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Chapter 1

Introduction

Recent progress in mesoscopic physics has allowed production of semiconductor structures which
are small enough to exhibit quantum effects. Their size is comparable with that of atom so that they
are called nanostructures. Considering the trend of decreasing size of components of electronics, it
is expected that these nanostructures will play a key role in the future. Since the semiconductor
materials are of crystallic structure, the motion of particle confined to such structure can be modeled
by a free particle with an effective mass m∗ constrained to a spatial region Ω. The particle can be
associated with the Hamiltonian

H = − h̄2

2m∗
4

in the Hilbert space L2(Ω), where h̄ is the reduced Planck constant. Hereafter, we set h̄2

2m∗ = 1.
We refer to [5, 15] for more information about the physical background.

In this thesis we focus on a special category of nanostructures called quantum waveguides, which
can be modeled by Ω being infinitely stretched tubular region in R2 or R3. The existing results for
these structures is summarized in [7]. The fact that the particle is constrained to the waveguide
can be modeled by imposing appropriate boundary conditions on the boundary of Ω. A natural
choice are the Dirichlet boundary conditions

ψ = 0 on ∂Ω

which represent that the wavefunction ψ associated with the particle is suppressed on the boundary
due to a chemical potential. The simplest situation occurs if Ω is defined as a tubular neighbour-
hood of constant width of an infinite curve in R2. This model with Dirichlet boundary condition
was studied in 1989 by P. Exner and P. Šeba [8]. They proved the existence of discrete spectrum
of the Dirichlet Laplacian under assumption that the waveguide was asymptotically straight and
sufficiently thin. This result was further extended in [9,17]. The important feature of this model is
that bending of the waveguide results in existence of discrete eigenvalues below the essential spec-
trum. Eigenfunctions associated with these eigenvalues are called bound states and it is known that
they disturb the particle transport. This may be particularly problematic for applications where
the particle is an electron carrying information in a nanowire. Even a tiny bending deformation of
the wire may lead to a loss of data. For more information about the Dirichlet Laplacian in a curved
strip we refer to the review paper [5].



In this thesis we are interested in the Robin-type boundary conditions which may be considered
as a generalization of Dirichlet boundary conditions. Considering a infinite curved planar strip
Ω with a unit outward normal vector n defined on its boundary, we define the Robin boundary
conditions as

∂ψ

∂n
+ iαψ = 0 on ∂Ω, (1.0.0)

where α is a real-valued function defined on ∂Ω. Since the probability current does not vanish on
∂Ω, the Robin boundary conditions can be used to model dissipative systems [10,11].

We will be looking for the solutions of the problem

−4 ψ = λψ in Ω
∂ψ
∂n + iαψ = 0 on ∂Ω,

This problem can be regarded as a spectral problem for an m-sectorial operator acting as Laplacian
on functions defined in Ω and satisfying the Robin-type boundary conditions. However, this operator
is not self-adjoint which is against the principles of quantum physics. On the other hand, this
operator is PT -symmetric. Here P denotes the spacial parity symmetry operator defined by

(Pψ)(x) := ψ(−x),

and T represents the time-reversal operator acting as the complex conjugation

(T ψ)(x) :=ψ(x).

The interest in PT -symmetric operators emerged with the recognition that many non-selfadjoint
operators possess real spectra. It was proved in [2] that the operators of type H = −4+x2(ix)ε,
ε ∈ R+ acting in L2(R) have real, positive and discrete spectra. However, the PT -symmetry is not
a sufficient condition for a spectrum to be real.

Even though some non-selfadjoint operators have real spectra, they cannot be associated with
observable in terms of classical quantum mechanics. Nonetheless, it was proved in [18] that for
each irreducible set of quasi-Hermitean operator there exists a unique metric operator Θ. The
non-selfadjoint operators can then be associated with observables in a Hilbert space with a scalar
product defined by

(., .)Θ := (.,Θ.).

The metric operator for a Laplacian in L2((0, d)) with Robin boundary conditions was found in [13].



Chapter 2

Preliminaries

In this chapter we state the definitions and theorems we shall use in subsequent chapters. Firstly,
we introduce the notion of sectorial forms. Then we present few useful tools which are used for the
study of the spectrum of an operator. In the last section we summarize basic properties of Sobolev
spaces.

2.1 Sectorial forms

Quadratic forms are a convenient tool for studying Schrödinger operators, since they require less
regularity on functions from their domain. Let us start with elementary definitions.

Definition 2.1.1. A map t : Dom(t) × Dom(t) → C is called a sesquilinear form in H if it is
conjugate linear in the first argument and linear in the second. The function t[u] := t(u, u) is called
a quadratic form.

Contrary to linear operators, it is not difficult to find the adjoint form which is defined by

t∗(ψ,ϕ) := t(ϕ,ψ), Dom(t∗) = Dom(t). We say that a form is symmetric if t(ψ,ϕ) = t∗(ψ,ϕ).
Equipped with the adjoint form, we now can define its real and imaginary part as Re t := t+t∗

2

and Im t := t−t∗
2i . Note that neither Re t nor Im t are real-valued, however, it holds that Re t[ψ] =

Re(t[ψ]), Im t[ψ] = Im(t[ψ]) and we can also write t = Re t + i Im t. The following notion is
important for the definition of the sectorial form.

Definition 2.1.2. Let t be a sesquilinear form in H . Its numerical range is defined by

Θ(t) := {t[φ] | φ ∈ Dom(t), ‖φ‖= 1} .

The numerical range of an operator T in H is defined by

Θ(T ) := {(φ, Tφ) | φ ∈ Dom(t), ‖φ‖= 1} .

In general, a numerical range need not to be closed or open, nonetheless, it is always a convex
subset of the complex plane. Now we are ready to define the sectorial form.
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Figure 2.1: A sector with a vertex γ and a semi-angle θ.

Definition 2.1.3. A sesquilinear form t in H is called sectorial if its numerical range is a subset
of a sector, i.e.

Θ(h) ⊂ Sγ,θ := {λ ∈ C | |arg(λ− γ)|≤ θ} (2.1.0)

with a vertex γ ∈ R and a semi-angle θ such that 0 ≤ θ < π
2 .

Note that the parameters γ and θ are not uniquely determined by the form t. Indeed, a reduction
of the semi-angle θ can be compensated by a reduction of the vertex γ. Every symmetric form is
real-valued and if it is also bounded from below, then it is sectorial with γ = 0. Hence, the sectorial
forms can be regarded as a generalization of symmetric forms bounded from below. In some cases
it is convenient to use the perturbation theory to prove that a form is sectorial. For this purpose
we define the notion of relative boundedness which specifies a relation between two forms.

Definition 2.1.4. Let t be a sectorial form in H . A form t′ in H is said to be relatively bounded
with respect to t (or t-bounded), if Dom(t′) ⊃ Dom(t) and

|t′[u]|≤ a‖u‖2+b|t[u]|, (2.1.0)

where u ∈ Dom(t) and a, b are nonnegative constants.

This property is useful in case that we are able to divide the examined form into the sum of a
sectorial form and its relatively bounded perturbation.

Theorem 2.1.5. ([Theorem VI-1.33] [12]) Let t be a sectorial form and let t′ be t-bounded with
b < 1 in (2.1.4). Then t+ t′ is sectorial. The form t+ t′ is closed, if and only if t is closed.

In case of linear opeartors, the notion of sectoriality becomes more complicated. Let us start
with the following definitions.

Definition 2.1.6. A linear operator T in H is said to be accretive if Re(ψ, Tψ) ≥ 0 for all
φ ∈ Dom(T ), and quasi-accretive if T + αI is accretive for some α > 0.



Definition 2.1.7. A closed linear operator T in H is said to be m-accretive if it satisfies

{λ ∈ C | Reλ < 0} ⊂ ρ(T ),

‖(T − λI)−1‖≤ 1

|Reλ|
for Reλ < 0

If T + αI is m-accretive for some α > 0, then T is said to be quasi-m-accretive.

If an operator is m-accretive it means that it is maximal accretive in the sense that it is accretive
and there is no proper accretive extension.

Definition 2.1.8. A linear operator T in H is said to be sectorial if its numerical range lies in a
sector defined by (2.1.3). We say that T is m-sectorial if it is sectorial and quasi-m-accretive

An important property of m-sectorial operators is that they are closed and densely defined. If
a form t is bounded we can associate with it a bounded operator T so that t(ψ,ϕ) = (ψ, Tϕ). This
claim can be extended to densely defined, sectorial and closed form. In this case the associated
operator is m-sectorial.

Theorem 2.1.9. (The first representation theorem, [12, Theorem VI-2.1]) Let t be a densely de-
fined, closed, sectorial sesquilinear form in H . There exists an m-sectorial operator T such that

i) Dom(T ) ⊂ Dom(t) and
t(u, v) = (u, Tv)

for every u ∈ Dom(t) and v ∈ Dom(T );

ii) Dom(T ) is a core of t;

iii) if v ∈ Dom(t), w ∈H and
t(u, v) = (w, v)

holds for every u belonging to a core of t, then v ∈ Dom(T ) and Tv = w.

The m-sectorial operator T is uniquely defined by the condition i

Furthermore, from the above theorem follows that there is a one-to-one correspondence between
the set of all m-sectorial operators and the set of all densely defined, closed and sectorial sesquilinear
forms.

2.2 Elements of spectral theory

First of all, we state some elementary definitions.

Definition 2.2.1. The linear operator H on a Hilbert space H is called symmetric if and only if

(Hψ,ϕ) = (ψ,Hϕ)

for all elements ψ,ϕ from the domain Dom(H).



Definition 2.2.2. Given a densely defined linear operator H on a Hilbert space H , by the Riesz
representation theorem there is a unique adjoint operator H∗ defined by

(Hψ,ϕ) = (ψ,H∗ϕ), ∀ψ ∈ Dom(H), ϕ ∈ Dom(H∗)

such that
Dom(H∗) := {ϕ ∈H | ∃η ∈H ,∀ψ ∈ Dom(H), (Hψ,ϕ) = (ϕ, η)}.

Definition 2.2.3. We say that an operator H is self-adjoint if and only if it is symmetric and
Dom(H) = Dom(H∗).

Definition 2.2.4. The operator H on a Hilbert space H is bounded from below if there exists a
real number K such that

(ψ,Hψ) ≥ K‖ψ‖2 ∀ψ ∈ Dom(H).

We denote H ≥ K.

Definition 2.2.5. We say that an operator H in a Hilbert space H is closed if and only if

Dom(H) 3 ψn
n→∞−−−−→ ψ ∈H

Hψn
n→∞−−−−→ φ ∈H

}
=⇒ (ψ ∈ Dom(H) ∧Hψ = φ) .

Now we are able to define the spectrum σ(H) of a closed operator H. We say that λ ∈ C belongs
to the spectrum σ(H) if and only if the operator H − λI is not a bijection between Dom(H) and
H . This condition is met in the following situations:

1. The operator H − λI is not injective, i.e. there exists a non-zero vector x ∈ Dom(H) such
that Hx = λx. The number λ is then called the eigenvalue of H and the set of all eigenvalues
forms the point spectrum of H denoted by σp(H). The vector x corresponding to λ is called
the eigenvector (if x is a function it is called an eigenfunction). The subspace ker(H − λI) is
the respective eigenspace of H and its dimension is the multiplicity of the eigenvalue λ.

2. The operator H−λI is not surjective but its range is dense in H . Then we say that λ belongs
to the continuous spectrum σc(H).

3. The operator H − λI is not surjective and its range is not dense in H . Then we say that λ
belongs to the residual spectrum σr(H).

The set %(H) := C \ σ(H) = {λ ∈ C | (H − λI)−1exists and is bounded} is called the resolvent
set of H. The function RH defined on %(H) by RH(λ) := (H − λI)−1 is called the resolvent of
H. The same name often refers to the operator (H − λI)−1. If the operator H is not closed
then σ(H) = C, thus it makes sense to study only the spectrum of closed operators. In case of
self-adjoint operators the spectrum is a subset of real numbers ( [4, Theorem 1.2.10]). By the
closed-graph theorem [12, Section III-5.4], the pathological situation of λ ∈ σ(H) \ σp(H) with
Ran(H − λI) = H cannot occur, thus

σ(H) = σp(H) ∪ σc(H) ∪ σr(H)

and the unions are disjoint. However, for the purposes ot this thesis, it is more convenient to divide
the spectrum in the following way.



Definition 2.2.6. Let H be a closed operator in a Hilbert space H . Then we define the discrete
spectrum σdisc(H) as a set of eigenvalues of finite multiplicity which are isolated point of the
spectrum. The essential spectrum is consequently defined by

σess(H) := σ(H) \ σdisc(H).

We say that H has a purely discrete spectrum if σess(H) = ∅.
The resolvent of a closed operator can be used to detemine if the operator has a purely discrete

spectrum.

Theorem 2.2.7. Let H be a closed operator. Suppose that there exists λ0 ∈ %(H) such that RH(λ0)
is compact. Then RH is compact for all λ ∈ %(H) and H has a purely discrete spectrum.

Recalling the sectorial forms from previous section, we can use the perturbation theory to prove
that an operator has a compact resolvent.

Theorem 2.2.8. ( [12, Theorem VI-3.4]) Let s be a densely defined, closed sectorial form with
Re s ≥ 0 and let S be the associated m-sectorial operator. Let t̃ be a s-bounded form satisfying
(2.1.4) with b < 1

2 . Then t = s+ t̃ is also sectorial and closed. Let T be the associated m-sectorial
operator. Then the resolvents RS and RT exist. If S has a compact resolvent, the same is true of
T .

In case of self-adjoint operators we have the following useful criterion of lambda belonging to
the spectrum.

Theorem 2.2.9. (Weyl criterion) A number λ ∈ R lies in the spectrum of a self-adjoint operator
H if and only if there exists a sequence of functions {ψn}n∈N, such that

1. ψn ∈ Dom(H), ∀n ∈ N

2. ‖ψn‖= 1, ∀n ∈ N

3. ‖Hψn − λψn‖
n→∞−−−−→ 0.

The following variation technique is useful for locating the discrete eigenvalues below the essen-
tial spectrum of a self-adjoint operator.

Theorem 2.2.10. (Minimax principle, [4, Theorem 4.5.2]) Let H be a self-adjoint operator that
is bounded from below on a Hilbert space H and let {λm}m∈N be a non-decreasing sequence of real
numbers defined by

λm := inf

{
sup
ψ∈P

(ψ,Hψ)

‖ψ‖2

∣∣∣∣∣ P ⊂ Dom(H), dimP = m

}
.

Then one of the following cases occurs.

1. σess is empty if λm
m→∞−−−−→∞

2. There exists a < ∞ such that λm < a, ∀m ∈ N and λm
m→∞−−−−→ a. Then a is the smallest

number of the essential spectrum and the part of the spectrum of H in (−∞, a) consists of the
eigenvalues λm each repeated a number of times equal to its multiplicity.

3. There exists a < ∞ and N < ∞ such that λN < a but λm = a for all m > N . Then
a = inf σess and the part of the spectrum of H in (−∞, a) consists of the eigenvalues λ1, . . . , λN
each repeated a number of times equal to its multiplicity.



2.3 Sobolev spaces

When dealing with partial differential equations, it might be difficult to find a solution among
functions with derivatives understood in the classical sense. We remedy this problem by presenting
the Sobolev spaces in which the derivatives are understood in a weak sense. In this section we give
a short introduction into Sobolev spaces, more detailed information can be found in [1].

We avoid the general theory of Sobolev spaces and present the notions for the special case
relevant to this thesis. Let us consider smooth functions in the interval (−a, a). We define the
support of a function f as the closure of the set of points x ∈ (−a, a) such that f(x) 6= 0. We call
distribution a linear functional mapping smooth functions with a compact support contained in
(−a, a) to complex numbers. Every locally integrable function f in (−a, a) can be regarded as a
distribution φf defined by

φf (g) :=

a∫
−a

f(x)g(x)dx,

where g is an arbitrary smooth function with a compact support contained in (−a, a). We define
the weak derivative Dαφ of a distribution φ with α ∈ N as

(Dαφ)(g) := (−a)αφ

(
dαg

dxα

)
.

The weak derivative can be regarded as a generalization of the classical derivative, as some functions
which are not differentiable in the classical sense have a weak derivative. For example the absolute
value function is not differentiable in the classical sense but it is in the weak sense.

Now we can define the Sobolev space W k,p((−a, a)) as the subset of functions in Lp((−a, a))
such that the weak derivative exists and belongs to Lp((−a, a)) for all α ≤ k, where k ∈ N ∪ {0}
and p ∈ [1,∞]. The norm in this space is defined by

‖f‖Wk,p((−a,a)):=
∑
α≤k

‖Dαf‖Lp((−a,a)). (2.3.0)

We define the Sobolev space W k,p
0 ((−a, a)) as the closure of C∞0 ((−a, a)) with respect to the

norm (2.3), where C∞0 ((−a, a)) represents the set of all smooth functions with a compact support
contained in (−a, a).



Chapter 3

Straight Planar Strip

In the first section of this chapter we give proper definition of the Laplacian in a straight waveguide
with Robin-type boundary conditions using the quadratic forms. In the second section we discuss
the spectral properties of the Laplacian. Additionally, we mention Laplacians with Dirichlet and
Neumann boundary conditions as special cases of the Robin Laplacian.

3.1 Definition of the Hamiltonian

Let us define the straight waveguide as the Cartesian product Ω0 := R × (−a, a), where a is a
positive number. We define here coordinates (s, t), where s ∈ R is the coordinate in the longitudinal
direction and t ∈ (−a, a) is the coordinate in the transversal direction. From now on we denote by
”,s” and ”,t” the partial derivatives with respect to s and t, respectively.

We are interested in the solutions ψ of the following stationary Schrödinger equation for a
free particle with energy λ confined to the waveguide Ω0 and satisfying the Robin-type boundary

s

-a

a

t

W0

Figure 3.1: Straight waveguide Ω0 of width 2a.



conditions on ∂Ω0: {
−4 ψ = λψ in Ω0
∂ψ
∂t + iαψ = 0 on ∂Ω0,

(3.1.0)

where α is a given real number.
The problem (3.1) can be regarded as a spectral problem for an m-sectorial operator in L2(Ω0)

which we denote here by −4Ω0
α . It turns out that it is correctly defined by

(3.1.1)

−4Ω0
α ψ := −4 ψ

Dom(−4Ω0
α ) :=

{
ψ ∈W 2,2(Ω0)

∣∣∣∣ ∂ψ∂t + iαψ = 0 on ∂Ω0

}
.

The derivations are understood in the weak sense and the Lapacian acts in the distributional sense.
The two-dimensional spectral problem (3.1) can be formally simplified using the separation of

variables. Namely, we assume that every solution ψ can be rewritten as

ψ(s, t) = f(s)g(t).

Putting this ansatz to (3.1), we obtain

−f
′′(s)

f(s)
− g′′(t)

g(t)
= λ in Ω0.

This equation makes sense only for such (s, t) ∈ Ω0 that f(s) 6= 0 and g(t) 6= 0. The only functions
f, g satisfying this formula are constant functions, thus we can write

λ+
f ′′(s)

f(s)
= −g

′′(t)

g(t)
= C,

where C is a constant. Taking into account the Robin-type boundary conditions in (3.1), we obtain
the following boundary conditions for g:

g′(±a) + iαg(±a) = 0. (3.1.1)

In conclusion, we transformed the two-dimensional problem (3.1) into two independent one-dimensional

problems for the transversal operator −4(−a,a)
α and the longitudinal operator −4R. In other words,

the Hilbert space L2(Ω0) can be expressed in terms of tensor product as

L2(Ω0) = L2((−a, a))⊗ L2(R) (3.1.1)

and the operator −4Ω0
α can be consequently rewritten as

−4Ω0
α = −4(−a,a)

α ⊗IR + I(−a,a) ⊗−4R . (3.1.1)

3.1.1 The transversal Hamiltonian

Firstly, let us address the proper definition of the transversal Hamiltonian −4(−a,a)
α . It turns out

that the correct definition is similarly to (3.1.1) given by

(3.1.2)
−4(−a,a)

α ϕ := −ϕ′′

Dom(−4(−a,a)
α ) :=

{
ϕ ∈W 2,2((−a, a))

∣∣ ϕ′(±a) + iαϕ(±a) = 0
}
.



Let us consider the quadratic form ḣα associated with the operator −4(−a,a)
α . Using the integration

by parts together with the boundary conditions (3.1), we get

(3.1.3)

ḣα[ϕ] :=(ϕ,−4(−a,a)
α ϕ)L2((−a,a))

=−
a∫
−a

ϕ(t)ϕ′′(t)dt =

a∫
−a

ϕ′(t)ϕ′(t)dt−
[
ϕ(t)ϕ′(t)

]a
−a

=‖ϕ′‖2+iα|ϕ(a)|2−iα|ϕ(−a)|2.

In order to prove that the operator (3.1.2) is m-sectorial, let us start from the form which acts as
ḣ. We define

(3.1.4)
hα[ϕ] := ‖ϕ′‖2+iα|ϕ(a)|2−iα|ϕ(−a)|2

Dom(hα) := W 1,2(R).

The following lemma will help us prove that the form h is sectorial.

Lemma 3.1.1. The inequality |ϕ(±a)|2≤ 1
2a‖ϕ‖

2+2‖ϕ‖‖ϕ′‖ holds for all ϕ ∈ Dom(hα).

Proof. We prove the inequality for the point a only, proof for −a is analogous. Let us define an
auxiliary function

η(x) =

 0 x ∈ (−∞,−a)
x+a
2a x ∈ [−a, a]
1 x ∈ (a,∞).

Using the properties of η combined with the Schwarz inequality, we obtain

|ϕ(a)|2=

a∫
−a

d

dt

(
η(t|ϕ(t)|2

)
dt

=

a∫
−a

η′(t)|ϕ(t)|2dt+ 2

a∫
−a

η(t)|ϕ(t)||ϕ′(t)|dt

≤ 1

2a

a∫
−a

|ϕ(t)|2dt+ 2

a∫
−a

|ϕ(t)||ϕ′(t)|dt

≤ 1

2a
‖ϕ‖2+2‖ϕ‖‖ϕ′‖.

In order to prove that the form hα is sectorial, we regard it as a perturbation of the form
associated with the Neumann Laplacian acting in L2((−a, a)). Let us now divide the form h into
two parts:

(3.1.5)
h1[ϕ] = ‖ϕ′‖2

h2[ϕ] = iα|ϕ(a)|2−iα|ϕ(−a)|2,

where h1 is the form associated with the Neumann Laplacian. Note that the domains of these forms
are identical, i.e. Dom(h1) = Dom(h2) = W 1,2((−a, a)).



Theorem 3.1.2. Let h1 and h2 be the forms defined by (3.1.5). Then the form h2 is h1-bounded
and the constant b in (2.1.4) can be taken arbitrarily small.

Proof. Using the Lemma 3.1.1, we can estimate the form h2 by

|h2[ϕ]|≤|α||ϕ(−a)|2+|α||ϕ(a)|2

≤|α|
(

1

a
‖ϕ‖2+4‖ϕ‖‖ϕ′‖

)
≤|α|

(
1

a
‖ϕ‖2+

4

ε
‖ϕ‖2+ε‖ϕ′‖2

)
=a‖ϕ‖2+b|h1[ϕ]|,

where a = |α|
(

1
a + 4

ε

)
and b = ε|α|. In the last inequality we used the Young inequality 2xy ≤

1
εx

2 + εy2 with x = 2‖ϕ‖ and y = ‖ϕ′‖. This estimate holds for all ε > 0, thus the constant b can
be taken arbitrarily small. Since the domains of the forms h1 and h2 are identical, we conclude
that the form h2 is h1-bounded.

Corollary 3.1.3. The quadratic form hα defined by (3.1.4) is densely defined, sectorial and closed.

Proof. The domain Dom(hα) = W 1,2((−a, a)) contains the set C∞0 ((−a, a)) consisting of smooth
functions with compact support. This set is dense in L2((−a, a)) ( [1, Theorem 2.19]), thus Dom(h)
is dense in L2((−a, a)) and the form hα is densely defined.

The form h1 associated with the Neumann Laplacian is sectorial and closed [6, Chapter IV]. Ac-
cording to the Theorem 3.1.2 the form h2 is h1-bounded with arbitrarily small constant b, therefore
the form hα = h1 + h2 is by the Theorem 2.1.5 sectorial and closed.

In the light of this corollary, we can use the First representation theorem 2.1.9 to associate the
form hα with an m-sectorial operator defined by

(3.1.6)

Hαϕ = η

Dom(Hα) =

{
ϕ ∈ Dom(hα)

∣∣∣∣ ∃η ∈ L2((−a, a)),
∀ψ ∈ Dom(hα), hα(ψ,ϕ) = (ψ, η)

}
.

In fact, η = −ϕ′′ and the Hamiltonian Hα equals to the operator −4(−a,a)
α defined by (3.1.2), as

shown in the following theorem.

Theorem 3.1.4. The Hamiltonian Hα defined by (3.1.6) equals to the operator −4(−a,a)
α defined

by (3.1.2).

Proof. If ψ ∈ W 2,2, there exists its second derivative and we can integrate hα(φ, ψ) = (φ′, ψ′) −[
φψ′
]a
−a

by parts to get hα(φ, ψ) = (φ,−ψ′′). Thus η := −φ′′ and Hα ⊃ −4(−a,a)
α .

It remains to prove that Hα ⊂ −4(−a,a)
α . The course of the proof is inspired by [12, Example

VI-2.16]. Let φ ∈ Dom(hα), ψ ∈ Dom(Hα) and η ∈ L2((−a, a)) be the function defined by (3.1.6).
Let ζ be the indefinite integral of η, then the relation hα(φ, ψ) = (φ, Tψ) = (φ, η) means∫ a

−a
φ′ψ′ + iαφ(a)ψ(a)− iαφ(−a)ψ(−a) =

∫ a

−a
φη =

∫ a

−a
φζ ′ =

[
φζ
]a
−a
−
∫ a

−a
φ′ζ.



This equation can be subsequently rewritten as∫ a

−a
φ′(ψ′ + ζ) +φ(a)(iαψ(a)− ζ(a)) +φ(−a)(iαψ(−a) + ζ(−a)) = 0 (3.1.6)

which holds for every φ ∈ Dom(hα). However, in the next step we make a special choice of φ. For

any φ′ ∈ L2((−a, a)) satisfying
∫ a
−a φ

′(t)dt = 0, the function φ(t) =
∫ t
−a φ(t̃)dt̃ lies in Dom(hα) and

φ(−a) = φ(a) = 0, so that ψ′+ ζ is orthogonal to φ′ by (3.1.4). The relation
∫ a
−a φ

′(t)dt = 0 means

that φ′ is orthogonal to the constant function equal to 1, thus ψ′ + ζ ∈
{

1⊥
}⊥

= span {1}, i.e.

ψ′ + ζ = C, (3.1.6)

where C is a constant. Substituting this identity into (3.1.4), we get

φ(a)(iαψ(a)− ζ(a) + C) +φ(−a)(iαψ(−a) + ζ(−a)− C) = 0. (3.1.6)

Since φ(a) and φ(−a) may attain any complex number when φ varies over Dom(ḣα), their coefficients
in (3.1.4) must vanish. Together with (3.1.4) we therefore obtain

C = ζ(±a)− iαψ(±a) = ζ(±a) + ψ′(±a)

which means that every ψ ∈ Dom(Hα) satisfies the Robin boundary conditions

ψ′(±a) + iαψ(±a) = 0. (3.1.6)

Furthermore, the derivation of (3.1.4) yields

−ψ′′ = ζ ′ = η ∈ L2((−a, a)),

thus ψ ∈W 2,2((−a, a)) and we conclude that Dom(Hα) ⊂ Dom(−4(−a,a)
α ). Since η = Hαψ = −ψ′′,

we have proved that Hα ⊂ −4(−a,a)
α .

The operator −4(−a,a)
α is not self-adjoint, nevertheless there exists a simple prescription for the

adjoint operator.

Proposition 3.1.5. Let −4(−a,a)
α be the operator defined by (3.1.2). Then its adjoint operator is

defined by (
−4(−a,a)

α

)∗
= −4(−a,a)

−α .

Proof. The operator −4(−a,a)
α is associated with the sesquilinear form

hα(ψ,ϕ) :=

a∫
−a

ψ′(t)ϕ′(t)dt+ iαψ(a)ϕ(a)− iαψ(−a)ϕ(−a).

It is convenient to work with sesquilinear forms, since it is easy to find the adjoint forms. Indeed,
the adjoint form of hα is given by

h∗α(ψ,ϕ) := hα(ϕ,ψ) :=

a∫
−a

ψ′(t)ϕ′(t)dt− iαψ(a)ϕ(a) + iαψ(−a)ϕ(−a).

This form is associated with the adjoint operator and since we have proved the Theorem 3.1.4 for

all α ∈ R, it is also associated with −4(−a,a)
−α .



3.1.2 The longitudinal Hamiltonian

We will define the free Hamiltonian −4R via Friedrichs extension. Let us define the minimal
Hamiltonian

(3.1.7)
Ḣψ := −4 ψ

Dom(Ḣ) := C∞0 (R),

where C∞0 (R) consists of smooth functions on R with compact support. This operator is associated
with the quadratic form

(3.1.8)
ḣ[ψ] = (ψ, Ḣψ) = −

∞∫
−∞

ψψ′′ =

∞∫
−∞

ψ′ψ′ = ‖ψ′‖2

Dom(ḣ) = Dom(Ḣ) = C∞0 (R)

Since the free Hamiltonian Ḣ is symmetric and bounded from below, its associated form ḣ is
closable ( [12, Corollary VI-1.28]). The domain of the closure of ḣ is given by the closure of C∞0 (R)
with respect to the topology induced by ḣ which coincides with the norm (2.3), therefore it is by
definition equal to W 1,2

0 (R). Additionally, in our case of the real axis we have W 1,2
0 (R) = W 1,2(R).

The closure of ḣ is then defined by

(3.1.9)
h[ψ] = ‖ψ′‖2

Dom(h) = W 1,2(R).

Using the First representation theorem 2.1.9, we can associate with h an m-sectorial operator H
given by

Hψ := η

Dom(H) :=
{
ψ ∈ Dom(h)

∣∣ ∃η ∈ L2(R),∀φ ∈ Dom(h), h(ψ, φ) = (ψ, η)
}
.

By the same argumentation as in the proof of the Theorem 3.1.4, we conclude that the Hamiltonian
H equals to the operator −4R defined by

(3.1.10)
−4R ψ : −4 ψ

Dom(−4R) := W 2,2(R).

3.2 Spectral analysis

In this section we find the spectrum of the operator −4Ω0
α defined by (3.1.1). We divide this task

into the study of the spectrum of the transversal operator −4(−a,a)
α and the longitudinal operator

−4R. In the transversal case we also mention the limit situations of Neumann and Dirichlet
boundary conditions. Altogether, we will consider the following three boundary conditions on the
interval (−a, a):

Neumann φ′(±a) = 0
Dirichlet φ(±a) = 0
Robin φ′(±a) + iαφ(±a) = 0.

(3.2.0)

Note that the Dirichlet boundary conditions are the limit case of Robin boundary conditions as α
tends to infinity while the Neumann case can be obtained by setting α = 0.



3.2.1 The spectrum of the transversal Hamiltonian

Let us start with the study of the point spectrum of the Hamiltonian −4(−a,a)
α which means to

solve the spectral problem {
−ψ′′ = λψ
ψ′(±a) + iαψ(±a) = 0.

(3.2.0)

The general solution of the above differential equation is

ψ(t) = A sin(
√
λt) +B cos(

√
λt), (3.2.0)

where A and B are complex constants. This general solution is common to all the boundary
conditions and we can obtain the point spectrum by imposing each of the boundary conditions in
(3.2). In the case of Robin boundary conditions we get the following system of equations for A and
B:

A
√
λ cos(

√
λa) + iαA sin(

√
λa)−B

√
λ sin(

√
λa) + iαB cos(

√
λa) = 0

A
√
λ cos(

√
λa)− iαA sin(

√
λa) +B

√
λ sin(

√
λa) + iαB cos(

√
λa) = 0.

We are interested only in non-trivial solutions, i.e. such that A 6= 0 and B 6= 0. In order to derive
the condition for λ belonging to the point spectrum, we rewrite the system as a matrix equation

M
(
A

B

)
=

(
0

0

)
(3.2.0)

with

M =

(√
λ cos(

√
λa) + iα sin(

√
λa) −

√
λ sin(

√
λa) + iα cos(

√
λa)√

λ cos(
√
λa)− iα sin(

√
λa)

√
λ sin(

√
λa) + iα cos(

√
λa)

)
.

Since the equation (3.2.1) is homogeneous, there exists a non-trivial solution if detM = 0. This
condition yields

(λ− α2) sin(2
√
λa) = 0,

thus we conclude that the point spectrum is given by

σp

(
−4(−a,a)

α

)
=
{
α2
}
∪

{(
kπ

2a

)2
∣∣∣∣∣ k ∈ N

}
. (3.2.0)

Zero is excluded from the spectrum because it leads to the eigenfunction ψ(t) = B which meets the

Robin boundary conditions only if B = 0. Hereafter we shall denote the eigenvalues by λk =
(
kπ
2a

)2
,

with the convention that λ0 = α2. The obtained eigenvalues now can be associated with the
corresponding eigenfunctions by solving the system (3.2.1) with the given eigenvalues. For the
eigenvalues {λk}∞k=1 the matrix M in (3.2.1) takes form

M =

(
kπ
2a cos(kπ2 ) + iα sin(kπ2 ) −kπ2a sin(kπ2 ) + iα cos(kπ2 )
kπ
2a cos(kπ2 )− iα sin(kπ2 ) kπ

2a sin(kπ2 ) + iα cos(kπ2 )

)
.

The corresponding eigenfunctions then differ for odd and even eigenvalues λk:

ψk(t) =

{
B
(
− kπi

2αa sin(kπ2a t) + cos(kπ2a t)
)

for odd k
B
(
− 2αai

kπ sin(kπ2a t) + cos(kπ2a t)
)

for even k,



where B is a complex constant. Similarly, for the eigenvalue λ0 = α2 we get

ψ0(t) = B (cos(αt))− i sin(αt)) = Be−iαt.

The normalization condition ‖ψk‖= 1 yields

1 = |B|2a
(

1−
(
kπ
2αa

)2)
for odd k

1 = |B|2a
(

1−
(

2αa
kπ

)2)
for even k, k ≥ 2

1 = |B|2 sin(2αa)
α for k = 0.

Thus, we conclude that the normalized eigenfunctions corresponding to the eigenvalues {λk}∞k=0

are given by

ψk(t) =


√

α
sin(2αa)e

−iαt for k = 0

2αa√
a((2αa)2−(kπ)2

(
− kπi

2αa sin(kπ2a t) + cos(kπ2a t)
)

for odd k

kπ√
a((kπ)2−(2αa)2

(
− kπi

2αa sin(kπ2a t) + cos(kπ2a t)
)

for even k, k ≥ 2.

In case of the Neumann boundary conditions the matrix M in (3.2.1) takes form

M =

(√
λ cos(

√
λa) −

√
λ sin(

√
λa)√

λ cos(
√
λa)

√
λ sin(

√
λa)

)
.

The condition detM = 0 then means

λ sin(2
√
λa) = 0

and the point spectrum is given by

σp

(
−4(−a,a)

N

)
=

{(
kπ

2a

)2
∣∣∣∣∣ k ∈ N ∪ {0}

}
.

In this case zero is an acceptable solution because it leads to ψ(t) = B which meets the Neumann
boundary condition. The corresponding eigenfunctins are obtained by solving the system (3.2.1)

with λ ∈ σp
(
−4(−a,a)

N

)
:

ψk(t) =


√

1
2a for k = 0√
1
a sin(kπ2a t) for odd k√
1
a cos(kπ2a t) for even k, k ≥ 2.

Finally, the Dirichlet boundary conditions lead to the system with

M =

(
sin(
√
λa) cos(

√
λa)

− sin(
√
λa) cos(

√
λa)

)
.

The eigenvalues are restricted by
sin(2

√
λa) = 0,



thus the point spectrum is given by

σp

(
−4(−a,a)

D

)
=

{(
kπ

2a

)2
∣∣∣∣∣ k ∈ N

}
.

Similarly to the Robin case zero leads to a trivial solution and is excluded from the point spectrum.
The corresponding eigenfunctions are consequently given by:

ψk(t) =


√

1
a cos(kπ2a t) for odd k√
1
a sin(kπ2a t) for even k.

Since the resolvents associated with the Laplacians with Neumann and Dirichlet boundary condi-
tions are compact ( [4, Theorems 7.2.2, 6.2.3]), the corresponding spectra are purely discrete, thus
we can write

(3.2.1)

σ
(
−4(−a,a)

N

)
= σdisc

(
−4(−a,a)

N

)
=

{(
kπ

2a

)2
∣∣∣∣∣ k ∈ N ∪ {0}

}
,

σ
(
−4(−a,a)

D

)
= σdisc

(
−4(−a,a)

D

)
=

{(
kπ

2a

)2
∣∣∣∣∣ k ∈ N

}
.

In the following proposition we show that the same holds for Robin Laplacian.

Proposition 3.2.1. Let −4(−a,a)
α be the operator defined by (3.1.2). Then it has a compact resol-

vent and its spectrum is given by

σ
(
−4(−a,a)

α

)
= σdisc

(
−4(−a,a)

α

)
=
{
α2
}
∪

{(
kπ

2a

)2
∣∣∣∣∣ k ∈ N

}
.

Proof. Let us consider the quadratic form hα defined by (3.1.4) and associated with the operator

−4(−a,a)
α . It can be divided into the sum of h1 and h2 as in (3.1.5). From the Theorem 3.1.2

follows that h2 is h1-bounded with relative bound b arbitrarily small. The form h1 is positive and
associated with the Neumann Laplacian which has a compact resolvent, thus by Theorem 2.2.8 the

Robin Laplacian −4(−a,a)
α has a compact resolvent and purely discrete spectrum.

Note that although the operator −4(−a,a)
α is not self-adjoint, its spectrum is real.

3.2.2 The spectrum of the longitudinal Hamiltonian

Contrary to the transversal operator −4(−a,a)
α , the spectrum of −4R is purely essential which we

prove in the following proposition.

Proposition 3.2.2. Let −4R be the operator defined by (3.1.10). Then its spectrum is given by

σ
(
−4R) = σess

(
−4R) = [0,∞).



Proof. The operator −4R is associated with the quadratic form defined by (3.1.9). This form is
non-negative, thus from the minimax principle follows σ

(
−4R) ⊂ [0,∞).

To prove the opposite inclusion, we use the Weyl criterion 2.2.9. More precisely, for every
λ ∈ [0,∞) we define

ϕn(s) :=
1√
n
ϕ1(

s

n
),

where ϕ1 ∈ C∞0 (R) and ‖ϕ1‖= 1. All elements of this sequence are normalized to 1 in L2(R) and
their derivatives satisfy

(3.2.2)
‖ϕ′n‖2 =

1

n2
‖ϕ′1‖2

‖ϕ′′n‖2 =
1

n4
‖ϕ′′1‖2.

Now we can define the sequence

ψn(s) := ϕn(s)ei
√
λs

for which we will prove that satisfies the hypothesis of the Weyl criterion. All its members are
normalized to 1 in L2(R) and lie in Dom(−4R). Moreover, using the identities (3.2.2), we obtain

‖(−4R −λ)ψn(s)‖2 = ‖(−ϕ′′n(s)− 2i
√
λϕ′n(s)ei

√
λs‖2

≤ ‖ϕ′′n(s)‖2+4λ‖ϕ′n(s)‖2 n→∞−−−−→ 0.

In conclusion, for every λ ∈ [0,∞) the sequence {ψn}∞n=1 satisfies the hypothesis of the Weyl
criterion, thus σ

(
−4R) ⊃ [0,∞) and σ

(
−4R) = [0,∞). Since the interval contains no isolated

points, we have σ
(
−4R) = σess

(
−4R).

3.2.3 The spectrum of the Hamiltonian of a straight strip

We conclude this chapter by showing that the spectrum of −4Ω0
α is given by the sum of the spectra

of the transversal and longitudinal Hamiltonians.

Theorem 3.2.3. Let −4Ω0
α be the Hamiltonian defined by (3.1.1). Then its spectrum is given by

σ
(
−4Ω0

α

)
= σess

(
−4Ω0

α

)
= [λmin,∞),

where λmin := min
{
α2,
(
π
2a

)2}
.

Proof. The Hamiltonian −4Ω0
α can be expressed in terms of tensor product by (3.1). If −4(−a,a)

α

and −4R generate bounded holomorphic semigroups on the Hilbert spaces L2((−a, a)) and L2(R),
respectively, then by [16, Theorem XIII.35] the spectrum of −4Ω0

α equals to the sum

σ
(
−4Ω0

α

)
= σ

(
−4(−a,a)

α

)
+ σ

(
−4R) = [λmin,∞).

In chapter 3 we proved that the Hamiltonians −4(−a,a)
α and −4R are m-sectorial with a vertex 0

and all such operators generate bounded holomorphic semigroups by [12, Theorem IX-1.24].



Chapter 4

Narrow Curved Waveguide

4.1 The Geometry

Let Γ be an infinite planar curve parametrised by its arc-length, i.e. a C2-smooth map Γ : R→ R2 :
s 7→ (Γ1(s),Γ2(s) satisfying |Γ̇(s)|= 1 for all s ∈ R. We define a normal vector field N := (−Γ̇2, Γ̇1)
and a tangent vector field T := (Γ̇1, Γ̇2). The couple (T,N) then forms a Frenet frame. The
curvature of Γ is defined through the Frenet formulae(

Ṫ (s)

Ṅ(s)

)
=

(
0 κ(s)

−κ(s) 0

)(
T (s)

N(s)

)
(4.1.0)

by κ(s) = det(Γ̇(s), Γ̈(s)), where κ is a continuous function of the arc-length parameter s. Let
Ω0 := R × (−1, 1) be a straight waveguide and let ε > 0. We define a curved waveguide of width
2ε by Ωε := Lε(Ω0), where

Lε : R2 → R2 : (s, t) 7→ Γ(s) + εtN(s). (4.1.0)

We understand Ωε as an open connected subset of R2 with cartesian coordinates x, y. In fact,
the image Ωε has a geometrical meaning of a non-self-intersecting strip only under assumption
that Lε � Ω0 is a diffeomorphism. By the inverse map theorem the sufficient condition is that the
restriction Lε � Ω0 is injective and the Jacobian of Lε is non-zero on Ω0. From the Frenet formulae

(4.1) follows that Γ̈(s) = κ(s)
(−Γ̇2(s)

Γ̇1(s)

)
and thus the Jacobian of Lε is given by

∂(x, y)

∂(s, t)
=

∣∣∣∣ Γ̇1 − εtΓ̈2 εN1

Γ̇2 + εtΓ̈1 εN2

∣∣∣∣ =

∣∣∣∣ N2 (1− εtκ) εN1

−N1 (1− εtκ) εN2

∣∣∣∣ = ε (1− εtκ) .

Therefore the condition that the Jacobian of Lε is non-zero on Ω0 is met if εtκ(s) < 1 for all
t ∈ (−1, 1) and s ∈ R. Summing up our considerations, we will always assume:

Assumption 4.1.1. i) Lε � Ω0 is injective

ii) κ ∈ L∞(R)

iii) ε‖κ‖∞< 1, where ‖κ‖∞:= sup
s∈R
|κ(s)|
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Figure 4.1: Curved strip Ωε defined via reference curve Γ.

From the third condition we derive the following useful estimates:

∀s, t ∈ Ω0 0 < C− ≤ 1− εtκ(s) ≤ C+ with C± := 1± ε‖κ‖∞. (4.1.0)

4.2 The Hamiltonian

We are interested in the behaviour of the solutions ψ ∈ L2(Ωε) to the boundary-value problem as
ε→ 0 {

−4 ψ = λψ in Ωε
∂ψ
∂N + iαψ = 0 on ∂Ωε,

(4.2.0)

where α : ∂Ωε → R is a given real-valued function. We assume α ∈ L∞(∂Ωε) and α � Lε(R ×
{−1}) = α � Lε(R× {1}) so that α can be identified with function α : R→ R.

We understand (4.2) as the spectral problem for the m-sectorial operator with Robin-type
boundary conditions in the Hilbert space L2(Ωε)

(4.2.1)

Hεψ := −4 ψ

Dom(Hε) :=

{
ψ ∈W 2,2

∣∣∣∣ ∂ψ∂N � ∂Ωε + iαψ � ∂Ωε = 0

}
.

The operator is associated with the form

(4.2.2)

Qε[ψ] := (ψ,Hεψ) =

∫
Ωε

|5ψ|2 + i

∫
L(R× {1})

α|ψ|2 − i

∫
L(R× {−1})

α|ψ|2

Dom(Qε) := W 1,2(Ωε).

Since the mapping Lε is under Assumption 4.1.1 a global diffeomorphism between Ω0 and Ωε
it is natural to describe the Hamiltonian (4.2.1) in curvilinear coordinates (s, t) determined by the
inverse of Lε. Additionally, it is convenient to rescale the space Ωε for the purpose of simplifying the
scalar product. In the light of aforementioned considerations we introduce the following mapping:



Uε : L2(Ωε, dxdy)→Hε := L2(Ω0, hε(s, t)dsdt) : ψ 7→
√
εψ ◦ Lε := ϕ, (4.2.2)

where hε(s, t) := 1− εtκ is the Jacobian of Lε up to the parameter ε. Since Lε is a diffeomorphism
and

(Uεψ,Uεϕ)Ωε
=

1

ε

∫
Ωε

ψ ◦ Lεϕ ◦ Lε =

∫
Ω0

ψϕhε = (ψ,ϕ)Hε
,

it is clear that the mapping (4.2) is a unitary transformation. Hence the transformed Hamiltonian
H̃ε := UεHεU

−1
ε is unitarily equivalent with the former Hamiltonian Hε. In other words we replaced

the simple operator Hε on the complicated Hilbert space L2(Ωε, dxdy) with the more complicated
operator H̃ε on the simpler space Hε. The Hamiltonian H̃ε is associated with the form

(4.2.3)
Q̃ε[ϕ] := Qε[U

−1
ε ϕ]

Dom(Q̃ε) := UεDom (Qε) = W 1,2 (Ω0) .

In particular, the gradient is transformed into curvilinear coordinates (s, t) as follows:

∀ϕ ∈ Ω0 |5ϕ|2=|∂xϕ|2+|∂yϕ|2=

∣∣∣∣∂ψ∂s ∂s∂x +
∂ψ

∂t

∂t

∂x

∣∣∣∣2 +

∣∣∣∣∂ψ∂s ∂s∂y +
∂ψ

∂t

∂t

∂y

∣∣∣∣2
=

∣∣∣∣ψ,sN2

h
+ ψ,tN1h

∣∣∣∣2 +

∣∣∣∣−ψ,sN1

h
+ ψ,tN2h

∣∣∣∣2
=

1

h2
|ψ,s|2+

1

ε2
|ψ,t|2.

Consequently the boundary part of quadratic form Qε is transformed via substitution in the curve
integral and altogether the quadratic form Q̃ε in curvilinear coordinates is expressed as

Q̃ε[ϕ] =

∫
Ω0

|ϕ,s|2

hε
+

1

ε2

∫
Ω0

|ϕ,t|2hε +
1

ε

∫
R× {1}

α|ϕ|2hε −
1

ε

∫
R× {−1}

α|ϕ|2hε. (4.2.3)

The operator H̃ε then can be expressed as

(4.2.4)
H̃ε = − 1

hε
∂s

1

hε
∂s +

1

ε2

1

hε
∂thε∂t

Dom
(
H̃ε

)
=
{
ϕ ∈W 2,2(Ω0)

∣∣ ϕ,t + iεαϕ = 0 on R×±1
}
.

In the next step which is inspired by [14] we transform the Hamiltonian H̃ε into the operator
which satisfies the usual Neumann boundary conditions on Hε. For this purpose we introduce
another unitary transformation

Vε : Hε →Hε : ϕ 7→ eiεαtϕ =: φ (4.2.4)

which leads to the unitarily equivalent operator Ĥε = VεH̃εU
−1
ε associated with the form Q̂ε[φ] :=

Q̃ε[V
−1
ε φ], Dom(Q̂ε) := VεDom(Q̃ε). However, this unitary transformation also yields additional



condition on regularity of α and κ. Namely, we shall assume that α ∈W 2,∞ and κ ∈W 1,∞ so that
the Hamiltonian can be expressed as

(4.2.5)
Ĥε = − 1

hε
∂s

1

hε
∂s +

2iα̇εt

hε
∂s + V1 +

1

ε2

1

hε
∂thε∂t +

2iα

ε
∂t + V2

Dom(Ĥε) =
{
φ ∈W 2,2 (Ω0) | φ,t = 0 on R×±1

}
,

where V1 and V2 are potential terms given by

(4.2.6)

V1 =
1

h2
ε

(
α̇2ε2t2 − iα̇εthε,s

hε
+ iα̈εt

)
V2 =α2 +

iα

ε

hε,t
hε

The associated form can then be rewritten as

(4.2.7)

Q̂ε[φ] =

∫
Ω0

|φ,s|2

hε
+

∫
Ω0

2iα̇εtφφ,s
hε

+

∫
Ω0

V1|φ|2hε

+
1

ε2

∫
Ω0

|φ,t|2hε +
1

ε

∫
Ω0

2iαφφ,thε +

∫
Ω0

V2|φ|2hε

Dom(Q̂ε) = W 1,2 (Ω0) .

In conclusion, we replaced the m-sectorial operator Hε satisfying Robin-type boundary condi-
tions on L2 (Ωε, dxdy) with the operator Ĥε satisfying Neumann boundary conditions on Hε. Since
the operators are unitarily equivalent, they possess the same spectrum, thus we are going to study
the operator Ĥε. Moreover, the unitary transform also preserves the m-sectoriality of the operator.

4.3 The limit

In this section we will show that the Hamiltonian Ĥε weakly converges to an operator Heff as the
width of the strip tends to zero. It shall be later explained, how the limit is understood.

Since the Hamiltonian Ĥε is m-sectorial, there exists K ∈ R such that −K ∈ %(Ĥε). Hence the
resolvent is a bounded operator on Hε, i.e. (Ĥε + K)−1 ∈ B(Hε). For any function f ∈ Hε we
set φε := (Ĥε +K)−1f so that φε satisfies the resolvent equation(

Ĥε +K
)
φε = f (4.3.0)

which can be equivalently rewritten as

∀ϕ̃ ∈W 1,2(Ω0) Q̂ε (ϕ̃, φε) +K (ϕ̃, φε)ε = (ϕ̃, f)ε , (4.3.0)

where (., .)ε denotes the scalar product in Hε. Specifically, for the choice ϕ̃ := φε we have

Q̂ε[φε] +K‖φε‖2ε= (φε, f)ε. (4.3.0)

Following lemmas will be helpful in estimating the function φε. Let us first introduce a conven-
tion of denoting constants.



Remark 4.3.1. Henceforth we shall denote by C a generic constant depending on ‖κ‖C1(R) and

‖α‖C2(R) but independent of ε. The constant may change from line to line.

Lemma 4.3.2. Let α ∈ W 2,∞, κ ∈ W 1,∞ and Ĥε be the Hamiltonian defined by (4.2.1). Than
there exist constants ε0 = ε0 (‖κ‖∞) and
C = C (‖κ‖∞, ‖κ̇‖∞, ‖α‖∞, ‖α̇‖∞, ‖α̈‖∞, ε0) such that ∀ε < ε0 :

|V1(s, t)| ≤ Cε,
|V2(s, t)| ≤ C.

Proof. The bounds (4.1) yield the estimate 1
hε
≤ 1

1−ε‖κ‖∞ . Furthermore, since κ ∈ W 1,∞ the

partial derivatives in potential terms V1 and V2 can be estimated by

|hε,s|= |uεκ̇|≤ ε0‖κ̇‖∞
|hε,t|= |εκ|≤ ε0‖κ‖∞.

In the light of the above inequalities we get the estimate of the first potential term:

|V1(s, t)|=
∣∣∣∣ 1

h2
ε

(
α̇2ε2t2 − iα̇εthε,s

hε
+ iα̈εt

)∣∣∣∣
≤ 1

h2
ε

(∣∣(α̇2ε2t2
∣∣+

∣∣∣∣α̇εthε,shε
∣∣∣∣+ |α̈εt|

)
≤ 1

(1− ε0‖κ̇‖∞)
2

(
‖α̇‖2∞ε2

0 + ‖α̇‖∞ε0
ε0‖κ̇‖∞

1− ε0‖κ̇‖∞
+ ‖α̈‖∞ε0

)
≤Cε.

The last inequality arose from the assumption that α ∈W 2,∞, κ ∈W 1,∞ and from the fact that if
ε0 < 1 then ε2

0 < ε0. We deal with the estimate of the second potential term in the same fashion:

|V2|=
∣∣∣∣α2 +

iα

ε

hε,t
hε

∣∣∣∣ ≤ α2 +

∣∣∣∣αε hε,thε
∣∣∣∣

≤‖α‖2∞+
‖α‖∞
ε0

ε0‖κ‖∞
1− ε0‖κ‖∞

≤ C.

Lemma 4.3.3. For every function φ ∈Hε and constant δ > 0 the following inequalities hold:∣∣∣∣∣∣
∫
Ω0

2iα̇εφφ,s
hε

∣∣∣∣∣∣ ≤ δ
∫
Ω0

|φ,s|2

hε
+

1

4δ

∫
Ω0

4|α̇|2ε2

hε
|φ|2 (4.3.0)

∣∣∣∣∣∣1ε
∫
Ω0

2iαφφ,thε

∣∣∣∣∣∣ ≤ δ 1

ε2

∫
Ω0

|φ,t|2h2
ε +

1

4δ

∫
Ω0

4α2|φ|2hε. (4.3.0)



Proof. Using the Schwarz inequality we get:∣∣∣∣∣∣
∫
Ω0

2iα̇εφφ,s
hε

∣∣∣∣∣∣ ≤2

√√√√∫
Ω0

|φ,s|2
hε

√√√√∫
Ω0

|α̇|2ε2

hε
|φ|2

≤δ
∫
Ω0

|φ,s|2

hε
+

1

δ

∫
Ω0

|α̇|2ε2

hε
|φ|2,

where the second inequality follows from 2ab ≤ a2+b2 with a =
√
δ
∫

Ω0

|φ,s|2
hε

and b =
√

1
δ

∫
Ω0

|α̇|2ε2
hε
|φ|2.

Similarly, using the same arguments we would get the inequality (4.3.3).

From now on, we shall denote H0 := L2(Ω0, dsdt). Note that the spaces H0 and Hε coincide as
sets but they differ in topology. Therefore we can regard any element of H0 as an element of Hε,
and vice versa. The norm in H0 is defined by ‖ψ‖20=

∫
Ω0

|ψ(s, t)|2dsdt and using the bounds (4.1),

we have
0 < C−‖.‖20≤ ‖.‖2ε≤ C+‖.‖20, (4.3.0)

where C± := 1± ε‖κ‖∞.
Now we are prepared to prove the following crucial estimates.

Theorem 4.3.4. Let f be an arbitrary function from Hε and φε be the function satisfying the
resolvent equation (4.3). Than the following inequalities hold:

‖φε‖0≤ C‖f‖0
‖φε,t‖0≤ Cε‖f‖0
‖φε,s‖0≤ C‖f‖0.

(4.3.0)

Proof. Using the previously stated Lemmata 4.3.2 and 4.3.3 with special choice δ = 1
2 we can

estimate the equality (4.3) from below as follows:

Q̂ε[φε] +K‖φε‖2ε=
∫
Ω0

|φε,s|2

hε
+

∫
Ω0

2iα̇εtφεφε,s
hε

+

∫
Ω0

V1|φε|2hε

+
1

ε2

∫
Ω0

|φε,t|2hε +
1

ε

∫
Ω0

2iαφεφε,thε +

∫
Ω0

V2|φε|2hε +K

∫
Ω0

|φε|2hε

≥
∫
Ω0

|φε,s|2

hε
− 1

2

∫
Ω0

|φε,s|2

hε
− 2

∫
Ω0

|α̇|2ε2

hε
|φε|2−εC

∫
Ω0

|φε|2

+
1

ε2

∫
Ω0

|φε,t|2hε −
1

2ε2

∫
Ω0

|φε,t|2h2
ε − 2

∫
Ω0

α2|φε|2hε − C
∫
Ω0

|φε|2hε

+K

∫
Ω0

|φε|2hε

≥1

2

∫
Ω0

|φε,s|2

hε
+

1

2ε2

∫
Ω0

|φε,t|2hε + (K − C)

∫
Ω0

|φε|2hε.



From the Schwarz inequality immediately follows that (4.3) is bounded from above by ‖φε‖ε‖f‖ε
which together with the above inequality yields

1

2

∥∥∥∥φε,shε
∥∥∥∥
ε

+
1

2ε2
‖φε,t‖ε+(K − C)‖φε‖2ε≤ ‖φε‖ε‖f‖ε. (4.3.0)

Under the assumption that K is large enough with respect to C, the left hand side is composed of
three non-negative terms, and we therefore conclude

‖φε‖ε ≤
1

K − C
‖f‖ε

‖φε,t‖2ε ≤ 2ε2‖φε‖ε‖f‖ε≤
2ε2

K − C
‖f‖ε

‖φε,s‖2ε ≤ 2‖φε‖ε‖f‖ε≤
2

K − C
‖f‖ε.

Taking into account the norm inequalities (4.3), we consequently obtain the desired statement
(4.3.4).

Since the operators Ĥε and Heff act on different Hilbert spaces, we need to explain how the
convergence of corresponding resolvent operators is understood. Inspired by [3] we decompose the
Hilbert space H0 into a sum of two mutually orthogonal subspaces H const

0 and H ⊥
0 . Let us consider

the Neumann Laplacian −4(−1,1)
N acting in L2 ((−1, 1)). Seeing that its eigenfunctions {χn}n∈N

form the orthonormal basis of the space, we can express any function φ ∈ H0 in terms of Fourier
expansion

∀s ∈ R, t ∈ (−1, 1) φ(s, t) =

∞∑
n=1

ϕn(s)χn(t), (4.3.0)

where ϕn(s) :=
∫ 1

−1
χn(t)φ(s, t)dt. Let us now define the subspace H const

0 as the set consisting of
first terms of the Fourier expasion, i.e.

H const
0 :=

{
φ0 ∈H0

∣∣∣ (∃f ∈H0)
(
φ0 = ϕχ1 = (χ1, f)L2((−1,1)) χ1

)}
. (4.3.0)

Since the first eigenvalue of−4(−1,1)
N is equal to zero and its corresponding eigenfunction is χ1 = 1√

2
,

we have ϕ(s) := 1√
2

∫ 1

−1
φ(s, t)dt and φ0(s) = ϕ(s)χ1(t) = 1

2

∫ 1

−1
φ(s, t)dt. As a result, the subspace

H const
0 can be interpreted as consisting of functions constant in the transversal variable t, thus

it can be naturally identified with L2(R). More precisely, the identity mapping I : H const
0 →

L2(R) : {φ 7→ φ} is isometric isomorphism between H const
0 and L2(R). Therefore, with abuse of

notation, we may identify any operator on H const
0 with the one acting in L2(R), and vice versa.

The corresponding projection is then given by

(Pφ) (s) :=
1

2

∫ 1

−1

φ(s, t)dt. (4.3.0)

By the projection theorem, we now can decompose the Hilbert space as

H0 = H const
0 ⊕H ⊥

0 (4.3.0)



The projection onto the subspace H ⊥
0 is subsequently defined by P⊥ := I − P. In conclusion, by

virtue of the decomposition (4.3), we can express any function φ ∈H0 as

φ(s, t) = φ0(s) + φ⊥(s, t), (4.3.0)

where φ0 = ϕχ1 ∈ H const
0 and φ⊥ ∈ H ⊥

0 . Moreover the orthogonality of φ0 and φ⊥ can be
rewritten as ∫ 1

−1

φ⊥(s, t)dt = 0 for almost every s ∈ R. (4.3.0)

Additionally, if φ ∈W 1,2(Ω0), we can differentiate the previous identity to get∫ 1

−1

φ⊥,s(s, t)dt = 0 for almost every s ∈ R. (4.3.0)

In the light of the Hilbert space decomposition, we now can rewrite the inequalities (4.3.4) for
φε(s, t) = 1√

2
ϕε(s) + φ⊥ε (s, t).

Theorem 4.3.5. Let f be an arbitrary function from Hε and φε be a function satisfying the
resolvent equation (4.3). Than the following inequalities hold:

(4.3.1 )

‖ϕε‖W 1,2(R) ≤ C‖f‖0
‖φ⊥ε ‖0 ≤ C‖f‖0
‖φ⊥ε,s‖0 ≤ C‖f‖0
‖φ⊥ε,t‖0 ≤ Cε‖f‖0,

where ‖ϕε‖2W 1,2(R)= ‖ϕ
′
ε‖2L2(R)+‖ϕε‖

2
L2(R).

Proof. Using the Hilbert space decomposition we have

(4.3.2)
‖φε‖20=

∫
R

|ϕε(s)|2ds+

∫
Ω0

|φ⊥ε (s, t)|2dsdt+ 2 Re

∫
R

dsϕε(s)

∫ 1

−1

dtχ1(t)φ⊥ε (s, t)

=‖ϕε‖2L2(R)+‖φ
⊥
ε ‖20,

where the third term on the right hand side vanishes due to (4.3). Similarly, using (4.3), we have

(4.3.3)
‖φε,s‖20=

∫
R

|ϕ̇ε(s)|2ds+

∫
Ω0

|φ⊥ε,s(s, t)|2dsdt+ 2 Re

∫
R

dsϕ̇ε(s)

∫ 1

−1

dtχ1(t)φ⊥ε,s(s, t)

=‖ϕ̇ε‖2L2(R)+‖φ
⊥
ε,s‖20.

Since χ1 is in fact the constant 1√
2
, the partial derivation with respect to t reduces to the perpen-

dicular part and we can write
‖φε,t‖20= ‖φ⊥ε,t‖20. (4.3.3)

From the identities (4.3.2), (4.3.3) and the former inequalities (4.3.4) immediately follows

‖ϕε‖2W 1,2(R) = ‖φε,s‖20+‖φε‖20−‖φ⊥ε ‖20−‖φ⊥ε,s‖20≤ ‖φε,s‖20+‖φε‖20
≤ C‖f‖0.

Rest of the inequalities can be proved in a similar manner.



In fact, this theorem yields that φ⊥ε is negligible as ε→ 0.

Corollary 4.3.6. Under the assumptions in Theorem 4.3.5, the following inequality holds

‖φ⊥ε ‖≤
2

π
Cε‖f‖,

thus φ⊥ε converges to 0 as ε→ 0 as an element of H0.

Proof. Let us consider the Neumann Laplacian −4(−1,1)
N acting in L2 ((−1, 1)). Using the varia-

tional characterisation ( [6, Lemma XI-1.1] ), we can estimate its second eigenvalue as

λ2 =
(π

2

)2

= inf
ψ∈W 1,2((−1,1)),

(ψ,χ1)=0

‖ψ′‖2

‖ψ‖2
≤ ‖ψ

′‖2

‖ψ‖2
,

where the inequality holds for every ψ ∈ W 1,2 ((−1, 1)) satisfying (ψ, χ1) = 0. Employing the
orthogonal decomposition of H0, we see that φ⊥ε is orthogonal to χ1, thus we can write(π

2

)2

‖φ⊥ε ‖2≤ ‖φ⊥ε,t‖2.

Combining the above inequality with (4.3.1), we eventually obtain

‖φ⊥ε ‖≤
2

π
Cε‖f‖.

Furthermore, the inequalities (4.3.1) indicate that the set {ϕε | ε > 0} is bounded in W 1,2(R),
therefore weakly precompact in W 1,2(R), i.e. its closure is compact in weak topology. Hence every
sequence in {ϕε | ε > 0} has a convergent subsequence. Let ϕ0 denote a weak limit point, i.e. there
exists a sequence {εk}k∈N such that εk −−−→

k→∞
0 and

ϕεk
w−−−→

k→∞
ϕ0 in W 1,2(R). (4.3.3)

Now we would like to pass to the limit k → ∞ in (4.3) with ε = εk. The following theorem
shows the limit for test functions ϕ ∈ C∞0 (R). However, since C∞0 (R) is dense in W 1,2(R), it can
be consequently extended.

Theorem 4.3.7. Let φεk ∈ H0 be the function defined by (4.3) and let {ϕεk}∞k=0 be a sequence

of projections ϕεk =
∫ 1

−1
χn(t)φεk(s, t)dt with weak limit ϕ0. Then for every ϕ ∈ C∞0 (R) following

identity holds:

(ϕ̇, ϕ̇0)L2(R) +
(
ϕ, [α2 − iακ]ϕ0

)
L2(R)

+K(ϕ,ϕ0)L2(R) = (ϕ,
1

χ1
Pf)L2(R).



Proof. Let g̃ ∈ H const
0 be the test function in (4.3). More precisely, we choose g̃ ≡ g ∈ C∞0 (R)

which is dense in W 1,2(R). This function is independent of the transversal variable t and can be
rewritten as g(s) = ϕ(s)χ1. The resolvent equation (4.3) with the test function g then takes form(

g,s
hε
,
φεk,s
hε

)
εk

+

(
g

hε
,

2iα̇εktφεk,s
hε

)
εk

+ (g, V1φεk)εk

+
1

ε2
k

(g,t, φεk,t)εk +
1

εk
(g, 2iαφεk,t)εk + (g, V2φεk)εk +K (g, φεk)εk = (g, f)εk

We will prove the theorem by showing the limit term by term.

• Firstly, we will use the Hilbert space decomposition (4.3) to split the first term as(
g,s
hε
,
φεk,s
hε

)
εk

=

∫
Ω0

g,sφ
⊥
εk,s

hε
+

∫
Ω0

g,sϕ̇εkχ1

hε
. (4.3.3)

Considering the estimates (4.1), we have 1
hε
− 1 = εktκ

1−εktκ ≤ Cεk. Therefore we can write∣∣∣∣∣∣
∫
Ω0

g,sφ
⊥
εk,s

hε

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω0

g,sφ
⊥
εk,s

+

∫
Ω0

g,sφ
⊥
εk,s

(
1

hε
− 1

)∣∣∣∣∣∣
≤Cεk‖g,s‖ ‖φ⊥εk,s‖≤ Cεk‖g,s‖ ‖f‖,

where the first term vanishes due to (4.3) and the last inequality follows from (4.3.1). The
first term in (4.3.7) therefore converges to zero as k →∞. The other one can be rewritten as∫

Ω0

g,sϕ̇εkχ1

hε
=

∫
Ω0

g,sϕ̇εkχ1 +

∫
Ω0

g,sϕ̇εkχ1

(
1

hε
− 1

)
.

The first integral converges to
∫

Ω0

g,sϕ̇0χ1 and since the integrand is independent of t, it can be

rewritten as
∫
R
ϕ̇ϕ̇0 = (ϕ̇, ϕ̇0)L2(R). The other integral can be estimated by

∫
Ω0

g,sϕ̇εkχ1

(
1
hε
− 1
)
≤

Cεkχ1‖g,s‖‖ϕ̇εk‖, thus it is negligible in the limit. Summing up, we have shown(
g,s
hε
,
φεk,s
hε

)
εk

k→∞−−−→ (ϕ̇, ϕ̇0)L2(R) .

• Using (4.1), we can estimate 1
hε

= 1
1−εktκ ≤ C. Together with (4.3.4) this estimate yields

∣∣∣∣∣
(
g

hε
,

2iα̇εktφεk,s
hε

)
εk

∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω0

2iα̇εktgφεk,s
hε

∣∣∣∣∣∣ ≤ Cεk
∣∣∣∣∣∣
∫
Ω0

gφεk,s

∣∣∣∣∣∣
≤Cεk‖g‖ ‖φεk,s‖≤ Cεk‖g‖ ‖f‖.

Hence, the second term converges to zero as k →∞.



• The term including the first potential V1 can be estimated as

|(g, V1φεk)εk |≤ Cεk|(g, φεk)εk |≤ Cεk‖g‖ ‖φεk‖≤ Cεk‖g‖ ‖f‖,

where the first inequality follows from Lemma 4.3.2 and in the last one we used (4.3.4). As a
result the first term is negligible in the limit.

• Since g is independent of t, we can immediately write

1

ε2
k

(g,t, φεk,t)εk = 0.

• The term including the second potential can be rewritten by the definition of V2 as

(g, V2φεk)εk =

∫
Ω0

α2gφεk − i
∫
Ω0

ακgφεk . (4.3.3)

Subsequently, we rewrite the first integral as∫
Ω0

α2gφεkhε =

∫
Ω0

α2gφεk +

∫
Ω0

α2gφεk(hε − 1).

Using the Hilbert space decomposition, we obtain∫
Ω0

α2gφεkh =

∫
Ω0

α2gϕεkχ1 +

∫
Ω0

α2gφ⊥εk +

∫
Ω0

α2gφεk(hε − 1).

The first integral converges to
∫

Ω0

α2gϕ0χ1 and because its integrand is independent of t, it

can be rewritten as
(
ϕ, α2ϕ̇0

)
L2(R)

. The Corollary 4.3.6 states that φ⊥εk
k→∞−−−→ 0, thus the

second integral vanishes for k →∞. The third term can be estimated by
∫

Ω0

α2gφεk(hε− 1) ≤

Cεk‖g‖‖φεk‖ and since φεk is bounded by (4.3.1), the integral converges to zero.

The second integral in (4.3.7) can be rewritten as∫
Ω0

ακgφεk =

∫
Ω0

ακgϕεkχ1 +

∫
Ω0

ακgφ⊥εk .

The first term converges to (ϕ, ακϕ̇0)L2(R) and the second term vanishes by Corollary 4.3.6.

In conclusion, we have shown

(g, V2φεk)εk
k→∞−−−→

(
ϕ, [α2 − iακ]ϕ0

)
L2(R)

.

• By the same arguments as in the previous case, we see that

K (g, φεk)εk
k→∞−−−→ K(ϕ,ϕ0)L2(R).



• The term on the right hand side can be rewritten as

(g, f)εk =

∫
Ω0

gf +

∫
Ω0

gf(hε − 1).

As in the previous cases, the second term converges to zero. The first integral is independent
of εk, thus it does not vary in the limit. Since the function g is independent of t, it can be

rewritten as
∫
R
χ1ϕ(s)

(∫ 1

−1
f(s, t)dt

)
ds. Recalling the definition of the projection P onto the

subspace H const
0 , we finally obtain

(g, f)εk
k→∞−−−→ (ϕ,

1

χ1
Pf)L2(R).

• The last and the most difficult step is to show that the remaining term

1

εk
(g, 2iαφεk,t)εk =

1

εk

∫
Ω0

2iαgφεk,thε
k→∞−−−→ 0. (4.3.3)

To prove it, we return to the equation (4.3). We choose here g̃(s) := α(s)g(s)t as the test
function and multiply the whole equation by ε to get

ε

∫
Ω0

α̇gtφε,s + αġtφε,s
hε

+ 2iε2

∫
Ω0

αα̇t2gφε,s + ε

∫
Ω0

V1hεαtgφε +
1

ε

∫
Ω0

αgφε,thε

+2i

∫
Ω0

α2tgφε,thε + ε

∫
Ω0

V2αgtφε +Kε

∫
Ω0

αgtφεhε = ε

∫
Ω0

αgtfhε.

By the same arguments as in the previous cases, we conclude that all the terms on both sides
of the equation (4.3.7) except for 1

ε

∫
Ω0

αgφε,thε tend to zero as ε→ 0, thus

lim
ε→0

1

ε

∫
Ω0

αgφε,thε = 0,

which is the desired limit (4.3.7) up to the constant 2i.

Since we showed the limit for any g(s) = ϕ(s)χ1 ∈ C∞0 (R), we can say, that the identity holds for
every ϕ ∈ C∞0 (R).

Since C∞0 (R) is dense in W 1,2(R), the obtained identity extends to ϕ ∈ W 1,2(R). Hence ϕ0 is
the solution of the one-dimensional equation(

− d2

ds2
+ α2(s)− iα(s)κ(s) +K

)
ϕ0(s) = f(s) in R.

This equation can be regarded as an action of the operator Heff +K, where

Heff := − d2

ds2
+ α2 − iακ (4.3.3)



is the operator in L2(R) associated with the quadratic form

heff[ϕ] = ‖ϕ̇‖L(R)+
(
ϕ, [α2 − iακ]ϕ

)
L2(R)

Dom(heff) = W 1,2(R).

Since the same result is obtained for any limit point, we have proved

ϕε
w−−−→

k→∞
ϕ0, in L2(R);

φ⊥ε
w−−−→

k→∞
0 in H ⊥

0 .

That is
φε

w−−−→
ε→0

χ1ϕ0 + 0 in H0

with respect to the decomposition H0 = H const
0 ⊕H ⊥

0 . Recalling the definition of φε, we can
summarize this section in the following corollary.

Corollary 4.3.8. Let Ĥε be the operator defined by (4.2.5) and Heff be the operator defined by

(4.3), then Ĥε converges to Heff in the weak resolvent sense, i.e.(
Ĥε +K

)−1

f
w−−−→
ε→0

(
Heff +K

)−1

(Pf) + 0 in H0.

This result takes into account that the operators act in different Hilbert spaces.



Chapter 5

Conclusion

We were interested in spectral properties of a curved planar waveguide, subject to Robin boundary
conditions. We defined the Robin Laplacian using the theory of sectorial forms. We found the
spectrum of the Robin Laplacian in a straight planar strip and we mentioned the Dirichlet and
Neumann Laplacians as the limit cases. As a main result, we proved that the non-selfadoint Robin
Laplacian in a curved planar strip converges to the self-adjoint effective Hamiltonian Heff in a
weak-resolvent sense as the width of the strip tends to zero. The problem that the operators act in
different Hilbert spaces was solved by the Hilbert space decomposition.

There are several direction in which this thesis can be extended. First of all, we expect that
the convergence actually holds in strong or even norm-resolvent sense. Additionally, we embedded
the strip in the space R2 but it is possible to define it on a Riemannian manifold using the Fermi
coordinates. The strip then represents a thin layer and its spectrum depends not only on the
curvature of the strip but also on the curvature of the manifold. Lastly, we can extend this result
to higher dimensions.
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