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Abstrakt: Tato práce si klade za cíl poskytnout vhled do metod tvarové optimalizace. Tři problémy, jeden
z elektrostatiky, druhý z kvantové mechaniky a třetí z dynamiky kontinua jsou uvažovány. Představíme
objem zachovávající transformaci, která může být interpretována jako kroucení a ohýbání. Užitím vari-
ačních metod je ukázáno, že pokud je koaxiální kondenzátor mírně zkroucen či ohnut, pak jeho kapacita
naroste. Dále aplikujeme speciální, kroutící, případ oné transformace na válcový kvantový vlnovod a
prostřednictvím spektrální teorie dokážeme, že válcový vlnovod má nižší energii základního stavu, než
kterýkoliv zkroucený. Též provedeme porovnání dvou matematických modelů ustáleného viskózního
proudění tekutiny v trubce od různých autorů. V jednom modelu válcová trubka optimalizuje disipaci
energie, v druhém však nikoliv.

Klíčová slova: Hardyho nerovnosti, kondenzátor, kvantový vlnovod, proudění tekutin, variační počet
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Variational problems on optimal geometry in physics

Author: Jan Šmejkal

Abstract: This work aims to provide insight into shape optimization methods. Three problems, one in
electrostatics, second in quantum mechanics and the third in contiuum dynamics, are tackled. We in-
troduce a volume-preserving transformation, which can be interpreted as twisting and bending. Using
variational methods, it is shown that if a coaxial capacitor is slightly twisted or bent then its capacitance
increases. Next, we apply a special, twisting, case of the transformation to a cylindrical quantum waveg-
uide and prove via spectral theory that the cylindrical waveguide has a lower energy of the ground state
than any twisted waveguide. We also offer a comparison of two mathematical models of steady viscous
fluid motion in a pipe by different authors. In one model, the cylidrical pipe optimizes dissipated energy,
in the other, however, it does not.
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Introduction

As modern technology proceeds in its inevitable progress, driven by the use of the scientific method,
the range of possibilities for practical realizations derived from one theoretical concept extends beyond
the prospect of actualization of every distinct variation into the real world.

One then often faces the dilemma, as to which of the manifold options theoretically available should
be invested in and produced into a tangible material form. Undoubtedly, it is the preference of optimality
over mediocrity, or in the extreme, pessimality, that motivates this choice.

In this work, we tackle such problems, more specifically, we study the influence of geometrical
configuration, or in simple terms – shape, on certain criteria that are regarded as fundamental to the issue
at hand.

The incitement for this thesis is that we believe the overall topic to be of great significance, inasmuch
as it establishes a connection between abstract principles and concrete purposes.

There are altogether three chapters (if Introduction and Conclusion are not included) and three ap-
pendices forming this work. Those are then divided into sections and the sections are further partitioned
into subsections.

The first chapter will deal with a question in electrostatics. A coaxial capacitor will be considered
and its shape deformed by a class of certain perturbations. With the help of the calculus of variations, we
shall study what effect these perturbations have on the capacitance of the capacitor.

The second chapter will examine a quantum mechanical waveguide. We shall begin with a waveg-
uide of cylindrical geometry and then apply a twisting transformation. The ground-state energy of the
waveguide is of the interest, and we will analyze it by the means of spectral theory. In addition, the
article [10] on similar, yet more general, twisting and bending of a quantum waveguide, is outlined and
some Hardy’s inequalities therefrom are quoted.

The third chapter will present the Navier-Stokes equations and then will proceed with an overview of
two papers, [6] and [15], both of which analyze the steady motion of a viscous fluid. The former claims
that the usual technical solution, a cylindrical pipe, is not the most convenient choice in terms of energy
dissipation. The latter offers a counterstatement and insist on the optimality of the cylinder. We shall
provide a comparison of the proposed mathematical models.

Next will be the conclusion, wherein we shall summarize our results and state some open questions
raised by this thesis.

In the first appendix, our notation will be explained.
In the second appendix, we shall introduce basic elements of the calculus of variations. A simple

case of the Euler-Lagrange equations will be discussed and the Dirichlet’s principle will be presented.
We will also propose a modified version of this principle, which is used in the first chapter.

Lastly, in the third appendix, foundations of spectral theory will be laid out for the purpose of their use
in the second chapter. We shall begin with the notion of linear operators and thereto closely associated
sesquilinear forms, next, Sobolev spaces are defined and some important results such as the minimax
theorem are included.
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Chapter 1

Shape Perturbation of an Electrostatic
Capacitor

1.1 Introduction

This chapter aims to examine how the capacitance of a coaxial capacitor changes when its shape is
perturbed while maintaining constant volume. Due to the complexity of the problem in general, we shall
only consider a certain class of perturbating transformations that includes, but is not limited to, such that
can be interpreted as twisting and bending.

In particular, we shall begin with a coaxial capacitor, introduce the shape transformation and then
study the first and second variation of its capacitance under the perturbation.

1.2 Unperturbed Case

A capacitor is a device that utilizes the difference of electrostatic potential (voltage) to store electrical
energy. More specifically, the potential differential is achieved by charging two disconnected conductors
(called electrodes) with opposite charges (cf. [4, 2.5]).

A cylindrical coaxial capacitor is a capacitor of a particular shape. It consists of two disconnected
coaxial cylindrical surfaces of radii R, r ∈ R,R > r. The usual mathematical model of a cylindrical
capacitor is such that its length is prescribed as infinite, which in reality corresponds to the notion that it
is much longer than it is wide and so the effect of the electrostatic field on the extremes can be neglected.

The transverse cross-section of a cylindrical capacitor (that is, its intersection with a plane perpen-
dicular to axis along its length) is, of course, an annulus. For our purposes, nevertheless, the geometry of
the capacitor cross-section can be generalized to a broader family of shapes. One can, in fact, consider
instead of an annulus the image thereof by a continuously differentiable injective map Υ : ω̂ → R2,
where ω̂ is the aforementioned (open) annulus. If we denote the new transverse cross-section ω := Υ(ω̂)
then the new capacitor shall be defined as ΩR := R × ω. We also define the outer and inner electrode as
∂RΩR := R × Υ(∂ω̂ ∩ {x′ ∈ R2 : |x′| = R}), ∂rΩR := R × Υ(∂ω̂ ∩ {x′ ∈ R2 : |x′| = r}), respectively.

Figure 1.1 shows some possible shapes for ω, which result from the use of the following transforma-
tions: (Images are not to scale, however, aspect ratio is preserved.)

(1.1a) : (x2, x3) 7→ (x2, x3)
(1.1b) : (x2, x3) 7→ (x2(1 + x2

3)−1, x3)
(1.1c) : (x2, x3) 7→ (arctan x2 + π, arctan x3 + π)
(1.1d) : (x2, x3) 7→ (x2, x3) 7→ (x2 exp x3, x3)

13



14 CHAPTER 1. SHAPE PERTURBATION OF AN ELECTROSTATIC CAPACITOR

Figure 1.1: Some possible cross-sections

(a) An annular cross-section (b) A “diamond-shaped” cross-section

(c) A “square-shaped” cross-section (d) A “cusp-shaped” cross-section



1.2. UNPERTURBED CASE 15

In our case, we shall assume that the outer boundary ∂RΩR is earthed (which is equivalent to the idea
that electrostatic potential thereon is zero) and that the inner boundary ∂rΩR is so charged that the voltage
in between the boundaries is equal to one. This mathematically corresponds to the following Dirichlet
boundary value problem (an analogy to the problem in [4, 2.5]):

−∆ψ = 0 x ∈ ΩR,

ψ = 0 x ∈ ∂RΩR,

ψ = 1 x ∈ ∂rΩR,

(1.1)

where ψ is the electrostatic potential and ∆ is the Laplacian operator which acts upon a twice differen-
tiable function as a sum of its second derivatives with respect to all independent variables, that is

∀ψ ∈ C2(ΩR) : ∆ψ =
∂2ψ

∂x2
1

+
∂2ψ

∂x2
2

+
∂2ψ

∂x2
3

.

The classical way of defining electrostatic capacitance is such that it is the maximum amount of
charge that can be placed on ∂rΩR when the voltage between the electrodes (created by this charge) is a
unit (cf. [4, 2.5]). In other words it is charge related to unit of voltage. In our case, however, we shall
first adopt a more general notion of p-capacity which is known to be equivalent to classical electrostatic
capacitance in case of p = 2 (cf. [16, sec. 1 (f)]).

Definition 1.2.1 (p-capacity). Let Λ be a measurable set, Γ ⊂ ∂Λ. Then the p-capacity of Γ with respect
to Λ shall be defined as

capΓ
p(Λ) := inf

{∫
Λ

|∇φ|p : φ ∈ C∞0 (Λ) ∧ φ
∣∣∣
Γ

= 1
}
.

Remark 1.2.1.1. In view of the Dirichlet principle (see Theorem B.3.3), if Λ has a boundary of class C1

and is bounded, the minimizing function φ̂ satisfies
−∆φ̂ = 0 x ∈ Λ,

φ̂ = 0 x ∈ ∂Λ \ Γ,

φ̂ = 1 x ∈ Γ.

In particular case of ψ, however, the Dirichlet principle cannot be used as the set ΩR is not bounded.
Even if the Dirichlet principle were to be postulated we get using Fubini’s theorem

cap(ΩR) =

∫
ΩR

|∇ψ|2 =

∫
R

dx1

(∫
ω

dx2 dx3|∇ψ|
2
)
.

Due to the translational symmetry of ΩR, we can expect that ψ is independent of x1 (this will be
discussed at greater length later on). The integral, however, would then be infinite, for one has to integrate
a non-zero constant over the set R. This was to be expected, because, of course, an infinitely long
capacitor can hold an infinite amout of charge.

It is for this exact reason that we shall consider only the capacity of a section of the capacitor. In case
of ψ from (1.1) we would have (L is a real positive constant)

capL(ΩR) :=
∫

ΩL

|∇ψ|2 =

∫
ω

dx2 dx3|∇ψ|
2.
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Mathematically, it is also possible to consider a finite capacitor from the beginning with periodic
boundary conditions imposed on the extremes. The Dirichlet boundary value problem corresponding to
such situation can be written as 

−∆ψ = 0 x ∈ Ω,

ψ = 0 x ∈ ∂RΩ,

ψ = 1 x ∈ ∂rΩ,

ψ(−L, x′) = ψ(L, x′) x′ ∈ ω,
ψ,1(−L, x′) = ψ,1(L, x′) x′ ∈ ω,

where
Ω := [−L, L] × ω,
∂Rω := Υ(ω̂ ∩ {x′ ∈ R2 : |x′| = R}),
∂rω := Υ(ω̂ ∩ {x′ ∈ R2 : |x′| = r}),
∂RΩ := [−L, L] × ∂Rω,

∂rΩ := [−L, L] × ∂rω,

and ψ,1 is the derivative of ψ with respect to the x1-axis. Note that we have ommited L in the names of
the sets, as we shall only consider the problem for fixed L.

If one were to redefine p-capacity so that the infimum is only taken over functions satisfying bound-
ary conditions in the problem above, the Modified Dirichlet principle B.3.6 could be utilized to tie the
capacitance (2-capacity) to ψ. This shall be done later in order to avoid repetition, as a family of capacitor
shapes will be considered instead of only Ω.

Lastly, we shall state a lemma about the geometry of ∂Rω that will be used later. Essentialy, it states
the intuitive fact that ∂Rω cannot be a subset of a line.

Lemma 1.2.1. Let a, b, c ∈ R, a , 0 ∨ b , 0. Then

∂Rω 1

{(
x2
x3

)
∈ R2 : ax2 + bx3 + c = 0

}
.

We shall omit the proof of Lemma 1.2.1, as it is a simple exercise on continuous maps and the
intermediate value theorem.

1.3 Perturbating Transformation

A class of transformations that will be applied to the straight capacitor from the previous section will
be now presented. We consider two maps V2,V3 : [−L, L]→ R, V2,V3 ∈ C3([−L, L]) with the conditions

V2(−L) = V2(L) = V3(−L) = V3(L) = 0 (1.2)

and
V̇2 , 0 ∧ V̇3 , 0

(where the dot represents derivative) and define the perturbating transformation Pε as

∀ε ∈ R : ∀

x1
x2
x3

 ∈ [−L, L] × R2 : Pε

x1
x2
x3

 =

x1
x2
x3

 + ε

 0
V2(x1)
V3(x1)

 .
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It is apparent that Pε becomes the identity map for ε = 0. It is also an identity (for any ε) when we fix
x1 = −L, L. One can observe that Pε is for a fixed x1 ∈ [−L, L] a translation in the transverse plane by
the vector ε(V2(x1),V3(x1)).

Let Ωε = Pε(Ω) be the new (perturbed) shape for the capacitor. It follows from the reasoning above
that the manner in which Pε acts upon the straight capacitor is that it keeps the ends of the capacitor
fixed (this is needed because of the periodic boundary condition that will be imposed) and then for each
x1 ∈ [−L, L] translates the cross section ω—while keeping it in the same plane that it resided before the
translation—in a way continuous with respect to x1.

The Jacobian matrix (cf. [7, def 1.7.8]) of the transformation Pε at x = (x1, x2, x3) ∈ [−L, L] × R2

can be easily computed to be

Jε(x) := JPε(x) =

(
∂(Pε)i

∂x j

∣∣∣∣x
)3

i, j=1
=

 1 0 0
εV̇2(x1) 1 0
εV̇3(x1) 0 1

 .
By Jε we shall denote the map Jε : [−L, L] × R2 → R3,3 : x 7→ Jε(x). As a shorthand we shall also write
JT
ε instead of (Jε)T .

As Jε(x) is a triangular matrix, its determinant can be acquired by simply taking the product of its
diagonal elements to get

∀x ∈ [−L, L] × R2 : det Jε(x) = 1.

This means Pε is a volume-preserving transformation, more specifically, for any measurable set M ⊂

[−L, L] × R2 one can write ∫
M

1 dx1dx2dx3 =

∫
Pε(M)

1 dx1dx2dx3

as a consequence of the integral substitution theorem.
The Jacobian matrix of the inverse transformation can be easily obtained after a trivial observation

that Pε can be inverted simply by changing the sign of ε, in other words (Pε)−1 = P−ε. We can thus
write

J(Pε)−1
(x) = JP−ε(x) = J−ε(x).

Because the Jacobian matrix is dependent only on the first coordinate x1, and the first component of
Pε is an identity, we can write

J−ε(x) = J−ε(Pε(x)). (1.3)

Later in this chapter, we shall adopt the same geometric approach as in [10] and treat the problem in
curvilinear coordinates. In [10, 2.4], a metric tensor is defined and its use proves later convenient. It will
soon become apparent, that the metric tensor can be a useful tool even in our case. The metric tensor of
Pε is defined as

gε(x) := gPε(x) = JT
ε (x)Jε(x),

Using the identity (1.3), the definition of the metric tensor and the inverse map theorem (cf. [7, thm
2.9.4]) we can derive a formula for the inverse metric tensor

g−1
ε (x) = J−ε(x)JT

−ε(x), (1.4)

thusly

g−1
ε (x) := (gε(x))−1 = (JT

ε (x)Jε(x))−1 = (Jε(x))−1(JT
ε (x))−1 = J−ε(Pε(x))JT

−ε(Pε(x)) = J−ε(x)JT
−ε(x).

(The fact that matrix transposition and inversion commute was employed)
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After performing the matrix multiplication we get the explicit matrices

gε(x) =

ε
2V̇2(x1)2 + ε2V̇3(x1)2 + 1 εV̇2(x1) εV̇3(x1)

εV̇2(x1) 1 0
εV̇3(x1) 0 1

 ,

g−1
ε (x) =

 1 −εV̇2(x1) −εV̇3(x1)
−εV̇2(x1) ε2V̇2(x1)2 + 1 ε2V̇2(x1)V̇3(x1)
−εV̇3(x1) ε2V̇2(x1)V̇3(x1) ε2V̇3(x1)2 + 1

 .
By g−1

ε the map g−1
ε : [−L, L] × R2 → R3,3 : x 7→ g−1

ε (x) will be meant.
Lastly, we shall proceed to derive two formulas using the derivative of a composite function theorem.

These formulas will prove convenient in future.

Proposition 1.3.1. Let M̃ ⊂ [−L, L] × R2, φ̃ ∈ W1,2(M̃).
Denote φ := φ̃ ◦ Pε ∈ W1,2(M), where M := (Pε)−1(M̃). We can write

‖∇φ̃‖2 = ‖JT
−ε∇φ‖

2,

where the norms on the left and right are those of the L2(M̃) and L2(M) spaces, respectively, and the
gradients are to be understood in a weak sense (see Appendix C for details).

Proof. Firstly we can write (recall (Pε)−1 = P−ε)

‖∇φ̃‖2 =

∫
M̃
|∇φ̃|2 =

∫
M̃
|∇(φ ◦ P−ε)|2.

Now the derivative of a composite function theorem (chain rule) will be used on the integrand.
Note that we can rewrite the chain rule (for x̃ ∈ M̃, x := P−ε(x̃) ∈ M)

∀i ∈ {1, 2, 3} :
∂φ̃

∂xi

∣∣∣x̃ =

3∑
j=1

∂(P−ε) j

∂xi

∣∣∣x̃ ∂φ∂x j

∣∣∣x
into a more compact and convenient tensor form, thusly

(∇φ̃)
∣∣∣x̃ = (∇P−ε)

∣∣∣x̃(∇φ)
∣∣∣x = (JT

−ε)
∣∣∣x̃(∇φ)

∣∣∣x = (JT
−ε)

∣∣∣x(∇φ)
∣∣∣x,

where definition of Jacobian matrix and (1.3) were used in the second-to-last and last equality, respec-
tively. This justifies the following use of the integral substitution theorem (we remind that det J−ε = 1)

‖∇φ̃‖2 =

∫
M̃

(
|JT
−ε∇φ|

2
)∣∣∣
P−ε(x̃)dx̃ =

∫
M
|JT
−ε∇φ|

2.

To finish the proof apply the definition of the L2(M) norm. �

Corollary 1.3.1.1. With the same assumptions as in the proposition above, we can write

‖∇φ̃‖2 = 〈∇φ | g−1
ε | ∇φ〉,

where 〈∇φ | g−1
ε | ∇φ〉 := 〈∇φ | g−1

ε ∇φ〉 (see Section A.4).
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Proof. One need only use the definitions of | · |2 and ‖ · ‖2 and (1.4) to arrive at the statement, thusly

‖∇φ̃‖2 =

∫
M
|JT
−ε∇ψε|

2 =

∫
Ω

(∇φ)T J−εJT
−ε∇φ =

∫
Ω

(∇φ)Tg−1
ε ∇φ.

�

Proposition 1.3.2. Let M̃ ⊂ [−L, L] × R2, φ̃ ∈ C2(M̃).
Denote φ := φ̃ ◦ Pε ∈ C2(M), where M := (Pε)−1(M̃). We can write

∀x̃ ∈ M̃, x := (Pε)−1(x̃) :
(
∆φ̃

)∣∣∣x̃ =
(
(∇ · JT

−ε)∇φ + g−1
ε � (∇(∇φ))

)∣∣∣x,
where � signifies the matrix element-wise product, that is,

∀A, B ∈ R3,3 : A � B := (Ai jBi j)3
i, j=1 ∈ R

3,3.

Proof. Let x̃ ∈ M̃, x := (Pε)−1(x̃). By rewriting the the matrix and vector multiplications (only formally
for ∇), we see one has to prove 3∑

i=1

∂2φ̃

∂x2
i

 ∣∣∣x̃ =

 3∑
i, j=1

∂A ji

∂xi

∂φ

∂x j
+

3∑
i, j,k=1

AkiA ji
∂2φ

∂xk ∂x j

 ∣∣∣x,
where ∀i, j ∈ {1, 2, 3} : Ai j := (J−ε)i j.

Since we have Ai j(x) = Ai j(x̃) and because the derivative of a composite function theorem was used
in extensive detail in the proof of the previous proposition, we shall omit writing x and x̃ thereon and
instead refer to the variables of φ̃ as x̃1, x̃2, x̃3.

Rest assured we can write without ambiguity

∀i,m, n ∈ {1, 2, 3} :
∂φ̃

∂x̃i
=

3∑
j=1

A ji
∂φ

∂x j
,

∂Amn

∂x̃i
=
∂Amn

∂xi
.

We begin on the left side and apply the derivative of a composite function theorem twice, as following

∆φ̃ =

3∑
i=1

∂

∂x̃i

∂φ̃

∂x̃i
=

3∑
i=1

∂

∂x̃i

(
A ji

∂φ

∂x j

)
=

3∑
i, j=1

(
∂A ji

∂xi

∂φ

∂x j
+ A ji

∂

∂x̃i

∂φ

∂x j

)
.

To finish the proof one only need write (i, j ∈ {1, 2, 3})

∂

∂x̃i

∂φ

∂x j
=

3∑
k=1

Aki
∂

∂xk

∂φ

∂x j
.

�

1.4 Perturbed Capacitor

Let us now consider the capacitor of perturbed shape Ωε = Pε(Ω) and denote ψ̃ε ∈ W2,2(Ωε) its
electrostatic potential. As in the case of the straight capacitor we shall assume the outer electrode to be
earthed and the voltage between the electrodes to be a unit.

Figure 1.2 shows two concrete examples of capacitors perturbed by Pε. The outer electrode is
cropped and transparent so that the inner electrode is visible. We remark that here the terms bent and
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Figure 1.2: Examples of perturbed capacitors

(a) A bent capacitor with a “diamond-shaped” cross-
section

(b) A twisted and slightly bent capacitor with an annular
cross-section

twisted are used in an intuitive and loose fashion. For a mathematically rigorous treatment of these terms,
consult [10, def 2.2, 2.3] and note that our vague notion of “bending” differs therefrom (1.2a and 1.2b
could not be considered bent in terms of [10]).

For 1.2a we have chosen
(V2,V3) : x 7→ (0, x2 − L2)

and in the case of 1.2b we have

(V2,V3) : x 7→ (cos (3πL−1x) + 1, sin (3πL−1x) +
1
2

(x2 − L2))

.
For the same reasons as before, we impose periodic boundary conditions on the extremes of the

capacitor. The Dirichlet boundary value problem for the electrostatic potential ψ̃ε can now be written as−∆ψ̃ε = 0 x ∈ Ωε,

ψ̃ε ∈ BC1
ε,

(1.5)

where

∀C ∈ R : BCC
ε :=

φ ∈ W2,2(Ωε) :

φ = 0 x ∈ ∂RΩε,

φ = C x ∈ ∂rΩε,

φ(−L, x′) = φ(L, x′) x′ ∈ ω,
φ,1(−L, x′) = φ,1(L, x′) x′ ∈ ω.

 ,
∂RΩε := Pε(∂RΩ), ∂rΩε := Pε(∂rΩ).

A possible approach to a construction of a solution to (1.5) is that in first step one finds a function
η̃ε ∈ BC1

ε, that need not necessarily solve (1.5). The second step then involves solving a different system
than (1.5), more precisely, a Poisson equation wherein the right side is ∆η̃ε and the boundary condition
is ϕ̃ε ∈ BC0

ε. Mathematically this means finding a solution ϕ̃ε to−∆ϕ̃ε = ∆η̃ε x ∈ Ωε,

ϕ̃ε ∈ BC0
ε,

(1.6)
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which might in practice pose a simpler problem. The solution to (1.5) is then obtained as ψ̃ε = ϕ̃ε + η̃ε,
as can be checked by plugging back to (1.5).

We shall not prove existence and uniqueness of a solution to (1.6) as a full proof would extend
beyond the scope of this thesis. A simple sketch of a proof that refers to generally known existence and
uniqueness for a elliptic Dirichlet boundary condition problem on a bounded set (cf. [3]) is as follows.

It is possible to consider a continuously differentiable transformation of Ωε into a “hollow torus”.
If the transformation is constructed such that it “glues” the ends of the capacitor to each other (without
rotating them), and is injective otherwise, then the periodic boundary conditions transform into a simple
requirement for continuous differentiability on the "glued" cross-section. Since the Dirichlet conditions
will not change, the existence and uniqueness then follow, as the "hollow torus" is a bounded set.

Generally, only a weak solution is guaranteed to exist. If the “glueing” transformation and the func-
tions V1 and V2 were smooth as well as the boundaries ∂rΩε and ∂RΩε, an existence of a smooth solution
is shown in [3, thm. 6.3.6].

It should also be noted that it is not possible to simply choose ϕ̃ε = η̃ε in order to solve (1.6), as each
one of the functions is required to satisfy a different condition on the boundary ∂rΩε.

We shall write the weak formulation of (1.6). For that one need multiply the first equation in (1.6)
by an arbitrary test function φ ∈ D(h̃ε) and integrate over the domain (which is equivalent to taking the
L2 scalar product of φ and −∆ϕ̃ε). By integration by parts and the Gauss theorem one has

−

∫
Ωε

φ∆ϕ̃ε =

∫
Ωε

∇φ∇ϕ̃ε −

(∫
ω(L)

φϕε,n +

∫
ω(−L)

φϕε,n

)
︸                               ︷︷                               ︸

=0

−

∫
∂RΩε

φϕε,n︸        ︷︷        ︸
=0

−

∫
∂rΩε

φϕε,n︸        ︷︷        ︸
=0

= 〈∇φ | ∇ϕ̃ε〉

where ω(l) = Ωε∩ {x1 = l} is the transverse cross-section for l = −L, L and the underbraced terms vanish
as a consequence of the boundary conditions imposed on φ and ϕε,n.

If we now define a quadratic form h̃ε : D(h̃ε)→ C such thatD(h̃ε) = B̂C0
ε,

∀φ ∈ D(h̃ε) : h̃ε[φ] = ‖∇φ‖2,

where B̂C0
ε is same as BC0

ε except that the last boundary condition is ommited, then the weak formulation
of (1.6) reads as ∀φ ∈ D(h̃ε) : h̃ε(φ, ϕ̃ε) = 0

ϕ̃ε ∈ BC0
ε

(1.7)

The reason we have ommited the last boundary condition from BC0
ε is that normal derivative is known

to vanish upon taking a closure of a quadratic form (cf. [2, thm. 7.2.1]). Hence, we can expect h̃ε to be
closed.

Before the capacitance of the perturbed capacitor is examined, two convenient propositions shall be
proven. Firstly it will be shown that for the case ε = 0 the function ψ̃0 is not dependent on x1. Secondly,
we shall demonstrate that the set BC0

0 is orthogonal to ψ̃0 in a certain sense.

Proposition 1.4.1. The solution of (1.5) for ε = 0 is not dependent on x1, that is

ψ̃0,1 = 0.

Proof. Given the uniqueness of a solution for (1.5) we need only find a function that satisfies the system
and is also independent of x1. Indeed such a function can be found simply by considering a problem on
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the transverse cross-section ω 
∆ξ = 0 x′ ∈ ω,
ξ = 0 x′ ∈ ∂Rω,

ξ = 1 x′ ∈ ∂rω.

Then the extension ξ̃ of ξ on the whole capacitor defined by

∀(x1, x′) ∈ [−L, L] × R2 : ξ̃(x1, x′) = ξ(x′)

is a solution to (1.5) for ε = 0 as can be checked by plugging into the system. �

Proposition 1.4.2. Let φ ∈ BC0
0. Then we have

〈∇φ | ∇ψ̃0〉 = 0.

Proof. Let φ ∈ BC0
0. By setting ε = 0 in (1.5), multiplying the resulting equation by φ and integrating

by parts one has

0 = −

∫
Ω

φ∆ψ̃0 =

∫
Ωε

∇φ∇ψ̃0 = 〈∇φ | ∇ψ̃0,n〉.

(The boundary terms vanish as a consequence of the boundary conditions.) �

1.5 Curvilinear Coordinates

We will rewrite the problem (1.5) into a form wherein the domain of the solution will not be depen-
dent on ε. This is done so that one can take the derivative of the problem with respect to ε without much
effort. The easiest way is to introduce a new function ψε : Ω → R such that ψε = ψ̃ε ◦ Pε. By utilizing
Proposition 1.3.2 we can, after careful matrix multiplication, write

∀x̃ ∈ Ωε : (∆ψ̃ε)(x̃) = (−ε(V̈2ψε,2 + V̈3ψε,3) + ∆ψε − 2ε(V̇2ψε,12 + V̇3ψε,13)

+ ε2(V̇2
2ψε,22 + V̇2

3ψε,33 + 2V̇2V̇3ψε,23))(P−ε(x̃)).

This can be rewritten as

∀x ∈ Ω : (∆ψ̃ε)(Pε(x)) = (((∂1 − εV̇2∂2 − εV̇3∂3)2 + ∂2
2 + ∂2

3)ψε)(x).

The Dirichlet conditions are easy to transform, because we can write(
∀x̃ ∈ ∂RΩε : ψ̃ε(x̃) = 0

)
⇔

(
∀x̃ ∈ ∂RΩε : ψε((Pε)−1(x̃)) = 0

)
⇔

(
∀x ∈ ∂RΩ : ψε(x) = 0

)
,

since (Pε)−1(∂rΩε) = ∂rΩ. One can show similarily the transformation of the Dirichlet condition on ∂rΩ

and the periodic boundary condition for ψ̃ε.
The periodic boundary condition for the normal derivative of ψ̃ε, however, has to be rewritten using

the derivative of a composite function theorem. Since we have already applied the theorem in previous
sections, and shown its explicit use in detail, we only show the result, that is(

∀x′ ∈ ω : ψ̃ε,n(−L, x′) = −ψ̃ε,n(L, x′)
)
⇔

(
∀x′ ∈ ω : ψε,ñ(ε)(−L, x′) = −ψε,ñ(ε)(L, x′)

)
,

where
∀φ ∈ C1(Ω) : φ,ñ(ε) := φ,1 − εV̇2φ,2 − εV̇3φ,3
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If we now define a differential operator Hε : W2,2(Ω)→ L2(Ω) as

∀φ ∈ W2,2(Ω) : Hεφ = −((∂1 − εV̇2∂2 − εV̇3∂3)2 + ∂2
2 + ∂2

3)φ,

it is then apparent that one can transfer the problem (1.5) to the new form

Hεψε = 0 x ∈ Ω,

ψε = 0 x ∈ ∂RΩ,

ψε = 1 x ∈ ∂rΩ,

ψε(−L, x′) = ψε(L, x′) x′ ∈ ω,
ψε,ñ(ε)(−L, x′) = −ψε,ñ(ε)(L, x′) x′ ∈ ω.

(1.8)

1.6 Capacitance under Perturbation

We shall now prove the main result of this chapter, that is, that a small deformation of the straight
capacitor by the transformation Pε results in an increase of the electrostatic capacity. Firstly we define
the modified 2-capacity for the perturbed capacitor as

Definition 1.6.1 (Modified 2-capacity for the perturbed capacitor).

∀ε ∈ R : γ(ε) := inf
{∫

Ωε

|∇φ|2 : φ ∈ BC1
ε

}
. (1.9)

As per the Modified Dirichlet principle B.3.6 we are allowed to write

∀ε ∈ R : γ(ε) =

∫
Ωε

|∇ψ̃ε|
2,

where ψ̃ε is the solution to (1.5)
Finally, we can inspect the first and second derivative of γ. The outcome of the inspection is summa-

rized by the following theorem:

Theorem 1.6.2.

γ′0 :=
dγ
dε

∣∣∣
ε=0 = 0, γ′′0 :=

d2γ

dε2

∣∣∣
ε=0 > 0.

Proof. Let ε ∈ R. To prove the statement we first rewrite the integral in (1.9) so that the integration
domain is no longer dependent on ε. For this purpose, we can use Corollary 1.3.1.1

γ(ε) =

∫
Ωε

|∇ψ̃ε|
2 = ‖∇ψ̃ε‖

2 = 〈∇ψε | g
−1
ε | ∇ψε〉.

Secondly, we shall express g−1
ε in powers of ε:

g−1
ε = I + ε(vT + v) + ε2 vT v,

where

I =

1 0 0
0 1 0
0 0 1

 , v =

0 −V̇2 −V̇3
0 0 0
0 0 0

 .
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For further purposes we also introduce the notation

∀φ ∈ W2,2(Ω) : φ,v := v∇φ = −V̇2φ,2 − V̇3φ,3.

It can be observed that

∀φ, ψ ∈ W2,2(Ω) : 〈∇φ | vT + v | ∇ψ〉 = 〈φ,v |ψ,1〉 + 〈φ,1 |ψ,v〉 ∧ 〈∇φ | v
T v | ∇ψ〉 = 〈φ,v |ψ,v〉.

Thirdly, to continue the proof, we have to assume that ψ̃ε is analytic in ε at some neighbourhood of zero.
Reasons as to why this claim should hold are stated in the remark below. If ψ̃ε were analytic, then ψε
would be as well, as Pε is clearly analytic. This means one can use the Taylor’s theorem on ψε to obtain

∃ε0 ∈ R, ε0 > 0 : ∀ε ∈ (−ε0, ε0) : ∃ψ′0, ψ
′′
0 : Ω→ R : ψε = ψ0 + εψ′0 +

ε2

2
ψ′′0 + O(ε3). (1.10)

By taking the derivative of the boundary value problem (1.8) with respect to ε at ε = 0 (Hε is a
polynomial in ε) we get 

−∆ψ′0 = −H′0ψ0 x ∈ Ω,

ψ′0 = 0 x ∈ ∂RΩ,

ψ′0 = 0 x ∈ ∂rΩ,

ψ′0(−L, x′) = ψ′0(L, x′) x′ ∈ ω,
ψ′0,n(−L, x′) = −ψ′0,n(L, x′) x′ ∈ ω,

(1.11)

(we remind that the derivative with respect to ñ is same as with respect to n for ε = 0) where H′0 :
W2,2(Ω)→ L2(Ω) : φ 7→ (∂1(φ,v) + V̇2φ,21 + V̇3φ,31), in particular

H′0ψ0 = V̈2ψ0,2 + V̈2ψ0,2. (1.12)

We can see that ψ′0 ∈ BC0
0. We can take the second derivative of (1.8) with respect to ε at ε = 0 and

observe that ψ′′0 ∈ BC0
0. Thus, by proposition 1.4.2 we have

〈ψ′0 |ψ0〉 = 0, 〈ψ′′0 |ψ0〉 = 0.

because ψ0 = ψ̃0. The last equality also allows us to write

ψ0,1 = 0.

Bearing these identities in mind, continue by writing γ(ε) in powers of ε (symmetry of the scalar product
and realness of ψε is also used)

γ(ε) = 〈∇ψε | g
−1
ε | ∇ψε〉 = 〈∇(ψ0 + εψ′0 + ε2

2 ψ
′′
0 ) | I + ε(vT + v) + ε2 vT v | ∇(ψ0 + εψ′0 + ε2

2 ψ
′′
0 )〉 + O(ε3)

= ‖ψ0‖
2 + ε

(
〈∇ψ0 | v

T + v | ∇ψ0〉 + 2〈∇ψ′0 | ∇ψ0〉
)

+ ε2
(
〈∇ψ0 | v

T v | ∇ψ0〉 + 〈∇ψ′′0 | ∇ψ0〉 + 2〈∇ψ0 | v
T + v | ∇ψ′0〉 + ‖∇ψ′0‖

2
)

+ O(ε3).

This means that the first derivative of γ at ε = 0 is

1
2

dγ
dε

∣∣∣
0 = 〈ψ0,1 |ψ0,v〉︸       ︷︷       ︸

=0

+ 〈∇ψ′0 | ∇ψ0〉︸        ︷︷        ︸
=0

= 0.
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For the second derivative at ε = 0 we can write

1
2

d2γ

dε2

∣∣∣
0 = ‖ψ0,v‖

2 + 〈∇ψ′0 | ∇ψ0〉︸        ︷︷        ︸
=0

+2〈ψ0,v |ψ
′
0,1〉 + 2 〈ψ0,1 |ψ

′
0,v〉︸       ︷︷       ︸

=0

+‖∇ψ′0‖
2 =

‖ψ0,v‖
2 + 2〈ψ0,v |ψ

′
0,1〉 + ‖ψ′0,1‖

2 + ‖∇′ψ‖2 = ‖ψ0,v + ψ′0,1‖
2 + ‖∇′ψ′0‖

2 ≥ 0,

where ‖∇′ψ′0‖
2 := ‖ψ′0,2‖

2 + ‖ψ′0,3‖
2. It remains to prove the strictness of the inequality. Following lemma

guarantees that fact. �

Lemma 1.6.2.1. Let ψ′0 be defined as in the proof above. Then

‖ψ′0,2‖
2 + ‖ψ′0,3‖

2 > 0 ∨ ‖ψ0,v + ψ′0,1‖
2 > 0

Proof. From the proof above (equation (1.11) and (1.12)) we know that

∆ψ′0 = V̈2ψ0,2 + V̈2ψ0,2.

By taking the derivative of the above equation with respect to x1, x2, x3, respectively, we get (V (3)
2

and V (3)
3 are the third derivatives of V2 and V3, respectively)

∆ψ′0,1 = V (3)
2 ψ0,2 + V (3)

3 ψ0,2,

∆ψ′0,2 = V̈2ψ0,22 + V̈3ψ0,32, (1.13)

∆ψ′0,3 = V̈2ψ0,23 + V̈3ψ0,33. (1.14)

(i) It is possible that V̈2 = V̈3 = 0. In such case, uniqueness of ψ′0 dictates that ψ′0 = 0 (recall
ψ′0 ∈ BC0

0) and we have to show ψ0,v , 0. Suppose (for future contradiction)

ψ0,v = 0.

Now take the derivative of that equation with respect to x2 and x3, respectively. Those two equations
along with the equation for ψ0 yield a linear system for unknowns ψ0,22, ψ0,23, ψ0,33: 1 0 1

V̇2 V̇3 0
0 V̇2 V̇3


ψ0,22
ψ0,23
ψ0,33

 = 0.

Its determinant is V̇2
2 + V̇2

3 . We have

∃x ∈ [−L, L] : V̇2
2 (x) + V̇2

3 (x) > 0.

That implies
∃x ∈ [−L, L] : ∀x′ ∈ ω : ψ0,22(x, x′) = ψ0,23(x, x′) = ψ0,33(x, x′) = 0.

But ψ0 is independent of its first argument, hence ψ0,22 = ψ0,23 = ψ0,33 = 0
(ii) We shall now step back and assume that either V̈2 or V̈3 is non-zero. In order for both ψ′0,2 and

ψ′0,3 to be zero, right sides of equations (1.13) and (1.14) must be identically zero.
Assume (again, for future contradiction) that ψ′0,2 = ψ′0,3 = 0. This, along with the equation for ψ0

yields  1 0 1
V̈2 V̈3 0
0 V̈2 V̈3


ψ0,22
ψ0,23
ψ0,33

 = 0
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But the determinant of such system is V̈2
2 + V̈2

3 and thus we get by the same argument as before, that

ψ0,22 = ψ0,23 = ψ0,33 = 0.

In both cases (i) and (ii) we have made an assumption and arrived at a system of differential equations
for the function ψ0:

ψ0,22 = 0, ψ0,23 = 0, ψ0,33 = 0.

By directly integrating the first equation, then substituting the obtained solution into the second and third
equation we get that (after solving for some uknown functions of x3)

∃a, b, c ∈ R : ∀x1, x2, x3 ∈ Ω : ψ0(x1, x2, x3) = ax2 + bx3 + c

Given the boundary conditions on ψ0, we know that either a or b must be non-zero, as ψ0 cannot be a
constant function. The set of all points where ψ0 is 0 is therefore for a fixed x1 ∈ [−L, L] subset of

B :=
{(

x2
x3

)
∈ R2 : ax2 + bx3 + c = 0

}
By the boundary condition imposed on ∂RΩ (at any fixed x1 ∈ [−L, L]) we have the following

∂Rω ⊂ B.

This is a contradiction with Lemma 1.2.1. �

Corollary 1.6.2.1. We can write

∃ε0 ∈ R, ε0 > 0 : ∀ε ∈ (−ε0, ε0), ε , 0 : γ(ε) > γ(0)

Proof. We can use the analycity (recall ψε is analytical in ε) of γ to write (we have γ′0 = 0).

∃δ ∈ R, δ > 0 : ∀ε ∈ (−δ, δ) : γ(ε) = γ(0) +
ε2

2
γ′′0 + ε2α(ε), lim

ε→0
α(ε) = 0

Limit of α at zero is zero, so we can write (γ′′0 is positive)

∃δ̃ ∈ R, δ̃ > 0 : ∀ε ∈ (−δ̃, δ̃) : |α(ε)| <
1
2
γ′′0 .

Finally, we set ε0 := min {δ, δ̃} and obtain

∃ε0 ∈ R, ε0 > 0 : ∀ε ∈ (−ε0, ε0), ε , 0 : γ(ε) − γ(0) = ε2 (
1
2
γ′′0 + α(ε))︸          ︷︷          ︸

>0

> 0,

which proves the corollary. �

Remark 1.6.2.1. To prove the theorem, analycity of ψ̃ε in ε is needed in order to use the Taylor expan-
sion. This, however, is a mathematical claim that shall not be shown to hold in complete detail.

Instead, we refer mainly to [9] and only outline the reasoning behind the claim.
[9, sec. VII 4.2] defines a Holomorphic family of sesquilinear forms as a family of forms dependent

on some parameter (in our case) ε in a holomorphic way. Such forms are also required to be closed and
share the same domain.
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Thus in our case, the family of forms h̃ε would not suffice, as the domains of functions that they admit
are Ωε. A workaround to this inconvenience is to define a unitary operator Uε : L2(Ωε, dx)→ L2(Ω, dx):

∀φ ∈ L2(Ωε, dx) : Uεφ = φ ◦ Pε

and then a quadratic form hε : D(hε) := Uε(D(h̃ε))→ C such that

∀φ ∈ D(hε) : hε[φ] = ‖∇(Uε)−1φ‖2.

Because it can be shown that hε is for fixed arguments ψ, φ ∈ D(hε) a polynomial in ε, such family
of forms would by definition be a Holomorphic family of forms. Therefore, as Kato shows (if one adds
several steps to his reasoning), the family of solutions to (1.5) should be analytic in ε.





Chapter 2

Twisting of a Quantum Waveguide

2.1 Introduction

The purpose of this chapter is to investigate the behavior of a twisted quantum waveguide. In par-
ticular, we start with a cylindrical one and transform it in a helical manner into a shape not dissimilar to
that of a screw.

The main concern of analysis is the energy corresponding to the first eigenstate, more precisely, its
first and second variation under the twisting transformation from a cylinder.

It should also be noted that the notation in this chapter greatly resembles that of the previous one. We
emphasize that although same symbols are used as previously, in regard to certain analogy, they by no
means refer to ones in the previous chapter. If the previous chapter is referred to, it is always explicitly
stated so.

2.2 Unperturbed Case

Let Ω = {(x1, x2, x3) ∈ R3 : x1 ∈ (−L, L) ∧ x2
2 + x2

3 < R2} denote a cylinder in R3 for L, R ∈
R, R > 0. Let us also define the inlet, outlet and lateral surface of the cylinder E = Ω ∩ {x1 = −L},
S = Ω ∩ {x1 = L}, Γ = ∂Ω \ (E ∪ S ), respectively. A quantum particle confined to Ω for R relatively
small in comparison to L and with Dirichlet condition imposed on Γ and Neumann condition on E and
S can be interpreted as a model of a quantum waveguide. Stationary states of such particle are described
by wave function ψ : Ω→ C given by the time-independent Schrödinger equation:


−∆ψ = λψ x ∈ Ω,

ψ = 0 x ∈ Γ,
∂ψ

∂n
= 0 x ∈ E ∪ S ,

(2.1)

where n represents the outer normal. Note that since both E and S lie on planes perpendicular to the
x1-axis, the last boundary condition in (2.1) simplifies to

∂ψ

∂x1
= 0 x ∈ E ∪ S

29
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By transforming to cylindrical coordinates and utilizing the method of separation of variables, the
lowest energy state of (2.1) can be found to be

ψ0(x1, x2, x3) = CJ0(
j0,1
R

√
x2

2 + x2
3), λ0 =

j20,1
R2 ,

where C ∈ C, J0 is the zero-th Bessel function of the first kind, j0,1 is the first zero thereof and λ0 is the
corresponding eigenvalue. Note that the solution is independend of x1.

Let us define the set of all admissible functions:

BC0 := {φ ∈ W2,2(Ω) : φ�Γ= 0 ∧ φ,1 �E∪S = 0}.

If φ ∈ BC0 then we say that φ satistfies the Dirichlet boundary condition on Γ and the Neumann
boundary condition on E ∪ S .

By multiplying (2.1) by the complex conjugate of an arbitrary test function φ ∈ BC0 and integrating
over the domain, (2.1) can be rewritten into its weak form

∀φ ∈ BC0 : 〈∇φ | ∇ψ〉 = −〈φ |∆ψ〉 = λ〈φ |ψ〉,

ψ ∈ BC0 ∧ ‖ψ‖2 = 1,
(2.2)

(The first equality in (2.2) follows from integration by parts and a normalization condition has been
added to the system)

2.3 Twisting Transformation

At this point we define the twisting transformation T̃ε : [−L, L] × R2 → [−L, L] × R2 as

T̃ε = Rθ ◦ Lε,

where

∀

x1
x2
x3

 ∈ [−L, L] × R2 : Rθ

x1
x2
x3

 =

1 0 0
0 cos θ(x1) sin θ(x1)
0 − sin θ(x1) cos θ(x1)


x1
x2
x3


is for each x1 ∈ [−L, L] a rotation with respect to the x1-axis by the angle θ(x1) for an arbitrary θ ∈

C1([−L, L]), dθ
dx1

:= θ̇ , 0 and

∀

x1
x2
x3

 ∈ [−L, L] × R2 : Lε

x1
x2
x3

 =

 x1
x2 + ε

x3


is a translation on the x2-axis by ε. A more convenient twisting transformation would be such that it
becomes identity for ε = 0. For this purpose we introduce Tε : [−L, L] ×R2 → R3 by adding a technical
untwisting:

Tε = T̃ε ◦ R−θ = Rθ ◦ Lε ◦ R−θ.

Before explicit formulas are shown, we introduce a more compact notation

cos θ(x1) := cθ, sin θ(x1) := sθ.
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We shall also sometimes write θ instead of θ(x1) and the same will be done with the derivative θ̇.
The untwisting R−θ also simplifies the form of transformation which is

Tε

x1
x2
x3

 =

 x
cθ(cθx2 − sθx3 + ε) + sθ(cθx3 + sθx2)
cθ(cθx3 + sθx2) − sθ(cθx2 − sθx3 + ε)

 =

 x1
x2 + εcθ
x3 − εsθ

 .
We can see that the transformation Tε is, in fact, almost a special case of the transformation Pε

presented in the previous chapter concerning the perturbation of a shape of a coaxial capacitor. The only
difference is that condition (1.2) does not apply. In this case, however, the fact that we have

∀x′ ∈ R2 : Tε(−L, x′) = Tε(L, x)

will suffice.
Using the previous chapter, we can immediately write the Jacobian matrix of the transformation Tε

at x := (x1, x2, x3) ∈ R3

Jε(x) := JTε(x) =

 1 0 0
−εθ̇sθ 1 0
−εθ̇cθ 0 1

 . (2.3)

Again, as in the previous chapter, by Jε we shall denote the map Jε : [−L, L] × R2 → R3,3 : x 7→ Jε(x).
As a shorthand we shall also write JT

ε instead of (Jε)T . We also know from the previous chapter that

(Tε)−1 = T−ε,

∀x ∈ [−L, L] × R2 : Jε(x) = Jε(Pε(x)), (2.4)

∀x ∈ [−L, L] × R2 : det Jε(x) = 1,

∀x ∈ [−L, L] × R2 : (Jε(x))−1 = J−ε(x).

2.4 Curvilinear Coordinates

Let Ωε = Tε(Ω) be the new shape for the waveguide. A quantum particle confined in such space
will be described by a wavefunction ψ̃ε : Ωε → C that is a solution to a problem analogous to (2.2), in
particular, 

∀φ ∈ D(h̃ε) : h̃ε(φ, ψ̃ε) = λε〈φ | ψ̃ε〉,

ψ̃ε ∈ B̃Cε ∧ ‖ψ̃ε‖
2 = 1,

(2.5)

where
B̃Cε := {φ ∈ W2,2(Ωε) : φ�Γε= 0 ∧ φ,1 �Eε∪S ε= 0},

and h̃ε is the closure of the sesquilinear form corresponding to a negative laplacian operator that operates
on B̃Cε, more precisely D(h̃ε) = {φ ∈ W1,2(Ωε) : φ�Γε= 0},

∀φ ∈ D(h̃ε) : h̃ε[φ] = ‖∇φ‖2,

and Γε = Tε(Γ), S ε = Tε(S ) and Eε = Tε(E) are the images of the corresponding sets by Tε.
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Figure 2.1: Examples of twisted waveguides

(a) A somewhat slightly twisted waveguide (b) A very twisted waveguide

Note that since we are only interested in the properties of the first eigenfunction, that is, the one
corresponding to the lowest eigenvalue, we can write (in accordance with the minimax theorem)

λε = inf
φ∈D(h̃ε)
φ,0

‖∇φ‖2

‖φ‖2
(2.6)

so λε is now a well defined map R→ R : ε 7→ λε.
In Figure 2.1, we show two twisted waveguides, 2.1a being less twisted than 2.1b (in terms of the

transformation factor ε), with the choice θ : x 7→ 6πL−1x.
We will, for convenience, reformulate the problem (2.5) into such form that the integration domain is

no longer dependent on ε. This can be achieved by integral substitution, more precisely, by introduction
of an operator Uε : L2(Ωε, dx)→ L2(Ω, dx) defined as

∀φ ∈ L2(Ωε, dx) : Uεφ = φ ◦ Tε.

Uε is clearly a bijection, since one can easily check that the inverse operator (Uε)−1 can be defined as

∀φ ∈ L2(Ω, dx) : (Uε)−1φ = φ ◦ (Tε)−1.

It can be trivially observed that

D(h̃ε) ⊂ D(Uε) ∧ Uε(D(h̃ε)) ⊂ D((Uε)−1).

This justifies the definition of the quadratic form hε : D(hε) := Uε(D(h̃ε))→ C such that

∀φ ∈ D(hε) : hε[φ] = ‖∇(Uε)−1φ‖2.

We can observe that the quadratic form hε is symmetric, as per the alternative definition of a sym-
metric form C.2.4, since its diagonal is real.

We shall also define
BCε := Uε(B̃Cε)

The definition of hε admits the following:

Theorem 2.4.1. (i) The boundary condition problem (2.5) together with the condition (2.6) has a
unique positive solution.
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(ii) Moreover, if we denote the aforementioned solution ψ̃ε, then the function ψε := Uεψ̃ε is the unique
positive solution of the problem

∀φ ∈ D(hε) : hε(φ, ψε) = λε〈φ |ψε〉,

ψε ∈ BCε ∧ ‖ψε‖
2 = 1 ∧ λε = inf

φ∈D(hε)
φ,0

hε[φ]
‖φ‖2

,
(2.7)

also conversely, if ψε denotes the solution of (2.7) then (Uε)−1ψε is a solution of (2.5) with the
condition (2.6).

(iii) Furthermore, one can write

BCε = {φ ∈ W2,2(Ω) : φ�Γ= 0 ∧ (φ,1 + εθ̇φ,τ)�E∪S = 0},

D(hε) = {φ ∈ W2,2(Ω) : φ�Γ= 0},

∀φ ∈ D(hε) : hε[φ] = ‖φ,1 + εθ̇φ,τ‖
2 + ‖∇′φ‖2,

where

∇′φ :=
(
φ,2
φ,3

)
, φ,τ := sθφ,2 + cθφ,3.

Proof. (i) follows from Theorem C.5.1.
To prove (ii) we shall first show that Uε is unitary. This will be a simple consequence of the integral

substitution theorem. Let ψ̃, ϕ̃ ∈ L2(Ωε, dx). Then

〈Uεϕ̃ |Uεψ̃〉 =

∫
Ω

Uεϕ̃Uεψ̃ =

∫
Ω

ϕ̃ ◦ Tε ψ̃ ◦ Tε =

∫
T −1
ε (Ω)

ϕ̃(x) ψ̃(x) det J(Tε)−1
(x)dx =

∫
Ωε

ϕ̃ ψ̃ = 〈ϕ̃ | ψ̃〉

Let ψ̃ε be the unique positive solution from (i), ψε := Uεψ̃ε and let φ ∈ D(hε), φ = Uεφ̃, φ̃ ∈ D(h̃ε). We
can now write

hε(φ, ψε) = 〈∇(Uε)−1φ | ∇(Uε)−1ψε〉 = 〈∇(Uε)−1Uεφ̃ | ∇(Uε)−1Uεψ̃ε〉

= 〈∇φ̃ | ∇ψ̃ε〉 = λε〈φ̃ | ψ̃ε〉 = λε〈Uεφ̃ |Uεψ̃ε〉 = λε〈φ |ψε〉

So it only remains to show that the infimum condition is satisfied to prove the first part of (ii). In fact, it
will again follow directly from the definition of hε and unitarity of Uε, one need only substitute φ̃ ∈ D(h̃ε)
for φ := Uεφ̃ ∈ D(hε):

λε = inf
φ̃∈D(h̃ε)
φ̃,0

‖∇φ̃‖2

‖φ̃‖2
= inf

Uεφ̃∈D(hε)
Uεφ̃,0

‖∇(Uε)−1Uεφ̃‖
2

‖Uεφ̃‖2
= inf

φ∈D(hε)
φ,0

hε[φ]
‖φ‖2

Proof of the converse statement is analogous, we start with solution from D(hε), define its counterpart
belonging to D(h̃ε), take arbitrary function from D(h̃ε), again define the counterpart (this time from D(hε))
and proceed in fashion almost same as before, only in reverse.

Statement (iii) can be proven using using the chain rule for derivatives and by performing trivial
algebraic manipulation. And so let φ ∈ D(hε), φ = Uεφ̃, φ̃ ∈ D(h̃ε). The implication

φ̃�Γε= 0⇒ φ�Γ= 0
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is intuitive, but we shall prove it nonetheless by a series of equivalences (it actually applies both ways as
could be expected).

φ̃�Γε= 0⇔
(
∀x̃

a.e.
∈ Γε : 0 = φ̃(x̃) = φ((Tε)−1(x̃))

)
⇔

(
∀(Tε)−1(x̃)

a.e.
∈ (Tε)−1(Γε) = Γ : 0 = φ((Tε)−1(x̃))

)
⇔

(
∀x

a.e.
∈ Γ : φ(x) = 0

)
⇔ φ�Γ= 0.

Now suppose φ ∈ BCε, hence φ̃ ∈ B̃Cε, and let x̃ ∈ Ωε, and x := (Tε)−1(x̃). If we make use of the
previously derived identity (Tε)−1 = T−ε, the derivative φ̃,1 at x can be written as (in accordance with the
chain rule)

∂φ̃

∂x1

∣∣∣x̃ =
∂(φ ◦ T−ε)

∂x1

∣∣∣x̃ =

3∑
µ=1

∂(T−ε)µ
∂x1

∣∣∣x̃ ∂φ∂xµ

∣∣∣x.
Now using the definition of Tε we get the following:

∂φ̃

∂x1

∣∣∣x̃ =
∂φ

∂x1

∣∣∣x + εθ̇sθ
∂φ

∂x2

∣∣∣x + εθ̇cθ
∂φ

∂x3

∣∣∣x := φ,1(x) + εθ̇φ,τ(x),

which can be used to write

φ̃,1 �Eε∪S ε= 0⇔
(
∀x̃

a.e.
∈ Eε ∪ S ε : 0 = φ̃,1(x̃) = φ,1(x) + εθ̇φ,τ(x)

)
⇔ (φ,1 + εθ̇φ,τ)�E∪S = 0,

where some steps were skipped over as they are completely analogous to the ones used to show the
transform of the Dirichlet condition above.

Lastly, the stated form of hε has to be shown. Let φ ∈ D(hε), φ̃ := φ ◦ T−ε, then, by Proposition 1.3.1
from the previous chapter we get

hε[φ] = ‖∇(Uε)−1φ‖2 = ‖∇(φ ◦ T−ε)‖2 = ‖JT
−ε∇φ‖

2.

To get the final structure of hε[φ] one only need use the explicit form of the Jacobian matrix (2.3). �

Remark 2.4.1.1. We shall now only consider positive ψε. The uniqueness of a positive solution to (2.7)
then gives us a well defined map ψε : R→ D(hε) : ε 7→ ψε.

Remark 2.4.1.2. The sesquilinear form associated to hε can be written as

∀φ, ψ ∈ D(hε) : hε(φ, ψ) = 〈φ,1 + εθ̇φ,τ |ψ,1 + εθ̇ψ,τ〉 + 〈∇|φ | ∇|ψ〉,

due to the polarization identity.

2.5 The Principal Eigenvalue

2.5.1 Upper Bound

In this subsection we shall present a simple proof that shows that the graph of the function λε lies
under that of a parabola, with there being a single point at which they intersect - zero on the ε-axis.

Theorem 2.5.1.
∃C ∈ R,C > 0 : ∀ε ∈ R, ε , 0 : λε < λ0 + Cε2.



2.5. THE PRINCIPAL EIGENVALUE 35

Proof. Let ε ∈ R, ε , 0. We begin by reformulating hε[ψ0] (recall ψ0,1 = 0):

hε[ψ0] = ‖ψ0,1 + εθ̇ψ0,τ‖
2 + ‖∇′ψ0‖

2 = ‖εθ̇ψ0,τ‖
2 + ‖ψ0,1‖

2 + ‖∇′ψ0‖
2

= ‖εθ̇ψ0,τ‖
2 + ‖∇ψ0‖

2 = ‖εθ̇ψ0,τ‖
2 + λ0‖ψ0‖

2.

Now we use the minimax definition of λε as applied to ψ0 to obtain

λε ≤
hε[ψ0]
‖ψ0‖2

= λ0 +
‖θ̇ψ0,τ‖

2

‖ψ0‖2
ε2 < λ0 +

(
‖θ̇ψ0,τ‖

2

‖ψ0‖2
+ 1

)
ε2.

To finish the proof one only need set C to be the bracketed expression.
�

2.5.2 Lower Bound

Here we present the main result of this chapter. It will be shown that the first eigenvalue λε of a
twisted waveguide is always higher than that of an untwisted waveguide. Since the operator considered
is, in fact, a Hamiltonian, the first eigenvalue corresponds to the energy of the ground state.

This theorem and its proof is an adaptation of [10, lemma 6.1].

Theorem 2.5.2 (Waveguide Lower Bound Theorem).

∀ε ∈ R, ε , 0 : λε > λ0.

We shall first prove a weaker proposition that states only a non-strict inequality. This proposition
will be preceeded by a lemma, a problem on the transverse cross-section of the waveguide.

Lemma 2.5.2.1. Let ω be a closed disc of radius R in R2. Denote λD
1 (ω) the principal eigenvalue of the

operator −∆D
ω , defined by 

−∆D
ω

1:1
←→ hD

ω ,

D(hD
ω) = W1,2

0 (ω),
∀φ ∈ D(hD

ω) : hD
ω[φ] = ‖∇φ‖2.

Then −∆D
ω has a principle eigenvalue which we denote λD

1 (ω) and we can write

λ0 = λD
1 (ω).

Proof. Firstly, consider the following problem:
∀φ ∈ D(hD

ω) : hD
ω(φ, φ1) = λD

1 (ω)〈φ | φ1〉,

φ1 ∈ D(hD
ω) ∧ ‖φ1‖

2 = 1 ∧ λD
1 (ω) = inf

φ∈D(hD
ω )

φ,0

hD
ω[φ]
‖φ‖2

,
(2.8)

then, by virtue of Theorem C.5.1, we have that a unique positive solution φ1 exists and λD
1 (ω) is a

principal eigenvalue. The solution φ1 can be plugged into the minimax property of λ0 to obtain

λ0 ≤
‖∇φ1‖

2

‖φ1‖2
= λD

1 (ω),
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where the last equality follows from (2.8) if one sets φ := φ1.
Secondly, it follows from the minimax theorem that

λD
1 (ω) = inf

φ∈W1,2
0 (ω)
φ,0

‖∇φ‖2

‖φ‖2
. (2.9)

We know that ψ0 does not depend on x1, therefore it can be identified with a function on ω. We can
write ψ0 ∈ W1,2

0 (ω), as per the boundary conditions imposed on ψ0. Thus (2.9) yields

λD
1 (ω) ≤

‖∇ψ0‖
2

‖ψ0‖2
= λ0,

where the last equality follows from (2.7) if one sets ε := 0 and φ := ψ0. This concludes the proof. �

Remark 2.5.2.1. We can combine (2.9) with the statement in the theorem to obtain

∀φ ∈ W1,2
0 (ω) :

∫
ω
|∇φ|2 ≥ λ0

∫
ω
|φ|2.

Proposition 2.5.3.
∀ε ∈ R : λε ≥ λ0.

Proof. Let ψ ∈ D(hε). Then one can write

hε[ψ] = ‖ψ,1 + εθ̇ψ,τ‖
2 + ‖∇|ψ‖2.

Since the first term is non-negative, we can neglect it to get a lower bound. One can then use the
definition of ‖ · ‖2 and then apply the Fubini theorem (we have Ω = (−L, L) × ω, ω being closed disc
of radius R, centered at the origin) to separate the transverse and lateral part of the integral and proceed
thusly:

hε[ψ] ≥ ‖∇|ψ‖2 =

∫
(−L,L)

dx1

∫
ω

dx2dx3|∇
|ψ|2 ≥ λ0

∫
(−L,L)

dx1

∫
ω

dx2dx3|ψ|
2 = λ0‖ψ‖

2,

where the last inequality follows from the remark above, since for a fixed x1 ∈ (−L, L) the function ψ can
be considered an element of W1,2

0 (ω).
Now one need only use the minimax definition of λε

λε = inf
ψ∈D(hε)
ψ,0

hε[ψ]
‖ψ‖2

≥ λ0.

�

Proof of theorem 2.5.2. We shall prove the theorem by contradiction. Bearing in mind the previous
proposition, we assume

∃ε ∈ R, ε , 0 : λε = λ0.

It has been shown in 2.4.1 that the problem (2.7) has a solution, thus

∃ψ ∈ BCε, ‖ψ‖
2 = 1 : ‖ψ,1 + εθ̇ψ,τ‖

2 + ‖∇′ψ‖2 = hε[ψ] = λε‖ψ‖
2 = λ0‖ψ‖

2.
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Subtracting λ0‖ψ‖
2 from both sides we get

‖ψ,1 + εθ̇ψ,τ‖
2︸           ︷︷           ︸

≥0

+ ‖∇′ψ‖2 − λ0‖ψ‖
2︸               ︷︷               ︸

≥0

= 0,

where the second inequality follows from Remark 2.5.2.1 as one can apply it to ψ for a fixed x1 and then
integrate the inequality in remark over (−L, L). Since both underbraced expressions are non-negative and
their sum has to be zero, they both have to be zero. Therefore we have

(I) ‖∇′ψ‖2 − λ0‖ψ‖
2 = 0,

(II) ‖ψ,1 + εθ̇ψ,τ‖
2 = 0.

Let ω be a closed disk of radius R centered at (0, 0). At this point we take into consideration operator
−∆D

ω defined (in the same manner as in the lemma above) as
−∆D

ω

1:1
←→ hD

ω ,

D(hD
ω) = W1,2

0 (ω),
∀φ ∈ D(hD

ω) : hD
ω[φ] = ‖∇φ‖2.

Let λ be the first eigenvalue of −∆D
ω and φ1 ∈ W1,2

0 (ω) the corresponding normed eigenfunction. In other
words, let φ1 be solution of the problem

∀φ ∈ D(hD
ω) : hD

ω(φ, φ1) = λ〈φ | φ1〉,

φ1 ∈ D(hD
ω) ∧ ‖φ1‖

2 = 1 ∧ λ = inf
φ∈D(hD

ω )
φ,0

hD
ω[φ]
‖φ‖2

,

Next, we will show that

∃η ∈ W1,2((−L, L)) : ∀(x1, x2, x3) ∈ D(ψ) : ψ(x1, x2, x3) = η(x1)φ1(x2, x3).

Let x1 ∈ (−L, L) and denote ψ(x1) : (x2, x3) 7→ ψ(x1, x2, x3) the function ψ for a fixed x1. We can write
ψ(x1) ∈ W1,2

0 (ω). Using the fact that the normed eigenfunctions of −∆D
ω form an orthonormal base (let us

call it B) in L2(ω), we can write

∀x′ ∈ ω : ψ(x1, x′) = ψ(x1)(x′) = η(x1)φ1(x′) + Φ(x1, x′),

η(x1) := 〈φ1 |ψ(x1)〉, Φ(x1, x′) :=
∑
φ∈B
φ,φ1

ax1,φφ(x′), ax1,φ := 〈φ |ψ(x1)〉.

SinceB is orthonormal and φ1 is an eigenfunction of −∆D
ω , one can write (with the use of Fubini theorem)

〈∇′(ηφ1) | ∇′Φ〉Ω =

∫ L

−L
dx1 〈∇

′(ηφ1) | ∇′
∑
φ∈B
φ,φ1

ax1,φφ〉ω =

∫ L

−L
dx1 η

∑
φ∈B
φ,φ1

ax1,φ〈∇φ1 | ∇φ〉ω = 0,

where the last equality follows from

∀φ ∈ B, φ , φ1 : 〈∇φ1 | ∇φ〉ω = −〈∆φ1 | φ〉ω = λ〈φ1 | φ〉ω = 0.
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(〈· | ·〉Ω and 〈· | ·〉ω denote the scalar products on L2(Ωε) and L2(ω), respectively)
The minimax principle for−∆D

ω applied to the function Φ(x1) ∈ W1,2
0 (ω), Φ(x1) : (x2, x3) 7→ Φ(x1, x2, x3)

yields

‖∇′Φ(x1)‖
2
ω ≥ λ̃‖Φ(x1)‖

2
ω > λ‖Φ(x1)‖

2
ω,

where λ̃ is the second eigenvalue of −∆D
ω , as Φ(x1) lies in a subspace of W1,2

0 (ω) orthogonal to the one-
dimensional subspace generated by φ1. We can integrate (2.10) (as it contains functions of x1) over
(−L, L) and get the same expression, but this time for ‖ · ‖2

Ω
and without fixed x1:

‖∇′Φ‖2Ω ≥ λ̃‖Φ‖
2
Ω > λ‖Φ‖2Ω. (2.10)

It has been already shown in proof of lemma 2.5.2.1 that the eigenvalue corresponding to φ1 is λ0 so
we have λ = λ0. To show that Φ is zero one only need rewrite ‖∇′ψ‖2

Ω
and use (I) with (2.10), thusly:

‖∇′ψ‖2Ω = ‖η∇′φ1‖
2
Ω + ‖∇′Φ‖2Ω + 2<〈∇′(ηφ1) | ∇′Φ〉Ω︸               ︷︷               ︸

=0

= λ0‖ηφ1‖
2
Ω + ‖∇′Φ‖2Ω.

Now subtract λ0‖ψ‖
2
Ω

= λ0‖ηφ1‖
2
Ω

+ λ0‖Φ‖
2
Ω

from the left-most and right-most side to get

0
(I)
= ‖∇′ψ‖2Ω − λ0‖ψ‖

2
Ω = ‖∇′Φ‖2Ω − λ0‖Φ‖

2
Ω

(2.10)
≥ (λ̃ − λ0)︸   ︷︷   ︸

>0

‖Φ‖2Ω.

This implies Φ = 0 and so

∃η ∈ W1,2((−L, L)) : ∀(x1, x2, x3) ∈ D(ψ) : ψ(x1, x2, x3) = η(x1)φ1(x2, x3).

To arrive at the contradiction one need only rewrite (II)

0 = ‖ψ,1 + εθ̇ψ,τ‖
2
Ω = ‖η′φ1‖

2
Ω + ε2‖θ̇ηφ1,τ‖

2
Ω + 2ε<〈η′φ1 | θ̇ηφ1,τ〉Ω =

≥ ε2‖θ̇ηφ1,τ‖
2
Ω + 2ε<

∫ L

−L
dx1 η′ηθ̇

∫
ω

dx′
∂

∂τ
(
1
2

(φ1)2)︸                  ︷︷                  ︸
=0

= ε2‖θ̇ηφ1,τ‖
2
Ω > 0 (2.11)

because ∫
ω

∂

∂τ
(
1
2

(φ1)2) =

∫
ω

(
sθ
∂

∂y
(
1
2

(φ1)2) + cθ
∂

∂z
(
1
2

(φ1)2)
)

and if we use the Dirichlet boundary condition along with Fubini’s theorem

∫ R

−R
dz

∫ √
R2−z2

−
√

R2−z2
dy sθ

∂

∂y
(
1
2

(φ1)2) =
1
2

sθ

∫ R

−R
dz

[
(φ1)2

]y=√R2−z2

y=−
√

R2−z2︸              ︷︷              ︸
=0

= 0

and similarily for the other term.
The last inequality (2.11) is a consequence of the fact that θ̇, η and φ1,τ are all non-trivial functions.

�
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2.5.3 Derivative with Respect to the Twisting Parameter

Formulas for the first and second derivative of the sesquilinear form hε at ε = 0 are first derived, then
we proceed to infer expressions for the first and second derivative of the function λε.

Lemma 2.5.1.

∀φ, ψ ∈ D(hε) : h′0(φ, ψ) :=
dhε(φ, ψ)

dε

∣∣∣
ε=0 = 〈φ,1 | θ̇ψ,τ〉 + 〈θ̇φ,τ |ψ,1〉,

h′′0 (φ, ψ) :=
d2hε(φ, ψ)

dε2

∣∣∣
ε=0 = 2 〈θ̇φ,τ | θ̇ψ,τ〉.

Proof. Bearing Remark 2.4.1.2 in mind, the sesquilinear form hε can for fixed functions φ, ψ ∈ D(hε) be
expressed as a polynomial in ε:

hε(φ, ψ) = 〈∇φ | ∇ψ〉 + ε
(
〈φ,1 | θ̇ψ,τ〉 + 〈θ̇φ,τ |ψ,1〉

)
+
ε2

2
2 〈θ̇φ,τ | θ̇ψ,τ〉.

The lemma follows simply by taking the derivative and setting ε = 0. �

Proposition 2.5.4. We can write

(i) λ′0 :=
dλε
dε

∣∣∣
ε=0 = 0,

(ii) λ′′0 :=
d2λε

dε2

∣∣∣
ε=0 = 2‖θ̇ψ0,τ‖

2 + 2〈θ̇ψ0,τ |ψ
′
0,1〉,

Proof. We shall admit the fact that ψε is analytical in ε without proof. Justification for this is given in
Remark 2.5.4.4. Taking the first derivative of equation (2.7) with respect to ε at ε = 0 yields

∀φ ∈ D(h0) : h′0(φ, ψ0) + h0(φ, ψ′0) = λ′0〈φ |ψ0〉 + λ0〈φ |ψ
′
0〉. (2.12)

In accordance with the Taylor’s theorem, we have existence of two functions ψ′0 and ψ′′0 , such that for
some ε-neighbourhood of zero we can write

ψε = ψ0 + ε ψ′0 +
ε2

2
ψ′′0 + O(ε2).

By taking the first and second derivative with respect to ε at ε = 0 of the boundary conditions in
(2.7), one can observe that ψ′0, ψ

′′
0 ∈ BC0.

Hence, one can set ε := 0 and φ := ψ′0 in equation (2.7) to obtain the identity (also using expression
for h0 from Remark 2.4.1.2)

〈∇ψ′0 | ∇ψ0〉 = λ0〈ψ
′
0 |ψ0〉, (2.13)

then set φ = ψ0 in equation (2.12) and rewrite it using the above lemma (and Remark 2.4.1.2) as follows
(last term on the right hand side is moved to left):(

〈ψ0,1 | θ̇ψ0,τ〉 + 〈θ̇ψ0,τ |ψ0,1〉
)︸                                ︷︷                                ︸

= 0

+
(
〈∇ψ0 | ∇ψ

′
0〉 − λ0〈ψ0 |ψ

′
0〉

)︸                             ︷︷                             ︸
= 0

= λ′0‖ψ0‖
2.

First underbraced expression is zero due to the fact that ψ0 is not dependent on the first coordinate x1.
Second underbraced term vanishes as a consequence of (2.13) (one only need take the complex conjugate
thereof). This proves statement (i).
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To prove the second statement, we shall take the second derivative of equation (2.7) with respect to
ε at ε = 0 to obtain (recall that λ′0 = 0)

∀φ ∈ D(h0) : h′′0 (φ, ψ0) + 2h′0(φ, ψ′0) + h0(φ, ψ′′0 ) = λ′′0 〈φ |ψ0〉 + λ0〈φ |ψ
′′
0 〉. (2.14)

Similarily to the part above, we set ε = 0 and φ = ψ′′0 in (2.7) to get

〈∇ψ′′0 | ∇ψ0〉 = λ0〈ψ
′′
0 |ψ0〉. (2.15)

To finish the proof, we set φ := ψ0 in (2.14), use the same remark and lemma as before and subtract
the complex conjugate of (2.15) from the obtained equation. After recalling that ‖ψ0‖

2 = 1 we get
statement (ii). �

Remark 2.5.4.1. The statement (i) should be no cause for surprise, considering the symmetry of the
problem. The meaning of this result is such that it matters not whether one twists the cylinder in one way
or the other.

Remark 2.5.4.2. By plugging λ′0 = 0 back into (2.12), setting φ = ψ′0 and expressing the yielded
equation using remark 2.4.1.2 and the above lemma, one can write after rearrangement

〈θ̇ψ0,τ |ψ
′
0,1〉 = λ0‖ψ

′
0‖

2 − ‖∇ψ′0‖
2 ≤ 0

where the inequality stems directly from the minimax property of λ0. So the second derivative of the
eigennumber can be written alternatively as

λ′′0
2

= ‖θ̇ψ0,τ‖
2 + λ0‖ψ

′
0‖

2 − ‖∇ψ′0‖
2

Remark 2.5.4.3. λε is analytical, therefore we can write

λε = λ0 + ελ′0 +
ε2

2
λ′′0 + O(ε3)

Using (i) and the result from Theorem 2.5.2, one obtains (for ε , 0)

λ0 +
ε2

2
λ′′0 + O(ε3) = λε > λ0 ⇒

ε2

2
λ′′0 + O(ε3) > 0

Since the inequality holds for all non-zero ε at some neighbourhood of zero it can be conluded by diving
the last inequality by ε2

2 and taking the limit ε→ 0 that

λ′′0 ≥ 0

Remark 2.5.4.4. Again, as in the previous chapter that dealt with a perturbation of the shape of a coaxial
capacitor, we need the analycity of ψε and λε at some neighbourhood of zero. As before, refer to [9] and
the fact that hε is a polynomial in ε.
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2.6 Hardy’s Inequalities

In this section, we shall deal with a mathematical tool called the Hardy’s inequality. We shall first
somewhat informally introduce the overall idea of [10]. Then, we deal with some Hardy’s inequalities
derived in [10].

In [10], the effect of twisting and bending of quantum waveguides is explored. That approach is
similar to that of ours in Chapter 2, however, an infinitely long waveguide is considered, and moreover,
a more general perturbating transformation is employed.

Firstly, the geometry of the waveguide is laid out via a reference curve set in a modified Frenet frame
and a cross-section (a bounded open connected subset of R2) that is extended along the reference curve.
There are certain similarities to the method we have introduced in Chapter 1, in fact, the transformation
Pε from Chapter 1 is a special case of the transformation L in [10].

There is, nonetheless, one crucial aspect that L posseses and Pε does not (at least not on the same
level of generality). It is the fact that L can be set such that it rotates the cross-section in its own plane.
Such an effect is (under other certain natural assumptions, such as that the cross-section is not rotationally
invariant) is then considered to be twisting by [10].

Another, a more simple feature of L is that it can bend the waveguide. More precisely, a waveguide
is considered bent, whenever the reference curve has non-zero curvature at some point.

Next, the Hamiltonian of the system is dealt with. No potential is considered, as is usual with waveg-
uides, hence the Hamiltonian is a Laplacian operator and, of course, the Dirichlet boundary condition is
imposed on the boundary. A strategy of transferring the problem into curvilinear coordinates is utilized,
much like we have done in Chapter 2.

Later, a result concerning the essential spectrum of the Hamiltonian is proposed in [10, thm 4.1]. An
assumption that the transformed waveguide becomes straight as it tends to infinities (both positive and
negative) has to be taken. The theorem then states that the essential spectrum of a straight waveguide
(i.e. R × ω, where ω is the cross-section mentioned before) does not differ from that of the transformed
waveguide (that is, L(R × ω)).

Then, the effect of bending of a untwisted waveguide is inspected. It is shown in [10, thm 5.1] that
the infimum of the spectrum of the Hamiltonian is strictly lower than that of the straight waveguide. In
view of the previous result about the stability of the essential spectrum, one has that the bent waveguide
has a non-empty discrete spectrum, as opposed to the straight waveguide, the discrete spectrum of which
is empty.

Afterward, the examination turns to the twisting effect and Hardy’s inequalities on twisted tubes. We
shall now take a more formal approach and define the appropriate tools.

Firstly, we define an ordering on the class of self-adjoint operators.

Definition 2.6.1. Let A, B be self-adjoint operators bounded from below, denote a and b their corre-
sponding quadratic forms, respectively. We write

A ≥ B

if, and only if both of the following apply:

(i) D(a) ⊂ D(b),

(ii) ∀ψ ∈ D(a) : a[ψ] ≥ b[ψ].

Remark 2.6.1.1. The definitions of ≤, < and > for operators can, of course, also be made in an analogous
way, which is entirely obvious, hence we omit them here.
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Definition 2.6.2. Let Ω ⊂ Rd be an open set for some d ∈ N and let H be a self-adjoint operator bounded
from below on L2(Ω). We say that H satisfies the Hardy inequality, or equivalently

H satisfies HI

precisely when
∃ρ : Ω→ [0,∞), ρ is measurable, ρ , 0 : H − inf σ(H) ≥ ρ̂,

where ρ̂ denotes the L2(Ω) operator of multiplication by ρ, more specifically:

∀ψ ∈ L2(Ω) : ρ̂ψ := ρψ.

We shall also say that the Hardy’s inequality is global, whenever ρ can be chosen such that

∀x
a.e.
∈ Ω : ρ(x) > 0

Remark 2.6.2.1. Henceforth, we shall omit the symbol ˆ (hat) and thus identify a function with its
multiplication operator.

At this point we return to [10] and quote the definition of the Hamiltonian of a bounded waveguide.
Retaining ω to be the aforementioned cross-section of the waveguide and lettinng I to be an open

bounded interval, we define HI
α, for a bounded function α : I → R, to be the operator corresponding to

the quadratic form QI
α defined byD(QI

α) := {ψ
∣∣∣
I×ω : ψ ∈ W1,2

0 (R × ω)},
∀ψ ∈ D(QI

α) : QI
α[ψ] := ‖ψ,1 − αψ,u‖2 + ‖∇′ψ‖2,

where
∀(s, t2, t3) ∈ I × ω : ψ,u(s, t2, t3) := t3ψ,2(s, t2, t3) − t2ψ,3(s, t2, t3)

and

∇′ψ :=
(
ψ,2
ψ,3

)
and the norm is that of the L2(I ×Ω) space.

In [10, lemma 6.1] a result similar to that of in Chapter 2, Theorem 2.5.2 is shown. Here α plays a
similar role as θ̇ did in Chapter 2. If one constricts the investigation to a connected bounded portion of
the waveguide (i.e. L(I × ω)), then the Hamiltonian HI

α has only a discrete spectrum and its principal
eigenvalue is strictly higher than that of a bounded straight waveguide (which is, in this case, I × ω).
More precisely, if we define E1 to be the principal eigenvalue of a negative Dirichlet Laplacian operator
on ω, and then set

λ(α, I) := inf{QI
α[ψ] − E1 : ψ ∈ D(QI

α) ∧ ‖ψ‖2 = 1},

then we can quote the following result of [10]:

Lemma 2.6.2.1. Let I ⊂ R be a bounded open interval. Let ω be not rotationally invariant with respect
to the origin. Let α ∈ L∞(I) be a non-trivial (i.e., α , 0 on a subset of I of positive measure) real-valued
function. Then

λ(α, I) ≥ λ0,

where λ0 is a positive constant depending on ‖α‖ and ω.
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Remark 2.6.2.2. ω ⊂ R2 is said to be rotationally invariant with respect to origin, if for any two-
dimensional rotation Rθ with respect to (0, 0) by an angle θ, i.e., for any θ ∈ (0, 2π)

Rθ :=
(
cos θ − sin θ
sin θ cos θ

)
,

we have that the image of ω by Rθ is equal to ω (in a matrix-vector multiplication sense, of course).

Using the previous lemma, [10] proves the following Hardy’s inequality for the operator HI
α (cf. [10,

thm 6.5] for details of the proof):

Theorem 2.6.3. Let α ∈ L∞(I) be a real-valued function and I ⊂ R and open interval (not necessarily
bounded). Let K ⊂ N and {I j} j∈K be a set consisting of disjoint open subintervals of I. Then

HI
α − E1 ≥

∑
j∈K

λ(α, I j)χI j ,

where ∀i ∈ K, χI j is the characteristic function of I j, i.e.,

∀ j ∈ K : ∀s ∈ I : χI j(s) =

1 if s ∈ I j,

0 otherwise.

Remark 2.6.3.1. We remind that as per Remark 2.6.2.1, the right side of the inequality above is to be
understood as a multiplication operator, rather than as a function.

[10, cor 6.6] also shows a consequence of theorem 2.6.3, which finally establishes the effect of
twisting of a unbent waveguide, that does not become straight at the negative and positive infinities.

Corollary 2.6.3.1. Let α ∈ L∞(I) be a real-valued function and I ⊂ R and open interval. Suppose that
ω is rotationally invariant with respect to origin and that

∃α0 ∈ R, α0 > 0 : ∀s
a.e.
∈ I : |α| ≥ α0.

Then we have
inf σ(HI

α) > E1.

Finally, [10, thm 6.7] provides a proof that there exists a Hardy’s inequality for HI
α which is, in fact,

global, in the sense that the right side of the inequality is always non-zero.

Theorem 2.6.4. Let I ⊂ R be an open interval. Let ω be not rotationally invariant with respect to the
origin. Let α ∈ L∞(I) be a non-trivial real-valued function of compact support in I. Then

HI
α − E1 ≥

c
1 + δ2 .

Here δ : I×ω→ R : (s, t2, t3) 7→ |s−s0|, where s0 is the mid-point of the interval (inf suppα, sup suppα),
and c is a positive constant depending on α and ω.





Chapter 3

Optimality of a Cylindrical Pipe in Fluid
Mechanics

3.1 Introduction

In this section, we shall interest ourselves in a shape optimization problem concerning fluid dynam-
ics. In particular, two mathematical models (from two different articles) of steady viscous flow in a pipe
will be presented.

Both articles endeavor to study the optimality of steady viscous flow in a cylidrical pipe, aiming to
minimise energy dissipated by the viscosity of the fluid. The Navier-Stokes equations (and also, in [6],
the Stokes equations) are utilized to model the behaviour of a non-compressible viscous fluid. The two
articles, however, each differ in boundary conditions chosen for the equation system.

The first article, [6], aims to inquire whether there exists a minimiser for their proposed model,
and furthermore, investigates whether a cylindrical pipe is the minimiser. They produce a peculiar and
somewhat unintuitive result – that the cylindrical pipe does not minimise energy dissipation. Some
numerical simulations and the conclusions thereof are also offered.

The second paper, [15], is a reaction to the first one and can be regarded as a rebuttal of the non-
optimality claim in [6]. A different class of admissible functions and boundary conditions is proposed
and the new outcome is that the cylindrical pipe is, in fact, optimal in terms of energy dissipation.
Moreover, an argument is presented that the non-optimality claimed in [6] is a result of the choice of the
boundary conditions.

We shall divide the overview of the articles into three parts as follows. Firstly, basic terms of fluid
dynamics are defined. Secondly and thirdly, main results of [6] and [15], respectively, are quoted and
explained. Since [15] reacts to [6], the third section also contains a comparison of the models.

3.2 Basic Elements of the Navier-Stokes System

First and foremost, we shall present the Navier-Stokes equation system. More specifically, we define
the time independent (steady state) Navier-Stokes equations for incompressible viscous fluid without
sources. Let Ω ⊂ R3 be an open set, µ ∈ R, µ > 0 and u = (u1, u2, u3) ∈ (W2,2(Ω))3, p ∈ W1,2(Ω). The
Navier-Stokes equations (or rather, our case thereof) then read (the derivatives are to be understood in a
weak sense) −µ∆u + ∇p + (∇u)u = 0 x ∈ Ω,

∇ · u = 0 x ∈ Ω,
(3.1)

45
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where ∆ is the Laplacian operator, which upon u acts as

∆u =



∂2u1

∂x2
1

+
∂2u1

∂x2
2

+
∂2u1

∂x2
3

∂2u2

∂x2
1

+
∂2u2

∂x2
2

+
∂2u2

∂x2
3

∂2u3

∂x2
1

+
∂2u3

∂x2
2

+
∂2u3

∂x2
3


∈ (L2(Ω))3

and ∇ · u is the divergence of u, that is,

∇ · u =
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
.

It should also be noted that since u is a three-component vector function then ∇u has to be interpreted
as a matrix:

∇u =



∂u1

∂x1

∂u1

∂x2

∂u1

∂x3

∂u2

∂x1

∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2

∂u3

∂x3


,

so the (∇u)u is to be understood in a matrix-vector multiplication sense.
One can see that the problem (3.1) is a non-linear system of four second-order partial differential

equations for four uknown scalar three-variable functions u1, u2, u3, p.
For each (or at least almost everywhere) x ∈ Ω, u(x) is a vector in three dimensions. Thus, u can be

interpreted as a vector field. Its role in the Navier-Stokes system is that it represents the velocity of the
fluid at each point in Ω. The scalar function p is then intepreted as pressure and the positive constant µ
is the viscosity of the fluid.

If we set the density of the fluid to be a unit, then the term −µ∆u in (3.1) represents viscous forces,
∇p is the pressure force and (∇u)u is called the convective acceleration. The last equation ∇ · u = 0 is
called the continuity equation and is essentialy a formulation of the law of conservation of mass (cf. [12,
3.5.1, 3.5.2]).

A simpler version of the Navier-Stokes system (3.1), called the Stokes system, can be obtained if one
neglects the non-linear convective term (∇u)u (cf. [11, 17]). Then the equations become linear and we
get −µ∆u + ∇p = 0 x ∈ Ω,

∇ · u = 0 x ∈ Ω.
(3.2)

Lastly, we shall define the criterion for minimisation – the energy dissipated by the fluid (viscosity
energy):

J(u,Ω) := 2µ
∫

Ω

ε(u) : ε(u), (3.3)

where ε(u) is a 3 × 3 matrix called the stretching tensor and is given by

∀i, j ∈ {1, 2, 3} : (ε(u))i j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
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and : stands for the inner product of matrices, i.e.,

ε(u) : ε(u) :=
3∑

i, j=1

(ε(u))i j(ε(u))i j.

3.3 Non-optimality of a Cylindrical Pipe

Having the most important terms defined, we can now turn to the results presented by [6].
The set of admissible pipes (the domains for the function u) that is chosen is as follows.

OεV := {Ω ⊂ R2 × (0, L) : Ω is bounded, simply connected and

satisfies the ε-cone property, |Ω| = V ∧ Π0 ∪Ω = S ∧ Π0 ∪Ω = E},

where ε, L and V are real positive constants, |Ω| is the Lebesgue measure of Ω, Π0, ΠL are the planes
{x3 = 0}, {x3 = L}, respectively. S and E are called the inlet and outlet, respectively, given by

S := {(x1, x2, 0) ∈ R3 : x2
1 + x2

2 ≤ R},
E := {(x1, x2, L) ∈ R3 : x2

1 + x2
2 ≤ R}.

Here R is some positive real constant.
The ε-cone property is a way of making Ω ∈ OεV regular in a certain sense. We shall not give the

definition here, as it is not important to our cause. It only suffices to say that given this property, existence
and uniqueness of the solution (to system that will be soon introduced) is guaranteed.

One can observe that OεV consists of domains with fixed volume V that begin at the plane Π0 with the
shape of a disk, then extend in the x3-dimension in a regular manner (as by the ε-cone property) and end
at the plane ΠL, again, with the shape of a disc. Note that the sets S and E are fixed to be the same for
all domains in OεV .

We also remark that as opposed to Chapters 1 and 2, the shape of Ω here is such that it “extends
lengthwise” in the x3 direction (in Chapters 1 and 2 it was the x1 direction). This is done so that we are
consistent with the notation of [6].

The problem for the velocity field u and pressure p in [6] reads

−µ∆u + ∇p + ∇u · u = 0 x ∈ Ω,

∇ · u = 0 x ∈ Ω,

u = u0 := (0, 0, c(x2
1 + x2

2 − R2)) x ∈ E,
u = 0 x ∈ Γ,

−pn + 2µε(u) · n = (2µcx1, 2µcx2,−p1) x ∈ S .

(3.4)

Here Ω ∈ OεV , Γ := ∂Ω \ (E ∪ S ), c is a real negative constant, p1 is a prescribed pressure value on S
(a real constant) and n := (0, 0, 1) is the outer normal vector at S .

We shall sometimes write u(Ω) instead of u to emphasize the dependence on Ω.
The boundary condition on S in (3.4) is called the parabolic inflow, the condition on Γ is called the

no-slip condition and is, in fact, a Dirichlet boundary condition.
If Ω0 is chosen to be a cylinder of radius R and height L, such that

Ω0 := {(x1, x2, x3) ∈ R3 : x3 ∈ (0, L) ∧ x2
1 + x2

2 < R2} (3.5)
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then Ω0 ∈ O
ε
V and the system (3.4) has an explicit solution, called the Poiseuille law, which is given by

∀(x1, x2, x3) ∈ Ω0 :

u(x1, x2, x3) = (0, 0, c(x2
1 + x2

2 − R2)),
p(x1, x2, x3) = 4µc(x3 − L) + p1.

(3.6)

It is claimed in [6] that the choice of the bounary condition on S in (3.4) is motivated by the fact that
it ensures the parabolic profile in the Poiseuille law if Ω = Ω0.

In [6, thm 1], the existence and uniqueness of a weak solution to (3.4) is proven. More specifically,
we have a solution (u, p) ∈ W1,2(Ω) × L2(Ω).

Next, it is shown in [6, thm 2] that the minimiser problem for ΩJ(u(Ω),Ω) has a minimiser,
Ω ∈ OεV ,

(3.7)

(where u(Ω) is the solution to (3.4) and J is given by (3.3)) has a solution.
Moreover, if one can consider the Stokes system (3.2) with the same boundary conditions as in (3.4),

that is (with Ω ∈ OεV and c, p1 as before)

−µ∆u + ∇p = 0 x ∈ Ω,

∇ · u = 0 x ∈ Ω,

u = u0 := (0, 0, c(x2
1 + x2

2 − R2)) x ∈ E,
u = 0 x ∈ Γ,

−pn + 2µε(u) · n = (2µcx1, 2µcx2,−p1) x ∈ S .

(3.8)

Then (3.8) has a unique solution and the minimiser problem (3.7) for Ω, with u being the solution to
(3.8), also has a solution which has a plane of symmetry containing the x3-axis as per [6, thm 3], which
is proven mainly by a geometrical argument.

The main theorem [6, thm 4] follows.

Theorem 3.3.1. The cylinder Ω0 (as defined by (3.5)) is not the minimiser of the problem for ΩJ(u(Ω),Ω) has a minimiser,
Ω ∈ OεV ,

where u(Ω) is the solution to (3.4) and J is given by (3.3).

Lastly, [6] give some numerical results which show that the minimiser of the problem in 3.3.1 is
indeed not a cylinder and some more optimal shapes are developed through iterative methods.

3.4 Optimality of a Cylindrical Pipe

The article discussed in the previous section, [6], has established the existence of a mathematical
model of viscous flow in a pipe, wherein the cylindrical pipe is not optimal under the criterion: energy
dissipated by the fluid.

Here we overview [15], which is a response to [6]. [15] argues that the non-optimality claim of [6]
is merely a boundary effect and a result of the special choice of boundary conditions and is not related to
the shape of the pipe.
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Firstly, we shall quote an argument that establishes the fact that if one considers system (3.4) then
the first variation of J is dependend only on the boundary condition given on the outlet S . A perturbation
of the form

∀t ∈ R : Ωt := (Id + tV)(Ω0),

where Id denotes the identity map, V is a smooth compactly supported vector field, i.e. V ∈ (C∞0 (R3 \

(E∪S )))3 (so one has V = 0 on E and S ) and Ω0 is the cylinder given by (3.5). The first variation is then

dJ(Ω0,V) =
d
dt

∣∣∣
t=0J(u(Ωt),Ωt),

where J is the integral defined by (3.7) and u(Ωt) is the solution to (3.4) for the choice Ω = Ωt. A volume
constraint on the perturbation is assumed, by considering only such V that satisfy

d
dt

∣∣∣
t=0|Ωt| = 0,

where |Ωt| is the Lebesgue measure of Ωt.
[15] shows the following expression for dJ(Ω0,V):

dJ(Ω0,V) = 4µ
∫

S
u′ · (ε(u)n), (3.9)

where u is given by the Poiseuille law (3.6), n = (0, 0, 1) is the unit outer normal vector on S , ε(u)n is
to be understood in the sense of matrix-vector multiplication, the dot · stands for the standard Euclidean
scalar product, the integral is to be taken with the 2-dimensional Lebesgue measure and u′ is called the
shape derivative of u(Ωt), defined as (u(Ωt) being the solution to (3.4) for Ω = Ωt, of course)

u′ := lim
t→0

1
t

(u(Ωt) ◦ (Id + tV) − u(Ω0)) − V · (∇u).

[15] then demonstrates, that the expression (3.9) is, in effect, only dependent on u�S – the boundary
condition imposed on S . Moreover, it is claimed, that one can do the same calculations for the cylinder
Ω0, where the boundary condition on S is perturbed (instead of the shape of the pipe, as was done here)
and this leads to the same decrease of dissipated energy.

Next, [15] tackles the optimality of the cylindrical pipe. A class of admissible shapes (pipes) is
considered, such that the sets are open, bounded, connected, have a Lipshitz boundary and have a fixed,
finite volume V ∈ R, V > 0, and are contained in the strip R2 × (0, L), for a real positive constant L.

As opposed to the setup of [6], the inlet E and outlet S are allowed to be any non-empty 2-dimensional
(in the sense that they are embedded in three dimensions), open sets with 2-dimensional Lipschitz bound-
ary. E and S , as before, have to be contained in the planes {x3 = 0} and {x3 = L}, respectively, but it is
apparent, they they need not be disks anymore, moreover, they are not necessarily of the same shape.

Additional Lipschitz regularity conditions are also required, but we shall not discuss them here. We
shall denote the set of admissible pipes OV , for its precise mathematical definition cf. [15, def 4.1].
Symbolically, we will use similar notation as previously, that is, for Ω ∈ OV

E := Ω ∩ {(x1, x2, x3) ∈ R3 : x3 = 0},
S := Ω ∩ {(x1, x2, x3) ∈ R3 : x3 = L},
Γ := ∂Ω \ (E ∪ S ).
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A set of admissible velocity fields is also defined, in [15, def 4.3]. Let Ω ∈ OV , u := (u1, u2, u3) ∈
C1(Ω)3 and let for a fixed f ∈ R all of the following conditions hold:

(i) ∇ · u = 0, i.e., u is divergence free (satisfies the continuity equation),

(ii) u
∣∣∣
Γ

= 0, i.e., the no-slip (Dirichlet) boundary condition,

(iii)
∫

E u3 = f , i.e., a fixed total inflow condition for all fields.

Note that the integral in (iii) has to be taken with the 2-dimensional Lebesgue measure. We will write
u ∈ U f (Ω), if u satisfies the definition above.

We can now quote the main theorem [15, thm 4.4]:

Theorem 3.4.1. Let V, f ∈ R,V > 0 and let Ω0 be the cylinder from (3.5) for such constants R and L
that we can write V = πR2L. Denote u0 =: ((u0)1, (u0)2, (u0)3) the Poiseuille flow from (3.6) on Ω0, with
c chosen such that

∫
E(u0)3 = f .

Then Ω0 ∈ OV and u0 ∈ U f (Ω0) and we have

∀Ω ∈ OV : ∀u ∈ U f (Ω) :
(∫

Ω

∇u : ∇u ≥
∫

Ω0

∇u0 : ∇u0

)
Remark 3.4.1.1. We remark that u from Theorem 3.4.1 need not at all be a solution to the Navier-Stokes
system (3.1). The only differential eqation it is required to solve is the continuity equation ∇ · u = 0.

One could add the condition for u to be the solution (3.1) and since the Poiseuille flow is also a
solution to the Navier-Stokes system, the theorem would still hold. This would, nevertheless, only be a
restriction.

Remark 3.4.1.2. Note the resemblance of the integral in Theorem 3.4.1 to the integral from the Dirichlet
principle from Appendix B.

Theorem 3.4.1 provides an interesting inequality, however, it is not yet apparent that the Poiseuille
flow of the cylindrical pipe indeed does minimise the energy dissipated by the viscous fluid. The follow-
ing lemma, that can be shown using integration by parts and Gauss theorem, from [15, lemma 4.8], helps
put this unclarity into perspective.

Lemma 3.4.1.1. Let Ω ⊂ R3 be an open bounded set with Lipschitz boundary and let u ∈ W2,2(Ω)3

satisfy ∇ · u = 0. Then we can write∫
Ω

ε(u) : ε(u) =
1
2

∫
Ω

∇u : ∇u +

∫
∂Ω

u · (∇u)n,

where the integral over ∂Ω is to be taken with the 2-dimensional Lebesgue measure and n is the unit
outer normal vector on ∂Ω.

If one considers Ω ∈ OV such that E and S are of the same shape and imposes for u ∈ U f (Ω) periodic
boundary conditions on S and E, i.e.,

u
∣∣∣
E = u

∣∣∣
S ∧ ∂3u

∣∣∣
E = ∂3u

∣∣∣
S (3.10)

then the last term in lemma 3.4.1.1 vanishes a we have that Poiseuille flow of a cylindrical pipe (3.6) in
fact does minimise dissipation of energy by the fluid.

Same can be achieved if one considers the boundary conditions

u × n = 0 on E and S . (3.11)
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(Here E and S need not be of the same shape anymore.)
We conlude by stating that the expression (3.9) offers a reason to consider that the boundary condi-

tions (3.10) and (3.11) pose a somewhat more reasonable choice than the boundary conditions in (3.4).
The model presented by [6] is, nevertheless, an interesting mathematical problem that raises the question
of what is the explicit form of the minimiser in (3.7).





Conclusion

We shall now give a summary of the results produced by this work.
We have introduced, in the first chapter, a certain class of perturbations, which can be interpreted as

bending and twisting of the shape of a straight coaxial capacitor. The influence of the perturbations on
capacitance was inspected.

This was done by the use of a variational principle, the modified Dirichlet’s principle from the second
appendix, and by examination of the first and second variations of the capacitance by means of the
Taylor’s theorem. It has been shown that a small perturbation, as defined by us, results in an increase of
the capacitance.

Next, a cylindrical quantum mechanical waveguide was taken into consideration and a twisting trans-
formation was applied to its geometry. It was shown that the effect of twisting is such that it increases
the energy of the ground-state of the waveguide, in other words, the cylindrical waveguide minimizes
ground-state energy if only our transformations are taken into account. Some formulas for the first and
second variation of the aforementioned energy were derived. This was done via spectral theory, often by
use of the minimax theorem.

We have also offered an overview of [10], a paper that deals with similar problems concerning twist-
ing and bending of a quantum waveguide and shown some Hardy’s inequalities therefrom.

In the last part, the third chapter, an outline of two articles tackling the problem of steady viscous
fluid motion was offered. We have examined two different mathematical models, from [6] and [15], each
of which yielded a completely different result – the claim of [6] was that a cylindrical pipe does not
minimise energy dissipated by the fluid, the second, on the other hand, has shown reasons as to why the
former does not model the situation entirely correctly and that the non-optimality result is a consequence
of a special choice of a boundary condition.

Furthermore, we have quoted another result of [15], in which different boundary conditions (which
they deem more appropriate) are imposed and it is shown that, under these conditions, cylindrical pipe
does, in fact, minimise dissipated energy.

We conclude with some open problems raised by this work.
In view of the first chapter, it is natural to ask if it is indeed possible to consider a broader class of

transformations that increase capacitance, for example the one in [10], which is admits rotation of the
cross-section.

Perturbation of shapes other than a cylinder might also prove to be insightful.
Concerning the second chapter, our main interest is whether it is possible to show positivity of the

second variation of the ground state energy using the formulas derived.
Other boundary conditions, for example periodic, might also be considered. The question then is

whether this would change any of the results that we have shown.
As per the third chapter, an explicit form of the energy-dissipation-minimising shape from [6], is

desirable.
53
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Since pipes used for fluid transport are not always straight and often have to bend, an investigation
of the optimal shape of a bend pipe could help to illuminate the role of the circular cross-section, which
is the usual technical solution.
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Appendix A

Remarks on Notation

Here we explain the symbols used throughout the work. Most of the notation is standard and requires
no explanation. This includes arithmetic operations and elemental functions.

We note that multiplication of numbers is usualy denoted without any symbol, and is done simply by
placing two numbers adjacent to each other.

A.1 Logic and Definitions

∧ and

∨ or

⇔ equivalence

⇒ implication

∀ the universal quantifier

∃ the existential quantifier

: quantifier-quantifier and quantifier-predicate separator

:= the left object is defined by the right object

:⇔ the left predicate is defined by the right predicate

A.2 Sets

{} set brackets

∅ the empty set

... a part of a sequence whose pattern is apparent

{xn}
∞
n=1 the infinite set {x1, x2, ...}, also used for an ordered sequence

N the set of all natural numbers, not including zero

R the set of all real numbers
57
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C the set of all complex numbers

∈ set membership

a.e.
∈ set membership almost everywhere

∪ set union

∩ set intersection

⊂ set inclusion, is applicable even if sets are equal

\ set difference

× cartesian product

Mn the n-th cartesian power of a set M

[a, b) interval from a to b, including a ∈ R, not including b ∈ R (other combinations of [, ], (, ) are
possible and unlisted)

n̂ the set {1, 2, ..., n} for some n ∈ N

sup supremum of a set

inf infimum of a set

min minimum of a set

max maximum of a set

M topological closure of set M

∂M topological boundary of set M

i imaginary unit

< real part of a complex number

z complex conjugate of z ∈ C

We also use
{x ∈ M : P(x)}

to denote the set of all x ∈ M (for some set M) such that they satisfy predicate P (i.e. P(x) is true).

A.3 Maps

The symbolic notation (definition of a map)

f : X → Y

means that f is map that maps all elements of X (the domain of f ) to (not necessarily all) elements of Y .

x 7→ f (x)
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stands for a map that maps each x from a set, that is either stated or apparent, gets mapped to f (x) (value
of f at x). If this symbol is adjacent to a definition of a map, it simply defines how the map operates.

If a map maps into some number set, we call it a function.
We also note that maps are handled in a similar way to numbers, vectors and matrices, in terms of

operations. This means f + g is a map x 7→ f (x) + g(x) (if it has a good sense) and similarily for other
operations.

Some other notation for maps follows.

D( f ) the domain of f

supp f the support of f , i.e. {x ∈ D( f ) : f (x) , 0}

◦ map composition

f −1 the inverse of f

f (M) the image of M by f , if M ⊂ D( f )

f −1(M) the inverse image of M by f , if M ⊂ f (D( f ))

lim
x→y

f (x) limit of f as x approaches y

n
→ limit of a sequence as n approaches infinity

→ limit of a sequence, wherein the limiting index is apparent

Cn(M) set of all functions on M with n continous derivatives

C∞(M) set of all infinitely-diffentiable functions on M

Cn
0(M) set of all f ∈ Cn(M), such that supp f is bounded

C∞0 (M) set of all f ∈ C∞(M), such that supp f is bounded

L2(M) set of all square-integrable functions

∇ the del (nabla) operator

∆ the Laplace operator

We also use three different notations for a partial derivative:

∂ f
∂xi

= ∂i f = f,i

The first one is the standard Leibniz form and is least compact. The second notation is inline and
takes up much less space. The third notation is the most compact and is the most often used. The
symbol ∂2

i means that the second partial derivative is to be taken. Similarily, f,i j means simply that two
derivatives are to ba taken, i.e., ( f,i), j.

If we write
f
∣∣∣x=x0

or f
∣∣∣x0

then the map is to be evaluated as some point x0. We also use the this symbol for restrictions:

f
∣∣∣
M
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for some set M ⊂ D( f ) is a map with domain M that acts as x 7→ f (x).
A similar symbol, �,is used for restrictions that are defined almost everywhere. For example

f �M= 0

means that f is zero on M up to a set of zero measure. However, if M were a boundary, then it would be
of zero measure and the statement would be trivial. In such case, the restriction has to be understood in
the sense of traces, an aspect of Sobolev spaces.

We do not deal with traces in much detail in this work, therefore we approach this notion in a formal
and intuitive manner.

We use the usual Leibniz sign for integration, that is∫
M

f =

∫
M

f (x)dx,

It is usually apparent or noted, which measure is to be used.
We also use the symbol O(εn), which represents the Peano remainder when we use Taylor’s theorem.

This means we have some interval I that

∃γ ∈ C0(I) : O(εn) = εnγ(ε) ∧ lim
ε→0

γ(ε) = 0

We note that although the same symbol O(εn) might be used throughout a calculation, this does not
mean that the function γ remains the same.

A.4 Vector Spaces and Matrices

⊂⊂ subspace symbol

Rn,n the space of all n × n matrices

H Hilbert space

〈· | ·〉 L2 scalar product

‖ · ‖ norm induced by the L2 scalar product

| · | euclidean norm

(x)i the i-th component of a vector (or vector map) x

(Ai j)n
i, j=1 a square n × n matrix given by elements Ai j

AT matrix transposition of A

A−1 matrix invense of A

Ai j the i-th row and j-th column of the matrix A

JL(x) the Jacobian matrix of the transformation L at the point x

gL(x) the metric tensor of the transformation L at the point x
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If a map has an unusual notation, then we use the dot · as a placeholder.
We also note that it is usually stated or apparent, on which space in particular is the norm or a scalar

product taken.
The following convention is used: if M is a measurable set, f , g ∈ L2(M)n are a square-integrable

vector functions and A, B ∈ L2(M)n2
are a square-integrable matrix functions, then

〈 f | A | g〉 := 〈 f | Ag〉,

where Ag is to be understood in a matrix-vector multiplication sense. Morover, we shall omit parentheses
if more matrices are present, i.e.,

〈 f | A + B | g〉 := 〈 f | (A + B) | g〉.





Appendix B

The Calculus of Variations

B.1 Introduction

Calculus of variations represents a branch of mathematical analysis that deals with functionals (that
is, maps from given function spaces into a given number field), or rather, to be more specific, with
extremes thereof. In other words, given a functional, the general idea is usually to find a function in
its domain that either minimizes or maximizes the functional, either locally or globally, or to show
nonexistence of such a function.

More specifically, the discipline aims to provide necessary and sufficient conditions for such func-
tions and studies their properties.

We shall deal only with real-valued integral functionals and real-valued functions of real variables
for simplicity.

In this appendix, elements of the calculus of variations are laid out.
Firstly, functionals of one-dimensional integral form are considered, derived methods are demon-

strated on classic examples for motivation.
Secondly, we concern ourselves with three-dimensional integral functionals and present a principle

called the Dirichlet principle. We shall also offer a modification of the Dirichlet principle that shall be
utilized in Chapter 1.

B.2 Euler-Lagrange Equations

In this section, we adopt the approach that is shown in [8] and the following text is a mostly a
summary of the introduction in the work. We shall introduce the problem only informally and then
provide a more rigorous approach.

A classical, and perhaps even the simplest, problem in calculus of variations is to find a function
u : [a, b]→ Rd that minimizes the integral∫ b

a
F(t, u(t), u̇(t))dt, (B.1)

where a, b ∈ R, F : [a, b] × Rd × Rd → R for some d ∈ N and u̇ stands for the derivative of u. Evidently,
more assumptions on both u and F have to be laid down so that the integral above is well defined.

Remark B.2.0.1. Note that F is a function of a (2d + 1) − let of real numbers, but we have chosen
to formally group them into three collections: a singlet and two d-lets. If we simply refer to the first,
second and third variable of F we shall actually mean the aforementioned singlet, first d-let and second
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d-let, respectively. On the other hand, if we refer to the i-th real variable of F, we have in mind the i-th
component of the (2d + 1)-let instead.

Before any functional can be defined, one first has to choose a set of functions that it admits (its
domain, also called the set of admissible functions).

One kind of constraints, when contriving such set, is that the functional has to have good sense should
it be applied to any function from the domain. In case of the integral (B.1), the admissible functions have
to be such that the integration is possible. If F is non-trivial in its third argument, then it also follows,
that u must be differentiable, at least in a weak sense.

Another type of constraints is usually motivated by the problem at hand. Boundary conditions may
be imposed or regularity requirements demanded.

We will, for simplicity, consider the following functional. Let u1, u2 ∈ R
d, a, b ∈ R, F ∈ C2([a, b] ×

Rd × Rd) for some d ∈ N, and

∀u ∈ D(I) : I[u] :=
∫ b

a
F(t, u(t), u̇(t))dt,

D(I) := {u ∈ C2([a, b],Rd) : u(a) = u1 ∧ u(b) = u2}.

Notice that we write I[u] instead of I(u) in order to emphasize that u is a function, not a number.
Because of the conditions imposed on u ∈ D(I) on the endpoints, we say that u has fixed ends. This

is sometimes also referred to as the Dirichlet boudary condition.
Clearly, the domain of I consists of functions that represent smooth curves in d-dimensional space,

and furthermore, they all originate and terminate (respectively) at the same points in space.
We have already stated informally that our goal is to find a function in D(I) so that I attains a

minimum or a maximum. The following definition establishes this notion in more rigorous, albeit not
surprising, terms

Definition B.2.1. Let u ∈ M. We say that u is a minimiser of I if, and only if,

∀w ∈ D(I) : I[u] ≤ I[w].

Remark B.2.1.1. An analogous definition can, of course, be established even for a maximising element,
a maximiser. However, in our examples and proceedings we shall only deal with minimisers, moreover,
if one has a maximiser of some functional J then it is a minimiser of −J.

Example B.2.2 (Length of a graph of a function). Set d = 1. Now let u ∈ D(I) and define

γu : [a, b]→ R2 : t 7→ (t, u(t)).

The map γu represents a curve along the graph of u. Setting F so that

I[u] :=
∫ b

a
|γ̇u(t)|dt =

∫ b

a

√
1 + u̇(t)2dt

now causes I[u] to be the arc-length of γ and therefore of u (cf. [13, p. 136]). The minimiser of I is a
function, whose graph starts at (a, u1), ends at (b, u2) and minimises arc-length – common knoweledge
dictates that it is a line. It it not yet obvious, however, that it is so from the mathematical formulation
here.
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Example B.2.3. A famous historical example is that of the problem of the brachystochrone. Therein one
attempts to find between two given points a path traced by a particle that is acted upon by the force of
gravity, so that the particle reaches the endpoint in the fastest time.

To derive the precise formulation of the functional for this problem, one only need know that a par-
ticle that has fallen a vertical distance y, has at that point reached speed

√
2gy, g being the gravitational

acceleration, and that a change in time is given as a ratio of the distance travelled over speed. This
leads to (retaining notation for γu from the previous example, as |γ̇u(t)|dt is the "infinitesimal distance"
travelled in the time dt)

I[u] :=
∫ b

a

|γ̇u(t)|dt√
2gu(t)

=

∫ b

a

√
1 + u̇(t)2

2gu(t)
dt.

One of the most basic results in analysis of differentiable functions of one variable is the necessary
condition for an extreme. Namely, if f is differentiable at x ∈ D( f ) and reaches a maximum or a
minimum at x, then

f ′(x) = 0.

The following theorem can be regarded as an analogy of this necessary condition for the functional I.

Theorem B.2.4. Let u ∈ D(I) be a minimiser of I. Then u is the solution of the following system of
second order ordinary differential equations, called the Euler-Lagrange equations

d
dt

(∂F
∂u̇

(t, u(t), u̇(t))
)
−
∂F
∂u

(t, u(t), u̇(t)) = 0,

where
∂F
∂u

=

(
∂F
∂u1

,
∂F
∂u2

, ...,
∂F
∂ud

)T

,
∂F
∂u̇

=

(
∂F
∂u̇1

,
∂F
∂u̇2

, ...,
∂F
∂u̇d

)T

and
∂

∂ui
is the derivative with respect to the (i+1)-th real variable and

∂

∂u̇i
is with respect to the (i+d+1)-

th real variable.

Proof. We shall prove this theorem using the necessary condition for functions of one variable mentioned
above. Let v ∈ C2

0([a, b],Rd). It then follows that ∀s ∈ R : u + sv ∈ D(I). Setting w := u + sv for all s ∈ R
in the definition of minimiser and by defining f : R→ R : s 7→ I[u + sv], we obtain

∀s ∈ R : f (s) ≥ f (0).

Since the derivative of F is continuous, we get that the derivative of the integrand in f as a function
of s is continuous as well, furthermore, this is true on a closed interval. Hence, f is differentiable and the
order of differentiation and integration can be switched.

The above states that f realized a minimum at 0, therefore

f ′(0) = 0.

We shall rewrite this expression by using the definitions of f and I:∫ b

a

∂

∂s

∣∣∣
s=0F(t, u(t) + sv(t), u̇(t) + sv̇(t))dt = 0.

Now using the chain rule to express the derivative yields∫ b

a

(
∂F
∂u

(...) · v(t) +
∂F
∂u̇

(...) · v̇(t)
)

dt = 0,



66 APPENDIX B. THE CALCULUS OF VARIATIONS

where (...) := (t, u(t), u̇(t)) and the dot · represents the standard scalar product of the Euclidean space.
Integrating the second term in the integrand by parts then yields[

∂F
∂u̇

(...) · v(t)
]b

a︸             ︷︷             ︸
=0

+

∫ b

a

(
∂F
∂u

(...) −
d
dt
∂F
∂u̇

(...)
)
· v(t)dt = 0.

The first term vanishes since v(a) = 0 = v(b). To finish the proof we only need the following lemma. �

Lemma B.2.4.1 (Fundamental lemma of the calculus of variations). Let h ∈ C0((a, b),Rd) and let the
following condition on h hold:

∀φ ∈ C∞0 ((a, b),Rd) :
∫ b

a
h(t) · φ(t)dt = 0.

Then ∀t ∈ (a, b) : h(t) = 0.

Proof. We shall prove the lemma by contradiction. Assume

∃t0 ∈ (a, b) : h(t0) , 0.

Therefore ∃i0 ∈ d̂ : hi0(t0) , 0, where hi0 denotes the i0-th component of h. By continuity of h we have

∃δ ∈ R, δ > 0 : (a < t0 − δ < t0 + δ < b) ∧ (∀t ∈ (t0 − δ, t0 + δ) : |hi0(t)| > 0).

Let us now choose φ ∈ C∞0 ((a, b),Rd) such that

∀t ∈ (a, b) :


t < (t0 − δ, t0 + δ)⇒ φ(t) = 0,
t ∈ (t0 − δ, t0 + δ)⇒ φi0(t) > 0,
∀i ∈ (d̂ \ {i0}) : φi(t) = 0,

where, analogously to the previous case, for j ∈ d̂ the symbol φ j is the j-th component of the map φ. We
can now arrive at the contradiction by writing∫ b

a
h(t) · φ(t)dt =

∫ t0+δ

t0−δ
h(t) · φ(t)dt , 0,

where the non-equality comes from the fact that both h and φ are non-zero and don’t change their sign
on the interval (a, b). �

Remark B.2.4.1. A skeptical reader of the previous proof might, however, doubt whether such function
φ, as described above, truly exists. Nevertheless, the function Ψ : R→ R defined as

∀t ∈ R : Ψ(x) =

exp
(
− 1

1−t2

)
if t ∈ (−1, 1),

0 otherwise,

is in fact smooth, as can be checked by taking its derivative (at t = −1, 1, one has to take single-sided
derivatives from both sides and show them to be the same) and then by induction proving that all higher
derivatives are continuous.

The function Ψ can be used for contruction of φi0 by setting (retaining notation from proof above)

∀t ∈ (a, b) : φi0(t) = Ψ(
t − (t0 − δ)

2δ
−

(t0 + δ) − t
2δ

).
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Remark B.2.4.2. This lemma can, in fact, be generalized to admit functions of more than one variable.
The set [a, b] would then have to be replaced with a closure of a non-empty open set. A proof for the
lemma for a closed bounded region and a function of two variables, which can be trivially extended to
any number of variables and any closure of a non-empty open set can be found in [5, p. 22].

We can now return to examples B.2.2 and B.2.3 and try to solve the Euler-Lagrange equations in
order to obtain what might be minimizers of the respective forms of I.

Example B.2.5. Continuing in example B.2.2, we have (here u, u̇ are only symbols for the meanwhile)

∀t ∈ [a, b] : u, u̇ ∈ R :
∂F
∂u

(t, u, u̇) = 0 ∧
∂F
∂u̇

(t, u, u̇) =
u̇

√
1 + u̇2

.

At this point we have to substitute the actual uknown functions u and u̇ evaluated at t into both expressions
and compute the derivative with respect to t of the second expression. We get

∀t ∈ [a, b] :
d
dt

(
∂F
∂u̇

(t, u(t), u̇(t))
)

=
d
dt

 u̇(t)√
1 + u̇(t)2

 =
ü(t)

(1 + u̇(t)2)
1
2

−
u̇(t)2ü(t)

(1 + u̇(t)2)
3
2

=
ü(t)

(1 + u̇(t)2)
3
2

,

so by theorem B.2.4 the Euler-Lagrange equation for u is

−
ü

(1 + u̇2)
3
2

= 0

which is equivalent to ü = 0, the solution being, as was expected, a linear function – a line.

Example B.2.6. To continue with example B.2.3, we can utilize the fact that, in this particular case, F
does not explicitly depent on the first variable t. This means we can write (we omit the arguments of
functions, as they stay the same throughout all calculations and should by this time be obvious)

d
dt

(
F − u̇

∂F
∂u̇

)
=
∂F
∂u

u̇ +
∂F
∂u̇

ü − ü
∂F
∂u̇

+ u̇
d
dt
∂F
∂u̇

= u̇
(
∂F
∂u
−

d
dt
∂F
∂u̇

)
= 0,

where the Euler-Lagrange equation was used in the last equality. Note that u̇ = 0 would also imply that
equality, so one would have to check by plugging directly into the Euler-Lagrange equation whether that
is a solution thereof.

Integrating the left-most and right-most side yields

F − u̇
∂F
∂u̇

= const := λ.

So in our specific case of F =

√
1+u̇2

2gu , ∂F
∂u̇ = u̇√

2gu(1+u̇2)
we get

√
1 + u̇2

2gu
−

u̇2√
2gu(1 + u̇2)

= λ⇔ u(1 + u̇2) =
1

2gλ2 .

We remind that although u = 1
2gλ2 is a solution of the equation above, it is not necessarily a solution

to the Euler-Lagrange equation. In many cases, in fact, a constant solution would not even satisfy the
boundary conditions.
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Lastly we note that although in both examples we have obtained either an explicit solution or at least
a differential equation for the solution. However, the Euler-Lagrange equations pose only a necessary
condition for a minimiser of I, thus we do not actually know if the function in example B.2.2 and any
solution of equation derived in B.2.3 is an actual minimiser. We do know however, that any other function
cannot be a minimiser of I.

In order to show that a function is a minimiser of I, we can again turn to the classical analysis of
functions of one variable and use the sufficient condition for a minimum. It states that if a function f has
a continuous derivative on some neighbourhood of x ∈ D( f ), has a second derivative at x and satisfies

f ′(x) = 0 ∧ f ′′(x) > 0,

then it achieves a local minimum a x.

Example B.2.7. Getting back to example B.2.2, we can readily prove that a linear function (that satisfies
the boundary conditions, of course) is in fact a minimiser of the functional I from that example. We
shall adopt a similar strategy as in the proof of B.2.4.

Let v ∈ C1
0([a, b]), v , 0 and let u be a linear function such that u ∈ D(I), i.e. u satisfies the

boundary conditions and the Euler-Lagrange equation for the functional from example B.2.2. We will
plug u + sv ∈ D(I) into I and take the second derivative with respect to s at zero. Explicitly

d2

ds2

∣∣∣
s=0I[u + sv] =

∫ b

a

∂2

∂s2

∣∣∣
s=0

( √
1 + (u̇(t) + sv̇(t))2

)
dt

=

∫ b

a

∂

∂s

∣∣∣
s=0

 v̇u̇ + sv̇2√
1 + (u̇ + sv̇)2

 dt =

∫ b

a

 v̇2
√

1 + u̇2
−

v̇2u̇2

(1 + u̇2)
3
2

 dt

=

∫ b

a

v̇2
√

1 + u̇2

(
1 −

u̇2

1 + u̇2

)
dt =

∫ b

a

v̇(t)2(
1 + u̇(t)2) 3

2

dt > 0.

(Throughout the calculation, we have written v̇ instead of v̇(t) and the same for u̇ for the sake of brevity.)
The strictnes of the inequality comes from the fact that v̇ cannot be zero, as that would imply v is constant,
however, we have v(a) = 0 so v would be zero, which is a contradiction with the assumption that we have
made at the very beginning.

Since u satisfies the Euler-Lagrange equations, we have that

d
ds

∣∣∣
s=0I[u + sv] = 0,

as is obvious from the proof of B.2.4. One can check this by an explicit computation of the derivative and
thereafter integrating by parts and using the fact that u̇ is a constant and that v vanishes a the boundaries.

Because u is a unique solution to the Euler-Lagrange equation, we know that that the function I[u +

sv] (as a function of s) has only one minimum, hence it must be a global one. Therefore we can write

∀s ∈ R : ∀v ∈ C1
0([a, b]) : I[u + sv] ≥ I[u].

Now let w ∈ D(I). We have u − w ∈ C1
0([a, b]). Set v := u − w, s := 1 and the above then becomes

∀w ∈ D(I) : I[w] ≥ I[u],

so u is indeed a minimiser of I.
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B.3 Dirichlet’s Principle

This section will present the Dirichlet’s principle as stated in [3]. Thereafter we shall provide a
modified version of the Dirichlet’s principle, which is used in Chapter 1 that deals with the capacitance
of a coaxial capacitor.

Henceforth in this section, let Λ denote an open bounded set such that its boundary ∂Λ is a boundary
of class C1 and g ∈ C0(∂Λ) and f ∈ C0(Λ). The functionalD that we shall concern ourselves with shall
be defined as follows.

∀φ ∈ D(D) : D[φ] :=
∫

Λ

(
1
2
|∇φ|2 − φ f

)
,

D(D) := {φ ∈ C2(Λ) ∩C0(Λ) : φ
∣∣∣
∂Λ

= g}.

Next we shall present a Dirichlet boundary condition problem, the Poisson equation with Dirichlet
boundary condition, that will be later shown to be closely related toD.

Definition B.3.1 (Poisson equation with Dirichlet boundary condition). We say that φ ∈ C2(Λ) ∩C0(Λ)
is a solution to the Poisson equation with Dirichlet boundary value gwith the right side f , precisely when
the function φ satisfies −∆φ = f x ∈ Λ,

φ = g x ∈ ∂Λ.
(B.2)

Theorem B.3.2. There exists at most one solution ψ ∈ C2(Λ) ∩C0(Λ) to the boundary problem (B.2).

Proof. Assume that ψ, ψ̃ ∈ C2(Λ) ∩ C0(Λ) are two solutions of of (B.2). Denote w := ψ − ψ̃. It follows
that ∆w = 0 and one can therefore write

0 = −

∫
Λ

w∆w = −

∫
∂Λ

w∇w · n︸        ︷︷        ︸
=0

+

∫
Λ

|∇w|2,

where the second equality follows from integration by parts and Gauss theorem, n denotes the unit outer
normal vector. The underbraced term is zero because w

∣∣∣
∂Λ

= 0. Hence ∇w = 0 and w
∣∣∣
∂Λ

= 0 then implies

w = 0.

�

Theorem B.3.3 (Dirichlet’s principle). Let ψ ∈ C2(Λ) ∩ C0(Λ) be a function such that it solves (B.2).
Then

D[ψ] = min
φ∈D(D)

D[φ]. (B.3)

Conversely, if ψ satisfies (B.3), then ψ is a solution to (B.2).

Proof. Firstly, we prove the first statement. Let φ ∈ D(D). Then by (B.2) we can write

0 =

∫
Λ

(ψ − φ)(−∆ψ − f ) = −

∫
Λ

(ψ − φ)∆ψ −
∫

Λ

(ψ − φ) f ,

since ψ solves (B.2). Integrating the first term by parts leads to

0 = −

∫
∂Λ

(ψ − φ)∇ψ · n︸                ︷︷                ︸
=0

+

∫
Λ

∇(ψ − φ) · ∇ψ −
∫

Λ

(ψ − φ) f ,
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where n denotes the unit outer normal vector and the boundary term vanishes because (ψ − φ)
∣∣∣
∂Λ

= 0.
We can now rearrange to obtain ∫

Λ

(|∇ψ|2 − ψ f ) =

∫
Λ

∇φ · ∇ψ −

∫
Λ

φ f .

Next, we shall use an upper bound estimate, a consequence of the Schwarz inequality along with a trivial
inequality (that follows from |∇ψ + ∇φ| ≥ 0), respectively, which combined reads

|∇φ · ∇ψ| ≤ |∇φ||∇ψ| ≤
1
2
|∇φ|2 +

1
2
|∇ψ|2.

Hence we can write∫
Λ

(|∇ψ|2 − ψ f ) =

∫
Λ

∇φ · ∇ψ −

∫
Λ

φ f ≤
∫

Λ

1
2
|∇φ|2 +

∫
Λ

1
2
|∇ψ|2 −

∫
Λ

φ f ,

which can be rearranged to finally get
D[ψ] ≤ D[φ].

To prove the converse statement, we shall proceed using a variational method, analogous to that
which was employed in the previous section.

Suppose (B.3) holds. Let η ∈ C2
0(Λ) and define h : R→ R as

∀s ∈ R : h(s) := D[ψ + sη].

Using (B.3) we get that h has a minimum at s = 0. If it were differentiable at 0, then we would have

h′(0) = 0.

Let us rewrite h(s) for any s ∈ R using the definition ofD:

h(s) =

∫
Λ

(
1
2
|∇ψ + s∇η|2 − (ψ + sη) f

)
=

∫
Λ

(
1
2
|∇ψ|2 − ψ f

)
+ s

∫
Λ

(∇ψ · ∇η − η f ) +
s2

2

∫
Λ

|∇ψ|2.

It can be seen that h is a polynomial, therefore it is differentiable. Taking its derivative evaluated at
zero then yields

0 = h′(0) =

∫
Λ

(∇ψ · ∇η − η f ) =

∫
Λ

(−∆ψ − f ) η,

where integration by parts was employed to obtain the last equality, the boundary term vanished as a
consequence of Gauss theorem and because η vanishes at the boundary.

Using the Fundamental lemma of the calculus of variations B.2.4.1 with regard to remark B.2.4.2 we
get that −∆ψ = f , so ψ satisfies (B.3). �

Remark B.3.3.1. If we set f = 0 in the boundary value problem (B.2), it becomes the Laplace equation
i.e., the equation for electrostatic potential in vacuum. The Dirichlet boundary condition then represents
a requirement for a prescribed potential on the boundary.

The gradient of the electrostatic potential is defined to be the electric field E and its square E2 is
the electrostatic energy per unit volume, the electrostatic energy density. This means that D[φ] can be
interpreted as the total electrostatic energy of the system with potential φ. The Dirichlet’s principle then
states that the potential that is realized in physical reality (as per equation (B.2)) is such that it minimizes
the energy of the system.
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Remark B.3.3.2. Throughout this section, we have assumed for simplicity that D(D) consists of twice
differentiable functions. It can be shown, however, that if one extends the domain to the set g + W1,2

0 (Λ),
then a minimiser of D exists [3, thm. 4.3.1], moreover, such a minimiser is a solution to (B.2), but only
in a weak sense.

We have formulated the Dirichlet’s principle for the boundary problem (B.2), wherein only a Dirich-
let boundary value is imposed. Sometimes, when dealing with mathematical models that involve un-
bounded domains of a periodic shape, it proves convenient to instead consider a bounded domain and a
problem with periodic boundary conditions.

Such approach will be taken advantage of in Chapter 1. For this purpose, we can modify the Dirich-
let’s principle for such functions and problems.

Firstly, we shall define a bounded set that is suitable for imposing a periodic boundary condition.

Definition B.3.4. Let L ∈ R, Ω ⊂ [−L, L] × R2 be a open bounded set. Denote

ω(l) =


(
x1
x2

)
∈ R2 :

x1
x2
l

 ∈ Ω

 for l ∈ {−L, L},

Γ = ∂Ω \ (ω(−L) ∪ ω(L)).

We will say that Ω is a tube cell, precisely when both of the following apply

(i) ω(−L) = ω(L) , ∅,

(ii) Γ is a boundary of class C1.

The sets ω(−L) = ω(L) and Γ shall be called the connector and lateral surface of Ω, respectively. The
number L we refer to as the extent of Ω

Next, we shall define the set of admissible functions, i.e. the set of functions satisfying the boundary
conditions. Since we are interested in problems with a guaranteed solution, we shall, with regard to
remark B.3.3.2, formulate the following only in a weak sense, using the theory of Sobolev spaces.

Definition B.3.5. Let Ω be a tube cell of extent L and denote ω and Γ the connector and lateral surface
thereof, respectively. Let φ ∈ W2,2(Ω) and G ∈ C0(Γ). We say that φ satisfies the periodic boundary
conditions of Ω with respect to G and write φ ∈ AΩ

G if, and only if,

φ�Γ= G ∧
(
∀x′

a.e.
∈ ω : φ(−L, x′) = φ(L, x′) ∧ φ,1(−L, x′) = φ,1(L, x′)

)
.

Theorem B.3.6. Let Ω be a tube cell with lateral surface Γ and G ∈ C0(Γ). Moreover, let ψ be the
solution to the following weak periodic and Dirichlet boundary condition problem:

∀φ ∈ AΩ
0 : 〈∇φ | ∇ψ〉 = 0 ∧ ψ ∈ AΩ

G . (B.4)

Then ψ also satisfies ∫
Ω

|∇ψ|2 = min
φ∈AΩ

G

∫
Ω

|∇φ|2. (B.5)

Also conversely, any ψ ∈ AΩ
G that is the minimiser in (B.5) is also a solution to the weak boundary

value problem (B.4).
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Remark B.3.6.1. We shall not prove this theorem, as the proof is completely analogous to the proof of
theorem B.3.3 with the formal substitutions.

f ↔ 0, D(D)↔ AΩ
G , C2

0(Λ)↔ AΩ
0 , D[·]↔

∫
Ω
|∇ · |2

We also note that the boundary integrals, that arise from integration by parts and use of the Gauss
theorem, vanish as a consequence of the boundary conditions given byAΩ

G andAΩ
0 .

Remark B.3.6.2. As per the boundary conditions, we can write

∀ψ ∈ AΩ
G : ∀φ ∈ AΩ

0 : 〈∇φ | ∇ψ〉 = −〈φ |∆ψ〉.



Appendix C

Spectral Theory

C.1 Linear Operators

Definition C.1.1. Let (H , 〈· | ·〉) be a Hilbert space over C and D ⊂⊂ H . We shall call any linear map
A : D→ H an operator onH . Additionaly, we say that

(i) D is the domain of A, denoted D(A),

(ii) A is bounded :⇔ ∃C ∈ R,C > 0 : ∀ψ ∈ D(A) : ‖Aψ‖2 ≤ C‖ψ‖2,

(iii) A is densely defined :⇔ D(A) = H ,

(iv) A is non-negative :⇔ ∀ψ ∈ D(A) : 0 ≤ 〈ψ | Aψ〉 ∈ R,

(v) A is bounded from below :⇔ ∃C ∈ R : ∀ψ ∈ D(A) : C‖ψ‖2 ≤ 〈ψ | Aψ〉 ∈ R

(vi) A is closed :⇔ ∀{ψn}
∞
n=1 ⊂ D(A), ψ, φ ∈ H :

(
ψn → ψ ∧ Aψn → φ

)
⇒

(
ψ ∈ D(A) ∧ φ = Aψ

)
.

Remark C.1.1.1. The map A : D→ H is linear if it satisfies

∀ψ, φ ∈ D(A) : ∀α ∈ C : A(ψ + αφ) = Aψ + αAφ.

We see that this is only possible if D(A) is a subspace ofH .

Remark C.1.1.2. By ‖ · ‖ we denote the mapH → R : ψ 7→
√
〈ψ |ψ〉, which is the norm induced by the

scalar product 〈· | ·〉.

Definition C.1.2. Let (H , 〈· | ·〉) be a Hilbert space and A, B operators thereon. We say that the operator
B is adjoint to the operator A :⇔D(B) = {φ ∈ H : (∃η ∈ H : ∀ψ ∈ D(A) : 〈φ | Aψ〉 = 〈η |ψ〉)},

∀φ ∈ D(B) : Bφ = η,

where η in the second row is the same one as in the definition of D(B).

Remark C.1.2.1. In view of the Riezs representation theorem (cf. [14, thm 4.5.1]), we have that every
densely defined operator has a unique adjoint operator. This permits the use of notation, wherein for an
arbitrary densely defined operator A, the adjoint operator is denoted A?. For some basic properties of
adjoint operators further confer [14].

73
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Definition C.1.3. Let A be an operator on H . We say that A is self-adjoint, precisely when both of the
following apply:

(i) A is densely defined

(ii) A = A?

Remark C.1.3.1. We note that for any self-adjoint operator A and a function ψ ∈ D(A) we have

〈ψ | Aψ〉 = 〈A?ψ |ψ〉 = 〈Aψ |ψ〉 = 〈ψ | Aψ〉

and thus 〈ψ | Aψ〉 ∈ R.

Definition C.1.4. Let A be a closed operator on a Hilbert spaceH . We define the resolvent set of A as

ρ(A) := {λ ∈ C : (A − λI) is a bijection }

The spectrum of A is then defined as the complement of the resolvent set in C, that is

σ(A) := C \ ρ(A)

We shall also adopt a way of classifying the points in the spectrum, in particular, the notions of the
discrete and essential spectrum (cf. [2, 4.1]).

Definition C.1.5. Let A be a closed self-adjoint operator onH . We say that λ ∈ C is an eigenvalue of A
precisely when the following applies:

∃ψ ∈ D(A) : Aψ = λψ.

We shall say that ψ is an eigenfunction corresponding to λ, furthermore, we shall call an eigenvalue λ
isolated, if there exists a neighbourhood U of λ in C such that U ∩ σ(A) = {λ}

Then the discrete spectrum of A can be defined as

σd(A) := {λ ∈ σ(A) : λ is an isolated eigenvalue of A ∧ dim ker (A − λI) < ∞}.

The complement of σd(A) in σ(A) will be called the essential spectrum:

σe(A) := σ(A) \ σd(A).

Remark C.1.5.1. Note that the definition of the spectrum implies:

λ ∈ C is an eigenvalue of A⇒ λ ∈ σ(A).

Remark C.1.5.2. If λ ∈ C is an eigenvalue of A then the number dim ker (A − λI) is often called the
geometric multiplicity of λ as it corresponds to the maximum number of possible linearly independent
eigenfunctions corresponding to the eigenvalue λ.

The discrete spectrum thus has similar properties as in the case of finitely-dimensional operators.
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C.2 Sesquilinear Forms

Definition C.2.1 (Sesquilinear and Quadratic forms).
LetH be a Hilbert space over C, D ⊂⊂ H and h : D × D→ C satisfying:

(i) ∀α ∈ C,∀x, y, z ∈ D : h(αx + y, z) = αh(x, z) + h(y, z)

(ii) ∀β ∈ C,∀x, y, z ∈ D : h(x, βy + z) = βh(x, y) + h(x, z)

Then h shall be called a sesquilinear form onH . We say that h is (i) antilinear in the first argument and
(ii) linear in the second argument.

Now consider the natural map [·] : D → D × D : x 7→ (x, x). We say that the composite map
q = h ◦ [·] : D → C : x 7→ h(x, x) is a quadratic form associated to h and we write h[x] instead of
(h ◦ [·])(x). Alternatively, we can call q the diagonal of h.

Remark C.2.1.1. For a sesquilinear form h on H , we write D(h) to denote the set D from above. Note
that the domain of h is actually D(h) × D(h), but we shall not need the domain itself, the set D(h) proves
to be satisfactory when working with sesquilinear forms.

The definition of a quadratic form makes it apparent that given a sesquilinear form, the associated
quadratic form is easily constructed. The next proposition will admit a converse construction, that is, a
retrieval of a sesquilinear form from a quadratic one. Proof can be found in [9, I. 6].

Proposition C.2.2 (Polarization identity).
Let h be a sesquilinear form onH . Then we have

∀x, y ∈ D(h) : h(x, y) =
1
4

(h[x + y] − h[x − y] + i h[x − i y] − i h[x + i y])

In quantum mechanics and spectral theory, a particular class of sesquilinear forms is utilized more
often than not, the class of symmetric sesquilinear forms.

Definition C.2.3 (Symmetric forms).
A sesquilinear form h onH is said to be symmetric when it satisfies that
∀x, y ∈ D(h) : h(x, y) = h(y, x).

Proposition C.2.4 (Alternative definition of a symmetric form).
A quadratic form h onH is symmetric if and only if

∀φ ∈ D(h) : h[φ] ∈ R

Proof. The necessary condition follows from definition of symmetric form and the trivial implication

∀z ∈ C : z = z⇒ z ∈ R

The sufficient condition is a consequence of the polarization identity. �

Definition C.2.5. Let h, h̃ be sesquilinear forms onH . We say that

(i) h is densely defined :⇔ D(h) = H ,

(ii) h is bounded from below :⇔ h is symmetric and ∃C ∈ R : ∀ψ ∈ D(h) : h[ψ] ≥ C‖ψ‖2
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(iii) h is closed :⇔ ∀{ψn}
∞
n=1 ⊂ D(h), ψ ∈ D(h) :(

ψn
n
→ ψ ∧ h[ψm − ψn]

m,n
→ 0

)
⇒

(
ψ ∈ D(h) ∧ a[ψn − ψ]

n
→ 0

)
,

(iv) h̃ is an extension of h :⇔ (D(h) ⊂ D(h̃) ∧ ∀φ ∈ D(h) : h[φ] = h̃[φ]),

(v) h is closable :⇔ a closed extension of h exists,

(vi) h̃ is a closure of h :⇔ h is closable and h̃ is defined asD(h̃) := {ψ ∈ H : ∃{ψn}
∞
n=1 ⊂ D(h) : ψn

n
→ ψ ∧ h[ψm − ψn]

m,n
→ 0},

∀ψ ∈ D(h̃) : h̃[ψ] := lim
n→∞

ψn,

where ψn in the second row is the same as in the definition of D(h̃) from the first row.

C.3 Important Theorems

C.3.1 The Representation Theorem

Definition C.3.1. Let H be a Hilbert space and A, a an operator and a form thereon, respectively. We
say that A is an operator corresponding to the form a, or equivalently, a is a form corresponding to the
operator A, precisely when all of the following hold:

(i) D(A) ⊂ D(a)

(ii) ∀φ ∈ D(a), ψ ∈ D(A) : h(φ, ψ) = 〈φ | Aψ〉.

The following theorem, proof of which can be found in [9, chapter VI, thm 2.6, 2.7] provides a
connection between certain operators and sesquilinear forms, that will be useful to us in the future.

Theorem C.3.2. Let t be a densely defined, closed, symmetric, sesquilinear form bounded from below.
Then there exists a unique self-adjoint operator T bounded from below, corresponding to the form t.

Also conversely, for any self-adjoint operator T bounded from below, there exists a unique densely
defined, closed, symmetric sesquilinear form bounded from below, corresponding to the operator T .
Moreover, such a form is a closure of a sesquilinear form t0, defined asD(T ) = D(t0),

∀φ ∈ D(t0) : t0[φ] = 〈φ |Tφ〉.

Remark C.3.2.1. Given the one-to-one correspondence between self-adjoint operators bounded from
below and closed, symmetric, sesquilinear forms bounded from below, we shall utilize the notation

T
1:1
←→ t

which simply means that the above theorem is being used, either to retrieve a sesquilinear form from an
operator, or vice versa.
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C.3.2 The Minimax Theorem

The following theorem, proof of which can be found in [2, 4.5.1, 4.5.2], offers variational formulae
for eigenvalues of non-negative, self-adjoint operators.

Theorem C.3.3. Let A be a non-negative self-adjoint operator on H . For any finitely-dimensional
subspace L ⊂⊂ H define

λ(L) := sup {
〈ψ | Aψ〉
‖ψ‖2

: ψ ∈ L ∧ ψ , 0}

and then for any n ∈ N let λn be such that

λn := inf {λ(L) : L ⊂⊂ H ∧ dim L = n}.

Then precisely one of the following holds:

(i) λn
n
→ ∞. Then σe(A) = ∅ and σ(A) = σd(A). The numbers λn (for all n ∈ N) are then the

eigenvalues of A, each repeated according to its multiplicity.

(ii) ∃λ∞ ∈ R : (∀m ∈ N : λm < λ∞) ∧ λn
n
→ λ∞. Then λ∞ is the smallest number in the essential

spectrum of A and the part of spectrum of A in [0, λ∞) consists of eigenvalues λn (for all n ∈ N),
each repeated according to its multiplicity.

(iii) ∃λ∞ ∈ R : ∃N ∈ N : λN < λ∞ ∧ (∀m ∈ N,m > N : λm = λ∞). Then λ∞ is the smallest number
in the essential spectrum of A and the part of spectrum of A in [0, λ∞) consists of eigenvalues
λ1, λ2, ..., λN , each repeated according to its multiplicity.

Remark C.3.3.1. With regard to Remark C.1.3.1, we can see that σ(A) ⊂ R for any A defined as above.

Remark C.3.3.2. If we denote the form corresponding to A as a then one can reformulate the minimax
theorem by setting

λ(L) := sup {
a[ψ]
‖ψ‖2

: ψ ∈ L ∧ ψ , 0}

and the statement will still hold (cf. [2, thm 4.5.3])

Corollary C.3.3.1. Let A be as in the theorem above. Then

inf σ(A) = inf {
〈ψ | Aψ〉
‖ψ‖2

: ψ ∈ D(A) ∧ ψ , 0} = inf {
a[ψ]
‖ψ‖2

: ψ ∈ D(a) ∧ ψ , 0} ≥ 0

C.4 Sobolev Spaces

When dealing with partial differential equations and their weak forms, the notion of the L2 spaces
proves to be not entirely satisfactory. Instead, certain subspaces of L2, equipped with a different norm,
called Sobolev spaces, are more advantageous. Although Sobolev spaces are an important tool used in
Chapter 2, we shall introduce them only in a concise manner without much circumambulation.

Firstly, we shall adopt the notion of a weak derivative, and to that end, multiindexes will be defined.

Definition C.4.1. Let n ∈ N, α := (α1, ..., αn) ∈ Nn. We call α a multiindex and the number

|α| :=
n∑

i=1

αi
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will be called the order of α.
Now let k ∈ N, α be a multiindex of order k, U ⊂ Rn, ϕ ∈ Ck(U). We will use the following notation

for partial derivatives:

Dαϕ :=
∂α1

∂xα1
1
...
∂αn

∂xαn
n
ϕ

and say that Dαϕ is the partial derivative of ϕ with respect to α.

Definition C.4.2. Let α be a multiindex, U ⊂ Rn, n ∈ N, ψ, η ∈ L1
loc(U). We say that η is the α-th weak

derivative of ψ precisely when

∀ϕ ∈ C∞0 (U) :
∫

U
ψDαϕ = (−1)|α|

∫
U
ηϕ.

We will write Dαψ := η.

Remark C.4.2.1. The motivation for this definition comes from the fact that for ψ ∈ C1(U) and ϕ ∈
C∞0 (U) we can write, using integration by parts and Gauss theorem

∀i ∈ n̂ :
∫

U
ψ
∂ϕ

∂xi
= −

∫
U

∂ψ

∂xi
ϕ

and even so for higher derivatives, assuming ψ is differentiable enough. There is no boundary term, since
ϕ vanishes at the boundary.

Remark C.4.2.2. The weak derivative retains many properties that of its usual (often called strong)
counterpart. We shall not list them all here, for more details cf. [3, subsection 5.2.1].

Thereon in this subsection, let U be a domain in Rn, n ∈ N and k, p ∈ N.

Definition C.4.3. Let the Sobolev space Wk,p(U) be defined as the set of all functions ψ ∈ L1
loc(U) such

that for any multiindex α of order less than, or equal to k, Dαψ exists in a weak sense and belongs to
Lp(U).

We shall endow the set Wk,p(U) with the following norm:

∀ψ ∈ Wk,p(U) : ‖ψ‖Wk,p(U) :=

∑
|α|≤k

‖Dαψ‖
p
Lp(U)


1
p

,

where the sum is being taken over the set of all multiindexes of order less than or equal to k.

Remark C.4.3.1. The set L1
loc(U) is the set of all functions, whose absolute value is integrable for each

point in U on some neighbourhood of that point.

Remark C.4.3.2. It can be shown (cf. [3, thm 5.2.2]) that the space (Wk,p(U), ‖ψ‖Wk,p(U)) is a Banach
space, in particular, for p = 2 (we will make use of such Sobolev spaces later), it is a Hilbert space.

Definition C.4.4. We shall also define the set

Wk,p
0 (U)

to be the closure of C∞0 (U) in Wk,p(U)

Remark C.4.4.1. One can interpret the set Wk,p
0 (U) to contain functions that vanish on the boundary.

This is not, however, true in a strict sense, as boundaries of functions from Sobolev spaces have to be
understood in a sense of traces (cf. [3, section 5.5]). In this work, we shall not delve into the theory of
traces, and only approach boundaries in an intuitive sense.
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C.5 The Principal Eigenvalue of a Laplacian

For a closed operator A on H , we shall call the smallest value of its discrete spectrum (if it indeed
exists) the principal (or first) eigenvalue.

In this section, we will briefly deal with some properties of the principal eigenvalue of the Laplacian
operator, in particular, its existence, simplicity (that is, its multiplicity being one) and existence of a
positive eigenfunction. It is known (cf. [3, thm 6.5.2]), for example, that the Laplacian operator, defined
such that it operates on functions whose domain is a bounded region and that vanish at the boundary
(Dirichlet boundary condition) has a principal eigenvalue, it is indeed simple and the corresponding
eigenfunction can be normed so that it is positive.

If one chooses a different boundary condition, e.g. the Neumann boundary condition, which is sat-
isfied when a functions derivative at the boundary with respect to the outer normal of that boundary is
zero, then boundedness requirement is not sufficient and one has to additionaly assume some regularity
of the boundary.

It is also possible to impose the Dirichlet boundary condition on one part of the boundary and Neu-
mann boundary condition on the complement part (this will be done in Chapter 2). Such boundary
condition is sometimes called a mixed boundary condition. In [1], such case is treated in even broader
generality and the following theorem is a simpler version of [1, thm 10, 12], combined with [2, cor 4.2.3]

Theorem C.5.1. Let Ω be a bounded domain in Rn, n ∈ N, such that ∂Ω is a boundary of class C2 and
let ΓD,ΓN ⊂ ∂Ω,ΓD = ∂Ω \ ΓN . We define a sesquilinear form h asD(h) := {φ ∈ W1,2(Ω) : φ�ΓD= 0},

∀φ ∈ D(h) : h[φ] = ‖∇φ‖2.

Then there exists a unique positive solution ψ of the mixed boundary condition problem
∀φ ∈ D(h) : h(φ, ψ) = λ〈φ |ψ〉,

ψ ∈ W2,2(Ω) ∧ ψ�ΓD= 0 ∧ ψ,n �ΓN = 0, ‖ψ‖2 = 1
λ = inf{h[φ] : ψ ∈ D(h) ∧ ‖ψ‖2 = 1},

where ψ,n stands for the derivative of ψ with respect to the outer normal of the boundary ΓN .
Moreover, if we denote the operator associated with h as H, then σ(H) = σd(H) and there exists a

complete orthonormal set in L2(Ω), consisting of eigenfunctions of H.

Remark C.5.1.1. The form h is closely related to the Laplacian operator, as one can, using integration
by parts, Gauss theorem and boundary conditions, show that

∀φ ∈ D(h) : h(φ, ψ) = 〈∇φ | ∇ψ〉 = −〈φ |∆ψ〉

Remark C.5.1.2. The reason we have ψ ∈ W2,2(Ω) instead of ψ ∈ W1,2(Ω) is that we require the
existence of a boundary normal derivative. In Sobolev spaces, the symbol ψ,n �ΓN has to be understood
in a sense of traces, otherwise it would be trivially true (cf. [3, thm 5.5.1]).
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