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Abstract

This work is dedicated to study of quan-
tum ribbons and their generalisation into
higher dimensions. Firstly, facts impor-
tant for the definition of quantum strips
are recalled. Next, one of the possible ap-
proach to study of spectra of the Dirich-
let Laplacian defined on the strip is pre-
sented, especially focusing on the effec-
tive dynamics in narrow strips. Lastly,
one example of a particular quantum rib-
bon, the Möbius strip, is presented and
its spectrum is treated both analytically
and numerically on its various simplified
models.

Keywords: quantum ribbons, Möbius
strip, spectrum

Supervisor: Mgr. David Krejčiřík,
PhD., DSc.

Abstrakt

Tato práce je věnována studiu kvantových
stužek a jejich zobecnění do více dimenzí.
Nejprve jsou shrnuty poznatky důležité
k definici kvantových proužků. Dále je
uveden jeden z možných způsobů zkou-
mání spektra Dirichletovkého Laplaciánu
na stužkách, především s důrazem na efek-
tivní dynamiku v tenkých proužcích. Je-
den konkrétní příklad, Möbiův proužek, je
zde prezentován a jeho spektrum je zkou-
máno jak analyticky, tak numericky na
jeho různých zjednodušených modelech.

Klíčová slova: kvanotové stužky,
Möbiův pásek, spektrum

Překlad názvu: Kvantové nanostužky:
geometrie, operátorová teorie a
spektrální analýza
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Introduction

The discussion of spectral properties of tubular waveguides in two and three
dimensions has started as early as 1989 with a paper by Exner and Šeba
[12]. Since then, the question of the influence of geometry on the spectra of a
differential operator defined on/in the waveguide has been treated in copious
variations, differing in the structure of the cross-section, boundary conditions
or the nature of the waveguide.

The area of quantum layers and their properties have been extensively
treated in e.g. [9] or [5]. For tubular waveguides, the Dirichlet boundary
conditions [12, 17, 28], the Neumann boundary conditions [7, 32] or the Robin
boundary conditions [11, 15, 34] were considered. The idea of quantum strips
has been explored in [26, 27]. A slightly different problem of whole manifolds
was treated for instance in [23] or with a more formal approach in [38].

One particular example of a quantum ribbon is the Möbius strip. Over the
years, it has been in the center of attention of mathematicians, physicians,
and even artists in more than one respect. Its mathematical and physical
properties were discussed and dissected in number of papers with numerous
settings.

One of the possible criteria of such division is the material of the Möbius
strip. The rigid model was examined with respect to magnetization in [16],
movement of a free partical [18] or with respect to equilibrium shapes and
stress localization in [37]. The Möbius strip made out of graphene was
considered in number of papers - e.g. for the electronic properties of a
topological insulator with respect to the different edges in [19], and the
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........................................... Introduction

symmetries and their consequences for chemistry in [14]. Furthermore, the
lattice model is also popular – the square lattice Ising model was discussed
in [6], persistent currents of non-interacting electron in [39], and the problem
of continuous-time quantum walk on the Möbius lattice in [30].

Another viable division is due to the ambient space in which the problem is
treated. The former examples as all restricted to three dimensions, however,
even generalizations to higher dimensions are being studied in various settings.
The problem of spectrum of various differential operators has been studied,
e.g. [25] for the Klein–Gordon operator in Rn, [24] for the Helmholtz operator
on higher dimension Möbius strip embedded in R4.

This project is divided as follows. The first chapter is devoted to reminder
of some basic facts important for institution of quantum strips, followed by
their definition. Second chapter addresses the definition of Hamiltonian on
the strips and one of the possible treatments for the case of narrow ribbons.
Next, some very basic elements of numerical mathematics used later on are
presented. In the last chapter, the particular example of the Möbius strip is
examined both numerically and analytically.
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Chapter 1

Curves

The objective of this chapter is to introduce a notion of (tubular) neigh-
bourhood along a curve. To do this, we recall and restate few important
definitions. More detailed information can be found in [22], [29] or [35].
Definition 1.1. A curve in Rn is a continuously differentiable mapping
c : I → Rn from any open interval I := (a, b), i.e. a, b ∈ R ∪ {−∞,∞}, into
Rn.
Remark. The only restriction on the interval I is its openness – it can be
bounded or unbounded.
Definition 1.2. A curve c : I → Rn is said to be of class Ck(I) if the
derivatives c′, . . . , c(k) exist and are continuous on the interval I. The curve c
is of class Ck,α(I) if c ∈ Ck(I) and c(k) satisfies the following condition:

(∃C > 0) (∀x, y ∈ I)
(
|c(k)(x)− c(k)(y)| ≤ C|x− y|α

)
.

As we are mainly interested in curves of the class C1,1(I), let us rephrase
the definition for this particular case: c ∈ C1,1(I) if c′ is continuous and if it
satisfies the Lipschitz condition. Furthermore, we will be solely interested in
so–called regular curves.
Definition 1.3. A curve is called regular if and only if c′(t) 6= 0 for all t ∈ I.

The condition on the first derivative provides the means for defining a tan-
gent (normalized c′) along the whole curve c.
Definition 1.4. Let I and J be open intervals in R. Let c : I → Rn be a
curve and let h : J → I be a differentiable function. Then the composite
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........................................ 1.1. Moving frames

function
c̃ := c ◦ h : J → Rn

is a curve and is called the reparametrization of c by h. For h′ ≥ 0
the reparametrization c̃ is called orientation-preserving, resp. orientation-
reversing for h′ ≤ 0.

It can be proven that every regular curve c can be reparametrized by its
arc–length so that

‖c′‖ = 1 ∀ t ∈ I.

A curve fulfilling the condition above is also called a unit speed curve. From
this point onward, we restrict ourselves only to regular unit speed curves.

In order to construct a waveguide along a chosen curve, we need to investi-
gate its moving frame first as it is essential for the desired construction.
Definition 1.5. Let c : I → Rn be a curve. A moving n-frame along c is a
collection of n differentiable mappings

ei : I → Rn, i = 1, . . . , n,

such that for all t ∈ I, ei(t)·ej(t) = δij , where · denotes the scalar product and
δij is Kronecker delta. Each ei(t) is a vector field along c. The parameter t
can sometimes be called time as it corresponds to the path taken by the curve
and the fields.

We are only concerned about moving frames containing the tangent along
the curve and such frames are called adapted. Note that the fact that the
frame contains the tangent ensures that the rest of its components is normal to
the curve. The reason for this preference is that non-adapted frame generally
generates ‘singular’ ribbons (see Fig.1.1). Let us examine some examples of
moving frames before we move further on.

1.1 Moving frames

Moving frames, although very theoretical in construction, are widely used for
various practical applications. Their use varies from path planning for robots
and CNC ([13]), computer graphics (generation of ribbons, tubes or as mean
to define a movement of digital ‘cameras’, etc. – see [21]) or biology, where the
moving frames are used for example as a mean to study the folding of proteins
([31, 33]) or as a way to identify geometrical risk factors for cardiovascular
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........................................ 1.1. Moving frames

Figure 1.1: Examples of strips constructed with respect to non-adapted rotation-
minimizing osculating frame on a circle. Please not that there are points at
which the width of the strip is not constant. This is due to the fact that the
vector fields used in the construction of this strip are not always normal to the
curve.

diseases ([4]). They are also used in study of (quantum) waveguides and
ribbons (e.g. [28, 20, 10]).

1.1.1 Frenet frame

While discussing moving frames, it is natural to start with the the oldest and
most widely know – the Frenet frame.

Consider a regular curve c : I → Rn+1, c ∈ Cn+1(I) such that all
c′(t), c(2)(t), . . . , c(n)(t) are linearly independent for all t ∈ I. Then there
exists a unique moving frame (e1, . . . , en+1) such that..1. For k, the vectors 1 ≤ k ≤ n , c′(t), . . . , c(k)(t) and e1(t), . . . , ek(t) have

the same orientation...2. e1(t), . . . , en+1(t) have positive orientation.

This frame is called the (distinguished) Frenet frame.

Although the frame is fairly easy to construct using the Gram–Schmidt
orthonormalization procedure for the derivatives of the curve, its use in higher
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....................................... 1.2. Tubes and Strips

dimensions is impractical due to high demands on the smoothness of the
curve. Fortunately, the Frenet frame is not the only frame which can be used
to obtain the ribbon.

1.1.2 Relatively parallel adapted frame

The relatively parallel adapted frame, first discussed in three dimensions only
in [2], is another possible frame for construction of quantum waveguides and
ribbons. Contrary to the Frenet frame, the relatively parallel adapted frame
can be constructed for every regular C1,1 curve ([40]), meaning for every
regular curve c : I → Rn+1, c ∈ C1,1(I), there exist a collection of vector
fields (T,N1, . . . , Nn) and functions k1, . . . , kn : I → R such that

T
N1
...
Nn


′

=


0 k1 . . . kn
−k1 0 . . . 0
...

... . . . ...
−kn 0 . . . 0



T
N1
...
Nn

 .

The functions k1, . . . , kn are called parallel curvatures. In contrast to the
uniqueness of the Frenet frame for a chosen curve, the relatively parallel
adapted frame is far from unique and strongly depends on the choice of the
initial condition. The construction is as follows. First, choose an arbitrary
fixed point on the curve and construct an orthonormal basis at that point such
that the first vector in the basis is merged with the tangent. To construct the
frame, simply identify the rest of the moving frame as the other components
of the basis moved by parallel transport.

1.2 Tubes and Strips

Moving on to the notion of a tube, we define a straight one first.
Definition 1.6. Let ω ⊂ Rn be a bounded open connected set. Then a
straight tube Ω0 is defined as Ω0 := R× ω. We call ω the cross section.
Remark. From the fact that ω is bounded follows that there exists a real
number r, r <∞, such that r = sup

t∈ω
|t|, cf.. Fig. 1.2.

A straight tube is useful but not very challenging – to obtain a curved one,
we need to proceed as follows.
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....................................... 1.2. Tubes and Strips

Figure 1.2: An example of a cross-section ω.

Figure 1.3: An example of a tube and a ribbon constructed along Spivak curve.

Definition 1.7. Be Ω0 = R × ω be a straight tube. Let Γ : I → Rn+1 be a
chosen curve with an adapted moving frame (T,M1, . . . ,Mn). Let R be a
rotation matrix with entries dependent on s ∈ I. Then we can construct a
curved tube along Γ with respect to the rotation R as

L : Ω0 → Rn+1 : (s, t) 7→ Γ(s) +
n∑
i=1

MRi (s)ti,

where t := (t1, . . . , tn) are coordinates on ω and MRi (s) := R(s)Mi(s).

For purposes of this project, we shall constrict ourselves only to tubes such
that their cross section is one dimensional, e.g. an open interval, and we shall
call this special case of tubes as ribbons or strips. An illustration of both a
ribbon and a tube can be found on Fig. 1.3. As we are dealing only with
strips in the rest of this paper, let us state the definition of a ribbon as used
later. Also, even though any adapted frame can be used to construct the
strip, we only consider the relatively parallel adapted one for its convenience
in higher dimensions.
Definition 1.8. Let Γ : I → Rn+1 be a C1,1 curve with the relatively parallel
adapted frame (T,N1, . . . , Nn). Then we define the strip Ω along Γ by the
mapping L : I × (−a, a)→ Rn+1 such that

L(s, t) := Γ(s) + t
n∑
i=1

ai(s)Ni(s), (1.1)
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....................................... 1.2. Tubes and Strips

where the functions ai : I → R for all i ∈ {1, . . . , n} satisfy condition∑n
i=1 ai(s)2 = 1 for all s ∈ I.

In order to identify the strip Ω with the Riemannian manifold, we need to
impose some further restrictions on the mapping L, namely..1. κ :=

√
k2

1 + · · ·+ k2
n ∈ L∞(R) and a‖κ‖∞ < 1;..2. Ω does not overlap itself.

The metric g of the resulting strip is given by gij = ∂iL · ∂jL. This means
that when we calculate the divergence of the gradient, we do not obtain
the usual (flat) sum of second derivatives – ∆ =

∑
i ∂

2
i . Instead, in local

coordinates, the Laplace–Beltrami operator (or just the Laplace operator)
can be defined as

−∆ := −|g|−1/2∂i|g|1/2gij∂j ,

where |g| denotes the determinant of the metric g and (gij) is the inverse to
(gij).

In particular, for a ribbon defined by (1.1), the metric g looks like

(gij) =
(
h2 0
0 1

)
, (1.2)

where
h2 = (1− taiki)2 + t2

n∑
i=1

ȧ2
i (1.3)

and ki are parallel curvatures of the relatively parallel adapted frame used
in the definition of the strip. Additionally, the resulting Laplace–Beltrami
operator for such ribbon is given by

−∆ = −1
h
∂s

1
h
∂s −

1
h
∂t h ∂t. (1.4)
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Chapter 2

Quantum ribbons

In this chapter, the effective potential for quantum ribbons in higher dimen-
sions is derived and compared with the one already known for the three
dimensional case.

After we defined the curved ribbon it the previous chapter, let us examine
notion of a free particle constricted to the strip, closely following the process
of [9]. To simulate a free particle confined in an infinite potential well Ω, we
consider a free Laplacian with Dirichlet boundary conditions simulating this
infinite drop of potential on the boundary of the strip. Setting the respective
physical constants to suitable values, we can establish the Hamiltonian H̃ as
the Dirichlet Laplacian

H̃ := −∆Ω
D on L2(Ω),

defined on an open set Ω ⊂ Rn+1 as the Friedrich extension of the operator
−∆ with domain C∞0 (Ω) – see e.g. [36] for more details.

In order to obtain an alternative and more suitable form of the Hamiltonian
for our study, one performs a unitary transformation as follows:

U : L2(Ω)→ L2(Ω0) : {ψ 7→ Uψ := g
1
4ψ ◦ φ}.

This leaves us with the unitary equivalent operator

H := UH̃U−1 = −g−
1
4∂ig

1
2 gij∂jg

− 1
4 (2.1)

The domain of this operator is

D(H) := {ψ ∈W 2,2(Ω0) ∀s ∈ I : ψ(s,−a) = ψ(s, a) = 0}.

9



........................................ 2. Quantum ribbons

The expression (2.1) can be further rearranged by commuting g−
1
4 with the

partial derivatives into
H = −∂igij∂j + V,

where
V = F,ig

ijF,j + (F,igij),j , F = log g
1
4 .

When we use the expression (1.2) and compute the potential, we obtain the
following expression for V in terms of the function h

V = −5
4
h2
,s

h4 + 1
2
h,ss
h3 −

1
4
h2
,t

h2 + 1
2
h,tt
h
.

Now, as the present day interest particularly resides in nano–materials and
their properties, we will further examine the case when the width of the
ribbon tends to zero, i.e. we consider the limit a→ 0.

Due to the form of h (see (1.3)) and its derivatives, the terms containing
differentiation with respect to s tend to zero as a tends to zero. The acquired
effective potential then has the following form

Veff = − 1
4a2

h2
,t

h2 + 1
2a2

h,tt
h

a=0.

Using the explicit expression (1.3) with the limit a→ 0 meaning h→ 1, we
obtain the final formula

Veff = −1
4

(
n∑
i=1

kiai

)2

+ 1
2

(
n∑
i=1

ȧi

)2

.

It can be further reduced if we introduce the following simplifying notation
~a · ~k :=

∑n
i=1 kiai and |~̇a| :=

∑n
i=1 ȧi to

Veff = −1
4
(
~a · ~k

)2
+ 1

2 |~̇a|
2. (2.2)

Moving on to the three dimensional case, one finds out that the situation
is much simpler there. Let us recall the formula (1.1) for the curved strip in
any dimension:

L(s, t) := Γ(s) + t
n∑
i=1

ai(s)Ni(s).

Following the idea that the functions ai serve here as the first row of a rotation
matrix, the expression for an arbitrary ribbon in three dimensions can be
expressed as

L(s, t) := Γ(s) + t [N1(s) cos (θ(s))−N2(s) sin (θ(s))] ,

where N1, N2 are normals from the relatively parallel adapted frame and
θ : I → R is some bounded C1 function facilitating twisting of the ribbon.

10



........................................ 2. Quantum ribbons

Following the same process as outlined above, we arrive at the following
formula for the effective potential

Veff = −1
4
[
k2

1 cos2 θ + k1k2 sin 2θ + k2
2 sin2 θ

]
+ 1

2 θ̇
2. (2.3)

The obvious similarity is the repulsive interaction introduced by the differential
of the twisting term in both expressions (2.2) and (2.3) and the attractive
interaction established by both the curvatures and the twisting. The nature
of these terms in three dimensions have been proven in [26, 27] and we, for
the time being without a proof, expect that the effect of these terms on the
spectrum of the Hamiltonian in higher dimensions is the same.
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Chapter 3

Numerical analysis

In this chapter, some basic elements of numerical mathematics used in the
study of the spectrum of the Laplace–Beltrami operator are presented. For
the numerical analysis in Chapter 4, we used the Finite Difference Method
(FDM). As this paper is not primarily concerned in the topic of programming
and numerical solutions, we provide only a review of the necessary facts.

One of many ways how to approximate the solution of partial differential
equations is to use the finite difference method. This approach is based
on substituting the derivatives with finite differences. In other words, we
discretise the problem and solve it as a system of linear algebraic equations.

Let us constrict ourselves to a one–dimensional example for the moment.
Be f : (a, b) → R a differentiable function. Then in the FDM, the first
derivative of f can be substituted using different finite differences:

forward difference: f ′(x) ≈ f(x+ h)− f(x)
h

,

symetric difference: f ′(x) ≈ f(x+ h)− f(x− h)
2h ,

backward difference: f ′(x) ≈ f(x)− f(x− h)
h

.

Each differences can be useful in different conditions. The second derivative,
f ′′, is usually replaced by the following expression

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)
h2 ,

which can be obtained by combining the forward and backward difference
for the first derivative and then using the symmetric one. When applied

12



....................................... 3. Numerical analysis

to higher–dimensional problems, the differences are done in each variable
separately, i.e. (using the forward difference)

ψ,s(s, t) ≈
ψ(s+ h, t)− ψ(s, t)

h
.

We base the discretization on a simple rectangular grid (see Fig. 3.1). Effec-
tively we approximate the operator in question by a matrix operator acting
in vector space CN (with possibly large N).

The finer the grid (i.e. the larger the matrix) is, the better approximation
of the original spectrum we expect to get as the differences are closer to
the values of the actual derivatives. This effect is demonstrated later on in
Section 4.3.

s

t

−a

a

l0
nt + 1 points

ns + 1 points

Figure 3.1: Rectangular grid formed by (nt + 1) · (ns + 1) points from the strip
(0, l)× (−a, a).
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Chapter 4

Möbius strip

One example of a closed ribbon in R3 is the Möbius strip. Our choice of
this particular manifold for our study is caused by its unorientability and its
similarity to either a cylinder or an annulus (Fig. 4.1). For the purpose of
this paper, we consider a circular Möbius strip with constant twisting defined
as follows.

Let the base circle be prescribed as

ϕ : (0, 2π)→ R3 : s 7→
(
R cos s

R
,R sin s

R
, 0
)
,

for some R > 0. In this case, there is no advantage of choosing the relatively
parallel adapted frame over the Frenet frame, as the latter is correctly defined
for this choice of curve and in fact coincides with the relatively parallel one,
if the initial triad is chosen as the vectors of the Frenet frame. By easy
calculations, we arrive to the following frame components:

T (s) =
(
− sin s

R
, cos s

R
, 0
)
,

N(s) =
(
− cos s

R
,− sin s

R
, 0
)
,

B(s) = (0, 0, 1),

κ(s) = 1
R
,

as the tangent, the principal normal, the binormal and the curvature respec-

14



....................................... 4.1. Fake Möbius strip

Figure 4.1: By different choice of the function θ in construction of the ribbon
(1.1), we can get different results. This particular example illustrates a ribbon
along a circle with the θ = π

2 ,
s

2R or 0 for the cylinder, Möbius strip and annulus
respectively.

tively. The time development of the frame then is given byTN
B


·

=

 0 κ 0
−κ 0 0
0 0 0


TN
B

 .
We construct the Möbius strip by (1.1) with a special choice on the “twisting”
function θ. As we aim to obtain only a half of a twist for one rotation,
the easiest way to do that is to set θ := s

2R . The strip is then given by
the following mapping

L(s, t) := ϕ(s) + t

[
N(s) cos s

2R −B(s) sin s

2R

]
,

for s ∈ (0, 2π) and t ∈ (−a, a). This mapping induces by gij := ∂iL · ∂jL
the metric

(gij) =
(
h2 0
0 1

)
,

where

h(s, t) =

√(
1− t

R
cos s

2R

)2
+
(
t

2R

)2
.

When computed, the Laplace–Beltrami operator (1.4) is not separable in this
case. Therefore, some solvable approximations of the full Möbius strip as well
as numerical solutions of these approximations are presented instead.

4.1 Fake Möbius strip

We will start the discussion of approximative models with the simplest
setting – the fake (or flat) Möbius strip. In this model, the Möbius strip is
perceived as a flat rectangle of the desired size with two of the opposing sides

15



....................................... 4.1. Fake Möbius strip

Figure 4.2: The fake Möbius strip - a rectangle with two of the opposite sides
identified by the arrows.

identified as indicated at Fig. 4.2. The sacrifice of the bending means that
the Laplace–Beltrami operator is separable and thus the problem be solved
analytically as indicated below.

We consider the following boundary value problem:
−∆ψ = λψ , in (0, l)× (−a, a) ,

ψ(s,±a) = 0 , ∀s ∈ (0, l) ,
ψ(0, t) = ψ(l,−t) , ∀t ∈ (−a, a) ,

∂1ψ(0, t) = ∂1ψ(l,−t) , ∀t ∈ (−a, a) .

(4.1)

This is also the eigenvalue problem Hψ = λψ for the self–adjoint operator H
in L2 ((0, l)× (−a, a)) defined as

Hψ := −∆ψ

D(H) :=
{
ψ ∈W 2,2 ((0, l)× (−a, a)) ψ satisfies the boundary

conditions of (4.1)
}
.

The spectrum of the operator H can be found by considering the (extended)
periodic problem

−∆φ = µφ , in (−l, l)× (−a, a) ,
φ(s,±a) = 0 , ∀s ∈ (−l, l) ,
φ(−l, t) = φ(l, t) , ∀t ∈ (−a, a) ,

∂1φ(−l, t) = ∂1φ(l, t) , ∀t ∈ (−a, a) .

(4.2)

More precisely, (4.2) is the eigenvalue problem Tφ = µφ for the self–adjoint
operator T in an extended Hilbert space L2 ((−l, l)× (−a, a)) defined as

Tφ := −∆φ ,

D(T ) :=
{
φ ∈W 2,2((−l, l)× (−a, a)) φ satisfies the boundary

conditions of (4.2)
}
.

This problem can be solved by separation of variables and the spectrum of T
is well known in the form

σ(T ) =
{(

mπ

l

)2
+
(
nπ

2a

)2
}
m∈Z,n∈N

,

16



....................................... 4.1. Fake Möbius strip

where the convention N = {1, 2, . . . } is used. The corresponding eigenfunc-
tions of T are

φm,n = ϕm(s)χn(t),

where

ϕm(s) :=
√

1
2l e

iπ
l
ms , χn(t) :=


√

1
a cos(nπ2a t) if n is odd ,√
1
a sin(nπ2a t) if n is even .

The eigenfunctions {φm,n}m∈Z,n∈N of the self–adjoint operator T also form
a complete orthonormal set in L2 ((−l, l)× (−a, a)) (see [3]). By symmetry
properties of ϕm and χn, we have

φm,n(l,−t) = (−1)m+n+1 φm,n(0, t) ,
∂1φm,n(l,−t) = (−1)m+n+1 ∂1φm,n(0, t) .

Therefore we see that φm,n satisfies the boundary conditions of (4.1) if, and
only if, m+ n is odd. Consequently,

σ(H) ⊃
{(

mπ

l

)2
+
(
nπ

2a

)2
}
m∈Z, n∈N, m+n is odd

(4.3)

and the corresponding normalised eigenfunctions of H are given by the
restrictions

ψm,n :=
√

2φm,n � (0, l)× (−a, a) , m ∈ Z, n ∈ N, m+ n is odd .

To show that the right-hand side of (4.3) determines all the eigenvalues of H,
we need the following result.
Proposition 1. {ψm,n}m∈Z, n∈N, m+n is odd is a complete orthonormal set in
L2((0, l)× (−a, a)).

Proof. The property that {φm,n}m∈Z, n∈N is a complete orthonormal set in
L2((−l, l)× (−a, a)) is equivalent to the validity of the Parseval equality

‖f‖2 =
∑

m∈Z, n∈N
|(φm,n, f)|2 (4.4)

for every f ∈ L2((−l, l)× (−a, a)). Given an arbitrary g ∈ L2((0, l)× (−a, a)),
we define the extension

f(s, t) :=
{
g(s, t) if s > 0 ,
g(s+ l,−t) if s < 0 .

By an obvious integral substitution, it is straightforward to check the identity

‖f‖2 = 2 ‖g‖2 . (4.5)
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....................................... 4.1. Fake Möbius strip

Figure 4.3: Contour plot of ψ0,1, the eigenfunction corresponding to the lowest
eigenvalue of the fake Möbius strip.

At the same time, using in addition to the substitution the symmetry proper-
ties of ϕm and χn, we have

(φm,n, f) = 1√
2

[1 + (−1)m+n+1] (ψm,n, g) . (4.6)

Putting (4.5) and (4.6) into (4.4), we get the Parseval inequality

‖g‖2 =
∑

m∈Z, n∈N
m+n is odd

|(ψm,n, g)|2 ,

which is equivalent to the desired completeness result.

As a consequence of this proposition, we conclude with the desired result

σ(H) =
{(

mπ

l

)2
+
(
nπ

2a

)2
}
m∈Z, n∈N, m+n is odd

.

Remark 4.1. The lowest eigenvalue

λ0,1 =
(
π

2a

)2

is simple and the corresponding eigenfunction ψ0,1 (see Fig. 4.3) is positive.
The eigenvalues λm,n with m 6= 0 are always degenerate. In particular, this is
true for the second eigenvalue

min{λ1,2 = λ−1,2, λ2,1 = λ−2,1}.

Furthermore, if l = 2a then the second eigenvalue 5π2

4a2 has multiplicity four !
We suspect that in this case there will be an eigenfunction with a closed nodal
line, which is an interesting phenomenon.
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We call (4.1) the eigenvalue problem for the fake Möbius strip, because the
correct operator unitarily equivalent to the Laplace–Beltrami operator on the
Möbius strip with Dirichlet boundary conditions is not H but (at least in the
limit when a tends to zero)

H + V0 with V0(s, t) := − π
2

2l2 cos(2πl s) . (4.7)

Unfortunately, the extension procedure above does not seem to extend to
H + V0. At this moment, by a simple test-function argument, we just have
the result

min σ(H + V0) ≤ λ0,1 . (4.8)
By improving the test function, one can even show that the inequality is
strict and get a quantitative estimate on the deficit.
Proposition 2. We have

min σ(H + V0) ≤ λ0,1 −
14
√

3− 24
l2

.

Proof. Inequality (4.8) is obtained by using the test function ψ := ψ0,1 in the
variational characterisation of the lowest eigenvalue of H + V0:

min σ(H+V0) = inf
ψ∈D(h)
ψ 6=0

∫ l

0

∫ a

−a
|∇ψ(s, t)|2 dt ds+

∫ l

0

∫ a

−a
V0(s, t) |ψ(s, t)|2 dt ds∫ l

0

∫ a

−a
|ψ(s, t)|2 dtds

.

(4.9)
Here h denotes the form associated with H. One has

D(h) =
{
φ ∈W 1,2((−l, l)× (−a, a))

∀s ∈ (0, l) , ψ(s,±a) = 0
∀t ∈ (−a, a) , ψ(0, t) = ψ(l,−t)

}
,

where the boundary values are understood in the sense of traces. The re-
sult (4.8) follows at once by noticing that ψ0,1 is independent of s, V0 is
independent of t and

∫ l
0 V0(s, t) ds = 0.

Now we take a more refined test function

ψ(s, t) := ϕ(s)χ1(t) with ϕ(s) :=
{
l − p s if s ≤ l/2 ,
l − p (l − s) if s > l/2 ,

where p is a real parameter. Notice that ϕ is Lipschitz continuous, symmetric
with respect to the middle point l/2 and chosen in such a way that for
positive p it “localises” on the negative part of the potential V0. Restricting
the infimum in (4.9) to this class of test functions, an explicit computation
of the integrals yields

min σ(H + V0)− λ0,1 = 1
l2

inf
p∈R

3p (5p− 4)
p (p− 6) + 12 .

19



.................................. 4.2. The not-so-fake Möbius strip

The infimum on the right-hand side is achieved for

p := 2
13
(
15− 7

√
3
)

and this value gives the desired upper bound of the proposition.
Remark 4.2. We have

14
√

3− 24 ≈ 0.2487.

It should be possible to further improve the result, by extending the class of
considered test functions.

4.2 The not-so-fake Möbius strip

In this section, more realistic model of the Möbius strip is discussed. It arises
from the fake strip, but we add the effective potential V0 as defined in (4.7),
also see Chapter 2. Even though the model is still flat, the addition of V0
makes it applicable to very narrow strips (when their width tends to zero).

Consider the boundary value problem

(
−∆ + V0(s, t)

)
ψ = λψ , in (0, l)× (−a, a) ,

ψ(s,±a) = 0 , ∀s ∈ (0, l) ,
ψ(0, t) = ψ(l,−t) , ∀t ∈ (−a, a) ,

∂1ψ(0, t) = ∂1ψ(l,−t) , ∀t ∈ (−a, a) ,

(4.10)

where l and a are arbitrary positive numbers and the potential V0 is defined
in (4.7). More precisely, (4.10) is the eigenvalue problem Kψ = λψ for the
self-adjoint operator K in L2((0, l)× (−a, a)) defined as follows:

Kψ :=
(
−∆ + V0(s, t)

)
ψ ,

D(K) :=
{
ψ ∈W 2,2((0, l)× (−a, a)) ψ satisfies the boundary

conditions of (4.10)
}
.

The spectrum of K can be found by again considering the periodic problem

(
−∆ + V0(s, t)

)
φ = ζφ , in (−l, l)× (−a, a) ,

φ(s,±a) = 0 , ∀s ∈ (−l, l) ,
φ(−l, t) = φ(l, t) , ∀t ∈ (−a, a) ,

∂1φ(−l, t) = ∂1φ(l, t) , ∀t ∈ (−a, a) .

(4.11)
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More precisely, (4.11) is the eigenvalue problem Sφ = ζφ for the self-adjoint
operator S in an extended Hilbert space L2((−l, l) × (−a, a)) defined as
follows:

Sφ :=
(
−∆ + V0(s, t)

)
φ ,

D(S) :=
{
φ ∈W 2,2((−l, l)× (−a, a)) φ satisfies the boundary

conditions of (4.11)
}
.

The eigenvalues and eigenfunctions of S can be found by separation of variables.
In the variable t we get the same result as in the previous section. The
normalised eigenfunctions of − d2

dt2 in L2((−a, a), dt) with Dirichlet boundary
conditions are numbered by n ∈ N and given by

χn(t) :=


√

1
a cos(nπ2a t) if n is odd ,√
1
a sin(nπ2a t) if n is even .

The corresponding eigenvalues are(
nπ

2a

)2
, n ∈ N. (4.12)

The case of the second variable s is a little bit more involved. After the
separation we arrive at the following differential equation

− ϕ′′(s)− π2

2l2 cos
(2π
l
s

)
ϕ(s) = νϕ(s) . (4.13)

It turns out that this is the Mathieu differential equation. Before we proceed
any further let us first review basic properties of Mathieu functions.
Remark 4.3 (Mathieu functions). We use the following notation (see also [8,
§28.2]). Fix q, µ ∈ R and consider the ordinary differential equation

y′′(η) +
(
µ− 2q cos(2η)

)
y(η) = 0 . (4.14)

This equation has a 2π-periodic solution if and only if µ = ar(q) or µ = br(q),
where ar(q), r ∈ N0, and br(q), r ∈ N, are the so called Mathieu characteristic
values. These characteristic values satisfy

q > 0 : a0 < b1 < a1 < b2 < a2 < · · · ,
q < 0 : a0 < a1 < b1 < b2 < a2 < · · · , (4.15)
q = 0 : ar(0) = br(0) = r2 .

The Mathieu integral order functions cer(η, q), r ∈ N0, and ser(η, q), r ∈ N,
are defined in the following way: cer(η, q) is the even solution of (4.14) with
µ = ar(q) and ser(η, q) is the odd solution of (4.14) with µ = br(q). Both
cer(·, q) and ser(·, q) are 2π-periodic. Moreover, ce2r(·, q) and se2r+2(·, q) are
π-periodic and ce2r+1(·, q) and se2r+1(·, q) are antiperiodic with antiperiod
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.................................. 4.2. The not-so-fake Möbius strip

π. For any q ∈ R, the integral order Mathieu functions cer(η, q) and ser(η, q)
taken together form an orthogonal basis in L2((−π, π), dη

)
(see [1, §20.5]).

We assume both cer(η, q) and ser(η, q) are normalised to
√
π in L2(− π, π), dη

)
,

i.e. the equalities∫ π

−π

∣∣ cer(η, q)
∣∣2 dη =

∫ π

−π

∣∣ ser(η, q)∣∣2 dη = π

hold for all possible values of r. This convention is in agreement with [8] and
it is respected by Mathematica, too. The (anti)periodicity then implies∫ π

0

∣∣ cer(η, q)
∣∣2 dη =

∫ π

0

∣∣ ser(η, q)∣∣2 dη = π

2 .

Let us return to the equation (4.13). Employing a simple change of the
independent variable, η = π

l s, we immediately get the Mathieu equation (4.14)
(with q = −1

4 and µ = l2

π2 ν). Thus the equation (4.13) has the following
2l-periodic and normalised solutions if and only if ν satisfies one of the
indicated conditions

ϕ(1)
r (s) := 1√

π
ser
(
π

l
s,−1

4

)
, if br

(
−1

4

)
= l2

π2 ν , for some r ∈ N ,

(4.16)

ϕ(2)
r (s) := 1√

π
cer

(
π

l
s,−1

4

)
, if ar

(
−1

4

)
= l2

π2 ν , for some r ∈ N0 .

(4.17)

The eigenvalues of S therefore are

σ(S) =
{(

nπ

2a

)2
+ π2

l2
ar

(
−1

4

)}
n∈N
r∈N0

∪
{(

nπ

2a

)2
+ π2

l2
br

(
−1

4

)}
n∈N
r∈N

.

The corresponding normalised eigenfunctions form an orthogonal basis of
L2((−l, l)× (−a, a), dsdt

)
,

φ(1)
r,n(s, t) := ϕ(1)

r (s)χn(t), r ∈ N , n ∈ N ,

φ(2)
r,n(s, t) := ϕ(2)

r (s)χn(t), r ∈ N , n ∈ N .

Let us now find the eigenfunctions and eigenvalues of the not-so-fake Möbious
strip operatorK. Note that for any j = 1, 2 the functions ϕ(j)

r are antiperiodic,
resp. periodic, with antiperiod l, resp. period l, whenever r is odd, resp.
even. Using this observation we establish the following key property of the
eigenfunctions of S, namely

φ(j)
r,n(s+ l,−t) = ϕ(j)

r (s+ l) · χn(−t) = (−1)rϕ(j)
r (s) · (−1)n+1χn(t)

= (−1)r+n+1φ(j)
r,n(s, t) , (4.18)
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for any j = 1, 2 and all permissible r and n. In particular, setting s = 0 in
the last equation we have

φ(j)
r,n(l,−t) = (−1)r+n+1φ(j)

r,n(0, t) .

and so φ(j)
r,n, j = 1, 2, satisfies the boundary conditions of (4.10) if and only if

r + n is odd. Consequently,

σ(K) ⊃
{(

nπ

2a

)2
+ π2

l2
ar

(
−1

4

)}
n∈N
r∈N0

n+r odd

∪
{(

nπ

2a

)2
+ π2

l2
br

(
−1

4

)}
n∈N
r∈N

n+r odd

,

(4.19)
and the corresponding normalised eigenfunctions of K are given by the
restrictions

ψ(j)
r,n :=

√
2φ(j)

r,n � (0, l)× (−a, a)

where (r, n) ∈ N× N if j = 1 and (r, n) ∈ N0 × N if j = 2. That the normal-
isation factor

√
2 is correct follows from the final equations in Remark 4.3

and equations (4.16) and (4.17).

The kind reader surely feels an awkwardness in the last paragraph. Before
we proceed any further let us therefore try to simplify our notation by putting

N1 := N× N and N2 := N0 × N .

To show that the right-hand side of (4.19) determines all the eigenvalues
of K, we need the following result analogous to Proposition (1).
Proposition 3.

{
ψ

(j)
r,n
}
j=1,2, (r,n)∈Nj , r+n is odd is a complete orthonormal set in

L2((0, l)× (−a, a)).

Proof. The property that the set
{
φ

(j)
r,n
}
j=1,2, (r,n)∈Nj

is a complete orthonor-
mal set in L2((−l, l)× (−a, a)) is equivalent to the validity of the Parseval
equality

‖f‖2 =
∑

j=1,2, (r,n)∈Nj

∣∣(φ(j)
r,n, f

)∣∣2 (4.20)

for every f ∈ L2((−l, l)× (−a, a)). Given an arbitrary g ∈ L2((0, l)× (−a, a)),
we define the extension f ∈ L2((−l, l)× (−a, a)) by

f(s, t) :=
{
g(s, t) if s > 0 ,
g(s+ l,−t) if s < 0 .

By an obvious integral substitution, it is straightforward to check the identity

‖f‖2 = 2 ‖g‖2 . (4.21)
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At the same time, using in addition to the substitution the symmetry prop-
erty (4.18) we have(

φ(j)
r,n, f

)
=
∫

(−l,0)×(−a,a)
φ(j)
r,n(s, t)g(s+ l,−t) dsdt

+
∫

(0,l)×(−a,a)
φ(j)
r,n(s, t)g(s, t) dsdt

=
∫

(0,l)×(−a,a)
φ(j)
r,n(s− l,−t)g(s, t) dsdt

+ 1√
2

∫
(0,l)×(−a,a)

ψ(j)
r,n(s, t)g(s, t) dsdt

= (−1)r+n+1
√

2

∫
(0,l)×(−a,a)

ψ(j)
r,n(s, t)g(s, t) dsdt

+ 1√
2

∫
(0,l)×(−a,a)

ψ(j)
r,n(s, t)g(s, t) dsdt

= 1√
2
(
(−1)r+n+1 + 1

)(
ψ(j)
r,n, g

)
. (4.22)

Putting (4.21) and (4.22) into (4.20), we get the Parseval inequality

‖g‖2 =
∑

j=1,2, (r,n)∈Nj
r+n is odd

∣∣(ψ(j)
r,n, g

)∣∣2 ,
which is equivalent to the desired completeness result.
Remark 4.4. The smallest eigenvalue of the operator K = H + V0 is given by
(indeed, note equations (4.19) and (4.15))(

π

2a

)2
+ π2

l2
a0

(
−1

4

)
.

Therefore, the estimate of Proposition 2 is equivalent to(
π

2a

)2

︸ ︷︷ ︸
λ0,1

+π2

l2
a0

(
−1

4

)
≤ λ0,1 −

14
√

3− 24
l2

,

or (according to Mathematica)

−0.3063466 ≈ π2a0

(
−1

4

)
≤ −14

√
3 + 24 ≈ −0.2487113 .

4.3 Numerical experiments

In this section we briefly present results of our numerical experiments. In
order to find a numerical approximation to eigenvalues of operators H and
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K we employ the finite difference discretization of the operator in question
as discussed in Chapter 3. As already discussed there, the discretization is
based on a simple rectangular grid (see Figure 3.1) and the finer the grid is,
the better approximation of the original spectrum we expect to get. This
effect is demonstrated in Figure 4.4 (fake Möbius) and Figure 4.5 (not-so-fake
Möbius). The comparison of the first three eigenvectors of the fake and the
not-so-fake Möbius strip can be found on Fig. 4.6. The numerical solution
of the full Möbius strip is not presented due to problems with discretization
– the normal procedure produces non–symmetrical matrix. This generates
difficulties for the algorithm computing the eigenvalues. Further work on the
full problem and its numerical implementation is needed.
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Fake Möbius, a = 1.3, L = 4.4

Figure 4.4: Graphical representation of the bottom of σ(H) (fake Möbius) and
its approximation by the finite difference method. We have chosen a = 1.3 and
l = 4.4. The horizontal axis gives the size of the discretized matrix operator,
which is related to the number of points in the grid (nt + 1) · (ns + 1) (we have
taken nt = 2 + i and ns = 4 + 2i with i = 1, 2, . . . , 50). Gray lines indicate the
actual eigenvalues of H as given in (4.3)).
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Not-so-fake Möbius, a = 1.3, L = 4.4

Figure 4.5: Graphical representation of the bottom of σ(K) (not-so-fake Möbius)
and its approximation by the finite difference method. We have chosen a = 1.3
and l = 4.4. The horizontal axis gives the size of the discretized matrix operator
which is related to the number of points in the grid (nt + 1) · (ns + 1) (we have
taken nt = 2 + i and ns = 4 + 2i with i = 1, 2, . . . , 30). Gray lines indicate the
actual eigenvalues of K as given in (4.19)). As one can see on the left hand
side of the figure there are few very closely clustered eigenvalues (these are
not degeneracies). From the picture it is not obvious that the numerical result
captures this effect correctly. Therefore, we present Table 4.1 where one can see
the actual numerical values.
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i λ1 λ2 λ3 λ4 λ5

1 1.31403 3.1865 3.20382 4.36004 4.61454
2 1.36982 3.31949 3.33614 5.10517 5.35975
3 1.39625 3.38242 3.39876 5.4848 5.73941
4 1.41076 3.41698 3.43316 5.7008 5.95542
5 1.41957 3.43794 3.45403 5.83447 6.0891
6 1.42531 3.45161 3.46763 5.92263 6.17727
7 1.42925 3.46099 3.47698 5.98372 6.23836
8 1.43208 3.46772 3.48367 6.02775 6.28238
9 1.43417 3.47271 3.48864 6.06049 6.31513
10 1.43577 3.4765 3.49241 6.0855 6.34014
11 1.43701 3.47946 3.49536 6.10502 6.35966
12 1.43799 3.48181 3.49769 6.12055 6.37519
13 1.43879 3.4837 3.49958 6.1331 6.38774
14 1.43944 3.48525 3.50112 6.14338 6.39803
15 1.43998 3.48654 3.5024 6.15192 6.40656
16 1.44043 3.48761 3.50347 6.15908 6.41373
17 1.44082 3.48853 3.50438 6.16515 6.41979
18 1.44115 3.4893 3.50516 6.17033 6.42498
19 1.44143 3.48997 3.50583 6.1748 6.42944
20 1.44167 3.49056 3.5064 6.17867 6.43331
21 1.44188 3.49106 3.50691 6.18205 6.43669
22 1.44207 3.49151 3.50735 6.18501 6.43966
23 1.44224 3.4919 3.50774 6.18763 6.44228
24 1.44238 3.49225 3.50809 6.18996 6.4446
25 1.44251 3.49256 3.5084 6.19203 6.44667
26 1.44263 3.49284 3.50868 6.19388 6.44853
27 1.44273 3.49309 3.50892 6.19554 6.45019
28 1.44283 3.49331 3.50915 6.19705 6.45169
29 1.44291 3.49352 3.50935 6.19841 6.45305
30 1.44299 3.4937 3.50953 6.19964 6.45429

∞ 1.444177 3.496521 3.512343 6.218488 6.473136

Table 4.1: Five smallest eigenvalues of the operator K (not-so-fake Möbius).
We have chosen a = 1.3 and l = 4.4. The parameter i is related to the grid
coarseness, in particular nt = 2 + i and ns = 4 + 2i. The last row presents the
exact value computed by Mathematica (see (4.19)). The values of λ2 and λ3 are
indistinguishable in Figure 4.5.
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Figure 4.6: Contour plots comparing the first three eigenvectors of the fake
Möbius strip (on the left) and of the not-so-fake Möbius strip (on the right).
Note that the only visible difference is only for the first eigenvalue.
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Conclusions

Our main aim, in this research project, was to correctly define quantum strips
in higher dimensions and study the Dirichlet Laplacian on them. Following
the process outlined in [9], we deduced the effective potential for narrow
strips and compared it with the one already known and studied for ribbons in
three dimensions. Secondary aim was to find out the spectrum of the Möbius
strip, a special example of a quantum ribbon. Due to the inseparability of its
Dirichlet Laplacian, we needed to employ the numerical methods. However,
the full model proved to be challenging even for that so two simplified models
are presented instead.

In the future, there are two main areas for further investigation. One of
them is the proof of the Hardy inequality concerning the twisting term of the
effective potential and existence of bound states due to the curvature term.
The other is to execute numerical simulations concerning the full Möbius
strip and compare it to a cylinder and an annulus.
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