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on the φ4 theory, from which we bene�t in later chapters. In these we discuss Weyl conformal
theory of gravity and its quantum extensions. We put forward arguments showing this theory
is phenomenologically suitable for the description of early universe cosmology. Our leading
principle is the article by P. Jizba, H. Kleinert and S. Scardigli [1] and our goal is to recover same
results, mainly for the one-loop e�ective potential. We �nd the one-loop e�ective potential to
coincide with the form presented in Ref. [1] even when a di�erent (and in gravity non-equivalent)
regularization � namely zeta-function regularization � is employed. Further we �nd parameters
of the theory so, that the Weyl conformal theory coincides with the Starobinsky gravity after the
dynamical breakdown of conformal symmetry. Finally, we provide some discussion concerning
potential phenomenological implications in the early universe cosmology.

Key words: Quantum gravity, Weyl quantum gravity, Quantum Field Theory,
E�ective action, Zeta function regularization



Contents

1 Mathematical Preliminaries and Motivation 9

1.1 Why Quantum Gravity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Mathematical Background and Notation . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Gaussian Integrals and Their Generalizations . . . . . . . . . . . . . . . . 12
1.2.2 Legendre Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 E�ective Action in Quantum Field Theories 19

2.1 Functional Integral Formulation of QFT . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Generating Functional of the Full Green Functions . . . . . . . . . . . . . . . . . 20

2.2.1 Z0[J ] for a Free Theory, Wick Expansion, Basic Relations . . . . . . . . . 20
2.2.2 Interacting Theory, Wick Expansion, Z[J ] as a Generating Functional . . 22
2.2.3 The Dyson�Schwinger Equation . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Generating Functional of the Connected Green Functions . . . . . . . . . . . . . 27
2.3.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 Dyson�Schwinger in Terms of Connected Green Functions . . . . . . . . . 29

2.4 The E�ective Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 E�ective Action as a Generator of 1PI Green Functions . . . . . . . . . . 31
2.4.2 E�ective Action as a Legendre Transformation of W [J ] . . . . . . . . . . . 32
2.4.3 E�ective Action of the Free Theory . . . . . . . . . . . . . . . . . . . . . . 33
2.4.4 Dyson�Schwinger in Terms of the 1PI Green Functions . . . . . . . . . . . 33
2.4.5 Semi-Classical Limit � Tree Expansion . . . . . . . . . . . . . . . . . . . . 35
2.4.6 The Amputated Green Functions . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.7 The Full Propagator as a Series of 1PI Green Functions . . . . . . . . . . 37
2.4.8 Loop Expansion, One-Loop E�ective Action, E�ective Potential . . . . . . 39
2.4.9 Euclidean and Minkowskian Regime . . . . . . . . . . . . . . . . . . . . . 41

3 Zeta Function Regularization 43

3.1 Brief Overview of Regularization Methods . . . . . . . . . . . . . . . . . . . . . . 43
3.2 The Spectral Zeta Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 The Heat Kernel for the Spectral zeta Function . . . . . . . . . . . . . . . . . . . 45
3.4 One-Loop E�ective Potential for the φ4 Theory . . . . . . . . . . . . . . . . . . . 47

4 Weyl Conformal Theory of Gravity and Its Quantization 51

4.1 Physical Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 The Linearization of Weyl Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Hubbard�Stratonovich Transformation, Linearized Action . . . . . . . . . . . . . 57

7



4.5 Quantization of Weyl Conformal Gravity . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Functional Determinants, The One-Loop E�ective Potential . . . . . . . . . . . . 65
4.7 The Emergence of Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8 Physical Interpretation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Conclusions 73

8



Chapter 1

Mathematical Preliminaries and

Motivation

1.1 Why Quantum Gravity?

This work focuses on quantum gravity and it is therefore appropriate to start with a little
bit of history and a discussion of the problems associated with the quantization of gravity.
The gravitational interaction was probably the �rst interaction noticed by man. Nevertheless its
subtleties eluded us until the beginning of the 20th century. The �rst description of gravitational
pull that explained the movements of celestial objects and stated a precise mathematical law,
however, was made by sir I. Newton (published in 1687). The law itself introduced a gravitational
charge, that is numerically equal (by de�nition of the gravitational constant G) to the inertia
of a body. This equality (or direct proportionality) was experimentally checked and rechecked
over time, reaching precision of 10−13 as of today. Even though the Newton's gravitational law
was and a great success, it has a very disturbing property � the instantaneous e�ect over any
distance.

Until the electromagnetism was fully described by a set of four equations by J. C. Maxwell
in 1861/62 there was no better foundations of physical principles than Galileo principle of rela-
tivity and Newton's second law of motion. However, with Maxwell's equations it became clear,
that Newtonian theory based on Galilean invariance contradicts the consequences of electromag-
netism, for the Maxwell's equations inevitably postulate an existence of a fundamental constant
of the speed of light. It was clear then, that the Galileo transformation laws cannot be correct
in general (assuming electromagnetism was more fundamental). This problem was resolved by
A. Einstein in 1905 with his ground-breaking Principle of Special Relativity (or the Theory of
Special Relativity (STR), however, it is more of a fundamental principle that should be obeyed
by all other theories, than a theory by its own right). A. Einstein proposed to use a new trans-
formation law, namely the Lorentz transformation, to make two inertial observers agree on a
result of any experiment. This transformation has one parameter, the speed of light, that does
not change and stays the same in all inertial reference frames, hence it respects the Maxwell's
equations.

There was also the similarity between the Coulomb law of electric force and the Newton's
law of gravitation. These are, however, di�erent in one very important and fundamental fact �
the Coulomb law is applied only in a static limit, whereas the Newton's law had no restrictions.
By comparison with the Coulomb law, it was inferred then, that it should also apply just in a
case of two masses with constant distance.

9



To extrapolate the fundamental principle of special relativity from inertial reference frames
to any frames (thus incorporating accelerating frames) A. Einstein strained himself from 1905 to
1915 until he formulated the Theory of General Relativity (GR) in 1915. This theory is based
on three fundamental postulates

1. The Principle of Equivalence

Any accelerated frame is locally equivalent to that under the in�uence of a gravitational �eld
and the inertia of the moving body is by de�nition equal to the gravitational charge/mass.

2. The Principle of General Relativity

At every point in spacetime it is possible to operate in a Local (Cartesian) Inertial System
(LIS) in which all laws of physics are equivalent to those governed by the Special Theory
of Relativity.

3. The Principle of General Covariance

The formulation of physical laws is independent of the choice of coordinates i.e. all coor-
dinate frames are equal.

The theory of general relativity is together with quantum electrodynamic the most tested, exper-
imentally veri�ed and also most precise theory humankind has ever created. It predicted many
new e�ects and answered some old questions, such as � the advance of the perihelion of Mercury,
the gravitational red shift, the gravitational time dilatation, gravitational lensing, gravitational
waves, frame dragging, black holes and much more. Its beauty lies in its geometrical interpre-
tation of dynamical four dimensional background described by the metric tensor and shaped
(curved and stretched) by the presence of matter, that serves as the arena for all physical reality
around us. It has deepened our understanding and use of topology, di�erential geometry and of
tensor calculus. It also introduced a new fundamental type of invariance of physical laws that
now serves as a cornerstone for any general relativistic theory (including quantum theories of
gravity) � the di�eomorphism invariance � which follows from the principle of general covariance.

The theory of general relativity was one of the biggest successes of science, however, after the
birth of Quantum Mechanics it became clear, that these two theories cannot coexist in peace.
The Quantum Mechanics was the solution to several seemingly unsolvable problems of the 20th
century � the black body radiation (M. Planck), the photoe�ect (A. Einstein) and the structure
of the atom (A. Compton,E. Rutherford and others). It introduced the idea of a wave-particle
duality of matter and a probabilistic character of the nature, forever discarding any chance of a
fully deterministic theory of (not only) elementary particles. The main imperfection of the theory
was, however, its purely non-relativistic regime. Meaningful relativistic extensions encountered
surprising di�culties with one particle kinematics pointing to only one solution � the use of �eld
theory with in�nite degrees of freedom. And so the Quantum Field Theory was born thanks to
P. Dirac, W. Pauli, V. Weisskopf and P. Jordan.

Quantum Field Theory is by construction a special relativistic theory that serves as a frame-
work for the physics of elementary constituents of nature and their governing laws. The �rst
�child� of the quantum �eld theory was Quantum Electrodynamics (QED) created by R. Feyn-
man, F. Dyson, J. Schwinger, S. Tomonaga and many others. It fully covers the theory of
electron and positron interaction intermediated by photons. The description of the nucleus and
other elementary particles took a little longer than expected, because experimental physicists
kept discovering dozens of new particles and it seemed there is no sense in that �zoo of particles�.
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The result is what we call today the Standard Model with the underlying theory � the Quantum
Chromodynamics (QCD).

It seems that we can do almost miracles with only a few fundamental principles taken as
a starting point of any physical theory. The principle of special relativity and the quantum
theoretical postulates set the basic framework for all physics � hermitian operators on an Hilbert
space, where we represent known physical invariances of nature. Quantum Mechanics was by
itself successful only up to a certain degree of precision. The precision and applicability of
the quantum theory deepened by imposing the invariance under the Lorentz transformation i.e.
incorporating the principle of special relativity. It would seem obvious, that the next step in
our understanding is merging the quantum theory with the principle/theory of general relativity,
thus yielding so much wanted theory of everything (or at least theory of quantum gravity). After
many decades of work, however, it seems that general relativity is absolutely incompatible with
the quantum point of view.

Some problems are obvious � the theory of general relativity is formulated in a framework of
four dimensional spacetime with space and time coordinates that are treated on equal footing.
Einstein's equations put an equal sign between the curvature of the spacetime and the presence
of energy/momentum in that very same spacetime. The theory is, by the principle of general
covariance, background independent and can be vied as a description of the physical arena
of nature. This arena is dynamical and the equations are non-linear in the sense, that the
gravitational �eld itself carries a gravitational charge (i.e. energy), thus the �eld in�uences its
own dynamics. This also means, that any form of energy gravitates, hence decreases its energy
by creating a potential well of gravitational �eld around itself.

The quantum theory, on the other hand, proposes indeterministic behaviour and unpre-
dictability of any value of dynamical degrees of freedom, giving birth to virtual pairs of particles
and vacuum energy. The quantum �eld theories have space and time on the same footing (as
a requirement of STR), nevertheless they distinguish time as the parameter of time evolution
driven by the Hamiltonian. This by itself poses a great di�culty, for the Hamiltonian of general
relativity (as of a fully constrained theory) is always zero (on-shell) and so there is nothing, that
would generate �time evolution� in the usual sense. It would be preferable to view the metric
tensor of general relativity as just another �eld, however the problem is the coordinate �space�,
in which this �eld should exist. An insurmountable problem represents the non-linearity of the
gravitational �eld from the point of view of the quantum �uctuations. This is also related to the
problem of the vacuum �uctuations � in general, quantum �eld theories add compensating terms
to Lagrangians set the zero energy level to a convenient point, which physically corresponds to
setting the energy of a vacuum to zero. The vacuum, however, is not �empty�, but full of virtual
particles and with interesting structure. The energy of the vacuum is not so much important
in QFT, but since it would generate a non-trivial gravitational �eld, the real structure of the
vacuum is a very important topic for quantum gravity.

We might question the need for the complete quantum theory based upon the principle of
general relativity. For most of the purposes the theories we have are su�cient and it seems that
quantum gravity would not bring anything profoundly new or important. However there are still
problems, for which we have no de�nite answer. At the time of the birth of general relativity,
there was only a little data concerning cosmology and/or data coming from the time near the
beginning of the universe. Observations of clusters of galaxies and of stars in galaxies are pointing
to the fact, that there must be additional matter contained in the universe, since the angular
velocities of stars around the centres of galaxies (or galaxies around the centres of clusters of
galaxies) do not agree with the theoretical predictions based on Keppler's laws. Because we
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cannot see this additional gravitating source, it does not interact electromagnetically or strongly.
We call it the Dark Matter and the estimates based on the observations of the cosmic microwave
background show, that it makes up about 25% of the known energy contents of the universe.
We have also no reasonable explanation for the observed accelerated expansion of the universe
which is apparently going on for 7 billion years already. It is either driven by an unknown form
of energy responsible for negative pressure � the Dark Energy � which makes up about 70% of
the energy content of the universe and is somehow related to the fabric of spacetime itself, since
its density does not decrease with the expansion, or the theory of gravity we have now simply is
not applicable at these scales.

Then there are problems involving high energies and Planck scale physics, where gravitational
e�ects would play almost equally important role as quantum mechanics. That is because at the
Planck scale, the Schwarzschild radius is comparable to the Compton's wavelength. Further we
have no reliable and precise framework for the description of the beginning of the universe. The
theory of horizons (cosmic or event) needs severe improvements, since the solutions given by the
general relativity are classical and it is unthinkable to suppose there are no quantum e�ects like
ripples propagating on the event horizon or the evaporization of a black hole caused by the event
horizon separating tiny black holes as the consequence of the unpredictable high energy ripples.
The Hawking radiation was the �rst e�ect that merges quantum mechanics with relativity, at
least to some extent, leading however to the infamous information paradox. All these problems
are pointing to the fact, that the theories we have are fundamentally incomplete and we should
be seeking for uni�cation of these fundamental physical theories and the principles they are based
on.

In this thesis we will focus on a speci�c type of gravitational theory � Weyl conformal gravity
� an alternative candidate, whose quantization shows great promise in its applicability to the
description of the early universe. The goal of this thesis is to improve and clarify results obtained
by P. Jizba, H. Kleinert and F. Scardigli in their article [1]. To that end we will �rst provide
a discussion of needed tools namely the e�ective action and the Zeta function regularization.
These will be then employed to the case of a quantum version of the Weyl gravity and we will
present the key calculations leading to the con�rmation of the results and their discussion.

1.2 Mathematical Background and Notation

In this section we recall some well known results based on calculations with Gaussian integrals,
as they will be relevant for us in further physical applications. It seems appropriate not to include
these into an appendix, since the below shown formulas will be seen later in the same form with
a lot of physical meaning behind it thus the general properties might not be clear. We will also
introduce notation which we will use throughout the text.

1.2.1 Gaussian Integrals and Their Generalizations

First we examine an integral of the Gaussian distribution

Z =

∫
ddx exp

(
− 1

2
xTAx

)
, (1.1)

where A ∈ Rd,d is a symmetric matrix and the spectrum σ(A) = {ai}di=1 is positive (i.e. all
ai > 0). Under these assumptions the matrix is diagonalizable by an orthogonal matrix O,
such that xTAx = xTOTOAOTOx ≡ yTDy, where y is a new vector and D is a diagonal matrix
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having ai as its elements. Since the matrix O is orthogonal, the Jacobian of the transformation
is identity and we can decompose the Z into d independent 1-dimensional Gaussian integrals

Z =
d∏
i=1

∫
dyi e−

1
2
aiy

2
=

d∏
i=1

√
2π

ai
=

(2π)d/2√
detA

. (1.2)

Before we go further, we remark on the possibility of zero eigenvalue ai of A. In that case,
the integration over yi cannot be performed and we are left with a divergent term coming from
the integral of a constant over real numbers. In the context of quantum �eld theory, however,
the integrand may contain further terms (for example a potential) and the integration may be
performed and yield �nite result. These zero eigenvalues correspond to the so-called zero-modes

and play an important role for example in �nding soliton solutions.
We will now generalize this result to

Z(b) =

∫
ddx e−

1
2
xTAx+b x , (1.3)

where b ∈ Rd and b x is a standard scalar product. It is clear, that for a special choice of b = 0 we
have Z(0) = Z. To calculate Z(b), we �nd the minima of the exponent by solving −Aijxj+bi = 0
to obtain new suitable variables for substitution (we are shifting to the point of the minima)
xi 7→ A−1

ij bj + yi in order to rearrange the exponent and obtain

Z(b) =

∫
ddy e−

1
2
yTAy+ 1

2
bTA−1b = e

1
2
bTA−1b

∫
ddy e−

1
2
yTAy = Z(0) e

1
2
bTA−1b . (1.4)

Regarding the integrands as a distribution determined by the matrix A, we might be interested
in computing expected (or mean) values of variables xi denoted by

〈xi . . . xj〉 =
1

Z(0)

∫
ddxxi . . . xj e−

1
2
xTAx , (1.5)

where the factor 1/Z(0) is there to normalize the expectation value (i.e. 〈1〉 = 1). These are
called by di�erent names in di�erent contexts. They are known as higher moments in statistics,
correlation functions in statistical physics and green functions in quantum mechanics and �eld
theory. Since these might become di�cult to calculate, we use the so-called Feynman trick with
a derivative in the form

∂

∂bk
Z(b) =

∫
ddx

∂

∂bk
e−

1
2
xTAx+bx =

∫
ddxxk e−

1
2
xTAx+bx . (1.6)

Therefore we can easily write

〈xi . . . xj〉 =
1

Z(0)

∂

∂bi
. . .

∂

∂bj

∣∣∣∣
b=0

Z(b) =
∂

∂bi
. . .

∂

∂bj

∣∣∣∣
b=0

e
1
2
bTA−1b , (1.7)

since setting b equal to zero at the end of the calculation will replace Z(b) with Z(0) = Z, which
de�nes the Gaussian distribution. It is easy to see, that this trick extends to any function with
a polynomial expansion series, thus we can write

〈F (x)〉 =
1

Z(0)
F
[ ∂
∂b

]∣∣∣∣
b=0

Z(b) = F
[ ∂
∂b

]∣∣∣∣
b=0

e
1
2
bTA−1b . (1.8)
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We shall also mention one form of the Wick expansion (in this context known as the cumulant
expansion), which states, that the expectation value for odd number number of variables is zero
and for even number we obtain

〈xi1 . . . xis〉 =
∑

all possible pairings
p of {i1 . . . is}

〈
xip1xip2

〉
. . .
〈
xips−1

xips
〉
, (1.9)

This identity can, of course, be proven by induction, however, it can also be seen from the
fact that Z(b) is quadratic in b and that the exponential survives the derivative. Thus, only after
we di�erentiate a term twice, there is a non-vanishing result (remember, that we set b = 0 at the
end), yielding all possible pairs of xi and xj .

This expansion enables us to introduce a �connected� term in the Wick expansion. Imagine,
we are to evaluate the following integral

I(λ) =

∫
ddx e−

1
2
xTAx−λV (x) , (1.10)

where V (x) is a polynomial in x. We might use (1.7) and the expansion of exp to obtain a
relation

I(λ) = Z(0)
〈

e−λV (x)
〉

= Z(0)
∑
k

(−λ)k

k!

〈
V (x)k

〉
. (1.11)

Here, we stumble upon terms
〈
V (x)k

〉
, for which the Wick expansion provides a new perspective �

either the variables from each V (x) are coupled only within themselves and form clusters, or they
also couple with variables from another V (x) in the product. Thus, for example, the connected
clusters at the second order form a factorization of the form

〈
V (x)2

〉
=
〈
V (x)2

〉
C

+ 〈V (x)〉2C.
There exists a formula how the correlation functions (1.9) can be decomposed into a product of
the cumulants. To make our work easier, we de�ne a function, that includes only the connected
terms

W (λ) ≡ ln I(λ) = lnZ(0) +
∑
k=1

(−λ)k

k!

〈
V (x)k

〉
C
. (1.12)

It is crucial to remark, that all these calculations can be generalized to an in�nite number of
dimensions (d→∞), which formally makes the index i continuous. The formulas then transform
according to the following scheme (summation over repeating indices is always implied):

∑
i

→
∫

dxi

d

dbk
→ δ

δb(xk)

a · b = ai bi →
∫

dxi a(xi)b(xi)

aTAb→
∫

dx dy a(x)A(x, y)b(y)

...

(1.13)
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Especially let us consider an inverse G of a �nite-dimensional matrix A. In the continuous limit A
becomes a di�erential operator � in particular, we are interested in cases, where A is a di�erential
operator in one variable only, thus it is multiplied by a delta function

AikGkj = δij →
∫

dxk A(xi, xk)G(xk, xj) = δ(xi − xj)∫
dxk A(xi)δ(xi − xk)G(xk, xj) = A(xi)G(xi, xj) = δ(xi − xj) ,

(1.14)

thus in this special case the inverse matrix is the Green function.
With this in mind, we will use the compact notation with indices �i�, �j�, etc., always keeping

in mind, they might stand for a continuous �index� xi and summation is replaced by integration.
We will also sometimes use notation fx instead of f(x),to make it more clear, that the index is
continuous.

1.2.2 Legendre Transform

In the following chapters will also make use of the Legendre transform and its properties,
however, it seems that most textbooks of physics use this tool somewhat vaguely. We will try to
be more careful with the terms and also remind us of the correct mathematical de�nition.

For a convex function f : R 7→ R we de�ne a new function g : R 7→ R, such that

g(y) = sup
x∈R
{xy − f(x)} ≡ max

x∈R
F (x, y) , (1.15)

This transformation is know as Legendre�Fanchel transform and it becomes the usual Legendre
transform in the case of f being a di�erentiable function. Under these conditions F (x, y) is
di�erentiable as well and we may search for the maximum by solving an equation ∂F (x,y)

∂x = 0.
Let x0 be the solution, then

0 =
∂F (x0, y)

∂x
= y − ∂f(x0)

∂x
⇒ ∂f(x)

∂x

∣∣∣∣
x0

= y . (1.16)

It is clear, that this solution is parameterized by y so we should write x0(y). The Legendre
transform of f is then a function

g(y) = x0y − f(x0) = x0(y)y − f(x0(y)) , (1.17)

of only one variable y. With this, we obtain the familiar relations

∂g(y)

∂y
= x0,

∂g(y)

∂x0
= y − df(x0)

dx0
= 0 and

∂f(x)

∂y
=

∂

∂y

(
x0y − g(y)

)
= 0 . (1.18)

On the other hand, acting with a total di�erential operator on (1.17) instead of the partial one,
one obtains

dg(y)

dx0
= y + x0

dy(x0)

dx0
− df(x0)

dx0
= x0

d2f(x0)

dx2
and

df(x0)

dy
=

d

dy

(
x0y − g(y)

)
= y

d2g(y)

dy2
,

(1.19)
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hence it is clear we must not forget to make distinction between the partial and the total deriva-
tives and the fact that while doing a partial derivative, the implicitly de�ned relation x0(y) is
being set as a constant.

We shall show one more identity, namely that the second derivatives of the functions f and
g are inverse to each other. Taking a derivative of the de�ning relation for y in (1.16) w.r.t. x0

and multiplying it it with the derivative of x0 from (1.18) w.r.t. y, we obtain

dy

dx0
=

d2f(x0)

dx2
,

dx0

dy
=

d2g(y)

dy2
⇒ dy

dx0

dx0

dy
= 1 =

d2f(x0)

dx2

d2g(y)

dy2
. (1.20)

Now, that we have demonstrated the intricacies on the simple example, we will relax the notation
of x0 and use only x keeping in mind, that for total derivatives there is actually an implicit relation
de�ned by (1.16).

Now we generalize the Legendre transform to higher dimensions � let x ∈ Rd and f : Rd 7→ R a
convex and di�erentiable function (the convexity of the function may be ensured by the positivity
of the Hessian matrix). We de�ne a Legendre transform of f to be a function g : Rd 7→ R such
that the following properties hold:

f(x) + g(y) = xiyi where yi :=
∂f(x)

∂xi
. (1.21)

Here we can again show (using the same tricks as in the one dimensional case), that the following
relations hold

∂g(y)

∂yi
= xi ,

∂f(x)

∂yi
= 0 =

∂g(y)

∂xi
but

dg(y)

dxi
=
∂2f(x)

∂xi∂xk
xk ,

df(x)

dyi
=
∂2g(y)

∂yi∂yk
yk . (1.22)

The analogue of (1.20) now states that the Hessian matrices of functions f and g are inverse to
each other i.e.

∂2f(x)

∂xi∂xk

∂2g(y)

∂yk∂yj
= δij . (1.23)

As in the previous section, we can formally extend all these formulas to in�nite dimension,
with the same substitutions as in (1.13), however, we are no longer able to make distinction
between the partial and the total derivatives, as the functional derivatives are directional by
de�nition (they are the analogue of the partial derivatives). For this reason, we will use the
symbols d

dai
and ∂

∂ai
also in the case of the continuous index in places, where there would be a

possibility of confusion. We will, of course, use the full notation of the functional calculus, when
appropriate.

Because we will be often working with objects several times di�erentiated w.r.t. to many
variables, we will use a compact notation for these objects as

F
(n)
i1...in

≡ F (n)
i1...in

(x) ≡ ∂nF (x)

∂xi1 . . . ∂xin
←→ δnF [f(x)]

δf(xi1) . . . δf(xin)
, (1.24)

where the �rst de�nition states, that if we do not explicitly specify the argument, none
special was substituted after the di�erentiation and the former argument is still in place. In this
notation, the last formula considering the Legendre transformation (1.23) would read

f
(2)
ik g

(2)
kj = δij . (1.25)
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We also choose to work with a metric tensor respecting the Landau�Lifschitz convention
η = diag(+,−,−,−) and in units where c = 1 = ~. We will, however, sometimes recover the
Planck's constant for discussion of its physical meaning.
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Chapter 2

E�ective Action in Quantum Field

Theories

This chapter will be devoted to a description of a path integral approach to quantum �eld
theories, particularly to one of its useful tools � the E�ective Action. We will try to show its
relations to other physical quantities present in �eld theories and give some intuitive idea, what
the e�ective action represents. We will see, that the name is not at all arbitrary � the e�ective
action is in the semi-classical limit identical to the classical action and on the quantum level
provides a systematic (at least in principle) way of calculating quantum corrections in the form
of loop expansion. All theoretical framework will be accompanied by demonstrations on the φ4

theory, and the goal of this chapter will by to introduce and work out an example of use of all
tools needed for the calculation of the e�ective potential done in the Chapter 4. This chapter
will be a summary based on textbooks [2, 3, 4, 5].

We would also like to remark on the fact, that there are several sign conventions and they
are usually chosen to give nice formulas in speci�c textbooks. Thus, every textbook has its
own specialities, which are then very hard to combine. The ambiguities in sing conventions
include: overall sign of the Minkowskian action, sign of the propagator, sign of the source J ,
sign (or overall factor) of W [J ] etc. The inconsistencies of the results are sometimes very hard
to overcome and we will stumble upon numerous discussions trying to make sense of it all.

2.1 Functional Integral Formulation of QFT

We will not go into any detail about the basic notions of path integrals in quantum mechan-
ics or its generalizations to �eld theories. We are also acquainted with the problems of rigorous
mathematical formulation of path integrals. Some of the problems might be addressed by per-
forming all calculations in the so-called Euclidean regime, where the integral is well behaved.
Here we rely on the paper by K. Osterwalder and R. Schrader [6], who proved the equivalence
between the Minkowskian and the Euclidean regime in �at spacetimes.

We shall also relax strict distinction between the terms �path integral� and �functional in-
tegral� even though these should be di�erentiated, since in the �eld theory, we sum over �eld
con�gurations and not paths in the sense of a trajectory of a particle. We also choose to work
in a �xed dimension of four.

Let us �rst start by a formal de�nition of the Wick rotation, which replaces the Minkowskian
functional integral with the Euclidean one. It is de�ned as a transformation of the coordinates
xµ → x̄µ so that x̄0 = ix0 and x̄i = xi, which means we have rotated the time evolution from
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the real axis to the imaginary one. This transformation changes the sign in front of the kinetic
term in the Lagrangian, e�ectively transforming the signature of the metric, which is the reason
why we speak of a Euclidean regime. To see the change explicitly, let us �rst write a free �eld
equations of motion for a (uncharged) scalar theory, which is given by the Klein�Gordon equation(

∂2
t −∆ +m2

)
φ(x) =

(
� +m2

)
φ(x) = 0 . (2.1)

A Lagrangian, which yields these equations of motion must be of the form (up to a sign, of
course)

L =
1

2

∫
d3x ∂µφ∂

µφ−m2φ2 = −1

2

∫
d3xφ

(
� +m2

)
φ , (2.2)

where we have performed an integration by parts and used the fact, that the total divergence
part does not change the equations of motion. Upon creating action from this Lagrangian and
performing the Wick rotation, we obtain

S[φ] = −
∫

d4x
1

2
φ
(
� +m2

)
φ → iSE[φ] = i

∫
d4x

1

2
φ
(
− ∂̄µ∂̄

µ
+m2

)
φ , (2.3)

where ∂̄µ∂̄
µ

= ∂2
x̄0

+ ∆̄ and we now work with a positively de�nite metric. This transformation
makes the weight factor in the path integral negative

eiS[φ] → e−SE[φ] (2.4)

thus the path integral becomes well behaved. This chapter will be based on the Euclidean regime,
drawing parallels with the general formalism introduced in the Chapter 1 and we shall return to
the Minkowskian regime in Chapter 4 where we won't be able to make use of the Osterwalder�
Schrader theorem. The relation between the Euclidean and the Minkowskian regimes will be
presented as a summary in section 2.4.9

2.2 Generating Functional of the Full Green Functions

2.2.1 Z0[J ] for a Free Theory, Wick Expansion, Basic Relations

To formulate one of the central objects of the path integral formulation of quantum physics,
we de�ne a Green function of the free �eld operator � + m2, which we denote ∆̃ and call the
(free �eld) propagator. Because we want to use the Wick rotation, we must ensure, that the
poles of the propagator are not in the 1st or 3rd quadrant of the complex plane, since that is
where the rotation to imaginary time takes place. For that reason we shift the poles in such
a way, that they lay in the 2nd and the 4th quadrant, which de�nes the Feynman propagator.
Now, denoting the free �eld operator in the �x-representation� (� +m2)δ(x− y) ≡ K̃(x, y), we
can �nally use the results we have prepared in the previous mathematical section and de�ne

Z0M[J̃ ] =

∫
Dφ ei

∫
d4x
(
− 1

2
φ(x)(�+m2)φ+J̃(x)φ(x)

)
=

∫
Dφ exp

{
i
(
−1

2
φxK̃xyφy + J̃xφx

)}
, (2.5)

which very much resembles (1.3) except for the i in the exponent. The subscript 0 signi�es we
deal with the free theory and M that this is the Minkowskian regime. After performing the Wick
rotation, we rede�ne the source J̃(x) to J(x̄) so, that the new exponent is equal to
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Z0[J ] =

∫
Dφ e−S0E[φ]+

∫
d4x̄J(x̄)φ(x̄) ≡

∫
Dφ exp

{
−1

2
φx̄Kx̄ȳφȳ+Jx̄φx̄

}
≡
∫
Dφ e−S0[φ,J ] , (2.6)

where we have de�ned new Euclidean action S0[φ, J ] = S0E[φ]− Jx̄φx̄ and we have dropped the
subscript E to ease the notation. This rede�nition of the source is comfortable, for now we need
no compensating signs when searching for the expectation values. As we have already pointed
out, the Wick rotation to imaginary time makes the integral bounded and well behaved. As a
consequence we can now regard it as a Gaussian distribution de�ned by the in�nite matrix Kx̄ȳ

assigned to the Euclidean free �eld operator −∂̄µ∂̄
µ

+m2. We will further ease the notation and
leave out the bars above the Euclidean coordinates. To simplify the integral, we use formulas
from chapter 1, namely (1.4) to obtain

Z0[J ] = Z0[0] exp
(1

2
Jx∆xyJy

)
= N

(
detK

)−1/2
exp

(1

2
Jx∆xyJy

)
, (2.7)

where ∆ is now Euclidean free �eld Feynman propagator. This result can by nicely analytically
continued in x̄0 back to real times which is what we expect and need for further calculations.
The constant N contains for the factor (2π)d/2 is seemingly in�nite, but we can include it
in the normalization of Z0[0]1. We usually call the functional Z0[J ] the partition function in
statistical mechanics, but in this context, we use the term generating functional of full n-point

green functions.
Le us not present some properties of the generating functional and give it a physical meaning.

Firstly, from the general mathematical discussion in Chapter 1 we see it is possible to calculate
expectation values of �elds φ in terms of Z[J ] as

〈φ(x) . . . φ(y)〉0 =
δ

δJ(x)
. . .

δ

δJ(y)

∣∣∣∣
J=0

exp
(1

2
Jx∆xyJy

)
. (2.8)

These are called the full n-point Green functions or full n-point correlation functions. From the
physical point of view, they correspond to the vacuum expectation values 〈0|T

(
φ(x) . . . φ(y)

)
|0〉0

� this can be seen for example from the generalization of the path integral formulation of quantum
mechanics. We can generalize this expectation value to

〈0out|T
(
φ(x) . . . φ(y)

)
|0in〉J0 =

δ

δJ(x)
. . .

δ

δJ(y)
exp

(1

2
Jx∆xyJy

)
, (2.9)

which is a vacuum to vacuum matrix element of the operator T (φ(x) . . . φ(y)). The superscript
J points to the fact, that the source is active and it in�uences the system, changing the Hilbert
spaces assigned to the system. Thus the ground states changes as well and they are no longer
identical to each other, hence the notation |0in〉 and |0out〉. In this sense the generating functional
Z0[J ] itself corresponds to 〈0out|0in〉J � a probability amplitude for the vacuum to evolve back
into a vacuum under the in�uence of the sources. We call 〈0out|0in〉J the persistence of the

vacuum. From this we conclude, that Z0[0] corresponds to 〈0|0〉 (no sources are present) which
we would like to normalize to 1, hence it can be dropped from the formulas, making (2.7) go to

Z0[J ] = exp
(1

2
Jx∆xyJy

)
. (2.10)

1This is a usual trick, which will be drawn upon several times later in the text. The reasoning behind the

legality of it is discussed below 2.19
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Secondly, we shall point out that Z0[J ] implicitly codes the dynamics of a free �eld theory,
since it contains the propagator, which can be extracted as a second variation w.r.t. the sources
and using the de�nition (2.8) we can also write it as

δ

δJx

δ

δJy

∣∣∣∣
J=0

Z0[J ] = ∆xy = 〈φxφy〉0 , (2.11)

hence we see that by de�nition the propagator is equal to a two-point Green function 〈φxφy〉0. It
also means that the propagator is symmetrical in its indices. This new relation makes it possible
for us to rephrase the Wick expansion for a free �eld theory in the language of the propagators
as

〈φi1 . . . φis〉0 =
∑

all possible pairings
p of {i1 . . . is}

∆ip1 ip2
. . .∆ips−1 ips

, (2.12)

for s even, and 0 for s odd. At this point, we can introduce a diagrammatic representation of
the objects we are dealing with. The representation in Feynman Diagrams makes it easier to
manipulate with the formulas and equations (they will be soon enriched by nasty integrals) and
more intuitive to grasp the quantum world. The propagator ∆ij is usually represented as a line
connecting two dots, as we see in Figure 2.1.

i Δij j 

Figure 2.1: Diagrammatic representation of the free �eld propagator.

To give an example, what the free �eld Wick expansion looks like, we �nd 〈φiφjφkφl〉0

〈φiφjφkφl〉0 = 〈φiφj〉0 〈φkφl〉0 + 〈φiφk〉0 〈φjφl〉0 + 〈φiφl〉0 〈φjφk〉0
= ∆ij∆kl + ∆ik∆jl + ∆il∆jk ,

(2.13)

and show its diagrammatic representation in Figure 2.2

Figure 2.2: Diagrammatic representation of the 4-point Green function for the free �eld theory.

2.2.2 Interacting Theory, Wick Expansion, Z[J ] as a Generating Functional

To show another important property of the generating functional, we extend its de�nition to
the interacting theory. Let us assume the Euclidean action is of the form

S[φ] =

∫
d4x

(
1

2
φ(x)K(x, y)φ(y) + VI(φ)

)
≡ S0[φ] +

∫
d4xVI(φ) , (2.14)

with VI(φ) being the interacting potential and S0[φ] the free �eld action. In order to be able
to use our compact notation, we assume the interaction potential has a series expansion with
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coe�cients Yi1...in which stand for n-legged vertices (see �g. 2.3), i.e. we expand the interaction
part of the action as

SI[φ] ≡
∫

d4xVI(φ) ≡
∑
n=3

1

n!
Yi1...inφi1 . . . φin . (2.15)

It is clear, that there can be no term of power two, which would only rescale the mass of the
�eld and also no linear term, since these are not physically interesting. For our example of the
φ4 theory, we have

SI[φ] =
1

4!
Yijklφiφjφkφl =

g

4!

∫
d4xi φ(xi) , (2.16)

from where we conclude, that Yijkl = g δijδikδil.
With this notation, the generating functional for the interacting theory is now de�ned as

Z[J ] ≡
∫
Dφ e−( 1

2
φxKxyφy+SI[φ]−Jφ) =

∫
Dφ e−

∫
d4xVI(φ) e−S0[φ,J ] . (2.17)

Now we use the Feynman trick with the derivatives and obtain

Z[J ] = e−
∫

d4xVI

(
δ
δJ

)
Z0[J ] = e−

∫
d4xVI

(
δ
δJ

)
e

1
2
Jx∆xyJy . (2.18)

We shall now de�ne expectation values of functions in this full, interacting theory by setting

〈φ(x) . . . φ(y)〉 =
1

Z[J ]

δ

δJ(x)
. . .

δ

δJ(y)

∣∣∣∣
J=0

Z[J ] , (2.19)

where we put the normalization factor 1/Z[J ] in order to cancel out the the vacuum divergences
(we will expand on this topic later). It is also worth noting that any multiplicative numerical
factor in front of Z[J ] is irrelevant to the expectation values (i.e. the physically relevant quanti-
ties) for if we chose NZ[J ] instead of Z[J ], the factor N would cancel itself out as can be seen
from the de�nition.

The de�nition works also for functionals F [φ], such as in (2.18)

〈F [φ]〉 =
1

Z[0]

∫
DφF [φ] e−S[φ] =

1

Z[J ]
F
[ δ
δJ

]∣∣∣∣
J=0

∫
Dφ e−S[φ,J ] =

1

Z[J ]
F
[ δ
δJ

]∣∣∣∣
J=0

Z[J ] ,

S[φ, J ] = S0[φ, J ] +

∫
d4xVI(φ) ,

(2.20)

We have already pointed out, that the for the free propagator the following property is very
important

∆xy = 〈φ(x)φ(y)〉0 = Z
(2)
0xy[0] . (2.21)

This notion of a propagator also holds in the interacting theory. Therefore now call 〈φ(x)φ(y)〉
the full propagator and we expect it to carry all information about a particle (�eld con�guration)
evolving from one con�guration into another

〈φ(x)φ(y)〉 =
1

Z[J ]

δ

δJx

δ

δJy

∣∣∣∣
J=0

Z[J ] =

(
1

Z[J ]

δ

δJx

δ

δJy
e−

∫
d4xVI

(
δ
δJ

)
Z0[J ]

)∣∣∣∣
J=0

. (2.22)
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Let us hint, how to �nd Z[J ] and the propagator for the φ4 theory up to the second order of
a coupling constant. We take VI(φ) = g

4!φ
4(x) and expand exp in a Taylor series, assuming the

coupling constant g is small, thus obtaining

Z[J ] =

[
1− g

4!

∫
d4x

( δ

δJ(x)

)4
+

1

2

( g
4!

)2
∫

d4x d4y
( δ

δJ(x)

)4( δ

δJ(y)

)4
]

e
1
2
Jx∆xyJy . (2.23)

After computing the variations and setting J = 0, one �nds the generating functional of the full
theory in the �rst order to be

Z[0] = Z0[0]
(

1 +
g

8
∆xx

∫
d4x

)
, (2.24)

which is clearly divergent due to both the integral over the spacetime and ∆xx = ∆(0). This
divergence accounts for the so-called vacuum bubbles, which are a manifestation of the fact, that
there may be in�nitely many interactions and interaction loops in an empty space (vacuum) that
will be never detected in an external device and we must de�ne the zero level of the energy. This
is also the reason, why we put the normalization factor 1/Z[J ] into the expectation value, since
upon setting J = 0 that term e�ectively eliminates all contributions of the vacuum bubbles.

The calculations are straightforward but lengthy and can be found in most textbooks on QFT.
We will therefore not perform them here, but show an easy and systematic way, how to �nd a
diagrammatic representation of the same thing in several di�erent ways. The �rst possibility is
to diagrammatically represent the equation (2.23). To that end we assign diagrams to Ji, Yij...l
and the operator δ

δJ as seen in �gure 2.3

i Ji

i δ/δJi 
i

j 

k l

mYijk...lm

Figure 2.3: Diagrammatic representation of the source Ji and the operator δ
δJ (left) and the interaction

vertex Yijk...lm (right).

Figure 2.4 illustrates the expansion of Z[J ] and in the second line it shows all diagrams
relevant for the full propagator 〈φ(x)φ(y)〉 to the second order of the coupling constant. This
expansion is also called the Wick expansion. To obtain the full result we think of the sources J
and the operators δ

δJ as complementary and we join them together. This accounts for the action
of the operator on the source. The operators δ

δJ are attached to the interaction vertices as is
prescribed by (2.23). For the full propagator we would then have to act on the resulting diagram
twice more by δ

δJ and then set J = 0, therefore we leave two waiting legs with sources Ji on
every end of the diagram � these will be acted on by the operators and the resulting diagrams
will constitute the only non-zero contributions after setting J = 0.

To arrive at the correct result, we must include some combinatorial factors to compensate
for the factorials from the expansion. The �rst non-trivial term is easy � we have two ways of
orienting Ji∆ijJj so we multiply the term by 2, which yields the �rst result. The second term is
a bit more complicated � we proceed systematically from the interaction vertex. Let us pick one
leg of the vertex � there are 4 options to do that. To this chosen leg we can attach one of three
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Z[J] =   1 + 1/4!  + 1/2(4!)2  +  ... 

1/2 + 1  1/222 +  + ... 

Z[J] =  

1/233! + 

+ 1/2 + 1 

Figure 2.4: The diagramatic version of the Wick expansion of the generator Z[J ] and the speci�c choice
of its solution for the full 2-point Green function.

Ji∆ijJj in two ways (orientation) i.e. we get 4 · 3 · 2 from the �rst step. Lets pick another leg
(3 left) which can be joined with one of 2 remaining Ji∆ijJj , times 2 for the orientation � this
step provides another 3 · 2 · 2. Now we have last two legs on the vertex and one Ji∆ijJj which
will close a loop. That can happen only 2 di�erent ways. Altogether, we have 4 · 3 · 2 · 3 · 2 · 2 · 2
options which exactly compensate for the factor 1

4!
1
3!

1
23 to give the correct result 1

2 .
We have still not made clear, why Z[J ] is a generating functional of the full n-point Green

functions. However, we have already said that the full n-point Green function is given by the
expectation value 〈φi1 . . . φin〉, which is de�ned through the variation of Z[J ]. Hence after ex-
panding the functional around J = 0

Z[J ] =
∑
n=0

1

n!
Z

(n)
i1...in

[0]Ji1 . . . Jin , (2.25)

where Z(n)
i1...in

[0] = δ
δJi1

. . . δ
δJin

∣∣
J=0

Z[J ] = Z[0] 〈φi1 . . . φin〉, we �nd, that these objects are pro-
portional to the n-point Green functions. This proportionality can be simpli�ed by changing the
normalization to Z[0] = 1. Since this can be always done, we will drop the normalization factor
from now on.

In Figure 2.6 we show, how the generating functional can be represented as s Feynman
diagram, for which we use also a diagrammatic representation of the n-point Green function
illustrated in Figure 2.5

i

j 

k 

l Z(n)ijk...l

Figure 2.5: Diagrammatic representation of the full n-point Green function.

If we were to represent δZ[J ]
δJi

we would have similar expansion series as in Figure 2.6, but the
right hand side would shift by one blob to the left (the coe�cient would stay) and each blob
would have one external leg with a dot at the end instead of a source. After removing the sources
(setting J = 0), the only surviving term would be a blob having one pointing leg having a dot
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Figure 2.6: Diagrammatic representation of the generating functional of full Green functions Z[J ].

at its end, thus clearly respecting the de�nition in Figure 2.5. We also point out, that the full
propagator is represented as a blob with two external legs and dots at the ends.

2.2.3 The Dyson�Schwinger Equation

We have one more thing to show considering the functional Z[J ] before we move on to other
objects. We shall �nd an equation that would give full dynamics of the quantum system. Let
us now consider transformations of the �eld φ such that the integral measure Dφ in invariant.
Then, since the generating functional is independent of the �eld, we must have

δZ[J ]

δφi
= 0 = −

∫
DφδS[φ, J ]

δφi
e−S[φ,J ] . (2.26)

This has a profound interpretation once we use (2.20) to rewrite it as

〈
δS[φ, J ]

δφi

〉J
= 0 , (2.27)

which is nothing else than a statement, that the classical least action principle holds as a vacuum
expectation value. Note here, that the expectation value is calculated with the source present,
which is also respected by the equations of motion where the source is included. We may further
rewrite it using the fact, that S[φ, J ] = S[φ]− Jxφx and the de�nition of the expectation value
as (

δS

δφi

[
d

dJ

]
− Ji

)
Z[J ] = 0 , (2.28)

obtaining a very important equation, which will accompany us throughout this chapter. This
equation is called the Dyson�Schwinger (DS) equation and it provides full dynamics of the
quantum system.

The Dyson-Swchinger equation has a nice diagrammatic representation (see 2.7), which we
will now try to explain. The systematic approach to creating Feynman diagrams according to
the Dyson�Swchinger equation [5] for a certain theory is as follows � a particle going into a blob
will either survive and (freely propagate to another external leg) or interact once in all possible
ways the theory allows. This algorithm is then iterated to obtain any order of precision. Every
interaction vertex brings one power of the coupling constant, thus for small coupling constant,
we can e�ectively discard high order corrections since they are negligible. Also, to compensate
for the symmetry of the vertices, we add a factor 1

(n−1)! to all vertices with n legs.
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Figure 2.7: Dyson�Schwinger equation in terms of the Feynman diagrams.

Using this we can �nd the two point function of the φ4 theory in the language of diagrams
very easily � the �calculation� is presented in Figure 2.8. We clearly see, it con�rms once already
obtained result from the Wick expansion seen in Figure 2.4.

Figure 2.8: Dyson�Schwinger equation for the φ4 theory.

We note there remains an unattached blob at each term, corresponding to the vacuum bub-
bles. These get removed simply by normalizing the expectation value � dividing by Z[J ] or
setting Z[0] = 1. Note also that the propagator is ill behaved for the presence of the loop caused
by ∆(0).

Identical result can be written in the mathematical language as seen in the equation (2.29)

〈φiφj〉 = ∆ij +
1

2
∆ikYklmn∆lm∆nj = ∆(xi − xj)+

+
1

2

∫
d4xkd

4xld
4xmd4xnd4x∆(xi−xk)δ(x−xk)δ(x−xl)δ(x−xm)δ(x−xn)∆(xl−xm)∆(xn−xj)

= ∆(xi − xj) +
1

2
∆(0)

∫
d4x∆(xi − x)∆(x− xj) .

(2.29)

The result coincides with the one found using the Wick expansion, but we see here, that there
indeed is a good reason to use a compact notation and the Feynman diagrams for its simplicity.

2.3 Generating Functional of the Connected Green Functions

In this section we introduce a new object, that was already mentioned in the �rst chapter. The
whole point of this successive introduction of di�erent generators is to simplify the classi�cation
of Feynman diagrams. That is why we now reduce the problem form the full Green functions to
the connected ones. Later, we will also introduce basic building blocks of the connected ones.
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2.3.1 Connectedness

We will now de�ne a generator of connected Green functions. We remark here, that the
sign convention for the de�nition is not uni�ed. What is important, however, is the consequent
de�nition of the e�ective action. This allows us to de�ne it here with a plus sign, so that the
formulas are not burdened by extra sign. Using the general formula from the �rst chapter, we
can simply de�ne it as (normalization Z[0] = 1 assumed)

W [J ] = lnZ[J ] ≡
∑
n=1

1

n!
W

(n)
i1...in

[0]Ji1 . . . Jin ⇐⇒ Z[J ] = eW [J ] , (2.30)

where W (n)
i1...in

[0] = δ
δJi1

. . . δ
δJin

∣∣
J=0

W [J ] is the connected n-point Green function. If Z[J ] was a
partition function of statistical physics, W [J ] would correspond (up to a sign) to the free energy
of the system. That this object generates the connected Green functions can be illustrated
the following way: we calculate the �rst few derivatives of Z[J ] and show it decomposes into
a sum of one connected and several disconnected Green functions (Figure 2.9 illustrates this
decomposition)

Figure 2.9: First three full n-point Green functions expressed in terms of the connected n-point Green
functions.
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Z(1)
x [0] =

δZ[0]

δJx
=

δ

δJx

∣∣∣
J=0

eW [J ] =
δW [0]

δJx
= W (1)

x [0] ,

Z(2)
xy [0] =

δ

δJx

δW [J ]

δJy
eW [J ]

∣∣∣
J=0

= W (2)
xy [0] +W (1)

x [0]W (1)
y [0] ,

Z(3)
xyz[0] = W (3)

xyz[0] +W (1)
x [0]W (2)

yz [0] +W (1)
y [0]W (2)

xz [0] +W (1)
z [0]W (2)

xy [0] +W (1)
x [0]W (1)

y [0]W (1)
z [0] ,

...
(2.31)

There is yet another reasoning behind the de�nition of the functional W [J ] and it has roots
in the language of diagrams. For every full one-point Green function we would like to separate
the connected part attached to the external leg from the disconnected rest (which must again be
the full generator Z[J ]) � this is idea is illustrated in Figure 2.10. The mathematical equation

Figure 2.10: Alternative de�ning equation for the generator of the connected Green functions.

describing this relation reads

δZ

δJx
=
δW

δJx
Z[J ] , (2.32)

and is solved by the Z[J ] = eW [J ], thus the de�nition (2.30) can be seen in this more intuitive
way.

Since we are not very much interested in disconnected diagrams (they correspond to unrelated
processes and can be build from the connected ones) we de�ne an expectation values using this
new functional

〈φx . . . φy〉Jc ≡W
(n)
x...y , where 〈φx . . . φy〉J=0

c ≡ 〈φx . . . φy〉c , (2.33)

and use it to search for all interesting physical quantities. In this sense, we can also de�ne a
connected propagator of the full theory to be the connected two-point Green function 〈φxφy〉c.

2.3.2 Dyson�Schwinger in Terms of Connected Green Functions

More interesting is the possibility to rewrite the Dyson�Schwinger equation in terms of the
connected Green functions, which is clearly something we would like very much. To do so we
�rst show a useful identity

δ

δJ

(
Z[J ]f [J ]

)
=
δW [J ]

δJ
Z[J ]f [J ] + Z[J ]

δf [J ]

δJ
= Z[J ]

(
δW [J ]

δJ
+

δ

δJ

)
f [J ] , (2.34)

thus after choosing the test function f = 1, we obtain

δ

δJ

(
Z[J ] ·

)
= Z[J ]

(
δW [J ]

δJ
+

δ

δJ

)
· , (2.35)
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where the dot indicates it is an operator waiting for a function to act on. Let us now perform some
gymnastics with the Dyson�Schwinger equation. We assume the function δS[φ]

δφi
has a polynomial

expansion so that we can write

dS

dφi

[
δ

δJ

]
Z[J ] =

∑
n=0

an

(
δ

δJ

)n
Z[J ] . (2.36)

Next we insert an identity operator in an appropriate form between the operators δ
δj into each

term in the expansion to get

δ

δJ
eW [J ] e−W [J ] δ

δJ
. . . e−W [J ] δ

δJ
eW [J ] , (2.37)

where we now use the identity (2.35) step by step from the right to get the factor Z[J ] on the
left hand side of each operator δ

δJi
, where it cancels with its counterpart. Thus we obtain an

expansion in terms of W [J ]

δS

δφi

[
δ

δJ

]
Z[J ] = Z[J ]

∑
n=0

an

(
δW [J ]

δJ
+

δ

δJ

)n
= Z[J ]

δS

δφi

[
δW [J ]

δJ
+

δ

δJ

]
. (2.38)

Plugging this result back into the Dyson�Schwinger equation (2.28) and using the fact that the
source Ji commutes with Z[J ], we can now divide the equation by Z[J ] to obtain

δS

δφi

[
δW [J ]

δJ
+

δ

δJ

]
= Ji , (2.39)

where we must not forget, it is still an operator acting on identity which we do not write explicitly.
Now we provide an example of the use of the Dyson�Schwinger equation in terms of the

connected Green functions for the φ4 theory. Since the Euclidean action is of the form S[φ] =
1
2φi∆

−1
ij φj + 1

4!Yijklφiφjφkφl and we assume the interaction vertex is symmetrical in its indices,
the DS equation yields

Ji = ∆−1
ij

(
δW [J ]

δJj
+

δ

δJj

)
+

1

3!
Yijkl

(
δW [J ]

δJj
+

δ

δJj

)(
δW [J ]

δJk
+

δ

δJk

)(
δW [J ]

δJl
+

δ

δJl

)
Ji = ∆−1

ij W
(1)
j +

1

3!
Yijkl

[
W

(1)
j W

(1)
k W

(1)
l + 3W

(1)
j W

(2)
kl +W

(3)
jkl

]
W

(1)
j = ∆ji

[
Ji −

1

3!
YijklW

(1)
j W

(1)
k W

(1)
l − 1

2
YijklW

(1)
j W

(2)
kl −

1

3!
YijklW

(3)
jkl

]
,

(2.40)

where the minus signs arise because of the Euclidean regime where the action has a positive sign
in front of the kinetic term (and due to the conventional choices we made in the text, as discussed
in the �rst paragraph of this chapter, namely if we chose di�erently the sign of the propagator
and of the source, we would have an exact result as in [5]). We did some straightforward
reordering in the equation to obtain a formula for W (1)

j in the third line, which (after setting
J = 0) corresponds to a one-point connected Green function. The right hand side provides a
description of quantum dynamics based on the interaction potential. We see, that it can be
iterated and further di�erentiated w.r.t. J to obtain higher order corrections. We also see from
these diagrams, that setting the rules for creating Feynman diagrams is equivalent to writing a
speci�c form of the action (the type of the interaction). We show diagrammatic representation
of the equation (2.40) in Figure 2.11.
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Figure 2.11: Dyson�Schwinger equation in terms of the connected Green functions for the φ4 theory.

2.4 The E�ective Action

Here we �nally get to the main point of this chapter. We introduce an e�ective action, show
some of its important properties as well as its connections to W [J ] and explain, why is it called
the �e�ective action�. Since there are two equivalent approaches to its introduction, we shall try
to expand on each of them in a special subsection and then discuss the general properties.

2.4.1 E�ective Action as a Generator of 1PI Green Functions

The �rst de�nition is based on the diagrammatic representation of �eld theory (see [5]).
First we must de�ne a one-particle irreducible (1PI) or one-line irreducible diagram � it is such
a diagram, that cannot become disconnected by cutting one internal line. All other diagrams
are one-particle reducible. Loops are examples and building blocks of 1PI of a diagrams (Green
functions). It is clear that every Feynman diagram can be separated into 1PI parts joined by one
internal line. Thus we would like to create a generating functional, which would systematically
generate the 1PI Green functions. We propose the algorithm as follows:

1. Pick one external leg of a connected n-point function W (1)

2. Follow it and pull out of the connected blob the 1PI part, that is connected to the rest of
the diagram (represented by one or more W (1)) by one leg(s)

Figure 2.12: Diagrammatic de�nition of the generator of 1PI Green functions.

Figure 2.12 illustrates all possible outcomes of such a process and sums it all in an object that we
denote by Γ. We have represented the n-point 1PI Green functions by cross-hatched blobs with
n dots on its circumference. Upon rewriting the diagrammatic equation 2.12 into the language
of mathematics, we get

W
(1)
i = ∆ij

[
Jj + Γj + ΠjkW

(1)
k +

1

2
ΓjklW

(1)
k W

(1)
l + . . .

]
, (2.41)

and with substitution δW
δJi
≡ ϕi and application of the inverse of the propagator we obtain
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0 = Jj + Γj +
(
Πjk −∆−1

jk )ϕk +
1

2
Γjklϕkϕl + . . . . (2.42)

If we now collect all the 1PI Green functions into a generating functional

Γ[ϕ] =
∑
n=1

1

n!
Γi1...inϕi1 . . . ϕin , (2.43)

where we have denoted Γij = Πjk − ∆−1
jk for reasons explained later, we can rewrite equation

(2.42) as

0 = Ji +
δΓ[ϕ]

δϕi
. (2.44)

From this equation and from de�nition of ϕi it is clear that W [J ] and Γ[ϕ] are related through
the Legendre transformation. This will be our starting point for the next section.

2.4.2 E�ective Action as a Legendre Transformation of W [J ]

In this section we de�ne the e�ective action by the Legendre transformation of W [J ], but
we will use a di�erent sign convention. We have already touched upon the problem of sings in
the beginning of Section 2.3, where we de�ned W [J ] with a plus sign to obtain formulas without
any extra signs. In Section 2.4.1 we introduced Γ using a speci�c notation to make it easier to
compare it with the textbook [5]. Here, however, we must chose the sign so, that Γ re�ects the
properties we want it to have. Thus, as is done in [4], both W and Γ are de�ned with opposite
signs. That is the reason, why we change the sign from Γ introduced in the previous section, as
can be seen in the de�nition (2.46).

We have already mentioned, that W [J ] has the meaning of the free energy. Its Legendre
transform Γ is usually known as the thermodynamic potential, however, in the context of QFT
we call it the e�ective action. To perform the Legendre transform we need a new variable � that
we have already de�ned in the previous section and the de�nition holds

ϕi ≡
∂W

∂Ji
. (2.45)

Here we have recovered the notation of partial and total derivatives to emphasise the di�erence.
Its graphical representation is shown on the left hand side of equation in Figure 2.12. The
Legendre transformation and its general consequences now read (see (1.22) in Chapter 1)

W [J ] + Γ[ϕ] = Jiϕi ,
∂Γ[ϕ]

∂ϕi
=Ji with

∂W [J ]

∂ϕi
= 0 =

∂Γ[ϕ]

∂Ji
,

W
(2)
ik [J ]Γ

(2)
kj [ϕ] = δij ,

dW [J ]

dϕi
= Γ

(2)
ij [ϕ]ϕj , and

dΓ[ϕ]

dJi
= W

(2)
ij [ϕ]Jj .

(2.46)

From the de�nition of the new �eld (2.45) we can immediately conclude its meaning. Upon
setting J = 0 we get ϕi = 〈φi〉c � the expectation value of �eld φ when no sources are present.
We can easily show that this quantity must be a constant

〈φi〉c = 〈φi〉 = 〈0|φ(xi)|0〉 = 〈0| e−iPxφ(0) eiPx|0〉 = φ(0) , (2.47)
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where we have used the generator of the spacetime translations P and the fact, that Poincaré
invariance of the theory implies that the ground state is invariant under translations. Thus,
when sources vanish, we have ϕ = φ(0) = const. We can use similar argument and show using
a generator of Z2 parity Pφ(x)P† = −φ(x), that the expectation value is equal to minus itself
(and hence to zero) in the case of a theory (action), that contains only even powers of �elds.
From this we conclude, that the expectation value is zero in both the free theory or and the φ4

theory.
Further, the second relation in (2.46) states, that ϕ = φ(0) extremizes the e�ective action.

This can be seen from the classical equations of motion

δS

δφi
[φ] = Ji =

δΓ

δϕi
[〈φ〉] = 0 , (2.48)

from where we conclude, that when φ is a solution of classical equations of motion without the
presence of the source, then 〈φ〉 is the solution of quantum equations of motion (which is the
Dyson�Schwinger equation).

2.4.3 E�ective Action of the Free Theory

Let us now concentrate on the free �eld theory � to distinguish the objects from those from
the full theory, we add a subscript or superscript 0. Let us de�ne ϕ0

i as in the case of the
interacting theory

ϕ0
i =

∂W0[J ]

∂Ji
=

1

Z0[J ]

∂Z0[J ]

∂Ji
=

1

Z0[J ]

∂

∂Ji
e

1
2
Jk∆klJl = ∆ikJk

∆−1
ji ϕ

0
i = Kjiϕ

0
i = Jj ,

(2.49)

where we recall that K is the Euclidean operator appearing in the kinetic term of the action, i.e.
K(x, y) = (− ∂µ ∂µ + m2)δ(x − y). We can use the second relation to substitute for sources in
the Legendre transformation to �nd the free �eld e�ective action Γ0 by de�nition

Γ0[ϕ0] = −W0[J ] + ϕ0
i Ji = −1

2
Jk∆klJl + ϕ0

i Ji = −1

2
ϕ0
jKkj∆jlKlmϕ

0
m + ϕ0

iKikϕ
0
k

=
1

2
ϕ0
iKikϕ

0
k = S0E [ϕ0] .

(2.50)

Now we see explicitly that there is indeed a good reason to call Γ the e�ective action since it seems
to very similar to the classical action. Probably the strongest argument for the name e�ective
action is, however, the Dyson�Schwinger equation in the language of 1PI Green functions, which
will be our next task.

2.4.4 Dyson�Schwinger in Terms of the 1PI Green Functions

The last formulation of the DS equation we have obtained in (2.39) contained W (1)[J ] and
the operator d

dJ . We can easily substitute the former, but to substitute the latter, we shall
replace the (total) derivative w.r.t. J by a (total) derivative w.r.t. the new �eld variable ϕ. To
do so we use the generalized chain rule for variations and the de�nition of the �eld ϕ

d

dJi
=

dϕj
dJi

d

dϕj
=

d

dJi

(
W

(1)
j [J ]

) d

dϕj
= W

(2)
ij [J ]

d

dϕj
. (2.51)
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i i
= 

j

Figure 2.13: Diagrammatic representation of the relation (2.51).

This substitution has a nice diagrammatic counterpart shown in Figure 2.13, where the
operators δ

δJ and δ
δϕ are being depicted as a leg attached to a half-blob, which symbolises the

fact that the operators pull a leg out of the generating functional.
Replacing both terms in the Dyson�Schwinger equation, we obtain its new form

δS

δφi

[
ϕj +W

(2)
jk [J ]

d

dϕk

]
= Ji . (2.52)

Further using the de�ning relation from the Legendre transformation (2.46) for the source and
recovering2 ~ we �nally obtain a new form of the Dyson�Schwinger equation

δS

δφi

[
ϕj + ~W (2)

jk [J ]
d

dϕk

]
=
δΓ[ϕ]

δϕi
. (2.53)

We immediately see that in the semi-classical limit as ~ → 0, the left hand side reduces to
the classical equation of motion. Hence the dynamics described by the e�ective action is fully
equivalent to the classical action in the semi-classical limit. This generalizes the result we have
found in Section 2.4.2, which pointed to the fact, that they are equivalent for the free theory. We
can also conclude that the e�ective action is identical as to the algebraical form (up to an additive
constant). This conclusion will be discussed further in more detail and di�erent circumstances.
Because in the semi-classical limit the term with ~ vanishes and the �eld ϕ solves the classical
equations of motion we sometimes call the �eld ϕ the classical �eld.

We must also conclude that the term containing ~ must be responsible for all the quantum
corrections, since this equation gives the full quantum dynamics of the theory. The quantum
corrections (involving virtual particles) are generated by d

dϕ which creates loops in the expansion.
These could, of course, be seen already in previous result involving the DS equation and the
graphical representations of the results, where the loops were generated by the operator d

dJ .
Before we go further in the discussion of the general properties, we will show the DS equation

in the terms of Γ for the φ4 theory. The particular calculation is again straightforward, only one
must not forget, that dΓ

dJ 6= 0 6= dW
dϕ . With the use of relations from (2.46) the equation reads

dΓ[ϕ]

dϕi
= ∆−1

ij ϕj +
1

2
YijklϕlW

(2)
kl [J ] +

1

6
YijklW

(2)
ja [J ]W

(2)
kb [J ]W

(2)
lc [J ]Γ

(3)
abc[ϕ] . (2.54)

To �nd a suitable graphical representation, we set J = 0 to obtain only the �rst expansion term
and we multiply the equation by ∆ki. Thus one obtains a diagrammatical representation of the
equation.

2The factor ~ would be present in the action S[φ, J ] in front of the source J in the denominator, thus, the

operator d
dJ

would have to be de�ned with with a compensating factor ~ in the numerator
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Figure 2.14: Diagrammatic representation of the Dyson�Schwinger equation in terms of the 1PI Green
functions for the φ4 theory.

2.4.5 Semi-Classical Limit � Tree Expansion

Let us return once more to the discussion of the semi-classical limit ~ → 0 of the Dyson�
Schwinger equation. Speci�cally we examine if we truly recover classical dynamics. The DS
equation must be then equivalent to the classical equation of motion

δS[ϕ]

δφi
= Ji ⇐⇒ ∆−1

ij ϕj +
δSI[ϕ]

δφi
= Ji , (2.55)

and after separating the classical solution ϕ we have

ϕi = ∆ijJj −∆ij
δSI[ϕ]

δφj
= ∆ijJj −∆ij

δSI

δφj

[
∆ijJj −∆ij

δSI[ϕ]

δφj

]
= . . . . (2.56)

This iteratively solved series is called the tree expansion or Born expansion and from its dia-
grammatic representation (for the φ4 theory only) presented in Figure 2.15 can be concluded,
that it contains no loops. That is, however, exactly what we expect from a classical propagation.

= 
i

c
ji

+ 
i

c

c

c

= 
ji

+ 
i +  ... 

Figure 2.15: Diagrammatic representation of tree expansion for the φ4 theory, demonstrating the semi-
classical limit. The subscript c indicates we work with the solution of the classical equations of motion.

We should also point out a relation between the tree expansion and the de�nition of the
generator of 1PI Green functions of the φ4 theory seen in �gure 2.12. If we replaced there the
1PI Green functions by a simple interaction vertex (where possible i.e. allowed by the theory), we
would obtain the tree expansion, as depicted in �gure 2.15. This corresponds to the fact, that in
the semi-classical limit the 1PI green function shrinks to only one dot � the classical interaction
vertex. This gives the e�ective action one more physical meaning � it generates the same form
of a diagrammatic representation of the �eld dynamics as the classical action, but instead of
bare interaction vertices, it contains the 1PI green functions. These are composed of the basic
1PI building blocks � loops. Therefore we can think of the e�ective action as of a functional
which leads to the classical equation of motion, when we regard the 1PI Green functions (proper
vertices) as of the e�ective vertices of the theory, which hide all quantum corrections in them.
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2.4.6 The Amputated Green Functions

So far we have given no reason as to why the 1PI Green function is represented as a blob
with dots on its circumference as opposed to any other blob we have seen so far. The �rst
reason is the fact, that in the expansion (2.43) we see, it is connected to the �elds ϕi, which
already posses an external leg with a dot. However, there is one more reason related to the so-
called amputated green functions. To illustrate it, we will need to introduce a new �eld variable
ξ(x) ≡ ϕ(x) − 〈φ(x)〉 which by de�nition vanishes, when the sources vanish. We also remark
that from the discussion under the de�nition of ϕ it follows that ξ(x) = ϕ(x) in case of both the
free theory and the φ4 theory. Next we take the formal expansion of W [J ] and di�erentiate it
w.r.t. the source to get

δW [J ]

δJi
=
∑
n=1

1

n!
W

(n+1)
ij1...jn

[0]Jj1 . . . Jjn , , (2.57)

from which after subtracting the �rst term of the series corresponding to 〈ϕj〉 we obtain

ξj = ϕj − 〈φj〉 = W
(2)
jj1

[0]Jj1 +
1

2!
W

(3)
jj1j2

[0]Jj1Jj2 + . (2.58)

Further we de�ne inverse of the propagator of the full theory3 as SikW
(2)
ki [0] = δij which we will

use to separate J from the relation above as

Jk = Skjξj −
∑
n=2

1

n!
SkjW

(n+1)
jj1...jn

[0]Jj1 . . . Jjn . (2.59)

This equation still re�ects the fact, that setting J = 0 makes also ξ = 0 and the whole series
vanishes. Next we de�ne the so-called amputated n-point Green function as

W
(n)
amp. i1...in

[0] = W
(n)
j1...jn

[0]Si1j1 . . . Sinjn . (2.60)

We call it amputated, since the inverses of the propagators cancel the usual external legs of
the n-point functions. This amputated Green function is depicted as a blob with dots on its
circumference, to which a propagator can be attached.

The equation (2.59) can be solved iteratively, yielding the �rst terms in the following form
(in this particular formula, we will drop the argument [0] to make it shorter)

Jk = Skjξj −
1

2!
SkjW

(3)
jj1j2

Jj1Jj2 −
1

3!
SkjW

(4)
jj1j2j3

Jj1Jj2Jj3 =

= Skjξj −
1

2
SkjW

(3)
jj1j2

Sj1n1ξn1Sj2n2ξn2 +
2

22
SkjW

(3)
jj1j2

Sj1n1ξn1Sj2m1W
(3)
m1m2m3

Jm2Jm3−

− 1

8
SkjW

(3)
jj1j2

Sj1m1W
(3)
m1m2m3

Jm2Jm3Sj2o1W
(3)
o1o2o3

Jo2Jo3−

− 1

6
SkjW

(4)
jj1j2j3

Jj1Jj2Jj3 + · · · =

= Skjξj −
1

2
W

(3)
amp. kn1n2

ξn1ξn2 +
1

2
W

(3)
amp. kn1m1

ξn1W
(2)
m1nSnmW

(3)
mm2m3

Sm2a1ξa1Sm3a2ξa2−

− 1

6
SkjW

(4)
jj1j2j3

Sj1iξiSj2lξlSj3mξm + . . .

(2.61)

3Note here, that by the general de�nition of the Legendre transform, Sij = Γ
(2)
ij [0].
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Jk = Skjξj −
1

2
W

(3)
amp. kn1n2

ξn1ξn2 +
1

2
W

(3)
amp. kn1m1

W (2)
m1nW

(3)
amp. na1a2

ξa1ξa2−

− 1

6
W

(4)
amp. kilmξiξkξl + · · · =

= Sklξl −
1

2
W

(3)
amp. klmξlξm −

1

2
ξlξmξn

(
W

(4)
amp. klmn −W

(3)
amp. knaW

(2)
ab W

(3)
amp. blm

)
.

(2.62)

To get it related to the e�ective action, let us recall, that it also has a formal expansion series,
but now we choose to expand it around the expectation value 〈φ〉 (which is equal to zero for the
φ4 theory). After taking the variation of the expansion w.r.t. to ϕk one gets

δΓ

δϕk
=
∑
n=0

1

n!
Γ

(n+1)
ki1...in

[〈φ〉]ξi1 . . . ξin , (2.63)

but since Jk = δΓ
δϕk

by de�nition, we can compare the two expansions as polynomials in ξ to �nd

Γ(n) to be equal in the lowest orders to

Γ(1)[〈φ〉] = 0 , Γ
(2)
ij [〈φ〉] = Sij =

(
W

(2)
ij

)−1
,

Γ
(3)
ijk[〈φ〉] = −W (3)

amp. ijk[0] ,

Γ
(4)
ijkl[〈φ〉] = −W (4)

amp. ijkl[0] +W
(3)
amp. ika[0]W

(2)
ab [0]W

(3)
amp. bkl .

(2.64)

These relations deserve an explanation. Here, we refer to what was already reasoned out �
the algebraic form of the e�ective action is identical to the classical one. The terms Γ(n) then
correspond to the coe�cients in front of the n-th power of a �eld in the action. Thus we see, that
there is no linear term in the action, the quadratic term is generated by the inverse of the full
(e�ective) propagator (recall that the classical action is of the form 1

2φx∆−1
xy φy + . . . hence the

full propagator composes of the free one and some terms from the interaction) and the �rst non-
trivial term comes from the (possible) φ3 theory. The term coming from the φ4 theory, however,
has more contributions � we see, that the relative sign of the two terms tells us, that from all
connected (amputated) Green functions with 4 external channels we must subtract those, that
are reducible, constructed with the use of the φ3 interaction vertices. The results are shown also
diagrammaticaly in Figure 2.16.

2.4.7 The Full Propagator as a Series of 1PI Green Functions

There is one more interesting property of the e�ective action to show, before we move on to
its applications. It gives us a systematic way of generating two-point functions of the full theory
(i.e. the full propagator) in terms of a series of diagrams composed of 1PI parts. To that end
recall, that Γ is very similar to the classical action as to the algebraical form (it is identical for
the free �eld theory, see (2.50)) We assume then that we can write the e�ective action in the
following form

Γ = ϕiKijϕj + ΓI , (2.65)

where K is the inverse of the free �eld propagator and ΓI describes the interaction. The second
variation gives

Γ(2) = K + Γ
(2)
I ≡ K + Σ . (2.66)

37



=   

=    + 

Figure 2.16: Diagrammatic representation of results from (2.64), relating the 1PI Green functions to
the amputated ones.

Here Σ stands for all quantum corrections to K = ∆−1 coming from the interaction. We recall,
that in equation (2.42) on page 32 we de�ned Γij as Πij −∆ij . Here we see the reason, why did
so (meanwhile we also changed the sign of the action so there is some inconsistency here). Now
we use a property of the Legendre transform

W (2)Γ(2) = 1 = W (2)
(
K + Σ

)
, (2.67)

from where we obtain

W (2) =
1

K + Σ
=

1

K(1 + ∆Σ)
' K−1

(
1−∆Σ + ∆Σ∆Σ + . . .

)
W (2) = ∆−∆Σ∆ + ∆Σ∆Σ∆− . . . .

(2.68)

Identical result may be obtained another way � we multiply equation (2.67) by a propagator,
separate W (2) on one side and then solve iteratively

W (2) = ∆−W (2)Σ∆ = ∆− (∆−W (2)Σ∆)Σ∆ = . . . . (2.69)

This equation enables us to calculate the full propagator approximatively in terms of the 1PI
Green functions. We can also represent it diagrammatically, as shows �gure 2.17.

=    +  +  ... 

Figure 2.17: Diagrammatic representation of the series in (2.67)

This relation has a profound meaning. It tells us, that the full propagator is in the �rst
approximation identical to the free propagator and that every higher order of approximation
introduces at least one loop, since those are the basic building blocks of the 1PI Green functions.
This result is con�rmed by what we found for the φ4 theory in Figures 2.8 and 2.4. We will show
in the next section, that an expansion into a number of loops is best done in the formalism of
the e�ective action.
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2.4.8 Loop Expansion, One-Loop E�ective Action, E�ective Potential

We have discussed above the semi-classical limit of the DS equation which yielded the tree
expansion. What we have not discussed about this solution is its relation to the path integral
point of view. So far, we have not used path integrals in our calculations at all. As is written
in [5], path integral is not as much of an integral in the sense of a continuous summation, but
more of a tool, which transforms di�erentiation to multiplication, just the same way the Fourier
transform does

δZ[J ]

δJi
=

∫
Dφφi e−S[φ,J ] . (2.70)

Until now we have worked mostly in the world of di�erentiation but now we shall start using
the path integrals. Let us try to evaluate the path integral using the saddle point approximation
up to the �rst order. The integral is in this order of approximation dominated by one term,
corresponding to the minima of the exponent, i.e. by the solution of classical equations of
motion. Therefore we obtain

Z[J ]
.
= e−S[φc,J ] , where

δS[φc]

δφi
= Ji . (2.71)

We already know, what this solution generates � that is exactly the Born expansion as seen in
Section 2.4.5 and φc = ϕ. Here, however, we have given it a new physical meaning � that of a
�rst approximation to the evaluation of the path integral.

We have also shown (see (2.53) and (2.50)) that on this level of approximation, the e�ective
action is identical to the classical one, i.e. Γ[φc] = S[φc], which will be useful later on. Let us
now expand on the �rst quantum corrections coming from the saddle point approximation. In
that case we take into account one more term

S[φ]− φiJi
.
= S[φc]− φc

iJi +
1

2
(φi − φc

i )S
(2)
ij [φc](φi − φc

i ) , (2.72)

which we put into the de�nition of Z[J ] and since the third term is quadratic in the �elds and
the integral measure Dφ is invariant under translation, we obtain with the help of the general
results from Chapter 1 the generating functional in the following form

Z[J ] = N e−S[φc]+φc
iJi
[

det
(
S

(2)
ij [φc]

)]−1/2
. (2.73)

The normalization factor N can be forgotten, for as was already argued, it has no in�uence
on the results of physically relevant quantities. We would like to be able to interpret the role of
the determinant and possibly give it also a diagrammatical representation. To achieve that, we
use a well known formula

detA =
∏
i

ai = eln(
∏
i ai) = e

∑
i ln ai = eTr lnA , (2.74)

with ai being the eigenvalues of the matrix (operator) A. Using this identity, denoting S(2)
ij [φc] ≡

∆−1
ij + γij [φ

c] = ∆−1
il

(
δlj + ∆lkγkj [φ

c]
)
and the fact that detAB = detAdetB we obtain

Z[J ] = exp
[
− S[φc]− 1

2
Tr ln(1 + ∆γ[φc]) + φc

iJi

]√
det ∆ , (2.75)
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and since
√

det ∆ is coming from Z0[J ] for the free �eld theory without sources, we can simply
set it equal to 1 as a part of the normalization. From the de�nition of the e�ective action (2.46)
on page 32 and the de�nition of W [J ] follows that

e−Γ[φ]+φiJi = Z[J ] =

∫
Dφ e−S[φ,J ] , (2.76)

so we �nd, that the e�ective action is in this order of approximation equal to

Γ[φc] = S[φc] +
1

2
Tr ln(1 + ∆γ[φc]) ≡ S[φc] + Γ1[φc] . (2.77)

Let us now examine the �rst quantum correction to the e�ective action Γ1[φc] in more detail.
We expand the logarithm into a Taylor series and shift the sign to the propagator, which would
correspond to de�ning the propagator with an opposite sing

Γ1[φc] =
1

2
Tr((−∆ik)γkj [φ

c]) +
1

4
Tr((−∆ik)γkj [φ

c](−∆jl)γlm[φc]) + . . .

Γ1[φc] =
1

2
(−∆ik)γki[φ

c] +
1

4
(−∆ik)γkj [φ

c](−∆jl)γli[φ
c] + . . . .

(2.78)

Before we show a diagram, we explain some of the terms here. First γij [φc] = S
(2)
I ij [φ

c] contains
all interaction vertices, that have two empty legs i and j waiting to be attached to something
and the rest of the legs are attached to the classical Green function φc, represented as in the tree
expansion in Figure 2.15. Hence we illustrate it as in Figure 2.18.

= γij[ϕc] 

c

i j
+ 1/2 

c

i j

c

+  ... 

~ ϕ3 ~ ϕ4

Figure 2.18: Diagrammatic representation of the interaction terms γij [φ
c] coming from the φ3 and φ4

interaction

Joining these together by propagators in the power series as determined by equation (2.78)
we obtain (for all possible interactions) a diagram shown in Figure 2.19.

Γ1[ϕc]  =  1/2 
c

1/2 + 

c

c 1/3 + 

c

c

c

+  ...  1/2 
c

c+  1/4 
c

c+ 

c

+  ... 

Figure 2.19: Diagrammatic representation of the one-loop expansion (2.78).
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Here we can use the tree expansion of the classical �eld φc from Figure 2.15 and its general-
ization to other interacting potentials to �nd the loop expansion in another form, from which we
conclude that the e�ective action satis�es the classical equations of motion of the tree structure,
but it has e�ective vertices (loops) instead of the simple interaction vertices as in the classical
theory. Figure 2.20 re�ects this conclusion in full generality of interaction

Γ1[ϕc]  =  1/2  1/2 +  1/3 +  +  ...  1/2 +  1/4 +  +  ... 

1/2  1/2 +  1/3 +  +  ...  1/2 +  1/4 +  +  ... 

+ 

+ + 

Figure 2.20: Diagrammatic representation of the one-loop expansion (2.78) including the tree expansion.

The last thing we mention about the e�ective action is the e�ective potential. We have
already used the similarity with the classical action as to the form. Thus we expect, that the
(Euclidean) e�ective action will be separable into kinetic and a potential part

Γ[ϕ] =

∫
d4x

1

2
A
(
ϕ(x)

)
∂µϕ(x) ∂µϕ(x) + Veff

(
ϕ(x)

)
+ . . . , (2.79)

with higher derivative terms neglected. Then when we need to explore static �eld con�gurations
ϕ(x) = ϕ, the kinetic term vanishes and all we are left with is

Γ[ϕ] =

∫
d4xVeff(ϕ) = Veff(ϕ)Ω4 , (2.80)

with Ω4 being the four-volume of the Euclidean spacetime. Investigating these �eld con�gurations
corresponds to searching for the stable con�gurations in the presence of the e�ective potential
(which contains the quantum corrections). It is possible, that the e�ective potential has a
di�erent minimal value (e.g. di�erent vacuum) than the classical potential. This has the e�ect,
that the theory might (for example) break its symmetry as is the case of the Coleman�Weinberg
mechanism or, as we will see in Chapter 3, the case of the Weyl conformal gravity. Since this
symmetry breakdown occurs naturally only as a consequence of quantum corrections it is called
the dynamical breakdown of symmetry.

The e�ective potential is useful also for �nding �dressed� coupling constant and mass, also
called e�ective, as (here for the case of the φ4 theory)

meff ≡
d2V (ϕ)

dϕ2
, and geff ≡

d4V (M)

dϕ4
. (2.81)

2.4.9 Euclidean and Minkowskian Regime

Here we present the overview of how to go from the Euclidean to the Minkowskian regime
and de�nition of all the object discussed in the previous sections in the Minkowskian regime. We
also recover ~ to see introduced quantities in full context.
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First we recall our notation � the Wick rotation is performed by a change of coordinates
x 7→ x̄ so that x̄0 = ix0 and x̄i = xi. The classical action is of the following form

S[φ] = −1

2
φxKxyφy − SI[φ] , with Kxy = ∂2

t −∇2 +m2 . (2.82)

Adding the source we have

S[φ, J ] = S[φ]− Jxφx . (2.83)

The Euclidean action can be found as

SE[φ(x̄), J(x̄)] = −iS[φ(x), J(x)]
∣∣
x0=−ix̄0 ⇐⇒ S[φ(x), J(x)] = iSE[φ(x̄), J(x̄)]

∣∣
x0=ix̄0 ,

(2.84)
which yields

SE[φ(x̄), J(x̄)] =
1

2
φx̄KE x̄ȳφȳ + SI[φ(x̄)]− Jx̄φx̄ , with KE x̄ȳ = −(∂̄

2
t + ∇̄2

) +m2 . (2.85)

With this, we have by de�nition

Z[J ] =

∫
Dφ e

i
~S[φ(x),J(x)] =

∫
Dφ e−

1
~SE[φ(x̄),J(x̄)] . (2.86)

We must also change the form of the Feynman trick with δ
δJi

to ~
i
δ
δJi

and ~ δ
δJi

in the
Minkowskian and Euclidean regime, respectively. Further, by de�nition of W [J ] we have

e−
i
~W [J ] = Z[J ] = e

1
~WE[J ] , (2.87)

from where we conclude, that

WE[J(x̄)] = iW [J(x)]
∣∣
x0=−ix̄0 ⇐⇒ W [J(x)] = −iWE[J(x̄)]

∣∣
x0=ix̄0 , (2.88)

and since W [J ] + Γ[ϕ] = ϕiJi with ϕi = δW [J ]
δJi

we have also

ΓE[ϕ(x̄)] = −iΓ[ϕ(x)]
∣∣
x0=−ix̄0 ⇐⇒ Γ[ϕ(x)] = iΓE[ϕ(x̄)]

∣∣
x0=ix̄0 . (2.89)

We see the transformation rule coincides with the one for the classical action, as is of the e�ective
action required. These relations conclude this chapter.
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Chapter 3

Zeta Function Regularization

We have already stumbled upon an interesting object in the previous chapters � the determi-
nant of a di�erential operator. We know what a determinant is for a �nite-dimensional matrix,
but taking a formal limit in the dimension to in�nity, the matrix becomes a (di�erential) oper-
ator and the usual de�nition of the determinant through the sum of all permutations of matrix
elements somewhat fails. We can use an equivalent de�nition such as that through a product of
the eigenvalues, but we would be extremely lucky, if it converged. To �nd a �nite and meaningful
result (i.e. to regularize the determinant) we use a few tricks. We will expand on some of them
in the following paragraph.

3.1 Brief Overview of Regularization Methods

Here we discuss some well known methods for calculating determinants of di�erential opera-
tors to obtain meaningful physical results.

• First thing we can do is to retreat back to the �nite-dimensional case and discretize the
operator. That means that to an operator O we assign �nite-dimensional matrix On such,
that in the limit as n→∞ we get On → O. This can be done by substituting derivatives
with �nite di�erences from which we construct a matrix acting on a discretized vector
φ(xn). We calculate the determinant of such a matrix, which will depend on the dimension
n through which we go back by taking the limit n→∞.

• It is sometimes possible in the discretized case to �nd a recurrence relation for the determi-
nant by applying the determinant expansion by minors. After taking the limit n→∞, the
determinant may be found as a solution of a di�erential equation speci�c to each operator.

• Another option is the so-called dimensional regularization. For that we apply the for-
mula (2.74) relating the determinant with trace

detO = etr lnO , (3.1)

where we calculate the trace in a conveniently chosen space, for example

tr lnO =

∫
d4x lnO(x, x) . (3.2)
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These integrals are, however, usually divergent, which is bypassed by analytically continu-
ing the dimension of the integral measure to real numbers

tr lnO = lim
ε→0

η2ε

∫
d4−2εx lnO(x, x) . (3.3)

Here we must introduce a new constant η, which carries non-trivial dimension identical to
that of the integral measure dx to compensate for the change of the integral measure.

This regularization was chosen to calculate the e�ective potential in [1], however the ap-
plicability of this method is in this particular case questionable. The problem arises form
the fact, that in their article, they also use a global topological invariant (a consequence
of Gauss�Bonnet theorem), which holds only in a �xed dimension of four. The aim of this
diploma thesis will be to con�rm their result using the so-called zeta function regularization,
which will be the topic of the following section.

Since it will be related to our case in Chapter 3, we also remark upon the so-called dimen-

sional transmutation. This occures, when the regulating scale η does not vanish completely
after all calculations of the integral are done and the limit ε → 0 applied. It was �rst de-
scribed by Coleman and Weinberg [7], after whom the mechanism was also named. We
will see that similar e�ect happens also in the case of the quantum Weyl gravity.

There exist many other methods, however, we will mention only one more � the use of the
spectral zeta function.

3.2 The Spectral Zeta Function

It is probably appropriate to begin with the de�nition of the Riemmann zeta function, which
enables us to make such funny statements as �sum of all natural numbers is − 1

12 � or at least give
it a better sense. The zeta function is originally de�ned as

ζ(s) ≡
∞∑
n=1

1

ns
, Re s > 1 , (3.4)

nevertheless the function is meromorphic on C and holomorphic on C \ {1} thus it can be
analytically continued to the whole complex plane and the continuation is unique. Due to this
property, we can search for other equivalent formulations of the same function and if we prove
it equals to the zeta function on some subdomain in C, we know from the uniqueness of the
continuation that it indeed is the zeta function. Thus, we have other representations, such as

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1

es − 1
dx . (3.5)

The most important property is the so-called functional equation, which enables us to re�ect
the domain of the ζ function to the second half of the complex plane

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s) . (3.6)

The e�ect of the domain extension from Re s > 1 to Re s < −1 is to make sense of otherwise
non-sensical formulas such as
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∞∑
n=1

n ∼ ζ(−1) = − 1

12
,

∞∑
n=1

1 ∼ ζ(0) = −1

2
,

∞∑
n=1

1√
n
∼ ζ
(1

2

)
= −1.46035 . . . , (3.7)

and some of these even �nd its use in physics (e.g. the black body radiation) or the string theory.
There are many generalizations of the zeta function (see for example [8]) but we will be

interested only in the so-called spectral zeta function. This is assigned to every operator A with
eigenvalues an as

ζA(s) ≡ Tr
(
A−s

)
≡
∞∑
n

1

asn
. (3.8)

Using this spectral zeta function, we are able to regularize (or even de�ne) the determinant
of an operator A. To show that, we �rst observe that

dζA(s)

ds
=

d

ds

∞∑
n

e−s ln an = −
∞∑
n

e−s ln an ln an , (3.9)

from where after setting s = 0 and employing the property of logarithm we obtain

−ζ ′A(0) =

∞∑
n

ln an = ln

∞∏
n

an = ln detA . (3.10)

Hence we can de�ne a determinant of an operator through the spectral zeta function as

detA ≡ e−ζ
′
A(0) , (3.11)

which is the key equality to the zeta function regularization.
It seem all nice and clear, but apparently, we still have to solve the eigenproblem to �nd

the spectral zeta function which is no improvement at all. To bypass the problem of �nding the
spectrum we use the so-called heat kernel which we describe in the following section.

3.3 The Heat Kernel for the Spectral zeta Function

Here we aim at �nding an alternative formula for the spectral zeta function to the one using
eigenvalues, since they are usually impossible to �nd. To that end let us de�ne exponent of the
operator A by

K(τ) ≡ e−τA =
∑
n

e−τan |ψn〉 〈ψn| , τ > 0 . (3.12)

By de�nition clearly K(0) = 1 and we can discard the one-dimensional projections |ψn〉 〈ψn| by
taking trace. The result is then a function of τ

TrK(τ) =
∑
n

e−τan . (3.13)

It is unclear how the operator K or its trace might help us at the moment. But let us now
devise an analogue of the integral representation of the Riemann zeta function from (3.5) also
for the spectral one. We start with the integral representation of the gamma function
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Γ(s) =

∫ ∞
0

e−ττ s−1 dτ =
∣∣∣τ = kτ

∣∣∣ = ks
∫ ∞

0
e−kττ s−1 dτ , (3.14)

where k is a real number. From here, we isolate k−s as

1

ks
=

1

Γ(s)

∫ ∞
0

e−kττ s−1 dτ . (3.15)

Now since the number k is arbitrary, we can choose it from the spectra of A. Moreover, if we
sum over all such choices to get∑

n

1

asn
=

1

Γ(s)

∑
n

∫ ∞
0

e−anττ s−1 dτ =
1

Γ(s)

∫ ∞
0

(∑
n

e−anτ
)
τ s−1 dτ . (3.16)

We have now obtained a very important formula

ζA(s) =
1

Γ(s)

∫ ∞
0

TrK(τ)τ s−1 dτ . (3.17)

This is a new way to calculate the spectral zeta function, without any use of the spectrum of
A. The problem therefore transforms to that of �nding TrK(τ). This can be done the following
way � by de�nition, we know

∂K(τ)

∂τ
= −AK(τ) , (3.18)

and since the trace can be easily calculated as

TrK(τ) =

∫
dxK(x, x, τ) , (3.19)

we are interested in solving an equation for K(x, x′, τ) in the following form

∂

∂τ
K(x, x′, τ) = −

∫
dx′′

〈
x
∣∣A∣∣x′′〉K(x′′, x′, τ) , where K(x, x′, τ) ≡

〈
x
∣∣K(τ)

∣∣x′〉 . (3.20)

We must also supply the initial conditions for this di�erential equation which is K(x, x′, 0) =
δ(x − x′). We call the operator K(τ) the heat kernel since the di�erential equation (3.18) or
(3.20) has a form of the heat equation � this becomes more apparent, when A is a di�erential
operator in one variable only, thus 〈x|A|x′′〉 = D(x)δ(x−x′′) and the integral on the right hand
side simpli�es, hence we obtain an equation of the form

∂

∂τ
K(x, x′, τ) = −D(x)K(x, x′, τ) . (3.21)

The algorithm to �nd the determinant is now as follows:

1. Find a solution of the heat equation (3.20) for the heat kernel K(x, x′, τ) and compute its
trace

2. Compute the integral ζA(s) = 1
Γ(s)

∫∞
0 TrK(τ)τ s−1 dτ

3. Find the determinant as detA = e−ζ
′
A(0)

We will now demonstrate the process on the φ4 theory.
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3.4 One-Loop E�ective Potential for the φ4 Theory

To �nd the one-loop e�ective action, we go back a bit to Section 2.4.8 and recall, that the
�rst non-trivial quantum contribution to the e�ective action comes from the determinant of the
second variation of the classical action. The Euclidean action reads

S[φ] =

∫
d4x̄

1

2
φ(x̄)

(
− ∂̄x

2
+m2

)
φ(x̄) +

g

4!
φ4(x̄) . (3.22)

Hence, we are to calculate the determinant of the operator (see (2.73))

S(2)[φ] = −∂̄x
2

+m2 +
g

2
φ2(x̄) , (3.23)

where φ now denotes the classical solution, which is in the order O(~) identical with ϕ used in
the context of the e�ective action.

Let us follow the steps outlined in the previous section. First we solve the equation

(
− ∂̄x

2
+m2 +

g

2
φ2(x̄)

)
K(x̄, ȳ, τ) = −∂K(x̄, ȳ, τ)

∂τ
, with K(x̄, ȳ, 0) = δ(4)(x̄− ȳ) . (3.24)

The problem can be simpli�ed by separating the partial di�erential operator into two and �rst
solve

∂̄x
2
K0(x̄, ȳ, τ) =

∂K0(x̄, ȳ, τ)

∂τ
, with K0(x̄, ȳ, 0) = δ(4)(x̄− ȳ) . (3.25)

To solve this equation we perform the Fourier transform from x̄ 7→ k̄ so that we now have an
equation

∂

∂τ
K̃0(k̄, ȳ, τ) = −k̄2K̃0(k̄, ȳ, τ) , (3.26)

for which it is easy to write the solution

K̃0(k̄, ȳ, τ) = C(y) e−τ k̄
2
. (3.27)

This must be now Fourier-transformed back (we also include the initial condition setting C(y) = 1
and adding y into the exponent in the integrand to yield the integral representation of the delta
function in the case of τ = 0)

K0(x̄, ȳ, τ) =

∫
d4k̄

(2π)4
e−τ k̄

2
e−ik̄µ(x̄µ−ȳµ) =

1

(2π)4

√
π

τ

4

e−
(x̄−ȳ)2

4τ =
1

16π2τ2
e−

(x̄−ȳ)2

4τ . (3.28)

The solution to the equation (3.24) can now be obtained from K0 and Kp satisfying(
m2 +

g

2
φ2(x̄)

)
Kp(x̄, ȳ, τ) = − ∂

∂τ
Kp(x̄, ȳ, τ) , (3.29)

as K(x̄, ȳ, τ) = K0(x̄, ȳ, τ)Kp(x̄, ȳ, τ) since in our special case of calculating the e�ective poten-
tial, we set φ(x̄) ≡ φ = const in the equation (3.29) as we have discussed in the previous chapter.
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As a consequence of this choice, Kp(τ) is not a function of any coordinate and we can use(
− ∂̄x

2
+m2 +

g

2
φ2
)
K0(x̄, ȳ, τ)Kp(τ) =

= −Kp(τ)∂̄x
2
K0(x̄, ȳ, τ) +K0(x̄, ȳ, τ)

(
m2 +

g

2
φ2
)
Kp(x̄, ȳ, τ) =

= −Kp(τ)
∂

∂τ
K0(x̄, ȳ, τ)−K0(x̄, ȳ, τ)

∂

∂τ
Kp(τ) = − ∂

∂τ

(
K0(x̄, ȳ, τ)Kp(τ)

)
.

(3.30)

Fortunately, calculating Kp(τ) is easy and we �nd, that the full heat kernel can be written as

K(x̄, ȳ, τ) =
1

16π2τ2
e−

(x̄−ȳ)2

4τ e−τ(m2+ g
2
φ2) . (3.31)

At this point it is necessary to make some adjustments. Since the exponent should be dimen-
sionless, we rescale it by τ → τ/µ2, where we have introduced a dimensionfull parameter µ,
[µ] = kg = m−1 to compensate for the dimension of the m2 + g

2φ
2 . Rewriting the result in the

dimensionless form and tracing this function we get

TrK(x̄, ȳ, τ) =

∫
d4x̄K(x̄, x̄, τ) =

µ4

16π2τ2
e−τµ

−2(m2+ g
2
φ2)

∫
d4x̄ , (3.32)

and with the use of notation introduced in the previous chapter we will write the integral over
the Euclidean spacetieme as Ω4. We also note, that the trace of the heat kernel is independent
of coordinates, hence its form will not change upon Wick rotation. This fact will be used later
in the calculations of determinants in Section 4.6

We move on to the second step � calculating of the integral

∫ ∞
0

µ4

16π2τ2
e−τµ

−2(m2+ g
2
φ2)Ω4τ

s−1 dτ =
µ4

16π2
Ω4

∫ ∞
0

e−τµ
−2(m2+ g

2
φ2)τ s−3 dτ . (3.33)

We can now make a substitution τµ−2(m2 + g
2φ

2) → t to obtain a nice form of the Gamma
function

µ4

16π2

[
µ2

m2 + g
2φ

2

]s−2

Ω4

∫ ∞
0

e−tts−3 dt =
µ4

16π2

[
µ2

m2 + g
2φ

2

]s−2

Ω4Γ(s− 2) . (3.34)

Substituting this result back to the formula for the spectral zeta function one obtains

ζA(s) =
1

Γ(s)

∫ ∞
0

TrK(τ)τ s−1 dτ =
Γ(s− 2)

Γ(s)

µ4

16π2

[
µ2

m2 + g
2φ

2

]s−2

Ω4 , (3.35)

where we use the fact, that the Gamma function is a generalization of the factorial Γ(s−2)/Γ(s) =
1/(s− 1)(s− 2). Hence we write

ζA(s) =

(
1

s− 2
− 1

s− 1

)
µ4

16π2

[
µ2

m2 + g
2φ

2

]s−2

Ω4 . (3.36)

This thus concludes step two.
The last step is to �nd det

(
−∂̄x

2
+m2 + g

2φ
2
)

= ζ ′(0) which is a simple calculus
48



ζ ′
(−∂̄x2

+m2+ g
2
φ2)

(0) =
µ4

16π2
Ω4

(
m2 + g

2ϕ
2

µ2

)2[3

4
+

1

2
ln

(
µ2

m2 + g
2ϕ

2

)]
. (3.37)

Here again we stress the fact that there is no explicit coordinate in the form of ζ ′(0). This is to
our great bene�t, for the result would be identical if we calculated it in the Minkowskian regime.
Thus, we will be able to use this exact result in Chapter 4, where all calculations are done in
Minkowskian regime.

Let us now �nd the Euclidean e�ective potential (see (2.80)) as

Γ[ϕ] = Veff [ϕ]Ω4 =
(
V [ϕ] + V 1[ϕ]

)
Ω4 , (3.38)

where V is the classical potential and V 1 is the one-loop contribution. Further by de�nition
(see (2.77))

e−Γ[φ]+Jiφi = e−S[φ]−Γ1[φ]+Jiφi = e−S[φ]+φiJi
[

det
(
S

(2)
ij [φ]

)]−1/2
, (3.39)

we obtain a relation for the one-loop e�ective potential to be

e−Γ1[φ] = e−V
1[φ]Ω4 =

[
det
(
S

(2)
ij [φ]

)]−1/2
⇐⇒ V 1[φ]

∫
d4x̄ =

1

2
ln det

(
S

(2)
ij [φ]

)
V 1[φ]Ω4 = −1

2
ζ ′−∂̄x2

+m2+ g
2
φ2

(0) ,

(3.40)

and from here we see, that the volume integral Ω4 will cancel on both sides of the equation.
The complete potential (the classical + the one-loop correction) reads (see c.f. [3])

V (φ) =
1

2
m2φ2 +

g

4!
φ4 +

1

64π2

(
m2 +

g

2
ϕ2
)2
[
− 3

2
+ ln

(
m2 + g

2ϕ
2

µ2

)]
. (3.41)

Having derived the form of the e�ective potential, we are now able to calculate the e�ective mass
of the �eld and also its e�ective coupling constants, as proposed in Section 2.4.8.

meff =
∂2V (φ)[0]

∂φ2
= m2 +

m2g

128π2

[
− 5 + 2 ln

(m2

µ2

)]
. (3.42)

We see, that the mass of the �eld changes, but also that we have and arbitrary parameter µ of
the theory still in present. It is, however, possible to expressed it with respect to the coupling
constant, which makes the potential a parameter of m and g and their scaling relation.
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Chapter 4

Weyl Conformal Theory of Gravity and

Its Quantization

This chapter will be devoted to the study of Weyl conformal theory of gravity and its quantum
extensions. It is an example of a fourth-order theory with an action quadratic in curvature,
containing all possible terms from R, RµνRµν and RµνρσR

µνρσ in such a speci�c combination
that the resulting action is conformally invariant. As a part of a general study of Riemann
curvature tensor we stumble upon Ricci decomposition, where we �nd a traceless Weyl tensor
which is conformally invariant. The action must be therefore composed of the contraction of
this Weyl tensor. We will �rst present arguments, why conformal theory should be the right
extension of GR and a good basis for a theory of quantum gravity. We will then show, how the
general action can be simpli�ed and perform its expansion into a linearized theory. Our next
focus will be on the discussion of quantum conformal gravity with its implications found by P.
Jizba, H. Kleinert and F. Scardigli in [1].

We note, that from this chapter on, we are working in the Minkowskian regime again. The
reason for that is, that in curved spacetime, the Osterwalder�Schrader theorem does not hold
and the Euclidean and the Minkowskian regimes are, in general, not equivalent. The question
then arises � which of these regimes is the correct one to use? There are physicists (among them
was for example S. Hawking), who postulate the correct form of the gravity to be Euclidean,
nevertheless we will avoid this discussion and work in the Minkowskian regime assuming it is
closer to physics.

4.1 Physical Motivation

First we pose a question as to why should the conformal symmetry be important? Generally,
we use symmetries in physics to simplify problems � nowadays we use the symmetry of the
Lorentz group as a starting point of our theories, requiring that the laws of physics are invariant
under the action of the Lorentz (Poincaré) group. Assuming the system is invariant under
space and time translations enables us to make physical predictions about far away places and
both future and past times. Rotational invariance, on the other hand, guarantees isotropy and
independence of direction and invariance under boosts tells us the laws of nature are independent
of the speed of any observer. However, we have huge problems making predictions about di�erent
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(energy) scales1. All perturbation approaches always assume the perturbation to be small i.e.
the energy of the system must not change too dramatically. The Standard Model can predict
to about a range of 1 TeV and our largest experimental apparatuses probe the energy scales of
around 14 TeV, but we are still blind at greater energy scales, such as those needed by the Grand
Uni�cation Theories (GUT) 1013 TeV or the early stages of the universe 1030 TeV.

This would be elegantly resolved by the conformal invariance, whose physical interpretation is
that the system must behave identically on all scales. This would be the missing symmetry, which
would enable us to easily predict the behaviour of the system on any energy scale. However,
except for some rare examples, the nature is not scale invariant. We must therefore assume the
symmetry breaks during the evolution of our universe, giving birth to scale ∼ mass. We will
show results con�rming precisely this hypothesis.

One of the examples of systems that are scale invariant (are of fractal character) are systems
undergoing a phase transformation. It is known, that some information about the system gets
lost during a phase transformation (thus the process virtually violates unitarity). The conformal
theory of gravity can therefore be a good candidate for the description of the �rst moments
of existence of our universe. Whether it was the hot/cold Big Bang or the aftermath of Big
Crunch, either way the process can be thought of as a phase transformation and conformal
theory is appropriate for its description.

This early universe argument is strongly reinforced by cosmological observations, �nding the
most probable in�ationary scenario to be curvature-driven thus best described by the Starobinsky
gravity. It is assumed that our universe underwent an era of extreme expansion � the in�ationary
era � which lasted about 10−36s and during which the size of the universe grew approximately
e40÷50-times. From the quantum mechanical veiwpoint, it is important to assume, that all �elds
that were present during the wild early moments of our universe must have �uctuated wildly.
The in�ation, however, caused an (almost perfect) smoothing out of all these �uctuations as we
infer from the Cosmic Microwave Background (CMB) data. This is the basis for our present
Standard Model of Cosmology.

From our phenomenological observations we are able to make some guesses about what the
structure of the universe must have been in order for our universe to be as it is now. Right now, we
are desperately waiting for gravitational waves coming from the in�ationary era to be detected.
What we have at our disposal at the moment are observations made by Planck and BICEP of
the CMB, from which we are able to infer for example the Ω-parameters for energy content of the
universe and the ratio of energy contained in tensorial or scalar modes of �uctuations present in
the early universe matter. The tensor-to-scalar ratio of tensorial modes (the metric tensor) and
of scalar modes (the assumed in�aton �eld, temperature etc.) is today at value r < 0.11 [9, 10].
In �gure 4.1a and 4.1b, we see, that this ratio is theoretically best reached by the Starobinsky
model, which takes for a source of the in�aton �eld (the �eld assumingly responsible for the
in�ation) higher orders of the curvature tensor � R2. This is extremely important for conformal
gravity because Starobinsky model arises in the conformal gravity as a low energy limit after the
breakdown of conformal symmetry [1].

1Scale in this context is either length, mass or time, since these are the three units, that can be all set as

[x] = [t] = [m]−1 = L by the choice of the speed of light c and the Planck constant ~.
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Figure 4.1: Joint data results from experiments Planck, Wilkinson Microwave Anisotropy Probe (WP)
and Baryon Acoustic Oscillation (BAO). Two shades of each colour represent 68% and 95% con�dence
level within the chosen experimental data. The data show the tensor-to-scalar ratio and its relation with
the scalar spectral index ns, which says how much the scalar �uctuations changes with scale. Since the
observation shows that the �uctuations were not uniform on all scales, we must choose a pivotal scale
k∗ = 0.002 MPc−1 to obtain the data. Theoretical predictions of in�ationary models are plotted as color
segments. N∗ denotes the e-folding number, which is a parameter of the in�ationary models. It is clear
that the data favour the R2 in�ation model i.e. the Starobinsky model.

(a) Data from the 2013 data analysis, taken from [9]

(b) Data from the 2015 data analysis, taken from [10]
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4.2 Mathematical Background

Let us de�ne a Weyl transformation as

gµν(x)→ Ω2(x)gµν(x) . (4.1)

The Weyl transformation (or scaling transformation) is one of conformal subgroups, generated
by a conformal group. In 4 dimensions, the conformal group has 15 in�nitesimal generators �
6 Lorentz generators, 4 translations, 4 conformal boosts and 1 scaling. All except the Weyl
transformation are already included in general di�eomorphism invariance of general relativity
since these transformation act only as a change of coordinates. Thus, working with a generally
relativistic theory it is su�cient to add only the Weyl transformation to obtain a conformally
invariant theory.

All conformal transformations leave angles invariant, which can be easily seen from the de�-
nition of the cosine of an angle θ between vectors Xµ and Y ν

cos(θ) =
gµνX

µY ν√
gµνXµXνgαβY αY β

. (4.2)

Next we put forward some useful mathematical result that will be needed in the following
sections. Let us begin by writing the action for the theory

S = − 8

α2
c

∫
d4x
√
−g CαβγδCαβγδ , (4.3)

where αc is a small dimensionless coupling constant and Cαβγδ is the so-called Weyl tensor
de�ned as

Cαβγδ = Rαβγδ −
1

2
(gα[γRδ]β − gβ[γRδ]α) +

1

6
Rgα[γgδ]β , (4.4)

It is clear that the action (4.3) is conformally invariant since Cαβγδ is and we can write the
integrand as

CαβγδC
αβγδ = Cαβγδgαµg

βνgγρgδσCµνρσ → Ω−6+2Cαβγδgαµg
βνgγρgδσCµνρσ , (4.5)

where the term Ω−4 cancels out with the term from the transformation rule for the determinant
g = det gµν → Ω8g. Using the de�nition of the Weyl tensor, known de�nitions for contractions
of the Riemann tensor and (a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc we rewrite the integrand
of the action as
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CαβγδC
αβγδ =

=
1

4

(
gαγRδβ − gαδRγβ − gβγRδα + gβδRγα

)(
gαγRδβ − gαδRγβ − gβγRδα + gβδRγα

)
+

+RαβγδR
αβγδ +

1

36
R2
(
gαγgδβ − gαδgγβ

)(
gαγgδβ − gαδgγβ

)
−

−Rαβγδ
(
gαγRδβ − gαδRγβ − gβγRδα + gβδRγα

)
+Rαβγδ

1

3
R
(
gαγgδβ − gαδgγβ

)
−

− 1

6

(
gαγRδβ − gαδRγβ − gβγRδα + gβδRγα

)
R
(
gαγgδβ − gαδgγβ

)
=

= RαβγδR
αβγδ +

1

4
4
(
4RαβR

αβ −RαβRαβ −RαβRαβ +R2
)

+
1

36
R2
(
4 · 4 + 4 · 4− 4− 4

)
−

− 4RαβR
αβ +

4

6
R2 − 4

6
R(4R−R) = RαβγδR

αβγδ − 2RαβR
αβ +R2

(
1 +

24

36
+

4

6
− 12

6

)
(4.6)

so we can equivalently write the action (4.3) using the Riemann tensor, Ricci tensor and the
Ricci scalar as

S = − 8

α2
c

∫
d4x
√
−g
[
RαβγδR

αβγδ − 2RαβR
αβ +

1

3
R2
]
. (4.7)

The action can be further simpli�ed with the use of the Gauss�Bonnet invariant

G = R2 − 4RµνRµν +RµνρσRµνρσ , (4.8)

since the term
√
−g G contributes only a total divergence term � the Gauss�Bonnet theorem. It

is important to remark, that the above Gauss�Bonnet theorem holds only in a �xed dimension
of four. Using the theorem, it is possible to subtract the RαβγδRαβγδ term from the action and
get an equivalent action in the form

S = − 1

4α2
c

∫
d4x
√
−g
(
RαβR

αβ − 1

3
R2
)
. (4.9)

The action in this form retains the conformal invariance and also exhibit the general di�eomor-
phism invariance. Variating this action w.r.t. the metric yields the so-called Bach's equations

1

2
gαβ
(
RγδRγδ −

1

3
R2
)
−∇2

(
Rαβ − 1

6
Rgαβ

)
+Rαγ;β

;γ −
2

3
R;αβ = 0 . (4.10)

Now we see again that the equations are of fourth order in the metric. It has been shown
[12], that the ensuing linearized equations have six plane wave solutions corresponding to six
propagating physical degrees of freedom � massless spin-2 graviton, massless spin-1 vector boson,
identi�able with photon and a massless spin-2 ghost particle. This will also be indicated later in
our search for the e�ective potential.

4.3 The Linearization of Weyl Gravity

To linearize the theory, we take gµν = ηµν + αchµν , ηµν = diag(+,−,−,−) being the metric
of a �at spacetime, αc the small coupling constant from the Weyl action and hµν a disturbance.
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It is not possible to assume anything about the hµν since it later appears in the path integral
measure, hence it must run over all possible �eld con�gurations.

We now �nd contribution to the action to the lowest order of αc. Let us start by the linearizing
the connection

Γαβγ = αc
1

2

(
gαβ,γ + gαγ,β − gβγ,α

)
= αc

1

2

(
hαβ,γ + hαγ,β − hβγ,α

)
+O(α2

c) . (4.11)

Next we recall the de�nition of the Riemann tensor and substitute result for the connection to
�nd

Rαβγδ = Γαβδ, γ − Γαβγ, δ + ΓαγσΓσβδ − ΓαδσΓσβγ =

= αc
1

2

(
hαβ,δ + hαδ,β − hβδ,α

)
, γ
− αc

1

2

(
hαβ,γ + hαγ,β − hβγ,α

)
, δ

+O(α2
c) =

= αc
1

2

(
hαδ, βγ + hβγ, αδ − hβδ, αγ − hαγ, βδ

)
.

(4.12)

From here we �nd by contractions, that the Ricci tensor is equal to

Rµν = αc
1

2

(
hαµ, να + hαν, µα −�hµν − hαα, µν

)
, (4.13)

where � = ∂α ∂
α. Tracing again, we get the Ricci scalar

R = αc
(
hαβ, αβ −�hαα

)
. (4.14)

Since all curvature terms are squared on the action, it is clear, they will be at least of second
order in αc. We shall now �nd all the terms from the action (4.9) in the second order of αc to
have everything ready for further calculations. We begin wit the square of the Ricci tensor

4RµνR
µνα−2

c =
(
hαµ, να + hαν, µα −�hµν − hαα, µν

)(
hαµ ν, α + hαν µ, α −�hµν − hα µν

α,

)
=

=

A︷ ︸︸ ︷
hαµ, ναh

βµ ν
, β +

B︷ ︸︸ ︷
hαν, µαh

βν µ
, β +

C︷ ︸︸ ︷
�hµν�h

µν +

D︷ ︸︸ ︷
hαα, µνh

β µν
β, +

+ 2
[ 1©︷ ︸︸ ︷
hαµ, ναh

βν µ
, β −

2©︷ ︸︸ ︷
hαµ, να�h

µν −

3©︷ ︸︸ ︷
hαµ, ναh

β µν
β, −

4©︷ ︸︸ ︷
hαν, µα�h

µν −

5©︷ ︸︸ ︷
hαν, µαh

β µν
β, +

6©︷ ︸︸ ︷
�hµνh

β µν
β,

]
.

(4.15)

As we are searching for terms that will be put back into the action, we are not interested in total
derivatives. As a consequence, we can shift the derivatives in the products from one term to the
other compensating by an extra minus sign for every shift and forgetting the total derivative
terms. Thus, for example

hαµ, ναh
βµ ν

, β ' − ∂αh
α
µ� ∂βh

βµ , (4.16)

where the symbol ' reminds us, that the total derivatives are not taken into account. We
rearrange the terms one by one, obtaining relations

A ' B ' − ∂αhαµ� ∂βh
βµ , C ' hµν�2hµν , D ' hαα�2hββ

1© ' hαν, ανh
βµ
, βµ , 2© ' 4© ' −A , 3© ' 6© ' 5© .

(4.17)
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Using these results, the square of the Ricci tensor can be written as

RµνR
µν =

α2
c

4

[
2 ∂αh

αµ�ηµν ∂βh
βν + hµν�

2hµν + hαα�
2hββ + 2hαν, ανh

βµ
, βµ − 2hαν, αν�h

β
β

]
.

(4.18)
The square of the Ricci scalar is easy to obtain straight from (4.14)

R2 = α2
c

(
hαβ, αβ −�hαα

)2
. (4.19)

We must not forget to expand the term
√
−g =

√
−det(ηµν + αchµν) into a series in αc. To

that end we use δ
√
−g = 1

2
√
−g δg and the de�nition of g

det(ηµν + αchµν) = det(ηµα) det
(
δαν + αcη

αβhβν

)
≡ η det

(
δαν + αcη

αβhβν

)
. (4.20)

Now we compute the determinant with the use of the trace-log formula

det
(
δαν + αcη

αβhβν

)
= exp Tr ln

(
1 + αcη

αβhβν

)
.
= exp Tr

(
αcη

αβhβν −
1

2
α2
cη
αβhβγη

γδhδν

)
=

= exp
(
αch

α
α −

1

2
α2
ch
αβhαβ

) .
= 1 + αch

α
α −

1

2
α2
ch
αβhαβ +

1

4
α2
ch
α
αh

β
β ,

(4.21)

and now by the de�nition of variation

det(ηµν + αchµν) = η + δη = η + η
(
αch

α
α −

1

2
α2
ch
αβhαβ +

1

4
α2
ch
α
αh

β
β

)
. (4.22)

Using the fact, that η = det ηµν = −1 we �nd the variation of
√
−g to be

√
−g = 1 +

αc
2
hαα +

a2
c

8

(
hααh

β
β − 2hαβhαβ

)
. (4.23)

4.4 Hubbard�Stratonovich Transformation, Linearized Action

This section will be devoted to recovering a speci�c form of action used by P. Jizba and his
colleges in their article [1]. To be able to make an easy comparison of the results, we will follow
their notation. It is important to remark, that since we are interested in the partition function
Z and since any physically relevant quantity derived from Z is insensitive to the normalization
of Z, we will, in the course of our computations, usually forget all extra numerical factors.

We start this section by writing the Weyl action again

A = − 1

4α2
c

∫
d4x
√
−g
(
RµνR

µν − 1

3
R2
)
. (4.24)

The overall goal of the rest of this chapter will be to show, that the quantum Weyl gravity
dynamically breaks its conformal invariance and turns morphs a the Starobinsky gravity after
the breakdown. The Starobinsky gravity is described by the action

ASt = − 1

2κ2

∫
d4x
√
−g
(
R− ξ2R2

)
, (4.25)
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where κ2 = 8πG = 8π/m2
Planck

.
= 5 · 10−16kg2, G being the Newton's gravitational constant and

ξ is a small constant for which the observations of the CMB give constraints ξ/κ ∼ 105 [9, 10].
We will take several steps to change the form of the action (4.24) to show it indeed transforms
into the Starobinsky gravity.

The �rst part of this section will shortly introduce the Hubbard�Stratonovich transformation.
We start from the one-dimensional integral identity

e−ax
2

=

√
1

4πa

∫ ∞
−∞

dy e−
y2

4a
−ixy , (4.26)

which can be generalized analogously to the �rst chapter to

e−x
TAx =

(
1

4π

)d/2(
detA

)−1/2
∫ ∞
−∞

ddy e−
1
4
yTA−1y−ixT y , (4.27)

and sending the dimension to in�nity, we formally obtain

exp

[
−
∫

dx dy f(x)A(x, y)f(y)

]
= N

∫
Dg e−

1
4

∫
dxdyg(x)A−1(x,y)g(y)−i

∫
dxf(x)g(x) . (4.28)

In our notation, we thus write

e−fxAxyfy =

∫
Dg e−

1
4
gxA
−1
xygy−ifxgx . (4.29)

This so-called Hubbard�Stratonovich (HS) transformations enables us to substitute a quadratic
term f2 in the exponent for a linear term at the price of introducing a new variable g. With this
transformation also arises a new (divergent) constant N , but we include it in the measure Dg.
We will use the HS transformation on the R2 part of the action to obtain a new (dimensionfull)
scalar �eld λ and to reduce R2 to R. Speci�cally, we transform

eiAR2 = exp
( i

12α2
c

∫
d4x
√
−gR2

)
=

∫
Dλ exp

[
− i

∫
d4x
√
−g
(

3α2
cλ

2 +Rλ
)]
, (4.30)

and to obtain the same result as in [1], we rescale the �eld λ→ λ/2

eiAR2 =

∫
Dλ exp

[
− i

∫
d4x
√
−g
(3α2

c

4
λ2 +

R

2
λ
)]
. (4.31)

Here, the dimensions of λ are the same as those of R, namely [λ] = L−2 in order to have a
dimensionless action.

To reproduce the complete action as in [1], we further use a trivial identity 1 = cosh2 θ−sinh2 θ
on the R2 term

A = − 1

4α2
c

∫
d4x
√
−gRµνRµν +

(
cosh2 θ − sinh2 θ

) 1

12α2
c

∫
d4x
√
−gR2 , (4.32)

and apply the Hubbard�Stratonovich transformation only to the part with sinh θ (which e�ec-
tively means we rescale α2

c → −α2
c/ sinh2 θ). After denoting sinh θ ≡ S and cosh θ ≡ C for

brevity we get
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A[gµν , λ] =

∫
d4x
√
−g
[
− 1

4α2
c

RµνR
µν +

C2

12α2
c

R2 +
3α2

c

4S2
λ2 − R

2
λ

]
. (4.33)

We see now, that the trivial identity 1 = S2 − C2 provided us with additional term R2 in
the action, which is crucial if we want to obtain the Starobinsky model. To make to comparison
even easier, we rescale the �eld λ → λ/κ2, so that we can easily identify the terms present the
action with the Starobinsky model. Due to the rescaling, the �eld λ became dimensionless and
we can now write the �nal form of the action with two dynamical �elds gµν and λ

A =

∫
d4x
√
−g
[
− 1

4α2
c

RµνR
µν +

C2

12α2
c

R2 +
3α2

c

4S2κ4
λ2 − 1

2κ2
Rλ

]
. (4.34)

By comparison with the Starobinsky action (4.25) we see, that C2

12α2
c
corresponds to ξ2/2κ2

and that the long-range behaviour of the Weyl gravity will coincide with the Starobinsky model,
when λ = 1. That this is possible will be our goal to show.

For future calculations is interesting to discuss the magnitude of each term present in the
action. Since αc ∼ Cκ/ξ ∼ C10−5 is our small parameter of the expansion (thus surely αc < 1),
we see, that the �rst term is of magnitude C−21010 ÷ C−2, the second one 1010, the third one
C2S−2κ−410−10 (which for S > 1 or C > 1 goes to κ−410−10) and the last one is of magnitude
κ−2. Since κ2 .

= 5 · 10−16kg2 we immediately see that the last two terms are of magnitude
∼ 1022kg−2 and ∼ 1017kg−2, thus they clearly dominate the action. It is therefore su�cient
to expand the �rst two terms only up to the order α0

c as any higher terms would be further
suppressed by the fact that αc is small.

This suppression is, however, not so signi�cant in the last term, where the expansion into
higher orders of αc is compensated by κ−2, hence we will expand the last term up to the second
order of αc. We notice here, that the results prepared in the previous section do not provide√
−gR up to the second order. In this place we refer to [11] for more precise result

√
−gR = αc

(
hαβ, αβ −�hαα

)
+ α2

c

[
1

2
hγγ
(
hαβ, αβ −�hαα

)
− hαγ

(
2h γ, βα

β − hβ , αγ
β −

−�hαγ
)

+
1

4

(
3hβγ, αh

βγ, α − 2hβγ, αh
αγ, β − 4hαβ, αh

βγ
, γ + 4hαβ, αh

γ , β
γ − hββ, αh

γ , α
γ

)]
,

(4.35)

After rearranging the derivatives and forgetting the total derivative terms, we can substitute in
the action term by term the following expressions

√
−gRµνRµν '

α2
c

4

[
2 ∂αh

αµ�ηµν ∂βh
βν + hµν�

2hµν + hαα�
2hββ + 2(hαν, αν)2 − 2hαν, αν�h

β
β

]
√
−gR2 ' α2

c

(
hαβ, αβ −�hαα

)2
√
−gR ' −αc�h̄+

α2
c

2

(
− hαα�h̄+ hαµ, αηµνh

βν
, β +

1

2
hαβ�h

αβ +
1

2
hαα�h

β
β

)
,

(4.36)

where we have already used notation h̄ introduced further down the text.
Before we substitute these terms into the action, we set λ = λ̄ + δλ and use only the the

expectation value of the �eld λ̄. This corresponds to the choice of φ(x) = φ from Section 3.4 for
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the calculation of the e�ective potential of the φ4 theory. Another consequence of this choice
is, that λ̄ is no longer a dynamical �eld and therefore we do not integrate over it in the path
integral.

It is apparent the terms the in the action are very distinct in speci�c ways, hence we will
work with the action piece by piece. Firstly, the term proportional to λ2 has no way to merge
with the other terms and will survive in this form until the end. Secondly, the last term with
1/2κ2 will also survive separately, however, the �rst two terms will merge in some way. Let us
separate the action as A = A1 +Aλ2 +Aκ−2 and focus on the A1 part �rst

A1 =

∫
d4x

[
− 1

8
∂αh

αµ�ηµν ∂βh
βν − 1

16
hµν�

2hµν − 1

16
hαα�

2hββ −
1

8
(hαν, αν)2

+
1

8
hαν, αν�h

β
β +

C2

12

(
hαβ, αβ −�hαα

)2]
.

(4.37)

To systematically simplify this part of the action, we will use the knowledge about the con-
straints. As the theory is conformally and di�eomorphically invariant, we must �x a gauge. The
di�eomorphism constraint is put on functions χν ≡ ∂µh

µν and the conformal constraint is put
on χ ≡ h̄ = hαα − ∂µ�−1 ∂νh

µν [13]. We further denote an operator Hµν ≡ 1
2 ∂µ ∂ν − �ηµν to

follow [1]. We will now try to identify these newly denoted objects in A1.
First we notice, that �h̄ = �hαα − ∂µ ∂νhµν is present in the last term in the second line.

Moreover we rewrite the square of this term, forgetting total derivatives, as
(
�h̄
)2 ' h̄�2h̄.

The de�nition of Hµν can be used in the �rst term to extract �ηµν = 1
2 ∂µ ∂ν −Hµν . After

substituting this expression into the �rst term, we get − ∂αhαµ�ηµν ∂βhβµ ' ∂αhαµHµν ∂βh
βµ+

1
2h

αµ
, αµh

βν
, βν . With the use of these identities, we �nd this part of the action to turn into

A1 =

∫
d4x

[
1

8
∂αh

αµHµν ∂βh
βµ +

1

16

(
hαµ, αµ

)2 − 1

16
hµν�

2hµν − 1

16
hαα�

2hββ −
1

8

(
hαµ, αµ

)2
+

+
1

8
hαν, αν�h

β
β +

C2

12
h̄�2h̄

]
=

=

∫
d4x

[
1

8
∂αh

αµHµν ∂βh
βµ − 1

16

(
hαµ, αµ

)2 − 1

16
hµν�

2hµν − 1

16
hαα�

2hββ+

+
1

8
hαν, αν�h

β
β +

C2

12
h̄�2h̄

]
.

(4.38)

Next we notice, that the second and the fourth term are equal to
(
hαµ, αµ

)2
+ hαα�

2hββ '(
�h̄
)2

+ 2hαµ, αµ�h
β
β ' h̄�

2h̄+ 2hαµ, αµ�h
β
β . Thus, we can simplify the action again

A1 =

∫
d4x

[
1

8
∂αh

αµHµν ∂βh
βµ − 1

16

(
h̄�2h̄+ 2hαµ, αµ�h

β
β

)
− 1

16
hµν�

2hµν

+
1

8
hαν, αν�h

β
β +

C2

12
h̄�2h̄

]
=

=

∫
d4x

[
1

8
∂αh

αµHµν ∂βh
βµ + h̄�2h̄

(C2

12
− 1

16

)
− 1

16
hµν�

2hµν
]
.

(4.39)

These terms are already present in the action written in [1] hence manipulations with A1 are
now complete.
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We now turn our attention to the Aκ−2 part of the action

Aκ−2 = − 1

2κ2

∫
d4x
√
−g Rλ̄ =

= − 1

2κ2

∫
d4x

[
− αcλ̄�h̄+

α2
c

2
λ̄
(
− hαα�h̄+ hαµ, αηµνh

βν
, β +

1

2
hαβ�h

αβ +
1

2
hαα�h

β
β

)]
.

(4.40)

Comparison with the article tells us that the term linear in αc is already in the correct form.
There is, however, lot to be done with terms in multiplied by α2

c . We transform the �rst term in
the round brackets using hαα = h̄+ ∂µ�−1 ∂νh

µν

−hαα�h̄ = −h̄�h̄− ∂µ�−1 ∂νh
µν�hαα + ∂µ�

−1 ∂νh
µν� ∂ρ�

−1 ∂σh
ρσ

' −h̄�h̄− hµν, µν�hαα + hµν, µν�
−1hρσ, ρσ .

(4.41)

and insert an identity �−1� to the second term to be able to use �ηµν = 1
2 ∂µ ∂ν −Hµν again

hαµ, α�
−1�ηµνh

βν
, β =

1

2
hαµ, α�

−1 ∂µ ∂νh
βν
, β − h

αµ
, α�

−1Hµνh
βν
, β '

' −1

2
hαµ, αµ�

−1hβν, βν − h
αµ
, α�

−1Hµνh
βν
, β .

(4.42)

With the use of these identities, we rewrite Aκ−2 so that it now reads

Aκ−2 =− 1

2κ2

∫
d4x

[
− αcλ̄�h̄−

α2
c

2
λ̄h̄�h̄− α2

c

2
λ̄ ∂αh

αµ�−1Hµν ∂βh
βµ +

α2
c

4
λ̄hαβ�h

αβ−

− α2
c

2
λ̄hµν, µν�h

α
α + α2

c

(
1

2
− 1

4

)
λ̄hµν, µν�

−1hρσ, ρσ +
α2
c

4
λ̄hαα�h

β
β

]
(4.43)

Lastly, we notice that the whole second line can be transformed into only one term

α2
c

4
λ̄

[
hαα�h

β
β − 2hµν, µν�h

α
α + hµν, µν�

−1hρσ, ρσ

]
=
α2
c

4
λ̄h̄�h̄ . (4.44)

This term is already present in the action with coe�cient −1/2, so we only add these two together
to obtain −1/4. This was the last thing we needed to do since now we �nally have identical
result as compared with the article. Putting everything together, we obtain the action in the
following form

A = − 1

16

∫
d4xhµν�

2hµν +
1

8

∫
d4x ∂αh

αµHµν ∂βh
βµ +

(C2

12
− 1

16

)∫
d4x h̄�2h̄−

− 1

2κ2

∫
d4x

[
− αcλ̄�h̄−

α2
c

4
λ̄h̄�h̄− α2

c

2
λ̄ ∂αh

αµ�−1Hµν ∂βh
βµ +

α2
c

4
λ̄hαβ�h

αβ

]
+

+
3α2

c

4S2κ4

∫
d4x λ̄2 .

(4.45)
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We introduce notation as in [1] so that the lineaerized action can be put in a more compact form

A ≡ 1

16
+

α2
c

8κ2
λ̄�−1 ≡ −2B , C =

( 1

16
− C2

12

)
− α2

c

8κ2
λ̄�−1 . (4.46)

With this notation it is possible to rewrite the action so that it is identical to that used by
P. Jizba and his colleagues

A =

∫
d4x

[
− hµνA�2hµν − ∂αhαµBHµν ∂βh

βµ − h̄C�2h̄+
3α2

c

4S2κ4
λ̄2
]
. (4.47)

4.5 Quantization of Weyl Conformal Gravity

We formally de�ne a quantum theory based on the Weyl gravity by

Z =
∑
i

∫
Σi

Dgµν eiA , (4.48)

where Σi denote topologically distinct manifolds and where the measure Dgµν must be further
treated by the Faddeev�Poppov method as the system has gauge symmetry Diff ×Weyl(Σi).
We must also include factors of (−det gµν(x))ω, where ω = −5/2 in the Misner's convention or
ω = (D − 4)(D + 1)/8 in the De Witt's convention (D is the number of dimensions). There are
also many other conventions, but here, for simplicity, we choose to drop this term (e�ectively we
choose the De Witt's convention since we work in D = 4).

In our case there is no more integration over the scalar �eld λ as explained before and since
we linearized the theory we substitute Dgµν by Dhµν which is now our only dynamical �eld.
Hence, the partition function turns into

Z =
∑
i

∫
Σi

Dhµν Dλδ[χ− ζ]δ[χν − ζν ] det(MFP) det(NFP) eiA[hµν ,λ] . (4.49)

The Faddeev�Poppov term for the coordinate gauge is known to be (MFP)µν = −�ηµν −
∂µ ∂ν [1] and NFP = (D − 1)δ(D)(x − y) for the conformal gauge. As the operator δ(x − y)
correspond to an in�nite-dimensional unit operator it follows that the determinant det(NFP) is
just a number, and as such will be included in the normalization. The functions δ[·] play the role
of constraints stemming from the gauge symmetry of the theory. We have already introduced the
functions χ ≡ h̄ and χv ≡ ∂µhµν in the previous section. The constraint will be set by equating
these to an arbitrary function ζ and ζν , respectively � we will use this liberty of choice in a while
to simplify all calculations.

The action that shall be used is given in (4.47). We use the property of exp to separate the
terms of the action into a product of exponents, each of them playing a di�erent role

eiA = e−i
∫

d4xhµνA�2hµν e−i
∫

d4xχnBHµνχµ ei
∫

d4xh̄C�2h̄ e−i
∫

d4x
3α2
c

4S2κ4 λ̄
2

. (4.50)

It is now possible to regard these as a product of integrals and thus calculate each term separately
using the general theory of Gaussian integrals. For example we conclude that the �rst term yields∫

Σi

Dhµν e−i
∫

d4xhµνA�2hµν = N det
(
−A�2

)−1/2
. (4.51)

62



Here, however, we must be careful about the dimension of the representation space of each
operator, i.e. on how many �elds it acts. Simply put, hµν represents 16 individual scalar �elds
cumulated into a tensor �eld by notation. Of course, not all of these �elds are independent, as
hµν is symmetric in its indices. Thus, we have 10 independent �elds originating from hµν , 4
from χν and one from χ. This must be taken into account, hence we will denote the operators
accordingly (e.g. A�2

hµν
).

We must also deal with the constraints given by the delta functions. As will be seen shortly,
these work to our advantage, due to the so-called t'Hooft averaging trick. The idea is as follows
� since the function ζ (or ζν) is arbitrary, why not average over a Gaussian distribution on the
space of functions de�ned by an arbitrary symmetric operator O? In this way, the constraint
turns into

δ[χ− ζ]→
√

detO

∫
Dζ eiζxOxyζyδ[χ− ζ] = ei

∫
χOχ(detO)1/2 , (4.52)

where the determinant arose from normalization. This trick gives us a way to cancel some of the
exponential terms in Z by a convenient choice of O, which will create an exact counter-term.
Since the constraints are on χ and χν , we are able to cancel the two middle terms by choosing
O = BHµν and O = C�2 (they surely are symmetric), respectively.

After the cancellation of the two terms with the help of the t'Hooft trick and calculating the
last Gaussian path integral, the partition function obtains the following form

Z = N det(MFP)
(

det(BHµν)χν
) 1

2
(

det
(
C�2

)
h̄

) 1
2
∑
i

∫
Σi

Dhµν e−i
∫

d4xhµνA�2hµν ei
3α2
c

4S2κ4 λ̄
2
∫

d4x =

= Ñ det(MFP)
(

det(BHµν)χν
)1/2(

det
(
C�2

)
h̄

)1/2[
det
(
−A�2

hµν

)]−1/2
ei

3α2
c

4S2κ4 λ̄
2Ω4 ,

(4.53)

where we have denoted Ω4 the volume of the Minkowskian spacetime. Now we use the fact that
det(AB) = detAdetB and the discussion about the dimensions of the representation space of
the operators (the constant N is unimportant and may change between two equality signs!), as
well as the fact, that B ∼ A to write2

Z = N(detMFP)(detBHµν)4/2(detC�2)1/2(det−A�2)−10/2 ei
3α2
c

4S2κ4 λ̄
2Ω4 =

= N(detMFP)(detHµν)2(detA)−5+2(detC)1/2(det(−�))−10+1 ei
3α2
c

4S2κ4 λ̄
2Ω4 .

(4.54)

Now we must simplify the determinant ofHµν and of the Faddeev�Poppov operator (MFP)µν =
−�ηµν − ∂µ ∂ν . Let us start with the Faddeev�Poppov term. We use the properties of determi-
nants again, which enables us to extract one d'Alambertian out of the determinant

det(−�δµν − ∂µ ∂ν) = det(−�) det
(
δµν + ∂µ�−1 ∂ν

)
, (4.55)

and the rest can be easily calculated with the help of the trace-log formula
2Here we are somewhat vague about the signs. We use the property of the determinant det(cA) = cn detA

from �nite dimension to forget all constant in�nities. The question, however, arises, when we were to extract

−1 this way from the determinant. Since this might be a very illegal operation, we will keep the signs in the

determinants and, when situation arises, cancel them between themselves.
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det
(
δµν + ∂µ�−1 ∂ν

)
≡ exp Tr ln(1 +D)µν = exp Tr

∑
k

(−1)k+1

k

(
Dk
)µ
ν

=

= exp
∑
k

(−1)k+1

k

(
Dk
)µ
µ

= exp
∑
k

(−1)k+1

k
.

(4.56)

This is clearly a convergent sum, i.e. a �nite number and as such will be included in the
normalization and forgotten.

Let us now proceed by calculating the (detHµν)2 ∼ det(HµνH
νρ) in a very similar way

HµνH
νρ =

(1

2
∂µ ∂ν −�ηµν

)(1

2
∂ν ∂ρ −�ηνρ

)
=

1

4
� ∂µ ∂

ρ − 2

2
� ∂µ ∂

ρ + �2δρµ =

= �2
(
δρµ −

3

4
∂µ�

−1 ∂ρ
)
,

(4.57)

thus again we can extract the square of thed'Alambertian out of the determinant and calculate
the rest with the use of the trace-log formula

detHµνH
νρ = det

(
�2
)

exp Tr ln

(
1− 3

4
D

)µ
ν

= det
(
�2
)

exp

[∑
k

1

k

(
3

4

)k]
. (4.58)

We �nd that the sum converges again, hence will be forgotten as an unimportant number. Now
that we have found the determinants, we must remember that Faddeev�Poppov operator carries
two Lorentzian indices (i.e. it acts on a Lorentzian vectors) which has to be taken into account
by raising the power of the determinant to 4. All in all, we obtain

(detMFP)(detHµν)2 ∼
(

det(−�)
)4

det
(
�2
)

= (det�)6 . (4.59)

We can now substitute this result into the expression for the partition function and see, that
there are now only two non-trivial determinants left

Z = N(detA)−3(detC)1/2(det(−�))−3 ei
3α2
c

4S2κ4 λ̄
2Ω4 . (4.60)

Here we recall we have already discussed the number of degrees of freedom in the linearized
theory. The fact that the free linearized theory contains six propagating degrees of freedom can
be seen also here, after rewriting (det(−�))−3 =

[
(det(−�))−1/2

]6. Traditionally, each term
(det(−�))−1/2 corresponds to one of the degrees of freedom, hence we see there are six of them.

This argument might seem vague, as there are inverse d'Alambertians present in A, B and C
(see (4.46)). From the de�nition of these operators we see, however, that each �−1 is multiplied
by αc. This parameter will however be vanishingly small (or even zero) in the case of the
linearized theory, therefore the operators A, B and C contribute in �rst approximation only by
a constant.

The last thing left for us to do is to compute the determinants of the operators A, C. We do
so in the following section.
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4.6 Functional Determinants, The One-Loop E�ective Potential

The goal now is to �nd out, whether the one-loop e�ective potential obtained from the
partition function (4.60) coincides with the one obtained by the authors of [1]. In their article,
they used dimensional regularization to calculate the remaining two determinants (detA and
detC), which is (as was already argued) inappropriate in this context, since we rely on the
Gauss�Bonnet theorem valid only in a �xed dimension. To con�rm and improve the validity of
the results we employ in this thesis the zeta function regularization.

The calculation of determinants of A and C should be quite easy since they are analogous
to what we have already computed in Section 3.4. Even though the calculations were then
performed in the Euclidean regime, we have already emphasised the fact, that relevant results
for the trace of the heat kernel and thus also for ζ ′(0) are independent of coordinates, hence can
be immediately used also in our calculations.

In Section 3.4 we calculated the determinant of the operator � + m2 + g
2φ, where m

2 + g
2φ

is simply a constant. This operator has clearly the same structure as the ones we are trying to
calculate. We begin with the operator A

A =
1

16
+
α2
c λ̄

8κ2
�−1 =

1

16
�−1

(
� +

2α2
c λ̄

κ2

)
, (4.61)

where the multiplicative constant is unimportant and with the help of the property of the
determinant, we are now interested solely in

det(� +A) , where A ≡ 2α2
c λ̄

κ2
. (4.62)

Inspecting the physical dimension of the operator �+A, we �nd that both the d'Alambertian
and the constant carry a dimension L−2. We must therefore introduce a dimensionfull constant
(also called regulator or regularization mass scale) µ, [µ] = L and compute the determinant of
(�+A)/µ2. We can now basically copy the solution from the φ4 case, where the ζ function was
equal to

ζ(�+A)/µ2(s) =

(
1

s− 2
− 1

s− 1

)
µ4

16π2

(
µ2

A

)s−2

Ω4 , (4.63)

which yields ζ ′(0) after trivial di�erentiation as

ζ ′(0) =
µ4

32π2
Ω4

(
2α2

c λ̄

µ2κ2

)2[3

2
− ln

(
2α2

c λ̄

µ2κ2

)]
. (4.64)

From here we �nd the determinant to be equal to by de�nition (3.11)

det

(
�
µ2

+
2α2

c λ̄

κ2µ2

)
= exp

{
− µ4

32π2
Ω4

(
2α2

c λ̄

κ2µ2

)2[3

2
− ln

(
2α2

c λ̄

κ2µ2

)]}

= exp

{
α4
c λ̄

2

8π2κ4
Ω4

[
ln

(
2α2

c λ̄

κ2µ2

)
− 3

2

]}
.

(4.65)

We proceed similarly also in the case of the operator C, where we use the fact, that
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(
1

16
− C2

12

)
=

1

4

3− 4C2

12
= −4S2 + 1

48
, (4.66)

and therefore the operator can be written as

C = − 1

48

(
4S2 + 1

)
�−1

(
� + C̃

)
, where C̃ ≡ 6α2

c λ̄

κ2(4S2 + 1)
. (4.67)

Since the functional form is identical to the previous operator, we trivially �nd the determinant
to be equal to

det

(
�
µ2

+
6α2

c λ̄

µ2κ2(4S2 + 1)

)
= exp

{
− µ4

32π2
Ω4

(
6α2

c λ̄

µ2κ2(4S2 + 1)

)2[3

2
− ln

(
6α2

c λ̄

µ2κ2(4S2 + 1)

)]}

= exp

{
9α4

c λ̄
2

8π2κ4(4S2 + 1)
Ω4

[
ln

(
6α2

c λ̄

µ2κ2(4S2 + 1)

)
− 3

2

]}
.

(4.68)

The two results (4.65) and (4.68), as well as the extra terms det
(
�−1

)
will now help us in

rewriting the partition function into a neat expression

Z = N(detA)−3(detC)1/2(det(−�))−3 ei
3α2
c

4S2κ4 λ̄
2Ω4

∼
[

det�−1 det(� +A)

]−3[
det
(
−�−1

)
det(� + C)

]1/2

(det(−�))−3 ei
3α2
c

4S2κ4 λ̄
2Ω4

∼
(

det−�
)+3−1/2−3

e
−i

3α4
cλ̄

2

8π2κ4 Ω4

[
ln
(

2α2
cλ̄

κ2µ2

)
− 3

2

]
e

i
9α4
cλ̄

2

16π2κ4(4S2+1)
Ω4

[
ln
(

6α2
cλ̄

µ2κ2(4S2+1)

)
− 3

2

]
ei

3α2
c

4S2κ4 λ̄
2Ω4

= N
(

det−�
)−1/2

e
−iΩ4

{
3α4
cλ̄

2

8π2κ4

[
ln
(

2α2
cλ̄

κ2µ2

)
− 3

2

]
− 9α4

cλ̄
2

16π2κ4(4S2+1)

[
ln
(

6α2
cλ̄

µ2κ2(4S2+1)

)
− 3

2

]
− 3α2

c
4S2κ4 λ̄

2

}
.

(4.69)

We are now at the end of our calculations. We have found the partition function in such a
convenient form, that the e�ective potential can be readily found from the de�nition Z = e−iVeffΩ4

to be equal to

Veff =
3α4

c λ̄
2

8π2κ4

[
ln

(
2α2

c λ̄

κ2µ2

)
−3

2

]
− 9α4

c λ̄
2

16π2κ4(4S2 + 1)

[
ln

(
6α2

c λ̄

µ2κ2(4S2 + 1)

)
−3

2

]
− 3α2

c

4S2κ4
λ̄2 . (4.70)

This expression exactly duplicates the result obtained by P. Jizba, H. Kleinert and F. Scardigli,
even though we have used di�erent (and in gravity non-equivalent) regularization method. The
last determinant

(
det−�

)−1/2 can be thought of as a normalization. Usually, we would normal-
ize by a determinant of the inverse propagator of free �eld theory. Since all �elds present in our
theory are by de�nition massless, the inverse propagator is simply −�. Hence, if we normalize
the free theory to 1, we can simply drop this term.
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4.7 The Emergence of Scale

Since we arrived at the same form of the e�ective potential as is in the article [1], we can
proceed similarly. The next logical step is to �nd its minima of the potential w.r.t. λ̄ which
correspond to stable static �eld con�gurations of the �eld λ.

A calculation of the stationary con�guration λ̄ can be broken into several steps. First we
obtain, after some algebra, that

∂Veff

∂λ̄
=

3α2
c λ̄

8π2κ2S2 (4S2 + 1)2

[
2α2

c

(
4S2 + 1

)2
S2 ln

(
2α2

c λ̄

κ2µ2

)
− 3α2

cS
2 ln

(
6α2

c λ̄

κ2µ2 (4S2 + 1)

)
−

− 4π2
(
1 + 8S2 + 16S4

)
+ α2

cS
2
(
1− 16S2 − 32S4

)]
,

(4.71)

which we put equal to zero to �nd the minimal value of the potential. One immediate solution
is λ̄ = 0. To �nd other solutions, we concentrate on solving the equation

2α2
c

(
4S2 + 1

)2
S2 ln

(
2α2

c λ̄

κ2µ2

)
− 3α2

cS
2 ln

(
6α2

c λ̄

κ2µ2 (4S2 + 1)

)
=

= 4π2
(
1 + 8S2 + 16S4

)
+ α2

cS
2
(
− 1 + 16S2 + 32S4

)
.

(4.72)

We rewrite the left hand side of the equation as[
2α2

c

(
4S2 + 1

)2
S2 − 3α2

cS
2
]

ln

(
2α2

c λ̄

κ2µ2

)
− 3α2

cS
2 ln

(
3

4S2 + 1

)
, (4.73)

from where we separate the term with λ̄

ln

(
2α2

c λ̄

κ2µ2

)
=

3α2
cS

2 ln
(

3
4S2+1

)
+ 4π2

(
4S2 + 1

)2
+ α2

cS
2
(
32S4 + 16S2 − 1

)
α2
cS

2(32S4 + 16S2 + 2− 3)
. (4.74)

It is now easy to see the solution for λ̄

λ̄(S) =
eκ2µ2

2α2
c

exp

{3α2
cS

2 ln
(

3
4S2+1

)
+ 4π2

(
4S2 + 1

)2
α2
cS

2(32S4 + 16S2 − 1)

}
. (4.75)

Once we obtained have all solutions, we are interested in the values of the e�ective potential
at the points of the minima. It is again easy to see, that for λ̄ = 0 the e�ective potential is
Veff = 0. For the non-trivial solutions, we �nd that for S2 > (

√
6−2)/8 the potential Veff < 0 for

all αc and κ. This can be seen, when we substitute the extremal point into the e�ective potential
and rearrange the terms as follows

16π2κ4

α4
c λ̄

2
Veff = 6

[
ln

(
2α2

c λ̄

κ2µ2

)
− 3

2

]
− 9

(4S2 + 1)2

[
ln

(
6α2

c λ̄

µ2κ2(4S2 + 1)

)
− 3

2

]
− 12π2

α2
cS

2
. (4.76)

We turn our attention to the non-trivial terms. Clearly, the last term is always positive, therefore
we do not have to consider it in our immediate discussion. We will reorganize the remaining
terms in the following way
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−3

2

(
6− 9

(4S2 + 1)2

)
− 9

(4S2 + 1)2
ln

(
3

4S2 + 1

)
+ ln

(
2α2

c λ̄

κ2µ2

)(
6− 9

4S2 + 1

)
, (4.77)

with the �rst bracket being equal to 3
(
32S4 + 16S2− 1

)
/(4S2 + 1)2 where the numerator can be

rewritten as 32S4 + 16S2 − 1 = 2(4S2 + 1)2 − 3. We denote the �rst term in (4.77) as −3K/2,
K representing the �rst bracket.

The remaining terms include logarithms and so we are forces to substitute for λ̄ the point of
the minimal value of the potential, hoping the terms will cancel out

− 9

(4S2 + 1)2
ln

(
3

4S2 + 1

)
+

(
6− 9

(4S2 + 1)2

)[
1 +
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2 ln
(

3
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(
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2(32S4 + 16S2 − 1)

]

− 9
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ln

(
3

4S2 + 1

)
+ 3

32S4 + 16S2 − 1

(4S2 + 1)2

[
1 +

3α2
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2 ln
(

3
4S2+1

)
+ 4π2

(
1 + 4S2

)2
α2
cS

2(32S4 + 16S2 − 1)

]
.

(4.78)

Here the term in front of ln e = 1 is equal to K, and therefore we just add them together �
−3/2 + 1 = −1/2. The remaining terms read

− 9

(4S2 + 1)2
ln

(
3

4S2 + 1

)
+

9

(4S2 + 1)2
ln

(
3

4S2 + 1

)
+

12π2

α2
cS

2
, (4.79)

which means that the logarithm indeed cancel out and we are left with a term, which will
cancel the uninteresting term we left already at the beginning of the discussion. Hence, the only
contribution to the e�ective potential at the point of the minima comes from −K/2

16π2κ4

α4
c λ̄

2
Veff = −32S4 + 16S2 − 1

2(4S2 + 1)
⇐⇒ Veff = − α4

c λ̄
2

32π2κ4

32S4 + 16S2 − 1

(4S2 + 1)
. (4.80)

It is now obvious, that whenever 32S4 + 16S2 − 1 > 0, the e�ective potential is negative irre-
spective of the values of αc or κ. The solutions to the inequality is, as we have already written
S2 > (

√
6−2)/8

.
= 0.056.In this range of S2 the solution λ̄ = 0 corresponds to a local maximum,

for at that point the e�ective potential reaches its highest value Veff = 0.
We shall now ensure that the value of λ̄ no longer depends on the mixing angle θ introduced

by sinh θ since we have started with a theory that was independent of this parameter. So,
although, the full theory (i.e. theory valid to all orders of the perturbative calculus) should be
θ independent, this is generally not the case at any particular �nite order. To deal with this
situation, one can invoke the principle of minimal sensitivity [14] known from the renormalization-
group calculus. The point of the principle is that, whenever a theory depends on an unphysical
parameter (θ or S in our case), we must ensure that at every ordered the physically relevant
quantities depend on the parameter in the weakest possible way. To ful�l this requirement we
�nd the minima of the e�ective potential w.r.t. the unphysical parameter, in our case represented
by S

0 =
dVeff

dS2
=
∂Veff

∂S2
+
∂Veff

∂λ̄

∂λ̄

∂S2
=
∂Veff

∂S2
, (4.81)

at the point of the minima of the e�ective potential w.r.t. λ̄, hence ∂Veff

∂λ̄
= 0. We �nd the

derivative to be equal to
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∂Veff

∂S2
=

9α4
c λ̄

2

4π2κ4(4S2 + 1)3
+

3α2
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2

4κ4S4
+
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2
[
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(

6α2
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)
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2

]
2π2κ4(4S2 + 1)3

. (4.82)

The minimal-sensitivity principle leads to following chain of identities

0 = 3α2
c + π2S−4(4S2 + 1)3 + 6α2

c

[
ln

(
6α2
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κ2µ2(4S2 + 1)

)
− 3

2

]

= π2S−4(4S2 + 1)3 + 6α2
c ln

(
3

4S2 + 1

)
+

18α2
cS

2 ln
(

3
4S2+1

)
+ 24π2

(
1 + 4S2

)2
S2(32S4 + 16S2 − 1)

,

(4.83)

where we used the solution (4.75) for λ̄. Multiplying by the denominator from the last term we

�nd that the coe�cient in front of ln
(

3
4S2+1

)
is equal to

6α2
cS

2
[
(32S4 + 16S2 − 1) + 3

]
= 12α2

cS
2
(
4S2 + 1

)2
. (4.84)

Hence the equation goes to

12α2
cS

2

π2

(
4S2 + 1

)2
ln

(
4S2 + 1

3

)
= (4S2 + 1)3S−2(32S4 + 16S2 − 1) + 24

(
1 + 4S2

)2
, (4.85)

and since
(
4S2 + 1

)2
> 0 we can safely divide by this term to obtain

12α2
cS

4

π2
ln

(
4S2 + 1

3

)
= (4S2 + 1)(32S4 + 16S2 − 1) + 24S2

12α2
cS

4

π2
ln

(
4S2 + 1

3

)
= 128S6 + 96S4 + 36S2 − 1 .

(4.86)

This equation has only one real solution [1] S2 = 0.0259237 − 0.0000197α2
c + O(α4

c), which
does not fall in the region of negative potential and therefore does not correspond to a stable
solution. However, looking at the formula for ∂Veff/ ∂S

2 in (4.76), we immediately see it tends to
go to zero in the limit S →∞. Since we are searching for the point, where the choice of θ (i.e. S)
in�uences the e�ective potential in the least possible way, any large value of S2 would obviously
be our next best choice. Here, however, we must be more careful. The whole theory was build
on the assumption, that αc is a small constant, at most equal to 1 in order for the linearization
gµν = ηµν + αchµν to work. Later, we recognized by comparison with the Starobinsky models
in (4.25), that C2/α2

c ∼ ξ2/κ2, hence for large values of C we can use C ∼ S ∼ αcξ/κ which is
at most ξ/κ. Thus the largest value we may use for S, in order to for all the calculations hold
true, is ξ/κ ∼ 105 as currently estimated by [9] (as was already mentioned).

It is important to examine the behaviour of the solution (4.75) for the minimum of the e�ective
potential in the limit as S →∞ or better at the point S2 = ξ2/κ2. Due to the magnitude of S,
we expand the exponent to the order O(1/S4) and drop the rest. In more detail, the exponent
in (4.75) reads

3α2
cS

2 ln
(

3
4S2+1

)
+ 4π2

(
1 + 4S2

)2
α2
cS

2(32S4 + 16S2 − 1)
=
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3
4S2+1

)
32S4 + 16S2 − 1

+
4π2(4S2 + 1)2

α2
cS

2(32S4 + 16S2 − 1)
. (4.87)
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It is clear from the Taylor series of ln(x) = (x − 1) − (x − 1)2/2 + . . . , that the �rst term does
not contribute to order O(1/S4). To �nd how contributes the second term, we divide the two
polynomials

(32S6 + 16S2 − S2) : (16S4 + 8S2 + 1) = 2S2 − 3S2

16S4 + 8S2 + 1
= 2S2

(
1− 3/2

16S4 + 8S2 + 1

)
.

(4.88)
From here it is easy to see, that the inverse of this ratio can be expanded into a Taylor series

(4S2 + 1)2

S2(32S4 + 16S2 − 1)
=

1

2S2
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1− 3/2
16S4+8S2+1

) ' 1

2S2

(
1 +

3/2

16S4 + 8S2 + 1
+ . . .

)
=

=
1

2S2
+O(1/S4) ,

(4.89)

from where we conclude, that the solution for λ̄ (see (4.75)) at the order O(1/S4) is equal to

λ̄ =
κ2µ2

2α2
c

exp

(
1 +

2π2

α2
cS

2

)
∼ κ2µ2

2α2
c

exp

(
1 +

2π2κ2

α2
cξ

2

)
. (4.90)

This is an important result since it shows, that for any (relvant i.e. smaller than 1) initial value
of the parameter of the theory αc we are able to choose the renormalization mass scale µ so, that
λ̄ = 1. We will further discuss the importance of this result in the following section.

4.8 Physical Interpretation and Discussion

Let us now summarize what we have achieved so far. We have shown that there exists a set
of parameters of our theory which allows for the appearance of the Starobinsky gravity in the
low-energy sector of the broken Weyl-gravity's phase. We recall that the action we used was

Aconf =

∫
d4x
√
−g
[
− 1

4α2
c

RµνR
µν +

C2

12α2
c

R2 +
3α2

c

4S2κ4
λ2 − 1

2κ2
Rλ

]
. (4.91)

compared to the Starobinsky model

ASt =

∫
d4x
√
−g
( ξ2

2κ2
R2 − R

2κ2

)
. (4.92)

The fact that it is possible to �t the vacuum expectation value of the Hubbard�Stratonovich
�eld λ̄ = 1, means the theory easily transforms to the low curvature limit of Einstein's gravity.
The factor in front of R2 can also be �tted in a wide range of αc ∼ 1 ÷ 10−5 to ξ2/2κ2, thus
obtaining Starobinsky model relevant in description of the in�ationary era.

The scalar �eld λ deserves more detailed discussion. Firstly, λ was not present in the theory
before. Someone might object, that the �eld λ is non-physical since it is not dynamical for it
has no kinetic term in the action (it represents a scalar �eld with in�nite mass). This problem
can be resolved by the conformal symmetry of the theory we have started with. To explain the
solution of the kinematics of λ, we recall, that λ arose from the transformation of the R2 term
in the action
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eiAR2 = exp
( i

12α2
c

∫
d4x
√
−gR2

)
=

∫
Dλ exp

[
− i

∫
d4x
√
−g
(3α2

c

4
λ2 +

R

2
λ
)]
. (4.93)

It is clear, that the action in this form possesses no kinetic term for λ. However, the R2 term
of the action is conformally invariant by itself (under additional conditions). This can be seen
from the transformation law for R under an in�nitesimal conformal change gµν → (1 +α(x))gµν .
The Ricci scalar transforms as R → R(1 − α(x)) − 3∇2α(x) [15], where ∇µ is the covariant
derivative, hence under additional restriction ∇2α(x) = 0, the term R2 → R2(1 − 2α(x) + . . . )
exactly compensates with the transformation of the determinant g → (1 + 4α(x))g and the R2

term is global scale invariant.
We might now use this property to rescale the whole action gµν → gµν/|λ| which will generate

a kinetic term [1] in the global scale invariant part of the action

−
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c

4
λ2
)
, (4.94)

The fact that the kinematics of λ is gauge dependent points to the fact, that λ is not a
physical �eld at the time of introduction by the HS transformation. However, if we assume, that
it obtains a kinetic term before the breakdown of the conformal symmetry, we would be left with
a dynamical and physical scalar �eld.

We have found, that the e�ective potential has minima (vacuum) at the point λ̄ = 1 even
though the classical theory did not. Since the new �eld λ̄ is related to µ, as seen from

λ̄ =
κ2µ2

2α2
c

exp

(
1 +

2π2κ2

α2
cξ

2

)
, (4.95)

we see conclude, that it is a dimensionally transmuted parameter. This means that it depends
on the renormalization mass scale even though it is a physically relevant quantity. Since this
stable solution λ̄ stems only from the fact that the e�ective potential has a new minimum, the
symmetry breakdown is dynamical. This situation is similar to what happens in the Coleman�
Weinberg mechanism, where a dimensionless coupling constant transmutes into a dimensionfull
one due to one-loop quantum corrections [7].

We should also comment on the general properties of the other two terms present in the
Weyl action, which are not in the Starobinsky action. Let us focus our attention to the RµνRµν

term. If we assume that the cosmologically relevant metric after the symmetry breakdown is the
FLRW metric, we are able to make use of the conformal �atness of this metric to rewrite∫

d4x
√
−g 3RµνR

µν =

∫
d4x
√
−g R2 , (4.96)

modulo topological term which is of no importance for us. If we use this identity and the solution
for λ̄ from (4.95) in (4.91), we obtain the action corresponding to the Weyl theory of gravity
after the symmetry breakdown

A =

∫
d4x
√
−g
[
− 1

12α2
c

R2 +
C2

12α2
c

R2 +
3α2

c

4S2κ4
λ̄2 − 1

2κ2
Rλ̄

]
A =

∫
d4x
√
−g
[
S2

12α2
c

R2 +
3α2

c

4S2κ4
− 1

2κ2
R

]
,

(4.97)
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which goes to

A = − 1

2κ2

∫
d4x
√
−g
(
R− ξ2R2 − 2Λ

)
where ξ2 =

S2κ2

6α2
c

, Λ =
3α2

c

4S2κ2
. (4.98)

This action corresponds to a Starobinsky model with a cosmological term. It is worth noting,
that our cosmological term is of geometric origin (hence it might be called gravi-cosmological)
and has an opposite sing to what we are used to from a matter-induced cosmological term. This
is not a problem, since the action (4.98) descries an empty space. Soon after the breakdown of
the symmetry, matter appears and with it also the matter-induced cosmological constant, which
corresponds to 〈0|trTµν |0〉 and has opposite sign to that of the gravi-cosmological one. This
might be of great value since it gives us a way to compensate for the matter-induced term and
obtain a very small overall cosmological term. It would conveniently address the problem of 120
orders of di�erence in the theoretically predicted value of the cosmological term from estimates
based on observations.
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Chapter 5

Conclusions

This work naturally splits into two parts; in the �rst part we presented some prerequisite
theoretical material (functional integrals, e�ective action, zeta-function regularization) that will
be needed in the second, i.e., core part of the thesis. This part of the thesis was based on Refs.
[3, 5, 4, 2] and the principal aim was to give a full, self-contained and mathematically sound
summary of the relevant mathematical techniques.

The second part of the Thesis discusses the Weyl (or conformal) gravity both from classical
and quantum-theory point of view. We �rst put forward phenomenological reasons why the
quantized Weyl gravity quali�es as a good candidate for the bona �de quantum gravity. Secondly,
we discuss some algebraic and topological properties of the theory and ensuing simpli�cations
which they in�ict on the action functional. In the following sections we closely followed the paper
of P. Jizba, H. Kleinert and F. Scardigli [1] with the explicit goal to reproduce (or refute) results
obtained by the authors when new, physically more relevant regulating scheme is employed. In
particular, our focus was on the zeta-renormalization scheme (�xed-dimension renormalization)
rather than dimensional regularization. We have found that the zeta-function regularization
leads to exactly the same form of the one-loop e�ective potential as found in [1], which is the
key result of This thesis.

Our following discussion focused on proving that the quantized Weyl gravity dynamically
breaks the scale symmetry via dimensional transmutation, yielding a fundamental scalar �eld �
Hubbard�Stratonovich �eld. Non-zero vacuum expectation value of this �eld can be chosen so
that in the low-energy broken phase regime the Weyl gravity morphs into a Starobinsky gravity
with a gravi-cosmological constant. In view of recent PLANCK and BICEP II data which favour
Starobinsky model of in�ation, this is important and relevant conclusion since it shows that the
Weyl gravity is a good and viable candidate for quantum gravity.
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