the purpose of financial modeling was first utilized by P. Clark in [5], although the
procedure of subordination is due to S. Bochner [6].

Above, we have separately touched upon volatility modeling and separately upon the
concept of time in stochastic analysis. Yet it turns out that random changes in time are
connected to random changes in volatility. Starting with a model with constant volatility
- the Black-Scholes-Merton model - and plugging in a certain subordinator, one obtains
the Heston stochastic volatility model. This is heuristically reasonable on the intuitive
level; we shall present a rigorous derivation of this relationship in the last chapter. In the
very same chapter, we shall include a possible generalization of the Heston model (in the
sense that it contains the Heston as a special parametric case) that is due to P. Carr et al.
[7]. In the process we also point out a connection of subordination to Bayesian approach
to probability and to the physically motivated concept of superstatistics.

We build this text so that it is as self-contained as possible, while trying to keep the
number of pages at bay. For reader’s comfort, we have included an index at the end.
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Chapter 1

Probability preliminaries

This chapter consists of standard material, whose excellent coverage can be found in [8].
We use [9] as a reference for probabilistic concepts. The purpose of this chapter is to
clearly define notions that we are going to work with in the following, so that the text is
more or less self-contained and there does not arise any confusion for the reader.

1.1 Stochastic processes

Here we only briefly summarize essential definitions and constructions, that we shall make
use of in the upcoming chapters. Throughout the thesis we shall (sometimes implicitly)
work in the setting of a measurable space (Ω,A) where Ω is the set of elementary events
and A a σ-algebra. We also define an underlying probability measure denoted P , so that
the space (Ω,A, P ) is actually a probability space. An event is said to happen P -almost
surely (denoted P -a.s., or simply a.s.) if its probability measure is equal to one. In other
words, the set of possible exceptions is of zero P -measure. Later in the text we shall
define other probability measures on the measurable space (Ω,A); in that case we shall
always explicitly specify with which particular measure we are working at the moment.
The symbol Bn denotes the Borel σ-algebra generated by the usual topology of Rn. On
the same note, B is the Borel σ-algebra on R and B0

+ is the Borel σ-algebra on the half-line
R+

0 = [0,∞).

Definition 1.1.1. Let (Ω,A, P ) be a probability space, I ⊂ R an arbitrary non-empty
subset. The system {Xt}t∈I of random variables on this probability space is called a
stochastic process .

It is possible to define more general stochastic processes (for example complex valued),
but we shall not pursue these more general cases, since, in what follows, they are not
needed. From the next section on, we also drop the generality of the index set I and simply
assume the stochastic processes to be defined on a closed interval [0, T ] or sometimes for
all t ≥ 0. Similarly, we have not specified where the stochastic process takes values, for,
again, this set can be quite general. For our purposes the values of a stochastic process
are always in some subset of R endowed with the corresponding Borel σ-algebra.

Definition 1.1.2. Let {Xt}t∈I be a stochastic process. The map t 7→ Xt(ω) for an
arbitrary fixed ω ∈ Ω is called the sample path (or the trajectory) of process {Xt}t∈I .

15



16 CHAPTER 1. PROBABILITY PRELIMINARIES

Definition 1.1.3. The finite dimensional distributions of the stochastic process {Xt}t∈I
(fidis) are the distributions of finite-dimensional vectors

{Xt1 , . . . , Xtn}, ∀{t1, . . . , tn} ⊂ I,∀n ∈ N.

Definition 1.1.4. Let Y : (Ω,A) → (Rn,Bn) be an n-dimensional random vector. The
σ-algebra

σ(Y) = {Y(−1)(B) : B ∈ Bn}

is called the σ-algebra generated1 by the random vector Y.

Definition 1.1.5. For every stochastic process X = {Xt}t∈I (for which the quantities
below are finite), we define:

• The expectation function of X as

µX(t) := EXt, ∀t ∈ I. (1.1)

• The covariance function of X as

cX(s, t) := E[(Xs − µX(s))(Xt − µX(t))], ∀s, t ∈ I. (1.2)

• The autocorrelation function of X as

RX(s, t) := E[XsXt], ∀s, t ∈ I. (1.3)

Apparently, by the same calculation as for the random variables, the following relations
hold:

cX(s, t) = RX(s, t)− EXsEXt, ∀s, t ∈ I

and
VarXt := cX(t, t) = E[(Xt − EXt)

2] = EX2
t − (EXt)

2, ∀t ∈ I.

1.2 Conditional expectation

In this section we develop the minimum theory, that is necessary to work with the con-
cepts defined later. Conditional expectations are essential, when working with stochastic
processes, especially with certain classes such as martingales (defined in the next section).

Definition 1.2.1. Let (Ω,A, P ) be a probability space. A random variable Z is called
the conditional expectation of the random variable X given the sub-σ-algebra S ⊂ A if

1. σ(Z) ⊂ S,

2. E[X1A] = E[Z1A], ∀A ∈ S.

The random variable Z (the conditional expectation) is usually denoted by E[X|S].

1The notation σ(Y) is in line with the fact, that it is the smallest σ-algebra generated by the sets of
the form {ω ∈ Ω : Y(ω) ∈ Bn}.
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Remark 1.2.2. The second requirement in the above definition could be also written as∫
A

Z(ω) dP (ω) =

∫
A

E[X|S](ω) dP (ω) =

∫
A

X(ω) dP (ω), ∀A ∈ S. (1.4)

Obviously, when A is chosen to be the whole underlying set Ω, one obtains

E[E[X|S]] = EX. (1.5)

Remark 1.2.3. A proof of existence and uniqueness of the random variable E[Z|S] uses
the Radon-Nikodým theorem and it is to be found in [8].

The second defining property of conditional expectation is not a constructive one.
Therefore it is in general difficult to calculate E[X|S]. For this reason, it is important
for us to be able to work with conditional expectations without knowing their particular
forms. The following theorem provides several useful properties.

Theorem 1.2.4 (Properties of conditional expectation). Let (Ω,A, P ) be a probability
space, S be a sub-σ-algebra of A and let X, Y be integrable random variables.

1. Conditional expectation is linear - for all α, β ∈ R, we have

E[αX + βY |S] = αE[X|S] + βE[Y |S].

2. If X and the σ-algebra S are independent, then

E[X|S] = EX.

3. If σ(X) ⊂ S, then E[X|S] = X.

4. If XY is integrable and X is S-measurable (i.e. σ(X) ⊂ S), then

E[XY |S] = XE[Y |S].

5. Let S̃ be a sub-σ-algebra S̃ ⊂ S, then

E[E[X|S̃]|S] = E[X|S] = E[E[X|S]|S̃].

1.3 Filtration, martingales

Definition 1.3.1. The collection {Ft}[0,T ] of σ-algebras on Ω is called a filtration if

Fs ⊂ Ft, ∀s, t ∈ [0, T ], s ≤ t.

Definition 1.3.2. The stochastic process X = {Xt}[0,T ] is said to be adapted to the
filtration {Ft}[0,T ] if

σ(Xt) ⊂ Ft, ∀t ∈ [0, T ].

In other words X is adapted to the filtration {Ft} if Xt is an Ft-measurable random
variable for every t ∈ [0, T ].
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Definition 1.3.3. A natural filtration generated by stochastic process X = {Xt} is defined
by

Ft := {σ(Xs) : s ≤ t}, ∀t ∈ [0, T ].

Remark 1.3.4. By definition, a stochastic process is always adapted to its own natural
filtration.

Definition 1.3.5. The stochastic process {Xt} is called a (continuous-time) martingale
with respect to the filtration {Ft} if

1. E|Xt| < +∞, ∀t,

2. X is adapted to {Ft},

3. E[Xt|Fs] = Xs, ∀s ≤ t.

Remark 1.3.6. It is quite usual to call a process a martingale without specifying the
corresponding filtration. We shall do this only when the particular choice of filtration is
obvious from the context.

Remark 1.3.7. Using the third defining property of a martingale {Xt} with respect to
{Ft} and the relation (1.5), one arrives at:

EXs = E[E[Xt|Fs]] = EXt, ∀s ≤ t. (1.6)

Thus a constant expectation is a necessary condition for a process X to be a martingale
with respect to some filtration and as such provides a useful way of proving that given
process is not a martingale.

In the previous three sections, we have developed some theory of a general stochastic
process; now we shall investigate two examples of this abstract mathematical object.

1.4 Poisson process

In 19032 F. Lundberg proposed to model the arrival of insurance claims by a Poisson
process. Since then, in the field of actuary, the process plays a crucial role, however, for
the purposes of continuous financial modeling, it might seem dispensable. The situation
is quite different, when one introduces discontinuities to the models. Although we shall
not make use of Poisson process directly, for modeling purposes, it often arises in the
discussion as an analytical tool for the models with jumps.

Definition 1.4.1. A stochastic process N = {Nt}R+
0

is called (a homogeneous) Poisson
process with intensity λ > 0 if the following conditions are satisfied:

1. It starts at zero, so that N0 = 0 P -almost surely.

2Interestingly, this was around the time, when also L. Bachelier and A. Einstein derived their essential
results on other important stochastic process, that we shall point out in the next section.
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2. The process has stationary and independent increments , i.e.3

Ns+t
D
= Ns +Nt, ∀s, t ≥ 0

and {Ntj −Ntj−1
}j=1,...,n are independent random variables for all n ∈ N and for all

{t1, . . . , tn}, such that 0 ≤ t1 < . . . < tn <∞.

3. For every t > 0, Nt has a Poisson distribution Po(λt).

4. Almost every trajectory of Poisson process is right continuous with limits from the
left.

For the expectation and covariance functions, we have:

µN(t) = ENt = λt, ∀t ≥ 0 (1.7)

and

cN(s, t) = λmin{s, t}, ∀s, t ≥ 0. (1.8)

These relations are derived the same way as for the single Poisson distributed random
variable with intensity λt, which is, in fact, the case - for a given t ≥ 0, we have

P (Nt = n) = e−λt
(λt)n

n!
, ∀n. (1.9)

1.5 Brownian motion

As pointed out by [10], the field of stochastic analysis was, from its very origins at the
turn of the 20th century, fueled by two different sources - physics and finance. In physics,
Brownian motion and related concepts serve as a useful model of diffusive phenomena and
various types of random perturbations; in finance, the stochastic processes are utilized as a
model for the behavior of price changes of a certain asset (such as a stock). Unsurprisingly,
the two main sources fueling the stochastic analysis development are the two main areas
of applications for it today.

The process known as Wiener process, or Brownian motion, was introduced for the
first time in 1900 by L. Bachelier [1] to describe fluctuations in share prices. Much earlier
(around 1827), R. Brown observed an irregular motion of pollen particles suspended in
water. He noted, that the path of each particle is very irregular, having tangent at
no point. This phenomenon was studied and successfully explained by A. Einstein in
1905 while rediscovering the process used earlier by Bachelier. Mathematically rigorous
formulation of the process is due to R. Wiener.

Definition 1.5.1. A stochastic process W = {Wt}R+
0

is called standard Brownian motion

(or standard Wiener process) if the following conditions are satisfied:

1. It starts at zero, so that W0 = 0 P -almost surely.

3We remind the reader that X
D
= Y means that the random variable X is equal to the random variable

Y in distribution. This does not imply the path-wise equality X(ω) = Y (ω) for all ω ∈ Ω.
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2. The process has stationary and independent increments, i.e.

Ws+t
D
= Ws +Wt, ∀s, t ≥ 0

and {Wtj −Wtj−1
}j=1,...,n are independent random variables for all n ∈ N and for all

{t1, . . . , tn}, such that 0 ≤ t1 < . . . < tn <∞.

3. For every t > 0, Wt has a normal distribution N(0, t).

4. The process W has continuous sample paths.

Remark 1.5.2. Sometimes, Wiener process is defined by points 1. − 3. of the above defi-
nition and then Brownian motion is taken to be a continuous version of Wiener process
via the Kolmogorov-Chentsov theorem (see D.1.2), where α = 4, β = 1 and C = 3. Ergo,
the point 4. in the definition is actually implied by the other defining properties and the
mentioned theorem.

From the definition, one immediately obtains

µW (t) := EWt = 0, ∀t ≥ 0. (1.10)

Using the independence of increments, for s ≤ t, we have

CW (s, t) = RW (s, t) = E[WsWt] = E[Ws(Wt −Ws +Ws)] = EW 2
s + E[(Wt −Ws)Ws] =

= EW 2
s + E[Wt −Ws]︸ ︷︷ ︸

=0

E[Ws −W0]︸ ︷︷ ︸
=0

= EW 2
s = s,

thus

CW (s, t) = RW (s, t) = min{s, t}, ∀s, t ≥ 0. (1.11)

Although, as stated above, the Brownian motion has continuous trajectories, the degree
of its non-predictability is such, that there does not exist a unique tangent for all points
of almost every sample path. This idea of irregularity of Brownian paths is more correctly
expressed by the following theorem, proof of which is obviously out of the scope of this
text.

Theorem 1.5.3 (Paley-Wiener-Zygmund). [11] The Brownian sample paths are almost
surely nowhere differentiable.

Next, denoting Ft the natural Brownian filtration, we calculate:

E[Wt|Fs] = E[(Wt −Ws) +Ws|Fs] =

= E[Wt −Ws|Fs] + E[Ws|Fs] =

= E[Wt −Ws] +Ws = Ws

, (1.12)

for all s ≤ t and for all t ≥ 0. Here, we have used the properties of conditional expectation
(1.2.4) - linearity, the fact that Wt −Ws is independent of Fs and the Fs-measurability
of Ws. The increment Wt −Ws is N(0, t − s)-distributed, ergo its expectation vanishes.
Effectively, we have shown the following:



1.6. QUADRATIC VARIATION OF BROWNIAN MOTION 21

Proposition 1.5.4. The Brownian motion is a martingale with respect to its natural
filtration.

Remark 1.5.5. On the other hand, iterating back to remark 1.3.7, EW 2
t = Var(Wt) = t.

Hence there is no filtration such that {W 2
t } is a martingale with respect to it, because

{W 2
t } does not have constant expectation. The condition of constant expectation function,

however, is not a sufficient one, for EW 3
t = 0 = EW 3

s for all s, t, yet {W 3
t } is not a

martingale.

By a generally more involved procedure, one can show, that Brownian motion possesses
the Markov property:

Definition 1.5.6. Let X = {Xt} be a process adapted to filtration {Ft}. Then we say,
that X is a Markov process (with respect to the filtration {Ft}) if for every non-negative
Borel function f , there is Borel function g such that

E[f(Xt)|Fs] = g(Xs), ∀s, t ≥ 0, s ≤ t. (1.13)

Brownian motion defined above exhibits random diffusive behavior, without any pre-
ferred direction. Sometimes, it is useful to introduce the following process, in case one
desires to still model randomness, but with a visible trend. The Brownian motion with a
drift is defined (path by path) as the process {Bt}:

Bt := at+ bWt, ∀t ≥ 0. (1.14)

Here a ∈ R is responsible for the trend part (the drift) and b > 0 modulates the influence
of variance of the original Brownian motion W .

We note, that Brownian motion is a Gaussian process (because its finite dimensional
distributions are multivariate normal distributed) and so is Brownian motion with a drift.

1.6 Quadratic variation of Brownian motion

Quadratic variation is very concisely yet clearly explained in [12], we thus follow the same
approach. In comparison to the preceding sections we go into more detail. Understanding
what role the quadratic variation of Brownian motion plays, is important for the following
text.

Definition 1.6.1. For a fixed interval [0, t], we define a partition πn = {t0, t1, . . . , tn}
which is a set of points dividing the interval so that 0 = t0 < t1 < . . . < tn = t.

Norm of the partition (sometimes called mesh) is defined as

ν(πn) := max
j=1,...,n

|tj − tj−1| .

A partition π′n on the same interval [0, t] is called a refinement of the partition πn if it
contains the same points as πn and possibly more (π′n ⊃ πn).

Naturally, in the case of π′n being a refinement of πn we have for the norms:

ν(π′n) ≤ ν(πn).

In what follows we shall consider a sequence of refining partitions {πn} for which ν(πn)→ 0
as n→∞.
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Definition 1.6.2. Let f : R+
0 → R be a deterministic function defined in the closed

interval [0, t] and let p ∈ N. The p-variation of f up to time t is

V p(f)(t) := lim
ν(πn)→0

n∑
j=1

|f(tj)− f(tj−1)|p , (1.15)

where πn := {t0, t1, . . . , tn} is a partition of [0, t] such that 0 = t0 < t1 < . . . < tn = t and
the limit is taken over sequence of refining partitions, so that ν(πn)→ 0.

For p = 1 the p-variation is called just the variation and for p = 2 it is called the
quadratic variationquadratic variation. From the definition it is obvious that the variation
sums over projections of the graph of f onto the ordinate. Therefore it represents a
measure of irregularity of the graph. Let us now focus more on the quadratic variation.
Suppose, the function f has a continuous derivative in [0, t]. Then for every j = 1, . . . n,
there is t∗j ∈ (tj−1, tj) such that4:

n∑
j=1

[f(tj)− f(tj−1)]2 =
n∑
j=1

[f ′(t∗j)]
2(tj − tj−1)2 ≤ ν(πn)

n∑
j=1

[f ′(t∗j)]
2(tj − tj−1).

Thus

V 2(f)(t) ≤ lim
ν(πn)→0

{
ν(πn)

n∑
j=1

[f ′(t∗j)]
2(tj − tj−1)

}
=

= lim
ν(πn)→0

ν(πn) · lim
ν(πn)→0

n∑
j=1

[f ′(t∗j)]
2(tj − tj−1) =

= lim
ν(πn)→0

ν(πn)︸ ︷︷ ︸
=0

·
∫ t

0

|f ′(x)|2 dx = 0.

In the last step, we have used the fact, that the derivative f ′ is continuous to ensure
that the Riemann integral

∫ t
0
|f ′(x)|2 dx is finite. In the opposite case the formal product

(whose value is not defined) 0 · ∞ would yield anything between 0 and ∞.
In the previous section we have stressed the fact that the paths of Brownian motion

are almost surely nowhere differentiable, ergo the above does not apply. We define the
quadratic variation of a stochastic process with slightly different notation:

Definition 1.6.3. Let X = {Xt} be a stochastic process and let {πn} be a sequence of
refining partitions as above. Then the limit5

〈X〉t := P - lim
ν(πn)→0

n∑
j=1

(Xtj −Xtj−1
)2 (1.16)

is called the quadratic variation of a stochastic process X.

4Using the standard mean value theorem of real analysis.
5For definition of the limit in probability (denoted P - lim) and other types of convergence of random

variables see the appendix D.
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As we have already hinted it might be interesting to calculate the quadratic varia-
tion of Brownian motion. To that end it suffices to prove the limit in the mean square
sense (definition in appendix D). The quadratic variation of this stochastic process is a
deterministic function:

Theorem 1.6.4. Let W = {Wt} be a Brownian motion. Then

〈W 〉t = t, ∀t ≥ 0.

Corollary 1.6.5. Let W = {Wt} be a Brownian motion. Then6

V 1(W )t =∞, ∀t ≥ 0.

Remark 1.6.6. We define a sequence of equidistant, refining partitions of interval [0, T ]:

πn = {t0, . . . tn}, where t` :=
`t

n
, ∀` = 0, . . . n.

Then

t` − t`−1 =
t

n

for all ` = 1, . . . , n and for the standard normal variables

Y` :=
Wt` −Wt`−1√
t` − t`−1

, ∀` = 1, . . . , n

the following equality holds:

(Wt` −Wt`−1
)2 = (t` − t`−1)Y 2

` =
t

n
Y 2
` . (1.17)

The random variables Y` are independent (due to the independence of Brownian incre-
ments) and identically N(0, 1)-distributed, so that the law of large numbers applies. Es-
sentially, the sums 1

n

∑n
`=1 Y

2
1 converge to the common mean EY 2

` , as n tends to infinity,
i.e.

1

n

n∑
`=1

(Wt` −Wt`−1
)2

t` − t`−1

n→∞−→ EY 2
1 = 1.

Each of the terms (Wt`−Wt`−1
)2 in this sum is quite different from its mean t`− t`−1 = t

n
,

however, under sum, the differences average out. These ideas are reflected in the following
relation

dWt dWt = dt. (1.18)

This, naturally, is not the usual relationship between differentials, since Brownian sam-
ple paths are almost surely nowhere differentiable. Nevertheless, this notation is rather

6For a stochastic process X and a sequence of refining partitions as in the previous, the variation is

V 1(X)t = P - lim
ν(πn)→0

n∑
j=1

∣∣Xtj −Xtj−1

∣∣
so that a stochastic process has finite variation on interval [0, t] if its sample paths have finite variation
with probability one.
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concise shorthand for the concepts described above, so that it is advantageous to use it;
one has to bear in mind, that it holds only in large sums (as implied by the law of large
numbers). By analogical arguments, one gives meaning to

dWt dt = 0

dt dt = 0
(1.19)

as well.
In the next chapter, we shall define stochastic integral with respect to Brownian mo-

tion. Because an integral is usually some sort of sum, expressions similar to (1.18) and
(1.19) shall prove quite useful.



Chapter 2

Itô integral and stochastic
differential equations

In this section we lay the foundations for the mathematics that are part of a standard
toolbox of quantitative finance practitioners. Leveraging our mathematical background
we try to go more into detail (where it is possible) in order to rigorously arrive at our
results. Our understanding is greatly indebted to [13] and [8] yet again.

Our goal is to define an integral of a stochastic process X = {Xt} with respect to the
Brownian motion W = {Wt}, so that we arrive at a new random variable

∫ T

0

Xs dWs, (2.1)

or even a stochastic process {
∫ t

0
Xs dWs}t∈R+

0
. These are just formal symbols for now.

The problem that arises when one tries to approach this naively is that the integral (2.1)
cannot be defined in the usual Riemann-Stieltjes or Lebesgue-Stieltjes way, because the
sample paths of Brownian motion are almost surely nowhere differentiable and also the
variation of the process is infinite (see corollary 1.6.5). Ergo naive stochastic integration
is not possible. [14]

The motivation for introducing stochastic integral is the desire to model the random
behavior of a certain system via a differential equation (called a stochastic differential
equation)

dXt = α(t,Xt) dWt, (2.2)

where Wt is a source of randomness (in our case Brownian motion) and α = α(t, x)
is a given coefficient function. The process X = {Xt} is a solution of this stochastic
differential equation that is to be found. Inspired by the most common approach to solving
an ordinary differential equation (aside of simply guessing) - the separation of variables
and integration - we deem the construction of stochastic integral inevitable. In what
follows, we give precise meaning to formal symbols introduced above, the differential dWt

(equipped with the knowledge of non-differentiability of Brownian paths, this certainly is
not the derivative of W ) and explain the procedure of finding a solution and explain what
precisely comprises a solution of equation (2.2).

25
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2.1 Riemann integral of stochastic process

Before we pursue the construction of stochastic integral, we briefly introduce the Riemann
integration of a stochastic process. This concept is sometimes omitted in the literature
on stochastic integration, although it is implicitly used.

Definition 2.1.1. Let X = {Xt} be a stochastic process and let {πn} be a sequence
of refining partitions1 of the interval [0, t] for some t for which X is defined. Then the
stochastic process defined as2

∫ t

0

Xs ds := L2- lim
n→+∞

n∑
j=1

Xtj(tj − tj−1) = L2- lim
‖πn‖→0

n∑
j=1

Xtj(tj − tj−1), ∀t, (2.3)

is called the Riemann integral of the stochastic process X on the interval [0, t].

Thus the existence of the integral
∫ t

0
Xs ds is essentially determined by the existence

of the limit on the right-hand side of (2.3). One sufficient criterion to this effect, for a
process X with second finite moment, is the existence of the ordinary Riemann integral∫ t

0

∫ t

0

RX(x, y) dxdy, ∀t,

where RX is the autocorrelation function of the process X.

2.2 Itô integral

In the text below, we present the definition of the stochastic integral with respect to
Brownian motion, the so-called Itô integral. We note, that in general it is possible to define
stochastic integral with respect to processes from a wider class such as Lévy processes or
semimartingales [14] (see the corresponding chapter and appendix for definitions).

Definition 2.2.1. The stochastic process C := {Ct}[0,T ] is said to be simple if there exists
a partition

πn := {t0, . . . , tn}, where 0 = t0 < t1 < . . . < tn = T

and a sequence of random variables {Zj}j∈n̂ such that

Ct :=

{
Zn, if t = T,
Zj, if tj−1 ≤ t < tj for j ∈ n̂.

Furthermore, the sequence {Zj} is adapted to natural Brownian filtration {Ftj−1
}.

1As defined in section 1.6.
2Basically, one can define the Riemann integral path by path as(∫ t

0

Xs ds

)
(ω) =

∫ t

0

Xs(ω) ds, ∀ω ∈ Ω

and from the theory of ordinary Riemann integral of deterministic functions it is known, that the result of
integration does not depend on the choice of the points in the partition subintervals at which the process
X is evaluated (unlike for the Itô stochastic integral defined later).
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Definition 2.2.2. Consider the partition πn = {t0, . . . , tn} and the process C defined
above. We define:

• Itô stochastic integral of a simple process C on [0, T ] as:∫ T

0

Cs dWs :=
n∑
j=1

Ctj−1
(Wtj −Wtj−1

) =
n∑
j=1

Zj(Wtj −Wtj−1
). (2.4)

• Itô stochastic integral of a simple process C on the subinterval [0, t] ⊂ [0, T ], where
t ∈ [tk−1, tk], as

It(C) :=

∫ t

0

Cs dWs :=

∫ T

0

Cs1[0,t](s) dWs =
k−1∑
j=1

Zj(Wtj −Wtj−1
) +Zk(Wt−Wtk−1

).

(2.5)

Remark 2.2.3. It is easy to see that the Itô integral, being constructed in this way, depends
on our choice of evaluation of the simple process C in the left end-points of intervals
[tj−1, tj) (in particular equation (2.4)). This reflects in many of the properties of the
integral listed below and especially in the Itô formula, which basically states that the
Leibniz rule in the usual sense in Itô calculus does not hold. There are other integrals,
similar in construction to our approach, the only difference being in evaluation of the
process in other points of the intervals [tj−1, tj). A specific example which chooses the mid-
points for evaluation of the simple process C in the sums (2.4) is the so-called Stratonovich
stochastic integral . For this particular choice, the usual Leibniz rule is retained, however
other nice properties of Itô integral are lost. In finance the standard approach is via Itô
integration, however the Stratonovich integral finds its use in solving stochastic differential
equations [8]. We shall not pursue these methods here.

Considering a common refinement of two partitions for two simple processes C(1), C(2)

it is apparent that the Itô integral is linear in the following sense:

I(αC(1) + βC(2)) = αI(C(1)) + βI(C(2)), ∀α, β ∈ R.

Theorem 2.2.4. The Itô integral defined above is a martingale with respect to natural
Brownian filtration {Ft}[0,T ].

Corollary 2.2.5. Because I(C) is a martingale, we have by the constancy of its expec-
tation:

0 = E[I0(C)] = E[It(C)], ∀t ∈ [0, T ].

Theorem 2.2.6 (Itô isometry). The Itô stochastic integral satisfies the isometry property:

E[It(C)]2 = E

[∫ t

0

Cs dWs

]2

=

∫ t

0

EC2
s ds, ∀t. (2.6)

Theorem 2.2.7. The quadratic variation accumulated up to time t by the Itô stochastic
integral is

〈I(C)〉t =

∫ t

0

C2
s ds. (2.7)
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Definition 2.2.8. Let V = V([0, T ]) denote the class of functions

X : R+
0 × Ω→ R,

such that

1. the map (t, ω) 7→ X(t, ω) is B0
+×A-measurable (here B0

+ denotes the Borel σ-algebra
on R+

0 ),

2. X(t, ω) is Ft-adapted,

3. E
[∫ T

0
X(t, ω)2dt

]
< +∞.

Definition 2.2.9. Let X ∈ V([0, T ]). Then the Itô integral of X on [0, T ] is defined by3

∫ T

0

Xt dWt := L2- lim
n→+∞

∫ T

0

ξ
(n)
t dWt, (2.8)

where {ξ(n)} is a sequence of simple stochastic processes such that

E

[∫ T

0

(Xt − ξ(n)
t )2 dt

]
→ 0. (2.9)

Itô integral on a subinterval [0, t] ⊂ [0, T ] is defined as∫ t

0

Xs dWs :=

∫ T

0

XsI[0,t](s) dWs, ∀t ∈ [0, T ].

In [13] the author proves that for a stochastic process X ∈ V([0, T ]) the approximating
sequence (2.9) always exists. The Itô isometry 2.2.6 is then used to show that It(ξ

(n)) is
a Cauchy sequence, ergo, by the completeness of L2, the mean square limit (2.8) exists.
Furthermore, the result of the stochastic integration as defined above does not depend on
the choice of the approximating sequence (because generally, that is not unique), and the
properties described in theorems 2.2.4 (for a continuous version of Itô integral) and 2.2.7
hold for the general integrand X ∈ V([0, T ]) as well.

Theorem 2.2.10 (Itô formula for Brownian motion). Let f ∈ C2(R+
0 × R). Then for

every t ∈ [0, T ]

f(t,Wt) = f(0,W0) +

∫ t

0

fs(s,Ws) ds+

∫ t

0

fx(s,Ws) dWs +
1

2

∫ t

0

fxx(s,Ws) ds, (2.10)

which in the differential notation becomes

df(t,Wt) = ft(t,Wt) dt+ fx(t,Wt) dWt +
1

2
fxx(t,Wt) dt.

3For definition of mean square limit or, in other words, limit in L2, we again point the reader to
section D.2.
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Remark 2.2.11. In the formula above, we have quietly assumed the so-called differential
notation, now, we shall comment on that. Because the Itô integral (and so the Itô
differentiation) does not behave the way, one would expect from ordinary calculus (see
the following remark), while working with the differential notation, one has to bear in
mind, that it is just a shorthand and the proper integral relationship (2.10) gives meaning
to these differential relations. However, it is not only useful and concise to work with
this notation, but also safe, once we respect the Itô formula and the relations (1.18) and
(1.19).

Remark 2.2.12. With the way the usual differentiation works, one has for the function
f(x) = x2 with the domain R:

df(x) = d(x)2 = 2x dx,

however, Itô formula above implies, that for the same function of Brownian motion

df(Wt) = dW 2
t = 2Wt dWt + dt

holds. Now, this is not as confusing, once we take into account, that the ”differentials”
in Itô formula are not actually derivatives in the usual sense. This ”violation” of the
usual Leibniz rule is exactly the consequence of our choice in the definition of Itô integral
mentioned in remark 2.2.3.

Definition 2.2.13. Let {Ft}[0,T ] be a Brownian filtration. An Itô process is a stochastic
process of the form

Xt = X0 +

∫ t

0

A(1)
s dWs +

∫ t

0

A(2)
s ds,

where X0 is non-random, {A(1)
s } ∈ V and {A(2)

s } is a stochastic process which satisfies the

condition
∫ t

0
|A(2)

s |ds < +∞.

Theorem 2.2.14. The quadratic variation of the Itô process is

〈X〉t =

∫ t

0

[A(1)
s ]2ds.

Definition 2.2.15. Let X be an Itô process and let {Yt}[0,T ] be a stochastic process
adapted to {Ft} such that

E

∫ t

0

Y 2
s [A(1)

s ]2ds and

∫ t

0

|YsA(2)
s | ds

are finite for every t ∈ [0, T ]. We define the integral with respect to an Itô process as:∫ t

0

Ys dXs :=

∫ t

0

YsA
(1)
s dWs +

∫ t

0

YsA
(2)
s ds, ∀t ∈ [0, T ].

Theorem 2.2.16 (Itô formula for an Itô process). Let {Xt} be an Itô process and let
f ∈ C2(R+

0 × R) be a function. Then for every t ∈ [0, T ]:

f(t,Xt) = f(0, X0) +

∫ t

0

fs(s,Xs) ds+

∫ t

0

fx(t,Xt) dXt +
1

2

∫ t

0

fxx(s,Xs) d 〈X〉s︸ ︷︷ ︸
=[A

(1)
s ]2 ds

.
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In the differential notation:

df(t,Xt) = ft(t,Xt) dt+ fx(t,Xt) dXt +
1

2
fxx(t,Xt)[A

(1)
t ]2 dt.

There is, of course, an Itô formula for functions of multiple Itô processes (in particular
two), which we shall not include here, because the notation and the calculations can
get rather chaotic. Nevertheless, the two-dimensional Itô formula has the following neat
consequence, which we shall use often in later applications:

Corollary 2.2.17 (Itô product rule). Let {Xt} and {Yt} be Itô processes, then

d(XtYt) = Yt dXt +Xt dYt + dXt dYt, ∀t. (2.11)

We stress for the last time that this again shows the violation of the usual Leibniz
rule.

2.3 Stochastic differential equations

Definition 2.3.1. Let a, b : R2 → R be functions. We call the formal equality

dXt = a(t,Xt) dt+ b(t,Xt) dWt (2.12)

(with X0 non-random given as initial condition) a stochastic differential equation (SDE).

Remark 2.3.2. The formal relationship above is justified by the ”proper” integral form

Xt = X0 +

∫ t

0

a(s,Xs) ds+

∫ t

0

b(s,Xs) dWs (2.13)

and the conditions on the coefficient functions∫ t

0

|a(s,Xs)| ds <∞, (2.14)

∫ t

0

[b(s,Xs)]
2ds <∞, (2.15)

where these inequalities must hold for every t ≥ 0, P -almost surely.

Definition 2.3.3. A process X = {Xt} adapted to natural Brownian filtration {Ft}
that satisfies relations (2.13),(2.14) and (2.15) is called a strong solution of the stochastic
differential equation (2.12).

A characteristic feature of the above definition is that the Brownian motion W = {Wt}
is assumed to be given a priori and the process X = {Xt} should be constructed from
it in an adapted way so that we have the functional relationship X = F (W ). Being
constructed this way, a strong solution of (2.12) is based on the sample paths of W . If
the underlying Brownian motion were to change to a different Brownian motion W̃ , there
would be a different corresponding strong solution, that still satisfies the same functional
relationship X = F (W̃ ).

There is a well-known result on the uniqueness of the strong solution:
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Theorem 2.3.4 (Itô). Let a = a(t, x), b = b(t, x) be measurable functions given as in
(2.14) and (2.15) satisfying

|a(t, x)− a(t, y)|+ |b(t, x)− b(t, y)| ≤ C |x− y| , ∀x, y ∈ R, t ∈ [0, T ), (2.16)

for some constant C and

|a(t, x)|+ |b(t, x)| ≤ K(1 + |x|), ∀x ∈ R, t ∈ [0, T ), (2.17)

where K is also a constant. Then the equation (2.12) has a unique strong solution
X = {Xt}.

Remark 2.3.5. Here, the uniqueness of the strong solution X means that if there is another
such strong solution Y of (2.12), then the two processes are indistinguishable, i.e.4

P (Xt = Yt) = 1, ∀t ∈ [0, T ].

An example of the above defined SDE is a special case of linear stochastic differential
equation:

dXt = (a1Xt + a2) dt+ (b1Xt + b2) dWt, ∀t, (2.18)

where a1, a2, b1, b2 ∈ R are constants, such that the linear functions

a(x) := a1x+ a2, b(x) := b1x+ b2

satisfy relations (2.14) and (2.15). As a result of theorem 2.3.4 the linear SDE (2.18)
always has a unique strong solution.

Example 2.3.6 (Geometric Brownian motion). [8] Let us consider the following linear SDE
which is of great importance to quantitative finance, with many applications:

dXt = aXt dt+ bXt dWt. (2.19)

This equation is obviously a particular case of (2.18), solution of which can be found using
the Itô formula 2.2.10. We assume the sought after solution is a function Xt = f(t,Wt)
for some sufficiently smooth f , so that the Itô formula applies:

dXt = df(t,Wt) = ft(t,Wt) dt+ fx(t,Wt) dWt +
1

2
fxx(t,Wt) dt.

Comparing this with (2.19), we obtain the following system of deterministic partial dif-
ferential equations: {

af(t, x) = ft(t, x) + 1
2
fxx(t, x)

bf(t, x) = fx(t, x)
.

From the second equation, we obtain

fxx(t, x) = bfx(t, x) = b2f(t, x),

which we can substitute into the first equation, so that our system becomes{ (
a− 1

2
b2
)
f(t, x) = ft(t, x)

bf(t, x) = fx(t, x)
.

4This definition and more on the topic is included in the section D.1 of appendix D.
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In both of these equations, there figure derivatives only with respect to one variable but
not with respect to the other. Therefore, we can employ the assumption, that there are
functions g = g(t), h = h(x) such that

f(t, x) = g(t)h(x).

Using this, we arrive at two ordinary differential equations (ODEs):{ (
a− 1

2
b2
)
g(t) = g′(t)

bh(x) = h′(x)
.

Both of these ODEs are promptly solved by separation of variables, so that

g(t) = g(0)e(a−
1
2
b2)t, h(x) = h(0)ebx.

Iterating back to our initial assumption:

f(t, x) = g(t)h(x) = g(0)h(0) exp

{(
a− 1

2
b2

)
t+ bx

}
.

We plug in the initial condition

X0 = f(0,W0) = f(0, 0) = g(0)h(0),

and finally:

Xt = X0 exp

{(
a− 1

2
b2

)
t+ bWt

}
. (2.20)

Because (2.19) is a linear SDE, the stochastic process (2.20) is necessarily the unique
strong solution. It bears the name of geometric Brownian motion (GBM) and in many
models of mathematical finance it is assumed to model the behavior of some equity un-
derlying asset (a stock, for example). Apparently the geometric Brownian motion is a
non-Gaussian process, since it is log-normally distributed. If we denote the constant
c := a− 1

2
b2, using the moment generating function of N(ct, b2t)-distributed random vari-

able, it is possible to determine the expectation function of GBM as

µX(t) = exp

{(
c+

1

2
b2

)
t

}
, ∀t ≥ 0.

From this, recalling the remark 1.3.7 - since the expectation function is not constant,
it is obvious that geometric Brownian motion is not a martingale (i.e. there is no such
filtration, that it is a martingale w.r.t. it) under the probability measure P . On the other
hand, it is possible to prove, that geometric Brownian motion is a Markov process in the
sense of definition 1.5.6. [12]

We have defined a strong solution of the general stochastic differential equation (2.12),
now we shall proceed to define a weak solution.

Definition 2.3.7. A collection of objects

(Ω,A, P ), {Ft},W,X

such that
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1. (Ω,A, P ) is a probability space, {Ft} given filtration on it,

2. W = {Wt}, X = {Xt} are {Ft}-adapted stochastic processes,

3. W = {Wt} is a Brownian motion with respect to P ,

4. for each t ≥ 0 the relations (2.13),(2.14) and (2.15) hold,

is called a weak solution of (2.12) given a = a(t, x), b = b(t, x).

In contrast to a strong solution a weak solution is not required to be a functional of a
priori given Brownian motion W . Actually, finding a certain Brownian motion is a part of
the process of solving (2.12) in the weak sense. Weak solutions X of (2.12) are useful to
determine the distributional characteristics of X, such as the expectation, variance and
covariance functions of the process. For these purposes, the sample paths of X need not
be known.

Remark 2.3.8. There are stochastic differential equations for which it can be shown, that
the strong solution does not exist, however, they have a weak solution.

Example 2.3.9 (CIR equation). We assume a stochastic differential equation of the form:

dXt = k(n−Xt) dt+ b
√
Xt dWt, ∀t ≥ 0. (2.21)

Because this equation found its use in modeling interest rates in famous article [15] in the
so-called Cox-Ingersoll-Ross (CIR) model, it is usually referred to as the CIR equation or
CIR process. Sometimes the equation is also called the square-root equation, for obvious
reasons.

Unlike equation (2.19), the CIR equation does not have a closed-form solution. Al-
though there is no formula for {Xt}, there is a unique solution to this SDE starting from
a given initial condition X0. [12] It is possible to determine many of the distributional
properties of the CIR process. We start by calculating the expectation function; using
the Itô product rule:

d(ektXt) = kektXt dt+ ekt dXt =

= kektXt dt+ ektk(n−Xt) dt+ ektb
√
Xt dWt =

= ektkn dt+ ektb
√
Xt dWt.

We integrate:

ektXt = e0X0 + kn

∫ t

0

eks ds︸ ︷︷ ︸
= 1
k

(ekt−1)

+b

∫ t

0

eks
√
Xs dWs,

and taking the expectation:

ektEXt = X0 + n(ekt − 1) + bE

[∫ t

0

eks
√
Xs dWs

]
︸ ︷︷ ︸

=0

.

Altogether, we arrive at the first moment:

EXt = (X0 − n)e−kt + n, ∀t ≥ 0. (2.22)
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By analogical steps, it is possible to derive the second moment and specifically, the vari-
ance:

VarXt = X0
b2

k
(e−kt − e−2kt) +

n

2

b2

k
(1− e−kt)2, ∀t ≥ 0. (2.23)

One of the features of the process (2.21) is that it is mean reverting, i.e. once the process
Xt gets very far from the value of n, the first term (the drift part) in the equation prevails
and drags the process back. This reversion to the mean was one of the reasons, why
the CIR process became popular in modeling interest rates. Another reason is that the
process does not take on negative values. In fact, if the condition

2kn > b2

holds, then the drift part of the process is sufficient for the process to stay positive
and not reach zero. [16] Currently, the CIR process is losing on popularity in fixed
income modeling, since, as recent developments have shown, negative interest rates are
not unusual in the real-life markets.

Just as interest rates, the variance of an equity asset is believed to have the reversion
to the mean property; moreover, variance should never become negative by definition.
Due to these facts, the CIR process is employed to model the variance of the underlying
asset in the Heston model, that we shall introduce later (see the corresponding chapter).

In bond pricing, often the integrated CIR process {Zt} defined as

Zt :=

∫ t

0

Xs ds, ∀t ≥ 0 (2.24)

enters the discussion. We shall utilize it in a slightly different manner in our deriva-
tions presented in the last chapter. It can be shown, that the characteristic function of
integrated CIR process is [17]

φZt(u) = A(t, u)eB(t,u)X0 , (2.25)

where

A(t, u) :=
exp

(
k2n
b2
t
)

[
cosh

(
Υ
2
t
)

+ k
Υ

sinh
(
Υ
2
t
)] 2kn

b2

,

B(t, u) :=
2iu

k + Υ coth
(
Υ
2
t
)

with
Υ :=

√
k2 − 2b2iu.

2.4 Generalized geometric Brownian motion

Let {Wt} be a Brownian motion with {Ft} filtration and let {µt}, {σt} be processes,
adapted to {Ft}. We define an Itô process (by definition 2.2.13)

Ht :=

∫ t

0

(
µs −

1

2
σ2
s

)
ds+

∫ t

0

σs dWs. (2.26)
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Written in the differential form:

dHt =

(
µt −

1

2
σ2
t

)
dt+ σt dWt, (2.27)

where also5

dHt dHt = σ2
t dWt dWt = σ2

t dt. (2.28)

We define another process, by

Xt := X0e
Ht = X0 exp

{∫ t

0

(
µs −

1

2
σ2
s

)
ds+

∫ t

0

σs dWs

}
. (2.29)

Here X0 is deterministic and positive. We use the Itô formula for an Itô process:

dXt = X0d(eHt) = X0(eHt dHt +
1

2
eHtdHt dHt) =

= Xt

[(
µt −

1

2
σ2
t

)
dt+ σt dWt

]
+

1

2
Xtσ

2
t dt =

= µtXt dt+ σtXt dWt.

In these calculations, we have verified, that a process

Xt = X0 exp

{∫ t

0

(
µs −

1

2
σ2
s

)
ds+

∫ t

0

σs dWs

}
, ∀t ≥ 0, (2.30)

called the generalized geometric Brownian motion is a solution of the equation:

dXt = µtXt dt+ σtXt dWt, ∀t ≥ 0. (2.31)

Because we have not defined stochastic differential equations with stochastic processes as
coefficients, this is not strictly speaking a solution of an SDE. It would be more correct to
call the GGBM a different integral representation of the Itô process defined in differential
notation as (2.31). Unlike for the usual geometric Brownian motion, the distribution of Xt

need not be log-normal, because µt and σt are allowed to be stochastic. If these coefficient
processes are in fact constants µ and σ, then the solution (2.30) becomes the usual GBM,
which was derived in example 2.3.6. We note here, that generalized geometric Brownian
motion is not a martingale and that it also represents the most general model of an asset
price, that is always positive, has no discontinuities (in the sense of sample paths) and is
driven by a single Brownian motion. [12]

5This also mimics theorem 2.2.14, since

〈H〉t =

∫ t

0

dHs dHs︸ ︷︷ ︸
d〈H〉s

=

∫ t

0

σ2
sds.
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2.5 Some important theorems in Itô calculus

The above developed theory of the Itô integral and the SDEs based on it are sometimes
together briefly referred to as the Itô calculus. In sections 1.5 and 1.6 we have shown that
Brownian motion {Wt} is a martingale (w.r.t. natural Brownian filtration) starting at
zero with continuous sample paths that accrues quadratic variation as 〈W 〉t = t. It turns
out that these properties together are sufficient for a process to be a Brownian motion.
This is the content of the following theorem.

Theorem 2.5.1 (Lévy characterization). Let {Mt} be a martingale with respect to the
filtration {Ft}. If

1. M0 = 0,

2. {Mt} has continuous sample paths,

3. 〈M〉t = t, ∀t ≥ 0 ,

then {Mt} is a Brownian motion with {Ft} its natural filtration.

Although this theorem does not need or reference the machinery of Itô calculus at all, it
is often used in proofs of many cornerstone theorems in stochastic calculus. The theorem
is also interesting, because there is no assumption on normality of the distribution of the
martingale M , however the other assumptions are enough to imply it.

Another fundamental theorem, that we display here for reference is the martingale
representation theorem.

Theorem 2.5.2 (Martingale representation). Let {Wt} be a Brownian motion on a prob-
ability space (Ω,A, P ) with natural filtration {Ft}. Let {Mt} be a martingale with respect
to this filtration, then there is a process {Gt} such that

Mt = M0 +

∫ t

0

Gs dWs, ∀t ∈ [0, t].

2.6 Equivalent measures, Girsanov theorem

So far, we have worked with only single probability measure P on the measurable space
(Ω,A), thus we did not need to specify the measure explicitly on some occasions. For
example the expectation in the definition of Brownian motion (used for independence of
increments) is actually tied to the probability measure as well as the conditional expec-
tation in the martingale assumption of Lévy characterization 2.5.1. In this section we
shall state some important facts regarding definition of different probability P̃ and the
relationship between the measures P and P̃ alongside the relationship between different
Brownian motions.

We shall start with some definitions.

Definition 2.6.1. Let P1 and P2 be two probability measures given on the same mea-
surable space (Ω,A). Then we say that the two measures are equivalent if

P1(A) = 0 ⇐⇒ P2(A) = 0, ∀A ∈ A.
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Given a P -almost surely positive random variable Z with EZ = 1 it is possible to
define another probability measure P̃ by:

P̃ (A) :=

∫
A

Z(ω) dP (ω), ∀A ∈ A. (2.32)

Theorem 2.6.2 (Girsanov). [12] Let {Wt} be a Brownian motion on a probability space
(Ω,A, P ) and let {Ft} be a natural filtration for this Brownian motion. Let {ζt}[0,T ] be a
stochastic process adapted to this Brownian filtration. Define:

Zt := exp

{
−
∫ t

0

ζs dWs −
1

2

∫ t

0

ζ2
s ds

}
, t ∈ [0, T ], (2.33)

W̃t := Wt +

∫ t

0

ζs ds (2.34)

and assume that

E

∫ T

0

ζ2
t Z

2
t dt <∞. (2.35)

Set Z := ZT . Then EZ = 1 and under the probability measure P̃ given by (2.32), the
process {W̃t}[0,T ] is a Brownian motion.

In fact the two measures P and P̃ are equivalent; because of that, P̃ is called equivalent
martingale measure6. It is important that the two measures are equivalent, so that they
agree on which sets are of measure zero. Later, we shall employ the Girsanov theorem
in the models of quantitative finance7, where it is going to be substantial that the two
measures agree on what is possible and impossible in terms of probability.

6The word martingale in the title occurs due to the fact that W̃ is a martingale with respect to P̃ .
Showing this is part of the proof of the Girsanov theorem, where one uses Lévy characterization to prove
the assertions.

7We mention that we shall use (2.34) in the ”differential notation”:

dW̃t = dWt + ζt dt.
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Chapter 3

Black-Scholes-Merton framework

In this chapter, we discuss what is probably the most famous model in quantitative finance,
for it was at the very inception of the whole field. The model was first published by F.
Black and M. Scholes in [2] with significant contributions from R. Merton [3]. Due to its
simplicity the model is wildly popular although it has many known drawbacks originating
in various simplifying assumptions that are part of the model. For this reason, nowadays,
the model is mainly used first, as an introductory educational device, and second, as a
quoting device.

3.1 Model assumptions

In this and in the next section we shall use the following notation and assumptions. We
assume a market model with underlying equity product (usually a stock) and we are to
value a derivative contract written on it, a plain vanilla European call option. We have the
following model parameters: σ > 0, the volatility of the underlying asset, µ > 0 the rate of
return on the asset. We note, that one of the model assumptions is that these parameters
are constant. The underlying asset (to which corresponds the natural Brownian filtration
adapted stochastic process {St}[0,T ]) behavior is modeled by a unique strong solution of
the following SDE:

dSt = µSt dt+ σSt dWt, µ, σ > 0, (3.1)

the geometric Brownian motion (per example 2.3.6):

St = S0 exp

{(
µ− 1

2
σ2

)
t+ σWt

}
. (3.2)

We assume that the underlying does not pay any dividends1. Here {Wt} is the usual
Brownian motion and S0 is supposed to be adapted to the natural Brownian filtration
{Ft}; it is the initial stock-price observed in the market, unless the contract is forward
starting (we shall not concern ourselves with this case here). Next assumption is that
in the model, there is a non-risky asset, a bank account (a money-market account); for
definition, see B.1.1. Here the interest rate r is assumed to be constant, so that

dBt = rBt dt (3.3)

1This assumption may be adjusted for retrospectively. For our purposes it is not necessary to do so
and hence we do not mention it again.

39
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has a solution

Bt = B0e
rt, ∀t.

Lastly we assume, that the market is sufficiently liquid so that there are no transaction
costs resulting from buying or selling assets.

3.2 Portfolio process, Black-Scholes-Merton PDE

For the purposes of valuing the European call option with maturity T > 0 we shall
work exclusively with times t ∈ [0, T ]. One holds certain amount {∆t} of shares of the
underlying asset and {mt} in the bank account, thus {Πt}[0,T ], where

Πt := ∆tSt +mtBt, ∀t (3.4)

represents the portfolio composed of the underlying and the bank account according to
the trading strategy (∆t,mt). Both {∆t} and {mt} are supposed to be adapted to the
natural Brownian filtration and they are allowed to assume positive or negative values.
A negative value of ∆t represents shorting2 the underlying asset while negative mt means
that one borrows money at the risk-free rate r.

Let us assume that the trading strategy (∆t,mt) is self-financing , i.e. that the incre-
ments in the portfolio value Πt result only from changes in the prices of the underlying
asset St and the bank account Bt. The self-financing condition is expressed by the rela-
tionship between differentials:

dΠt = ∆tdSt +mtdBt. (3.5)

Substituting for the behavior of St, Bt from (3.1), (3.3) and for {mt} from (3.4), the
self-financing condition may be expressed as

dΠt = ∆t(µSt dt+ σSt dWt) + rmtBt dt =

= ∆t(µSt dt+ σSt dWt) + r(Πt −∆tSt) dt =

= rΠt dt+ (µ− r)∆tSt dt+ σ∆tSt dWt.

(3.6)

One is obviously interested in what is the present (at time zero) value of the portfolio
process at time t ≥ 0. In order to calculate the Itô differential of the discounted3 portfolio
value D(t)Πt = e−rtΠt, we first calculate the discounted value of the underlying asset.
Employing the Itô product rule 2.2.17

d(D(t)St) = d(e−rtSt) =

= −re−rtSt dt+ e−rt dSt =

= (µ− r)e−rtSt dt+ e−rtσSt dWt.

(3.7)

2Shorting or selling short an investment product means that one borrows the particular investment
product from its owner and immediately sells it to raise cash. This obviously comes with the obligation
to later return the asset back to the owner.

3For definition, see B.1.2 relationship (B.2) with constant interest rate r. For this case, the bank
account and hence also the discount factor are deterministic functions.
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Then the differential of the discounted portfolio value becomes:

d(D(t)Πt) = d(e−rtΠt) =

= −re−rtΠt dt+ e−rt dΠt =

= −re−rtΠt dt+ e−rt[rΠtdt+ (µ− r)∆tSt dt+ σ∆tSt dWt] =

= e−rt(µ− r)∆tSt dt+ e−rtσ∆tSt dWt =

= ∆td(D(t)St).

(3.8)

Interpreting this, we observe that the change in the discounted portfolio value is solely
due to change in the discounted price of the underlying.

Now we consider a certain derivative contract (most commonly a European call option)
with payoff (max{ST − K, 0} in the case of an option with strike K) at time T (the
expiration of the contract). Black, Scholes and Merton [2, 3] argued that the value
of this derivative C = C(t, St) at any time t ∈ [0, T ] should depend on the time to
expiration T − t and on the value of the underlying (say, the stock price) at that time (in
addition to dependence on the model parameters σ and possibly µ). Ergo, the function
C = C(t, x) is deterministic, however C(t, St) is a random variable at every t ∈ [0, T ],
hence it is a stochastic process. Furthermore, C = C(t, x) is assumed to be continuous
and differentiable in both variables.

It shall be now our goal to find this function C = C(t, x). We begin by computing the
differential, using the Itô formula for an Itô process:

dC(t, St) = Ct(t, St) dt+ Cx(t, St) dSt +
1

2
Cxx(t, St) dStdSt =

= Ct(t, St) dt+ Cx(t, St)(µSt dt+ σSt dWt) +
1

2
Cxx(t, St)(µSt dt+ σSt dWt)

2 =

=

[
Ct(t, St) +

1

2
σ2S2

tCxx(t, St) + µStCx(t, St)

]
dt+ σStCx(t, St) dWt.

Next, using the Itô product rule and substitution from dC(t, St):

d(D(t)C(t, St)) = d(e−rtC(t, St)) = −re−rtC(t, St) dt+ e−rt dC(t, St) =

= −re−rtC(t, St) dt+ e−rt
[
Ct(t, St) +

1

2
σ2S2

tCxx(t, St) + µStCx(t, St)

]
dt+

+e−rtσStCx(t, St) dWt.

A replicating (hedging) portfolio starts with some initial capital Π0 and invests in the
underlying and money-market account so that the portfolio value Πt at each time t ∈ [0, T ]
agrees with C(t, St). To ensure that

Πt = C(t, St), ∀t ∈ [0, T ], (3.9)

we demand that

Π0 = C(0, S0) ∧ d(D(t)Πt) = d(D(t)C(t, St)), ∀t ∈ [0, T ]. (3.10)
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Apparently, integrating (3.10) and employing the initial condition, the equality (3.9) is
satisfied. Equating the above calculated differentials, we obtain:

e−rt(µ− r)∆tSt dt+ e−rtσ∆tSt dWt =

= −re−rtC(t, St) dt+ e−rt
[
Ct(t, St) +

1

2
σ2S2

tCxx(t, St) + µStCx(t, St)

]
dt+

+e−rtσStCx(t, St) dWt.

For this equality to hold, the terms figuring in front of dWt must be identical:

∆t = Cx(t, St), ∀t ∈ [0, T ]. (3.11)

This quantity is called the delta of the derivative contract (option) written on the un-
derlying. By the standard derivative interpretation it represents the change in the value
C(t, St) resulting from the change in the price of the underlying.

Remark 3.2.1. Before we proceed with the derivation of the BSM partial differential
equation, we would like to comment on the relations contained in (3.10) and (3.11).
Basically, we are able to find the strategy of combining the shares of the underlying asset
and the money-market account so that we replicate the European call option as long as
we delta hedge. This is, by definition, continuous; so to achieve a perfect hedge, one has
to hold exactly ∆t = Cx(t, St) shares of the underlying at every moment t ∈ [0, T ]. As the
reader can imagine, this requires rebalancing (buying or selling shares of the underlying)
very often. In the section 3.1 we have made the assumption, that there are no transaction
costs. In reality, transaction costs are an obstacle that prevents the continuous delta
hedging as prescribed by the above formulae.

Now, we shall continue with the derivation; comparing the dt terms in the equality,
that we demand, and using the formula for delta, we obtain

(µ− r)Cx(t, St)St = −rC(t, St) + Ct(t, St) + µCx(t, St) +
1

2
σ2S2

tCxx(t, St).

Canceling the µStCx(t, St) term, which appears on both sides of the equation, we arrive
at:

rC(t, St) = Ct(t, St) + rStCx(t, St) +
1

2
σ2S2

tCxx(t, St).

This is the Black-Scholes-Merton partial differential equation for the deterministic4 func-
tion C = C(t, x):

∂C

∂t
(t, x) + rx

∂C

∂x
(t, x)− rC(t, x) = −1

2
σ2x2∂

2C

∂x2
(t, x), t ∈ [0, T ], x ≥ 0, (3.12)

with the terminal condition

C(T, x) = max{x−K, 0} = (x−K)+.

4By delta hedging, we eliminate all risk, so that the portfolio perfectly replicates the option payoff
and the option price obtained in the process is deterministic.
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Remark 3.2.2. [18] The Black-Scholes-Merton equation (3.12) is (second-order, linear)
parabolic partial differential equation. The terms ∂tC and −1

2
σ2x2∂2

xxC balanced on the
two sides of the equation represent a smooth diffusion of the option price similarly to a
heat diffusing in some medium as described by the heat equation. The only difference here
is that the coefficient in front of the second-order derivative depends on the variable x,
which basically means the inhomogeneity of the ”medium” in which the diffusion occurs.
The term rx∂xC is a convection term which, loosely said, drifts the price in a preferred
direction and the term −rC accounts for decay.

We shall not solve the BSM equation here. A solution C = C(t, x) will be found by
measure-theoretic methods (change of measure, Girsanov theorem) in the next sections;
we shall thus present a dual approach with more general applications.

3.3 Risk neutral pricing

Let {Wt}t∈[0,T ] be a Brownian motion on a probability space (Ω,A, P ) (as hinted by
Girsanov theorem, in this section it will be crucial with respect to what probability
measure the particular process is a Brownian motion) and let {Ft}t∈[0,T ] be a natural
filtration for this Brownian motion. Here T is a fixed endpoint of the interval. The
underlying security (say, a stock) shall be modeled by a stochastic process {St} determined
by differential relation (i.e. it is an Itô process):

dSt = µtSt dt+ σtSt dWt, ∀t ∈ [0, T ]. (3.13)

Here µt and σt are processes adapted to the Brownian motion filtration discussed above.
Furthermore let σt be non-zero almost surely for all t ∈ [0, T ]. Per section 2.4, solution to
stochastic differential relation (3.13) is generalized geometric Brownian motion process:

St = S0 exp

{∫ t

0

σs dWs +

∫ t

0

(
µs −

1

2
σ2
s

)
ds

}
. (3.14)

Using the discounting defined in definition B.1.2 by relation (B.4), the discounted stock
price process is5:

DtSt = S0 exp

{∫ t

0

σs dWs +

∫ t

0

(
µs − rs −

1

2
σ2
s

)
ds

}
, (3.15)

and using the product rule 2.2.17 and equation (B.5) it satisfies the stochastic differential
equation

d(DtSt) = St dDt +Dt dSt + dDt dSt =

= −StrtDt dt+Dt(µtSt dt+ σtSt dWt) =

= (µt − rt)StDt dt+ StDtσt dWt.

(3.16)

The stochastic process {λt}[0,T ] defined by6

λt :=
µt − rt
σt

, ∀t ∈ [0, T ], (3.17)

5In this section, we allow for stochastic short rate {rt} as well.
6At the beginning of this section, we have demanded that σt is non-zero P -almost surely for all

t ∈ [0, T ], ergo this definition is correct in the usual L2(Ω,A, P ) sense.
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is called the market price of risk .

We introduce the probability measure defined in Girsanov’s theorem 2.6.2, where in
place of the generating process {ζt} we substitute the market price of risk process {λt}
defined above. This yields the stochastic process {Zt} (ergo the random variable ZT )
necessary for definition of P̃ . In terms of Brownian motion {W̃t} we may rewrite the
equality (3.15) as

d(DtSt) = σtDtSt dW̃t. (3.18)

Definition 3.3.1. A probability measure P̃ on a probability space (Ω,A, P ) is said to be
risk neutral , if

1. P̃ and P are equivalent measures, i.e.

P (A) = 0 ⇐⇒ P̃ (A) = 0, ∀A ∈ A,

2. under P̃ , the discounted stock price {DtSt} is a martingale with respect to the
natural Brownian filtration {F̃t}.

Equation (3.18), rewritten in the ”proper” integral form

DtSt = D0︸︷︷︸
=1

S0 +

∫ t

0

σsDsSs dW̃s,

apparently consists a martingale for the process DtSt is an Itô integral under the prob-
ability measure P̃ (and according to 2.2.4, every Itô integral is a martingale w.r.t. the
natural Brownian filtration). The process {St} (being generalized geometric Brownian
motion) is not a martingale under P , nor is {DtSt}, however, the latter is a martingale
under the risk neutral probability measure P̃ .

Remark 3.3.2. With the use of the equation (which is the equality (2.34) rewritten for
our particular case)

dWt = −µt − rt
σt

dt+ dW̃t, (3.19)

one is able to calculate

dSt = µtSt dt+ σtSt dWt = µtSt dt− σtSt
µt − rt
σt

dt+ σtSt dW̃t =

= rtSt dt+ σtSt dW̃t.
(3.20)

This has a solution (again in the sense of GGBM)

St = S0 exp

{∫ t

0

(
rs −

1

2
σ2
s

)
ds+

∫ t

0

σs dWs

}
. (3.21)

We conclude that under the risk neutral measure P̃ (which turns the discounted stock
price into a martingale), the mean rate of return on the asset represented by {St} is rt.
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Now we turn our attention to the problem of constructing a portfolio similar to that
used in the previous section, only we relax the restrictive condition of r, µ and σ being
constant and instead follow in the full generality of working with stochastic processes
{rt}, {µt} and {σt}. We again denote by ∆ = {∆t} the amount of shares of the underlying
held in the portfolio {Πt}. The rest of this portfolio mt = Πt −∆tSt is again invested in
the money-market account Bt, so that {∆t,mt} constitutes a trading strategy, on which
we impose the self-financing condition. Making use of these facts:

dΠt = ∆t dSt + rt(Πt −∆tSt) dt = ∆tµtSt dt+ ∆tσtSt dWt + rtΠt dt− rt∆tSt dt =

= ∆t(µt − rt)St dt+ rtΠt dt+ ∆tσtSt dWt = ∆tσtSt(λt dt+ dWt) + rtΠt dt =

= ∆tσtSt dW̃t + rtΠt dt.

Discounting as usual, we have:

d(DtΠt) = −rtDtΠt dt+Dt dΠt =

= −rtDtΠt dt+Dt∆tσtSt dW̃t − rtDtΠt dt =

= Dt∆tσtSt dW̃t.

(3.22)

Now it is time to construct a hedging argument analogical to that of previous section. We
desire to find a process {∆t} (ergo the corresponding portfolio process {Πt}) and an initial
capital Π0, so that Π replicates a general (even path-dependent) payoff at maturity. We
denote this general payoff (of a derivative contract) - an FT -measurable random variable -
by VT ; it is the intrinsic value of the derivative at t = T , the expiration7. In this notation,
the replicating condition is

ΠT = VT P -almost surely. (3.23)

To our aid, we have the following corollary of the martingale representation theorem 2.5.2
of section 2.5:

Corollary 3.3.3. [12] Let {Wt}[0,T ] be a Brownian motion with respect to P and let {Ft}
be a natural filtration for this Brownian motion. Let {ζt} be a process adapted to {Ft};
we define

Zt := exp

{
−1

2

∫ t

0

ζ2
s ds−

∫ t

0

ζs dWs

}
and

W̃t := Wt +

∫ t

0

ζs ds. (3.24)

We also assume that Ẽ
∫ T

0
ζ2
sZ

2
s ds < ∞. If we denote Z := ZT , then EZ = 1 and the

process W̃ given by (3.24) is a P̃ -Brownian motion. Let also {M̃t} be an {Ft}-martingale
under P̃ . Then there is an {Ft}-adapted process {G̃t}, such that

M̃t = M̃0 +

∫ t

0

G̃s dW̃s, ∀t ∈ [0, T ]. (3.25)

7In case of a European call option, this is VT = max{ST −K, 0} as usual.
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The discounted portfolio process {DtΠt}, being an Itô integral is a P̃ -martingale with
respect to {Ft}:

DtΠt = Ẽ[DTΠT |Ft] = Ẽ[DTVT |Ft], ∀t ∈ [0, T ]. (3.26)

We recall, that we still have to find {∆t} (resp. {Πt}) so that ΠT = VT holds. Since
Πt is the value of the replicating portfolio at t, which represents the capital needed to
successfully hedge, we call it the price of the derivative contract at time t and denote it
Vt. Now, the corollary 3.3.3 applies, so that there is an {Ft}-adapted process {G̃t} such
that

DtΠt = DtVt = D0︸︷︷︸
=1

V0 +

∫ t

0

G̃s dW̃s, ∀t ∈ [0, T ]. (3.27)

Using relationship (3.22), the discounted contract price (or the discounted portfolio pro-
cess) {DtVt} also satisfies

DtVt = DtΠt = D0︸︷︷︸
=1

Π0 +

∫ t

0

∆sσsDsSs dW̃s, ∀t ∈ [0, T ]. (3.28)

In order for the equality (3.23) to hold, equating (3.27) and (3.28), we see, that it is
enough to set

Π0 = V0

and to define the process8

∆t =
G̃t

σtDtSt
, ∀t ∈ [0, T ]. (3.29)

These two conditions together ensure, that Πt = Vt for all t up to and (especially) including
time T . Thus, we have successfully found a replicating portfolio from which we can
determine the price of the derivative contract at time t as

Vt = D−1
t Ẽ[DTVT |Ft] = Ẽ[e

∫ T
t rs ds VT |Ft], ∀t ∈ [0, T ]. (3.30)

This is the cornerstone of quantitative finance, the risk neutral pricing formula.

3.4 Solution of the BSM equation via risk neutral

pricing

To obtain the Black-Scholes-Merton price of a European call, we assume a constant volatil-
ity σ > 0, constant interest rate r and take the derivative contract payoff at expiration
T , to be the option payoff

VT = max{ST −K, 0} =: (ST −K)+.

8We remind ourselves that at the beginning of this section, we have postulated {σt} to be a P -a.s.
non-zero (positive) process.
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The right hand side of (3.30) becomes

Ẽ[e−r(T−t)(ST −K)+|Ft].

Because, as noted in chapter 1, geometric Brownian motion is a Markov process, this
expression depends on the stock price St and on the time t at which the conditional
expectation is computed but not on the stock price prior to time t. In other words, there
is a function C = C(t, x) such that

C(t, St) = Ẽ[e−r(T−t)(ST −K)+|Ft]. (3.31)

With σ, r constant, the St is described by the regular geometric Brownian motion. Which
in the risk neutral setting takes form of:

St = S0 exp

{(
r − 1

2
σ2

)
t+ σW̃t

}
. (3.32)

Using this formula for t = T and then substituting in from the same formula in order to
get rid of the dependence on S0 we may write:

ST = St exp

{(
r − 1

2
σ2

)
(T − t) + σ

W̃T − W̃t√
T − t

√
T − t

}
.

Here T − t = τ is time to maturity and

Y = −W̃T − W̃t√
T − t

∼ N(0, 1) (3.33)

is the standard normal random variable. Using the fact that St is Ft-measurable (see
section 3.1) and the random variable exp

{(
r − 1

2
σ2
)
τ − σY

√
τ
}

is independent of Ft we
can use the corresponding properties of conditional expectation 1.2.4 and arrive at

C(t, x) = e−rτ Ẽ

[(
x exp

{(
r − 1

2
σ2

)
τ − σ

√
τY

}
−K

)+
]

=

= e−rτ Ẽ[f(Y )] = e−rτ
1√
2π

∫ +∞

−∞
f(y)e−

y2

2 dy =

= e−rτ
1√
2π

∫ +∞

−∞

(
x exp

{(
r − 1

2
σ2

)
τ − σ

√
τy

}
−K

)+

e−
y2

2 dy.

(3.34)

Before continuing in (3.34), we get rid of the maximum, here

x exp

{(
r − 1

2
σ2

)
τ − σ

√
τy

}
−K > 0

is equivalent to

y < d−(τ, x) :=
1

σ
√
τ

[
ln
x

K
+

(
r − 1

2
σ2

)
τ

]
.
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Therefore, now continuing in (3.34), we have:

C(t, x) = e−rτ
1√
2π

∫ d−(τ,x)

−∞

(
x exp

{(
r − 1

2
σ2

)
τ − σ

√
τy

}
−K

)
e−

y2

2 dy =

=
1√
2π
x

∫ d−(τ,x)

−∞
e−rτ exp

{(
r − 1

2
σ2

)
τ − σ

√
τy

}
e−

y2

2 dy−e−rτK 1√
2π

∫ d−(τ,x)

−∞
e−

y2

2 dy =

=
1√
2π
x

∫ d−(τ,x)

−∞
exp

{
−1

2
σ2τ − σ

√
τy

}
e−

y2

2 dy − e−rτKΦ(d−(τ, x)) =

=
1√
2π
x

∫ d−(τ,x)

−∞
exp

{
−1

2
(y + σ

√
τ)2

}
dy − e−rτKΦ(d−(τ, x)).

Now changing the variable ỹ = y + σ
√
τ in the integral and denoting

d+(τ, x) := d−(τ, x) + σ
√
τ ,

we arrive at
C(t, St) = StΦ(d+(τ, St))− e−rτKΦ(d−(τ, St)), (3.35)

where Φ = Φ(z) denotes the cumulative distribution function of standard normal random
variable at a point z and

d±(τ, x) :=
1

σ
√
τ

[
ln
x

K
+

(
r ± 1

2
σ2

)
τ

]
. (3.36)



Chapter 4

Volatility

In the previous, we have encountered volatility as a (by assumption) constant parameter in
the Black-Scholes-Merton model. In this chapter, we present an overview of the additional
features that the concept of volatility encompasses. First, we distinguish between the
historical/realized volatility of the asset returns. Second, we classify BSM and other,
more general models by their approach to modeling volatility. In the process, it shall
become clear why we are making these distinctions.

4.1 Realized volatility

The annualized standard deviation of log-returns {h1, . . . , hn} (differences in asset price
on which the logarithm function has been applied) defined as:

σR :=

√√√√ a

n− 1

n∑
`=1

(h` − h)2, (4.1)

is called the realized (or historical) volatility . Here a is the annualization factor usually
equal to the number of business days in a year and h is the arithmetic average of all
log-returns. If the log-returns {h`}n`=1 are independently and identically distributed with
N(µ, σ2), then σ2

R is an unbiased estimator for the variance σ2. As remarked by Wilmott
[19], there are two timescales associated with calculating volatility as (4.1). First, the
timespan during which the asset price is monitored and second, the time elapsed between
two subsequent observations. By the assumption of the BSM model, there is no timescale
associated with the volatility parameter σBSM. The realized volatility is necessarily back-
ward looking statistical measure and thus using the realized volatility in BSM option
pricing model, one makes an implicit assumption that the past behavior will continue
into the future. This is the assumption that the practitioners of quantitative finance are
usually trying to avoid. Moreover, the historical volatility often fluctuates.

4.2 Implied volatility, the smile

One of the assumptions of the BSM model is that the volatility parameter σBSM is a
positive constant, which is then plugged into the geometric Brownian motion. Should

49
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one be able to estimate this parameter from the market data, then any vanilla call option
with an arbitrary strike K (and the corresponding moneyness relative to current spot
price St) and an arbitrary time to maturity τ = T − t should be correctly priced by the
pair of equations (3.35), (3.36). However this is not the case. The prices in (generally
any) market are not consistent with the BSM price C(t, St).

It is thus natural to ask what is the value of σimp > 0 which reconciles the BSM prices
with the prices Cobs actually observed in the markets. This value is the so-called implied
volatility , or the volatility implied by the Black-Scholes-Merton model and it poses the
inverse problem; equating Cσ

BSM(t, St) = Cobs, what is the value of σimp? The dependence
of option value Cσ

BSM on the parameter is monotone, so that the problem has a unique
solution.

Asking this question since the 1980s, the traders and the quants started to notice that
if they express the implied volatility for options with various strikes (but written on the
same underlying and with the same time to maturity), they obtain various sigmas, so that
actually σimp = σimp(K). Plotting this dependence of implied volatility on the strike, one
obtains picture similar to:

Figure 4.1: This is the implied volatility smile on the S&P500 index as
of 25.4.2019. The abscissa is actually in terms of the strike relative to
the current spot price, the moneyness . We display here a screenshot
from Eikon application, courtesy of Reuters.

Figures of this type became commonly known as the implied volatility smile, exact
shape of which usually depends on the type of the market as well as the current economic
cycle (sometimes they are called smirk or frown instead).

The situation is even more complicated because it turns out that σimp exhibits whole
term structure; the implied volatility varies with respect to the time to expiration τ as
well.
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Figure 4.2: These are the implied volatility smiles on the S&P500 index
as of 25.4.2019 for option expirations of one month (orange) and one year
(red). We display here a screenshot from Eikon application, courtesy of
Reuters.

Finally, the parametric dependence σimp = σimp(τ,K) is known as the volatility sur-
face, for it is usually graphically represented as:

Figure 4.3: When one considers the smile and extends it for the term
structure, one obtains a three-dimensional surface - the volatility sur-
face. This surface is again on the S&P500 index as of 25.4.2019. The
axes are inverted, so that the whole surface is clearly visible. We display
here a screenshot from Eikon application, courtesy of Reuters.
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4.3 Local volatility

For a pricing model it is essential to fit the market observable prices at a given moment
(and thus the volatility surface). This poses a problem, for, as explained above, this is not
one of the features of the Black-Scholes-Merton model. The most straightforward solution
to this problem is to match the observed volatility surface by assuming that the volatility
is a deterministic function σ = σ(t, x) figuring in the stochastic differential equation:

dSt = µSt dt+ σ(t, St)St dWt. (4.2)

This model was introduced in [20, 21] and is called the local volatility model (the function
σ = σ(t, x) is called the local volatility function) or shortly the LV model. Let us denote
Cobs = Cobs(T,K) the observed market price of a call option with strike K and maturity
T . It was shown by Dupire [20] that for any such set of observed prices at one moment
there is a unique local volatility function given by:

σ2(T,K) = 2
∂Cobs

∂T
(T,K) + rK ∂Cobs

∂K
(T,K)

K2 ∂2Cobs

∂K2 (T,K)
. (4.3)

This is the Dupire formula.
Related to the local volatility model is the procedure of calibration. This means

choosing the model parameters so that the theoretical prices provided as the model output
for exchange traded contracts (usually vanilla instruments) match exactly, or as closely
as possible the market observable prices at an instant in time. Although calibration is a
procedure that is employed even in the more advanced models described below, with local
volatility models one needs to re-calibrate (that is, to again find a new function fitting the
market) often. The market practitioners are fully aware that the local volatility models
are not describing the actual volatility dynamics, the same way they are aware of the
fact that the Black-Scholes-Merton is practically a toy model. In some cases, simplicity
is more important than faithful representation of the reality.

4.4 Stochastic volatility

In the previous section, we have assumed a deterministic function σ figuring in the equa-
tion modeling the behavior of underlying asset. Next step in this direction is to realize
that the random changes in volatility might be genuine and thus model the volatility as
a stochastic process σ = {σt}. The differential relation for an underlying asset becomes

dSt = µtSt dt+ σtSt dWt;

this is an Itô process. One then has to specify the behavior of the volatility process {σt} in
some way. The usual approach is to prescribe a stochastic differential equation to it. That
is the route that we follow in the last section of this chapter and the subsequent chapter
on the Heston model. There are other ways one can achieve or define stochastic volatility
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(SV), some of which we shall introduce in the last chapter. Some models commonly used
by practitioners combine local and stochastic volatility.

Generally speaking, the SV models can be subdivided into three following categories
- continuous diffusion based, jump diffusion and pure jump. An example of continuous
diffusion based model is the one introduced by S. Heston [4]. Since these types of models
are well-studied there are other popular models from this category, which is usually good
at explaining the volatility smiles for longer maturities. Conversely, for shorter maturities,
(loosely speaking) the continuous diffusion cannot keep up with the real price dynamics
and large moves, so that these models’ description of the situation is unrealistic without
setting the parameters to some large values. Attempting to correct this pathology, price
discontinuities are introduced in the so-called jump diffusion models . Jumps in these
models are useful because they remedy the issue of short-term smile and diffuse away in
the long run, so that the advantages of SV model are retained. The most realistic models,
however, are some of the pure jump models , which have no diffusion component, yet they
exhibit infinite activity, most of which is encompassed in small jumps with occasional
large moves. We shall be focusing on pure jump models in the last two chapters of this
text. Let us sum up the taxonomy of models in the following scheme (subjectively, these
are ordered from simplest to the most sophisticated ones) with examples:

1. Constant volatility parameter (BSM model)

2. Local volatility function

3. Stochastic volatility

• Diffusion based (Heston model)

• Jump diffusion

• Pure jump (Variance gamma)

We note that, just as the model with constant volatility parameter is a trivial local
volatility model, LV model is a very constrained continuous diffusion based stochastic
volatility model with the stochastic process {σt} being actually a deterministic function
of the process {St} and time.

4.5 General stochastic volatility model PDE

In this section we follow more or less closely [16] which in turn finds itself inspired by [22].
Both books present a wonderful introduction into stochastic volatility models and as the
title of one of them suggests, they are also often used in practice.

Here, inspired by the hedging argument in the above-mentioned citations, we aim to
derive an analogical PDE, but starting from a much more general process incorporating
the stochastic volatility term. This term by itself is governed by a stochastic differential
equation. We have the following model1:

dSt = µtSt dt+
√
vtSt dW

(1)
t

dvt = α(t, St, vt) dt+ ηβ(t, St, vt)
√
vt dW

(2)
t .

(4.4)

1The volatility is not modeled directly in this model but rather through the variance process {vt}.
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We also assume the following correlation between the two sources of randomness:

dW
(1)
t dW

(2)
t = %dt. (4.5)

Remark 4.5.1. This is a very general stochastic volatility model, because {St} is essentially
an Itô process and the SDE for σt =

√
vt is equation with general coefficient functions

α, β.

We would like to set up a hedging portfolio quite similar to the case when we derived
the Black-Scholes PDE. In this model, however, additional security U , whose price de-
pends on the volatility U = U(t, St, vt), is necessary to hedge the volatility (in case of
an option, this is usually another option). Hence we form a portfolio consisting of the
contract V that we want to value, ∆t shares of the underlying St (say, the stock) and
ξt shares of the contract U . The Itô differential for the portfolio process (assuming it is
self-financing) is:

dΠt = dV (t, St, vt) + ∆t dSt + ξt dU(t, St, vt). (4.6)

From now on, we shall be omitting the arguments of U, V, α, β whenever they are not
necessary. Using the relations

dStdSt = vtS
2
t dt,

dStdvt = ηvtβ% dt,

dvtdvt = η2β2vt dt,

(4.7)

which are easily computed from the model specifications and the two-dimensional Itô
formula, we have2:

dV = ∂tV dt+ ∂xV dSt + ∂vV dvt +
1

2
(∂2
xxV )vtS

2
t dt+ (∂2

xvV )ηvtβ% dt+
1

2
(∂2
vvV )η2β2vt dt.

The derivative U satisfies the same SDE as V , but in terms of U . Now the change in the
portfolio value process Πt in (4.6) can be rewritten as:

dΠt =

[
∂tV + ξt∂tU +

1

2
vtS

2
t (∂

2
xxV + ξt∂

2
xxU) +

1

2
η2β2vt(∂

2
vvV + ξt∂

2
vvU)+

+ ηβ%vt(∂
2
xvV + ξt∂

2
xvU) + µtSt(∂xV + ξt∂xU) + α(∂vV + ξt∂vU) + ∆tµtSt

]
dt+

+
√
vtSt

[
(∂xV + ξt∂xU) + ∆t

]
dW

(1)
t + ηβ

√
vt(∂vV + ξt∂vU) dW

(2)
t .

(4.8)
In order for the portfolio Πt to be instantaneously riskless (i.e. to be hedged against

the randomness in both the stock and the volatility represented by processes {W (1)
t } and

{W (2)
t }), the coefficients in front of the differentials of the two Brownian motions must

vanish. This condition yields the expressions for ξt,∆t:

ξt := −∂vV
∂vU

and ∆t := −ξt∂xU − ∂xV. (4.9)

2Here ∂x resp. ∂v denotes partial derivative with respect to second respectively third argument of
functions U, V .
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Substituting these back to the expression for dΠt, we arrive at

dΠt =

{
∂tV −

(∂vV )(∂tU)

∂vU
+

1

2
vtS

2
t

[
∂2
xxV −

(∂vV )(∂2
xxU)

∂vU

]
+

+
1

2
η2β2vt

[
∂2
vvV −

(∂vV )(∂2
vvU)

∂vU

]
+ ηβ%vt

[
∂2
xvV −

(∂vV )(∂2
xvU)

∂vU

]
dt

}
.

Now this portfolio Π is instantaneously riskless and we might expect the risk-free rate
of return on it. Thus equating dΠt = rΠtdt with the above derived expression and
substituting in from (4.9), one obtains

1

∂vV

[
−rV + rSt∂xV + ∂tV +

1

2
vtS

2
t ∂

2
xxV +

1

2
η2β2vt∂

2
vvV + ηβ%vt∂

2
xvV

]
=

=
1

∂vU

[
−rU + rSt∂xU + ∂tU +

1

2
vtS

2
t ∂

2
xxU +

1

2
η2β2vt∂

2
vvU + ηβ%vt∂

2
xvU

] (4.10)

We have separated the terms including function V on one side of the equation and the
terms including V on the other.
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Chapter 5

Heston model

In this chapter, we shall continue with the derivations of the previous one. Because the
Heston model is a special case of a general stochastic volatility model presented there, we
shall utilize the partial differential equation (4.10).

5.1 The model, risk neutral SDEs

The Heston model is specified as an Itô process (in the differential notation) for the
underlying and a stochastic differential equation for the variance:

dSt = µtSt dt+
√
vtSt dW

(1)
t

dvt = κ(ν − vt) dt+ η
√
vt dW

(2)
t ,

(5.1)

and also the correlation condition

dW
(1)
t dW

(2)
t = % dt. (5.2)

Here κ is the mean reversion speed of the variance, ν is the mean reversion level for the
variance, η is the volatility of variance and % ∈ [−1, 1] is the correlation between the two
Brownian motions. Obviously, the Heston model defined above is a special case of the
general stochastic volatility model analyzed in section 4.5 of the previous chapter with
coefficient functions given as1

α(t, St, vt) =κ(ν − vt)
β(t, St, vt) =1,

(5.3)

for all t ≥ 0.
Because

√
vt = σt the risk neutral process for the stock price mimics that of the

generalized geometric Brownian motion described in section 3.3:

dSt = rSt dt+
√
vtSt dW̃

(1)
t , ∀t ∈ [0, T ], (5.4)

where

W̃
(1)
t = W

(1)
t +

µt − r√
vt

t, ∀t ∈ [0, T ]. (5.5)

1The SDE for the variance process is exactly the CIR SDE of example 2.3.9, so that the variance is
modeled as a positive, mean reverting process.
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The risk neutral process for the variance is obtained by introducing a function λ =
λ(t, St, vt) into the drift of the CIR process as follows:

dvt = [κ(ν − vt)− λ(t, St, vt)] dt+ η
√
vt dW̃

(2)
t , ∀t ∈ [0, T ], (5.6)

where

W̃
(2)
t = W

(2)
t +

λ(t, St, vt)

η
√
vt

t, ∀t ∈ [0, T ]. (5.7)

The function λ is called the market price of volatility risk . As pointed out by [23, 4],
economic considerations suggest that the function is of the form λ(t, St, vt) = λvt, where
λ is constant. Substituting this into the risk neutral equation above, we obtain

dvt = [κ(ν − vt)− λvt] dt+ η
√
vt dW̃

(2)
t = = κ̃(ν̃ − vt) dt+ η

√
vt dW̃

(2)
t , (5.8)

where
κ̃ = κ+ λ and ν̃ =

ν

κ+ λ
. (5.9)

The pair of risk neutral processes describing the Heston model becomes:

dSt = rSt dt+
√
vtSt dW̃

(1)
t

dvt = κ̃(ν̃ − vt) dt+ η
√
vt dW̃

(2)
t .

(5.10)

From (5.5) and (5.7) the correlation under the risk neutral measure P̃ is

dW̃
(1)
t dW̃

(2)
t = % dt. (5.11)

Remark 5.1.1. From equalities (5.9), it is obvious, that the original and risk neutral CIR
equations coincide when λ = 0 for all t ≥ 0. From now on we shall identify the risk
neutral and the original model parameters, so that we obtain the same equation for the
variance (alternatively, we could set the parameter lambda to zero[16]).

5.2 Heston PDE

Reiterating to the preceding section, the Heston model defined by a pair of SDEs (5.1) is a
special case of the general stochastic volatility model (4.4) with the parametric functions
α, β given by (5.3). We may thus express the equality (4.10) derived in section 4.5 with
these parameters

1

∂vV

[
−rV + rSt∂xV + ∂tV +

1

2
vtS

2
t ∂

2
xxV +

1

2
η2vt∂

2
vvV + η%vt∂

2
xvV

]
=

=
1

∂vU

[
−rU + rSt∂xU + ∂tU +

1

2
vtS

2
t ∂

2
xxU +

1

2
η2vt∂

2
vvU + η%vt∂

2
xvU

]
.

(5.12)

Apparently both sides of this equation exhibit the same functional relationship, only one
side for V = V (t, St, vt) and the other for U = U(t, St, vt) respectively. For the equality
to hold, both sides must be equal to the same function f = f(t, St, vt). Heston in [4]
specifies this function as:

f(t, St, vt) := −κ(ν − vt) + λ(t, St, vt). (5.13)
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In the previous section we have mentioned that λ(t, St, vt) = λvt. Then, making use of
these assumptions, we arrive at the Heston partial differential equation for U = U(t, x, v)
(V satisfies the same PDE):

∂U

∂t
+ rx

∂U

∂x
+

1

2
vx2∂

2U

∂x2
+

1

2
η2v

∂2U

∂v2
+ η%vx

∂2U

∂x∂v
+ [κ(ν− v)−λv]

∂U

∂v
− rU = 0. (5.14)

Remark 5.2.1. The terms

∂U

∂t
+ rx

∂U

∂x
+

1

2
vx2∂

2U

∂x2
− rU

are similar to terms present in the Black-Scholes-Merton partial differential equation.

5.3 Heston price of an option

The price of a European call on a non-dividend paying stock with spot price St (at time
t), when the strike is K and the time to maturity is τ = T − t is the risk neutral expected
value of the discounted option payoff just as in section 3.3 (the interest rate r is assumed
to be constant):

C(t, St) = e−rτEP̃ [(ST −K)|Ft] = e−rτEP̃ [(ST −K) 1ST>K ] =

= e−rτEP̃ [ST 1ST>K ]− e−rτK EP̃ [1ST>K ]︸ ︷︷ ︸
P̃ (ST>K)

. (5.15)

Here we have followed basically the same procedure as in section 3.4, only without ex-
plicitly using the terminal distribution of the stock prices and in somewhat compressed
notation. We shall evaluate the first term separately. The procedure of changing the
numéraire, as explained in section A.6.1 of appendix A, shall be made use of, in order
to simplify the calculations. The assumptions of theorem A.6.1 are satisfied for (non-
dividend paying) {St} as the numéraire, ergo we have the Radon-Nikodým derivative,
that defines a risk neutral measure Q that uses the stock price to denominate contingent
claims (in our case the European call):

dQ

dP̃
=
ST
BT

Bt

St
. (5.16)

Employing this change of measure, we can write the first term in (5.15) as

e−rτEP̃ [ST 1ST>K ] = e−rT ert
St
St
EP̃ [ST1ST>K ] = StE

P̃

[
ST
BT

Bt

St
1ST>K

]
=

= StE
P̃

[
1ST>K

dQ

dP̃

]
= StE

Q[1ST>K ] = StQ(ST > K).

(5.17)

Altogether, we have the price of the European call option in Heston model:

C(t, St) = StQ(ST > K)− e−rτ P̃ (ST > K). (5.18)

Obviously, when ST follows the log-normal distribution of Black-Scholes-Merton model,
the prices given by the two models coincide, for Q(ST > K) = Φ(d+) and P̃ (ST > K) =
Φ(d−), similarly to equations (3.35), (3.36).
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5.4 Heston price of a variance swap

Models of stochastic volatility are used not only to better fit the volatility surface (usually
calibrated on vanilla instruments) but also to price volatility sensitive derivatives, or
derivatives that have volatility of an asset as the underlying. One example that we
mention is the variance swap defined in appendix A. This is a derivative contract that
pays VT = N(σ2

R − σ2
K) at maturity, where in the continuous framework we shall express

σR as (A.5). We shall work within the Heston model, where the risk neutral variance
satisfies the CIR stochastic differential equation:

dvt = κ(ν − vt) dt+ η
√
vt dW

(2)
t

or in terms of the volatility process2:

dσ2
t = κ(ν − σ2

t ) dt+ ησt dW
(2)
t .

In example 2.3.9 we have calculated the expectation function of a solution of this equation
as

E[σ2
t ] = (σ2

0 − ν)e−κt + ν, ∀t ≥ 0. (5.19)

This is precisely equation (2.22). Firstly, we calculate:

E

[
1

T

∫ T

0

σ2
s ds

]
=

1

T

∫ T

0

E[σ2
s ] ds = (σ2

0 − ν)
1

T

∫ T

0

e−κs ds+ ν =

= (σ2
0 − ν)

1− e−κT

κT
+ ν

(5.20)

We note, that the expected variance calculated above does not depend on the volatility
of variance parameter η. The price of a variance swap is the discounted expected value
of the terminal payoff VT under the risk neutral measure [22]:

P = e−rT Ẽ[N(σ2
R − σ2

K)] = e−rTN

[
(σ2

0 − ν)
1− e−κT

κT
+ ν − σ2

K

]
. (5.21)

2Remember, that for the sake of notation simplicity, we have dropped the tildes so that our risk neutral
and original SDEs for the CIR variance process coincide (see remark 5.1.1).



Chapter 6

Lévy processes and infinite
divisibility

In opening sections of this chapter we follow two standard references on Lévy processes
in [24] and [25]. Other great publications, that also contributed to our understanding
of the matter are [26, 27]. Lévy processes are an important class of stochastic processes
for many reasons; a stochastic integral may be constructed with respect to them and
they contain Brownian motion and Poisson process, to name a few. The Lévy processes
are well understood, so that the theory is wide and deep, however, in this text, we shall
introduce only the essential minimum.

6.1 Infinitely divisible random variables

We start from a slightly different direction, reason for which is the Lévy-Khintchine the-
orem presented below.

Definition 6.1.1. Let X be a random variable. We say that X is infinitely divisible if
for all n ∈ N, there exists n independently and identically distributed random variables
Y

(n)
1 , . . . , Y

(n)
n such that

X
D
= Y

(n)
1 + . . .+ Y (n)

n .

Theorem 6.1.2. The random variable X is infinitely divisible if and only if the charac-
teristic function φX has an n-th root1 (denoted φX1/n), so that

φX(u) = [φX1/n(u)]n, ∀u ∈ R

and φX1/n is itself the characteristic function of a random variable for all n ∈ N.

Definition 6.1.3. Let ν be a Borel measure defined on R satisfying ν({0}) = 0. Then
we say that ν is a Lévy measure if∫

R
min{y2, 1} dν(y) <∞

1This root is unique when X is infinitely divisible.
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Theorem 6.1.4 (Lévy-Khintchine). Random variable X is infinitely divisible if there
exists b ∈ R, A > 0 and a Lévy measure ν on R such that

φX(u) = exp

{
ibu− 1

2
Au2 +

∫
R
[eiuy − 1− iuy1[−1,1](y)]dν(y)

}
, ∀u ∈ R. (6.1)

Conversely, any mapping of the form (6.1) is the characteristic function of an infinitely
divisible distribution.

The triplet (b, A, ν) is called Lévy triplet and is unambiguously defined. [26]

Definition 6.1.5. A function ψX such that

ψX = lnφX

is called a (Lévy) characteristic exponent (or symbol) of X.

6.2 Lévy processes

Definition 6.2.1. A stochastic process X = {Xt} is called Lévy process if the following
conditions are satisfied:

1. It starts at zero, so that X0 = 0 P -a.s.

2. The process has stationary and independent increments, i.e.

Xs+t
D
= Xs +Xt, ∀s, t ≥ 0

and {Xtj −Xtj−1
}j=1,...,n are independent random variables for all n ∈ N and for all

{t1, . . . , tn}, such that 0 ≤ t1 < . . . < tn <∞.

3. The process is stochastically continuous, i.e.

lim
t→s

P ({ω ∈ Ω : |Xt(ω)−Xs(ω)| > ε}) = 0, ∀s ≥ 0,∀ε > 0.

Remark 6.2.2. Sometimes there is another condition added to the listed in the above
definition and that is that X is càdlàg, i.e. its trajectories are a.s. right continuous and
have limits from the left.2. This is not necessary, for it can be shown, that for every Lévy
process defined as 6.2.1 there is a càdlàg modification3.

One point of view is that by comparison with the definition of Brownian motion (see
1.5.1), the first two conditions are the same, thus Lévy process is a direct generalization
of Brownian motion, however without the restriction of continuous sample paths and
specification of the distribution. The class of Lévy processes is very wide, so that it
accommodates a lot of other processes; we shall present concrete examples below. Now
we finally arrive at the reason, why the current chapter was opened by a short section on
infinite divisibility.

2Origin of the word càdlàg is explained in section D.4.
3For the meaning of modification, see section D.1.
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Proposition 6.2.3. If X = {Xt} is a Lévy process, then Xt is infinitely divisible random
variable for each t ≥ 0.

Theorem 6.2.4. If X = {Xt} is a Lévy process, then

φXt(u) = etψX(u), ∀u ∈ R,∀t ≥ 0,

where the characteristic exponent ψX is the characteristic exponent of X1.

Example 6.2.5 (Poisson process). According to example D.3.2 the Poisson process is
stochastically continuous. Independence and stationarity of its increments is already
included in the definition of the process 1.4.1. We conclude that Poisson process is a Lévy
process. In order to determine its characteristic exponent and Lévy triplet of (6.1), we
need to compute:

E[eiuNt ] =
∞∑
n=0

eiune−λt
(λt)n

n!
= e−λt

∞∑
n=0

(eiuλt)n

n!
= e−λt exp

{
eiuλt

}
,

so that the characteristic function is

φNt(u) = exp
{
tλ(eiu − 1)

}
, ∀u ∈ R. (6.2)

This can be rewritten in the Lévy-Khintchine form (for t = 1) as

φN(u) = exp

{
iλu−

∫
R
[eiuy − 1− iuy 1[−1,1](y)]λδ(y − 1) dy

}
, ∀u ∈ R. (6.3)

Here in terms of the constants of the Lévy-Khintchine theorem b = λ, A = 0 and the
Lévy measure is

dν(y) = λδ(y − 1) dy, (6.4)

where δ(y− 1) = δ1(y) is the Dirac delta function centered at 1. The Lévy triplet is then
(λ, 0, λδ1).

6.3 Lévy measure

Example 6.3.1. As we have already mentioned, standard Brownian motion is a Lévy
process. Now we turn our attention to determining its Lévy triplet; we also derive these
characteristics for Brownian motion with a drift in the process. It is a known fact that
for normal random variable with mean µ and variance σ2, i.e.

X ∼ N(µ, σ2),

the characteristic function is

φX(u) = eiµu−
1
2
σ2u2 , ∀u ∈ R.

This formula is generally well known, thus we shall not engage in proving it here. Al-
though the derivation is not complicated, it requires contour integration in the complex
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plane, which is out of the scope of this text. Now, standard Brownian motion is N(0, t)
distributed for each t ≥ 0, hence its characteristic function can be written as:

φWt(u) = e−
1
2
tu2 , ∀u ∈ R,∀t ≥ 0. (6.5)

From this, it is immediate, that the standard Brownian triplet is (0, t, 0).
The Brownian motion with a drift defined as Bt := at+ σWt is N(at, σ2t) distributed,

so that the characteristic function takes form of

φBt(u) = eiatu−
1
2
σ2tu2 , ∀u ∈ R,∀t ≥ 0. (6.6)

It follows, that the Lévy triplet for the Brownian motion with a drift is (at, σ2t, 0).

From the previous inspection (in the preceding examples) we conclude, that in the
Lévy triplet, b is the parameter responsible for a drift component of the Lévy process, A
represents the diffusive behavior and ν counts the jumps. To rigorously support the last
assertion, we develop some more theory on the Lévy measure.

Definition 6.3.2. Let X = {Xt} be a Lévy process. Then the jump height (or size)
process ∆X = {(∆X)t} is given by4

(∆X)t := Xt −Xt−, t ≥ 0.

Naturally if in a particular point t0 process X is continuous from the left (in addition
to being continuous from the right) then (∆X)t0 = 0, so that the size of the jump is zero
(ergo no jump occurred).

Definition 6.3.3. For each t ≥ 0 and B ∈ B we define the random variable5

NB
t (ω) := #{s ∈ [0, t] : (∆X)s(ω) ∈ B}, ∀ω ∈ Ω.

This random variable represents number of jumps of size contained in B during the time
interval [0, t] (regarding the trajectories).

Theorem 6.3.4. Let X be a Lévy process. If 0 is not in the closure of B ∈ B, then the
collection {NB

t }t≥0 is a Poisson process with intensity ν(B), where ν is the Lévy measure
of X, i.e.

ENB
t = t ν(B), ∀t ≥ 0.

Remark 6.3.5. From the theorem above one immediately obtains that if ν is identically
zero measure (as is the case for Brownian motion and Brownian motion with a drift per
example 6.3.1), the process to which this measure corresponds has almost surely no jumps
of any sizes. This is equivalent to almost sure continuity of trajectories.

Remark 6.3.6. In case of the Poisson process with intensity λ the Lévy measure is

ν(B) =

∫
B

dν(x) = λ

∫
R

1B(x)δ1(x) dx,

so that ν is identically zero on any set that does not contain 1. This implies, that the
Poisson process has only jumps of unit size.

4Here Xt− denotes the limit from the left, lims→t−Xs, which almost surely exists for the càdlàg
modification of Lévy process we are working with.

5The hash symbol in front of a given set denotes a number of elements of that set.
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In the theorem 6.3.4 we have excluded sets B ∈ B such that 0 ∈ B from our consid-
erations. That was caused by the fact that the following lemma holds.

Lemma 6.3.7. [24] If B ∈ B and 0 /∈ B, then NB
t <∞ P -almost surely for all t ≥ 0.

Unfortunately a set for which the discussion above dose not apply is for example B = R
and we have to treat this separately.

Definition 6.3.8. We say, that the Lévy process X is of

• finite activity if almost all trajectories have finite number of jumps in any time
interval [0, t] and

• infinite activity if almost all trajectories have infinite number of jumps in any time
interval [0, t].

Theorem 6.3.9. Let X be a Lévy process with Lévy measure ν.

1. If ν(R) <∞, then X is of finite activity.

2. If ν(R) =∞, then X is of infinite activity.

Because the defining condition of Lévy measure is

∞ >

∫
R

min{x2, 1} dν(x) =

∫ 1

−1

x2 dν(x) +

∫
R\(−1,1)

dν(x),

the boundedness of

ν(R) =

∫
R
dν(x) =

∫ 1

−1

dν(x) +

∫
R\(−1,1)

dν(x)

(and thus the diversification between cases 1. and 2. in theorem 6.3.9) is determined by

boundedness of the integral
∫ 1

−1
dν(x). This shows that if ν(R) =∞ , so that the process

in question is of infinite activity, then, on one hand, its trajectories have infinitely many
jumps in any time interval [0, t], but on the other hand, most of the jumps are small (with
size under 1).

We have already encountered the case of ν(R) < ∞. Both Brownian motion (ν = 0)
and Poisson process (ν = λδ1) are of finite activity. The opposite case of ν(R) =∞ shall
be examined in the following chapter.

6.4 Variation of Lévy process

In the previous, we have studied the structure of jumps of a Lévy process, which, to
some extent, determine the irregularity of its trajectories. We shall turn our attention
to another measure of irregularity, that is, its variation. For definition of variation of a
stochastic process, we refer the reader to section 1.6 of chapter 1.

Proposition 6.4.1. [27] A Lévy process with characteristic triplet (b, A, ν) has finite
variation if and only if
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1. A = 0,

2.
∫

[−1,1]
|x| dν(x) <∞.

With the knowledge of the form of the triplets (derived in example 6.3.1) of Brownian
motion - (0, t, 0) and Brownian motion with a drift - (at, σ2t, 0), we have a trivial corollary
that the variation of either of these processes is infinite. This is in line with the result
1.6.5, that we have mentioned in chapter 1.

Characteristic triplet for the Poisson process is (0, λδ1, 0), so, unlike for Brownian
motion, the condition 1. of the theorem 6.4.1 is not violated. We calculate∫

[−1,1]

|x| dν(x) = λ

∫
[−1,1]

|x| δ(x− 1) dx = λ <∞,

therefore the Poisson process has finite variation on any time interval [0, t].
For later convenience, we mention the following theorem.

Theorem 6.4.2 (Jordan). [28] A (deterministic) function is of finite variation on [0,t] if
and only if it is a difference of two non-decreasing (deterministic) functions.

Remark 6.4.3. Although this theorem holds for deterministic functions, we have defined
the variation of a stochastic process X as P -almost sure variation of its paths. From this,
we have the path-wise equality X = Y 1 − Y 2, where Y 1, Y 2 are P -a.s. non-decreasing
stochastic processes, so that the Jordan theorem holds for stochastic processes as well.

6.5 Models with discontinuities

In this chapter, we have developed the theory of Lévy processes. The last few sections
have shown, that processes, that belong to this class often contain discontinuities. If we
intend to utilize Lévy processes as models in finance, we shall compare these mathematical
structures with the real life situation.

An important property of Brownian motion is the continuity of its sample paths. As
remarked by [27], the empirical evidence suggests, that real life price processes undergo
sudden jumps which appear as discontinuities in the price trajectory. This empirical ev-
idence rests on the fact that there are commonly observed six-standard deviation moves
(referenced in the standard deviation of log-returns) across the markets. The motivation
for introducing price discontinuities into the models is not just purely intellectual stim-
ulation, but also a practicality, because models with jumps more closely resemble the
reality. The very existence of markets for short-term options is an evidence, that jumps
are recognized by the market participants.

A common misconception is that these large moves can be accounted for by con-
sidering processes with distributions that exhibit heavier tails (positive excess kurtosis).
Contrary to that belief, geometric Brownian motion as a log-normally distributed pro-
cess already incorporates heavier tails and models of local and stochastic volatility are
also non-Gaussian. Many Lévy processes, that we shall introduce in the next chapter,
generically lead to highly variable returns with realistic tail behavior. In comparison to
that, the continuous diffusion based models simply cannot account for the abrupt changes
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present in the market without the parameters being set to some unreasonably high values
(such as η - the volatility of variance in the Heston model).

In the complete market model (such as BSM, local volatility), any option can be repli-
cated by a self-financing strategy by trading in the underlying asset and money-market
account. In such markets, options would be made redundant - they can be perfectly repli-
cated. On the other hand, in real markets, perfect hedging is not possible and options
enable market participants to hedge risks, that cannot be hedged by buying and selling the
underlying only. We shall introduce examples of pure jump stochastic volatility models
in the next chapter.
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Chapter 7

Random change of time

We start by heuristically describing the aim of this chapter. Following [29] (which is
considered the ultimate text on change of time methods), it is our intent to introduce the
processes T and T̂ called a random changes of time. This name is justified by the fact,
that these processes transform the old clock time t into a new business time (or traders’
time) via T (t) 7→ θ and vice versa via T̂ (θ) 7→ t. The reason for this construction is that
after composing one of these with an appropriate process (properties of which are content
of the below discussion) X = {Xt} in one of the following ways:

X̂θ := XT̂ (θ), ∀θ ≥ 0 ⇐⇒ X̂ = X ◦ T̂

Xt := X̂T (t), ∀t ≥ 0 ⇐⇒ X = X̂ ◦ T
Motivation for this direction is that starting from a certain well-known model with ”sim-
ple” dynamics described by a stochastic process X (in the old clock time) one can arrive
at a new model with rather non-trivial dynamics in the new business time. These non-
trivial dynamics are useful in modeling (for example) the volatility clustering effect for
which there is empirical evidence. We shall point out below the connection between time
and volatility.

7.1 Definitions and rationale

Definition 7.1.1. A stochastic process T̂ = {T̂ }R+
0

is called an (inverse) random change

of time given the filtration {Ft} if the following two conditions hold:

1. The process T̂ is R+
0 -valued and its trajectories are almost surely right-continuous

and increasing, i.e.

θ1 ≤ θ2 =⇒ T̂ (θ1) ≤ T̂ (θ2), ∀θ1, θ2 ≥ 0.

2. For all θ ≥ 0, the random variables T̂ (θ) are stopping times with respect to the
filtration {Ft}, i.e.

{T̂ (θ) ≤ t} ∈ Ft, ∀θ ≥ 0, ∀t ≥ 0.

Definition 7.1.2. A stochastic process T = {T (t)} defined by

T (t) := inf{θ : T̂ (θ) > t}, ∀t ≥ 0, (7.1)

is called a random change of time given the filtration F̂θ := FT̂ (θ).

69
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Proposition 7.1.3. The process T defined by (7.1) satisfies conditions 1 and 2 from
definition 7.1.1 (the second with respect to the filtration F̂θ), thus it is a well-defined
random change of time.

Remark 7.1.4. The processes T and T̂ are mutually inverse in the sense that starting
from one, the other can be reconstructed by (7.1) and furthermore, if T is continuous and
strictly increasing, then

T̂ (T (t)) = t and T (T̂ (θ)) = θ,

so that

T̂ (θ) = T −1(θ) and T (t) = T̂ −1(t), ∀θ ≥ 0,∀t ≥ 0.

As hinted by the opening article to this chapter, our main goal shall be, starting from
a ”simple” process X̂ and changing the time T : t 7→ θ, to obtain more sophisticated
process so that at least one of the following holds1:

X = X̂ ◦ T X
a.s.
= X̂ ◦ T X

D
= X̂ ◦ T .

The intuitive choice for such process with a ”simple” structure is the Brownian motion,
for after going through the previous chapters, the reader should now be convinced that
Brownian motion is of great importance to the discipline of mathematical finance.

Generally one can proceed in two directions, firstly, starting with this ”simple” process
(say, Brownian motion), plugging in various time-changes T and obtaining the non-trivial
processes. Secondly, it is possible to try to solve a somewhat inverse problem, that is,
starting from a ”simple” process X̂ and a ”target” process with more sophistication, to
try to find time-changes T such that X = X̂ ◦ T holds in some sense. Naturally the
second approach is more demanding, however, we have the following existence theorem:

Theorem 7.1.5 (Monroe). If X = {Xt}R+
0

is a semimartingale2 with respect to its
natural filtration, then there exists a filtered probability space with a Brownian motion
Ŵ = {Ŵθ}R+

0
and a change of time T = {T (t)}R+

0
defined on it such that

X
D
= Ŵ ◦ T .

Starting from a wide class of semimartingales, it is quite obvious, that the time-change
T that assures that the Brownian motion Ŵ has the same distribution as X, can posses
too much sophistication. For example if the process X has jumps, then because of the
continuity of trajectories of Brownian motion the jumps need to be accounted for by the
discontinuity of T . There is another important theorem, which takes this into account by
assuming the continuity of X:

1Here (as in the opening article to this chapter) the meaning of X̂ ◦ T is that we evaluate the process
X̂θ at a time-point given as an outcome of the random variable θ = T (t). We shall always assume that
the random variables X̂ and T are defined on the same probability space.

2For the definition of semimartingale, see section D.4 of appendix D. This is only informative, because
we shall not use this theorem in the following.
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Theorem 7.1.6 (Dambis-Dubins-Schwarz). Let X = {Xt} be a continuous {Ft}-local
martingale with X0 = 0 and limt→∞〈X〉t = ∞. Then there exists a Brownian motion
Ŵ = {Ŵθ} such that for the change of time defined by

T (t) := 〈X〉t ∀t ≥ 0,

the strong representation X = Ŵ ◦ T holds.

Corollary 7.1.7. Let a continuous local {Ft}-martingale be defined as

Xt :=

∫ t

0

σs dWs, ∀t ≥ 0, (7.2)

where W = {Wt} is a Brownian motion with {Ft} its natural filtration. The process
σ = {σt} is supposed to be P -a.s. positive, adapted to {Ft} and∫ t

0

σ2
s ds <∞ ∀t ∈ [0,∞) with

∫ ∞
0

σ2
s ds =∞.

If we put

T̂ (θ) := inf

{
t :

∫ t

0

σ2
s ds ≥ θ

}
, (7.3)

then the process defined by Ŵθ := XT̂ (θ) is a Brownian motion (with respect to the

filtration {F̂θ}) and X = Ŵ ◦ T with

T (t) =

∫ t

0

σ2
s ds (7.4)

i.e.
Xt = Ŵ∫ t

0 σ
2
s ds

The corollary hints on the possible applications of the change of time approach in
models of stochastic volatility. We shall explore this in the following sections.

7.2 Subordinators

As mentioned above, it is in general difficult for a given stochastic process X (possibly
a semimartingale or Lévy process) and Ŵ θ-time Brownian motion to find a reasonable
change of time T so that X = Ŵ ◦ T in some sense. In this section, we shall simplify by
reversing the process - assuming a Brownian motion (or some other ”simple” process, usu-
ally the Brownian motion with a drift) and time-changes from the class of Lévy processes
(called subordinators), we ask the question - what are the processes X := Ŵ ◦ T that we
are going to arrive at? Proceeding in this direction, we do not mind the sophistication of
the process T , actually, in the financial applications, it is a desirable quality.

Definition 7.2.1. We call the change of time T = {T (t)}R+
0

a subordinator (in the

strong sense) if it is a Lévy process. In the case there are two processes X, X̂, such that
X = X̂ ◦ T , we say, that X is subordinated to X̂ via (the subordinator) T .
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For subordinators, we have the following characterization:

Theorem 7.2.2. [30] If T is a subordinator, then its characteristic exponent is of the
form

ψT (u) = ibu+

∫ ∞
0

(eiuy − 1)dν(y), ∀u ∈ R, (7.5)

where b ≥ 0 and the Lévy measure ν satisfies the additional requirements

ν((−∞, 0)) = 0 and

∫ ∞
0

min{y, 1} dν(y) <∞.

Conversely, any real, complex valued function of the form (7.5) is the characteristic ex-
ponent of a subordinator.

Example 7.2.3 (Gamma process). We assume that at every t ≥ 0 the Lévy process is
gamma distributed T (t) ∼ Gamma(αt, β), where α > 0, β > 0 i.e.

fT (1)(x) :=
βα

Γ(α)
xα−1e−βx1[0,∞)(x), ∀x ∈ R. (7.6)

In order to compute the characteristic exponent and to find the Lévy measure of this
gamma process, we calculate the following integral for all u ≥ 0:

mT (1)(−u) =

∫ ∞
−∞

e−uxfT (1)(x) dx =
βα

Γ(α)

∫ ∞
0

xα−1e−(u+β)x dx.

Performing the substitution (u+ β)x =: x̃ one arrives at

mT (1)(−u) =
βα

Γ(α)

1

(u+ β)α

∫ ∞
0

xα−1e−x dx︸ ︷︷ ︸
=Γ(α)

=

(
1 +

u

β

)−α
= exp

{
−α ln

(
1 +

u

β

)}
.

Because of the integral relation3

ln

(
1 +

u

β

)
=

∫ ∞
0

(1− e−ux)
x

e−βx dx,

we have (because the function mT (1) is, up to a change of sign, a moment generating
function of T (1))

φT (1)(u) = mT (1)(iu) =

(
1− iu

β

)−α
= exp

{
α

∫ ∞
0

(eiux − 1)
e−βx

x
dx

}
.

3This relation might be proven using the Frullani integral relation∫ ∞
0

f(Ax)− f(Bx)

x
dx = f(0) ln

B

A

under the assumptions that f is continuously differentiable and limx→∞ f(x) = 0. In our case f(x) := e−x

and A := −β,B := −(u+ β).



7.2. SUBORDINATORS 73

Now, the characteristic exponent of gamma process is

ψT (1)(u) = α

∫ ∞
0

(eiux − 1)
e−βx

x
dx (7.7)

and comparing this with equality (7.5) the Lévy measure is

dν(x) = α
e−βx

x
1(0,∞)(x) dx, ∀x ∈ R. (7.8)

Therefore, the Lévy triplet is (0, 0, ν) with ν given as (7.8). From the above, also the
characteristic function of the process may be retained4:

φT (t)(u) = [φT (1)]
t =

(
1− iu

β

)−αt
. (7.9)

Because the characteristic triplet is (0, 0, ν), we deduce, that gamma process does not
exhibit diffusive behavior in sense of Brownian motion and there is no drift part either. We
now discuss the properties of ν. It is clearly a Lévy measure by definition 6.1.3, however
ν(R) = ∞. This is obvious, once we take into account, that, according to concluding
remarks of section 6.3, the boundedness of ν(R) is determined by the boundedness of
ν((−1, 1)):

ν((−1, 1)) = α

∫ 1

−1

e−βx

x
1(0,∞)(x) dx = α

∫ 1

0

e−βx

x
dx.

This integral diverges, ergo gamma process is of infinite activity (theorem 6.3.9), which
means that it exhibits infinitely many jumps in any time interval [0, t] and most of the
jumps are small - with size under 1 (most of the Lévy measure is concentrated around
the origin of coordinates).

Now, calculating∫
[−1,1]

|x| dν(x) = α

∫
[−1,1]

|x| e
−βx

x
1(0,∞)(x) dx = α

∫ 1

0

e−βx dx =
α

β
(1− e−β),

this integral is finite, even for β very small (in the zero limit). Because, again, the Lévy
triplet is (0, 0, ν), we conclude (using theorem 6.4.1), that the gamma process has finite
variation on any time interval [0, t].

One of the reasons, why subordination is such a useful concept is the closedness prop-
erty of the class of Lévy processes under subordination, i.e. processes subordinated to
Lévy processes are also Lévy processes. This assertion is formalized in the following
theorem:

Theorem 7.2.4 (Subordination of Lévy processes). [25][27] Let X = {Xt} be a Lévy
process with characteristic exponent ψX and a triplet (b, A, νX). Further, let {T (t)}t≥0

be a subordinator with characteristic function φT (t) and a triplet (b, 0, νT ). Then the
process {Yt}t≥0 subordinate to X via T , i.e.

Yt(ω) := XTt(ω)(ω),

4The relations that we have derived above are only formal equalities, due to the step, where we
exchange u and iu in the moment generating function. Nevertheless, they can be fully justified by
complex-theoretic means, namely the analytic continuation.
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is a Lévy process. Its characteristic function is given as

φYt(ω) = E[eiuYt ] = φT (t)(−iψX(u)), ∀t ≥ 0,∀u ∈ R. (7.10)

In the next section, we shall utilize the above defined gamma subordinator to change
the clock in the Black-Scholes-Merton model.

7.3 Use in pricing models

In the previous, we have considered several models for the evaluation of a derivative
contract written on some underlying equity product (usually a stock). The simplest
model that we used was the BSM of chapter 3, where the behavior of the underlying was
modeled by stochastic differential equation

dSt = µSt dt+ σSt dWt

and its solution, the geometric Brownian motion

St = S0 exp

{(
µ− 1

2
σ2

)
t+ σWt

}
. (7.11)

From this, the log-return process H = {Ht} such that

St = eHt , ∀t ≥ 0, (7.12)

is modeled as a Brownian motion with a drift:

Ht = at+ σWt, where a :=

(
µ− 1

2
σ2

)
. (7.13)

Later, we generalized in order to capture the implied smile effects and to compensate for
various deficiencies of the BSM model, by assuming the volatility to be a random process
itself. The equation for the underlying reads

dSt = µSt dt+ σtSt dWt,

with a generalized geometric Brownian motion solution

St = S0 exp

{
µt− 1

2

∫ t

0

σ2
s ds+

∫ t

0

σs dWs

}
. (7.14)

An alternative approach to achieving a stochastic volatility in the simple model (7.11) is
to introduce a change of time {T } into the log-returns process (7.12) so that:

Ht := aT (t) + σWT (t),∀t ≥ 0. (7.15)

Here H = Ĥ ◦ T̂ , where T : t 7→ θ is the change of time, so that the log-returns process Ĥ
now evolves in the θ-time, or in other words in the perceived business time. This approach
was pioneered by [31, 32]. We shall illustrate this general procedure by a concrete example.
From now on, we restrict the class of random time-changes that we are going to work with
to subordinators, that were defined in the previous section of this chapter.
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Example 7.3.1 (Variance gamma process). Let {Bt} denote a Brownian motion with a
drift:

Bt = at+ σWt, ∀t ≥ 0. (7.16)

Let {T (t)} be a subordinator given as the gamma process, whose properties were analyzed
in the example 7.2.3. In particular, we have the following probability density function
(PDF):

fT (t)(x) =
βαt

Γ(αt)
xαt−1e−βx1[0,∞)(x), ∀x ∈ R. (7.17)

and the Lévy measure (7.8). We define a variance gamma (VG) process Y = {Yt} to
be the process subordinated to Brownian motion with a drift B via the gamma process
subordinator T , i.e.

Y := B ◦ T . (7.18)

Having the probability density function of {Bθ} conditioned on the realization of the
θ-time given as

fBθ(x|θ) =
1√

2πσ2θ
exp

{
−(x− aθ)2

2σ2θ

}
, ∀x ∈ R,∀θ ≥ 0, (7.19)

we can now explicitly specify the PDF of the variance gamma process as

fYt(x) =

∫ ∞
0

fBθ(x|θ)fT (t)(θ) dθ = (7.20)

=

∫ ∞
0

1√
2πσ2θ

exp

{
−(x− aθ)2

2σ2θ

}
βαt

Γ(αt)
θαt−1e−βθ dθ.

We note here, that the equality in (7.20) is exactly that contained in the definition of
marginal probability density function E.1.1 (in appendix E)5. Apparently the variance of
the VG process is gamma distributed (up to a multiplicative constant σ2) so that the
name of the process is in line with that. Next, we shall employ (E.2) to determine the
characteristic function of VG process:

φYt(u) =

∫ ∞
0

φBθ(u|θ)fT (t)(θ) dθ =
βαt

Γ(αt)

∫ ∞
0

exp

{
−(β − iau+

1

2
σ2u2)θ

}
θαt−1 dθ

Mutatis mutandis, this is the same integral as in the calculation of the gamma character-
istic function in example 7.2.3, therefore, by using the same substitution and integration,
we arrive at:

φYt(u) =

(
1− i a

β
u+

1

2

σ2

β
u2

)−αt
, ∀u ∈ R. (7.21)

Variance gamma process was first defined as process subordinated to Brownian motion
with a drift via a gamma process in [32], where the parametrization α = β = 1/ζ was
used. Then the characteristic function takes form of

φYt(u) =

(
1− iaζu+

1

2
σ2ζu2

)−t/ζ
, ∀u ∈ R. (7.22)

5In the language of marginalization and superstatistics the PDF of VG process is gamma-weighted
mixture of normal distributions where the marginalization parameter is the business time θ.
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The authors have shown, that the variance gamma process may be written as a difference
of two P -a.s. non-decreasing random processes, {γ+

t }, {γ−t }, so that

Yt = γ+
t − γ−t , ∀t ≥ 0. (7.23)

In fact, these are gamma processes

γ± ∼ Gamma

(
t

ζ
,

1

ζm±

)
, (7.24)

where

m± :=
1

2

√
a2 +

2σ2

ζ
± a

2
. (7.25)

This might be verified by employing the formula (C.5), where the characteristic functions
of the two gamma processes are given by (7.9) after adjusting for the parameters. Recalling
the Jordan theorem 6.4.2, we observe that, due to the decomposition above, the VG
process has infinite variation.

Because of theorem 7.2.4, we have that the variance gamma process is a Lévy process.
According to [32] the VG process inherits the infinite activity from the gamma subordi-
nator. In the simplified parametrization (α = β = 1/ζ for the gamma process) defined
above, the VG process has three parameters; σ - the volatility of Brownian motion, a -
its drift, ζ - the variance rate of the gamma time-change.

Because the VG model (employing the VG process) is constructed as being subordi-
nated to Brownian motion with a drift, the Black-Scholes-Merton model is a special para-
metric case of this model. Price of a European call option in the VG model is obtained
by first conditioning on the random time θ, then calculating the BSM price CBSM(θ, Sθ)
via (3.35) and finally integrating:

CVG(t, Yt) =

∫ ∞
0

CBSM(θ, Sθ)fT (t)(θ) dθ =

∫ ∞
0

CBSM(θ, Sθ)
θ
t
ζ
−1e−

θ
ζ

ζ
t
ζ Γ
(
t
ζ

) dθ.
Example 7.3.2 (Variance gamma with stochastic arrival). The variance gamma process
introduced in the previous example is a pure jump process, where the infinite activity is
implemented via subordination. Because the changes in time directly affect the variance
(remember, the V in VG stands for variance) and hence the volatility of the underlying,
the model based on VG process is a pure jump stochastic volatility model. However,
the model does not capture the volatility clustering effect which is a feature of asset
prices in many different markets. [17] Inspired by the Heston model, which implements
the clustering effect by assuming the mean reverting CIR process for variance, we define
a new process that is subordinated to variance gamma process via the integrated CIR
process time-change:

T (t) =

∫ t

0

Xs ds. (7.26)

Here

dXt = k(n−Xt) dt+ b
√
Xt dWt (7.27)
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and the process defined as Y ◦ T ({Yt} is the VG process) is called the variance gamma
process with stochastic arrival (of jumps) or simply VGSA. Defining the process in this
way, the changes in volatility persist and thus give rise to the clustering effect. Here {Xt}
plays the role of instantaneous rate of time-change, n is the long term rate of time-change,
k is the rate of mean reversion and b is the volatility of time-change. Recalling the theorem
7.2.4, we see that, firstly, VGSA is a Lévy process and secondly, its characteristic function
may be obtained from formulas (2.25) and (7.22) as (7.10). This advanced model is due
to P. Carr et al. [7], in the article the pricing formulae for options was derived as well.

7.4 Heston model as GGBM subordinated to GBM

We shall assume the CIR process {vt} = {σ2
t } governed by the CIR equation:

dvt = κ(ν − vt) dt+ η
√
vt dW

(2)
t , (7.28)

where {W (2)
t } is a Brownian motion. Specifically, we do not assume that volatility of

the underlying asset is stochastic and we do not assume, that it is {σt}. We assume

the presence of other source of randomness, the Brownian motion W (1) = {W (1)
t }. If we

integrate the square root of the CIR process with respect to the other Brownian motion
W (1), we obtain a martingale (w.r.t. natural Brownian filtration):

Mt :=

∫ t

0

√
vs dW

(1)
s =

∫ t

0

σs dW
(1)
s , ∀t ∈ [0, T ]. (7.29)

Now, from corollary 7.1.7 of the Dambis-Dubins-Schwarz theorem, we have that there is
a change of time

T (t) =

∫ t

0

σ2
s ds =

∫ t

0

vs ds, ∀t ∈ [0, T ] (7.30)

and a Brownian motion {Ŵ (1)
θ } evolving in the perceived business time, so that M =

Ŵ ◦ T , i.e. (using (7.29))

Mt =

∫ t

0

σs dW
(1)
s = Ŵ

(1)
T (t). (7.31)

We can use this new source of randomness to define the underlying asset to evolve as a
geometric Brownian motion in the business time6:

Ŝ = Ŝ0 exp
{
aT̂ (θ) + bθ + Ŵ

(1)
θ

}
. (7.32)

Notice, that we are assuming constant volatility parameter in the model for the underlying.
Now if we denote by S the process subordinated to geometric Brownian motion via the
integrated CIR process (7.30)

S := Ŝ ◦ T ,
6Here T̂ is the inverse change of time and the term containing it is added as a mere convenience, for

the coefficients to take reasonable form.
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we obtain behavior of the underlying in the ordinary clock time (here naturally S0 = Ŝ0)

St = ŜT (t) = S0 exp
{
at+ bT (t) + Ŵ

(1)
T (t)

}
, ∀t ∈ [0, T ]. (7.33)

Substituting for the time-change T (7.30) and from the result (7.31) of the Dambis-
Dubins-Schwarz corollary, this takes form of:

St = S0

{
at+ b

∫ t

0

σ2
s ds+

∫ t

0

σs dW
(1)
s

}
. (7.34)

Comparing this with (7.14) and additionally assuming the correlation dW
(1)
t dW

(2)
t = % dt

between the two sources of randomness, we see that this is the generalized geometric
Brownian motion with parameters a = µ, b = −1/2 and σ = 1, so that we have obtained
the Heston model. We have not assumed, that the volatility is stochastic, yet by changing
the time via the integrated CIR process, we have arrived at a stochastic volatility model,
where the variance is governed by the CIR equation. We have effectively proved that the
generalized geometric Brownian motion is subordinated to geometric Brownian motion
via the integrated CIR process. This fact can be encountered in the literature, however,
usually without a proof; for that reason, we have included one of our own.

Remark 7.4.1. Just as the variance gamma process of example 7.3.1 contains the BSM
model as a special case, the VGSV model contains the Heston model. This is obvious from
the above derivations. In this sense, the Heston model is the BSM model with stochastic
arrival.

Similarly to (7.29), we may define a martingale:∫ t

0

σs dW
(2)
s , ∀t ∈ [0, T ],

which through the corollary of Dambis-Dubins-Schwarz theorem yields the same change
of time (7.30) and a Brownian motion Ŵ (2) in the θ-time, such that∫ t

0

σs dW
(2)
s = Ŵ

(2)
T (t), ∀t ∈ [0, T ]. (7.35)

Using these relations, by integration, the solution to (7.28) may then be expressed as:

vt = v0 + κνt− κ
∫ t

0

vs ds︸ ︷︷ ︸
=T (t)

+η

∫ t

0

√
vs dW

(2)
s . (7.36)

Taking the risk neutral expectation, we have

Ẽvt = v0 + κνt− κẼ[T (t)],

so that

Ẽ

[
1

T

∫ T

0

vs ds

]
=

1

T
Ẽ[T (T )] =

v0 + κνT − ẼvT
κT

=

=
v0 + κνT − (v0 − ν)e−κT − ν

κT
=

= ν + (v0 − ν)
1− e−κT

κT
.
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By using (2.22) we have obtained equality, that yields the price of a variance swap (5.21).
We have avoided exchanging the integration and the expectation in this approach.

Per derivations displayed above, the Heston model in the risk neutral setting may be
specified by a pair of equations:

St = S0 exp

{
rt− 1

2
T (t) + Ŵ

(1)
T (t)

}
, (7.37)

vt = v0 + κνt− κT (t) + ηŴ
(2)
T (t). (7.38)

7.5 Connection between change of time and SDE ap-

proach

In this section, we shall examine, how the change of time methods can be utilized to
obtain solutions to stochastic differential equations. According to [33], it is possible to
transform a general SDE to the form of:

dXt = α(t,Xt) dWt. (7.39)

For this simplified (equivalent) SDE it is then possible to find a weak solution by utilizing
the change of time methods. We shall present the theorem as well as a particular applica-
tion where we find a weak solution to the CIR equation, which is embedded in the Heston
model. This allows us to arrive at a price for variance swap from a different angle, than
we did in the previous.

Theorem 7.5.1. [33] Let {Wt} be an {Ft}-Brownian motion with W0 = 0 given on a
probability space (Ω,A, P ) and let X0 be an Ft-measurable random variable. Define a
continuous random process X = {Xt} by

Xt := X0 +Wt, ∀t ≥ 0. (7.40)

Let {T (t)} be a random change of time process such that

T (t) =

∫ t

0

[α(T (s), Xs)]
−2 ds (7.41)

holds a.s. Then if we set X̂ = X ◦ T̂ , i.e.

X̂θ := X0 +WT̂ (θ), ∀θ ≥ 0 (7.42)

and F̂θ = FT̂ (θ), there exists an {F̂θ}-Brownian motion B = {Bθ}, such that (X̂, B) is a
weak solution of the SDE

dX̂θ = α(θ, X̂θ) dBθ.

Remark 7.5.2. Note that by writing the integral relationship (7.41) in the SDE form,
equivalently:

dT (t) = [α(T (t), Xt)]
−2 dt ⇔ dt = [α(T (t), Xt)]

2 dT (t)
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we arrive at the inverse time-change:

T̂ (θ) =

∫ T̂ (θ)

0

[α(ξ, X̂ξ)]
2 dξ. (7.43)

The original Brownian motion W and the new Brownian motion B, which together with
the process X̂ constitutes the weak solution of (7.39), are related in the following way
(actually in the proof of theorem 7.5.1 the Brownian motion is defined so that):

Bθ =

∫ θ

0

[α(ξ, X̂ξ)]
−1 dWT̂ (ξ). (7.44)

Again, using the formal differential form, we arrive at inverse relation:

WT̂ (θ) =

∫ θ

0

α(ξ, X̂ξ) dBξ. (7.45)

Remark 7.5.3. The theorem above finds its use in pricing derivatives in certain situations,
because sometimes, one is only interested in distributional properties and not in the
behavior of trajectories of the process satisfying (7.39). In these situations a weak solution
suffices.

We shall use this approach, to value a variance swap in the Heston model. We shall
then be able to compare the solution we arrive at here with the one obtained in section
5.4. First, it is necessary to transform the CIR equation

dvt = κ(ν − vt) dt+ η
√
vt dWt, (7.46)

describing the behavior of variance, into more suitable form. We shall consider process

Yt := −eκt(ν − vt) (7.47)

and use Itô product rule on it together with substitution from (7.46):

dYt = −κeκt(ν − vt) dt− eκt dvt = −κeκt(ν − vt) dt+ eκtκ(ν − vt) dt+ ηeκt
√
vt dWt.

The first two terms clearly subtract and after substituting in from (7.47), we finally arrive
at

dYt = ηeκt
√
e−κtYt + ν︸ ︷︷ ︸

=:α(t,Yt)

dWt. (7.48)

Now that we have the equation in the transformed form, the theorem 7.5.1 applies.
Namely, we have the weak solution (X̂, B), where

X̂θ = X0 +WT̂ (θ).

We use the inverse transformation to (7.47), so that we have a weak solution (v̂, B) of
(7.46) in the θ-time:

v̂θ = e−κθ[X0 +WT̂ (θ)] + ν. (7.49)

Because WT̂ is an Itô integral (see (7.45)), its expectation vanishes and thus

Ev̂θ = e−κθX0 + ν.
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The initial condition X0 = X̂0 = Y0 = v0 − ν from the transformation defining equation
(7.47). Finally

v̂θ = (v0 − ν)e−κθ + ν, (7.50)

which is exactly equation (5.19), only in terms of the variance and it holds in terms of the
business time. From now on, we could continue just as in the rest of the section 5.4 where
the business time integrates out and we obtain the correct price of the variance swap.

Remark 7.5.4. Above we have utilized the method of change of time to obtain a weak
solution to certain SDE, which then gave us distributional properties needed for pricing.
In this way the change of time method is useful, however, we have not obtained anything
new and if we were to compute higher moments of (7.49) we would have found out that
these calculations are somewhat cumbersome. This is due to the fact that for the higher
moments, one has to take into account the explicit form of the function α (for the case
of CIR defined in (7.48)). Further obstacles dwell in the process of finding a suitable
transformation of the given SDE that is not yet expressed in the form of (7.39). We used
the transformation suggested in [34].
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Conclusion

At the beginnings of our research, there were two fields of study possibly connected to
mathematical finance that we aimed to probe - superstatistics and subordination. As
we continued on our quest for understanding, it was becoming more clear that we are
swerved off of our general direction (of focusing on both fields) and we are heavily drawn
to subordination methods. This was probably caused, amongst other reasons, by the fact
that we focused on continuous time finance and stochastic calculus.

Subordination and change of time methods in general turned out to be much better
understood than we had initially thought. This is reflected in the depth and rigorousness of
the theory which we attempted to capture in the text. In addition to that, subordination
is intertwined with finance theory to such extent that we managed to mention only a
fraction of potential associations and applications, although we have devoted a generous
chapter to them. Nevertheless, we deem our analysis of subordination methods fruitful,
for it allowed us to arrive at a few rather non-trivial models with additional tractability
provided by the interpretation via change of time.

The common denominator for applications of the methods mentioned above for us was
the Heston model. We have not only shown that the stochastic volatility present in the
model can be achieved by assuming constant volatility and changing the time, but we
have proceeded to derive distributional characteristics of the CIR process by employing
these methods as well. In the process we have calculated the price of a variance swap by
three different approaches (one considered canonical, the other two less conventional) and
presented existing generalization of Heston model - VGSA model. We still believe that
there are paths connecting superstatistics to finance that are to be unraveled, however
these paths most likely run through discrete models and time series analysis.
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Appendix A

Markets, derivatives

There is an infinite complexity to the system of real-life financial markets. Financial
modeling naturally aims to lower the degrees of freedom so that it can make quantitative
and to some extent qualitative statements about the markets. Although it is undoubtedly
advantageous to be aware of all the possible scenarios, definitions and conventions, in this
brief appendix, we shall introduce only the simplest concepts that are necessary for our
purposes. Nevertheless, one has to bear in mind that the real-life markets are much
more than their mathematical representations and formal definitions, so that there are
no unpleasant surprises waiting around the corner. We credit [35, 36] and [18] with our
understanding of these fundamental matters.

We begin by an overview of some basic financial products that are traded on various
exchanges in the financial markets.

A.1 Financial products

A simplest form of investment is depositing certain amount of cash with a financial coun-
terparty (say, a bank) in the so-called bank account (or money-market account). In the
process of doing so, one is effectively lending the money to the counterparty (the bank)
and because the cash amount is tied in this way, one expects to receive certain rate of
interest (an interest rate) on it. Interest rates are usually quoted per annum (p.a.), which
represents the annualized interest rate. The ideal of lending (or borrowing) money at
certain interest rate is somewhat formalized in the concept of financial product called
bond. This product is usually exchange traded, so that unlike with the bank account,
one can sell the obligation of the bank to other to-be receivers. Bonds may be issued by
companies that are not from the financial sector as well. Generally bonds are perceived
to be the less risky of financial products, which is encompassed in them being referred to
as securities or fixed income products . We note that there is much more to the concept
of a bond (such as credit quality of the issuer, rank of seniority etc.) that we shall not
scrutinize here.

Taking the concept of raising money (from the perspective of a company) little further
are stocks (or shares) which represent a fractional ownership of a company that issued
them. These are often categorized as equity and generally consist a more risky investment
than bonds. Since stocks are exchange traded, their price is determined by what market
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participants are willing to pay for them1. Naturally, if the company which issued the
stock is perceived by the market as not prospering, the price of the stock might exhibit
a declining trend. With the bond, one usually expects to receive back the whole invested
amount (the notional) plus some rate of interest in the form of coupons ; on the other hand
price of a stock might well fall down to zero. This additional risk for equity is commonly
balanced by higher upside in the form of higher rate of return (expected profit) on it,
which makes these types of investment products more attractive for potential investors.
Prospering companies sometimes return parts of their profit to the shareholders by pay-
ing them dividends . These regular payments are often neglected for the basic financial
modeling purposes and reintroduced later.

Another type of investment are currencies and commodities. Currencies usually enter
the discussion when one is engaging in markets in multiple countries; then the foreign
exchange rate and its dynamics become relevant. Commodities are goods, usually raw
materials that are bought and sold in organized markets.

A.2 Derivatives

Derivative contracts (or contingent claims) are true to their name, for they derive their
value from the price of some underlying asset (the underlying). Because the family of
derivatives is rather large and there is almost no boundary to how complex a certain
derivative contract can be, we shall mention only the few most important examples (for
our purposes). The derivative we shall work with the most is an option. There are many
types of options but the most liquid ones are of the following type. Plain vanilla European
call option gives its buyer the right but not the obligation to buy the underlying asset
at certain date in the future (called the maturity) for a certain specified price, called
the strike (price) or the exercise price. If we denote by ST the price of the underlying
at maturity T and by K the strike, then the payoff for (plain vanilla) European call at
maturity is exactly

(ST −K)+ := max{ST −K, 0}. (A.1)

I.e. the buyer of this type of derivative contract profits from the rise in the price of the
underlying and it exceeding the strike price. Symmetrically to the case of the call option,
there is also a European put option with payoff

(K − ST )+ = max{K − ST , 0}, (A.2)

i.e. the put option buyer profits from the underlying asset underperforming the strike.
Other types of options are American options (puts and calls), which give the buyer the
same rights as their European counterparts described above, but with the possibility of
early exercise, i.e. the buyer may choose to exercise the American option at maturity
or at some time prior to it. Naturally, deriving a price for an American option is more
involved than doing so for the European one, because it requires additional optimization
techniques.

The options that we have defined above are just the most common options and they are
usually publicly traded in organized exchanges with many different underlyings including

1There are also non-publicly traded stocks, however markets for them are rather illiquid, thus they
are difficult to model.

86



equity, bonds, foreign exchange and commodities. The derivative contracts were originally
developed in commodity markets for risk hedging purposes.

Another example of derivative contracts are the variance and volatility swaps. At
expiration, the volatility swap pays the notional amount N times the difference between
the realized volatility of the underlying asset during the lifetime of the contract, σR, and
some fixed agreed-upon delivery volatility, σK , so that:

VT = N(σR − σK). (A.3)

Here σR is exactly the realized volatility of equation (4.1). Similarly, a variance swap
contract (as the name suggests) has terminal payoff:

VT = N(σ2
R − σ2

K). (A.4)

We must note here that although the realized volatility is calculated as (4.1), in the
continuous framework the quantity

σ2
R =

1

T

∫ T

0

σ2
s ds (A.5)

is being used instead.

A.3 Financial modeling

The discipline of quantitative finance concerns itself with pricing (or valuing) derivative
contracts by the use of mathematical models. A typical model states the assumptions
(usually simplifying, because of the complexity of the real-life situation), specifies the
model for the underlying asset (usually a stochastic process) and then proceeds to derive
the pricing function for the derivative contract in question. In the case of the European
call option, assuming that we are currently at time t ∈ [0, T ] (where T is the maturity
of the option) and that the current price of the underlying is St, then the price of this
call is C = C(t, St). Similarly for a European put at time t, the price is P = P (t, St).
Considering European call and put on the same underlying, both with maturity T and
strike K, by some elementary arguments, one derives the put-call parity2:

C(t, St)− P (t, St) = St −Ke−r(T−t), ∀t ∈ [0, T ], (A.6)

which is a model independent relationship. Ergo, if we derive price of a call in an arbitrary
model, we automatically obtain the prices for puts as a byproduct.

As we have already mentioned, there is quite a diversity as to what can serve as an
underlying for an option3. Since these underlyings exhibit different dynamics, we expect
different models corresponding to them. Nevertheless, the common approach of quanti-
tative finance is to utilize the market observable information (incorporated in the quoted
prices of vanilla contracts) as much as possible and then use a model as an extrapolation
tool to obtain prices for illiquid and OTC (over-the-counter) traded contingent claims.

2Here r is a constant risk-free interest rate - the rate of interest on which can one borrow or lend
money without any risk. In real life, there is always risk. However, for example, government bonds of
politically stable countries are very close to this concept.

3There are even options written on other derivative contracts such as options on options.
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A.4 Arbitrage

An arbitrage is a way of trading, so that one starts with zero capital and at some later
time T is sure not to have lost money and furthermore, has a positive probability of having
made money [12], i.e. an arbitrage is a portfolio value process {Πt} satisfying Π0 = 0 and
there exists T > 0 such that

P (ΠT ≥ 0) ≥ 0 and P (ΠT > 0) > 0.

A usual assumption of mathematical finance is the non-existence of arbitrage - the prin-
ciple of no arbitrage. This assumption is used to find a fair value/price for a derivative
contract. Obviously, in real life, there exist arbitrage opportunities, but they are usually
short-lived. Usual economic argument on which the no-arbitrage principle rests is that if
there was an arbitrage opportunity, market participants would promptly recognize that
and act on it, so that the supply and demand eliminate this opportunity. Naturally, the
more illiquid and anomalous the particular market is the more arbitrage opportunities
are to be found in it. With that being said, no arbitrage principle is a sound assumption
for deriving prices of derivative contracts and it is at the foundations of the whole field of
quantitative finance.

A.5 Market models in mathematical finance

In mathematical finance, basically every notion that we have defined in the previous
sections has a rigorous mathematical counterpart. In this brief section, we present only a
few of them, that are used as language for formulation of some important theorems.

Definition A.5.1. A contingent claim is a square integrable, positive random variable
on (Ω,A, P ).

We say, that contingent claim is attainable if there exists an admissible trading strat-
egy4 (the corresponding portfolio is bounded from below) that generates its payoff at
maturity.

A market model is complete if every contingent claim is attainable.

In chapter 3 we assume a market model composed of one stock and the money-market
account. The contingent claim is the derivative security. In the case of this contingent
claim being a European call option, we have explicitly constructed an admissible trading
strategy that replicates the option payoff.

It can be shown that if a market model has a risk neutral measure, then it does
not admit arbitrage. Moreover, the market is complete if and only if this risk neutral
measure is unique. These statements are basically the contents of the first and the second
fundamental theorem of asset pricing [12].

A.6 Change of numéraire

A numéraire is the unit of account in which other assets are denominated. One usually
takes the numéraire to be the currency of a country. For example, in section 3.3, because

4Furthermore, the trading strategy needs to satisfy the self-financing condition. That is a condition
analogous to (3.5).
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of the equality5

St
Bt

= DtSt, ∀t ≥ 0, (A.7)

we have effectively denominated our asset St in terms of the money-market account {Bt}.
By definition, the discounted stock price is a martingale (w.r.t. natural Brownian motion)
under the risk neutral probability measure P̃ . We say that the measure P̃ is risk-neutral
for the money-market account numéraire.

In general, it is possible to take any positively priced asset (that does not pay divi-
dends) as a numéraire. In practical applications it is often advantageous to change the
numéraire, because it possibly simplifies the calculations.

Theorem A.6.1 (Change of numéraire). Assume there exists a numéraire B and a prob-
ability measure P̃ , equivalent to P , such that the price of an asset S = {St} relative to B
is a martingale under P̃ . Let S be a numéraire. Then there exists a probability measure
Q, equivalent to P , such that the price of any attainable contingent claim Y normalized
by S is a martingale under Q, i.e.

Yt
St

= EQ

[
YT
ST

∣∣∣∣Ft] , ∀t ∈ [0, T ]. (A.8)

Moreover, the Radon-Nikodým derivative defining the measure Q is given by

dQ

dP̃

∣∣∣∣
t

=
ST
St

Bt

BT

. (A.9)

5Here St is the process for underlying and Bt, resp Dt are the money-market account and stochastic
discount factor respectively. For definition see appendix B.
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Appendix B

Interest rate basics

In the appendix A we have defined various investment products, including bonds and the
bank account. In this appendix, for the purposes of mathematical modeling, we give these
concepts a more precise meaning. The class of fixed income instruments and derivatives is
rather large, what we present here are only the basics. This brief overview of elementary
interest rate modeling is almost entirely borrowed from the introductory chapter of [37].

B.1 Definitions and heuristics

The elementary idea on which most of the fixed income products rest is that the value of
one unit of currency today is different from the value of one unit of currency tomorrow.
We formulate this in the concept of discounting below.

Definition B.1.1. A bank account (money-market account) is the Itô stochastic process
{Bt}t∈[0,T ] defined by the following differential relation:

dBt = rtBtdt, ∀t ∈ [0, T ], (B.1)

with the initial condition B0 = 1. Here {rt} is a positive random process almost surely
for all t ∈ [0, T ].

According to 2.30, the relation (B.1) has an equivalent integral representation

Bt = exp

{∫ t

0

rs ds

}
, ∀t ∈ [0, T ]. (B.2)

The process {rt}t∈[0,T ] figuring in the equations above is usually referred to as the instan-
taneous spot rate or briefly as short rate for the definition above expresses the fact that
investing a unit amount of currency at time 0 yields the value in (B.2) at time t, thus
rt is the rate at which the money-market accrues. This can be seen from the following;
for an arbitrarily small time interval [t, t + ε], the relative increase in the money-market
account is

Bt −Bt+ε

Bt

=
exp

{∫ t+ε
0

rsds
}
− exp

{∫ t
0
rsds

}
exp

{∫ t
0
rsds

} = exp

{∫ t+ε

t

rsds

}
− 1 ' rtε.
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Discounting is derived by the usual time value of money argument. Assume for simplicity,
that the short rate process is actually a deterministic function r = r(t) and so is the
money-market account B = B(t).

A legitimate question to ask is, how many units of currency (let us denote this amount
by a) do we have to deposit initially (at time t = 0) in the money-market account in
order for us to have exactly one unit of currency at time t = t2. If we formulate this
mathematically, we aim to ensure

aB(t2) = 1.

Apparently, we have to deposit a = 1/B(t2) units of currency, where B(t2) is known, since
B = B(t) is deterministic. Another question is, how is this amount perceived (to what
amount is it equivalent) at some other point in time t1 ∈ [0, t2]. Because at time t1 our
initial deposit of aB(0) = a is equivalent to aB(t1), we have

aB(t1) =
B(t1)

B(t2)

units of currency. Thus one unit of currency payable at time t2, as seen from time t1 is
B(t1)/B(t2). Iterating back to the initial assumption of a general stochastic short rate
process and stochastic bank account {Bt}, this leads to the following.

Definition B.1.2. The discount factor D(t1, t2) between two time instants t1 and t2 is
the amount at time t1 that is equivalent to one unit of currency payable at time t2 and is
given by:

D(t1, t2) :=
Bt1

Bt2

= exp

{
−
∫ t2

t1

rs ds

}
. (B.3)

The discount factor expressed this way is a random variable. We shall most commonly
use the discounting whilst being at time t1 = 0 and asking about a variable future time
t2 = t, then the discount factor is defined as:

Dt :=
1

Bt

= exp

{
−
∫ t

0

rs ds

}
, t ∈ [0, T ], (B.4)

and it is actually an Itô stochastic process satisfying the differential relation

dDt = −rtDt dt. (B.5)
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Appendix C

Characteristic function, related
concepts

Given a random variable X on a probability space (Ω,A, P ), its characteristic function
φX : R→ C is defined as:

φX(u) := E[eiuX ] =

∫
Ω

eiuX(ω) dP (ω) =

∫
R
eiux dFX(x) =

∫
R
eiuxfX(x) dx, ∀u ∈ R.

(C.1)
Here FX is the cumulative distribution function and fX is the probability density function,
assuming X is continuous. If the n-th moment of the random variable X exists, then its
characteristic function is differentiable n times, and additionally the moment may be
recovered from it as

EXn =
1

in

[
dn

dun
φX

]
(u)
∣∣∣
u=0

. (C.2)

In finance, the characteristic function is a very popular concept, since everything one
sometimes needs for pricing are the moments of the model. Additionally, many interesting
random variables can be analytically expressed by their characteristic function only (see
6.1).

C.1 Fourier transform, convolution

Definition C.1.1. Let f be a real integrable function, then its Fourier transform is given
as

F [f ](u) =

∫
R
eiuxf(x) dx, ∀u ∈ R.

The Fourier transform might be continuously linearly extended to a bounded linear
operator on square integrable functions, that is in fact a linear isometry (however we need
not go into such detail).

Definition C.1.2. Let f, g be real integrable functions, then we define another function
by

(f ? g)(x) =

∫
R
f(x− y)g(y) dy =

∫
R
f(y)g(x− y) dy, ∀x ∈ R.

This function is called a convolution of functions f and g.

93



Proposition C.1.3. Let f, g be two real integrable functions, then

F [f ? g] = F [f ] · F [g] (C.3)

Here the dot denotes the regular product of two functions. Instead of computing
a convolution (which in some cases can turn out to be highly intricate), one can take
Fourier transform of individual functions, simply multiply them and then take inverse
Fourier transform.

This theoretical construct has many other applications but it is especially useful in
probability theory, because there it can be shown, that for two independent, absolutely
continuous random variables X, Y with probability density functions fX , fY the r.v. X+Y
has PDF of the form

fX+Y = fX ? fY . (C.4)

Recalling the definition of characteristic function φX of a r.v. X (equation (C.1)),
we observe, that this is just the Fourier transform of its density (for continuous random
variables). By proposition C.3 it follows, that for two absolutely continuous random
variables the following holds:

φX+Y = F [fX ? fY ] = F [fX ] · F [fY ] = φXφY (C.5)

94



Appendix D

Elements of stochastic analysis

In this appendix, we shall briefly sketch some useful definitions, that we did not wanted
to burden the reader with in the main body of the text. These definitions and concepts
could have been included in the first chapter, however, they are mostly complementary
to what is contained there and may be perceived as overly technical.

D.1 Equality of random processes

An example of the above mentioned technicalities are the nuances of how one understands
the equality of random processes and on what basis can one identify them.

Definition D.1.1. Let X = {Xt}, Y = {Yt} be random processes, with the index set I.
We say that:

1. Y is a modification of X if Xt = Yt P -almost surely for all t ∈ I, i.e.

P ({ω ∈ Ω : Xt(ω) = Yt(ω)}) = 1, ∀t ∈ I.

2. X and Y are indistinguishable if

P ({ω ∈ Ω : Xt(ω) = Yt(ω), ∀t ∈ I}) = 1.

We note that there are processes X and Y which are modifications of each other, yet
they are distinguishable (not indistinguishable).

Theorem D.1.2 (Kolmogorov-Chentsov). Let X = {Xt}t∈I be a random process. If
there are constants α, β, C > 0 such that

E |Xt −Xs|α ≤ C |t− s|β+1 , ∀s, t ∈ I,

then X has a modification with continuous trajectories.
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D.2 Convergence of random variables

Definition D.2.1. Let {Xn}n∈N0 be a sequence of random variables on the same prob-
ability space (Ω,A, P ). Let X be another random variable. We define three types of
convergence in probability theory:

1. The sequence converges to X in probability (denoted Xn
P→ X or P - limXn = X) if

lim
n→∞

P ({ω ∈ Ω : |Xn(ω)−X(ω)| > ε}) = 0, ∀ε > 0.

2. The sequence converges to X almost surely (denoted Xn
a.s.→ X) if

P ({ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)}) = 1.

3. The sequence converges to X in mean square (denoted Xn
L2

→ X or L2- limXn = X)
if

lim
n→∞

E[Xn −X]2 = 0.

This last limit is sometimes referred to as the mean square limit .

We note here, that both convergence in mean square and almost sure convergence
imply convergence in probability.

D.3 Stochastic continuity

The continuity of a stochastic process in the time parameter is related to the usual con-
vergence of random variables. We discuss it here, because it is included in the definition
of a Lévy process.

Definition D.3.1. We say, that the random process {Xt}[0,T ] is stochastically continuous
in t0 ∈ [0, T ], if

lim
t→t0

P ({ω ∈ Ω : |Xt(ω)−Xt0(ω)| > ε}) = 0, ∀ε > 0.

The process {Xt}[0,T ] is stochastically continuous , if it is stochastically continuous in
every point in [0, T ].

Example D.3.2. Poisson process {Nt}R+
0

with intensity λ > 0 as defined in section 1.4 is
stochastically continuous. To verify this we can calculate:

P (Nt+h −Nt > ε) = P (Nt+h −Nt > 1) = 1− P (Nt+h −Nt = 0) = 1− e−λh h→0−→ 0

for all ε > 0. We have made use of Poisson jumps being either of size 1 or zero (no
jumps). This example illustrates two facts. First, the stochastic continuity of a random
process is unrelated to continuity of its trajectories (sample paths), as Poisson process is
a pure jump process (with discontinuous trajectories), yet it is stochastically continuous.
Second, Poisson process is a Lévy process, as defined in 6.2.1.

Example D.3.3. The stochastic continuity of Brownian motion might be verified by ana-
logical steps to those above. We stress again, that this concept is unrelated to continuity
of sample paths. Thus it would be erroneous to conclude that the Brownian motion is
stochastically continuous because its trajectories are continuous.
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D.4 Additional terms in stochastic analysis

This section is only informative; for extensive treatment of the matter, we point the reader
towards [29] and [14].

Definition D.4.1. A stochastic process is said to be càdlàg if its trajectories are P -almost
surely right continuous, and they have limits from the left1.

Definition D.4.2. Given a filtration {Ft}, random variable T : Ω → R+
0 is a stopping

time if the event {T ≤ t} is Ft-measurable for all t ≥ 0, i.e.

{ω ∈ Ω : T (ω) ≤ t} ∈ Ft, ∀t ≥ 0.

Definition D.4.3. Given a filtration {Ft}, càdlàg process X adapted to it is called a local
martingale, if there exists a sequence of increasing stopping times {Tn}n∈N with Tn

a.s.→∞,
such that the process Xinf{t,Tn} is a martingale with respect to {Ft} for each n ∈ N.

Definition D.4.4. A stochastic process X = {Xt} is a semimartingale with respect to
filtration {Ft} if it admits the following decomposition:

Xt = X0 + At +Mt, ∀t ≥ 0,

where A = {At} is a process of bounded variation and M = {Mt} is a local martingale
w.r.t. filtration {Ft}.

1Here the seemingly nonsensical word càdlàg is actually an abbreviation for French ”continu à droite,
limité à gauche”, which summarizes the content of the definition.
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Appendix E

Bayesian inference and
superstatistics

Bayesian statistics is a subfield of probability which takes into account subjective knowl-
edge (and corresponding subjective probabilities) when making inference about certain
systems. Prior and posterior probability distributions thus enter the process of verifying
hypotheses. This is in contrast to classical frequentist statistics and there is an ongoing
debate burdened with philosophical arguments on which approach is more suitable for
certain statistical problems. [38] We shall not dive into these in this text, for we are going
to utilize only one concept from Bayesian statistics.

E.1 Marginal density

We shall introduce an important concept in Bayesian approach to probability. This can
be done generally (even for discrete random variables), but for our convenience we shall
define it only for continuous random variables.

Definition E.1.1. Let X be a random variable with a probability density function
fX(x|θ) dependent on some parameter θ with values in the parameter space Θ. As-
sume that θ is a random variable Y , distributed according to some probability density
function fY (θ). Then the quantity

fX(x) =

∫
Θ

fX(x|θ)fY (θ) dθ (E.1)

is called the marginal density of the random variable X. The values of x are taken from
the support of fX(x|θ).

The integration in relation E.1 is over all the values that the parameter θ ∈ Θ assumes.
This procedure is called marginalization and the parameter θ is referred to as the nuisance
parameter . The choice of the random variable Y and in particular its density is the
subjective prior information that is taken into account due to Bayesian statistics.

The marginal density function fX can get rather intricate, so for the purposes of
calculation of marginal characteristic function (defined as the Fourier transform of the
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marginal density) we derive a useful formula. Starting from the definition, for all u ∈ R:

φX(u) =

∫
R
eiuxfX(x) dx =

∫
R
eiux

(∫
Θ

fX(x|θ)fY (θ) dθ

)
dx =

=

∫
Θ

(∫
R
eiuxfX(x|θ) dx

)
︸ ︷︷ ︸

=:φX(u|θ)

fY (θ) dθ,

so that we obtain the formula for marginal characteristic function as the conditional
characteristic function from which the parameter θ has been marginalized:

φX(u) =

∫
Θ

φX(u|θ)fY (θ) dθ, ∀u ∈ R. (E.2)

E.2 Superstatistics

Superstatistics is a concept from non-equilibrium statistical physics, which is often em-
ployed to study hierarchical systems and emergent phenomena. The superstatistical ap-
proach was pioneered by [39], and since then, it was applied in many diverse fields of
study such as biology, turbulence and also, as of late, time series analysis. The concept is
superficially similar to that of marginalization and obtaining non-trivial distributions as
mixtures of some simpler distributions with a random parameter via formulas analogical
to those introduced in the previous section. The approach of superstatistics is not con-
cerned with the above-mentioned philosophical disputes and instead imposes the following
physically motivated conditions.

1. In the phenomena described by superstatistics, there are two well-separated timescales
(in the language of the previous section, these would correspond to scales of the
marginal density and the conditional density).

2. The fluctuations in the subsystems are adiabatic (the changes in the parameter θ
are slow) so that there is enough time to approach local equilibria in the subsystems.

To our knowledge, authors of [40] were first to suggest potential connections between
subordination and superstatistics, mentioned also in [41]. From out point of view, sub-
ordination uses precisely the marginal density (E.1), however, the physically motivated
assumptions listed above are not needed. In fact, for the purposes of subordination in
financial modeling (see for example the variance gamma process) these would be rather
undesirable, since sudden (nonadiabatic) movements or jumps are exactly what one looks
for in these types of models. The situation could be quite different in the time series
analysis realm. [42]
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between superstatistical regimes: Validity, breakdown and applications,” Physica A:
Statistical Mechanics and its Applications, vol. 493, pp. 29–46, 2018.

[42] D. Xu and C. Beck, “Transition from lognormal to chi-square superstatistics for
financial time series,”

103



104



Index

σ-algebra
Borel, 15
generated by random vector, 16

adapted to filtration, 17
American option, 86
arbitrage, 88
autocorrelation function, 16

bank account, 85, 91
Bayesian statistics, 99
Black-Scholes-Merton

assumptions, 39
model, 39
partial differential equation, 42
portfolio process, 40
price of European call, 48
trading strategy, 40

Borel σ-algebra, 15
Brownian motion, 19
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Lévy-Khintchine, 62
martingale representation, 36
Monroe, 70
on subordination of Lévy processes, 73
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