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Abstrakt: Tato práce se věnuje problematice lokalizace v kvantových procházkách na manhattanské
mřížce a L-mřížce. Poté, co shrneme základní charakteristiky kvantových procházek a uvedeme pro-
blém lokalizace, ukážeme, jak lze kvantové procházky na těchto dvou orientovaných mřížkách převést
na kvantové procházky na neorientované mřížce.
V případě homogenních kvantových procházek určíme obecný tvar mince, která vede k tzv. uvěznění. Pro
tyto dvě orientované mřížky ukážeme, že tento efekt je triviální, nebot’ vede na čistě bodové spektrum
evolučního operátoru. Nakonec se zabýváme Andersonovskou lokalizací na manhattanovské mřížce,
u níž na základě numerických simulací docházíme k hypotéze, že Andersonovská lokalizace je přítomna
pouze v případě procházek s mincemi, které jsou blízké mincím vedoucím k uvěznění.
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Abstract: This thesis addresses the problem of localization in quantum walks on the Manhattan lattice
and the L-lattice. Having summarized basic characteristics of quantum walks and the effect of localiza-
tion in the first part, we show how the problem of quantum walks on these two oriented lattices can be
formulated as quantum walks on undirected lattices.
In the case of homogeneous quantum walks we determine the general form of the so-called trapping
coin. For both of these lattices it is showed that this effect is trivial since the corresponding evolution
operator possesses purely point spectrum. Finally we deal with Anderson localization on the Manhattan
lattice. Numerical simulations lead us to hypothesis that Anderson localization arises only in cases when
the coin operators are a small perturbations of those exhibiting trapping.
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Notation

⊗ tensor product

diag diagonal matrix

σ(A) spectrum of the operator A

supp support of a function

sup supremum

E expectation value

〈.|.〉 standard scalar product in Cd

A† adjoint of the operator A
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Introduction

The concept of quantum walks has attracted considerable attention since their introduction by Ahara-
nov et al [1] in 1993 and the seminal paper by Meyer [2]. The popularity of the research in this field
can be attributed mainly to the potential utilization of quantum walks in quantum transport, quantum
information theory and quantum computation.
Quantum walks can be viewed as quantum-mechanical analogues of classical random walks, which are a
well-studied stochastic processes in probability theory with a wide range of applications. The term ran-
dom walk was introduced by Pearson in 1905 in the context of the mathematical formulation of transport
phenomena. The concept of classical random walks was used to describe for example Brownian motion
as a microscopic model of diffusion [3].
The study of quantum walks has been initially motivated primarily by the development of quantum algo-
rithms based on quantum walks that provide a considerable speed-up in comparison with their classical
counterparts in terms of computational complexity. Among them the most notable is the search algorithm
[4] that exhibits quadratic speed-up compared to the classical algorithms.
The interest in quantum walks has also been spurred by various experimental proposals and physical
implementations of both quantum walks on a line and on a two-dimensional lattice using cold atoms in
lattices, ion traps or polarization and orbital angular momentum of a photon (for a comprehensive review
see [5]).
One of the motivations behind the study of quantum walks on lattices is to model transport in physical
systems. The propagation of a quantum particle in homogeneous systems is known to be ballistic. In
this thesis we focus mainly on the so-called effect of localization, where the ballistic propagation of the
quantum particle is suppressed, typically due to the introduction of disorder to the system [6]. Physically
this suppression of spreading can be interpreted as the transition from the conducting state of the material
to the insulating state.

This thesis is focused on the effect of localization of discrete-time quantum walks on directed square
lattices. More specifically, we address the problem of two special cases, namely the so-called Manhat-
tan lattice [7] and L-lattice [8]. These two lattices share the property that at each node there exists two
incoming and two outgoing edges. We consider both the trapping effect that arises in the case of homo-
geneous quantum walks and the Anderson localization which is observed in quantum walks with certain
forms of static disorder.
In the case of quantum walks on the directed lattices we assume that the motion of the walker is restricted
by the orientation of the underlying lattice. As a consequence, regarding the Manhattan lattice and the
L-lattice, two of the four possible directions of motion are blocked at each of the vertex. This enables
us to view the effective coin operators acting locally at the vertices as two-dimensional unitary matrices.
In this aspect we can observe a certain resemblance between one-dimensional two-state quantum walks
and quantum walks on the Manhattan lattice and the L-lattice.
Moreover, regarding the trapping effect, it is known to be trivial in the case of one-dimensional two-state
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quantum walks since it appears only in certain extreme cases when the walk does not spread. Contrary
to this, two-dimensional quantum walks allow for more intricate trapping effect with only a partially
trapped walker at the vicinity of the origin.
On the other hand, the presence of the Anderson localization in one-dimensional two-state quantum
walks has been proved for a wide range of disorder introduced via random position-dependent coin op-
erators. For higher-dimensional quantum walks analytic results about Anderson localization are limited
to certain special cases.
The above mentioned results about localization effects lead us to a question whether, despite the certain
similarity with one-dimensional two-state quantum walks, quantum walks on the Manhattan lattice and
the L-lattice retain the properties of two-dimensional quantum walks with respect to the trapping effect
and Anderson localization.

The structure of this thesis is as follows:
First we introduce the concept of homogeneous quantum walks on the d-dimensional undirected Carte-
sian lattices, as we will utilize this model extensively when addressing the problem of quantum walks
on the Manhattan lattice and the L-lattice. We also illustrate on this example the standard method of the
time-evolution analysis of quantum walks.
In Chapter 2 we provide an introduction to the effect of localization of quantum systems with special
focus on the quantum walks. We first consider the so-called trapping effect that arises in homogeneous
quantum walks and is related to the spectral properties of the evolution operator for certain choices of
the coin operator.
The second type of localization of our interest is the so-called Anderson localization that is typical for
spatially inhomogeneous quantum systems. We briefly review the original self-adjoint model introduced
by Anderson as well as the unitary Anderson model. Then we present analytic results obtained for
Anderson localization of both one-dimensional and d-dimensional quantum walks in the context of the
so-called dynamical localization.
To be able to employ the localization results summarized in the second chapter, we introduce a conve-
nient method to describe quantum walks on the Manhattan lattice and the L-lattice using quantum walks
on square undirected lattices. For homogeneous quantum walks on the Manhattan lattice it is shown
in Chapter 3 that they can be viewed as quantum walks on undirected square lattice driven by four-
dimensional coins satisfying certain restricting conditions. On the other hand, we show in Chapter 4 that
homogeneous quantum walks on the L-lattice are equivalent to the so-called alternate two-dimensional
quantum walks or two-dimensional split-step quantum walks which utilize only a two-dimensional coin.
We also focus on the effect of trapping in the above discussed quantum walks, i. e. we determine the
general form of the coin operators leading to trapping.
The last chapter is devoted to the numerical study of Anderson localization of quantum walks on the
Manhattan lattice. We focus mainly on the case when the coin operator is a small perturbation of that
leading to the trapping and consider only disorder introduced by random phases. We conclude the thesis
with a summary of our results and outline a future prospect of further study.
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Chapter 1

Quantum walks on d-dimensional
Cartesian lattices

Quantum walks are quantum-mechanical counterparts of classical random walks. One of the simplest
examples of discrete-time quantum walks is that of a quantum walk on a d-dimensional Cartesian lattice.
In this case the quantum walker makes discrete-time steps of the same prescribed length in accordance
with the underlying lattice.
The state of the walker is described by its position on the lattice and the state of its internal degree of
freedom called a coin. In one time-step of a quantum walk the walker first undergoes the transformation
of the coin state, which can be viewed as an analogy to the coin-flip in the case of classical random walk.
Subsequently, it is shifted according to the outcome of the previous coin transformation.

1.1 Definition

Let us now introduce the concept of a quantum walk on a d-dimensional Cartesian lattice. The position
of the walker on the lattice is defined by a vector from a Hilbert space spanned by

Hp = span{ |x〉 = |x1, · · · , xd〉 | x1, · · · , xd ∈ Z}, (1.1)

where x1, · · · , xd represent the coordinates on the lattice. The walker is assigned a Hilbert space
H = Hc ⊗Hp, where the Hilbert spaceHc is the so-called coin space spanned by 2d basis vectors, i.e.

Hc = span
{ ∣∣∣c+

1

〉
,
∣∣∣c−1 〉 , · · · , ∣∣∣c+

d

〉
,
∣∣∣c−d 〉} , (1.2)

with c±j corresponding to the motion along the j-th axis in positive and negative direction, respectively.
Let us assume that the walker makes steps of the same length of one unit along these axes. In order to be
able to write operators acting onH in a compact form, we assume the steps to be represented by vectors
{e j| j = 1, · · · , d} from the standard orthonormal basis of Zd.
The time evolution of a quantum walk is realized by successive application of the evolution operator

U = S (C ⊗ I) , (1.3)

which comprises two subsequent transformations of the state vector: the coin operator C acts solely as
the transformation of the coin state and S represents the conditional shift operator which takes the form
of

S =
∑

x1,··· ,xd ∈Z

( d∑
j=1

( ∣∣∣c+
j

〉 〈
c+

j

∣∣∣ ⊗ ∣∣∣x + e j
〉
〈x| +

∣∣∣c−j 〉 〈
c−j

∣∣∣ ⊗ ∣∣∣x − e j
〉
〈x|

))
. (1.4)
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The state of the quantum walk after t steps starting with the normalized initial state localized at the origin

|ψ(0)〉 =

d∑
j=1

(
α+

j

∣∣∣c+
j

〉
+ α−j

∣∣∣c−j 〉) ⊗ |0, · · · , 0〉 , d∑
j=1

(
|α+

j |
2 + |α−j |

2) = 1 (1.5)

corresponds to

|ψ(t)〉 = U t |ψ(0)〉 (1.6)

=
∑

x1,··· ,xd ∈Z

( d∑
j=1

(
ψ+

j (x, t)
∣∣∣c+

j

〉
+ ψ−j (x, t)

∣∣∣c−j 〉) ⊗ |x〉), (1.7)

where ψ±j (x, t), j = 1, . . . , d are components of the 2d-component vector of the probability amplitudes
ψ(x, t) given as

ψ(x, t) =
(
ψ+

1 (x, t), ψ−1 (x, t), . . . , ψ+
d (x, t), ψ−d (x, t)

)T
. (1.8)

The resulting position distribution of the quantum walk attains the following form in the above notation

P(x, t) =

d∑
j=1

(
|ψ+

j (x, t)|2 + |ψ−j (x, t)|2
)
. (1.9)

1.2 Time evolution

In the following we focus on the analysis of the time evolution of the quantum walks described above,
i.e. we obtain general expressions for the probability amplitudes of the walker being at position x at
time t. We only consider spatially homogeneous and time-independent quantum walks (the coin operator
C does not depend on x, t) since such types of walk are the most frequented ones and can be easily
solved analytically. We will refer to these simply as homogeneous quantum walks.
Let us now employ the method based on the Discrete-Time Fourier transform which represents the stan-
dard approach to the analysis of homogeneous quantum walk, as its dynamics attains a simple form in the
momentum space. The basic principle of this method is to transform the time evolution of the probability
amplitude using the Discrete-Time Fourier Transform

f̃ (k) =
∑

x1,··· ,xd∈Z

f (x) eik·x, k1, · · · , kd ∈ [−π, π], (1.10)

analyse it in the momentum domain and then transform it back to the spatial domain with the help of the
Inverse Fourier Transform

f (x) =
1

(2π)d

π∫
−π

· · ·

π∫
−π

f̃ (k) e−ik·x dk1 · · · dkd. (1.11)

In one step of the walk, only the probability amplitudes of the adjacent points can contribute to the
probability amplitude ψ(x, t). Consequently, the desired time evolution can be written in the form of a
recurrent relation

ψ(x, t) =

d∑
j=1

(
C2 j−1ψ(x − e2 j−1, t − 1) + C2 jψ(x + e2 j, t − 1)

)
, (1.12)
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with the initial condition

ψ(0, · · · , 0) = (α+
1 , α

−
1 , · · · , α

+
d , α

−
d )T ,

d∑
j=1

(
|α+

j |
2 + |α−j |

2) = 1, (1.13)

where C j corresponds to the coin operator C with zero elements except for the j-th row.
Transforming the above recurrence using the Discrete-Time Fourier Transform (1.10) we obtain the time
evolution in the Fourier domain in the following form (for detailed computation see [9])

ψ̃(k, t) = Ũ(k) ψ̃(k, t − 1) = Ũ t(k) ψ̃(k, 0), (1.14)

with the transformed initial state given by ψ(k, 0) and the evolution operator in the momentum space
acting as a multiplication by

Ũ(k) = diag
(
eik1 , e−ik1 , · · · , eikd , e−ikd

)
C. (1.15)

As a result, the task of solving the recurrent relation (1.12) is reduced to that of finding the t-th power of
Ũ(k) which is easily done when we diagonalize the evolution operator. The expression for the probability
amplitudes in the Fourier domain then reads

ψ̃(k, t) =

2d∑
j=1

λt
j(k)

∣∣∣v j(k)
〉 〈
v j(k)

∣∣∣ψ̃(k, 0)
〉
, (1.16)

where λ j are the eigenvalues of Ũ(k) and v j are the corresponding eigenvectors.
At this point we can return to the spatial domain using the Inverse Fourier Transform (1.11) thus obtaining
the analytic solution of the time evolution in the Cartesian coordinates as

ψ(x, t) =
1

(2π)d

2d∑
j=1


π∫
−π

· · ·

π∫
−π

λt
j(k)

∣∣∣v j(k)
〉 〈
v j(k)

∣∣∣ψ̃(k, 0)
〉

e−ik·x dk1 · · · dkd

 . (1.17)

This represents the basic relation allowing us to study the effect of the initial state, the form of the shift
operator and dimensionality on the dynamics of the quantum walk.
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Chapter 2

Effect of localization in quantum walks

One of the interesting features of quantum walks is the so-called effect of localization, i.e. the absence of
the spreading [6]. This phenomenon occurs under certain conditions imposed on the evolution operator
despite the fact that the majority of homogeneous quantum walks spread ballistically.
There exist at least two types of localization in quantum walks; namely the trapping effect in the case of
homogeneous quantum walks that stems from spectral properties of the evolution operators for special
choices of the coin operator and localization of the Anderson type that arises in disordered systems. The
latter was first studied by Anderson in [6] who argued that electrons in a crystal become trapped when
exposed to external random potential on the atoms of the crystal.

2.1 The trapping effect

For the majority of homogeneous quantum walks the probability of finding the particle at the fixed
position converges to zero as the number of steps t tends to infinity. This follows from the analogy
with wave theory that was established in [10]. The authors showed how one-dimensional homogeneous
quantum walks can be modelled as waves and derived the phase and group velocities. The maximum
group velocity then determines the propagation of the peaks in the probability distribution that stems
from the continuous spectrum of the evolution operator Ũ(k).
However, there also exist quantum walks for which the discussed probability does not vanish. This
remarkable feature termed as the trapping effect is closely related to the point spectrum of the quantum
walk and depends crucially on the choice of the coin operator.
In general, the eigenvalues of the unitary evolution operator (1.3) can be written as λ j(k) = eiω j(k). The
expression for the probability of finding the particle after t steps at the origin reads

P(0, · · · , 0, t) =

2d∑
i=1

d∑
j=1

(
|iψ+

j (0, · · · , 0, t)|2 + |iψ−j (0, · · · , 0, t)|2
)
, (2.1)

where

iψ±j (x, t) =
1

(2π)d


π∫
−π

· · ·

π∫
−π

(λ±j )t(k)
∣∣∣v±j (k)

〉 〈
v±j (k)

∣∣∣ψ̃(k, 0)
〉

e−ik·x dk1 · · · dkd


T

· ei, (2.2)

i.e. iψ±j (x, t) is the i-th component of that part of the probability amplitude ψ(x, t) corresponding to the
overlap with the j-th eigenvector.
Hence we see that the expression for the probability (2.1) consists of integrals containing eigenvalues
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λ j(k). From Riemann-Lebesgue lemma in the limit of large time t follows that only the expressions with
eigenvalues λ j independent of k contribute to the probability P(0, · · · , 0,+∞) [11]. Hence, the existence
of constant eigenvalues implies the presence of the trapping effect. At this point we remark that the
trapping effect is purely a quantum phenomenon without a classical analogue since the classical random
walks diffuse in case of non-zero probability of leaving the actual position.
The trapping effect has been studied extensively for quantum walks on a line and two-dimensional square
lattice with a remarkable difference appearing between these two cases. It can be easily proven that the
general two-dimensional as well as four-dimensional coin possesses either empty point spectrum or con-
stant eigenvalues in the form of ±λ [12]. This follows from the bipartite property of the underlying
lattice. As a result, trapping for two-state one-dimensional quantum walks is trivial, as the absence of the
continuous spectrum leads to fully trapped walker. On the other hand, the latter allows for the trapping
effect even in the case of a leaving walk (i.e. in cases when the walker is forced to leave its actual position
at each step). The extent of trapping also depends on the choice of the initial state, namely on the overlap
between the initial state and the eigenvectors corresponding to the constant eigenvalues. Initial states
with zero overlap, i.e. orthogonal to these eigenvectors, lead to propagating walks.

A typical example of a trapping four-state quantum walk on a two-dimensional lattice is that of the
Grover walk represented by the four-dimensional Grover coin

G =
1
2


−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

 . (2.3)

Using the Discrete-Time Fourier transform (1.10) we obtain the transformed evolution operator Ũ(k1, k2)
which, in this case, acquires the form of a four-dimensional matrix. It turns out that this matrix possesses
one pair of constant eigenvalues λ1,2 = ±1 and two eigenvalues dependent on the momenta k1, k2 (for
details see [13]). Moreover, there exists one initial state that is orthogonal to the stationary states cor-
responding to the constant eigenvalues, namely the state ψG(k1, k2, 0) = 1

2 (1,−1,−1, 1)T . If we now
consider the asymptotic probability which is given as a limit t tends to infinity in the expression (2.1),
the non-zero contributions stem from the probability amplitudes iψ1,2(x, y, t) (2.2) corresponding to the
constant eigenvalues, as mentioned above. However, the extent of the trapping, in other words the asymp-
totic probability of staying at the origin, also depends on the overlap of the initial state with the stationary
states (see the form of (2.2)). Consequently, the special choice of the initial state ψG = 1

2 (1,−1,−1, 1)T

orthogonal to the stationary states leads to a propagating walk, despite the non-empty point spectrum of
the evolution operator.

Let us remark that trapping can also be achieved for one-dimensional quantum walk in the case of the
so-called lazy walk, in which case we augment the coin space by one additional state representing no
motion, i.e. the walker can move to the right, to the left or retain its current position.
Notice that in this case of three-state one-dimensional quantum walks the trapping can always be avoided
by one special choice of the initial state. On the other hand, four-dimensional trapping coins can be fur-
ther classified as weakly trapping if the trapping effect can be avoided for a special choice of the initial
state, or strongly trapping otherwise [14].
As explained above, the presence as well as the extent of trapping also depends on the initial state, which
proves not to be true for the Anderson localization. Moreover, the support of stationary states in the case
of trapping is known to be finite, whereas in the case of the Anderson localization the discussed states
exhibit exponential tails that are extended infinitely along the underlying lattice.
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2.2 Anderson localization

While studying transport phenomena, Anderson discovered that certain forms of static disorder (evolu-
tion generated by Hamiltonian dependent on the position but constant in time) can lead to the suppression
of propagation in quantum systems – presence of localized states. More specifically, the Hamiltonian of
the discussed system proves to possess purely point spectrum with eigenfunctions decaying exponen-
tially. Initially, this concept was studied in the context of self-adjoint operators on l2(Zd). For a compre-
hensive review we refer to [15].
However, the key object of our interest is usually the dynamics of the system given by the unitary evolu-
tion operator U(t) which for Hamiltonians independent of t reads

U(t) = e−iHt. (2.4)

For such systems it is then possible to discretize the time by a time-step of length T , introduce evolution
operator U = U(T ) and to study the dynamics after n steps considering propagator U(nT ) = Un.
In the case of systems with periodic time evolution generated by H(t+T ) = H(t) the asymptotic behaviour
is again given by U(nT ) = U(T )n. However, no direct relation between U(T ) = eiA and the Hamiltonian
of the system can be established, since we deal with time-dependent Hamiltonian [16].
Anderson localization has been studied also in the context of these periodic systems in the form of
dynamical localization. This model dealing directly with the properties of the evolution operator is
called the unitary Anderson model and we briefly touch upon it in this chapter, as the construction of the
evolution operator is similar to that of quantum walk.

2.2.1 Anderson model for self-adjoint operators

In this section we introduce the self-adjoint Anderson model, in other words we deal with self-adjoint
Hamiltonians on l2(Zd) that can be written as

Hω = H0 + Vω, (2.5)

where H0 is the kinetic energy operator while Vω corresponds to the random potential. We assume the
random potentials Vω to be independent, identically distributed random variables with some common
distribution P0. This model can represent for example the motion of an electron in a crystal. The crystal
itself can be viewed as a periodic lattice - Zd with the electron making discrete-time steps on this lattice.
In the orthonormal basis of the l2(Zd) formed by {δ j} j∈Zd the operator H0 takes the following form

H0(i, j) =


1 i connected to j
2d i = j
0 otherwise

, (2.6)

and the potential Vω acts as a multiplication operator.
With the help of the Discrete-Time Fourier transform it can be shown that the spectrum of H0 is purely
absolutely continuous and is equal to σ(H0) = [−2d, 2d], (see [15]).
As stated above, the Anderson localization is closely related to the spectral properties of the random
Hamiltonian. Since we deal with a self-adjoint operator, the discussed spectrum can be written as

σ(Hω) = σpp(Hω) ∪ σac(Hω) ∪ σsc(Hω), (2.7)

where σpp is the purely point spectrum and σac, σsc represent the absolutely continuous, the singular
continuous spectrum, respectively.
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The spectrum of the Hamiltonian has a decisive impact on the physical properties of the system. If we
consider the time evolution of a state corresponding to the subspaceHpp generated by the eigenfunctions
of σpp, it can be shown that such a state stays inside a compact set with high probability as time t goes
to infinity. On the other hand, a state from theHac escapes to infinity [15].

Anderson localization has been proved for a wide range of disordered systems. Let us briefly review
the main results obtained under the following assumptions on the probability distribution P0 of the ran-
dom potentials [15]:

1. Vω are independent, identically distributed random variables with common distribution P0

2. P0 has bounded density f

3. support of P0 is compact, i.e. we can assume for simplicity supp P0 = [−λ, λ] for some λ > 0.

One of the important properties of this model is the form of the spectrum which is known to be almost
surely deterministic and equal to σ(Hω) = [−2d, 2d] + suppP0 = [−2d, 2d] + [−λ, λ].
Anderson localization is known to arise in one-dimensional systems for arbitrary disorder satisfying the
above assumption. Moreover, in any dimension localization occurs in case of large disorder and near
band edges [17].
The extent of disorder is measured by δ( f ) = || f ||−1

∞ in the sense that large δ( f ) implies that the support of
the probability density f is extended. Localization for large disorder then means that there exists δ0 > 0
such that for δ( f ) > δ0 the resulting system exhibits localization.
Regarding localization near band edges, it is assumed that for a fixed λ > 0 there exists λ0 > 2d such
that 2d < λ0 < λ. Anderson localization then arises in the interval σ(Hω) ∩ {(∞,−λ0] ∪ [λ0 ∪∞)}.

2.2.2 Unitary Anderson model

In the following we consider the so-called unitary Anderson model studied extensively in [16]. As
mentioned above, the model deals with Hamiltonians depending periodically on time, i.e. H(t) = H(t+T )
for some T > 0.
The development of the above model has been motivated by the following physical problem. Let us
assume an electron in a metal ring exposed to magnetic field that increases linearly in time, which induces
a force tangent to the ring. The unitary Anderson model is concerned with the asymptotic behaviour of
the electron. More specifically, it addresses the problem whether or not the imperfections of the ring
prevent the energy of the electron to grow infinitely [18].
The unitary Anderson model studies unitary operators on l2(Z) of the form

Uω = D(ω)U, (2.8)

where U is a deterministic unitary operator and D(ω) introduces disorder into the system. More specif-
ically, in the unitary Anderson model D(ω) acts as a multiplication by random phases, i.e. for every
element ψ ∈ l2(Z), k ∈ Z

D(ω)ψ(k) = e−iωkψ(k). (2.9)

Similarly to the self-adjoint case, random phases are independent, identically distributed random vari-
ables taking values in R/2πZ with a common distribution P that is absolutely continuous with a bounded
density.
In analogy with the self-adjoint Anderson model, this can generate discrete evolution of a particle on
one-dimensional lattice. Generally, however, the evolution operator in the case of the self-adjoint model
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cannot be factorized as e−itHω = e−itH0e−itVω since the operators H0 and Vω do not commute. Conversely,
general propagator cannot be written in a form of Uω = e−i(H0+Vω) as discussed previously.
The deterministic part of the evolution operator for the physical system described above attains the band
form of a 5 diagonal operator

U =



. . . rt −t2

r2 −rt
rt r2 rt −t2

−t2 −rt r2 −rt
rt r2

−t2 rt
. . .


, (2.10)

where r, t satisfy r2 + t2 = 1 thus ensuring the unitarity of U. As in the case of the self-adjoint Anderson
model, the spectrum of the unperturbed operator U is purely absolutely continuous except for the trivial
case t = 0 in which case the deterministic evolution operator U has purely point spectrum. On the other
hand, in the other extreme case when t = 1 both the deterministic operator U and the perturbed evolution
operator Uω possesses purely absolutely continuous spectrum regardless of the disorder. Hence in this
context the value of t provides a measure of the degree of disorder suggesting small disorder for t close
to 1 and vice versa.
In [16] Anderson localization was proved for the unitary model in the context of dynamical localization.
It yielded results analogous to the self-adjoint model. The authors showed that in the one-dimensional
case the localization is present for any disorder.
The above described model can be generalized to arbitrary dimension using the tensor product evolution
operator Ud acting in l2(Zd)

Ud = ⊗d
j=1U. (2.11)

In arbitrary dimension it has been proved that localization arises in case of large disorder (i.e. for large
t) or near the band edges of the spectrum.

2.3 Dynamical localization of quantum walks

Quantum walks represent a useful tool to model transport in physical systems. Due to this fact, they can
be utilized to study the properties of the spreading of a quantum state including the Anderson localization.
Moreover, various experimental proposals have been successfully implemented [5]. The experiments
allowing for coins with random disorder can be potentially used to study Anderson localization.
Anderson localization in the case of disordered quantum walks is typically studied in the context of
dynamical localization, which ensures exponential decay of the eigenfunctions as well as other significant
properties of the evolution operator of the quantum walk. Let us begin this section with a summary of
definitions relevant to rigorous analysis of the dynamical localization.

Definition 1. Quantum walk driven by evolution operator Uω exhibits

1. spectral localization [19], if Uω has purely point spectrum, i.e.

σc(Uω) = 0, (2.12)

2. exponential localization [19], if Uω exhibits spectral localization and the corresponding eigen-
functions decay exponentially,
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3. dynamical localization [20], if there exists C < +∞ and α > 0 such that for any two positions
x, y ∈ Zd and arbitrary states of the coin c1, c2

E
(
supn∈N| 〈x, c1|Un

ω|y, c2〉 |
)
≤ Ce−α|x−y|. (2.13)

Theorem 1. Dynamical localization implies exponential localization (and consequently spectral local-
ization) [19].

Let us now comment on the terms stated above. Spectral localization implies that there exists a complete
set of square integrable eigenfunctions. We understand the exponential localization to be the analogue
of the Anderson localization, as in [15]. The dynamical localization then means that the expectation
value of the probability amplitude of transition between two arbitrary points stays exponentially small.
Notice that when dealing with localization, spectral properties ensure neither dynamical localization, nor
exponential localization.
Moreover, dynamical localization also implies that ∀p > 0, |x, c〉 ∈ H and |X|p acting as |X|p |x, c〉 =(∑d

j=1 max|x j|
)p
|x, c〉

supn∈N|| |X|
pUn

ω |x, c〉 || < +∞, (2.14)

which means that spreading of the initial state localized at the origin is bounded [20].

2.3.1 Dynamical localization of one-dimensional quantum walks

The dynamical localization in the case of one-dimensional two-state quantum walks has been studied
extensively. We will mainly focus on the disorder stemming from random phases considered by Joye et al
in [21]. However, let us briefly remark that more general results for broader set of coin operators were
derived by Werner et al in [22]. The authors proved that if the probability distribution at each of the
vertex on the lattice possesses a positive density with respect to the Haar measure then the corresponding
disordered quantum walk exhibits dynamical localization.
In [21] the authors assumed quantum walks for which the time evolution is generated by the random
evolution operator Uω of the form

Uω = S (Cx ⊗ I), (2.15)

where S is the conditional shift operator and Cx represent the position-dependent random coin operators
given as

Cx =

e−iωL
x 0

0 e−iωR
x

 (t −r
r t

)
, r, t ∈ [0, 1], r2 + t2 = 1. (2.16)

Notice that the random evolution operator can also be rewritten as a product of unperturbed operator
multiplied by the random phases, i.e. Uω = D(ω) U. It can be proven that this is the general form
of random coin operators that are independent and identically distributed random variables in U(2), for
which the probability amplitudes ψL and ψR are independent random variables while the probabilities of
transition between two adjacent points are deterministic and independent of the position [21].
The evolution operator can be written in the form of (2.8) when we relabel the random phases. The
deterministic part U of the random evolution operator Uω then reads in the basis
{· · · , |x − 1, L〉 , |x − 1,R〉 , |x, L〉 |x,R〉 , |x + 1, L〉 , |x + 1,R〉 · · · }
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U =



. . . r t
0 0
0 0 r t
t −r 0 0

0 0

t −r
. . .


. (2.17)

Notice that it possesses similar band structure as in the case of the unitary Anderson model.

2.3.2 Dynamical localization of d-dimensional quantum walks

To our best knowledge, the only analytical results for dynamical localization in higher dimensions are
those obtained by Joye in [20] for disorder introduced via random phases. In [20] the author considered
quantum walks on the Hilbert spaceH = C2d ⊗ l2(Zd) driven by the random evolution operator

Uω = D(ω)U = D(ω)S (C ⊗ I), (2.18)

where D(ω) acts as multiplication by random phases

D(ω) |x, c〉 = eiωc
x |x, c〉 , x ∈ Zd, c ∈ span

{ ∣∣∣c+
1

〉
,
∣∣∣c−1 〉 , · · · , ∣∣∣c+

d

〉
,
∣∣∣c−d 〉} . (2.19)

Joye proved dynamical localization for coin operators C ∈ U(2d) close to certain permutation matrices
Cπ ∈ U(2d), for which the deterministic evolution operator U possesses purely point spectrum. The
permutation matrices satisfying this conditions appear to be permutation operators without fixed points.
Moreover, these permutations must allow for decomposition in cycles of even length and every cycle
must contain both of the directions along the given axis. It can be shown that for such a coin operator the
corresponding deterministic quantum walk exhibits trivial trapping effect, as the deterministic evolution
operator lacks the continuous spectrum altogether.
Let us now illustrate the conditions on the permutation matrices with the help of the example of two-
dimensional quantum walk on a square lattice as it will be of our interest later. Since the basis of the
coin space Hc = span{c+

1 , c
−
1 , c

+
2 , c
−
2 } is four-dimensional, there exist 24 permutation coins. However,

only 9 of them are permutations without fixed points. In addition, two of these are decomposed to cycles
(c+

1 , c
+
2 ), (c−1 , c

−
2 ) and (c+

1 , c
−
2 ), (c−1 , c

+
2 ) that are in contradiction with the condition stated above. As a con-

sequence, there are only 7 permutation coins that allow for purely point spectrum of the four-dimensional
evolution operator.
At this point we remark, that the elements of the permutation coins can be multiplied by deterministic
phases without affecting the conclusions about the trivial trapping effect and the results on the localiza-
tion. Since we use the results for localization in two-dimensions extensively throughout this thesis, we
will refer to these generalized permutations satisfying the above conditions as trapping permutations.
In order to state the results more rigorously, we include the main theorem proved by Joye in [20]

Theorem 2. Let Uω be defined as above and the elements of Dω be independent, identically distributed
random variables ωc

x with L∞ density. Let Cπ ∈ U(2d) be a permutation matrix without fixed points
satisfying the above conditions (the trapping permutation). Then there exists δ > 0 such that for all Uω

with C ∈ U(2d) satisfying ||C −Cπ||C2d ≤ δ the corresponding quantum walks exhibits dynamical, as well
as exponential and spectral localization.
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2.4 Quantum walks with temporal disorder

So far we have only taken into consideration static disorder, for which the coin operator has been spatially
inhomogeneous but constant in time. Let us now, for the sake of comparison, briefly review quantum
walks with temporal disorder.
The evolution operator after t steps no longer acquires the form of U t, it is given as

U(ω, t) = Ut(ωt)Ut−1(ωt−1) · · ·U2(ω2)U1(ω1), (2.20)

with the evolution operator governing the j-th step reading

U j(ω j) = S (C j ⊗ I). (2.21)

The temporal disorder is introduced via the time-dependent coin operators C j.
In [21] authors considered disorder stemming from random phases ωL,R

j that are independent, identically
distributed variables with values in R/2πZ. The resulting random coin operators then take the form
of (2.16) with the subscript referring not to the position but to the time-step. Under the additional
assumption on the random phases

E
(
e−iωL

j

)
= E

(
e−iωR

j

)
= 0 (2.22)

diffusive behaviour of the quantum walk was proved in [21].
Similar statement also holds in arbitrary dimension under certain additional assumptions on the random
phases [23].
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Chapter 3

Quantum walks on the Manhattan lattice

In the following two chapters we focus on quantum walks on the so-called Manhattan lattice and the so-
called L-lattice. Both of these lattices are directed square lattices with two incoming and two outgoing
edges at each vertex. However, in the case of the Manhattan lattice, the walker arriving at one of its
vertices either continues straight on or is reflected by 90 degrees according to the orientation of the
outgoing edges. On the contrary, in the case of the L-lattice the walker is forced to change direction at
each step.
Motivated by the results obtained for classical random walks on the Manhattan lattice [7] and the L-lattice
[8], we introduce the quantum analogue of these in the following. First of all, we show how quantum
walks on these lattices can be described using 8-state quantum walk on a two-dimensional square lattice.
Taking advantage of certain properties of both the Manhattan lattice and the L-lattice, we show how
the description of the discussed quantum walks can be reduced to two-dimensional quantum walks on
a square undirected lattice in the former case and to the so-called split-step quantum walks in the latter
case, respectively.
In the following we assume that the coin-state corresponds to the direction of motion which is restricted
by the orientation of the edges. The state of the whole system is described by a vector from the Hilbert
space H = Hc ⊗ Hp where Hc = span{|L〉 , |D〉 , |U〉 , |R〉} is the coin space spanned by four basis states
that correspond to the motion to the left, down, up and to the right. The Hilbert space
Hp = span{|x, y〉 |x, y ∈ Z} then specifies the position of the walker on the lattice.
We use the following notation

ψ(x, y, t) =


ψL(x, y, t)
ψD(x, y, t)
ψU(x, y, t)
ψR(x, y, t)

 (3.1)

for the probability amplitudes of being at node (x, y) at time t with the given state of the coin.

3.1 Quantum walks on the Manhattan lattice

It can be easily seen that the Manhattan lattice is homogeneous with respect to cells comprised of four
nodes. There exist four possible choices of these elementary cells (see Figure 3.2); however we will see
that the first two of them will enable us to simplify the description of the quantum walk on the Manhattan
lattice to that of two-dimensional quantum walk on a square lattice.
In the following we associate numbers 1, 2, 3 and 4 with nodes |0, 0〉, |1, 0〉, |0, 1〉 and |1, 1〉 (see Figure
3.3). Due to the direction of the edges it is necessary to use four different coins at each node which can
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Figure 3.1: The Manhattan lattice.

Figure 3.2: The elementary Manhattan cells.

be expressed in the basis {|L〉 , |D〉 , |U〉 , |R〉} as

C1 =


d1 b1 0 0
c1 a1 0 0
0 0 1 0
0 0 0 1

 , C2 =


a2 0 c2 0
0 1 0 0
b2 0 d2 0
0 0 0 1

 , C3 =


1 0 0 0
0 d3 0 b3
0 0 1 0
0 c3 0 a3

 , C4 =


1 0 0 0
0 1 0 0
0 0 a4 c4
0 0 b4 d4

 ,
(3.2)

where (
a j c j

b j d j

)
, j ∈ 1, 2, 3, 4 (3.3)

are arbitrary two-dimensional unitary coins that effectively act at the vertices.
As mentioned above, the Manhattan lattice can be composed of the elementary cells shown in Figure 3.3.
Let us now identify each of the cells with a point on the two-dimensional square lattice (for the coordi-
nates on this lattice we use letters n,m). The correspondence between the coordinates on the lattices is
given as

(n,m)←→

1: (x, y) = (2n, 2m)

2 : (x, y) = (2n + 1, 2m)

3 : (x, y) = (2n, 2m + 1)

4 : (x, y) = (2n + 1, 2m + 1)

, (3.4)

where the numbers 1,2,3,4 label the position inside the cell (Figure 3.3).
The state of the walker on the Manhattan lattice can be described by the position of the corresponding
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Figure 3.3: The elementary Manhattan cell.

cell on the square lattice (labelled by n,m), position of the node inside the cell (labelled by 1,2,3 or 4)
and the coin state. In terms of (3.1) it means,

ψ(n,m, t) =


ψ1(n,m, t)
ψ2(n,m, t)
ψ3(n,m, t)
ψ4(n,m, t)

 , where ψi(n,m, t) =


ψL(x, y, t)
ψD(x, y, t)
ψU(x, y, t)
ψR(x, y, t)

 . (3.5)

The probability amplitude of the walker being at the position n,m at time t is then given by a
16-component vectors ψ(n,m, t).

Let us assume that four different coins C1, C2, C3 and C4 (3.2) act at each of the four nodes inside each
of the cells. When describing one step of the quantum walk in a cell, we consider four possibilities:

• the walker comes from the outside of the cell and continues to another cell,

• the walker comes from the inside of the given cell and moves to another cell,

• the walker moves inside of the given cell,

• the walker comes from the outside and continues inside of the cell.

Labelling the state by i or o according to if the walker comes from the inside or the outside of the given
cell enables us to reduce the dimension of the coin operator acting in the cell to 8. This follows from the
fact that the combination of i, o and the coin state is unique within each of the cells.
The 8-dimensional coin operator in the basis {|L〉o , |D〉o , |U〉o , |R〉o , |L〉i , |D〉i , |U〉i , |R〉i} reads

CM =



0 0 0 0 d1 b1 0 0
0 0 0 0 c1 a1 0 0
0 0 0 0 0 0 a4 c4
0 0 0 0 0 0 b4 d4
a2 0 c2 0 0 0 0 0
0 d3 0 b3 0 0 0 0
b2 0 d2 0 0 0 0 0
0 c3 0 a3 0 0 0 0


. (3.6)
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However, as we will see, a convenient choice of the cell enables us to simplify the above description to
two-dimensional quantum walks driven by four-dimensional coin satisfying certain restricting condition.
Focusing closely on one step of the two-dimensional quantum walk on the corresponding square lattice
we see that it consists of two subsequent steps inside the cells. Namely the state of the walker entering the
cell is a linear combination of states (α |L〉+β |U〉)⊗|1, 0〉 and (γ |R〉+δ |D〉)⊗|0, 1〉 (see Figure 3.3). Firstly,
this state is transformed at vertices (1, 0) and (0, 1) by the coins C2 and C3, respectively. Subsequently,
it is shifted inside the cell according to the directions of the edges, undergoes the transformation by the
coins C1 and C4, and leaves the cell. This transformation of the initial state entering the cell can be
written as

|L〉 7→ a2d1 |L〉 + a2c1 |D〉 + a4b2 |U〉 + b2b4 |R〉

|D〉 7→ b1d3 |L〉 + a1d3 |D〉 + c3c4 |U〉 + c3d4 |R〉

|U〉 7→ c2d1 |L〉 + c1c2 |D〉 + a4d2 |U〉 + b4d2 |R〉 (3.7)

|R〉 7→ b1b3 |L〉 + a1b3 |D〉 + a3c4 |U〉 + a3d4 |R〉 .

The corresponding coin operating on the square lattice then attains the following form

CM =


a2 d1 b1 d3 c2 d1 b1 b3
a2 c1 a1 d3 c1 c2 a1 b3
a4 b2 c3 c4 a4 d2 a3 c4
b2 b4 c3 d4 b4 d2 a3 d4

 =


d1 b1 0 0
c1 a1 0 0
0 0 a4 c4
0 0 b4 d4



a2 0 c2 0
0 d3 0 b3
b2 0 d2 0
0 c3 0 a3

 , (3.8)

and its unitarity is equivalent to the unitarity of matrices (3.3) which represent unitary transformations at
the nodes of the Manhattan lattice.
We see that a quantum walk on the Manhattan lattice can be represented by a quantum walk on two-
dimensional square lattice driven by coin in the form of(3.8) with the conditional step operator given
by

S =
∑

n,m ∈Z

(
|L〉 〈L| ⊗ |n − 1,m〉 〈n,m| + |D〉 〈D| ⊗ |n,m − 1〉 〈n,m|+

|U〉 〈U | ⊗ |n,m + 1〉 〈n,m| + |R〉 〈R| ⊗ |n + 1,m〉 〈n,m|
)
. (3.9)

With the help of the Discrete-Time Fourier Transform (1.10) we obtain the evolution operator in the
Fourier domain as

ŨM(k, l) =


e−ik 0 0 0
0 e−il 0 0
0 0 eil 0
0 0 0 eik

 CM. (3.10)

In the following we utilize the correspondence between the quantum walk on the Manhattan lattice and
the two-dimensional quantum walk on the square lattice to derive some of the interesting properties of
the Manhattan walks.

3.2 Trapping effect in quantum walks on the Manhattan lattice

Let us now analyse under which conditions the quantum walks described above exhibit the trapping ef-
fect by imposing conditions on the spectrum of the matrix ŨM(k, l). More specifically, our aim is to
determine the form of the general trapping coin CM (3.8). We consider the most general case when the
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quantum walk has 4 different coins at each node in a cell.

We proceed as follows: we impose restrictions on the characteristic equation for the transformed evo-
lution operator ŨM(k, l) and solve it with respect to the parameters of the coin operator (3.8). The
characteristic equation reads

det
(
ŨM(k, l) − λI

)
= 0. (3.11)

The presence of the trapping effect is related to the existence of a constant eigenvalue. Moreover, in the
case of four-state two-dimensional quantum walks the discussed constant eigenvalues always come in
pairs. The determinant of the transformed evolution operator Ũ(k, l) can be written as a product

detŨM(k, l) = det
(
diag

(
e−ik, e−il, eil, eik

))
det CM = det CM. (3.12)

In other words, the determinant of ŨM(k, l) is independent of k, l. On the other hand, determinant of a
matrix is also equal to the product of its eigenvalues. As a result, we can write down the characteristic
equation in the form of

det
(
ŨM(k, l) − λI

)
=

(
eiϕ − λ

) (
−eiϕ − λ

) (
eiω(k,l) − λ

) (
e−iω(k,l) − λ

)
= 0, (3.13)

where ±eiϕ represent the pair of constant eigenvalues.
Let us now determine, under which conditions eiϕ is an eigenvalue of the transformed evolution operator
ŨM(k, l). That is, we solve the equation

det
(
ŨM(k, l) − eiϕI

)
= 0, (3.14)

with respect to the parameters of the two-dimensional coin operators (3.3). The solution (for details we
refer to the Appendix A) of this equation is given as

Ci =

(
0 ci

bi 0

)
, C j =

(
0 c j

b j 0

)
, Ck =

(
0 ck

bk 0

)
, Cl =

(
al cl

bl dl

)
, (3.15)

where i, j, k, l are pair-wise distinct indexes from {1, 2, 3, 4} with the additional condition reading

e4iϕ − bib jbkble2iϕ − cic jckcle2iϕ − bib jbkcic jck(aldl − blcl) = 0. (3.16)

Let us now assume without a loss of generality, that the index l in (3.15) is equal to 4. The characteristic
equation for the solution given by (3.15) attains a simple form

λ4 − (b1b2b3b4 + c1c2c3c4)λ2 − b1b2b3c1c2c3(a4d4 − b4c4) = 0, (3.17)

that does not depend on k, l. As a consequence, the trapping effect in case of quantum walks driven by
the coin (3.8) is trivial since the evolution operator ŨM(k, l) possess only the point spectrum.

At this point we restrict ourselves to solutions of (3.16) in the form of SU(2). An arbitrary SU(2) matrix
can be parametrized as

M =

(
a eiα b eiβ

−b e−iβ a e−iα

)
, a2 + b2 = 1, a, b, α, β ∈ R. (3.18)

Using this parametrization for matrices (3.15) we obtain the general SU(2) solution of (3.16) dependent
on 6 real parameters as

Ci =

(
0 eiαi

−e−iαi 0

)
, i ∈ {1, 2, 3}, C4± =

±
√

1 − cos2(4ϕ)
cos2(α1+α2+α3+β) e

iα cos(4ϕ)
cos(α1+α2+α3+β) e

iβ

−
cos(4ϕ)

cos(α1+α2+α3+β) e
−iβ ±

√
1 − cos2(4ϕ)

cos2(α1+α2+α3+β) e
−iα

 .
(3.19)
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Note that since the choice of the parameter ϕ is arbitrary, matrices C4± cover all SU(2) coin operators.
The characteristic equation for this solution reads

λ4 − 2 cos(4ϕ)λ2 + 1 = 0, (3.20)

with the solution acquiring the form
λ1,2 = ±eiϕ. (3.21)

We conclude that the trapping effect in the case of a homogeneous quantum walk on the Manhattan lattice
is trivial since the trapping coins possess only the point spectrum. The absence of the continuous part of
the spectrum causes the suppression of the propagation of the resulting quantum walk.
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Chapter 4

Quantum walks on the L-lattice

Let us now turn to the quantum walks on the L-lattice, in which case we follow similar approach as
in the case of the Manhattan lattice and find that their description can be reduced to a certain type of
two-dimensional quantum walks utilizing only two-dimensional coin operators.
Analogously to the Manhattan lattice the L-lattice (see Figure 4.1) is homogeneous with respect to cells
(see Figure 4.3). As a consequence, the description of the homogeneous quantum walk on this lattice
can be reduced to that of the 8-state quantum walk on a square lattice driven by the coin operator

CL =



0 0 c1 0 0 a1 0 0
a2 0 0 0 0 0 0 c2
0 0 0 d3 b3 0 0 0
0 b4 0 0 0 0 d4 0
0 a4 0 0 0 0 c4 0
0 0 0 c3 a3 0 0 0
b2 0 0 0 0 0 0 d2
0 0 d1 0 0 b1 0 0


. (4.1)

However, the description can be further simplified to two-dimensional coins when we take into consid-
eration four subsequent steps as follows.
The L-lattice can be composed of two types of vertices shown in Figure 4.2. Although there are four dif-
ferent directions of motion, the quantum walk on the L-lattice can be defined using only two coin states.
This follows from the fact that when we consider four subsequent steps starting for example from the
vertex with the coin operator C1 which acts on the coin states |L〉 and |R〉 we necessarily arrive at vertex
C1 with coin states |L〉 and |R〉. In other words, the evolution operator comprised of even number of steps
always mixes only two of the four possible coin states, namely the states |L〉 and |R〉 or the states |D〉 and
|U〉. Hence we introduce the following identification of the coin states |L〉 , |D〉 = |1〉 and |R〉 , |U〉 = |2〉,
where

{|1〉 , |2〉} =

{(
1
0

)
,

(
0
1

)}
. (4.2)

This allows us to introduce the evolution operator in the following form (considering quantum walk
starting from the first vertex with the coin operator C1, see Figure 4.3)

UL = S DU C4 S LR C3 S DU C2 S LR C1, (4.3)

27



Figure 4.1: The L-lattice.

Figure 4.2: The elementary L-lattice vertices

where the shift operators S LR and S UD correspond to the motion along the x axis and y axis, respectively.
Explicitly,

S LR =
∑

x,y ∈Z

(
|1〉 〈1| ⊗ |x − 1, y〉 〈x, y| + |2〉 〈2| ⊗ |x + 1, y〉 〈x, y|

)
(4.4)

S DU =
∑

x,y ∈Z

(
|1〉 〈1| ⊗ |x, y − 1〉 〈x, y| + |2〉 〈2| ⊗ |x, y + 1〉 〈x, y|

)
, (4.5)

and the two-dimensional unitary coin operators acting on the two types of vertices are given as

C j =

(
a j c j

b j d j

)
, j ∈ {1, 2, 3, 4}. (4.6)

The Discrete-Time Fourier transform then yields the time evolution in the momentum space as

ψ̃(k, l, t + 1) = ŨL(k, l) ψ̃(k, l, t) =

(
e−il 0
0 eil

)
C4

(
e−ik 0
0 eik

)
C3

(
e−il 0
0 eil

)
C2

(
e−ik 0
0 eik

)
C1ψ̃(k, l, t). (4.7)

We see that quantum walks on the L-lattice can be viewed as quantum walks on an undirected square
lattice utilizing only two-dimensional coin operators with the shift operator modified as described above.
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C2C1

C3C4

Figure 4.3: The elementary L-lattice cell.

4.1 Relation to the two-dimensional alternate and the two-dimensional
split-step quantum walks

Quantum walks driven by the evolution operator in a form similar to (4.3) have been studied previously
in the context of the so-called two-dimensional alternate quantum walks introduced in [24]. The authors
considered the evolution generated by

Ualternate = S DU H S LR H, (4.8)

where H is the well-know Hadamard coin

H =
1
√

2

(
1 1
1 −1

)
. (4.9)

They argued that the probability distribution of this alternate quantum walk starting with the initial state
ψ(0, 0) = 1√

2
(1, i)T is identical to the probability distribution of the two-dimensional walk with the Grover

coin (2.3) for the specific choice of the unique non-trapping initial state ψG(0, 0, 0) = 1
2 (1,−1,−1, 1)T .

Let us also remark that quantum walks on the L-lattice with rotation coins are equivalent to the so-called
two-dimensional split-step quantum walks studied in [25]. In this case the evolution is governed by

Usplit = S DU R(θ2) S LR R(θ1), (4.10)

with the rotation coins

R(θ j) =

(
cos θ j − sin θ j

sin θ j cos θ j

)
, j = 1, 2, θ j ∈ [−

π

2
,
π

2
]. (4.11)

We will comment on the split-step quantum walks and the results obtained in [25] later in the context of
localization in quantum walks on the L-lattice.

4.2 Trapping effect in quantum walks on the L-lattice

Similarly to the analysis of the trapping effect on the Manhattan lattice, let us now turn to the analysis of
the general trapping coins in quantum walks on the L-lattice. This can be again formulated as a problem
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of determining the form of the coin operators C1, C2, C3, C4 satisfying the characteristic equation for
the transformed evolution operator ŨL(k, l) with the constant eigenvalue eiϕ, ϕ ∈ R which reads

det
(
ŨL(k, l) − eiϕI

)
= 0. (4.12)

Since this characteristic equation holds for arbitrary k, l ∈ [−π, π], it can be readily separated. After some
algebra (for details we refer to the Appendix A), we obtain the general form of the trapping coins as
(A.10) or (A.11). The characteristic equation for this solution is independent of k, l which leads to purely
point spectrum.
In the case of the general trapping coins in quantum walks on the L-lattice, we obtained only the point
spectrum. As a result, we conclude that the trapping effect is trivial, similarly to that of the quantum
walks on the Manhattan lattice.
For the L-lattice this conclusion could have been anticipated from the form of the evolution operator
that in the momentum space acquires the form of a two-dimensional matrix as in the case of two-state
one-dimensional quantum walk.
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Chapter 5

Localization in quantum walks on the
Manhattan lattice

In the previous two chapters we dealt with homogeneous quantum walks on the Manhattan lattice and
the L-lattice. Let us now focus on spatially inhomogeneous quantum walks on the Manhattan lattice.
Motivated by results obtained by Joye [20] we consider static disorder introduced by random phases.
That is, the evolution operator of the corresponding inhomogeneous quantum walks attains the following
form

Uω = D(ω)S (C ⊗ I), (5.1)

where D(ω) is a diagonal matrix acting as a multiplication by random phases in the form eiω(x,y,c),

c ∈ {L,D,U,R}. Joye proved localization for quantum walks on square lattices for coins close to the
trapping permutation matrices. This property is measured by the matrix norm

||A||C4 =

√
λmax(A†A), A ∈ C4,4, (5.2)

where λmax(A) denotes the largest eigenvalue of the matrix A.
Let us now employ numerical simulations to estimate the asymptotic behaviour of the disordered quan-
tum walks on the Manhattan lattice. We infer this from two characteristics: the probability distribution
and the time evolution of its variance σ2. Since we deal with two-dimensional lattice, we analyse the
cross-section of the probability distribution averaged over the number of iterations.
We depict the resulting cross-section of the probability distribution in a logarithmic plot. As a conse-
quence, we anticipate the localized quantum walks to exhibit peak consisting of two linear functions
meeting at the origin, since in this case exponential decay of the probability distribution is expected. The
cross-section of the probability distribution behaving as a quadratic function suggests diffusive spread-
ing. This is characteristic for classical random walks for which the probability distribution after t steps
is proportional to

P(x, t) ∼ e
−x2

2σ2 , σ2 = 2Dt. (5.3)

The second feature of our interest is the long-time behaviour of the variance

σ2(t) =
∑
x,y∈Z

(
(x − µ(x))2 + (y − µ(y))2

)
P(x, y, t), (5.4)

where µ(x), µ(y) are the mean values of the variables x, y. Since the variance measures the expected
deviation of the random variables from its mean, it provides a good estimate of the spreading of the
probability distribution. The propagation of the unperturbed quantum walk is known to be ballistic, i.e.
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σ2 ∼ t2. On the other hand, the spreading of the classical random walks behaves as σ2 ∼ t. Finally,
since the probability distribution of the localized quantum walk decays exponentially, we expect the
corresponding variance to saturate, i.e. σ2 ∼ 1.

5.1 Elementary Manhattan cell with four identical coins

Let us first consider the case utilizing the same coin at each of the 4 nodes of the elementary Manhattan
cell, i.e. C j = C for j = 1, 2, 3, 4. Consequently, the coin operator (3.8) attains the following form

CM =


ad bd cd b2

ac ad c2 ab
ab c2 ad ac
b2 cd bd ad

 . (5.5)

Let us first restrict ourselves to C ∈ SU(2). Using the parametrization for general M ∈ SU(2)

M =

√1 − ρ2eiα ρ eiβ

−ρ e−iβ
√

1 − ρ2e−iα

 , ρ, α, β ∈ R, ρ ∈ [0, 1] (5.6)

we obtain the coin operator in the form

CM =


(1 − ρ2) −ρ

√
1 − ρ2 ei(−β−α) ρ

√
1 − ρ2 ei(β−α) ρ2 e−2iβ

ρ
√

1 − ρ2 ei(α+β) (1 − ρ2) ρ2 e2iβ −ρ
√

1 − ρ2 ei(α−β)

−ρ
√

1 − ρ2 ei(α−β) ρ2 e2iβ (1 − ρ2) ρ
√

1 − ρ2 ei(α+β)

ρ2 e−2iβ ρ
√

1 − ρ2 ei(β−α) −ρ
√

1 − ρ2 ei(−β−α) (1 − ρ2)

 . (5.7)

According to the results obtained by Joye, we expect localization for ρ close to 1, as in this case the coin
operator satisfies the condition of being close to one of the trapping permutation matrices.
Figure 5.1 depicts the dependence of the norm of ||CM −Cπ|| on the value of ρ. In the case of 4 identical
coins Cπ is the anti-diagonal permutation matrix. We see that the norm as a function of ρ increases as we
decrease ρ, which means that we should expect the presence of localization only for ρ very close to 1.

5.1.1 Numerical simulations

In the case of the coin operator CM (5.5), we can take advantage of the symmetries of the resulting quan-
tum walk and consider cross-sections only along the x axis without a loss of generality. Moreover, we
assume the distribution to be centred around the origin and set µ(x) = µ(y) = 0 when computing the
variance.
In our simulations we examined the dependence of the probability distribution and the time evolution of
the variance on the value of the parameter ρ. We performed 10000 iterations for quantum walks with
100 steps for different values of ρ restricting ourselves to real SU(2) matrices, i.e. we set α, β = 0. We
assumed the random phases to be independent and identically distributed random numbers in [0, 2π].
Results obtained from numerical simulations suggest that in the case of four identical coins in the ele-
mentary Manhattan cell we observe 3 types of asymptotic behaviour with respect to the value of ρ. For
ρ close to 1 the corresponding quantum walk exhibits localization which is characterised by linear de-
cay of the averaged probability distribution in the semilogarithmic plot (see the left plot in Figure 5.2).
Moreover, we see that the spreading given by the variance of this averaged distribution saturates as the
time t increases (see the right plot in Figure 5.2).
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Figure 5.1: Dependence of the norm ||CM −Cπ|| on the value of the parameter ρ

Decreasing the parameter ρ, the width of the peak in the probability distribution as well as the rate of
spreading grows. For ρ ∈ [0.3, 0.8] the averaged probability distribution decays quadratically (the left
plot in Figure 5.4) and the variance increases linearly in time (the right plot in Figure 5.4). These features
are attributed to diffusive propagation of the resulting quantum walk.
In the case of small ρ it can be seen that ballistic propagation starts to prevail. This we deduce from the
shape of the averaged probability distribution that exhibits two peaks propagating proportionately to the
number of steps t (see the left plot in Figure 5.5). Moreover, the variance grows quadratically (see the
right plot in Figure 5.5) as expected in the case of ballistic spreading.
However, the analysis is inconclusive for ρ ∈ [0.80, 0.98] (Figure 5.3). Therefore, we performed 10
iterations with the number of steps increased to 400. We remark that the demands on the computational
time in the case of 400 steps and 10 iterations are comparable to the previous regime when we performed
10000 iterations for 100 steps of the quantum walk.
The results obtained for this increased number of steps suggest that the transition between localized
regime and diffusion occurs in the interval ρ ∈ [0.80, 0.90]. This can be inferred from Figure 5.6 and
5.7 where it is shown that while spreading saturates for ρ ∼ 0.90, propagation of the quantum walk with
ρ ∼ 0.80 is nearly diffusive.
However, we cannot exclude the possibility of localization setting in after more then 400 steps. Never-
theless, the number of steps in our simulations is limited by rapidly increasing time needed to perform
one iteration, as well as memory demands. That is, since we deal with a square lattice, the time complex-
ity as well as the space complexity grows quadratically with the size of the underlying lattice. Without
parallelization the time needed to perform 10000 iterations for quantum walk with 100 steps reached
approximately 120 hours.
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Figure 5.2: Cross-section of the probability distribution after 100 steps averaged over 10000 iterations,
semilogplot (on the left). The time-dependence of the corresponding variance σ2 (on the right). The
parameter of the coin operator set to ρ = 0.999, ρ = 0.995, ρ = 0.99 and ρ = 0.98.

Figure 5.3: Cross-section of the probability distribution after 100 steps averaged over 10000 iterations,
semilogplot (on the left). The time-dependence of the corresponding variance σ2 (on the right). The
parameter of the coin operator set to ρ = 0.97, ρ = 0.96, ρ = 0.95, ρ = 0.94, ρ = 0.93, ρ = 0.92, ρ =

0.91 and ρ = 0.90.
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Figure 5.4: Cross-section of the probability distribution after 100 steps averaged over 10000 iterations,
semilogplot (on the left). The time-dependence of the corresponding variance σ2 (on the right). The
parameter of the coin operator set to ρ = 0.80, ρ = 0.70, ρ = 0.60, ρ = 0.50, ρ = 0.40 and ρ = 0.30.

Figure 5.5: Cross-section of the probability distribution after 100 steps averaged over 10000 iterations,
semilogplot (on the left). The time-dependence of the corresponding variance σ2 (on the right). The
parameter of the coin operator set to ρ = 0.20 and ρ = 0.10.
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Figure 5.6: Cross-section of the probability distribution after 400 steps averaged over 10 iterations,
semilogplot (on the left). The time-dependence of the corresponding variance σ2 (on the right). The
parameter of the coin operator set to ρ = 0.80, ρ = 0.81, ρ = 0.82, ρ = 0.83, ρ = 0.84 and ρ = 0.85.

Figure 5.7: Cross-section of the probability distribution after 400 steps averaged over 10 iterations,
semilogplot (on the left). The time-dependence of the corresponding variance σ2 (on the right). The
parameter of the coin operator set to ρ = 0.86,ρ = 0.87, ρ = 0.88, ρ = 0.89 and ρ = 0.90.
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5.2 Elementary Manhattan cell with four different coins

Let us focus on the case of 4 different coin operators C j acting in the elementary Manhattan cell. Firstly,
we assume the coins to be real elements of SU(2), i.e.

C j =


√

1 − ρ2
j ρ2

j

−ρ2
j

√
1 − ρ2

j

 , ρ j ∈ [0, 1], j ∈ {1, 2, 3, 4}. (5.8)

The four-dimensional operator (3.8) then reads

CM =



√
1 − ρ2

1

√
1 − ρ2

2 −ρ1

√
1 − ρ2

3 ρ2

√
1 − ρ2

1 ρ1ρ3

ρ1

√
1 − ρ2

2

√
1 − ρ2

1

√
1 − ρ2

3 ρ1ρ2 −ρ3

√
1 − ρ2

1

−ρ2

√
1 − ρ2

4 ρ3ρ4

√
1 − ρ2

2

√
1 − ρ2

4 ρ4

√
1 − ρ2

3

ρ2ρ4 ρ3

√
1 − ρ2

4 −ρ4

√
1 − ρ2

2

√
1 − ρ2

3

√
1 − ρ2

4


. (5.9)

Note that in this case the resulting probability distribution is no longer symmetric meaning that the
choice of the cross-section can affect our conclusions. Therefore, we use the covariance matrix to find
the directions in which the probability distribution spreads. The covariance matrix is symmetric and is
given as

Σ =

(
σ2

x cov(x, y)
cov(y, x) σ2

y

)
, (5.10)

where σ2
x, σ

2
y is the variance computed along x axis, y axis, respectively. Covariance cov(x, y) is defined

by
cov(x, y) =

∑
x,y∈Z

(x − µ(x))(y − µ(y))P(x, y), (5.11)

where µ(x), µ(y) are the mean values of the positions x and y. The eigenvectors of the covariance
matrix then determines the main directions, in which the distribution spreads whereas the corresponding
eigenvalues specify the shape of the distribution. That is, the spreading is greater in the direction of the
eigenvector corresponding to the larger eigenvalue.
In the analysis of our results we utilize the information obtained from the covariance matrix and make
the cross-sections in the directions given by its eigenvectors. However, we must also choose the cross-
sections in accordance with the underlying discrete lattice.
According to the results obtained by Joye [20] the presence of localization is ensured in cases when
CM is close to a trapping permutation coin. Moreover, we know that the trapping effect for quantum
walks on the Manhattan lattice is trivial. Consequently, these permutation matrices represent certain
extreme cases of the trapping effect. Let us therefore begin the analysis with coin operators close to
those exhibiting trapping. According to the results obtained for trapping, three of the coins C j must be
close to generalized reflections, i. e. without a loss of generality let us assume ρ1, ρ2, ρ3 to be close
to 1. The fourth parameter ρ4 is an arbitrary number from [0,1]. In this case, there exists two trapping
permutations

Cπ1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , Cπ2 =


0 0 0 1
0 0 1 0
−1 0 0 0

0 1 0 0

 , (5.12)

which are the extreme cases when ρ1 = ρ2 = ρ3 = ρ4 = 1 and ρ1 = ρ2 = ρ3 = 1, ρ4 = 0, respectively.
Figure 5.2 depicts the dependence of the norm ||CM − Cπ1 || and ||CM − Cπ2 || on the parameter ρ4 upon
setting ρ1 = ρ2 = ρ3 = 0.999. As a consequence, we expect localization at least for ρ4 close to 0 and 1.
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Figure 5.8: Dependence of the norm ||CM − Cπ1,1 || on the value of the parameter ρ4 with ρ1 = ρ2 = ρ3 =

0.999

5.2.1 Numerical simulations

In the numerical simulations we performed both 10000 iterations for 100 steps and 10 iterations for 400
steps. We set three parameters ρ1 = ρ2 = ρ3 = 0.999 and varied the fourth parameter ρ4 by 0.1 starting
from ρ4 = 1.0. Table 5.2.1 shows the eigenvectors and eigenvalues of the covariance matrix for both
regimes of 10000 iterations–100 steps and 10 iterations–400 steps. We see that in both cases the axes of
spreading can be well approximated by lines x = y and x = −y (see Figure (5.9). Moreover, except for
ρ4 = 1.0 the eigenvalues suggest that the probability distribution spreads more in the direction x = −y.
Let us first focus on the setting 10000 iterations–100 step. Figure 5.10 and Figure 5.11 depict the cross-
sections of the averaged probability distribution along x = y axis and x = −y axis, respectively. In
accordance with our expectations, the distribution spreads more in the direction x = −y except for the
case when ρ4 = 1.0. The time dependence of the variance of the overall probability distribution is
given by equation (5.4) and is depicted in Figure 5.12. Figure 5.12 suggests saturation of the discussed
variance, however for certain values of the parameters, namely ρ4 = 0.4, ρ4 = 0.6, ρ4 = 0.7 the results
are inconclusive.
To obtain a better estimate of the asymptotic behaviour of the variance, we performed 10 iterations for
quantum walk with 400 steps. As far as the shape of the cross-sections of the probability distribution is
concerned (see Figure 5.13 and Figure 5.14), it is similar to the previous case of 100 steps. Moreover, the
width of these cross-sections is comparable to that of Figure 5.10 and Figure 5.11, which also indicates
that the propagation is suppressed. Finally, the time evolution of the variance plotted in Figure 5.15
appears to be bounded.
Based on the results obtained from numerical simulations presented in this section and section 5.1.1, we
draw the following conclusion. The localization is present in the case when the real SU(2) coin operator
CM given by (5.9) is a small enough perturbation of the real SU(2) Manhattan trapping coin.
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Figure 5.9: The cross-sections x = −y (red) and x = y (blue).

100 steps 400 steps
ρ4 λ1 λ2 v1 v2 λ1 λ2 v1 v2

1.0 0.0137 0.0253
(
−0.8879

0.4600

) (
0.4600
0.8879

)
0.0068 0.0579

(
0.7064
−0.7078

) (
−0.7078
−0.7064

)
0.9 0.0583 0.2780

(
−0.7259
−0.6878

) (
−0.6878

0.7259

)
0.1026 0.3839

(
−0.7095
−0.7047

) (
−0.7047

0.7095

)
0.8 0.0759 0.4569

(
−0.7394
−0.6733

) (
−0.6733

0.7394

)
0.0428 0.3140

(
−0.7028
−0.7113

) (
−0.7113

0.7028

)
0.7 0.1544 0.5168

(
−0.7171
−0.6970

) (
−0.6970

0.7171

)
0.0847 0.5858

(
−0.7551
−0.6556

) (
−0.6556

0.7551

)
0.6 0.1050 0.6056

(
−0.7018
−0.7124

) (
−0.7124

0.7018

)
0.1011 0.4156

(
−0.6994
−0.7147

) (
−0.7147

0.6994

)
0.5 0.0946 0.5978

(
−0.6755
−0.7374

) (
−0.7374

0.6755

)
0.1124 0.6646

(
−0.6706
−0.7418

) (
−0.7418

0.6706

)
0.4 0.1278 0.7750

(
−0.7077
−0.7065

) (
−0.7065

0.7077

)
0.1975 0.7225

(
−0.7431
−0.6692

) (
−0.6692

0.7431

)
0.3 0.1290 0.6891

(
−0.6977
−0.7163

) (
−0.7163

0.6977

)
0.0704 0.6351

(
−0.7097
−0.7046

) (
−0.7046

0.7097

)
0.2 0.2042 0.6270

(
−0.7927
−0.6096

) (
−0.6096

0.7927

)
0.0712 0.5726

(
−0.6815
−0.7318

) (
−0.7318

0.6815

)
0.1 0.1808 0.8082

(
−0.6921
−0.7218

) (
−0.7218

0.6921

)
0.1627 0.7523

(
−0.6546
−0.7560

) (
−0.7560

0.6546

)
0.0 0.1864 0.2993

(
−0.7506
−0.6608

) (
−0.6608

0.7506

)
0.0949 0.3780

(
−0.7698
−0.6383

) (
−0.6383

0.7698

)

Table 5.1: Eigenvalues λ1,2 and the corresponding eigenvectors v1,2 of the covariance matrix for the aver-
aged probability distribution for disordered quantum walks for 100 steps and 400 steps. The parameters
of the coin operator (5.9) are given as ρ1 = ρ2 = ρ3 = 0.999 and the ρ4 is varied by 0.1.
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Figure 5.10: Cross-section along x = y of the probability distribution after 100 steps averaged over
10000 iterations, semilogplot with the parameters ρ1 = ρ2 = ρ3 = 0.999. On the left the parameter of the
coin operator is set to ρ4 = 0.0, ρ4 = 0.1, ρ4 = 0.2, ρ4 = 0.3, ρ4 = 0.4 and ρ4 = 0.5. On the right the
parameter of the coin operator is set to ρ4 = 0.6, ρ4 = 0.7, ρ4 = 0.8, ρ4 = 0.9 and ρ4 = 1.0.

Figure 5.11: Cross-section along x = −y of the probability distribution after 100 steps averaged over
10000 iterations, semilogplot with the parameters ρ1 = ρ2 = ρ3 = 0.999. On the left the parameter of the
coin operator is set to ρ4 = 0.0, ρ4 = 0.1, ρ4 = 0.2, ρ4 = 0.3, ρ4 = 0.4 and ρ4 = 0.5. On the right the
parameter of the coin operator is set to ρ4 = 0.6, ρ4 = 0.7, ρ4 = 0.8, ρ4 = 0.9 and ρ4 = 1.0.
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Figure 5.12: The time evolution of the variance of the probability distribution with the parameters ρ1 =

ρ2 = ρ3 = 0.999 averaged over 10000 iterations for 100 steps. On the left the parameter of the coin
operator is set to ρ4 = 0.0, ρ4 = 0.1, ρ4 = 0.2, ρ4 = 0.3, ρ4 = 0.4 and ρ4 = 0.5. On the right the
parameter of the coin operator is set to ρ4 = 0.6, ρ4 = 0.7, ρ4 = 0.8, ρ4 = 0.9 and ρ4 = 1.0.

Figure 5.13: Cross-section along x = y of the probability distribution after 400 steps averaged over 10
iterations, semilogplot with the parameters ρ1 = ρ2 = ρ3 = 0.999. On the left the parameter of the coin
operator is set to ρ4 = 0.0, ρ4 = 0.1, ρ4 = 0.2, ρ4 = 0.3, ρ4 = 0.4 and ρ4 = 0.5. On the right the
parameter of the coin operator is set to ρ4 = 0.6, ρ4 = 0.7, ρ4 = 0.8, ρ4 = 0.9 and ρ4 = 1.0.
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Figure 5.14: Cross-section along x = −y of the probability distribution after 400 steps averaged over
10 iterations, semilogplot with the parameters ρ1 = ρ2 = ρ3 = 0.999. On the left the parameter of the
coin operator is set to ρ4 = 0.0, ρ4 = 0.1, ρ4 = 0.2, ρ4 = 0.3, ρ4 = 0.4 and ρ4 = 0.5. On the right the
parameter of the coin operator is set to ρ4 = 0.6, ρ4 = 0.7, ρ4 = 0.8, ρ4 = 0.9 and ρ4 = 1.0.

Figure 5.15: The time evolution of the variance of the probability distribution with the parameters ρ1 =

ρ2 = ρ3 = 0.999 averaged over 10 iterations for 400 steps. On the left the parameter of the coin operator
is set to ρ4 = 0.0, ρ4 = 0.1, ρ4 = 0.2, ρ4 = 0.3, ρ4 = 0.4 and ρ4 = 0.5. On the right the parameter of the
coin operator is set to ρ4 = 0.6, ρ4 = 0.7, ρ4 = 0.8, ρ4 = 0.9 and ρ4 = 1.0..
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5.2.2 Random coins

To estimate the behaviour of quantum walks with random phases in the case of four identical coin op-
erators we varied the parameter ρ. However, in the case of 4 different coin operators in the Manhattan
cell, the resulting four-dimensional coin operator (5.9) depends on 4 parameters. In the previous section
we restricted ourselves to one special case when the coin represents a small perturbation of the trapping
coin. To be able to estimate the behaviour when this condition does not hold, we choose the parameters
ρ1, ρ2, ρ3 and ρ4 randomly from the interval [0,1].
We performed 100 quantum walks for different random choices of the coin to obtain preliminary results.
For each of the choices we did 500 iterations for 100 steps. To be able to cover and analyse large enough
sample, we focus only on two characteristics of the probability distribution. The first one is the minimum
of norm ||CM −Cπi || where Cπi , i ∈ {1, · · · , 7} is one of the 7 possible trapping permutations

Cπ1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , Cπ2 =


0 0 0 1
0 0 1 0
−1 0 0 0

0 1 0 0

 , Cπ3 =


0 −1 0 0
0 0 1 0
0 1 0 1
1 0 0 0

 , Cπ4 =


0 −1 0 0
0 0 0 −1
−1 0 0 0

0 0 −1 0


Cπ5 =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 , Cπ6 =


0 0 1 0
0 0 0 −1
0 1 0 0
1 0 0 0

 , Cπ7 =


0 0 0 1
1 0 1 0
0 1 0 0
0 0 −1 0

 . (5.13)

The second one is the value of the fit parameter a. To estimate the rate of spreading, we fitted the function
y(t) = b ta to the variance σ2(t) of the overall probability distribution.
Figure 5.16 then depicts the dependence of the fit parameter a on the minimum of the norms. We see
that for the majority of the quantum walks with the minimum of the norms in the interval [0.8, 1.5] the
spreading is close to diffusion, since the variance behaves as σ2 ∼ t. On the other hand, with the norm
increasing, ballistic propagation starts to prevail.
These numerical results lead us to the hypothesis that the Anderson localization on the Manhattan lattice
with the disorder stemming from random phases arises only for the coin operator that represents a small
perturbation of the coin operator that leads to the trapping effect.

5.3 Localization in quantum walks on the L-lattice

Unlike in case of quantum walks on the Manhattan lattice, localization of quantum walk on the L-lattice
has already been studied numerically in [25] in context of two-dimensional split-step quantum walks.
Using numerical results, the authors of [25] argued that spatial disorder introduced via random phases
leads to localization for an arbitrary two-dimensional split-step quantum walks except for coins that
match the topological phase transition point. The phase transition is given by two lines θ1 = θ2 and
θ1 = −θ2 (see Figure 5.17).
In [25] they took into consideration two split-step quantum walks with parameters θ1 = 0.35π, θ2 =

0.15π (blue star Figure 5.17) and θ1 = π/4, θ2 = −π/4 (purple star Figure 5.17). Notice that the second
choice of parameters is closely related to the quantum walk with the Hadamard coin

UH = S DU R(−π/4) S −1
LR R(π/4). (5.14)

In numerical simulations, the authors focused on two types of disorder stemming from random phases,
namely the spin-independent disorder, in which case the multiplication of random phases acts as

Dω = diag
(
eiω(x,y), eiω(x,y)

)
(5.15)
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Figure 5.16: Dependence of the fit parameter a on the minimum of norms over all possible trapping
permutations.

and the spin-dependent disorder, for which there is a phase shift by π in one of the diagonal elements

Dω = diag
(
eiω(x,y), e−iω(x,y)

)
. (5.16)

Figure 5.18 suggests the presence of localization in the case of the rotation coin with θ1 = 0.35π, θ2 =

0.15π for both spin-dependent/independent disorder. On the other hand, parabolic shape of the cross-
section for the disordered Hadamard walk is attributed to diffusive propagation. Let us note that in
[25] the authors considered also disorder in the angle parameter. Contrary to expectations, this type of
disorder led to diffusive propagation instead to localized quantum walks.
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Figure 5.17: Phase diagram for the topological quan-
tum numbers for two-dimensional split-step quantum
walk. The blue star corresponds to the parameters
θ1 = 0.35π, θ2 = 0.15π, the purple star represents the
Hadamard walk (adopted from [25]).

Figure 5.18: The cross-section of the probabil-
ity distribution for split-step quantum walk after
1000 steps and 500 realizations. The blue and or-
ange lines correspond to the Hadamard walk with
spin-dependent/independent disorder, whereas red and
green lines represent split-step walk with θ1 =

0.35π, θ2 = 0.15π (adopted from [25]).
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Conclusion

In this thesis we focused on the effect of localization in quantum walks on two specific cases of directed
two-dimensional lattices, namely the Manhattan lattice and the L-lattice. We investigated both the ef-
fect of trapping that arises in the case of homogeneous quantum walks and on the Anderson localization
which is related to the presence of static disorder.
In certain aspect, quantum walks on the Manhattan and the L-lattice lie between the two-state quantum
walk on a line and the four-state quantum walk on an undirected two-dimensional lattice. On one hand,
both Manhattan and the L-lattice are two-dimensional graphs. However, the lattices have directed edges,
and on every vertex there are two incoming and two outgoing edges. Hence, for quantum walks on the
Manhattan and the L-lattice the coin operators on the individual vertices are given by two-dimensional
matrices, as in the case of the two-state quantum walk on a line. It was an open question whether local-
ization in quantum walks on Manhattan and L-lattice will behave in a similar way to that for the two-state
walk on a line or a four-state walk on a two-dimensional lattice.
In our analysis we have first showed that homogeneous quantum walks on the Manhattan lattice can be
described using quantum walks on an undirected square lattice driven by four-dimensional coin operator
of a specific form. For homogeneous quantum walks on the L-lattice this procedure can be taken fur-
ther and one can show that they can be described using only two-dimensional coin operators. In fact,
we showed that they are equivalent to the so-called two-dimensional split-step quantum walks or two-
dimensional alternate quantum walks that have been studied previously.
The reduction of quantum walks on Manhattan and L-lattice to quantum walks on undirected lattices al-
lowed us to investigate the trapping effect in detail. We determined the general form of a coin that leads
to trapping. In both cases we found that trapping occurs only in trivial cases when the evolution operator
possesses purely point spectrum. Due to the lack of the continuous spectrum the resulting trapping quan-
tum walks on the Manhattan lattice, as well as on the L-lattice, do not propagate. Hence, the trappping
effect on these two oriented lattices is similar to that for the two-state quantum walk on a line. This
result can be anticipated for the L-lattice, since the quantum walk is described by two-dimensional coin
operator. On the other hand, the walk on the Manhattan lattice can be described using four-dimensional
coin operators which in principle allow for non-trivial trapping effect. However, the form of the coin
operator proved to be too restricting.
In the last chapter we dealt mainly with Anderson localization on the Manhattan lattice. We restricted
ourselves only to static disorder introduced via independent, identically distributed random phases. Mo-
tivated by known analytical results, we performed numerical simulations. Based on these numerical data
we estimated the asymptotic behaviour from two characteristics of our interest: the cross-section of the
averaged probability distribution and the time-dependence of the variance of the overall probability dis-
tribution. The numerical simulations performed for the elementary Manhattan cell with four identical
coins suggest presence of localization only in the case when the four-dimensional coin operator is close
to anti-diagonal matrix. In the case of four different coin operators within the elementary Manhattan
cell localization appears to be present for coins that represent a small perturbation from those exhibiting
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trapping effect. These results led us to the hypothesis that localization in quantum walks on the Manhat-
tan lattice arises only for coins close to the trapping coins. We note that for the L-lattice the situation
is different. Indeed, the study of Anderson localization in [23] proved that it arises for almost arbitrary
choice of the coin operator, as in the case of one-dimensional quantum walks.
Many interesting questions remain open. To our best knowledge, except for Joye’s results [20], Ander-
son localization has not been proved analytically in dimensions higher than one. Moreover, these results
only deal with coins in a specific form. The question then arises, whether this effect can be observed for
a broader range of four-dimensional coin operators on a square lattices or not. This question has been
partially answered in this thesis where we considered one special case of the underlying lattice – the
Manhattan lattice.
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Appendix A

A.1 Trapping effect in quantum walks on the Manhattan lattice

In the following we focus on the details of the calculations outlined in section 3.2. Since the char-
acteristic equation (3.14) holds for arbitrary k, l we obtain following relations for the coin parameters
ai, bi, ci, di, i ∈ {1, 2, 3, 4}

e−il : − a1d3e3iϕ − a2b1b3c1c3d4eiϕ + a1a2b3c3d1d4eiϕ + a2a3b1c1d3d4eiϕ − a1a2a3d1d3d4eiϕ = 0

eil : − a4d2e3iϕ − a3b2b4c2c4d1eiϕ + a2a3b4c4d1d2eiϕ + a3a4b2c2d1d4eiϕ − a2a3a4d1d2d4eiϕ = 0

eik : − a3d4e3iϕ − a1a3a4d2d3d4eiϕ + a1a4b3c3d2d4eiϕ + a1a3b4c4d2d3eiϕ − a1b3b4c3c4d2eiϕ = 0

e−ik : − a2d1e3iϕ − a4b1b2c1c2d3eiϕ + a1a4b2c2d1d3eiϕ + a2a4b1c1d2d3eiϕ − a1a2a4d1d2d3eiϕ = 0

(A.1)

ei (k−l) : a1a3d3d4e2iϕ − a1b3c3d4e2iϕ = 0

ei (k+l) : a3a4d2d4e4iϕ − a3b4c4d2e4iϕ = 0 (A.2)

ei (−k−l) : a1a2d1d3e4iϕ − a2b1c1d3e4iϕ = 0

ei (−k+l) : a2a4d1d2e4iϕ − a4b2c2d1e4iϕ = 0

e4iϕ − b1b2b3b4e2iϕ + a1a4d2d3e2iϕ + a2a3d1d4e2iϕ − c1c2c3c4e2iϕ + det C = 0 (A.3)

where

det C = a1a2a3a4d1d2d3d4 − a1a2a3b4c4d1d2d3 − a1a2a4b3c3d1d2d4 + a1a2b3b4c3c4d1d2

− a1a3a4b2c2d1d3d4 + a1a3b2b4c2c4d1d3 + a1a4b2b3c2c3d1d4 − a1b2b3b4c2c3c4d1

− a2a3a4b1c1d2d3d4 + a2a3b1b4c1c4d2d3 + a2a4b1b3c1c3d2d4 − a2b1b3b4c1c3c4d2

+ a3a4b1b2c1c2d3d4 − a3b1b2b4c1c2c4d3 − a4b1b2b3c1c2c3d4 + b1b2b3b4c1c2c3c4. (A.4)

Relations (A.2) imply
a1d4 = 0 a2d3 = 0 a3d2 = 0 a4d1 = 0 (A.5)

since the determinant of the unitary matrices (3.3) is never equal to zero. There exist 16 possible com-
binations how these conditions can be satisfied. If we also take into account the conditions on the
unitarity of matrices (3.3), four of these combinations gives trivial solution in the form of antidiagonal
two-dimensional matrices whereas eight of these combinations immediately yield solution in the form of

Ci =

(
0 ci

bi 0

)
, C j =

(
0 c j

b j 0

)
, Ck =

(
0 ck

bk 0

)
, Cl =

(
al cl

bl dl

)
, (A.6)
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where i, j, k, l are pair-wise distinct indexes from {1, 2, 3, 4}. It can be readily verified that the equations
(A.1) also imply solution in the form of (A.6) for the last four of the 16 combinations. The equation
(A.3) then puts another restriction on the matrices (A.6) in the form of

e4iϕ − bib jbkble2iϕ − cic jckcle2iϕ − bib jbkcic jck(aldl − blcl) = 0. (A.7)

A.2 Trapping effect in quantum walks on the L-lattice

Let us now turn to the details of the calculations touched upon in 4.2. The characteristic equation (4.12)
can be readily separated in the following manner, as it holds for arbitrary k, l ∈ [−π, π]

e0 : e2iϕ − a1b2c4d3eiϕ − a2b3c1d4eiϕ − a3b4c2d1eiϕ − a4b1c3d2eiϕ + det C = 0 (A.8)

e−2ik : − a1a4b2c3eiϕ − a2a3b4c1eiϕ = 0 (A.9)

e−2il : − a1a2b3c4eiϕ − a3a4b1c2eiϕ = 0

e2ik : − b1c4d2d3eiϕ − b3c2d1d4eiϕ = 0

e2il : − b2c1d3d4eiϕ − b4c3d1d2eiϕ = 0

e−2i(k+l) : − a1a2a3a4eiϕ = 0

e2i(k−l) : − b1b3c2c4eiϕ = 0

e2i(−k+l) : − b2b4c1c3eiϕ = 0

e2i(k+l) : − d1d2d3d4eiϕ = 0,

The relations (A.9) together with conditions on the unitarity of the coins C1, C2, C3, C4 immediately
yield solution in the form of

Ci =

(
0 eiαi

eiβi 0

)
, C j =

(
0 eiα j

eiβ j 0

)
, Ck =

(
eiαk 0
0 eiβk

)
, Cl =

(
al cl

bl dl

)
(A.10)

or

Ci =

(
eiαi 0
0 eiβi

)
, C j =

(
eiα j 0
0 eiβ j

)
, Ck =

(
0 eiαk

eiβk 0

)
, Cl =

(
al cl

bl dl

)
(A.11)

where i, j, k, l ∈ {1, 2, 3, 4} are pair-wise distinct indices satisfying (i, j) = (1, 3) or (i, j) = (2, 4). These
solutions are further restricted by conditions imposed by equation (A.8).
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