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Abstract

The aim of this thesis is the generaliza-
tion of several theorems about the spec-
tral behaviour of the Laplace–Beltrami
operator with Dirichlet boundary con-
dition on quantum nanoribbons to ar-
bitrary dimension as well as finding
the spectrum of the (curved) Möbius
strip. The notion of a quantum rib-
bon in an arbitrary dimension is in-
troduced along with the proper defi-
nition of a quantum Hamiltonian for
such strip. Theorems about the local-
ization of essential spectrum for asymp-
totically flat strips, about bound states
in purely bent strips and Hardy inequal-
ities for twisted strips are presented.
The spectrum of the Möbius strip is
tackled in three different models both
analytically and numerically, with com-
parisons of the results. We prove the
norm–resolvent convergence in the thin
strip limit for two of those models.

Keywords: nanoribbons, relatively
parallel adapted frame, Möbius strip,
effective Hamiltonian, twisting versus
bending, bound states, Hardy
inequality

Supervisor: Mgr. David Krejčiřík,
PhD., DSc.

Abstrakt

Tato diplomová práce se zabývá zobec-
něním několika vět o spektru Laplace–
Beltramiho operátoru s dirichletov-
skými hraničními podmínkami defino-
vaného na kvantových nanostužkách
v libovolné dimenzi, spolu s nalezením
spektra pro Möbiův pásek. Definujeme
pojem kvantového pásku v libovolné
dimenzi a zavádíme na něm kvantový
Hamiltonián. Věty o lokalizaci esenciál-
ního spektra pro asymptoticky ploché
pásky, o vázaných stavech v ohnutých
páscích a Hardyho nerovnost pro zkrou-
cené pásky jsou prezentovány. Otázka
spektra Möbiova pásku je řešena pro
jeho tři různé modely a to jak ana-
lyticky, tak numericky. Výsledky jsou
pak vzájemně porovnány. Dokážeme,
že v limitě tenkého pásku dva modely
k sobě konvergují v norm–resolventním
smyslu.

Klíčová slova: nanostužky, repér
definovaný paralelním přenosem,
Möbiův pásek, efektivní Hamiltonián,
kroucení versus ohýbání, vázané stavy,
Hardyho nerovnost

Překlad názvu: Spektrální analýza
kvantových nanostužek
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Introduction

Motivated by the study of transport in nano-structures, investigation of spec-
tral properties of quantum waveguides dates as far back as to the beginning of
the 1990’s, with probably the first article being Exner and Šeba [16], quickly
followed by many more (e.g. [7, 8, 15]). Subsequently, the spectra of different
kinds of waveguides have been extensively studied – be it three–dimensional
ones [21, 34], quantum layers [14, 13, 9], or quantum strips [2, 6, 32, 33].
Thorough investigation has not only focused on the Dirichlet Laplacian, rather
both different boundary conditions, see e.g. [28, 11, 27] for the Neumann-
Dirichlet or [19, 17, 36] for the Robin ones, and different operator settings
have been examined, such as the magnetic Schrödinger operator in [5, 30].

Nevertheless, most of the known results only entertain the notion of a
quantum waveguide in merely three dimensions. In this thesis, we wish to
rectify at least a part of this by studying the spectral properties of nanoribbons
in arbitrary dimensions. Let us stress here that the considered model consists
of a strip (alias ribbon) and the Laplace–Beltrami operator defined on it,
which differs from the other settings considered in the literature. This study
is enabled by utilizing the generalization of the relatively parallel adapted
frame, firstly introduced in 1975 [3] and generalised to higher dimensions in
2016 [40], for the definition of the strip. The main convenience of this choice
is that said frame demands only very mild regularity assumptions on the
curve and, moreover, these conditions do not depend on the dimension of
the ambient space. This contrasts with the traditionally used Frenet frame,
for which the regularity prerequisites quickly increase in higher dimensions.
Therefore, by choosing the relatively parallel adapted frame as our tool for
the definition of the investigated strips, we do not need to restrict ourselves
with respect to the ambient dimensionality. This advantage is exploited in
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....................................... Introduction

Chapter 2, where we derive spectral results for asymptotically flat strips,
confirm the manifestation of bound states in purely bent strips, and prove
Hardy inequalities in twisted strips.

Not only have the higher dimensional examples of quantum waveguides
been rather neglected in previous years, further, the elusive Möbius strip
has been rebuffing most attempts on its spectral analysis. Even though
the said strip has been extensively discussed in numerous settings, as far
as the author is aware, its spectrum is yet to be determined. The closest
work to the problem we tackle in Chapter 3 is Gravesen and Willatzen [22],
where the effective model for a Dirichlet Laplacian defined on a thin tubular
neighbourhood of the surface is studied. In contrast, we study only the two
dimensional Laplace–Beltrami operator on the actual strip.

Possible division of the other examinations of the strip is to consider the
material of the strip. Following this line of thought, we find that the rigid
model was examined with respect to magnetization [20], movement of a free
particle [22] or with respect to equilibrium shapes and stress localization
[37]. The Möbius strip made out of graphene was considered in a number
of papers – the electronic properties of a topological insulator with respect
to the different edges [23], and the symmetries and their consequences for
chemistry [18]. Furthermore, the lattice model is also popular – the square
lattice Ising model was discussed [10], persistent currents of non-interacting
electrons [39], or the problem of a continuous-time quantum walk on the
Möbius lattice [35].

Another viable division is due to the ambient space in which the problem is
treated. The former examples are all restricted to three dimensions, however,
even generalizations to higher dimensions are being studied in various settings.
The problem of the spectrum of numerous differential operators has been
studied, e.g. [26] for the Klein–Gordon operator in Rn or [25] for the Helmholtz
operator on higher dimension Möbius strip embedded in R4.

To summarise, the organisation of this thesis is as follows. The first chapter
serves as a short introduction of the necessary facts, notions, and notations.
The main results about the spectral properties of either asymptotically flat,
purely bent or (purely) twisted waveguides are presented in the second chapter.
The last chapter, Chapter 3, is devoted to the spectral study of the Möbius
strip – we introduce three different models of said strip, the fake, the not–so–
fake, and the full one, solve them analytically and/or numerically and, finally,
present the result of norm–resolvent convergence of the latter two in the case
of the width of the strip tending to zero.
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Chapter 1

Preliminaries

This chapter is devoted to a brief recollection of several important concepts
used throughout the thesis as well as to define certain new notions. In order
to properly define quantum nanoribbons, the following ideas must be recalled
first.

For the purpose of this thesis, we define a curve Γ in Rn as a mapping
Γ : I → Rn from any open interval I := (a, b), where a, b ∈ R ∪ {−∞,∞},
into Rn, which fulfils the following conditions:

. Γ ∈ C1,1, i.e. Γ is continuously differentiable and its derivative, Γ′,
satisfy the Lipschitz condition:

(∃C > 0) (∀x, y ∈ I)
(
|Γ′(x)− Γ′(y)| ≤ C|x− y|

)
,

. Γ is regular, that is Γ′(t) 6= 0 for all t ∈ I.

The variable s ∈ I is called the parameter of the curve. According to
the classical result (e.g. [24]), every regular curve Γ : I → Rn can be
reparametrised in such a way, that |Γ′| = 1 on the whole interval I. From here
on, by Γ′ we mean the derivative with respect to the ‘lengthwise’ variable s, i.e.
Γ′(s) := d

dsΓ(s). Later on, the notation ϕ̇ will be used to denote the derivative
with respect to the transverse coordinate t. This special reparametrisation of
the curve is called the arc–length parametrization. Curves parametrized by
their arc–length are also called unit speed curves. As only regular curves are
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..................................... 1. Preliminaries

considered here, it can be assumed without the loss of generality that they
are already unit speed, so no reparametrisation is necessary.

A moving frame, or just frame, along the curve Γ : I → Rn is a collection
of n orthonormal differentiable vector fields e1, . . . , en, ei : I → Rn for
i = 1, . . . , n. It follows that the time evolution is given by a skew-symmetric
matrix. The moving frame is called adapted if one of the vector fields coincides
with the tangent Γ′ of the curve. In such a case, all other components of the
frame are normal to the curve. Another particular case of a moving frame is
a rotation minimizing frame. Its time evolution fulfils that there exists an
i ∈ {1, . . . , n} such that

e′j(s) = kj(s)ei, ∀j 6= i

for some functions kj : I → R.

Since the relatively parallel adapted frame, which is used throughout this
thesis, is solely a special case of the rotation minimizing frame, let us discuss
its properties. The relatively parallel adapted frame, firstly introduced in
only three dimensions by [3], is an example of an adapted frame minimizing
rotation along its tangent. The main result of [40] generalises that and claims,
that for every regular C1,1 curve Γ : I → Rn+1 there exists a relatively parallel
adapted frame. That is, for every regular C1,1 curve in any dimension, there
exists a frame consisting of T,N1, . . . , Nn with time evolution given by

T
N1
...
Nn


′

=


0 k1 . . . kn
−k1 0
... . . .
−kn 0



T
N1
...
Nn

 ,
for some functions ki : I → R, i ∈ {1, . . . , n}. We call these the parallel
curvatures and denote k := (k1, . . . , kn).

Now, let us proceed to the definition of a quantum nanoribbon. In order
to do that, several auxiliary constructs have to be outlined first. Let ω be
defined as ω := (−a, a) for some a > 0, a ∈ R. Then ω is called the cross
section and Ω0 := I × ω is called a straight strip or a straight ribbon. To
obtain an arbitrary one along our chosen curve Γ, one constructs the following
mapping

L : Ω0 → Rn+1 : (s, t) 7→ Γ(s) +
n∑
i=1

Θi(s)Ni(s), (1.1)

where the functions Θi : I → R, i ∈ {1, . . . , n} satisfy
n∑
i=1

Θ2
i (s) = 1 for all s ∈ I , (1.2)
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L

Figure 1.1: Example of a quantum ribbon in three dimensions along with the
mapping L responsible for the creation of the curved strip.

and Θi ∈ C0,1(I) for all i ∈ {1, . . . , n}. We introduce the notation of
Θ := (Θ1, . . . ,Θn) and call the vector Θ the twisting function. Then the
image Ω of Ω0 via the mapping L, Ω := L(Ω0), is called the curved strip.
If the twisting function is a constant vector, then we say that the strip is
purely bent, on the other hand, when the scalar product of the curvature and
the twisting function k ·Θ vanishes and the deformation is caused solely by
twisting, the resulting strip is called purely twisted. In this sense, the product
k ·Θ acts as the geodesic curvature in three dimensions.
Example 1.1. Let us briefly examine the situation in three dimensions first.
Here, the condition in (1.2) imposed on Θ characterize the first row/column
of an arbitrary rotation matrix R. Namely,

R =
(

cos θ − sin θ
sin θ cos θ

)
, Θ := (cos θ, − sin θ) .

Therefore, the mapping can be rewritten in more explicit form as

L : Ω0 → R3 : (s, t) 7→ Γ(s) + t [N1(s) cos θ(s)−N2(s) sin θ(s)] , (1.3)

for some function θ : I → R, θ ∈ W 1,∞
loc (I), θ̇ ∈ L∞(I). Let us abuse the

terminology here and call it the twisting function as well, for our convenience.
An example of a quantum ribbon in three dimensions can be found in Fig. 1.1.

Returning to the more general setting, further conditions must be imposed
on the mapping L in order to identify the curved strip Ω with a Riemannian
manifold. Namely, these conditions are..1. κ :=

√
k2

1 + · · ·+ k2
n ∈ L∞(I) and a‖k ·Θ‖∞ < 1 ,..2. Ω does not overlap itself.

Specifically, the second condition means that the mapping L is injective.
Recall that thanks to the condition (1.2) imposed on Θ, κ is also the upper
bound to k ·Θ as |k ·Θ| ≤ |k||Θ| = κ.
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Focusing on the properties of a ribbon defined by (1.1) as a Riemannian
manifold, the metric g, given by gij := ∂iL · ∂jL, reads

(gij) =
(
f2 0
0 1

)
, (1.4)

where
f(s, t)2 = (1− t k(s) ·Θ(s))2 + t2

n∑
i=1

Θ′i(s)2

with Θi being the components of the twisting function Θ and ki being
the parallel curvatures of the relatively parallel adapted frame used in the
definition of the strip. Additionally, the resulting Laplace–Beltrami operator
acting on L2(Ω0, f ds dt) in local coordinates is given by

−∆ = − 1
f
∂1

1
f
∂1 −

1
f
∂2 f ∂2 . (1.5)

By employing the unitary transform Uf : L2(Ω0, f dsdt) → L2(Ω0, dsdt),
Uf (−∆) := f1/2(−∆)f−1/2, and rearranging the expression, the transformed
operator reads

−∂1
1
f2∂1 − ∂2

2 + V,

where the potential V is given by

V = −5
4
f2
,1
f4 + 1

2
f,11
f3 −

1
4
f2
,2
f2 + 1

2
f,22
f

.

Here onwards, the notation with commas is used to indicate a partial deriva-
tive, i.e. f,1(s, t) := ∂f

∂s (s, t). This transformed operator is used later in
Chapters 2 and 3, as it is sometimes more convenient to work without the
metric function f and with the potential V instead. By a nanoribbon, we
understand an arbitrarily curved ribbon on which we define the Laplace–
Beltrami operator.

Lastly, let us introduce some additional notations. Firstly, we shorten the
notation for vectors k and Θ in the following way

‖k‖ ≡ ‖|k|‖ ,
‖Θ′‖ ≡ ‖|Θ′|‖ .

Also, by W 1,2(Ω0, g), we understand

W 1,2(Ω0, g) =
{
ψ ∈ L2(Ω0, f(s, t) ds dt)

∫
Ω0
ψ,j(s, t)gjkψ,k(s, t)f(s, t) ds dt

}
and ‖.‖ stands for ‖.‖L2(Ω0,g).

And finally, we use the same notations for functions w, w ⊗ 1 and 1⊗ w.
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Chapter 2

Spectral properties

In this chapter, spectral results for several different cases of quantum nanorib-
bons are presented. The organisation is as follows – the quantum Hamiltonian
is introduced in the first section, followed by the spectral properties of asymp-
totically flat strips, purely bent strips, and, finally, by Hardy inequalities
in twisted strips. The results in this chapter are usually generalizations of
results found in [28, 32, 13, 33].

As one of the main motivations for the study of quantum nanoribbons
lies with the investigation of the transport properties in nano-structures,
which are usually considered as infinite for ‘practical’ applications, we solely
interest ourselves with infinite ribbons throughout this chapter. Beyond this
assumption that the considered ribbons are supported on infinite curves, i.e.
Γ : R → Rn+1, we impose some further basic restrictions on all our strips,
namely:

〈?〉


Ω is not self–intersecting,
κ ∈ L∞(R) with a‖k ·Θ‖∞ < 1 ,
Θ′ ∈ L∞(R) .

7



..................... 2.1. Proper introduction of the quantum Hamiltonian

2.1 Proper introduction of the quantum
Hamiltonian

Let Ω0 := R× (−a, a) be a flat strip, which is then bent and/or twisted by
mapping the L into an arbitrary strip Ω as we observed in Chapter 1 according
to our standing assumptions 〈?〉. We introduce the quantum Hamiltonian
corresponding to the Laplace–Beltrami operator (1.5) on Ω by the means of
the following procedure.

Firstly, we identify Ω with Ω0 through unitary transformation by using
curvilinear coordinates, thus Ω ∼= (Ω0, g), where

(gij) =
(
f2 0
0 1

)

is the metric induced by L. Its inverse and determinant are denoted by
(
gij
)

and g respectively. Recall that the function f is defined as

f (s, t) =
√

(1− t k(s) ·Θ(s))2 + t2‖Θ′(s)‖2 ,

and the Hilbert space is then given by H = L2 (Ω0, f dsdt).

Next, we consider the quadratic form ḣ prescribed as
ḣ[ψ] :=

∫
Ω0

|ψ,1|2

f
+
∫

Ω0
|ψ,2|2f ,

Dom
(
ḣ
)

:= C∞0 (Ω0) .

It is easy to see that ḣ is densely defined, symmetric and bounded from below.
It, however, is not closed. Therefore, we define its closure h: h := ḣ

Dom (h) := C∞0 (Ω0)|||.|||

where the norm |||.||| is given by

|||ψ|||2 :=
∫

Ω0

|ψ,1|2

f
+
∫

Ω0
|ψ,2|2f +

∫
Ω0
|ψ|2f

= ḣ[ψ] + ‖ψ‖2H .

To prove that the norm |||.||| is equivalent with ‖.‖W 1,2(Ω0), one must show
that there exist constants c−, C+ such that the metric function f can be
bounded as

0 < c− ≤ f (s, t) ≤ C+ <∞ .

8



............................... 2.2. Asymptotically flat strips

The lower bound can be found using the Cauchy–Schwarz inequality

f2 ≥ (1− |t||k ·Θ|)2 ≥ (1− a|k|)2 ≥ (1− a‖k‖∞)2

Similarly, the upper bound in n+ 1 dimensions is given by

f2 ≤ (1 + |t||k ·Θ|)2+|t|2‖Θ′‖2 ≤ (1 + a‖k‖∞)2 + a2n‖Θ′‖2 ≤ 22 + a2n‖Θ′‖2 .

Thus, the norms are equivalent when the following holds:

a‖k ·Θ‖∞ < 1 and Θ′ ∈ L∞(R) .

Please note that these are the conditions already imposed on the strip in 〈?〉.

Therefore, we conclude that the operatorH associated by the representation
theorem (see e.g. [38, Thm. VI.2.6]) with the quadratic form h is well defined
as

Dom(H) := {ψ ∈ Dom(h) | ∃η ∈H , ∀φ ∈ Dom(h), h(φ, ψ) = (φ, η)} ,
Hψ := η .

2.2 Asymptotically flat strips

In this section, we tackle the spectral problem of asymptotically flat infinite
strips. Localization of the essential spectra of those strips is provided, with the
result being the positive real numbers bigger or equal to the first eigenvalue
in the transverse direction.

Asymptotically flat strips need to fulfil the following conditions:

f → 1 as |s| → ∞ ,

where by f → 1 we mean that f tends to one uniformly. The necessary and
sufficient conditions for that are

k ·Θ→ 0 as |s| → ∞ ,

Θ′ → 0 as |s| → ∞ ,
(2.1)

where the latter means

|Θ′| → 0 as |s| → ∞.

Firstly, we establish a lower bound on the essential spectrum σess(H) in the
following Theorem.

9



............................... 2.2. Asymptotically flat strips

Theorem 2.1. Assume 〈?〉 along with the strip Ω being asymptotically flat,
i.e. that the conditions (2.1) hold.

Then
inf σess(H) ≥ E1,

where E1 =
(
π
2a
)2 is the first eigenvalue of the Dirichlet Laplacian in the

interval (−a, a).

Proof. Let us fix some arbitrary s0 > 0. Then we can divide Ω into an interior
and exterior part with respect to s0 as follows

Ω int
0 := (−s0, s0)× (−a, a)

Ω ext
0 := Ω0 \ Ω int

0 .

Imposing the Neumann boundary condition on the boundary of Ω int
0 and

Ω ext
0 , the original Hamiltonian H is decoupled into an interior and exterior

part
HN = HN

int ⊕HN
ext,

where the HN
int and HN

ext are associated with the quadratic forms

QN := QN
int ⊕QN

ext,

Dom(QN) := Dom(QN
int)⊕Dom(QN

ext),
QN
ω (ψ, φ) := (ψi, gijφj)H ,

Dom(QN
ω ) := {ψ ∈W 1,2(Ωω

0 , g) ψ( . ,±a) = 0}

acting on
Hω := L2(Ωω

0 , f ds dt),

where ω ∈ {int, ext} and the condition ψ( . ,±a) = 0 is understood in the
trace sense. It follows that

H ≥ HN,

from which the minimax principle gives us the following inequality

inf σess(H) ≥ inf σess(HN) .

The spectrum of HN
int is purely discrete, therefore it is sufficient to find the

lower bound on the operator HN
ext. The following estimates are valid for all

ψ ∈ Dom(QN
ext):

QN
ext[ψ] ≥ ‖ψ,2‖2H ext ≥ ( inf

Ω ext
0

f)‖ψ,2‖2L2(Ω ext
0 ) ≥ ( inf

Ω ext
0

f)E1‖ψ‖2L2(Ω ext
0 )

≥ ( inf
Ω ext

0

f)(sup
Ω ext

0

f)−1E1‖ψ‖2H ext .

10



............................... 2.2. Asymptotically flat strips

After dividing by the norm of ψ, the result reads

QN
ext[ψ]

‖ψ‖2H ext

≥ E1
infΩ ext

0
f

supΩ ext
0
f
.

Performing the limit s0 → ∞, the asymptotic flatness of the strip ensures
that

inf σess(H) ≥ inf σess(HN
ext) ≥

(
π

2a

)2
(1 +O (1)) ,

and therefore, the right–hand side tends to E1 while the left–hand side is
independent on s0.

Having the lower bound on the essential spectrum, we can now localize it
further by the subsequent theorem.
Theorem 2.2. Suppose 〈?〉. If the strip is in addition asymptotically flat, i.e.
conditions (2.1) holds, then

σess (H) =
[(

π

2a

)2
,+∞

)
.

Proof. From Theorem 2.1, it follows that inf σess (H) ≥
(
π
2a
)2 = E1 and so it

only remains to prove that all η ∈ [E1,+∞) are in the essential spectrum of
our operator. The proof itself is based on the Weyl criterion adapted to the
quadratic forms, as can be found in [29] or [28]. It states that to prove η is
in the essential spectrum of the operator H, it is enough to find a sequence
{ψn}∞n=1 ⊂ Dom (h) such that..1. ∀n ∈ N, ‖ψn‖ = 1 ,..2. ‖ (H − η)ψn‖[Dom(h)]∗

n→∞−→ 0 ,

where [Dom (h)]∗ denotes the dual space of Dom (h). Recall that the map-
ping H + 1 : Dom (h)→ [Dom (h)]∗ is an isomorphism and that the norm
‖.‖[Dom(h)]∗ is defined as

‖ψ‖−1 := ‖ψ‖[Dom(h)]∗ = sup
φ∈Dom(h),φ 6=0

| (φ, ψ) |
‖φ‖1

with
‖φ‖1 ≡ |||ψ||| ≡ ‖ψ‖Dom(h) :=

√
h[φ] + ‖φ‖2 .

The advantage of this characterization is that the sequence {ψn}∞n=1 has to
be in the domain of the quadratic form h only, in contrast to the normal
Weyl criterion, where it must be from Dom (H).

11



............................... 2.2. Asymptotically flat strips

We choose η in a special form η = λ2 +
(
π
2a
)2 = λ2 + E1, ∀λ ∈ R, which

encompasses precisely the whole interval [E1,+∞). Let us start with the
sequence {ψ̂n}∞n=1, where ψn is given as

ψ̂n (s, t) = ϕn (s)χ1 (t) eiλs

with χ1 being the first eigenfunction in the transverse direction,

χ1 (t) =
√

1
a

sin
√
E1t , (2.2)

and ϕn being
ϕn (s) = ϕ

(
s

n
− n

)
,

where ϕ is any smooth function such that ϕ ∈ C∞, ϕ 6≡ 0, suppϕ ⊂ (−1, 1).
This ensures that suppϕn ⊂

(
n2 − n, n2 + n

)
and thus ϕn is for large n

localised at infinity. Also note that χ1 (t) eiλs formally solves our spectral
problem for a straight strip but, alas, does not belong to the domain of h.

Clearly, ψ̂n ∈ Dom (h) as for all n ∈ N, ψ̂n (s,±a) = 0 thanks to χ1 and
ψ̂n ∈W 1,2(Ω0, g). However, ψ̂n is not normalised, so we define the normalised
sequence

ψn := ψ̂n

‖ψ̂n‖
.

Let us recall that ‖.‖ ≡ ‖.‖L2(Ω0,g). Now the sequence {ψn} satisfies the first
condition of the modified Weyl criterion and it is necessary to check only the
second one.

As our metric (gij) is in the diagonal form (see (1.4)), the Hamiltonian can
be decomposed as

H = H1 +H2,

where H1, H2 are corresponding to the term g11 and g22 respectively, and the
whole decomposition is understood in the sense of forms. This decomposition
leads to a trivial bound of

‖ (H − η)ψn‖−1 ≤ ‖
(
H1 − λ2

)
ψn‖−1 + ‖ (H2 − E1)ψn‖−1 ,

for which we show that the two norms on the right–hand side tend to zero
separately as n→∞.

Writing out the norm ‖.‖−1, we can estimate the second term as

‖ (H2 − E1)ψn‖−1 ≤
√
E1
c−
‖φ‖L2(Ω0,g) ‖f,2‖∞,n ‖ψn‖L2(Ω0,g),

12



.................................. 2.3. Purely bent strips

where ‖f,2‖∞,n stands for

‖w‖∞,n := sup {|w (s, t) | (s, t) ∈ suppϕn × (−a, a)} .

The convergence to zero is obtained due to the derivative of the metric
function f , since we assume an asymptotically flat strip, for which f tends to
1 uniformly in both infinities and therefore, its derivative with respect to the
transverse variable tend to 0 in suppϕn × (−a, a) for n→∞.

As for the first term, we get the following estimate(
φ,
(
H1 − λ2

)
ψn
)
≤ λ2 (φ, (1− f)ψn)L2(Ω0)

+
(
φ,1,

( 1
f
− 1

)
(ϕn + iλϕn)χ1eiλs

)
L2(Ω0)

−
(
φ, (ϕ̈+ 2iλϕ̇)χ1eiλs

)
L2(Ω0)

.

Since all the terms

‖1− f‖∞,n , ‖ 1
f
− 1‖∞,n ,

‖ϕ̇n‖L2(R)
‖ϕn‖L2(R)

,
‖ϕ̈n‖L2(R)
‖ϕn‖L2(R)

tend to 0 as n→∞ thanks to either the assumptions or definition of ϕ, the
first term has the zero as a limit as well.

2.3 Purely bent strips

In this section, spectral properties of purely bent ribbons are discussed. These
strips are constructed in such a way that the twisting function is constant,
reducing the metric function in this case to

fκ(s, t) = 1− t k(s) ·Θ(s) .

We will show that due to the bending, the discrete spectrum of the Laplace–
Beltrami operator on such strips is not empty, resulting in the manifestation
of bound states.
Theorem 2.3. Suppose 〈?〉 along with Θ = const.

If k ·Θ 6≡ 0, then
inf σ(H) < E1 .

Consequently, if the strip is not flat but the scalar product of curvature and
twisting function vanishes at infinity, then H has at least one eigenvalue of
finite multiplicity below its essential spectrum [E1,∞), i.e. σdisc(H) 6= ∅.

13



.................................. 2.3. Purely bent strips

Proof. The proof is based on the variational strategy of finding a trial function
ψ ∈ Dom(H) which satisfies

h1[ψ] := h[ψ]− E1‖ψ‖2 < 0 . (2.3)

We wish to achieve that by modifying the first transversal eigenfunction of
the straight strip χ1, defined in (2.2). Firstly, consider the following trial
function

ψn(s, t) := ϕ(s;n)χ1(t) , (2.4)

where ϕ : R× (0,∞)→ [0, 1] is a suitable mollifier of identity, i.e. it satisfies
the following conditions..1. ∀n ∈ N, ϕ(.;n) ∈W 1,2(R) ,..2. ϕ(s;n) n→∞−→ 1 for almost every s ∈ R ,..3. ‖ϕ,1(.;n)‖L2(R)

n→∞−→ 0 .

Example of such function could be

ϕc(s;n) :=


1 |s| ∈ (0, n)
cn−|s|
(c−1)n |s| ∈ [n, cn)
0 |s| ≥ cn

defined for all c > 1. Let us use ϕ2(s;n) and denote it by ϕn(s).

When we calculate h1[ψn] for ψn defined as in (2.4), the final expression
reads

h1[ψn] =
(
ϕn,1,

〈 1
fκ

〉
ϕn,1

)
L2(R2)

,

where 〈.〉 is given by

〈u〉 :=
∫ a

−a
uχ2

1(t) d t , u ∈ L∞(Ω0) .

Hence, due to the third condition on the function ϕ,

h1[ψn] n→∞−→ 0 . (2.5)

To get the desired result (2.3), we modify the trial function ψn in the following
way

ψn,ε(s, t) := ψn(s, t)− ε t
a
φ(s)χ1(t) ,

where ε ∈ R and φ ∈W 1,2(R) is a real, non–negative, non–zero function with
compact support contained in a bounded interval in R where k ·Θ 6≡ 0, and

14
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which does not change sign. The family of functions {ψn,ε} are, indeed, a
subset of Dom(h1) and, by explicit calculation, we find that

h1[ψn,ε] = h1[ψn]− 2εh1

(
t

a
φχ1, ψn

)
+ ε2h1

[
− t
a
φχ1

]
. (2.6)

The first term on the right–hand side of (2.6) tends to zero as n → ∞ by
(2.5), while the last term does not depend on n. The central term yields

h1

(
t

a
φχ1, ψn

)
=
(
φ′,

〈
− t
a

1
f

〉
ϕn,1

)
L2(R)

+ 1
2a (φ, k ·Θ ϕn)L2(R) ,

with the first term on the right–hand side tending to zero as n→∞ due to
the properties of the function ϕ. Overall, we obtain

h1[ψn,ε]
n→∞−→ ε2h1

[
− t
a
φχ1

]
− ε

a
(φ, k ·Θ)L2(R) .

Since the second term is non–zero by the construction of φ, by choosing ε
sufficiently small and of an appropriate sign we can make the sum on the
right–hand side negative. Thus, for sufficiently large n, we are able to make

h1[ψn,ε] < 0

as requested.

2.4 Hardy inequalities on twisted strips

The last section of this chapter is devoted to presenting several Hardy in-
equalities on (purely) twisted strips. For obtaining such a purely twisted
strip, the sufficient condition is that the product k ·Θ ≡ 0. Hence, the metric
is given as

gΘ =
(
f2

Θ 0
0 1

)
, with fΘ(s, t) :=

√
1 + (tΘ′(s))2 . (2.7)

For these strips, we can derive the following Hardy inequality, which bounds
the spectrum from below and therefore forbids the manifestation of bound
states.
Theorem 2.4. Suppose 〈?〉 as well as that the metric on the strip Ω fulfils
(2.7). Further assume that Θ′ is not identically zero and that a‖Θ′‖∞ <

√
2.

Then, for all ψ ∈W 1,2
0 (R× (−a, a)) and any s0 such that Θ′(s0) 6= 0, we

have

hΘ[ψ]− E1‖ψ‖2HΘ ≥ c‖ρ
−1ψ‖2HΘ with ρ(s, t) :=

√
1 + (s− s0)2, (2.8)

where c is a positive constant depending on s0, a, and Θ′.

15
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Since the proof of this theorem is rather long and technical, we prepare
two auxiliary lemmas first.

Let us introduce function λ : R→ R by

λ(s) := inf
ϕ∈C∞0 ((−a,a)),ϕ 6=0

∫ a
−a |ϕ̇(t)|2fΘ(s, t) dt∫ a
−a |ϕ(t)|2fΘ(s, t) dt − E1 . (2.9)

We can then prove the following.
Lemma 2.5. Under the assumptions of Theorem 2.4, λ is a non–negative
function which is not identically zero.

Proof. For any fixed s ∈ R, employing the change of the test function
φ :=

√
fΘϕ and by integrating by parts, we obtain

λ(s) = inf
φ∈C∞0 ((−a,a)),φ 6=0

∫ a
−a

(
|φ̇(t)|2 − E1|φ(t)|2 + V (s, t)|φ(t)|2

)
dt∫ a

−a |φ(t)|2 dt ,

where
V (s, t) := (Θ(s)′)2 (2− t2(Θ(s)′)2)

4fΘ(s, t)4 .

Due to the assumptions of Theorem 2.4, the function V is non–negative
and not identically zero. Combining this with the Poincaré inequality∫ a
−a |φ̇|2 ≥

∫ a
−a |φ|2, which is valid for all φ ∈ C∞0 ((−a, a)), we arrive at

the claim of the lemma.

Using the conclusion of Lemma 2.5 with the definition of λ (2.9), the
following estimate is obtained

hΘ[ψ]− E1‖ψ‖2HΘ ≥ ‖f
−1
Θ ∂1ψ‖2HΘ + ‖λ1/2ψ‖2HΘ , (2.10)

which is valid for all ψ ∈ C∞0 (R× (−a, a)). If we forget about the first
term on the right–hand side of (2.10), the rest is already a Hardy inequality.
However, as this form is not very convenient for applications, one can replace
the Hardy weight λ in (2.10) with the positive function cρ−2 from Theorem
2.4 by exploiting the contribution of the first term as can be seen in the
following Lemma by [33].
Lemma 2.6. For any ψ ∈ C∞0 (R× (−a, a)),(

1 + a2‖Θ′‖2∞
)−1/2

‖ρ−1ψ‖2HΘ

≤ 16
(
1 + a2‖Θ′‖2∞

)1/2
‖f−1

0 ∂1ψ‖2HΘ +
(

2 + 64
|I|2

)
‖χIψ‖2HΘ ,

where I is any bounded subinterval of R, χI is the characteristic function of
the set I × (−a, a) and ρ is defined as in (2.8) with s0 being the centre of the
interval I.
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........................... 2.4. Hardy inequalities on twisted strips

Proof. The Lemma is a variation of the consecutive version of the one–
dimensional Hardy inequality∫

R

|u(x)|2

x2 dx ≤ 4
∫
R
|u̇(x)|2 dx, (2.11)

which is valid for all u ∈W 1,2(R), for which u(0) = 0. Putting b := |I|
2 , let us

define the function w : R→ [0, 1] by

w(s) :=
{

1 if |s− s0| ≥ b ,
|s−s0|
b if |s− s0| < b .

We can write ψ = wψ + (1 − w)ψ for any ψ ∈ C∞0 (R× (−a, a)). Using
(2.11) for the function s 7→ (wψ)(s, t), keeping the t fixed and integrating
over R× (−a, a), one obtains∫ |ψ|2

ρ2 ≤ 2
∫ |wψ|2
ρ2 − 1 + 2

∫
χI |(1− w)ψ|2

≤ 16
∫ (
|∂1w|2|ψ|2 + |w|2|∂1ψ|2

)
+ 2

∫
χI |(1− w)ψ|2

≤ 16
∫
|∂1ψ|2 +

(
2 + 16

b2

)∫
χI |ψ|2 .

Using the estimates for fΘ

1 ≤ f2
Θ ≤ 1 + a2‖Θ′‖2∞

along with the definition of HΘ, we arrive at the claim of the Lemma.

Now we can return to the proof of Theorem 2.4.

Proof of Theorem 2.4. As it is sufficient, we consider only functions ψ from
the dense subspace C∞0 (R× (−a, a)). Using the conclusion of Lemma 2.5,
let I be any closed interval on which λ is positive. Using

‖λ1/2ψ‖2HΘ = ε‖λ1/2ψ‖2HΘ + (1− ε)‖λ1/2ψ‖2HΘ ,

where ε ∈ (0, 1], neglecting the second term, and estimating the first one by
an integral over I × (−a, a), we apply Lemma 2.6. The inequality (2.10) then
reads

hΘ[ψ]− E1‖ψ‖2HΘ

≥
[
1− 16 ε (min

I
λ)
(

2 + 64
|I|2

)−1 (
1 + a2‖Θ′‖2∞

)1/2
]
‖f−1

Θ ∂1ψ‖2HΘ

+ ε(min
I
λ)
(

2 + 64
|I|2

)−1 (
1 + a2‖Θ′‖2∞

)−1/2
‖ρ−1ψ‖2HΘ .
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........................... 2.4. Hardy inequalities on twisted strips

Choosing ε to be the minimum from 1 and the value for which the first term
on the right–hand side of the last estimate vanishes, we obtain the result of
Theorem 2.4 with

c ≥ min
{ minI λ

(2 + 64/|I|2)(1 + a2‖Θ′‖2∞)1/2 ,
1

16(1 + a2‖Θ′‖2∞)

}
.

Moreover, we can prove a certain stability of the Hardy inequality against
slight curving of the strip. This is due to the presence of twisting, which
prevents the manifestation of bound states despite the strip being mildly
bent.
Theorem 2.7. Assume 〈?〉 as well as that Θ′ 6≡ 0 and a‖Θ′‖∞ <

√
2. Assume

also that for all s ∈ R

|k ·Θ| ≤ ε(s) := ε0
1 + s2 for some ε0 ∈ [0, a−1) .

Then there exists a positive constant C such that ε0 ≤ C implies

H ≥ E1 ,

which we understand in the form sense and where C depends on a and on
the constants c and s0 from Theorem 2.4.

Proof. The proof is founded on a comparison and explicit computation of
h[ψ] − E1‖ψ‖ and hΘ[ψ]− E1‖ψ‖HΘ , with the usage of Theorem 2.4. Let
ψ ∈ C∞0 (Ω0). Then for every s ∈ R, we can estimate f/fΘ as

f−(s) :=
√

1− 2aε(s) + a2ε2(s)
1 + a2‖Θ′‖2∞

≤ f(s, t)
fΘ(s, t) ≤ 1 + aε(s) =: f+(s) .

The lower bound is well defined and positive, with both bounds behaving like
1 +O(ε(s)) when ε0 → 0. We can thus state the following

h[ψ]− E1‖ψ‖2 ≥
∫

Ω0
f−1

+ f−1
Θ |∂1ψ|2

+
∫

Ω0

(
|∂2ψ(s, t)|2 − E1|ψ(s, t)|2

)
f−(s)fΘ(s, t) dsdt

− E1

∫
Ω0

(f+ − f−)fΘ|ψ|2 .

Further estimate, using the proof of the previous theorem, reads

h[ψ]− E1‖ψ‖2 ≥min{f−1
+ (0), f−(0)}

(
hΘ[ψ]− E1‖ψ‖2HΘ

)
− E1

∫
Ω0

(f+ − f−)fΘ|ψ|2 .
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Using the result of Theorem, 2.4, we obtain an even stronger Hardy–type
inequality

h[ψ]− E1‖ψ‖2 ≥ ‖ω1/2ψ‖2HΘ ,

where
ω(s, t) :=

cmin{f−1
+ (0), f−(0)}

1 + (s− s0)2 − E1[f+(s)− f−(s)]

is positive for all sufficiently small ε0.

Combining this theorem with the localization of essential spectra for asymp-
totically flat strip 2.2, one immediately gets the subsequent corollary.
Corollary 2.8. Assume that Θ′ tends to zero as |s| → ∞ as well as the
premises of Theorem 2.7. Then

σ(H) = [E1,∞) .

Proof. As Theorem 2.7 provides that there is no spectrum below E1, we
use the same method used in the proof of Theorem 2.2 to show that all
η ∈ [E1,∞) are in the spectrum σ(H). Due to the upper bound ε(s) = ε0

1+s2
of |k · Θ|, ‖f,2‖∞,n, ‖1 − f‖∞,n and ‖ 1

f − 1‖∞,n all tend to zero as n → ∞.
Therefore, the whole spectrum coincides with the interval [E1,∞).
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Chapter 3

Möbius strip

One particular example of a closed ribbon in R3 is the Möbius strip, which
unorientability along with its similarity to either a cylinder or an annulus
(Fig. 3.1) makes its analysis desirable. Throughout this chapter, three different
models for the Möbius strip are considered – the fake, not–so–fake and full
model. The first two are analytically solvable as can be seen in first two
sections. However, as the last one resisted our attempts on finding analytical
solutions, the second half of this chapter is devoted to numerical simulations
of both the analytically solvable models and the full one. Comparisons of both
the numerical approximations with the analytical solution for the not–so–fake
model along with the behaviour of the full model in the narrow width limit
are presented here. In order to justify the numerical solutions of the full
model, we present a rigorous proof that, at least for narrow ribbons, the
full model can be very well approximated by the not–so–fake one in the last
section.

For the purpose of this thesis, we consider a circular Möbius strip with
constant twisting defined as follows. Let the base circle be described as

Γ : (0, 2π)→ R3 : s 7→
(
R cos s

R
,R sin s

R
, 0
)
,

for some fixed R > 0. In this case, there is no advantage of choosing the
relatively parallel adapted frame over the Frenet frame, as the latter is
correctly defined for this choice of the curve and in fact coincides with the
relatively parallel one, if the initial conditions are chosen as the vectors of the
Frenet frame. By easy calculations, one gets the following expressions for the
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......................................3. Möbius strip

Figure 3.1: By different choice of the function θ in the construction of the
ribbon (1.3), we can get different results. This particular example illustrates a
ribbon along a circle with the θ = π

2 ,
s

2R or 0 for the cylinder, Möbius strip and
annulus respectively.

tangent, the principal normal, the binormal and the curvature respectively:

T (s) =
(
− sin s

R
, cos s

R
, 0
)
,

N(s) =
(
− cos s

R
,− sin s

R
, 0
)
,

B(s) = (0, 0, 1),

κ(s) = 1
R
.

The time development then is given byTN
B


′

=

 0 κ 0
−κ 0 0
0 0 0


TN
B

 .
We construct the Möbius strip by the mapping L (1.3) with a special choice
on the “twisting” function θ and with ‘identifying’ the opposite ends of the
strip. As we aim to obtain only a half of a twist for one rotation, the easiest
way to do that is to set θ := s

2R , which gives us constant twisting as well.
Fixing the half width of the strip as some a > 0, the strip is then given by
the following mapping

L(s, t) := Γ(s) + t

[
N(s) cos s

2R −B(s) sin s

2R

]
,

for s ∈ (0, 2πR) and t ∈ (−a, a). This mapping induces by the formula
gij := ∂iL · ∂jL the metric

(gij) =
(
f2 0
0 1

)
,

where

f(s, t) =

√(
1− t

R
cos s

2R

)2
+
(
t

2R

)2
. (3.1)
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s

t

0.6 0.8 1.0 1.2 1.4

Figure 3.2: Density plot of the metric function f .

The density plot of the function f can be found on Fig. 3.2.

When computed, the Laplace–Beltrami operator (1.5) is not separable in
this case. Therefore, some solvable approximations of the full Möbius strip as
well as numerical solutions are presented instead. All subsequent calculations
are for a Möbius strip of width 2a and length l, with the radius R being
R = l

2π .

3.1 Fake Möbius strip

We will start the discussion of approximative models with the simplest
setting – the fake (or flat) Möbius strip. In this case, the strip is perceived
as a flat rectangle of the desired size with two of the opposing sides identified
as indicated in Fig. 3.3. The sacrifice of the bending means that the Laplace–
Beltrami operator is separable and thus the problem can be solved analytically
as shown below.

Let Ω0 := (0, l)× (−a, a) and define a quadratic form h as
h[ψ] :=

∫
Ω0
|∇ψ|2 ,

Dom(h) :=
{
ψ ∈W 1,2(Ω0) | ψ(s,±a) = 0 ∀s ∈ (0, l),

ψ(0, t) = ψ(l,−t) ∀t ∈ (−a, a)
}
.

Clearly, h is symmetric, bounded from below, closed and densely defined. By
the representation theorem ([38, Thm. VI.2.6]), the operator H

Dom(H) := {ψ ∈ Dom(h) | ∃η ∈H , ∀φ ∈ Dom(h), h(φ, ψ) = (φ, η)} ,
Hψ := η .

associated with the form h is bounded from below and self–adjoint.
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Figure 3.3: The fake Möbius strip - a rectangle with two of the opposite sides
identified by the arrows.

However, let us consider the boundary value problem
−∆ψ = λψ , in (0, l)× (−a, a) ,

ψ(s,±a) = 0 , ∀s ∈ (0, l) ,
ψ(0, t) = ψ(l,−t) , ∀t ∈ (−a, a) ,

∂1ψ(0, t) = ∂1ψ(l,−t) , ∀t ∈ (−a, a) .

(3.2)

This is also the eigenvalue problem H̃ψ = λψ for the self–adjoint operator H̃
in L2 ((0, l)× (−a, a)) defined as

H̃ψ := −∆ψ

Dom(H̃) :=
{
ψ ∈W 2,2 ((0, l)× (−a, a)) ψ satisfies the boundary

conditions of (3.2)
}
.

It is easy to check that H̃ ⊂ H. As it is more convenient, let us work with H̃
for the moment. The spectrum of the operator H̃ can be found by considering
the (extended) periodic problem

−∆φ = µφ , in (−l, l)× (−a, a) ,
φ(s,±a) = 0 , ∀s ∈ (−l, l) ,
φ(−l, t) = φ(l, t) , ∀t ∈ (−a, a) ,

∂1φ(−l, t) = ∂1φ(l, t) , ∀t ∈ (−a, a) .

(3.3)

More precisely, (3.3) is the eigenvalue problem Tφ = µφ for the self–adjoint
operator T in an extended Hilbert space L2 ((−l, l)× (−a, a)) defined as

Tφ := −∆φ ,

Dom(T ) :=
{
φ ∈W 2,2((−l, l)× (−a, a)) φ satisfies the boundary

conditions of (3.3)
}
.

This problem can be solved by separation of variables and the spectrum of T
is well known in the form

σ(T ) =
{(

mπ

l

)2
+
(
nπ

2a

)2
}
m∈Z,n∈N

,
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where the convention N = {1, 2, . . . } is used. The corresponding eigenfunc-
tions of T are

φm,n = ϕm(s)χn(t),

where

ϕm(s) :=
√

1
2l e

iπ
l
ms , χn(t) :=


√

1
a cos(nπ2a t) if n is odd ,√
1
a sin(nπ2a t) if n is even .

The eigenfunctions {φm,n}m∈Z,n∈N of the self–adjoint operator T also form
a complete orthonormal set in L2 ((−l, l)× (−a, a)) (see [4]). By symmetry
properties of ϕm and χn, we have

φm,n(l,−t) = (−1)m+n+1 φm,n(0, t) ,
∂1φm,n(l,−t) = (−1)m+n+1 ∂1φm,n(0, t) .

Thus φm,n satisfies the boundary conditions of (3.2) if, and only if, m+ n is
odd. Consequently,

σ(H̃) ⊃
{(

mπ

l

)2
+
(
nπ

2a

)2
}
m∈Z, n∈N, m+n is odd

(3.4)

and the corresponding normalised eigenfunctions of H̃ are given by the
restrictions

ψm,n :=
√

2φm,n � (0, l)× (−a, a) , m ∈ Z, n ∈ N, m+ n is odd .

To show that the right-hand side of (3.4) determines all the eigenvalues of H̃,
we need the following result.
Proposition 1. {ψm,n}m∈Z, n∈N, m+n is odd is a complete orthonormal set in
L2((0, l)× (−a, a)).

Proof. The property that {φm,n}m∈Z, n∈N is a complete orthonormal set in
L2((−l, l)× (−a, a)) is equivalent to the validity of the Parseval equality

‖f‖2 =
∑

m∈Z, n∈N
|(φm,n, f)|2 (3.5)

for every f ∈ L2((−l, l)× (−a, a)). Given an arbitrary g ∈ L2((0, l)× (−a, a)),
we define the extension

f(s, t) :=
{
g(s, t) if s > 0 ,
g(s+ l,−t) if s < 0 .

By an obvious integral substitution, it is straightforward to check the identity

‖f‖2 = 2 ‖g‖2 . (3.6)
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Figure 3.4: A plot of ψ0,1, the eigenfunction corresponding to the lowest eigen-
value of the fake Möbius strip with R = 18

2π and a = 1.3.

At the same time, using in addition to the substitution the symmetry proper-
ties of ϕm and χn, we have

(φm,n, f) = 1√
2

[1 + (−1)m+n+1] (ψm,n, g) . (3.7)

Putting (3.6) and (3.7) into (3.5), we get the Parseval inequality

‖g‖2 =
∑

m∈Z, n∈N
m+n is odd

|(ψm,n, g)|2 ,

which is equivalent to the desired completeness result.

As a consequence of this proposition, we conclude with the result

σ(H̃) =
{(

mπ

l

)2
+
(
nπ

2a

)2
}
m∈Z, n∈N, m+n is odd

. (3.8)

However, as the found eigenfunctions of H̃ form a complete orthonormal set,
we conclude that H̃ = H and indeed

σ(H) = σ(H̃) =
{(

mπ

l

)2
+
(
nπ

2a

)2
}
m∈Z, n∈N, m+n is odd

.

Remark 3.1. The lowest eigenvalue

λ0,1 =
(
π

2a

)2

is simple and the corresponding eigenfunction ψ0,1 (see Fig. 3.4) is positive.
The eigenvalues λm,n with m 6= 0 are always degenerate. In particular, this is
true for the second eigenvalue

min{λ1,2 = λ−1,2, λ2,1 = λ−2,1}.

Furthermore, if l = 2a then the second eigenvalue 5π2

4a2 has multiplicity four !
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3.2 Not–so–fake Möbius strip

In this section, more realistic model of the Möbius strip is discussed. It arises
from the fake strip, but we add the effective potential V0 defined as

V0(s, t) := − π
2

2l2 cos(2πl s) . (3.9)

For a density plot of the potential, please see Fig. 3.5. Even though the
model is still flat, the addition of V0 makes it applicable to very narrow strips
(when their width tends to zero). Rigorous proof of this claim can be found
in Section 3.6.

Let us start with a quadratic form h0
h0[ψ] :=

∫
Ω0
|∇ψ|2 +

∫
Ω0
V0|ψ|2 = h[ψ] +

∫
Ω0
V0|ψ|2 ,

Dom(h0) :=
{
ψ ∈W 1,2(Ω0) ψ(s,±a) = 0 ∀s ∈ (0, l),

ψ(0, t) = ψ(l,−t) ∀t ∈ (−a, a)
}
.

We have already established that h is bounded from below and closed. De-
noting v0[ψ] :=

∫
Ω0
V0|ψ|2, v0 is a symmetric quadratic form. Moreover, it is

relatively bounded with respect to h with the relative bound being 0, as

Dom[h] ⊂ Dom[v0] = L2(Ω0)

v0[ψ] =
∫

Ω0
V0|ψ|2 ≤

π2

2l2 ‖ψ‖
2 .

Then, by [38, Sec. VI.1.6], h0 is bounded from below and closed, as well
as densely defined. By the representation theorem ([38, Thm. VI.2.6]), the
operator H0

Dom(H0) := {ψ ∈ Dom(h0) | ∃η ∈H , ∀φ ∈ Dom(h0), h0(φ, ψ) = (φ, η)} ,
H0ψ := η .

associated with the form h0 is bounded from below and self–adjoint.

Now consider the boundary value problem

(
−∆ + V0(s, t)

)
ψ = λψ , in (0, l)× (−a, a) ,

ψ(s,±a) = 0 , ∀s ∈ (0, l) ,
ψ(0, t) = ψ(l,−t) , ∀t ∈ (−a, a) ,

∂1ψ(0, t) = ∂1ψ(l,−t) , ∀t ∈ (−a, a) ,

(3.10)
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s

t

-0.015 -0.010 -0.005 0 0.005 0.010 0.015

Figure 3.5: A density plot of the effective potential V0 (see (3.9)) for the Möbius
strip with width 2a = 2.6 and length l = 18.

where l and a are arbitrary positive numbers and the potential V0 is defined
in (3.9). More precisely, (3.10) is the eigenvalue problem H̃0ψ = λψ for the
self-adjoint operator H̃0 in L2((0, l)× (−a, a)) defined as follows:

H̃0ψ :=
(
−∆ + V0(s, t)

)
ψ ,

Dom(H̃0) :=
{
ψ ∈W 2,2((0, l)× (−a, a)) ψ satisfies the boundary

conditions of (3.10)
}
.

Again, H̃0 ⊂ H0 and we consider the spectral problem of operator H̃0 first
for convenience. The spectrum of H̃0 can be found once more by considering
the periodic problem

(
−∆ + V0(s, t)

)
φ = ζφ , in (−l, l)× (−a, a) ,

φ(s,±a) = 0 , ∀s ∈ (−l, l) ,
φ(−l, t) = φ(l, t) , ∀t ∈ (−a, a) ,

∂1φ(−l, t) = ∂1φ(l, t) , ∀t ∈ (−a, a) .

(3.11)

More precisely, (3.11) is the eigenvalue problem Sφ = ζφ for the self-adjoint
operator S in an extended Hilbert space L2((−l, l)× (−a, a)) defined as

Sφ :=
(
−∆ + V0(s, t)

)
φ ,

Dom(S) :=
{
φ ∈W 2,2((−l, l)× (−a, a)) φ satisfies the boundary

conditions of (3.11)
}
.

The eigenvalues and eigenfunctions of S can be found by separation of variables.
In the variable t we get the same result as in the previous section. The
normalised eigenfunctions of − d2

dt2 in L2((−a, a), dt) with Dirichlet boundary
conditions are numbered by n ∈ N and given by

χn(t) :=


√

1
a cos(nπ2a t) if n is odd ,√
1
a sin(nπ2a t) if n is even .

The corresponding eigenvalues are(
nπ

2a

)2
, n ∈ N.
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The case of the second variable s is a little bit more involved. After the
separation, we arrive at the following differential equation

− ϕ′′(s)− π2

2l2 cos
(2π
l
s

)
ϕ(s) = νϕ(s) . (3.12)

It turns out that this is the Mathieu differential equation. Before we proceed
any further let us first review basic properties of Mathieu functions.
Remark 3.2 (Mathieu functions). We use the following notation (see also [12]).
Fix q, µ ∈ R and consider the ordinary differential equation

y′′(η) +
(
µ− 2q cos(2η)

)
y(η) = 0 . (3.13)

This equation has a 2π-periodic solution if and only if µ = ar(q) or µ = br(q),
where ar(q), r ∈ N0, and br(q), r ∈ N, are the so called Mathieu characteristic
values. These characteristic values satisfy

q > 0 : a0 < b1 < a1 < b2 < a2 < · · · ,
q < 0 : a0 < a1 < b1 < b2 < a2 < · · · , (3.14)
q = 0 : ar(0) = br(0) = r2 .

The Mathieu integral order functions cer(η, q), r ∈ N0, and ser(η, q), r ∈ N,
are defined in the following way: cer(η, q) is the even solution of (3.13) with
µ = ar(q) and ser(η, q) is the odd solution of (3.13) with µ = br(q). Both
cer(·, q) and ser(·, q) are 2π-periodic. Moreover, ce2r(·, q) and se2r+2(·, q) are
π-periodic and ce2r+1(·, q) and se2r+1(·, q) are antiperiodic with antiperiod
π. For any q ∈ R, the integral order Mathieu functions cer(η, q) and ser(η, q)
taken together form an orthogonal basis in L2((−π, π), dη

)
(see [1, §20.5]).

We assume both cer(η, q) and ser(η, q) are normalised to
√
π in L2((−π, π), dη

)
,

i.e. the equalities∫ π

−π

∣∣ cer(η, q)
∣∣2 dη =

∫ π

−π

∣∣ ser(η, q)∣∣2 dη = π

hold for all possible values of r. This convention is in agreement with [12]
and it is respected by Mathematica, too. The (anti)periodicity then implies∫ π

0

∣∣ cer(η, q)
∣∣2 dη =

∫ π

0

∣∣ ser(η, q)∣∣2 dη = π

2 .

Let us return to the equation (3.12). Employing a simple change of the
independent variable, η = π

l s, we immediately get the Mathieu equation (3.13)
(with q = −1

4 and µ = l2

π2 ν). Thus the equation (3.12) has the following
2l-periodic and normalised solutions if and only if ν satisfies one of the
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indicated conditions

ϕ(1)
r (s) := 1√

π
ser
(
π

l
s,−1

4

)
, if br

(
−1

4

)
= l2

π2 ν , for some r ∈ N ,

(3.15)

ϕ(2)
r (s) := 1√

π
cer

(
π

l
s,−1

4

)
, if ar

(
−1

4

)
= l2

π2 ν , for some r ∈ N0 .

(3.16)

The eigenvalues of S therefore are

σ(S) =
{(

nπ

2a

)2
+ π2

l2
ar

(
−1

4

)}
n∈N
r∈N0

∪
{(

nπ

2a

)2
+ π2

l2
br

(
−1

4

)}
n∈N
r∈N

.

The corresponding normalised eigenfunctions form an orthogonal basis of
L2((−l, l)× (−a, a), ds dt

)
,

φ(1)
r,n(s, t) := ϕ(1)

r (s)χn(t), r ∈ N , n ∈ N ,

φ(2)
r,n(s, t) := ϕ(2)

r (s)χn(t), r ∈ N0 , n ∈ N .

Let us now find the eigenfunctions and eigenvalues of the not–so–fake Möbius
strip operator H̃0. Note that for any j = 1, 2 the functions ϕ(j)

r are antiperi-
odic, resp. periodic, with antiperiod l, resp. period l, whenever r is odd, resp.
even. Using this observation we establish the following key property of the
eigenfunctions of S, namely

φ(j)
r,n(s+ l,−t) = ϕ(j)

r (s+ l) · χn(−t) = (−1)rϕ(j)
r (s) · (−1)n+1χn(t)

= (−1)r+n+1φ(j)
r,n(s, t) , (3.17)

for any j = 1, 2 and all permissible r and n. In particular, setting s = 0 in
the last equation we have

φ(j)
r,n(l,−t) = (−1)r+n+1φ(j)

r,n(0, t) .

and thus φ(j)
r,n, j = 1, 2, satisfies the boundary conditions of (3.10) if and only

if r + n is odd. Consequently,

σ(H̃0) ⊃
{(

nπ

2a

)2
+ π2

l2
ar

(
−1

4

)}
n∈N
r∈N0

n+r odd

∪
{(

nπ

2a

)2
+ π2

l2
br

(
−1

4

)}
n∈N
r∈N

n+r odd

,

(3.18)
and the corresponding normalised eigenfunctions of H̃0 are given by the
restrictions

ψ(j)
r,n :=

√
2φ(j)

r,n � (0, l)× (−a, a)

where (r, n) ∈ N× N if j = 1 and (r, n) ∈ N0 × N if j = 2. That the normal-
isation factor

√
2 is correct follows from the final equations in Remark 3.2

and equations (3.15) and (3.16). For an illustration of how the ϕ(j) look like,
please refer to the Fig. 3.6.
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φ4
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(2)

Figure 3.6: Illustration of the longitudinal parts, i.e. ϕ(j), of the first five
eigenfunctions for the not–so–fake Möbius strip of length l = 18 and width
2a = 2.6.

The kind reader surely feels an awkwardness in the last paragraph. Before
we proceed any further let us therefore try to simplify our notation by putting

N1 := N× N and N2 := N0 × N .

To show that the right-hand side of (3.18) determines all the eigenvalues
of H̃0, we need the following result analogous to Proposition 1.
Proposition 2.

{
ψ

(j)
r,n
}
j=1,2, (r,n)∈Nj , r+n is odd is a complete orthonormal set in

L2((0, l)× (−a, a)).

Proof. The property that the set
{
φ

(j)
r,n
}
j=1,2, (r,n)∈Nj

is a complete orthonor-
mal set in L2((−l, l)× (−a, a)) is equivalent to the validity of the Parseval
equality

‖f‖2 =
∑

j=1,2, (r,n)∈Nj

∣∣(φ(j)
r,n, f

)∣∣2 (3.19)

for every f ∈ L2((−l, l)× (−a, a)). Given an arbitrary g ∈ L2((0, l)× (−a, a)),
we define the extension f ∈ L2((−l, l)× (−a, a)) by

f(s, t) :=
{
g(s, t) if s > 0 ,
g(s+ l,−t) if s < 0 .

By an obvious integral substitution, it is straightforward to check the identity

‖f‖2 = 2 ‖g‖2 . (3.20)

At the same time, using in addition to the substitution the symmetry prop-
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erty (3.17) we have

(
φ(j)
r,n, f

)
=
∫

(−l,0)×(−a,a)
φ(j)
r,n(s, t)g(s+ l,−t) dsdt

+
∫

(0,l)×(−a,a)
φ(j)
r,n(s, t)g(s, t) dsdt

=
∫

(0,l)×(−a,a)
φ(j)
r,n(s− l,−t)g(s, t) dsdt

+ 1√
2

∫
(0,l)×(−a,a)

ψ(j)
r,n(s, t)g(s, t) dsdt

= (−1)r+n+1
√

2

∫
(0,l)×(−a,a)

ψ(j)
r,n(s, t)g(s, t) dsdt

+ 1√
2

∫
(0,l)×(−a,a)

ψ(j)
r,n(s, t)g(s, t) dsdt

= 1√
2
(
(−1)r+n+1 + 1

)(
ψ(j)
r,n, g

)
. (3.21)

Putting (3.20) and (3.21) into (3.19), we get the Parseval inequality

‖g‖2 =
∑

j=1,2, (r,n)∈Nj
r+n is odd

∣∣(ψ(j)
r,n, g

)∣∣2 ,
which is equivalent to the desired completeness result.

As a consequence of this proposition, we conclude with the desired result
H̃0 = H0 and the spectrum of H0 reads

σ(H0) =
{(

nπ

2a

)2
+ π2

l2
ar

(
−1

4

)}
n∈N
r∈N0

n+r odd

∪
{(

nπ

2a

)2
+ π2

l2
br

(
−1

4

)}
n∈N
r∈N

n+r odd

.

Remark 3.3. The smallest eigenvalue of the operator H0 = H + V0 is given
by (indeed, note equations (3.18) and (3.14))(

π

2a

)2
+ π2

l2
a0

(
−1

4

)
.

Therefore, we get the estimate(
π

2a

)2

︸ ︷︷ ︸
λ0,1

+π2

l2
a0

(
−1

4

)
≤ λ0,1 ,

as (according to Mathematica)

π2a0

(
−1

4

)
≈ −0.3063466 .
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3.3 Full Möbius strip

As stated beforehand, the full Möbius strip eluded our attempts at analytical
solutions. Therefore, in this section, we only present the formal statement
of the spectral problem as opposed to including the solutions as well. The
numerical solutions are presented in a later section instead.

For the full model, we consider the following boundary value problem

−
( 1
f
∂1

1
f
∂1 −

1
f
∂2 f ∂2

)
ψ = λψ , in (0, l)× (−a, a) ,

ψ(s,±a) = 0 , ∀s ∈ (0, l) ,
ψ(0, t) = ψ(l,−t) , ∀t ∈ (−a, a) ,

∂1ψ(0, t) = ∂1ψ(l,−t) , ∀t ∈ (−a, a) ,

(3.22)

where f is defined in (3.1). Again, (3.22) is the eigenvalue problem Haψ = λψ
for the self–adjoint operator Ha in L2 ((0, l)× (−a, a), f ds dt) defined as
follows

Haψ := −
( 1
f
∂1

1
f
∂1 −

1
f
∂2 f ∂2

)
ψ ,

Dom(Ha) :=
{
ψ ∈W 2,2((0, l)× (−a, a)) ψ satisfies the boundary

conditions of (3.22)
}
.

3.4 Numerical prerequisites

This section serves as a brief review of some basic approaches of numerical
mathematics used in our study of the spectrum of the Laplace–Beltrami
operator on the Möbius strip with various boundary conditions. As this thesis
is not primarily concerned with the topic of programming and numerical
solutions, the goal of this text is to provide only a short recollection of the
utilized procedures.

Out of the numerous ways how one can (at least) numerically solve partial
differential equations, we elected for the Finite Difference Method (FDM).
This procedure is based on substituting the derivatives with their respective
finite differences. In other words, the problem of finding solutions to the
partial differential equation is converted to a much easier problem of solving
a system of linear algebraic equations.
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s

t

−a

a

l0
nt + 1 points

ns + 1 points

Figure 3.7: Rectangular grid formed by (nt + 1) · (ns + 1) points from the strip
(0, l)× (−a, a).

Let us consider only a one–dimensional example for the moment. Be
u : (a, b)→ R a differentiable function. Then in the FDM, the first derivative
of u can be approximated using various finite differences:

forward difference: u′(x) ≈ u(x+ h)− u(x)
h

,

symmetric difference: u′(x) ≈ u(x+ h)− u(x− h)
2h ,

backward difference: u′(x) ≈ u(x)− u(x− h)
h

.

Each differences can be useful in a different situation. The second derivative,
u′′, is usually replaced by the following expression

u′′(x) ≈ u(x+ h)− 2u(x) + u(x− h)
h2 ,

which is obtained by combining the forward and backward difference for the
first derivative and then using the symmetric one.

Applying this procedure to higher–dimensional problems, the differences
are done in each variable separately, i.e. (using the forward difference)

ψ,s(s, t) ≈
ψ(s+ h, t)− ψ(s, t)

h
.

Normally, the discretization is based on a simple rectangular grid (see Fig. 3.7).
However, this approach was found unsuitable for our model of the full Möbius
strip, which can be found in this chapter, due to the nodes at the seam
and their subsequent glueing. The resulting matrices were not symmetric,
which considerably complicated the numerical algorithms, resulting in some
imaginary numerical residues in the spectrum. We therefore implemented
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another discretization scheme, which circumvents this problem by shifting
all the nodes in the s direction by a half of the difference, ds

2 . The resulting
shifted grid can be found on Fig. 3.8. This, together with fine choosing from
the possible differences, secured the correct execution of the computation.

s

t

−a

a

l0
nt + 1 points

ns points

Figure 3.8: Rectangular shifted grid formed by (nt + 1) · ns points from the
strip (0, l)× (−a, a).

After converting the partial differential problem to simple algebraic equa-
tions, the operator in question is effectively replaced by a matrix operator
acting in the vector space CN (with potentially large N), the solutions being
vectors from there. Increasing the number of points for discretization, that
is by enhancing the resolution of the discretization, promises the numerical
solutions to approach the original ones as the differences are closer to the
actual value of the derivatives. This effect is demonstrated in the following
section.

3.5 Numerical experiments

In this section, we present results of our numerical experiments. In order to
find a numerical approximation to the eigenvalues of operators H,H0 and Ha,
we employ the finite difference discretization of the operator in question as
stated in the previous section. As already discussed there, the discretization
is based on a simple, resp. shifted, rectangular grid (see Figures 3.7 and 3.8).
Additionally, the finer the grid is, the better approximation of the original
spectrum we are expected to get. This effect is demonstrated in Figure 3.9
(fake Möbius) and Figure 3.10 (not–so–fake Möbius). As the spectrum of
the full Möbius strip cannot be found analytically, we are unable to present
such comparison. Nevertheless, we present at least the asymptotic behaviour
in Fig 3.11. As we claim that the not–so–fake model is a reasonably good
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approximation for narrow strips, the comparison of the respective eigenvalues
is presented in Fig. 3.15.

As for the eigenfunctions, the comparison of the first three can be found in
Fig. 3.12 and Fig. 3.13 for the fake vs. not–so–fake and not–so–fake vs. full
model respectively.

Please note that all results are computed for our special choice of a Möbius
strip with length l = 18 and width 2a = 2.6. To obtain the spectrum for
different values of length and width, the whole process needs to be repeated
as the eigenvalues are not easily scaled according to these parameters. The
metric function f for a width n2a and a length ml reads

f(s, t) =

√(
1− n

m

aτ

R
cos 2πξ

)2
+
(
n

m

)2 ( aτ
2R

)2
,

for τ ∈ (−1, 1) and ξ ∈ (0, 1). We can se that the scaling depends only on
the ratio of the width and length, however, this dependence is not trivial.
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Fake Möbius, a = 1.3, L = 18.0

Figure 3.9: Graphical representation of the bottom of σ(H) (fake Möbius) and
its approximation by the finite difference method. We have chosen a = 1.3 and
l = 18. The horizontal axis gives the size of the discretized matrix operator,
which is related to the number of points in the grid (nt + 1) · (ns + 1) (we have
taken nt = 2 + i and ns = 4 + 2i with i = 1, 2, . . . , 50). Grey lines indicate the
actual eigenvalues of H as given in (3.8)).
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0 1,000 2,000 3,000 4,000 5,000
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Figure 3.10: Graphical representation of the bottom of σ(H0) (not–so–fake
Möbius) and its approximation by the finite difference method. We have chosen
a = 1.3 and l = 18. The horizontal axis gives the size of the discretized matrix
operator which is related to the number of points in the grid (nt + 1) · (ns + 1)
(we have taken nt = 2 + i and ns = 4 + 2i with i = 1, 2, . . . , 50). Grey lines
indicate the actual eigenvalues of H0 as given in (3.18)). As one can see on the
left–hand side of the figure there are few very closely clustered eigenvalues (these
are not degeneracies). From the picture, it is not obvious that the numerical
result captures this effect correctly. Therefore, we present Table 3.1 where one
can see the actual numerical values.
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i λ1 λ2 λ3 λ4 λ5

1 1.33033 1.44221 1.44325 1.66392 1.66495
2 1.38548 1.50198 1.50298 1.78154 1.78154
3 1.41162 1.53030 1.53128 1.83916 1.83916
4 1.42598 1.54586 1.54683 1.87144 1.87144
5 1.43470 1.55530 1.55626 1.89124 1.89124
6 1.44038 1.56145 1.56241 1.90423 1.90423
7 1.44428 1.56568 1.56664 1.91321 1.91321
8 1.44708 1.56871 1.56967 1.91965 1.91965
9 1.44915 1.57096 1.57191 1.92444 1.92444
10 1.45073 1.57267 1.57362 1.9281 1.92810
11 1.45196 1.57400 1.57495 1.93094 1.93094
12 1.45293 1.57506 1.57601 1.93321 1.93321
13 1.45372 1.57591 1.57686 1.93504 1.93504
14 1.45437 1.57661 1.57756 1.93653 1.93653
15 1.45490 1.57719 1.57814 1.93778 1.93778
16 1.45535 1.57768 1.57862 1.93882 1.93882
17 1.45573 1.57809 1.57903 1.93970 1.93970
18 1.45605 1.57844 1.57938 1.94046 1.94046
19 1.45633 1.57874 1.57969 1.94111 1.94111
20 1.45657 1.57900 1.57995 1.94167 1.94167
21 1.45679 1.57923 1.58018 1.94216 1.94216
22 1.45697 1.57943 1.58038 1.94259 1.94259
23 1.45713 1.57961 1.58055 1.94297 1.94297
24 1.45728 1.57976 1.58071 1.94331 1.94331
25 1.45741 1.57990 1.58085 1.94361 1.94361
26 1.45752 1.58003 1.58098 1.94388 1.94388
27 1.45763 1.58014 1.58109 1.94412 1.94412
28 1.45772 1.58024 1.58119 1.94434 1.94434
29 1.45781 1.58033 1.58128 1.94454 1.94454
30 1.45788 1.58042 1.58136 1.94472 1.94472
31 1.45795 1.58049 1.58144 1.94488 1.94488
32 1.45802 1.58056 1.58151 1.94503 1.94503
33 1.45807 1.58063 1.58157 1.94516 1.94516
34 1.45813 1.58068 1.58163 1.94529 1.94529
35 1.45818 1.58074 1.58168 1.94540 1.94540

∞ 1.45905514 1.58168901 1.58263442 1.94745194 1.94745204

Table 3.1: Five smallest eigenvalues of the operator H0 (not–so–fake Möbius).
We have chosen a = 1.3 and l = 18. The parameter i is related to the grid
coarseness, in particular nt = 2 + i and ns = 4 + 2i. The last row presents the
exact value computed by Mathematica (see (3.18)). The values of λ2 and λ3,
and λ4 and λ5, are indistinguishable in Figure 3.10.
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Full Möbius, a = 1.3, L = 18

Figure 3.11: Graphical representation of the bottom of σ(Ha) (full Möbius) and
its approximation by the finite difference method. We have chosen a = 1.3 and
l = 18. The horizontal axis gives the size of the discretized matrix operator
which is related to the number of points in the grid (nt + 1) · (ns + 1) (we have
taken nt = 2 + i and ns = 4 + 2i with i = 1, 2, . . . , 50). As we do not know
the exact value of the actual eigenvalues, there is no grey line visualising the
wanted asymptotic behaviour. However, it is clear that the lowest eigenvalues
converge.
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(a) : Fake Möbius, λ1 ≈ 1.4600

s

t

0 0.05 0.10 0.15 0.20

(b) : Not–so–fake Möbius, λ1 ≈ 1.4591

s

t

0 0.1 0.2 0.3 0.4 0.5

(c) : Fake Möbius, λ2,3 ≈ 1.5818

s

t

-0.2 -0.1 0 0.1 0.2

(d) : Not–so–fake Möbius, λ2 ≈ 1.5817

s

t

-0.50 -0.25 0 0.25 0.50

(e) : Fake Möbius, λ4,5 ≈ 1.9474

s

t

-0.1 0 0.1 0.2

(f) : Not–so–fake Möbius, λ3 ≈ 1.5826

s

t

-0.50 -0.25 0 0.25 0.50

Figure 3.12: Plots comparing the first three eigenvectors of the fake Möbius strip and of the not–so–fake Möbius strip for the strip of width
a = 1.3 with the length l = 18. For the fake model, all eigenvalues except the first are degenerate. However, it is not the case in the not–so–fake
model, as the potential V0 causes the degeneracy to disappear.
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(a) : Not–so–fake Möbius, λ1 ≈ 1.4591

s

t

0 0.1 0.2 0.3 0.4 0.5

(b) : Full Möbius, λ1 ≈ 1.4583

s

t

0 0.005 0.010 0.015 0.020 0.025

(c) : Not–so–fake Möbius, λ2 ≈ 1.5817

s

t

-0.50 -0.25 0 0.25 0.50

(d) : Full Möbius, λ2 ≈ 1.4614

s

t

-0.02 -0.01 0 0.01 0.02

(e) : Not–so–fake Möbius, λ3 ≈ 1.5826

s

t

-0.50 -0.25 0 0.25 0.50

(f) : Full Möbius, λ3 ≈ 1.4615

s

t

-0.03 -0.02 -0.01 0 0.01 0.02

Figure 3.13: Plots comparing the first three eigenvectors of the not–so–fake Möbius strip (on the left) and of the full Möbius strip (on the
right) for the strip of width a = 1.3 with the length l = 18.
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(a) : First eigenfunction of the full Möbius,
λ1 ≈ 1.4583

0

0.005
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0.020

0.025

(b) : Second eigenfunction of the full Möbius,
λ2 ≈ 1.4614

-0.02

-0.01

0

0.01

0.02

(c) : Third eigenfunction of the full Möbius,
λ3 ≈ 1.4614

-0.03

-0.02

-0.01

0

0.01

0.02

Figure 3.14: Visualization of the first three eigenfunctions of the full Möbius strip coiled on the actual strip.
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Figure 3.15: Plot of ratios of the first two computed eigenvalues of the full
Möbius strip and the not–so–fake one for different widths of the strip of length
l = 18. Clearly, the not–so–fake model is a good approximation of the full one
for narrow ribbons.

3.6 Norm–resolvent convergence

In order to establish that the not–so–fake operator (3.10) is truly not so bad
of an approximation of the full operator (3.22), we need to compare the two
operators somehow. As the operators act on different Hilbert spaces, namely
H ′
a := L2((0, l) × (−a, a), dsdt) and Ha := L2((0, l) × (−a, a), f dsdt), we

cannot compare them directly. Therefore, we employ the strategy of norm–
resolvent convergence, as can be found in [34] or, in more abstract settings,
in [31].

Firstly, we must utilize a unitary transformation U mapping Ha onto
H1 := L2((0, l)× (−1, 1), ds dτ),

U : Ha →H1 ,

operating such that

φ(s, τ) ≡ (Uψ)(s, τ) :=
√
a
√
f(s, aτ)ψ(s, aτ) ,

where f is given by (3.1). For the not–so–fake model, it is enough the utilize
the unitary transformation U ′ : H ′

a →H1 given by

φ(s, τ) ≡ (U ′ψ)(s, τ) :=
√
aψ(s, aτ) .

After these unitary transformations, the expression of the operators reads
the following:

H ′0 = −∂2
s −

1
a2∂τ + V0 , (3.23)
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s
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0 0.05 0.10 0.15 0.20

Figure 3.16: Density plot of the full potential Va for the Möbius strip of length
l = 18 and width a = 2.6.

for the not–so–fake case, with the potential V0 being

V0(s) := −
cos s

R

8R2 ,

and
H ′a = −∂s

1
f2∂s −

1
a2∂τ + Va , (3.24)

where the potential Va can be written as

Va = V1 + V2

with

V1 =
[(

2a2t2 cos s
R

+ 3a2t2 − 8atR cos s

2R + 4R2
)3
]−1

{
atR3

(
48 cos s

2R + 16 cos 3s
2R

)
+ a3t3R

(
98 cos s

2R + 24 cos 3s
2R + 4 cos 5s

2R

)
− a4t4

(67
4 + 21 cos s

R
+ 3 cos 2s

R
+ 1

2 cos 3s
R

)
−a2t2R2

(
67 + 60 cos s

R
+ 12 cos 2s

R

)}
and

V2 =
8R4 cos s

R(
2a2t2 cos s

R + 3a2t2 − 8atR cos s
2R + 4R2)3 .

This division is beneficial for capturing the behaviour of the different parts of
the potential, as surely

V1
a→0−→ 0 ,

V2 − V0
a→0−→ 0 .

To visualise the potential, please refer to the density plots of V0 and Va on
Fig. 3.5 and Fig. 3.16 respectively.

In order to prove that H ′0 approximates H ′a in a sense as a→ 0, we show
that the difference of the respective resolvents tends to zero in operator norm.
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Choosing some fixed ζ > 0, we set

R := (H ′a + ζ)−1

R0 := (H ′0 + ζ)−1.

Writing out the definition of the norm,

‖R−R0‖ = sup
F,G∈H1

| (F, (R−R0)G) |
‖F‖‖G‖

,

it is clear that it is enough to investigate the scalar product (F, (R−R0)G).
Therefore we arrive at the following

(F, (R−R0)G) =
(
(H ′0 + ζ)φ, ψ

)
−
(
φ, (H ′a + ζ)ψ

)
= h′0(φ, ψ)− h′a(φ, ψ) ,

where

φ := R0F ,

ψ := RG ,

and h′0, h′a are quadratic forms corresponding to the operators H ′0, H ′a. Cal-
culating the difference of those quadratic forms, we get

h′0(φ, ψ)− h′a(φ, ψ) =
∫
φ̄,sψ,s

(
1− 1

f2

)
ds dτ +

∫
φ̄ψ(V0 − Va) ds dτ

≤ max
{
‖1− 1

f2 ‖∞, ‖V0 − Va‖∞
}

(‖φ,s‖ ‖ψ,s‖+ ‖φ‖ ‖ψ‖) .

Furthermore, we have the following upper bounds

‖φ‖ ≤ 8R2

8ζR2 − 1 ‖F‖

‖φ,s‖ ≤
√

8R2

8ζR2 − 1 ‖F‖

‖ψ‖ ≤ 1

ζ +
165
4 a4−126a3R+139a2R2−64aR3+8R4

(5a2+8aR+4R2)3

‖G‖

‖ψ,s‖ ≤
√√√√√ 4R2 + 8R+ 5

4R2
(
ζ +

165
4 a4−126a3R+139a2R2−64aR3+8R4

(5a2+8aR+4R2)3

) ‖G‖
meaning, that

‖R−R0‖ ≤ max
{
‖1− 1

f2 ‖∞, ‖V0 − Va‖∞
}
j ,

with

j =
8R2 +

√
(8R2 + 16R+ 10)(8R2ζ − 1)

(
ζ +

165
4 a4−126a3R+139a2R2−64aR3+8R4

(5a2+8aR+4R2)3

)
(8R2ζ − 1)

(
ζ +

165
4 a4−126a3R+139a2R2−64aR3+8R4

(5a2+8aR+4R2)3

) .
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As the term max
{
‖1− 1

f2 ‖∞, ‖V0 − Va‖∞
}
goes to 0 with a→ 0 as O(a), the

norm ‖R−R0‖ → 0 as requested. We therefore conclude that the not–so–fake
model is a suitable approximation for the behaviour of very thin ribbons.

Let us finish with a statement which summarizes this section.
Theorem 3.4. Let H ′0, H ′a be defined as in (3.23), resp. (3.24). Then there
exists a constant C such that for all a < R,

‖(H ′a − ζ)−1 − (H ′0 − ζ)−1‖ ≤ aC

for some fixed ζ > 0.
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Conclusion

This thesis was dedicated to generalizing of several theorems about the
spectral behaviour of the Laplace–Beltrami operator with Dirichlet boundary
condition on quantum nanoribbons in arbitrary dimension as well as finding
the spectrum of the (full) Möbius strip.

The first chapter includes a summary of the theoretical foundations needed
for the study of the quantum nanoribbons. The necessary prerequisites as
well as the actual construction of the waveguide is outlined there, followed
by an example of the construction in three dimensions with its specifics, and
concluded by an introduction of some used notation.

In the second chapter, we present the spectral results of this thesis. Firstly,
the Hamiltonian is properly introduced as a bounded self–adjoint operator
acting on the quantum ribbon. Next, the spectrum of an asymptotically flat
strip is localised, with the result matching our expectation from the situation
in three dimensions (see [28]). The theorem claiming the manifestation of
bound states for purely bent strips is also analogous to the one already known
in three dimensions. Lastly, Hardy inequalities, which arises in twisted strips,
are discussed along with their sufficient conditions.

Finally, the last chapter contains both analytical and numerical solutions
for three different model of the Möbis strip. The solutions for the two easier
ones – the fake and not–so–fake model, which can be found analytically, are
presented. For the last model of the full strip, which sadly eluded our attempts
on finding an analytical solution, the numerical solutions are presented instead.
Several different comparisons of all of the cases are executed throughout the
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chapter, supporting our claim that the solely numerical solution of the full
model is plausible. We conclude the chapter with proving that in the limit
of a thin strip, the full model converges to the not–so–fake on in the norm–
resolvent sense, which justifies the inclusion of the not–so–fake model in our
discussion of the Möbius strip.

For future investigations, we leave open the question whether the sufficient
conditions for the Hardy inequality are really necessary or not. Another
possibility for investigation is regarding the scaling of the spectrum of the
Möbius strip, as the numerical results presented here were calculated only for
a particular choice of the strip and the scaling formula is not obvious.
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