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Introduction

The spectrum of the self-adjoint Dirichlet Laplacian is interesting to study due to the huge
amount of its applications and no less for the mathematics itself. The spectrum of the operator
depends on the geometry of the domain in Rd on which it acts. These domains can be divided
into two main groups, we have either unbounded or bounded domains. The unbounded domains
according to the Glazman's classi�cation are of three types, quasi-conical, quasi-cylindrical and
quasi-bounded. For bounded domains it is known that the spectrum is purely discrete and for a
few shapes (rectangular parallelepipeds, balls, tori) we even known the spectrum explicitly. This
thesis studies the spectrum on bounded domains, more precisely we are mainly interested in the
upper bounds for the �rst eigenvalue (non-trivial, sharp or in arbitrary dimension).

In the beginning of the thesis we study the application of the spectrum in music. Since the
vibrations of the parts of the musical instruments which produce the sound can be modeled
using the wave equation in which �gures the Laplace operator (with the Dirichlet, Dirichlet-
Neumann or Neumann boundary conditions), we show that there is a close relationship between
the eigenvalues of the spectrum (not yet knowing that we have found the complete spectrum)
and the frequencies of the sounding tones. Next we compute and compare the spectra of one-
dimensional (string, air column) and two-dimensional vibrating objects (membrane of a drum)
and show the huge importance of the spectrum of the string in the music. Finally we introduce
a special kind of drum called a timpani which surprisingly has a spectrum very similar to the
spectrum of the string, if other physical phenomena are taken into account.

In the second chapter we correctly de�ne the self-adjoint Dirichlet Laplacian on bounded
domains using the quadratic forms and we state some of its properties and the properties of its
spectrum, which will be needed later. We also develop some spectral-analytic tools, such as the
min-max principle, on which the subsequent chapter stands.

The third chapter is the main chapter of the thesis were we state some of the existing bounds
for the �rst eigenvalue. We start with one lower bound, the Faber-Krahn inequality, �rst con-
jectured in the book [2]. Next from the monotonicity of the eigenvalues we can easily obtain
the trivial upper bound. We then continue with the Pólya and Szegö's [5], respectively planar
Payne and Weinberger's [17], upper bound for simply-connected domains which stand on the
min-max principle and on the use of the shrinking, respectively parallel, coordinates. Moreover
we introduce our own result, the generalization of the Pólya and Szegö's bound for particular,
not simply-connected domains. In the end we state the Antunes and Freitas conjecture based on
some numerical studies [21].

In the last chapter we �rst present some examples of simply-connected domains to which we
apply the presented bounds and consequently we compare them. Finally we create the particular
hole in these domains, apply our bound to them and show the dependence of the bound on the
size of the domain and the hole.

11
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Chapter 1

Musical motivation

1.1 Spectrum of 1D objects

Most musical instruments produce sound by the vibration of air column or string. Both these
can be described by the one dimensional wave equation

∂2u(x, t)

∂x2
=

1

c2

∂2u(x, t)

∂t2
.

The function u = u(x, t) of the coordinate x and time t is the amplitude of vibration and c is
a constant having a meaning of the phase velocity of the wave in the material or air. For our
purposes, we can put this constant equal to 1 without loss of generality. Considering a string of
length L with two �xed edges we have the Dirichlet boundary conditions

u(0, t) = 0

u(L, t) = 0.
(1.1)

Considering an air column, we have either the Neumann boundary conditions on both sides, i.e.,

∂u(x, t)

∂x

∣∣∣∣
x=0

= 0

∂u(x, t)

∂x

∣∣∣∣
x=L

= 0

(1.2)

or the Neumann boundary condition on one side and the Dirichlet boundary condition on the
other. (An air column with the Dirichlet boundary condition on both sides is not possible because
air which is blown into the instrument has to escape somewhere.)

1.1.1 Spectrum of string

First we solve the string boundary spectral problem obtaining the spectrum of the string

∂2u(x, t)

∂x2
=
∂2u(x, t)

∂t2

u(0, t) = 0

u(L, t) = 0

subject to the initial conditions.
13



14 CHAPTER 1. MUSICAL MOTIVATION

Assuming u(x, t) = X(x)T (t), we can separate the time and space part of the preceding
equation. First we solve the space part

∂2X(x)

∂x2
= −λX(x) (1.3)

with the boundary conditions
X(0) = 0

X(L) = 0.
(1.4)

We can also interpret this equation as an eigenvalue problem for the Laplace operator (in case
of the string it consists only of the second partial derivative with respect to the coordinate x).
We will see that not only for the string but also for other geometries in higher dimensions we
can interpret the space part of the wave equation as an eigenvalue problem.

Now we will show that λ, eigenvalue of our problem de�ned in the previous paragraph, is
positive. This will allow us to write the corresponding eigenvectors in the terms of sines and
cosines. Let us take our equation, multiply it with its complex conjugate and integrate over the
whole string ∫ L

0

∂2X(x)

∂x2
X(x)dx = −λ

∫ L

0
X(x)X(x)dx.

Using the per partes method on the integral on the left hand side we obtain[
∂X(x)

∂x
X(x)

]L
0

−
∫ L

0

∂X(x)

∂x

∂X(x)

∂x
dx = −λ

∫ L

0
X(x)X(x)dx

where the �rst term is zero because of the Dirichlet boundary conditions. Expressing λ we get

λ =

∫ L

0

∂X(x)

∂x

∂X(x)

∂x
dx∫ L

0

∣∣X(x)
∣∣2dx =

∫ L

0

∂X(x)

∂x

∂X(x)

∂x
dx∫ L

0

∣∣X(x)
∣∣2dx =

∫ L

0

∣∣∣∣∂X(x)

∂x

∣∣∣∣2dx∫ L

0

∣∣X(x)
∣∣2dx

which implies that λ is nonnegative.
Assuming λ = 0 we get

X(x) = C1x+ C2

as the general solution of the equation (1.3) and considering the boundary conditions (1.4) we
obtain zero solution X(x) = 0, thus λ = 0 cannot be considered as the part of the spectrum,
implying λ > 0.

Because λ is positive we can write the general solution of the equation (1.3), for example in
the form

X(x) = C3 cos(
√
λx) + C4 sin(

√
λx).

Next we apply the Dirichlet conditions (1.4) to solve the boundary value problem

X(0) = 0⇒ C3 = 0

X(L) = 0⇒ λ =
k2π2

L2
, k ∈ Z− {0}.

Thus the spectrum of the string boundary value problem is

σ =

{
k2π2

L2

∣∣∣k ∈ Z− {0}
}

(1.5)
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Figure 1.1: Plot of uk(x, 0) for k ∈ {1, 2, 3, 4}

and the corresponding eigenfunctions are

X(x) = C4 sin(
√
λx).

While it is not our goal to �nd the complete solution, u, we will do it to �nd out the meaning of
the eigenvalues (1.5).

The separated equation for time is

∂2T (t)

∂t2
= −λT (t).

We already know that λ is positive, so we can write the solution in the form

T (t) = C cos(
√
λt+ φ). (1.6)

The whole solution u(x, t) = X(x)T (t) is then

uk(x, t) = C5 sin(
√
λkx) cos(

√
λkt+ φ), λk ∈ σ

where C5 = C · C4 and φ depend on the initial conditions. On Figure 1.1 the �rst four modes
can be seen. From this equation we can see that

√
λk plays the role of the angular frequency of

the movement √
λk = ω = 2πf

where f is the frequency. This implies that the frequencies of the modes of vibration of the string
depend proportionally on k, f ∝ k, k ∈ Z−{0}. The mode with the lowest frequency (k = 1) is
considered as the fundamental. Its frequency is f = π

L . All other modes' frequencies are a whole
number multiples of this fundamental frequency.

1.1.2 Spectrum of air column with two open ends

Next we will look at the instruments where the sound is produced by vibrations of an air
column with both ends open (for example a �ute). An air column can be modeled by the
wave equation for the acoustic pressure or for the amplitude as in the string case. For better
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compatibility we consider the wave equation for amplitude. A pressure node is equivalent to
an amplitude antinode and vice versa. Thus the open ends on both sides which mean pressure
nodes imply amplitude antinodes on both sides. We thus get the Neumann boundary conditions
(1.2). So our goal is to solve the following boundary value problem

∂2u(x, t)

∂x2
=
∂2u(x, t)

∂t2

∂u(x, t)

∂x

∣∣∣∣
x=0

= 0

∂u(x, t)

∂x

∣∣∣∣
x=L

= 0

(1.7)

subject to the initial conditions. Again by assuming u(x, t) = X(x)T (t) and separating time we
obtain the following space problem

∂2X(x)

∂x2
= −λX(x)

∂X(x)

∂x

∣∣∣∣
x=0

= 0

∂X(x)

∂x

∣∣∣∣
x=L

= 0.

Analogically as in the string boundary value problem we can show that λ is nonnegative.
For λ = 0 we have the solution

X(x) = C1x+ C2 (1.8)

and considering the Neumann boundary conditions (1.2) we get a constant eigenfunction X(x) =
C2 6= 0.

For λ strictly positive we have the solution

X(x) = C3 cos(
√
λx) + C4 sin(

√
λx)

and applying (1.2) leads to

∂X(x)

∂x

∣∣∣∣
x=0

= 0⇒ C4 = 0

∂X(x)

∂x

∣∣∣∣
x=L

= 0⇒ λ =
k2π2

L2
, k ∈ Z− {0}.

Hence, we can write the spectrum

σ =

{
k2π2

L2

∣∣∣k ∈ Z
}

(1.9)

with the corresponding eigenfunctions

X(x) = C3 cos(
√
λx).

As we can see the only di�erence between this spectrum (1.9) and the previously obtained string
boundary value problem spectrum (1.5) is the eigenvalue 0, which does not play role in the
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Figure 1.2: Plot of uk(x, 0) for k ∈ {1, 2, 3, 4}

sound because of its zero energy. So the mode frequencies are again the integer multiples of the
fundamental frequency (k = 1).

The solution of time part of (1.7) is the same as in the string case, (1.6), so we can write the
whole solution as

uk(x, t) = C5 cos(
√
λkx) cos(

√
λkt+ φ), λk ∈ σ

where C5 = C · C3. On Figure 1.2 we can see the �rst four modes omitting the zero mode.

1.1.3 Spectrum of air column with one open end

An air column with both open and closed end is also a usual vibrating object in many
musical instruments (for example a clarinet). We can model this again by the wave equation
for the amplitude but now with the Dirichlet boundary condition on the closed end and the
Neumann boundary condition on the open end. Let us assume that the end at the coordinate
x = 0 is the closed one without loss of generality. Thus our boundary value problem is

∂2u(x, t)

∂x2
=
∂2u(x, t)

∂t2

u(0, t) = 0

∂u(x, t)

∂x

∣∣∣∣
x=L

= 0

subject to the initial conditions. Again by separating time we obtain the space problem

∂2X(x)

∂x2
= −λX(x)

X(0) = 0

∂X(x)

∂x

∣∣∣∣
x=L

= 0

with the eigenvalue λ which is again nonnegative.
For λ = 0 we obtain the solution

X(x) = C1x+ C2
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Figure 1.3: Plot of uk(x, 0) for k ∈ {0, 1, 2, 3}

which considering the boundary conditions leads to zero solution X(x) = 0 not being considered
as an eigenfunction, thus λ = 0 is not an eigenvalue.

For λ > 0 the solution can be written in the same form as in the purely Neumann case

X(x) = C3 cos(
√
λx) + C4 sin(

√
λx)

and the boundary conditions imply

X(0) = 0⇒ C3 = 0

∂X(x)

∂x

∣∣∣∣
x=L

= 0⇒ λ =

(
k + 1

2

)2
π2

L2
, k ∈ Z.

The spectrum is then

σ =

{(
k + 1

2

)2
π2

L2

∣∣∣k ∈ Z
}

with the eigenfunctions
X(x) = C4 sin(

√
λx).

On the �rst sight the corresponding frequencies are now not proportional to k, but if we look
more carefully it can be seen that they are integer multiples of a frequency that is half the size
of the frequency in the string case and every odd frequency (even the �rst one) is missing in the
spectrum. As we will see later this is no problem for the sound. The important thing is that the
spectrum still contains only the integer multiples of some frequency.

The whole solution obtained the same way as before using the time solution (1.6) is then

uk(x, t) = C5 sin(
√
λx) cos(

√
λkt+ φ), λk ∈ σ

where C5 = C · C4. On �gure 1.3 we can see the corresponding �rst four modes.

1.1.4 Harmonic series

The fact that the previously obtained spectra contain frequencies that are integer multiples
of some fundamental frequency is very important because almost all the sounds we hear and



1.1. SPECTRUM OF 1D OBJECTS 19

which can be considered as tones are produced by what can be modeled as a one-dimensional
vibrating object (string, air column, bar, etc). The fundamental frequency with its integer
multiples sounding above it is then the structure of tones our ear has usually been hearing since
the ancient times. This implies our ear is being used to this structure, this spectrum, and it
sounds nice to it. The frequencies which are included in it generate the so called harmonic series.
This series is de�nitely the basis of the classical western music.

To show the importance of the harmonic series we will create one. We take 65.4 Hz (note
C2) as the fundamental frequency. The integer multiples of the fundamental are then 130.8 Hz
(note C3), 196.2 Hz (note G3), 261.6 Hz (note C4), 327.0 Hz (note E4), 392.4 Hz (note G4),
457.8 Hz (note B[4) and so on. The names of the notes are only informative because an exact
pitch associated with a speci�c note depends on the type of the tuning we choose.

Musical extract 1: Harmonic series. First line denotes the number of the tone, on the second
line there are the names of the notes and the third line has the meaning of the frequency of the

tonesă
I
G

1
C2
65.4

¯
2
C3
130.8

¯
3
G3
196.2

¯

4
C4
261.6

¯

5
E4

327.0

¯

6
G4
392.4

¯ 2

7
B[4
457.8

¯

8
C5
523.2

¯

9
D5
588.6

¯

10
E5
654

¯

We can see that the ratio of the frequencies of the �rst overtone and the fundamental is 2:1.
In musical theory this ratio is called an octave. The ratio of the second and the �rst overtone is
3:2, called the perfect �fth. The following are 4:3 called the perfect fourth, 5:4 is the major third,
6:5 is the minor third and so on. These are the ratios (called intervals) de�ned by the harmonic
series which our ear likes because it hears it in every tone. From these we can construct the so
called just intonation, which contains strictly these intervals (ratios of small integers) and hence
it is very consonant. However the music which can be produced in just intonation is very limited
because it is almost impossible to maintain this small integer ratios between all the tones in
every chord or within the succeeding tones. In the past there were many attempts to solve this
problem, for example the Pythagorean tuning which uses only the perfect �fths to get all tones
but leading to the Pythagorean comma which is another problem. The intense development of
the western music in approximately last 500 years forced the formation of the so called equal
temperament. It takes the interval of octave (2:1) and divides it into twelve parts of the same size
equal to 12

√
2. This means that no interval except the octave is an exact ratio of small integers.

Hence all of them di�er from the corresponding just interval which makes their sound slightly
dissonant. However with equal temperament we can write as rich music as we want. We can
change the keys during one piece (we can imagine this as changing the fundamental frequency
of the harmonic series), we can use complicated chords (some of their notes do not have to be
contained in the appropriate harmonic series) and so on. None of this is easily possible with just
intonation. The classical western music uses, approximately from the times of J. S. Bach, mainly
the equal temperament.
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Although there are di�erences between intervals in just intonation and equal temperament,
the harmonic series is still the basis of the western music. Not musically trained ear almost
cannot notice that all the intervals (except octave) are dissonant. When performing music only
on the instruments where the tone pitch can be continuously changed (for example violin or
human voice) the performers often tend to play some intervals more just. Of course this is not
possible when playing the instruments with �xed tone pitch (for example piano or organ).

In the next chapter we take a look on the spectrum of the instruments where the vibration
is produced by some two-dimensional source (for example drums).
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1.2 Spectrum of 2D domains

The musical instruments which have the vibrating object that can be modeled as one or more
two-dimensional membranes are called the drums. The vast majority of this membranes has a
round shape, so we will discuss only the spectrum of a circular membrane.

Useful model of vibrations of this membrane is the wave equation in the polar coordinates
with the Dirichlet and cyclic boundary conditions

∆u(r, φ, t) =
∂2u(r, φ, t)

∂t2

u(a, φ, t) = 0

u(r,−π, t) = u(r, π, t)

∂u

∂φ
(r,−π, t) =

∂u

∂φ
(r, π, t)

(1.10)

subject to the initial conditions where a is the radius of the circle, r ∈ (0, a), φ ∈ (−π, π) and

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2

is the Laplace operator in the polar coordinates r and φ. We have again put the constant c equal
to 1 without loss of generality. Now we will again use the method of the separation of the variables
to separate the space part of the equation. Assuming the solution of type u(r, φ, t) = A(r, φ)T (t)
we obtain

∂2A(r, φ)

∂r2
+

1

r

∂A(r, φ)

∂r
+

1

r2

∂2A(r, φ)

∂φ2
= −λA(r, φ)

A(a, φ) = 0

A(r,−π) = A(r, π)

∂A

∂φ
(r,−π) =

∂A

∂φ
(r, π)

where λ is an eigenvalue. Our task is now to calculate all possible λ. By assuming A(r, φ) =
R(r)Φ(φ) we can separate the radial and angular part

r2

R(r)

d2R(r)

dr2
+

r

R(r)

dR(r)

dr
+ λr2 = − 1

Φ(φ)

d2Φ(φ)

dφ2
= ν (1.11)

R(a) = 0 (1.12)

Φ(−π) = Φ(π) (1.13)
dΦ

dφ
(−π) =

dΦ

dφ
(π). (1.14)

The solution of the angular part without considering the boundary conditions is

Φ(φ) = C1e
i
√
νφ + C2e

−i
√
νφ, (1.15)

assuming ν 6= 0.
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Now we will apply the cyclic boundary conditions. For ν < 0 we can rewrite the solution as

Φ(φ) = (C1 + C2) cosh
√
νφ+ (C2 − C1) sinh

√
νφ.

From the condition (1.13) and considering the parity of the hyperbolic functions we obtain

−(C2 − C1) sinh
√
νπ = (C2 − C1) sinh

√
νπ.

This condition can be satis�ed only when

sinh
√
νπ = 0 ∨ C2 − C1 = 0.

The �rst equation is equal to ν = 0, but we are now interested only in ν strictly negative. This
implies that C2 − C1 = 0. From the condition (1.14) and again considering the parity we get

−(C1 + C2) sinh
√
νπ = (C1 + C2) sinh

√
νπ

which analogically leads to C1 + C2 = 0. Hence for ν strictly negative we get only a trivial
solution for Φ.

For ν = 0 we have di�erent fundamental system than in the solution (1.15). We can write
the solution for ν = 0 as

Φ(φ) = C3 + C4φ.

The boundary conditions imply C4 = 0, leading to a constant solution.
For ν > 0 we can again rewrite solution (1.15) as

Φ(φ) = i(C1 − C2) sin
√
νφ+ (C1 + C2) cos

√
νφ.

Omitting the trivial solution and considering the parity of the trigonometric functions, the con-
dition (1.13) and (1.14) imply

sin
√
νπ = 0

√
νπ = mπ, m ∈ Z

ν = m2.

Thus we may take ν = m2,m ∈ Z+
0 and the solution of the angular part considering boundary

conditions as
Φm(φ) = i(C1 − C2) sinmφ+ (C1 + C2) cosmφ.

Now we solve the radial part of equation (1.11). First we have to show that λ is positive.
Let us denote our membrane by D and its boundary by ∂D. λ is an eigenvalue of the problem

∆A(r, φ) = −λA(r, φ).

Analogically as in the one-dimensional case, we can multiply this equation by the complex
conjugate of A and then integrate it over the whole membrane D∫

D
Ā∆AdS = −λ

∫
D
ĀAdS. (1.16)

Now we can use the Divergence theorem ([22], Thm. 5.8) for the function Ā∆A∫
∂D

(Ā∇A)·ndt =

∫
D
Ā∆AdS +

∫
D
|∇A|2dS
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where n is the outward unit normal vector to dS. Here we can substitute the �rst integral on
the right hand side from the equation (1.16) and use the Dirichlet boundary conditions which
imply ∫

∂D
(Ā∇A)·ndt = 0

because A(r, φ) = 0 on ∂D. We obtain an expression for λ

λ =

∫
D
|∇A|2dS∫
D
|A|2dS

from which we can see that λ ≥ 0.
Now we can continue. After substituting for

√
ν and rearranging the equation into the form

r2d
2R(r)

dr2
+ r

dR(r)

dr
+R

((√
λr
)2 −m2

)
= 0

which is possible because λ ≥ 0, we obtain the Bessel equation of order m. Its solution with
respect to m can be written as a linear combination of the Bessel functions of order m of the
�rst and second kind

Rm(r) = C5Jm(
√
λr) + C6Ym(

√
λr).

The Bessel functions can be de�ned using the power series

Jα(x) =
∞∑
n=0

(−1)n

n!Γ(n+ α+ 1)

(x
2

)2n+α
, α ∈ C

Yα(x) =
Jα(x) cosαπ − J−α(x)

sinαπ
, α ∈ C− Z

Yn(x) = lim
α→n

Yα(x), n ∈ Z

where Γ(x) is the gamma function de�ned for x > 0 as

Γ(x) =

∫ ∞
0

e−ttx−1dt.

An important property of the Bessel functions of the second kind is

lim
x→0+

Yp(x) = −∞.

For our purposes we need a �nite displacement of the membrane

lim
x→0+

Rm(r) 6= ±∞

which implies that C6 = 0 and
Rm(r) = C5Jm(

√
λr). (1.17)
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Figure 1.4: Plot of Jm(x) for m ∈ {0, 1, 2}

Table 1.1: Table of �rst jmn ordered by size

m n jmn

0 1 2.405
1 1 3.832
2 1 5.136
0 2 5.520
3 1 6.380
1 2 7.016
4 1 7.588
2 2 8.417
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Next we have to apply the Dirichlet boundary conditions (1.12)

R(a) = 0 =⇒ Jm(
√
λa) = 0.

The Bessel function of the �rst kind has in�nitely many zeros. The plot of Jm can be seen on
Figure 1.4. We shall denote the nth zero of the Bessel function of the �rst kind of the order m
as jmn, Jm(jmn) = 0. Table 1.2 shows the �rst jmn ordered by size.

Thus we can write √
λa = jmn

from which we can �nally obtain the spectrum

λmn =
(jmn
a

)2
, m ∈ Z+

0 , n ∈ N. (1.18)

The solution of the time part of the equation (1.10)

∂2T (t)

∂t2
+ λT (t) = 0

is the same as in the one-dimensional case

T (t) = C7 cos (
√
λt+ φ).

Thus the whole solution can be written for example in the form

umn(r, φ, t) = KJm(
√
λmnr)

(
i(C1 − C2) sinmφ+ (C1 + C2) cosmφ

)
cos(

√
λmnt+ φ) (1.19)

where K = C7·C5. On Figure 1.5, the ten �rst modes sorted in a non-decreasing order can
be seen. From (1.19) we can see that

√
λmn again plays the role of the angular frequency√

λmn = ω = 2πf .
We have obtained the frequencies of the modes of vibration

fmn =
1

2π

√
λmn =

jmn
2πa

.

These frequencies are de�nitely not a whole number multiples of the fundamental frequency f01.
Now we would assume a = 0.00585 to attain the same fundamental frequency (65.4 Hz, note C2)
as in the one-dimensional case so we could better compare them. (The radius of the membrane
seems unrealistic because we dismissed the constant c at the beginning). First modes sounding
above the fundamental have frequencies of 104.25 Hz (note G]2), 139.72 Hz (note C]3), 150.18
Hz (note D3), 173.58 Hz (note F3), 190.87 Hz (note G]3) and 206.45 Hz (note A[3). The names
of the notes are again only informative, the di�erences between these frequencies and frequencies
obtained using equal temperament for the same notes would be signi�cant.

Musical extract 2: Spectrum of circular membrane
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Figure 1.5: Plot of umn(r, φ, 0) for (m,n) ∈ {(0, 1), (1, 1), (2, 1), (0, 2), (3, 1), (1, 2), (4, 1), (2, 2), (0, 3), (5, 1)}
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As we can see this series is very di�erent from the previously obtained harmonic series. This
is caused by the two-dimensionality of the membrane and it is the reason for why our ear does
not perceive the sound of a drum as a tone but more as a noise. But there are some drums
which sound musically. First of their sounding overtones are consistent with the harmonic series
thus we can determine the drum's pitch and classify its sound as a tone. This can be accounted
for other factors from which the most important are the sound radiation and considering the
vibrations of air enclosed in the kettle and above the membrane. We will talk about this in the
next chapter.
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1.3 Sound radiation and air loading

In this section we discuss the phenomena that makes some drums with the kettle sound more
musically. The most important drum with these properties is the timpani. It is being used in
many di�erent types of musical ensembles, for example in the classical symphonic orchestra or
in marching bands.

The �rst thing we should consider is the place where the membrane is struck because this
signi�cantly a�ects the decay rate of the modes and thus the sounding spectrum. We shall denote
the individual modes as in the previous section by the two indicesm and n, wherem ∈ Z+

0 means
the number of the nodal diameters and n ∈ N has the value of the number of the nodal circles.
If one would strike the timpani in the middle, only the modes with m = 0 would participate in
the sound, because all the remaining have a node in the place of the stroke and thus cannot be
excited by this way.

Musical extract 3: Spectrum of membrane when struck in middleă
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If we now look at the corresponding tones we can see that for example the interval between the
fundamental and �rst sounding overtone is approximately 1 : 2.296, something between major
and augmented ninth which is a very dissonant interval. Hence this is not the best way to strike
the timpani. In the book The Theory of Sound [2], Lord Rayleigh showed that striking the
membrane approximately one quarter of its radius from the edge almost does not excite the �rst
mode, thus the �rst sounding mode is the second one in the spectrum (m = 1, n = 1). This
way of striking also causes the modes with n = 1 to be mainly represented in the spectrum
(their amplitudes are the highest). As we will show later, these modes have small decay rates
in contrast with the modes with m = 0 which decay very rapidly and thus their sound can be
considered more as a thump. More importantly the frequencies of the slowly decaying modes
can be shifted to be considered as a part of some harmonic series. Therefore from this point we
would assume the membrane has been struck approximately one quarter of its radius from the
edge.

Now we will look at the sound radiation of the individual modes (see [3]). The mode (m =
0, n = 1) acts as a monopole source which radiates sound very e�ectively and thus has very high
decay rate and considering the place of hit allows us to omit this mode in the sounding spectrum.
The second mode (m = 1, n = 1) acts as a dipole source which radiates sound less e�ectively
than the monopole source and so it decays more slowly. The third mode (m = 2, n = 1) acts as
a quadrupole source to which it takes even more time to decay than to the second mode. The
fourth mode can be considered as something between the monopole and dipole source and its
decay time is something between the �rst and the second mode. However it can be shown that
this mode does not play a big role in the sounding spectrum. As the second and third mode,
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the �fth (m = 3, n = 1), seventh (m = 4, n = 1) and even the tenth mode (m = 5, n = 1),
whose amplitudes can still be considered as enough high, assuming the right stroke, are very
poor sound radiators and they contribute to the sounding spectrum. On the other hand, the
sixth (m = 1, n = 2) and eight mode (m = 2, n = 2) do not participate in the sound when the
timpani is hit correctly, although they decay quite slowly.

Now, considering the initial conditions and the sound radiation we have eliminated the modes
which do not contribute to the musical sound of the drum. Thus we have obtained the following
spectrum

Musical extract 4: Spectrum of membrane considering proper initial conditions and sound
radiation
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We can see that this spectrum is still not a part of the harmonic series for what we want are
only the integer multiples of some frequency and now we have the ratios 1 : 1.35 : 1.67 : 1.99 : 2.3.

Further aspect which has not yet been considered is the actual three-dimensionality of the
membrane. A real membrane has to be modeled more like a plate. This means we have to
consider also its bending sti�ness and sti�ness to shear. These two raise the frequencies of the
overtones. However their e�ect is not of high importance (see [3]).

More important role plays the so called air loading. On both sides of a real membrane is air,
the inner side is enclosed in the kettle and air in it also vibrates when the drum is struck. Air
on the outer side of the membrane also plays its role. This e�ect lowers the frequencies of the
low modes and it is the main factor which establishes the harmonicity of the spectrum.

The calculation of the e�ect of air loading is presented in the paper [1]. They model the
drum as a rigid kettle of a cylindric shape with the length L and radius a, rigid bottom with a
small circular vent hole and the membrane on the top. Moreover they model the vibrations of
the drum using the wave equation not for the amplitude as in the preceding cases but for the
acoustic pressure p

1

c2
∆p(ρ, φ, z, t)− ∂2p(ρ, φ, z, t)

∂t2
= 0

where ∆ is the Laplace operator in the cylindrical coordinates

∆ =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2

and c is the speed of the sound in air. To solve this problem they use the method of the Green
functions.

The obtained results can be used to calculate the modes of vibration of an air loaded mem-
brane. It shows that the important modes (those with n = 1) have frequencies in a ratio 1 :
1.51 : 1.99 : 2.46 : 2.93 for the fundamental frequency 150 Hz, in a ratio 1 : 1.5 : 1.97 : 2.44 : 2.89
for the frequency 107 Hz or in a ratio 1 : 1.51 : 1.98 : 2.44 : 2.9 for the frequency 145 Hz, where
the fundamental frequency is the frequency of the �rst sounding mode (m = 1, n = 1) as we have
shown before. In general it can be seen that for fundamental frequencies in a normal playing
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range for timpani (approximately 100 Hz < f < 175 Hz), the modes that participate on the
tone of the drum have frequencies in a ratio approximately 1 : 1.5 : 2 : 2.5 : 3, which is equal
to 2 : 3 : 4 : 5 : 6 and thus can be considered as a beginning of the harmonic series without
the �rst frequency. As we will show later the missing fundamental frequency makes no problem
when perceiving the pitch of the sound. If we now take 130.8 Hz as the fundamental frequency
we obtain the following spectrum

Musical extract 5: Spectrum of timpaniă
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There is a very interesting problem in psychoacoustics called the missing fundamental. It says
that the human ear perceives the pitch of the tones not only by the fundamental frequency but,
when the spectrum consists of the integer multiples of some frequency, then the important role
play the di�erences between the individual frequencies and it does not matter whether a few of
them are missing. For example a spectrum with the frequencies in a ratio 1 : 2 : 3 : 4 : 5 : 6
generates a harmonic series of the �rst frequency. The di�erences between the frequencies are
equal to the �rst frequency. Thus the �rst frequency is the pitch we perceive. If we now remove
for example the �rst frequency we obtain a ratio 2 : 3 : 4 : 5 : 6. As we can see the di�erences
are still equal to the �rst frequency. Therefore we again perceive the pitch of the fundamental
even when it is not included the spectrum. We could have also removed for example the fourth
frequency obtaining 1 : 2 : 3 : 5 : 6. The dominant di�erence will still be equal to the fundamental
and thus we will perceive the same pitch as before. But the problem is more complicated. Having
1 : 2 : 3 : 4 : 5 : 6 and removing all the even frequencies leading to 1 : 3 : 5 also generates a
harmonic series of the fundamental even when the di�erences are equal to a tone an octave
higher (a tone with a two times higher frequency). Thus the perceived pitch is the same as for
1 : 2 : 3 : 4 : 5 : 6, only the timbre is di�erent. It is caused by the relative sizes of amplitudes being
another important factor beside the di�erences. The amplitude of the fundamental is dominant
and thus the fundamental is perceived as the pitch. This e�ect can be seen for example in the
wind instruments having only one open end (the Dirichlet boundary conditions on the closed end
and the Neumann boundary conditions on the open end, for example a clarinet) which causes its
spectrum to be equivalent to the spectrum of an instrument twice as long having both ends open
with all the even frequencies missing. This causes that having these two instruments with the
same length, the one with the Neumann boundary conditions on both ends (for example a �ute)
would sound an octave higher (frequencies in a ratio 1 : 2 : 3 : 4 : 5 : 6...) than the one with the
end with the Dirichlet boundary conditions (frequencies in a ratio 0.5 : 1.5 : 2.5 : 3.5...) because
the sounding spectrum of the wind instrument with both ends open is equal to the spectrum of
the string (the di�erence in the spectra is the missing zero eigenvalue in the string case which
however does not contribute to the sound, having zero energy) as we said before and because the
corresponding fundamentals (1 and 0.5) are in ratio 2 : 1 which is equal to the interval of octave.
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If we now apply the e�ect of the missing fundamental to the spectrum of the timpani where
the frequencies are approximately in a ratio 2 : 3 : 4 : 5 : 6, we can see that the di�erences
are equal to the missing �rst frequency of this harmonic series. Thus if the amplitudes of the
individual modes would be in the right ratio, then the pitch of the drum could be perceived as
of the fundamental (octave lower than the �rst sounding mode m = 1, n = 1) even when it is
not contained in the spectrum at all.
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Chapter 2

Dirichlet Laplacian

Our aim in this chapter is to correctly de�ne the Laplace operator with the Dirichlet boundary
conditions on any bounded domain Ω in Rd using quadratic forms. We will take an advantage
of this approach in the following chapter.

Let Ω be a domain (an open connected set) in Rd. We would like to de�ne an operator ∆ on
L2(Ω) such that

−∆ψ = λψ in Ω

ψ = 0 on ∂Ω

for all ψ ∈ Dom(∆).

2.1 Preliminaries

In this section we recall some de�nitions for unbounded operators and unbounded sesquilinear
forms which can be found in the books [10], [11]. Let H be a separable complex Hilbert space
with the inner product denoted by (·, ·) and by convention conjugate linear in the �rst argument
and linear in the second.

De�nition 2.1.1 (Densely de�ned operator). Let A : H ⊃ Dom(A) → H. Then A is densely
de�ned if Dom(A) = H.

De�nition 2.1.2 (Symmetric operator). An operator A : H ⊃ Dom(A)→ H is symmetric if it
is densely de�ned and (φ,Aψ) = (Aφ,ψ), ∀φ, ψ ∈ Dom(A).

De�nition 2.1.3 (Adjoint operator). Let A : H ⊃ Dom(A)→ H. We say that A∗ is adjoint to
A if the following two conditions are satis�ed

Dom(A∗) := {φ ∈ H : ∃η ∈ H,∀ψ ∈ Dom(A), (φ,Aψ) = (η, ψ)}
A∗ψ := η.

De�nition 2.1.4 (Self-adjoint operator). Let A : H ⊃ Dom(A)→ H. Then A is self-adjoint if
A is symmetric and Dom(A) = Dom(A∗)

De�nition 2.1.5 (Bounded below operator). Operator A : H ⊃ Dom(A)→ H is bounded below
if ∃c ∈ R, ∀ψ ∈ Dom(A), (ψ,Aψ) ≥ c‖ψ‖2, where ‖ · ‖ is the norm on H induced by the inner
product.

33
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De�nition 2.1.6 (Compact operator). Let A be an operator de�ned on the whole Hilbert space
H. Then A is compact if it maps all bounded subsets in H to a precompact subset (a subset with
compact closure).

Now we can proceed to the quadratic forms.

De�nition 2.1.7 (Sesquilinear form). A map a : Dom(a)×Dom(a)→ C such that

ψ 7→ a(φ, ψ) is linear

φ 7→ a(φ, ψ) is conjugate linear

a(φ, ψ) = a(ψ, φ) ∀φ, ψ ∈ Dom(a)

a(φ, φ) ≥ 0 ∀φ ∈ Dom(a)

is called a sesquilinear form. We say that a is densely de�ned if Dom(a) is dense in H.

From now on we would assume that all sesquilinear forms in this text are densely de�ned.

De�nition 2.1.8 (Quadratic form). Let a′ be a sesquilinear form. Then a : Dom(a′) → C
de�ned by a[ψ] := a′(ψ,ψ) is called a quadratic form and Dom(a) = Dom(a′).

Using the polarization identities (see [11], Section 1.2) we can see that also every quadratic
form a[φ] determines the sesquilinear form a(φ, ψ) uniquely, hence we can interchange between
them.

De�nition 2.1.9 (Bounded below quadratic form). A quadratic form a : Dom(a) → C is
bounded below if ∃c ∈ R, ∀ψ ∈ Dom(a), a[ψ] ≥ c‖ψ‖2.

De�nition 2.1.10 (Closable quadratic form). A quadratic form a : Dom(a) → C is closable if
∀{ψn} ⊂ Dom(a) :(

lim
n→∞

ψn = 0 ∧ lim
n→∞
m→∞

a[ψn − ψm] = 0

)
⇒ lim

n→∞
a[ψn] = 0.

De�nition 2.1.11 (Closed quadratic form). A quadratic form a : Dom(a) → C is closed if
∀{ψn} ⊂ Dom(a), ψ ∈ H :(

lim
n→∞

ψn = ψ ∧ lim
n→∞
m→∞

a[ψn − ψm] = 0

)
⇒
(
ψ ∈ Dom(a) ∧ lim

n→∞
a[ψn − ψ] = 0

)
.

De�nition 2.1.12 (Closure of form). Let a : Dom(a) → C be a closable quadratic form. Then
its closure a is de�ned as

Dom(a) :=

{
ψ ∈ H : ∃{ψn} ⊂ Dom(a), lim

n→∞
ψn = ψ ∧ lim

n→∞
m→∞

a[ψn − ψm] = 0

}
a(φ, ψ) := lim

n→∞
a(φ, ψ).

2.2 De�nition of the Dirichlet Laplacian

First we introduce a one-by-one correspondence between below bounded self-adjoint operators
and below bounded closed quadratic forms:
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2.2.1 From operator to form

Let A be a below bounded self-adjoint operator. Then the quadratic form ȧ associated with
this operator using

ȧ[ψ] := (ψ,Aψ)

Dom(ȧ) = Dom(A)

is below bounded and closable (see [16], Thm. VI.1.27). Thus its closure satis�es the desired
properties.

2.2.2 From form to operator

To get the below bounded self-adjoint operator we use the following important theorem.

Theorem 2.2.1 (Representation theorem, see [16], Thm. VI.2.2). Let a be below bounded closed
form. Then the operator de�ned as

Dom(A) := {ψ ∈ Dom(a) : ∃η ∈ H, ∀φ ∈ Dom(a), a(φ, ψ) = (φ, η)}
Aψ := η

is self-adjoint and below bounded.

2.2.3 Friedrichs extension

Using this correspondence we can now de�ne the self-adjoint Dirichlet Laplacian using the
quadratic forms.

Step 1 Let Ω be an arbitrary domain in Rd. We can start with the operator

Ḣψ := −∆ψ

Dom(Ḣ) := C∞0 (Ω)
(2.1)

where C∞0 is space of smooth functions with compact support and thus

Ḣ(ψ) = 0 on ∂Ω.

This operator is certainly densely de�ned, because C∞0 (Ω) = L2(Ω) (see [14], Thm. 2.1.8). The
space C∞0 was also chosen because we wanted to avoid assumptions on the regularity of ∂Ω.

At the same time we see that

(ψ, Ḣψ) = −
∫

Ω
ψ∆ψ =

∫
Ω
|∇ψ|2 −

∫
∂Ω
ψ∇ψ = ‖∇ψ‖2 (2.2)

where the �rst equality is the de�nition of the inner product on L2(Ω) space, the second equality
is obtained using the Green identity (see [15], 8.4.1) and the third equality results from the
Dirichlet boundary conditions. From this we can see that (ψ, Ḣψ) is greater or equal 0 which
implies Ḣ is symmetric and below bounded. Unfortunately this operator is not self-adjoint.
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Remark 2.2.2 (Notation). In (2.2) in the third integral∫
Ω
|∇ψ|2

the absolute-value sign |·| actually stands for the norm on Rd which is always positive and thus we
omitted writing the absolute value which is needed in the de�nition of L2(Ω) norm. The correct
notation would be then

(ψ, Ḣψ) = −
∫

Ω
ψ∆ψ =

∫
Ω
‖∇ψ‖2Rd −

∫
∂Ω
ψ ∇ψ · n =

∫
Ω
| ‖∇ψ‖Rd |2 = ‖ ‖∇ψ‖Rd ‖2L2(Ω)

which is certainly much less well-arranged and this is the reason why we rather use the shorter
notation

(ψ, Ḣψ) = ‖ ‖∇ψ‖Rd ‖2L2(Ω) =: ‖∇ψ‖2

where the last norm stands obviously for the norm on the space L2(Ω).

Step 2 As a next step we can assign operator (2.1) to a quadratic form using the inner product
and equality (2.2)

ḣ[ψ] := (ψ, Ḣψ) = ‖∇ψ‖2

Dom(ḣ) := Dom(Ḣ) = C∞0 (Ω).

From the de�nition we can see that this assignment is uniquely de�ned, below bounded and
using [16], Thm. VI.1.27 we know that the form ḣ is closable.

Step 3 The closability of ḣ allows us to de�ne a new form h as its closure

h := ḣ

implying

h[ψ] = ‖∇ψ‖2

where now ∇ denotes the weak gradient and the domain of h is

Dom(h) = C∞0 (Ω)
|||·|||

with the norm

|||ψ|||2 := ‖∇ψ‖2 + ‖ψ‖2.

The space C∞0 (Ω)
|||·|||

usually denoted asW 1,2
0 (Ω) is the Sobolev space (see [10], Sec. 6.1). Hence

h[ψ] = ‖∇ψ‖2

Dom(h) = W 1,2
0 (Ω).

(2.3)
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Step 4 The form (2.3) is by the de�nition below bounded and closed. Thus Theorem 2.2.1
states that there exists a below bounded self-adjoint operator associated with this form denoted
by H

Dom(H) = {ψ ∈W 1,2
0 (Ω) : ∃η ∈ L2(Ω),∀φ ∈W 1,2

0 (Ω), (∇φ,∇ψ) = (φ, η)}
Hψ = η

where again ∇ stands for the weak derivative. This operator is called the Friedrichs extension of
Ḣ. Notice that (∇φ,∇ψ) = (φ, η) with φ ∈ C∞0 is the de�nition of the weak Laplacian. Hence
�nally we are able to de�ne the self-adjoint Dirichlet Laplacian

−∆Ω
D := H

Dom(−∆Ω
D) = {ψ ∈W 1,2

0 (Ω) : ∆ψ ∈ L2(Ω)}
−∆Ω

Dψ = −∆ψ.

(2.4)

2.3 Spectrum of the Dirichlet Laplacian

In this section we de�ne an alternative classi�cation of the spectrum σ of the self-adjoint
operator to the usual one (point, continuous and residual spectrum) and state the theorems
which will be needed later.

De�nition 2.3.1 (Discrete spectrum). Let H be a self-adjoint operator. We de�ne the discrete
spectrum σdisc of H as

σdisc(H) := {λ ∈ σp(H) : λ is isolated ∧m(λ) <∞}

where σp is the point spectrum and m(λ) is the multiplicity of λ as an eigenvalue.

De�nition 2.3.2 (Essential spectrum). Let H be a self-adjoint operator. Then the essential
spectrum σess of H can be de�ned as

σess(H) := σ(H) \ σdisc(H).

Remark 2.3.3. A spectrum σ(H) of a self-adjoint operator H can be expressed as a disjoint
union of the discrete and essential spectrum

σ(H) = σdisc(H) ] σess(H).

Theorem 2.3.4 (Min-max principle, see [10], Sec. 4.5). Let H be a self-adjoint, below bounded
operator on Hilbert space H and h the quadratic form associated with this operator using Theorem
2.2.1. We de�ne {λn}∞n=1 as

λn = inf
Ln⊂Dom(H)

dimLn=n

sup
ψ∈Ln

(ψ,Hψ)

‖ψ‖2
= inf
Ln⊂Dom(H)

dimLn=n

sup
ψ∈Ln

h[ψ]

‖ψ‖2

where ‖ · ‖ denotes the norm on L2(H). Then

λ∞ := lim
n→∞

λn = inf σess(H)
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and

{λn}∞n=1 ∩ (−∞, λ∞) = σdisc(H) ∩ (−∞, λ∞)

with each λn ∈ (−∞, λ∞) being an eigenvalue of H repeated a number of times equal to its
multiplicity.

Remark 2.3.5. λi de�ned in the min-max principle are ordered, i.e.:

λ1 ≤ λ2 ≤ · · · ≤ λ∞.

Recall the Dirichlet Laplacian (2.4) −∆Ω
D on some domain Ω de�ned in the preceding chapter.

We would like to prove that if the domain Ω is bounded, the spectrum of the Dirichlet Laplacian
is only composed of the discrete part. First some de�nitions and theorems.

Theorem 2.3.6 (Monotonicity of Dirichlet eigenvalues, see [10], Thm. 6.2.3). Let −∆Ω1
D ,−∆Ω2

D

be the Dirichlet Laplacians on Ω1,Ω2. Then ∀n ∈ N :

Ω1 ⊂ Ω2 ⇒ λn(−∆Ω1
D ) ≥ λn(−∆Ω2

D ).

De�nition 2.3.7 (Compact resolvent). Let H be a closed operator on Hilbert space H. We say
that H has a compact resolvent if

∃z ∈ ρ(H), (H − z)−1 : H → H is compact

where ρ(H) is the resolvent set, i.e., the complement of σ(H). From [12], Thm. XIII.64 we know
that if there exists such z then the resolvent operator is compact for all points in the resolvent
set.

Theorem 2.3.8 (see [13], Thm. IX.2.3). Let H be a self-adjoint operator with a compact resol-
vent then

σ(H) = σdisc(H).

Theorem 2.3.9 (General criteria for compact resolvent, see [12], Thm. XIII.64). Let H be a
self-adjoint, below-bounded operator on Hilbert space H and h the quadratic form associated with
this operator using Theorem 2.2.1. Then the following four statements are equivalent

H has a compact resolvent

Dom(H) ↪→ H is compact

Dom(h) ↪→ H is compact

lim
n→∞

λn(H) =∞.

Remark 2.3.10. Considering the Dirichlet Laplacian (2.4) Theorems 2.3.8, 2.3.9 imply that

σ(−∆Ω
D) = σdisc(−∆Ω

D)⇔W 1,2
0 (Ω) ↪→ L2(Ω) is compact.

Remark 2.3.11 (Dirichlet spectrum of parallelepiped, see [10], Lemma 6.2.1). Let a > 0 and
Q(a) be the d-dimensional parallelepiped of side 2a, i.e. Q(a) = (−a, a)× (−a, a)×· · ·× (−a, a).
Then using the Friedrichs extension we see that the Dirichlet Laplacian on Q(a) is a self-adjoint

operator −∆
Q(a)
D : Dom

(
−∆

Q(a)
D

)
→ L2(Q(a)) and its discrete spectrum can be expressed as

σdisc

(
−∆

Q(a)
D

)
=

{(
n1π

2a

)2

+

(
n2π

2a

)2

+ · · ·+
(
ndπ

2a

)2}
, n1, . . . nd ∈ N



2.3. SPECTRUM OF THE DIRICHLET LAPLACIAN 39

with the corresponding eigenfunctions

ψDn1,...,nd
= ψDn1

ψDn2
. . . ψDnd

where ψDni , i ∈ {1, . . . , d}, is the eigenfunction of one-dimensional parallelepiped, i.e. the interval
(−a, a) :

ψDni(x) =


√

1
a cos

(
niπ
2a x

)
ni is odd√

1
a sin

(
niπ
2a x

)
ni is even

.

The functions ψDn1,...,nd
form a complete system. It can be seen that

lim
n1,...,nd→∞

λn1,...,nd

(
−∆

Q(a)
D

)
= lim

n1,...,nd→∞

((
n1π

2a

)2

+

(
n2π

2a

)2

+ · · ·+
(
ndπ

2a

)2)
=∞

which by Theorem 2.3.9 implies that Dom
(
−∆

Q(a)
D

)
↪→ L2(Q(a)) is compact and −∆

Q(a)
D has

a compact resolvent. Using the second fact together with Theorem 2.3.8 we can see that the

spectrum of the operator −∆
Q(a)
D is composed only of its discrete part

σ
(
−∆

Q(a)
D

)
= σdisc

(
−∆

Q(a)
D

)
.

Next using the preceding theorems we obtain the following statement.

Theorem 2.3.12. Let Ω be a bounded domain in Rd and −∆Ω
D the Dirichlet Laplacian on L2(Ω).

Then

σ
(
−∆Ω

D

)
= σdisc

(
−∆Ω

D

)
.

Proof. Let Ω be a bounded domain in Rd. Then there exists a constant a > 0 that Ω ⊂ Q(a).
Let −∆Ω

D, respectively −∆
Q(a)
D be the Dirichlet Laplacian on Ω, respectively Q(a). Using the

monotonicity theorem 2.3.6 we can see that

λn
(
−∆Ω

D

)
≥ λn

(
−∆

Q(a)
D

)
.

From Remark 2.3.11 it can be seen that

lim
n→∞

λn

(
−∆

Q(a)
D

)
=∞

which implies that also
lim
n→∞

λn
(
−∆Ω

D

)
=∞.

Involving Theorem 2.3.9 we have that −∆
Q(a)
D has a compact resolvent and �nally Theorem 2.3.8

states that
σ
(
−∆Ω

D

)
= σdisc

(
−∆Ω

D

)
which proves our statement.

And �nally we can conclude with the variational formulation for the �rst eigenvalue of the
Dirichlet Laplacian which will be further very useful in the formation of the �rst eigenvalue's
upper bounds.
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Remark 2.3.13 (Variational formulation for the �rst eigenvalue). Let −∆Ω
D be the Dirichlet

Laplacian on some bounded domain Ω in Rd and let h be the quadratic form associated with this
operator using Theorem 2.2.1, i.e., h[ψ] = ‖∇ψ‖2. Now using the min-max principle 2.3.4, the
following inequality holds

λ1(−∆Ω
D) = inf σ(H) = inf

ψ∈W 1,2
0 (Ω)

‖∇ψ‖2

‖ψ‖2

where ‖ · ‖ stands for the norm on L2(Ω). From Theorem 2.3.12 we have that the spectrum
is purely discrete. Hence λ1 is the �rst eigenvalue and the equality must be obtained for some
function

λ1(−∆Ω
D) = min

ψ∈W 1,2
0 (Ω)

‖∇ψ‖2

‖ψ‖2
. (2.5)

Substituting the �rst eigenfunction denoted by ψ1 and using (2.2) we obtain

λ1(−∆Ω
D) ≤ ‖∇ψ1‖2

‖ψ1‖2
=

(ψ1,−∆Ω
Dψ1)

(ψ1, ψ1)
=

(ψ1, λ1(−∆Ω
D)ψ1)

(ψ1, ψ1)
= λ1(−∆Ω

D). (2.6)

Thus the equality sign in (2.5) is obtained if ψ is chosen as the �rst eigenfunction. On the other
hand, if we substitute into (2.5) some function ψ∗ 6= ψ1 not being the �rst eigenfunction, it can
be seen from (2.6) that we never obtain equality.

Hence we can conclude with

λ1(−∆Ω
D) = min

ψ∈W 1,2
0 (Ω)

‖∇ψ‖2

‖ψ‖2

where the equality sign is obtained if, and only if, ψ is chosen as the �rst eigenfunction.

Remark 2.3.14 (Dirichlet-Neumann Laplacian). For some proofs of the bounds for hollow do-
mains (speci�cally the bound of Theorem 3.5.1) we will also need to correctly de�ne the self-adjoint
Dirichlet-Neumann Laplacian ∆DN such as for a bounded domain Ω in Rd with boundary ∂Ω of
class C2 and with outer boundary denoted by ∂Ω0 we have

−∆Ω
DNu = λu in Ω

u = 0 on ∂Ω0

∂u

∂n
= 0 on ∂Ω \ ∂Ω0

for u ∈ Dom(−∆Ω
DN ).

Since this operator does not form a fundamental part of the thesis, we only mention how it
is de�ned (and how its associated quadratic form looks) and not the procedure of its de�nition
which is quite similar to the de�nition of the Dirichlet Laplacian shown above.

Dom(−∆Ω
DN ) =

{
u ∈W 1,2(Ω) : ∆u ∈ L2(Ω) ∧ ∂u

∂n

∣∣∣∣
∂Ω\∂Ω0

= 0 ∧ u
∣∣
∂Ω0

= 0

}
−∆Ω

DNu = −∆u

where W 1,2(Ω) is the Sobolev space (see [10], Section 6.1) de�ned as

W 1,2(Ω) = {ψ ∈ L2(Ω) : ∇ψ ∈ L2(Ω)}.



2.3. SPECTRUM OF THE DIRICHLET LAPLACIAN 41

The associated quadratic form can be written as follows

QΩ
DN [ψ] = ‖∇ψ‖2

Dom(QΩ
DN ) =

{
u ∈W 1,2(Ω) : u

∣∣
∂Ω0

= 0
}

where ∇ stands for the weak gradient.
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Chapter 3

Bounds

This is the main chapter of the thesis where we introduce various upper bounds for the �rst
eigenvalue of Dirichlet Laplacian on bounded domains in arbitrary dimension. Henceforth let Ω
be the bounded domain in Rd, −∆Ω

D be a Dirichlet Laplacian on L2(Ω) de�ned in the previous
chapter and λ1(Ω) := λ1(−∆Ω

D) its �rst eigenvalue.
Nevertheless we will start with one lower bound.

3.1 Faber-Krahn inequality

The Faber-Krahn or Rayleigh-Faber-Krahn inequality �rst conjectured by Lord Rayleigh in
his 1877 book [2] and proved independently by Faber and Krahn is a lower bound for the �rst
eigenvalue of Ω. It states that the �rst eigenvalue of Ω is equal to greater than the �rst eigenvalue
of the ball with the same volume and the equality is obtained if, and only if, Ω is a ball.

Remark 3.1.1. Let R > 0. Since from Remark 3.3.21 below we know that

λ1(BR) =
1

R2
λ1(B1)

where Ba is a ball of the radius a and using the well-known relation between the volume of BR
and B1

|BR| = Rd|B1| (3.1)

where | · | denotes the d-dimensional Lebesgue measure, we can express λ1(BR) using λ1(B1) and
using volumes of B1 and Ω by

λ1(BR) =
1

R2
λ1(B1) =

(
|B1|
|BR|

)2/d

and �nally choosing the radius R by the property |BR| = |Ω| we obtain

λ1(BR) =

(
|B1|
|Ω|

)2/d

.

Using this remark we can �nally state the theorem.

Theorem 3.1.2. Let Ω be a bounded domain in Rd. Then the following lower bound holds

λ1(Ω) ≥ λ1(B1)

(
|B1|
|Ω|

)2/d

.

43
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Figure 3.1: Inradius ρΩ of domain Ω

3.2 Trivial upper bound

Before we proceed to the bounds using shrinking or parallel coordinates we state the trivial
upper bound which follows immediately from the monotonicity of the Dirichlet eigenvalues.

Let Ω be the bounded domain in Rd with inradius ρΩ (the inradius has the meaning of the
radius of the biggest inscribed ball in the domain, see Figure 3.1). Then there exists a ball BρΩ

with radius ρΩ such that
BρΩ ⊂ Ω.

Now recall the theorem 2.3.6. It states that the following implication holds for the �rst Dirichlet
eigenvalue

BρΩ ⊂ Ω⇒ λ1(Ω) ≤ λ1(BρΩ).

Since the formulas for λ1(BρΩ) are explicitly known we can state the theorem.

Theorem 3.2.1 (Trivial upper bound). Let Ω be a bounded domain in Rd with inradius ρΩ.
Then the following upper bound holds

λ1(Ω) ≤ λ1(BρΩ).

3.3 Pólya and Szegö's bound in arbitrary dimension

In this section we state the generalization to an arbitrary dimension of the sharp planar upper
bound by Pólya and Szegö which appeared in their 1951 book [4]. This result was published in
the paper [5] by Pedro Freitas and David Krej£i°ík. The proof of this bound is based upon the
use of the shrinking coordinates (see Figure 3.3). Before presenting the statement we have to
introduce some notation and de�nitions involving the geometry of the domain.

De�nition 3.3.1 (Lipschitz continuous, see [6], Def. 2.2.7). A map f : X → Y , where (X, ρX)
and (Y, ρY ) are metric spaces, is called Lipschitz continuous if, and only if, there exists a �nite
positive number M such that

ρY (f(a), f(b)) ≤MρX(a, b), ∀a, b ∈ X.
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Figure 3.2: Geometrical interpretation of support function hξ(x)

De�nition 3.3.2 (Locally Lipschitz continuous, see [6], Def. 2.2.7). A map f : X → Y , where
(X, ρX) and (Y, ρY ) are metric spaces, is locally Lipschitz continuous if, and only if, for every
x ∈ X there exists a neighborhood U, x ∈ Uo such that f |U is Lipschitz continuous.

De�nition 3.3.3 (Star-shaped domain). A domain Ω is said to be star-shaped with respect to
a point ξ ∈ Ω if for each point x ∈ ∂Ω the segment joining ξ with x lies in Ω Y {x} and is
transversal to ∂Ω at the point x.

Theorem 3.3.4 (Rademacher, see [6], Thm. 3.1.6). Let φ : U = Uo ⊂ Rd−1 → Rd be Lipschitz
continuous, then φ is di�erentiable almost everywhere in U .

From Rademacher theorem we can see that the outward unit normal vector �eld n : ∂Ω→ Rd
is uniquely de�ned almost everywhere on ∂Ω.

De�nition 3.3.5 (Support function). Let Ω be a star-shaped domain with respect to ξ and ∂Ω
its locally Lipschitz boundary. At the points x ∈ ∂Ω for which the outward unit normal vector
�eld n(x) is uniquely de�ned a support function can be introduced

hξ(x) := (x− ξ) · n(x)

with · denoting the standard inner product in Rd.

Remark 3.3.6. The support function hξ(x) := (x − ξ) · n(x) can be interpreted as a scalar
projection of x− ξ in the direction of unit normal vector �eld n(x) or as the distance from ξ to
the tangent space Tx(∂Ω), see Figure 3.2.
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De�nition 3.3.7 (Strictly star-shaped domain). The domain Ω is strictly star-shaped with re-
spect to the point ξ ∈ Ω if Ω is star-shaped with respect to ξ and the support function is uniformly
positive, i.e.,

ess inf
x∈∂Ω

hξ(x) > 0.

Let us denote the set of points with respect to which Ω is strictly star-shaped as ω.

De�nition 3.3.8 (Intrinsic quantity F ). Let Ω be the domain with locally Lipschitz boundary
∂Ω, ω be the set with respect to which Ω is strictly star-shaped and hξ the corresponding support
function of the domain. Then the intrinsic quantity F of the domain can be de�ned as

F (Ω) := inf
ξ∈ω

∫
∂Ω
h−1
ξ .

Now we are ready to state the theorem.

Theorem 3.3.9 (PS bound in arbitrary dimension). Let Ω be a bounded strictly star-shaped
domain in Rd with locally Lipschitz boundary ∂Ω. Then

λ1(Ω) ≤ λ1(B1)
F (Ω)

d|Ω|
(3.2)

where λ1(B1) denotes the �rst eigenvalue of the d-dimensional ball of unit radius and |Ω| denotes
the d-dimensional Lebesgue measure of Ω.

Remark 3.3.10 (Dimension 1). Let us assume d = 1. Then Ω reduces to some bounded interval
(a, b), a < b, a > −∞, b < ∞ and |Ω| = b − a. From (4.1) below we know the explicit formula
for F (Ω) for the parallelepiped of the side 2l, implying

F (Ω) =
|Ω|
l2

= (b− a)
4

(b− a)2
=

4

b− a
.

Since from 2.3.11 we have the spectrum of parallelepipeds explicitly we can write

λ1(Ω) ≤ λ1(B1)
4

(b− a)2

π2

(b− a)2
≤ π2

(b− a)2

which proves the bound in one dimension. Moreover the equality is obviously obtained for all
intervals, making this bound sharp for all suitable domains in one dimension.

The previous remark proves Theorem 3.3.9 in one dimension, henceforth let us assume d ≥ 2.
The proof is based on the use of the shrinking coordinates (see Figure 3.3).

3.3.1 Shrinking coordinates

From this time forth, let Ω be a bounded strictly star-shaped domain in Rd with locally
Lipschitz boundary ∂Ω. The hypersurface ∂Ω is locally C0,1-di�eomorphic to Rd−1, i.e., for each
point x ∈ ∂Ω there exists an open subset of Rd whose intersection with the boundary ∂Ω denoted
by V ⊂ ∂Ω is C0,1-di�eomorphic to an open subset U ⊂ Rd−1 by a chart Γ : U → V .



3.3. PÓLYA AND SZEGÖ'S BOUND IN ARBITRARY DIMENSION 47

Figure 3.3: Shrinking coordinates

From Rademacher theorem 3.3.4 it can be seen that Γ is di�erentiable almost everywhere in
U . Hence Γ induces the metric tensor g of ∂Ω by (see [7], Sec. 1.1.3)

gµν := (∂µΓ) · (∂νΓ) µ, ν ∈ {1, . . . , d− 1}.

Now, let Ω be strictly star-shaped with respect to ξ ∈ ω. We can parameterize Ω \ {ξ} by the
natural mapping

L : ∂Ω× (0, 1)→ Ω \ {ξ} : {(x, t) 7→ ξ + (x− ξ)t} (3.3)

or locally by L = L ◦ (Γ⊗ 1) with 1 being the identity function on (0, 1)

L : Rd−1 × (0, 1)→ Ω \ {ξ} : {(u, t) 7→ ξ + (Γ(u)− ξ)t}

where u = (u1, . . . , ud−1) are the local coordinates on U , uµ = (Γ−1)µ(x). The coordinates u and
t are also called �shrinking� which is motivated by their behavior. All the �shrunk� boundary
L(∂Ω× {t}) is contained in Ω for t ∈ (0, 1). See Figure 3.3.

As a next step we need to compute the determinant of the Jacobi matrix J of this transfor-
mation

J(·, t) =

(∂1Γ1) t . . . (∂d−1Γ1) t Γ1 − ξ1

...
...

...
(∂1Γd) t . . . (∂d−1Γd) t Γd − ξd

 . (3.4)

For this we will need to use the exterior product, homogeneity of the determinant in each row,
a vector algebra identity and the fact that the transposition of a matrix does not change its
determinant.

Remark 3.3.11 (Exterior product). Let x1, x2, . . . , xd−1 ∈ Rd, then their exterior product de-
noted by x1 ∧ x2 ∧ · · · ∧ xd−1 can expressed in coordinates as

x1 ∧ x2 ∧ · · · ∧ xd−1 =

∣∣∣∣∣∣∣∣∣
x1

1 x2
1 . . . xd1

...
...

...
x1
d−1 x2

d−1 . . . xdd−1

e1 e2 . . . ed

∣∣∣∣∣∣∣∣∣
where (e1, e2, . . . , ed) is the standard basis in Rd.
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Remark 3.3.12 (Identity). Let x1, x2, . . . , xd−1 ∈ Rd and x ∈ Rd. Then∣∣∣∣∣∣∣∣∣
x1

1 x2
1 . . . xd1

...
...

...
x1
d−1 x2

d−1 . . . xdd−1

x1 x2 . . . xd

∣∣∣∣∣∣∣∣∣ = (x1 ∧ x2 ∧ · · · ∧ xd−1) · x.

Proof of the remark. Let x1, x2, . . . , xd−1 ∈ Rd and x ∈ Rd. Starting from the right side
and expressing the obtained determinant as a linear combination of the elements of the last row
using the expansion formula by cofactors (see [9], Thm. 3.8) we get

(x1 ∧ x2 ∧ · · · ∧ xd−1) · x =

∣∣∣∣∣∣∣∣∣
x1

1 x2
1 . . . xd1

...
...

...
x1
d−1 x2

d−1 . . . xdd−1

e1 e2 . . . ed

∣∣∣∣∣∣∣∣∣ · x

=

(−1)d+1e1

∣∣∣∣∣∣∣
x2

1 . . . xd1
...

...
x2
d−1 . . . xdd−1

∣∣∣∣∣∣∣+ · · ·+ ed

∣∣∣∣∣∣∣
x1

1 x2
1 . . . xd−1

1
...

...
...

x1
d−1 x2

d−1 . . . xd−1
d−1

∣∣∣∣∣∣∣
 · x

= (−1)d+1x1

∣∣∣∣∣∣∣
x2

1 . . . xd1
...

...
x2
d−1 . . . xdd−1

∣∣∣∣∣∣∣+ · · ·+ xd

∣∣∣∣∣∣∣
x1

1 x2
1 . . . xd−1

1
...

...
...

x1
d−1 x2

d−1 . . . xd−1
d−1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
x1

1 x2
1 . . . xd1

...
...

...
x1
d−1 x2

d−1 . . . xdd−1

x1 x2 . . . xd

∣∣∣∣∣∣∣∣∣ .
�

Thus the determinant can be expressed as

det J(·, t) = (∂1Γ ∧ . . . ∧ ∂d−1Γ) · (Γ− ξ) td−1.

Finally for the last adjustment of this formula we will have to use the following.

Remark 3.3.13. Let g be the metric tensor on ∂Ω induced by the local di�eomorphisms Γ. Then
(∂1Γ ∧ . . . ∧ ∂d−1Γ) is perpendicular to ∂Ω and its magnitude is equal to

√
det g.

Proof of the remark. Since the perpendicularity to ∂Ω means the perpendicularity to the
tangent space in every point which is formed by the tangent vectors ∂1Γ, . . . , ∂d−1Γ in the cor-
responding points, we can prove it by computing the inner product of (∂1Γ ∧ . . . ∧ ∂d−1Γ) and
an arbitrary tangent vector

(∂1Γ ∧ . . . ∧ ∂d−1Γ) · ∂µΓ =

∣∣∣∣∣∣∣∣∣
∂1Γ1 ∂1Γ2 . . . ∂1Γd

...
...

...
∂d−1Γ1 ∂d−1Γ2 . . . ∂d−1Γd

∂µΓ1 ∂µΓ2 . . . ∂µΓd

∣∣∣∣∣∣∣∣∣ = 0

where µ ∈ {1, . . . , d− 1}, the �rst equality follows from the identity 3.3.12 and the second from
the fact that the determinant of linearly dependent vectors is zero (see [9], Thm 3.1).
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For the second part of the proof let us compute the Jacobi matrix of the map Γ

JΓ =

∂1Γ1 ∂2Γ1 . . . ∂d−1Γ1

...
...

...
∂1Γd ∂2Γd . . . ∂d−1Γd

 .

Since

gµν = (∂µΓ) · (∂νΓ) =

d∑
k=1

∂µΓk∂νΓk =

d∑
k=1

(JΓ)TµkJ
Γ
kν ,

the matrix g can be written as g = JΓT · JΓ and thus

det g = det(JΓT · JΓ).

At the same time we denote

ñ := (∂1Γ ∧ . . . ∧ ∂d−1Γ) =

∣∣∣∣∣∣∣∣∣
∂1Γ1 ∂1Γ2 . . . ∂1Γd

...
...

...
∂d−1Γ1 ∂d−1Γ2 . . . ∂d−1Γd

e1 e2 . . . ed

∣∣∣∣∣∣∣∣∣
and from [20] we know that

|det(∂1Γ, . . . , ∂d−1Γ, ñ)| = |ñ|2

where ∂1Γ, . . . , ∂d−1Γ, ñ form the columns of the matrix from which we compute the determinant.
We can further adjust this formula using the fact that the determinant is invariant with respect
to the transposition of the matrix

|ñ|4 =

∣∣∣∣∣∣∣∣∣
∂1Γ1 ∂1Γ2 . . . ∂1Γd

...
...

...
∂d−1Γ1 ∂d−1Γ2 . . . ∂d−1Γd

ñ1 ñ2 . . . ñd

∣∣∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣∣
∂1Γ1 ∂2Γ1 . . . ∂d−1Γ1 ñ1

...
...

...
∂1Γd−1 ∂2Γd−1 . . . ∂d−1Γd−1 ñd−1

∂1Γd ∂2Γd . . . ∂d−1Γd ñd

∣∣∣∣∣∣∣∣∣
which can be rewritten using the block formalism as

|ñ|4 =

∣∣∣∣∣JΓT

ñ

∣∣∣∣∣ · ∣∣JΓ ñ
∣∣

and using the fact proved before that all tangent vectors are perpendicular to ñ = (∂1Γ ∧ . . . ∧ ∂d−1Γ)
we see ∣∣∣∣∣JΓT

ñ

∣∣∣∣∣ · ∣∣JΓ ñ
∣∣ =

∣∣∣∣∣ JΓT · JΓ 0

0 |ñ|2

∣∣∣∣∣ = |ñ|2 det(JΓT · JΓ)

which implies
|ñ|2 = det(JΓT · JΓ) = det g

and
|(∂1Γ ∧ . . . ∧ ∂d−1Γ)| =

√
det g.
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Remark 3.3.14 ([9], Sec 1.11). Let a, b ∈ Rd then their inner product can be computed as

a · b = ‖a‖ ‖b‖ cos θ

where θ is the angle between a and b and ‖a‖ cos θ is the scalar projection of a in the direction
of b.

Applying these two facts we can conclude with the local formula for the absolute value of the
Jacobian

|det J(u, t)| =
√

det g(u) hξ(Γ(u)) td−1

for every t ∈ (0, 1) and almost every u ∈ U .
Now by the assumption that Ω is strictly star-shaped with respect to ξ, i.e., ess infx∈∂Ω hξ(x) > 0,

we can see that
| det J(u, t)| 6= 0 (3.5)

for every t ∈ (0, 1) and almost every u ∈ U and thus involving the inverse function theorem
L : ∂Ω× (0, 1)→ Ω \ {ξ} is a di�eomorphism.

Theorem 3.3.15 (Inverse function theorem, see [8], Thm. 12.4). Let p ∈ U = Uo ⊂ Rd and
f : Rd → Rd, f ∈ C1. If det Jf(p) 6= 0, where Jf is the Jacobi matrix of f , then there exists
V = V o ⊂ Rd, f(p) ∈ V such that f−1 : V → U exists and f−1 ∈ C1.

Now we can proceed to the proof of the bound.

3.3.2 Proof of the bound

First we identify Ω \ {ξ} with a Riemannian manifold

M := (∂Ω× (0, 1), G)

where G is the metric tensor induced by L or locally by L. The coe�cients of G are locally

Gµν := (∂µL) · (∂νL)

which can be further adjusted using the de�nition of the inner product in Rd and the Jacobi
matrix J , noticing that, by the de�nition of the Jacobi matrix, (∂µL) is the µth column of J

Gµν = (∂µL) · (∂νL) =
d∑

k=1

(∂µL
k)(∂νL

k) =
d∑

k=1

JkµJkν =
d∑

k=1

JTµkJkν

therefore G = JT · J and

G(·, t) =


g11 t

2 . . . g1d−1 t
2 (Γ− ξ) · (∂1Γ) t

...
...

...
gd−11 t

2 . . . gd−1d−1 t
2 (Γ− ξ) · (∂d−1Γ) t

(Γ− ξ) · (∂1Γ) t . . . (Γ− ξ) · (∂d−1Γ) t |Γ− ξ|2

 . (3.6)

Remark 3.3.16 (Determinant of G). From the formula G = JT · J we can see that the deter-
minant of G is

detG = (det J)2.
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Indeed the manifold M is Riemannian, i.e., the quadratic form xµGµνx
ν is positive de�nite

and thus it forms an inner product. The fact that xµGµνxν is positive semide�nite can be seen
from

xµGµνx
ν = t2xigijx

j + |Γ− ξ|2 (xd)2 + 2 (Γ− ξ) · (∂jΓ) t xdxj

=
(

(Γ− ξ) xd + t (∂jΓ) xj
)2
≥ 0

where i, j ∈ {1, . . . , d − 1}. Notice that from Remark 3.3.16 and (3.5) we have that detG 6= 0.
Finally recall that for positive semide�nite quadratic forms we have that the quadratic form is
positive de�nite if, and only if, the matrix of the form is regular.

Remark 3.3.17 (Volume element of Riemannian manifold M , see [7], Sec. 1.1.1). Let M be an
n-dimensional Riemannian manifold with the metric tensor G and (dx1, . . . ,dxn) be an oriented
basis of its cotangent space in the point x, then the volume element of M is

dvol =
√
|detG| dx1 ∧ · · · ∧ dxn.

Using Remarks 3.3.16 and 3.3.17 we can express the volume element of our manifold as

dvol(u, t) =
√

det g(u) hξ(Γ(u)) du td−1 dt

or
dvol(x, t) = hξ(x) dσ(x) td−1 dt (3.7)

where dσ is the measure on ∂Ω, du is the measure on U and dt is the measure on (0, 1). We will
use the second formula later.

The last step before we proceed to the upper bound for the �rst eigenvalue is to compute
the norm of the gradient in M of some radially symmetric test function. Hence let us take an
arbitrary function η̃ = η̃(t) of the form

η̃ = ψ ⊗ 1 (3.8)

where ψ is any di�erentiable function on (0, 1) and 1 denotes a function constantly equal to 1 on
∂Ω. For the computation of the norm of the gradient the matrix inverse to G would be needed.
We denote the elements of the inverse matrix by upper indices. As we will see later only the
element Gdd would be necessary. This element can be easily obtained using the adjugate matrix.

Remark 3.3.18 (Element of inverse matrix using adjugate matrix, see [9]). Element Gkl of
matrix inverse to G can be computed as

Gkl =
1

detG
Akl

where the matrix A with coe�cients

Akl = (−1)k+lBlk

is the adjugate matrix of G and the element Blk is the determinant of G without kth row and lth
column.
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Now we can try to compute element Gdd. From the preceding remark we can see that locally

Gdd(u, t) =
1

detG(u, t)
Bdd(u, t)

=
1

det g(u) h2
ξ(Γ(u)) t2d−2

∣∣∣∣∣∣∣
g11 t

2 . . . g1d−1 t
2

...
...

gd−11 t
2 . . . gd−1d−1 t

2

∣∣∣∣∣∣∣ (u)

=
1

det g(u) h2
ξ(Γ(u))

∣∣∣∣∣∣∣
g11 . . . g1d−1
...

...
gd−11 . . . gd−1d−1

∣∣∣∣∣∣∣ (u)

=
det gij(u)

det g(u) h2
ξ(Γ(u))

= h−2
ξ (Γ(u)).

At last we can proceed to the norm of the gradient.

Remark 3.3.19 (Norm of gradient in Riemannian manifold M). In the Riemannian manifold
M with the metric tensor G the norm of the gradient of the function F : M → R is equal to

‖∇GF‖2G = ∂µF Gµν∂νF

where ‖ · ‖G is the norm in the manifold M .

Proof of the remark. Let xi be the Cartesian coordinates in Rd, more speci�cally in Ω,
xi := Li(q1, . . . , qd), where qµ are the coordinates in M , qµ := (L−1)µ(x1, . . . , xd). First we
express the norm of the gradient of the function f = F ◦ L−1 in the coordinates xi as

|∇f |2 =
∂f

∂xi
δij

∂f

∂xj

where δij is the Kronecker delta. By the change of the coordinates we obtain

∂f

∂xi
δij

∂f

∂xj
=
∂(f ◦ L)

∂qµ
∂qµ

∂xi
δij
∂qν

∂xj
∂(f ◦ L)

∂qν
=
∂F

∂qµ
∂qµ

∂xi
∂qν

∂xi
∂F

∂qν

and using the de�nition of G which implies

∂qµ

∂xi
∂qν

∂xi
= Gµν

we conclude with
‖∇GF‖2G =

∂F

∂qµ
Gµν

∂F

∂qν
.

Thus substituting the function η̃ into this formula we obtain

‖∇G(1⊗ ψ)‖2G = ∂µ(1⊗ ψ)Gµν ∂ν(1⊗ ψ)

= ∂d(1⊗ ψ)Gdd ∂d(1⊗ ψ)

= h−2
ξ |ψ

′|2
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because due to the constant function 1 all other terms are equal to zero. Hence

‖∇G(1⊗ ψ)‖G = h−1
ξ |ψ

′|. (3.9)

With the last result we already have all the geometric preliminaries to embark on the spectral
problem.

Recall that the Dirichlet Laplacian (2.4) correctly de�ned in the previous chapter is uniquely
associated with the quadratic form (2.3)

hΩ
D[ψ] = ‖∇ψ‖2

Dom(hΩ
D) = W 1,2

0 (Ω)

where ‖ · ‖ denotes the L2(Ω) norm and the Sobolev space W 1,2
0 (Ω) is the completion of C∞0 (Ω)

with respect to the norm
(‖∇ · ‖2 + ‖ · ‖2)1/2.

At the same time using the geometric preliminaries the Hilbert space L2(Ω) can be identi�ed
with L2(M) := L2(∂Ω× (0, 1), dvol) using a transformation

U : L2(Ω)→ L2(M) : {f 7→ f ◦ L}

and thus the Dirichlet Laplacian is unitarily equivalent to the operator

H := U(−∆Ω
D)U−1.

The quadratic form (2.3) associated with this operator can be expressed using 3.3.19 as

h[ψ] = hΩ
D[U−1ψ] =

∫
∂Ω×(0,1)

‖∇Gψ‖2G dvol = ‖ ‖∇Gψ‖G ‖2L2(M)

Dom(h) := UD(hΩ
D) = W 1,2

0 (M)

where the ‖ · ‖L2(M) denotes the norm on the space L2(M)

‖ψ‖L2(M) =

 ∫
∂Ω×(0,1)

|ψ(t, x)|2 hξ(x) td−1 dσ(x) dt


1/2

(3.10)

and

W 1,2
0 (M) = C∞0 (∂Ω× (0, 1))

√
‖∇Gψ‖2L2(M)

+‖ψ‖2
L2(M) .

Employing the identi�cation of the two L2 spaces into the variational formulation for the
�rst eigenvalue 2.3.13, we obtain

λ1(Ω) ≤
‖ ‖∇G ψ‖G ‖2L2(M)

‖ψ‖2
L2(M)

, ψ ∈W 1,2
0 (M).

Now let us take some radially symmetric function η = η(t) of the form

η(t) = ψ(t)⊗ 1
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where ψ ∈W 1,2
0 ((0, 1), td−1 dt) and 1 denotes a function constantly equal to 1 on ∂Ω. Recall the

requirements for the radially symmetric function η̃ introduced before (see (3.8)). The function
η de�nitely satis�es these requirements and thus we can compute the norm of its gradient using
formula (3.9). Substituting η into (3.10) we can use the Fubini's theorem obtaining

‖η‖2L2(M) =

∫
∂Ω

hξ(x) dσ(x)

∫ 1

0
|ψ(t)|2 td−1 dt

and analogically the term ‖ ‖∇G η‖G ‖2L2(M) can be expressed as

‖ ‖∇G η‖G ‖2L2(M) =

∫
∂Ω

h−1
ξ (x) dσ(x)

∫ 1

0
|ψ′(t)|2 td−1 dt.

Hence we obtain

λ1(Ω) ≤

∫
∂Ω
h−1
ξ (x) dσ(x)

∫ 1

0
|ψ′(t)|2 td−1 dt∫

∂Ω
hξ(x) dσ(x)

∫ 1

0
|ψ(t)|2 td−1 dt

. (3.11)

Let us de�ne a functional ϕ = ϕ(Ω;ψ, ξ) as the right hand side of this inequality

ϕ(Ω;ψ, ξ) :=

∫
∂Ω
h−1
ξ (x) dσ(x)

∫ 1

0
|ψ′(t)|2 td−1 dt∫

∂Ω
hξ(x) dσ(x)

∫ 1

0
|ψ(t)|2 td−1 dt

.

From Remark 2.3.13 we know that the equality is obtained if, and only if, η = ψ ⊗ 1 is
chosen as the �rst eigenfunction. Our aim is to obtain a sharp bound for the �rst eigenvalue,
thus we would like to �nd some geometric object for which the equality is attained, i.e. its �rst
eigenfunction minimizes the functional ϕ with respect to ψ. Let us try as the domain a ball of
unit radius with center at ξ denoted by B1. From the geometric interpretation of the support
function as the distance from ξ to the tangent space Tx(∂B1) we can see that (�gure 3.4) the
support function of the ball is equal to its radius, i.e.

hξ(x) = 1, x ∈ ∂B1

which implies

λ1(B1) ≤

∫ 1

0
|ψ′(t)|2 td−1 dt∫ 1

0
|ψ(t)|2 td−1 dt

where λ1(B1) is a known constant. Notice that the two integrations over the border disappeared.
The consequence of this fact is that the equality is obtained if, and only if, ψ is the radial
component of the �rst eigenfunction of −∆B1

D denoted by ψ∗. Indeed, the �rst eigenfunction of
the ball is radially symmetric and an element of W 1,2

0 ((0, 1)) and thus can be written in the form
η has and used in the variational formulation

λ1(B1) =

∫ 1

0
|ψ∗′(t)|2 td−1 dt∫ 1

0
|ψ∗(t)|2 td−1 dt

.



3.3. PÓLYA AND SZEGÖ'S BOUND IN ARBITRARY DIMENSION 55

Figure 3.4: Support function of ball centered at ξ

After substituting this function into the functional ϕ we see that the functional no longer depends
on it

ϕ(Ω;ψ∗, ξ) :=

∫
∂Ω
h−1
ξ (x) dσ(x)

∫ 1

0
|ψ∗′(t)|2 td−1 dt∫

∂Ω
hξ(x) dσ(x)

∫ 1

0
|ψ∗(t)|2 td−1 dt

= λ1(B1)

∫
∂Ω
h−1
ξ (x) dσ(x)∫

∂Ω
hξ(x) dσ(x)

.

Hence we have found the object whose �rst eigenfunction minimizes the functional ϕ with respect
to ψ

min
ψ∈W 1,2

0 ((0,1),td−1 dt)
ϕ(Ω;ψ, ξ) = λ1(B1)

∫
∂Ω
h−1
ξ (x) dσ(x)∫

∂Ω
hξ(x) dσ(x)

. (3.12)

Further adjustments of this formula are possible.
First, recall the volume element of the manifold M (3.7)

dvol(x, t) = hξ(x) dσ(x) td−1 dt.

Let us integrate the volume element over the whole domain obtaining its volume

|Ω| =
∫

∂Ω×(0,1)

dvol =

∫
∂Ω
hξ(x) dσ(x)

∫ 1

0
td−1 dt =

1

d

∫
∂Ω
hξ(x) dσ(x).

Substituting this result into (3.12) we obtain

min
ψ∈W 1,2

0 ((0,1))
ϕ(Ω;ψ, ξ) = λ1(B1)

∫
∂Ω
h−1
ξ (x) dσ(x)

d |Ω|
.
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Finally we can minimize the last remaining integral with respect to ξ over the set ω obtaining
the intrinsic quantity F (Ω) (see 3.3.8) and concluding the proof of the bound of Theorem 3.3.9

λ1(Ω) ≤ min
ψ∈W 1,2

0 ((0,1),td−1 dt)
ϕ(Ω;ψ, ξ) = λ1(B1)

F (Ω)

d |Ω|
.

3.3.3 Weaker version for convex domains

Let Ω be a bounded convex domain in Rd. From the book [13], Sec V.4.1 we know that the
boundary ∂Ω is locally Lipschitz. From the geometrical interpretation of hξ(x) we have

ess inf
x∈∂Ω

hξ(x) ≥ dist(ξ, ∂Ω)

which implies that the set to which Ω is strictly star-shaped denoted by ω is equal to Ω, i.e.,
ω = Ω and also

F (Ω) = inf
ξ∈ω=Ω

∫
∂Ω
h−1
ξ ≤

∫
∂Ω
h−1
ξ

for any ξ ∈ ω = Ω and taking ξ as the center of the inscribed ball we obtain∫
∂Ω
h−1
ξ ≤

∫
∂Ω

1

ρΩ
=
|∂Ω|
ρΩ

where ρΩ is the inradius of Ω (the radius of the inscribed ball, see 3.1) and |∂Ω| is the (d − 1)-
dimensional Hausdor� measure of the boundary ∂Ω. Hence we have obtained a simple upper
bound for F (Ω)

F (Ω) ≤ |∂Ω|
ρΩ

.

Since all the requirements of the theorem (3.3.9) are satis�ed we have the bound

λ1(Ω) ≤ λ1(B1)
F (Ω)

d |Ω|

and employing the obtained bound for F (Ω) we conclude with

λ1(Ω) ≤ λ1(B1)
|∂Ω|

d ρΩ |Ω|
.

Hence we can state the weaker version of the PS bound in an arbitrary dimension which holds
for convex domains.

Theorem 3.3.20. Let Ω be a bounded convex domain of Rd. Then

λ1(Ω) ≤ λ1(B1)
|∂Ω|

d ρΩ |Ω|
.
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3.3.4 Remarks

Remark 3.3.21 (Sharp for balls). From the proof it can be seen that the bound of Theorem 3.3.9
is sharp for the ball of unit radius. Now let us verify that it is sharp for all balls. For this we
need to express the �rst eigenvalue for a ball with an arbitrary radius R denoted by BR using the
�rst eigenvalue of unit ball. Without loss of generality we can assume that BR has the center
at the origin,i.e., BR = BR(0). We will use the variational formulation for the �rst eigenvalue
2.3.13

λ1(BR) =
‖∇ψ1‖2

‖ψ1‖2
=

∫
BR

|∇xψ1(x)|2 dx∫
BR

|ψ1(x)|2 dx

where ψ1 is the �rst eigenfunction of BR. As a next step we use the substitution

x = Ry

dx = Rddy

implying ∫
BR

|∇xψ1(x)|2 dx∫
BR

|ψ1(x)|2 dx

=
1

R2

∫
B1

|∇yψ1(Ry)|2 dy∫
B1

|ψ1(Ry)|2 dy

.

Since it is apparent that the equality φ1(y) = ψ1(Ry) holds, where φ1 is the �rst eigenfunction of
the unit ball, we can see that∫

B1

|∇yψ1(Ry)|2 dy∫
B1

|ψ1(Ry)|2 dy

=

∫
B1

|∇yφ1(y)|2 dy∫
B1

|φ1(y)|2 dy

= λ1(B1)

and thus

λ1(BR) =
1

R2
λ1(B1). (3.13)

At the same time from (4.3) below we know the explicit formula for F (Ω) when Ω is a ball of
radius R which is a special case of an ellipsoid

F (BR) = |BR|
d

R2
. (3.14)

Now we have everything ready to take Ω = BR and substitute (3.13) and (3.14) into (3.2)

λ1(BR) ≤ λ1(B1)
F (BR)

d|BR|
= R2λ1(BR)

d|BR|
R2 d|BR|

= λ1(BR) (3.15)

and thus the bound of Theorem 3.3.9 is sharp for all balls.

Remark 3.3.22 (Conjecture 1). In the paper [5] it was conjectured that the upper bound for
the bounded convex domains 3.3.20 holds for general bounded domains in Rd. We will use this
conjecture for comparison with other bounds for some domains which are strictly star-shaped but
not convex in the subsequent chapter.
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Figure 3.5: Domain Ωξ,p generated from Ω

3.4 Generalization of PS bound for particular hollow domains

In this section we would like to introduce our own result, the generalization of the Pólya and
Szegö's bound in arbitrary dimension for some hollow domains of a particular form.

To create such a domain let us take the bounded, strictly star-shaped domain Ω in Rd with
locally Lipschitz boundary ∂Ω, the set ω containing the points with respect to which Ω is strictly
star-shaped and choose an arbitrary point ξ ∈ ω. Recall the transformation L parameterizing
Ω \ {ξ} and identifying it with the Riemannian manifold M

L : ∂Ω× (0, 1)→ Ω \ {ξ} : {(x, t) 7→ ξ + (x− ξ)t}.

Let p be some �xed value of the shrinking coordinate t ∈ (0, 1). Now we are ready to de�ne a
new domain Ωξ,p (see Figure 3.5) with parameters ξ and p using a modi�cation of the map L :

Lp : ∂Ω× (p, 1)→ Ωξ,p : {(x, t) 7→ ξ + (x− ξ)t}.

The bounded hollow domain with locally Lipschitz boundary Ωξ,p is then the domain Ω with
a hole of the �size� p and �centered� at the point ξ. The boundary of the hole is equal to the
shrunk boundary L(∂Ω × {p}) and the outer boundary is equal to the boundary ∂Ω of the
domain Ω. Let us denote the outer boundary by ∂Ω1

ξ,p := ∂Ω. Since ∂Ω1
ξ,p is by assumption

locally Lipschitz, from Rademacher theorem 3.3.4 we again have that the outward unit normal
vector �eld n : ∂Ω1

ξ,p → Rd is uniquely de�ned almost everywhere on ∂Ω1
ξ,p. Some de�nitions

are needed before we can proceed to the statement of the bound.

De�nition 3.4.1 (Support function of Ωξ,p). Let Ωξ,p be the domain generated from Ω in the
preceding paragraph with the outer boundary denoted by ∂Ω1

ξ,p, (∂Ω1
ξ,p = ∂Ω). At such points
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where the outward unit normal vector �eld n is de�ned, a support function of the domain can be
introduced as

hξ(x) := (x− ξ) · n(x).

Remark 3.4.2 (Di�erence between support function of Ωξ,p and Ω). Recall the de�nition of
the support function for the domain Ω, De�nition 3.3.5, and only for purpose of this remark let
us denote the function by hΩ

ξ . It can be seen that the only di�erence between the de�nition of
support function for Ωξ,p and for Ω is in the point ξ. The center of the shrinking coordinates ξ
lies in Ω but by the de�nition of Ωξ,p it does not lie in Ωξ,p. Hence for all points x ∈ ∂Ω1

ξ,p = ∂Ω
we have an equality

hξ(x) = hΩ
ξ (x).

De�nition 3.4.3 (Centered intrinsic quantity Fξ(Ω)). Let Ω be strictly star-shaped domain with
respect to the point ξ ∈ Ω. Then we de�ne the centered intrinsic quantity of the domain Ω with
the center at ξ as

Fξ(Ω) :=

∫
∂Ω
h−1
ξ

where hξ is the support function of the domain Ω.

De�nition 3.4.4 (Centered intrinsic quantity Fξ(Ωξ,p)). Using the previous de�nition and de-
notations we de�ne the centered intrinsic quantity for Ωξ,p by

Fξ(Ωξ,p) :=

∫
∂Ω1

ξ,p

h−1
ξ

where hξ is the support function of the domain Ωξ,p.

Now we can state the theorem.

Theorem 3.4.5. Let Ω be a bounded domain in Rd strictly star-shaped with respect to a point
ξ ∈ Ω and with locally Lipschitz boundary ∂Ω. Let Ωξ,p be the domain generated from Ω in the
preceding paragraph and Aa,b be an annulus with radii such that a

b = p and |Aa,b| = |Ωξ,p|. Then
the following upper bound for the �rst eigenvalue of Ωξ,p holds

λ1(Ωξ,p) ≤ λ1(Aa,b)
b2Fξ(Ωξ,p)

d|Bb|
.

3.4.1 Proof of the bound

Let Ωξ,p be the hollow domain with outer boundary ∂Ω1
ξ,p generated using the bounded

domain Ω as was shown in the beginning of this section. Recall the proof of Theorem 3.3.9.
Using the same argumentation as in the proof we can introduce the locally Lipschitz continuous
chart Γ mapping an open subset U of Rd−1 to the intersection of Rd and ∂Ω1

ξ,p. This chart is
from Rademacher theorem 3.3.4 di�erentiable almost everywhere and thus induces the metric
tensor g of ∂Ω1

ξ,p

gµν := (∂µΓ) · (∂νΓ) µ, ν ∈ {1, . . . , d− 1}.

From the de�nition of Ωξ,p we see that it can be parameterized by the mapping

Lp : ∂Ω1
ξ,p × (p, 1)→ Ωξ,p : {(x, t) 7→ ξ + (x− ξ)t}
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or locally by
Lp : Rd−1 × (p, 1)→ Ωξ,p : {(u, t) 7→ ξ + (Γ(u)− ξ)t}.

Indeed, the Jacobi matrix J(·, t) of the transformation Lp is equal to the Jacobi matrix of L (see
(3.4))

J(·, t) =

(∂1Γ1) t . . . (∂d−1Γ1) t Γ1 − ξ1

...
...

...
(∂1Γd) t . . . (∂d−1Γd) t Γd − ξd


and the absolute value of its determinant is locally equal to

|det J(u, t)| =
√

det g(u) hξ(Γ(u)) td−1

where hξ is the support function of the domain Ωξ,p.
Again using the same argumentation as in the preceding proof we see that Ωξ,p can be

identi�ed with the Riemannian manifold

Mp := (∂Ω1
ξ,p × (p, 1), G)

where G is the metric tensor induced by Lp and is also equal to the metric tensor induced by L
(see (3.6))

G(·, t) =


g11 t

2 . . . g1d−1 t
2 (Γ− ξ) · (∂1Γ) t

...
...

...
gd−11 t

2 . . . gd−1d−1 t
2 (Γ− ξ) · (∂d−1Γ) t

(Γ− ξ) · (∂1Γ) t . . . (Γ− ξ) · (∂d−1Γ) t |Γ− ξ|2

 .

Recall the de�nition of the volume element of the Riemannian manifold (3.3.17), whereas the
corresponding terms are equal for Ω and Ωξ,p we see that the volume element of Ωξ,p is

dvol(x, t) = hξ(x) dσ(x) td−1 dt.

As a next step let us take some test function η of the form

η = ψ ⊗ 1 (3.16)

where 1 denotes a function constantly equal to 1 on ∂Ω1
ξ,p and as we saw at the end of the

preceding proof we can now assume ψ ∈W 1,2
0 ((p, 1), td−1dt). We would like to compute its norm

of the gradient. Indeed as in the preceding formulas it can be seen that the result is the same as
for domain Ω

‖∇G(1⊗ ψ)‖G = h−1
ξ |ψ

′|.

Now we can proceed to the spectral problem. Recall the Dirichlet Laplacian −∆Ω
D de�ned in

the previous chapter and the quadratic form associated with it

h[ψ] = ‖∇ψ‖2

Dom(h) = W 1,2
0 (Ωξ,p)
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with ‖ · ‖ being the L2(Ωξ,p) norm. We again introduce the identi�cation of the Hilbert space
L2(Ωξ,p) with L2(Mp) := L2(∂Ω1

ξ,p × (p, 1), dvol). The space L2(Mp) is equipped with the norm

‖ψ‖L2(Mp) =

 ∫
∂Ω1

ξ,p×(p,1)

|ψ(t, x)|2 hξ(x) td−1 dσ(x) dt


1/2

.

Thus we can express the quadratic form as

h
Ωξ,p
D [ψ] = ‖ ‖∇Gψ‖G ‖2L2(Mp)

Dom(h) = W 1,2
0 (Mp)

where

W 1,2
0 (Mp) = C∞0 (∂Ω1

ξ,p × (p, 1))

√
‖∇Gψ‖2L2(Mp)

+‖ψ‖2
L2(Mp) .

Recall the variational formulation of the �rst eigenvalue 2.3.13. Employing the identi�cation of
the two Hilbert spaces we obtain

λ1(Ωξ,p) ≤
‖ ‖∇Gψ‖G ‖2L2(Mp)

‖ψ‖2
L2(Mp)

, ψ ∈W 1,2
0 (Mp).

As the test function in this formulation we would like to use the function η (3.16). Indeed this
function by the de�nition belongs to the space W 1,2

0 (Mp). The integrals of η appearing in the
formulation can be computed as

‖η‖2L2(Mp) =

∫
∂Ω1

ξ,p

hξ(x) dσ(x)

∫ 1

p
|ψ(t)|2 td−1 dt

and

‖ ‖∇G η‖G ‖2L2(Mp) =

∫
∂Ω1

ξ,p

h−1
ξ (x) dσ(x)

∫ 1

p
|ψ′(t)|2 td−1 dt.

Hence

λ1(Ωξ,p) ≤

∫
∂Ω1

ξ,p

h−1
ξ (x) dσ(x)

∫ 1

p
|ψ′(t)|2 td−1 dt∫

∂Ω1
ξ,p

hξ(x) dσ(x)

∫ 1

p
|ψ(t)|2 td−1 dt

(3.17)

and we can de�ne the functional ϕ as

ϕ(Ωξ,p;ψ) :=

∫
∂Ω1

ξ,p

h−1
ξ (x) dσ(x)

∫ 1

p
|ψ′(t)|2 td−1 dt∫

∂Ω1
ξ,p

hξ(x) dσ(x)

∫ 1

p
|ψ(t)|2 td−1 dt

. (3.18)

We would again like to minimize this functional by �nding some object for whose �rst eigenfunc-
tion we obtain equality in (3.17). Let us try the annulus of radii p and 1 denoted by Ap,1, where
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Figure 3.6: Support function of annulus Ap,1 centered at ξ

p < 1, generated from the unit ball with the same center being also the point ξ and using the
parameter p, i.e., in our notation Ap,1 = (B1)ξ,p. Recall that the support function of Ap,1 which
is equal to the support function of B1 is (see Figure 3.6)

hξ(x) = 1, x ∈ ∂A1
p,1

where the upper index has the meaning of the outer boundary of the annulus. Therefore

λ1(Ap,1) ≤

∫ 1

p
|ψ′(t)|2 td−1 dt∫ 1

p
|ψ(t)|2 td−1 dt

where the equality is obtained if, and only if, η = ψ ⊗ 1 is chosen as the �rst eigenfunction of
Ap,1 which is certainly radially symmetric and thus can be written in the form the function η
requires. Denoting its radial component as ψ∗ we obtain

λ1(Ap,1) =

∫ 1

p
|ψ∗′(t)|2 td−1 dt∫ 1

p
|ψ∗(t)|2 td−1 dt

.

Substituting ψ∗ into functional ϕ we, as in the preceding proof, loose the dependence on the test
function ψ

ϕ(Ωξ,p;ψ
∗) :=

∫
∂Ω1

ξ,p

h−1
ξ (x) dσ(x)

∫ 1

p
|ψ∗′(t)|2 td−1 dt∫

∂Ω1
ξ,p

hξ(x) dσ(x)

∫ 1

p
|ψ∗(t)|2 td−1 dt

= λ1(Ap,1)

∫
∂Ω1

ξ,p

h−1
ξ (x) dσ(x)∫

∂Ω1
ξ,p

hξ(x) dσ(x)
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and thus we have successfully minimized the functional with respect to ψ

min
ψ∈W 1,2

0 ((p,1),td−1dt)
ϕ(Ωξ,p;ψ) = λ1(Ap,1)

∫
∂Ω1

ξ,p

h−1
ξ (x) dσ(x)∫

∂Ω1
ξ,p

hξ(x) dσ(x)

.

As a next step we would like to cancel the integral over the support function using the volume
of the domain Ωξ,p

|Ωξ,p| =
∫

∂Ω1
ξ,p×(p,1)

dvol =

∫
∂Ω1

ξ,p

hξ(x) dσ(x)

∫ 1

p
td−1 dt =

1− pd

d

∫
∂Ω1

ξ,p

hξ(x) dσ(x).

Recalling the centered intrinsic quantity of the domain Fξ(Ωξ,p) we can conclude with

λ1(Ωξ,p) ≤ λ1(Ap,1)
Fξ(Ωξ,p)

d|Ωξ,p|
(1− pd).

Now we take an annulus Aa,b with radii a and b such that a
b = p and |Aa,b| = |Ωξ,p|. Using (3.1)

we have
|Aa,b| = |Bb| − |Ba| = (bd − ad)|B1|. (3.19)

Finally using the equality λ1(Ap,1) = 1
b2
λ1(Aa,b) which can be proven analogically as (3.13) we

can conclude with

λ1(Ωξ,p) ≤ b2λ1(Aa,b)
Fξ(Ωξ,p)

d|B1|(bd − ad)
(1− pd) = λ1(Aa,b)

b2Fξ(Ωξ,p)

d|Bb|
which proves Theorem 3.4.5.

3.4.2 Remarks

Remark 3.4.6 (Existence of Aa,b). Our aim is to �nd the two radii a and b such that a
b = p

and |Aa,b| = |Ωξ,p|. From (3.19) and (3.13) we get

|Ωξ,p| = (bd − ad) |B1| = (1− pd) |B1| bd

which implies

b =

(
|Ωξ,p|

(1− pd)|B1|

) 1
d

.

This together with a = bp de�nes the annulus Aa,b.

Remark 3.4.7 (Sharp for arbitrary annulus). From the proof we can see that this bound is sharp
for Ap,1. Let Am,n be an annulus centered at the point ξ. It can be interpreted as a domain Bξ,m

n

for Theorem 3.4.5. Since from (4.3) the intrinsic quantity Fξ(Am,n) can be expressed as

Fξ(Am,n) = F (Bn) = |Bn|
d

n2
, (3.20)

we can write

λ1(Am,n) ≤ λ1(Am,n)
n2Fξ(Am,n)

d|Bn|
= λ1(Am,n).

Remark 3.4.8 (Bound as a fraction of two intrinsic quantities). Using (3.20) we can write

λ1(Ω) ≤ λ1(Aa,b)
Fξ(Ωξ,p)

F (Bb)
= λ1(Aa,b)

Fξ(Ωξ,p)

Fξ(Aa,b)
.
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3.5 Payne and Weinberger's planar bound

In this chapter we introduce Payne and Weinberger's planar bound which originally appeared
in their paper [17]. The proof of this bound is based upon the use of the parallel coordinates
(see Figure 3.7). In this bound we use a modern approach to this coordinates developed by Savo
in [18] which appeared also in the paper [19] by Pedro Freitas and David Krej£i°ík.

This bound as presented in the thesis di�ers from the others when acting on not simply
connected domains. It still works for them but on the inner parts of the boundary we can
demand only the Neumann boundary conditions. Thus for simply connected domains we rather
get an upper bound for the �rst eigenvalue of the Dirichlet-Neumann operator de�ned in the
Remark 2.3.14.

Theorem 3.5.1 (Payne and Weinberger's planar bound). Let Ω be a bounded simply-connected
domain in R2 with C2 boundary ∂Ω. Let |Ω| be the 2-dimensional Lebesgue measure of Ω and
|∂Ω| be the 1-dimensional Hausdor� measure of the boundary ∂Ω. Denote by p the value

p := 1− 4π|Ω|
|∂Ω|2

and by k = k(p) the �rst zero of the transcendental equation

J0(k)Y1(
√
pk) = Y0(k)J1(

√
pk) (3.21)

where J0, respectively J1 stands for the Bessel function of the �rst kind of the �rst, respectively
second order and Y0, respectively Y1 stands for the Bessel function of the second kind of the �rst,
respectively second order. Then the following bound holds

λ1(Ω) ≤ 4π2

|∂Ω|2
k(p)2.

First we introduce the parallel coordinates.

3.5.1 Parallel coordinates

Let Ω be a bounded simply-connected domain in R2 with the boundary ∂Ω of class C2. The
boundary ∂Ω can be interpreted as a Jordan curve (i.e., simple and closed curve) of class C2

denoted by Γ0.
First we de�ne the map

Φ : Γ0 × [0,∞)→ R2 : {(s, t) 7→ s− n(s) t}

and locally, denoting by γ the natural parametrization by arc length of the curve Γ0, γ : [a, b]→
Γ0 with p being the coordinate on [a, b],

Φ ◦ (γ × 1) : R× (0,∞)→ R2 : {(p, t) 7→ γ(p)− n(γ(p)) t}

where 1 is an identity function on (0,∞) and n is again the outward unit normal to ∂Ω. Next we
de�ne the so called cut-radius map c : Γ0 → (0,∞) by the property that the segment mapping
t 7→ Φ(s, t) minimises the distance from Γ0 if, and only if, t ∈ [0, c(s)]. This map is known to be
continuous and denoting by ρΩ the inner radius of Ω we clearly have

max
s∈Γ0

c(s) = ρΩ.
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Figure 3.7: Parallel coordinates

Finally we de�ne the cut-locus

C(Γ0) := {Φ(s, c(s)) : s ∈ Γ0}

being a closed subset of Ω of measure zero. If we now restrict the map Φ to the open set

U := {(s, t) ∈ Γ0 × (0,∞) : 0 < t < c(s)}

we obtain a di�eomorphism between U and Ω \ C(Γ0). The coordinates s and t based at Γ0 are
also called �parallel� which is again motivated by their behavior (see Figure 3.7).

For the purposes of the subsequent proof we also need to compute the determinant of the
Jacobi matrix of the transformation Φ. First recall that the unit tangent and normal vector to
Γ0 can be expressed in the point s0 using the natural parametrization γ(p), γ(p0) = s0 as

τ(s0) =
∂γ(p)

∂p

∣∣∣∣
p0

n(s0) =

∂2γ(p)
∂p2

∣∣∣
p0∣∣∣∣∣∣∣∣∂2γ(p)

∂p2

∣∣∣
p0

∣∣∣∣∣∣∣∣ .
Using these formulas the Jacobi matrix can be computed as

J(p0, t0) =

τ1(s0)− ∂n1

∂p

∣∣∣
s0
t n1(s0)

τ2(s0)− ∂n2

∂p

∣∣∣
s0
t n2(s0)


and its determinant as

det J(p0, t0) = τ1(s0)n2(s0)− τ2(s0)n1(s0)−
(
∂n1

∂p

∣∣∣
s0
n2(s0)− ∂n2

∂p

∣∣∣
s0
n1(s0)

)
t.

First we will analyse the term

τ1(s0)n2(s0)− τ2(s0)n1(s0).
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Denoting by τ⊥(s0) the vector perpendicular to τ(s0), i.e., τ⊥(s0) := (−τ2(s0), τ1(s0)), the �rst
term is equal to

n(s0) · τ⊥(s0)

and since n(s0) and τ⊥(s0) are co-directional unit vectors, we can see from the remark 3.3.14
that

τ1(s0)n2(s0)− τ2(s0)n1(s0) = n(s0) · τ⊥(s0) = 1. (3.22)

Subsequently recall the Frenet equation(
∂τ
∂p
∂n
∂p

)
=

(
0 κ
−κ 0

)(
τ
n

)
de�ning the curvature κ of the curve Γ0. Using this equation we can adjust the second term(

∂n1

∂p

∣∣∣
p0

n2(s0)− ∂n2

∂p

∣∣∣
p0

n1(s0)

)
t = −κ(s0)

(
τ1(s0)n2(s0)− τ2(s0)n1(s0)

)
t

which is equal to −κt by applying (3.22). Hence we can conclude with

det J(s, t) = 1− κ(s) t. (3.23)

Now we can proceed to the proof of the bound.

3.5.2 Proof of the bound

Using the expression for the determinant of the Jacobi matrix (3.23) we can obtain the
uniform bound

‖ det J(s, t)‖L∞(U) ≤ 1 + ‖κ‖L∞(Γ0) ρΩ. (3.24)

Moreover we introduce the distance function from the boundary Γ0

ρ : Ω→ (0,∞) : {x 7→ dist(x,Γ0) = inf
s∈Γ0

‖s− x‖}

and the function A(t) of the area of the shell {x ∈ Ω : 0 < ρ(x) < t}, i.e.,

A(t) = |{x ∈ Ω : 0 < ρ(x) < t}|.

Clearly A0 := A(ρΩ) = |Ω|. Finally we de�ne the length of the boundary curve {ρ(x) = t} lying
in Ω by

L(t) :=

∫
{s∈Γ0,t<c(s),Φ(s,t)∈Ω}

det J(s, t) ds =

∫
{s∈Γ0,t<c(s),Φ(s,t)∈Ω}

1− κ(s) t ds. (3.25)

It can be seen that L0 := L(0) = |Γ0|, where now |Γ0| denotes the one-dimensional Hausdor�
measure of the outer boundary. This together with the uniform bound for the Jacobian (3.24)
leads to the crude bound for L(t)

L(t) ≤ L0(1 + ‖κ‖L∞(Γ0) ρΩ).

Using the co-area formula (see [6]) we can write

|A(t2)−A(t1)| =
∣∣∣∣∫ t2

t1

L(t) dt

∣∣∣∣
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from which we see that A(t) is Lipschitz on [0, ρΩ] and for almost every t (see 3.3.4)

A′(t) = L(t). (3.26)

Now we would like to use the min-max principle 2.3.4 to estimate the �rst eigenvalue. For
this let us take some smooth function φ : [0, A0]→ R and consider the test function u = φ◦A◦ρ,
Lipschitz in Ω and depending only on the distance from the boundary Γ0.

By the change of the coorinates from Cartesian to parallel and using the fact that the test
function u depends only on the distance from the outer boundary, we can compute ‖u‖2L2(Ω)

‖u‖2L2(Ω) =

∫
Ω
|u(x)|2 dx =

∫ L0

0
ds

∫ c(s)

0
dt |φ(A(t))|2 (1− κ(s) t),

then denoting M := {s ∈ Γ0, t < c(s),Φ(s, t) ∈ Ω} and using the Fubini theorem∫ L0

0
ds

∫ c(s)

0
dt |φ(A(t))|2 (1− κ(s) t) =

∫ ρΩ

0
dt

∫
M

ds |φ(A(t))|2 (1− κ(s) t).

Since the last integral is from (3.25) equal to L(t), we can write using (3.26)∫ R

0
dt |φ(A(t))|2

∫
M

ds (1− κ(s) t) =

∫ ρΩ

0
dt |φ(A(t))|2A′(t)

and thus
‖u‖2L2(Ω) =

∫ ρΩ

0
dt φ(A(t))2A′(t). (3.27)

Analogically we can also compute

‖∇u‖2L2(Ω) =

∫ ρΩ

0
dt φ′(A(t))2A′(t)3. (3.28)

To continue we will use a remarkable idea introduced by Payne and Weinberger in [17] to use
the change of the coordinates

r(t) :=

√
L2

0 − 4πA(t)

2π
, t ∈ [0, R] (3.29)

with

r1 := r(ρΩ) =

√
L2

0 − 4πA0

2π
, (3.30)

r2 := r(0) =
L0

2π
. (3.31)

Recall the isoperimetric inequality for planar bounded domains.

Remark 3.5.2 (Isoperimetric inequality, see [4]). Let Ω be a bounded domain in R2 and L0 be
the Hausdor� measure of its boundary. Then the following inequality holds

L2
0 ≥ 4π|Ω|

where |Ω| stands for the 2-dimensional Lebesgue measure of Ω. The equality is obtained if, and
only if, the domain is a ball.
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Thanks to this inequality, the transformation (3.29) is well-de�ned on [0, ρΩ] and we can use
it as a substitution in the integrals (3.27) and (3.28). Also note that the transformation was
chosen so that the area of annulus with radii r1 and r2, Ar1,r2 , is equal to the area of Ω, i.e.,
|Ar1,r2 | = A0. De�ning

ψ(r) := φ

(
L2

0

4π
− πr2

)
we obtain

‖u‖2L2(Ω) = 2π

∫ r2

r1

dr ψ(r)2 r (3.32)

and
‖∇u‖2L2(Ω) = 2π

∫ r2

r1

dr ψ′(r)2 r′(t)2 r. (3.33)

Our aim is to compare Ω with annulus Ar1,r2 . For this we would like to estimate the term r′(t)2

by 1. The following theorem claims that this estimate is possible.

Theorem 3.5.3. Let Ω be a bounded domain in R2. Then for the function r(t) de�ned above
(3.29), we have the following bound for almost every t ∈ [0, ρΩ]

|r′(t)| ≤ 1.

Proof. First we compute the derivative of r(t)

r′(t) = − L(t)√
L2

0 − 4πA(t)

for almost every t ∈ [0, ρΩ]. Recall that for any Jordan curve we have∫
Γ0

κ(s) ds = 2π.

Hence from (3.25) we can obtain
L(t) ≤ L0 − 2πt

and using (3.26) also
A(t) ≤ L0t− πt2.

From the last bound we can express t as a function of A(t) and L0 since it can be reduced to a
problem of solving a quadratic equation

πt2 − L0t+A(t) ≤ 0 (3.34)

and thus the roots of the associated equation are

t1,2 =
L0 ∓

√
L2

0 − 4πA(t)

2π

and the inequality (3.34) is ful�lled for t ∈ [t1, t2] (see Figure 3.8). Now we can proceed to the
�nal estimate

L(t) ≤ L0 − 2πt ≤ L0 − 2πt1 =
√
L2

0 − 4πA(t)

which concludes the proof.
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t1 t20
t

Figure 3.8: Plot of inequality (3.34)

Recall the Dirichlet Laplacian de�ned in the previous chapter. Using the variational formu-
lation for the �rst eigenvalue, i.e., Remark 2.3.13, and substituting (3.32) and (3.33) and using
Theorem 3.5.3 we get

λ1(Ω) = inf

∫ r2

r1

dr ψ′(r)2 r∫ r2

r1

dr ψ(r)2 r

where the in�mum is taken over all smooth non-zero functions ψ. At the same time recall the
Dirichlet-Neumann Laplacian de�ned in Remark 2.3.14. Employing this self-adjoint operator
into the min-max principle 2.3.4 and taking as the domain the annulus Ar1,r2 we obtain

λDN1 (Ar1,r2) =
‖∇ψ1‖2L2(Ar1,r2 )

‖ψ1‖2L2(Ar1,r2 )

=

∫ r2

r1

dr ψ′1(r)2 r∫ r2

r1

dr ψ1(r)2 r

where λDN1 is the �rst Dirichlet-Neumann eigenvalue of Ar1,r2 and ψ1(r) is the �rst Dirichlet-
Neumann eigenfunction ofAr1,r2 . Since the radially symmetric function ψ1(r) is de�nitely smooth
we can write

λ1(Ω) ≤

∫ r2

r1

dr ψ′1(r)2 r∫ r2

r1

dr ψ1(r)2 r

= λDN1 (Ar1,r2)

and λDN1 (Ar1,r2) is then the upper bound for λ1(Ω).

Remark 3.5.4. Using the de�nitions from the preceding proof let us denote by p the value

p := 1− 4π|Ω|
|∂Ω|2

and let k = k(p) be the �rst zero of the transcendental equation (3.21) then

4π2

|∂Ω|2
k(p)2 = λDN1 (Ar1,r2) (3.35)
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Proof of the remark. First let us compute λ1(Ar1,r2). We solve this problem in polar coordi-
nates ρ and ϕ. Hence

−∆u = λu

u(r2, ϕ) = 0

∂u

∂n

∣∣∣∣
r1,ϕ

= 0

u(r, 0) = u(r, 2π)

∂u

∂ϕ

∣∣∣∣
r,0

=
∂u

∂ϕ

∣∣∣∣
r,2π

for all ϕ ∈ [0, 2π] and r ∈ (r1, r2). Writing −∆ in polar coordinates we obtain

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2

∂2u

∂ϕ2
= −λu (3.36)

and using the separation of variables u(ρ, ϕ) = R(ρ)Φ(ϕ) we have

ρ2

R

∂2R

∂ρ2
+
ρ

R

∂R

∂ρ
+ λρ2 = − 1

Φ

∂2Φ

∂ϕ2
. (3.37)

Since the left-hand side of this equation does not depend on ϕ and also the right-hand side does
not depend on ρ, we see that both sides are equal to a constant m2 obtaining

ρ2∂
2R

∂2ρ
+ ρ

∂R

∂ρ
+ λρ2R−m2R = 0

1

Φ

∂2Φ

∂ϕ2
= −m2.

The second equation together with the cyclic boundary conditions

Φ(0) = Φ(2π)

Φ′(0) = Φ′(2π)

has the harmonic solution
Φ(ϕ) = A cos(mϕ) +B sin(mϕ)

for m ∈ Z.
The �rst equation is the Bessel equation with the solution

R(ρ) = C1Jm(
√
λρ) + C2Ym(

√
λρ).

Applying the two boundary conditions

R(r2) = 0

respectively
∂R

∂ρ

∣∣∣
r1

= 0

we get
C1Jm(

√
λr2) + C2Ym(

√
λr2) = 0
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respectively

C1

√
λ(J−1+m(

√
λr1)− J1+m(

√
λr1)) + C2

√
λ(Y−1+m(

√
λr1)− Y1+m(

√
λr1)) = 0

and by eliminating the constants C1 and C2 we have

Ym(
√
λr2)(J−1+m(

√
λr1)− J1+m(

√
λr1))− Jm(

√
λr2)(Y−1+m(

√
λr1)− Y1+m(

√
λr1)) = 0.

Moreover putting m = 0 (we are interested in the �rst eigenvalue) and thanks to the properties
of the Bessel functions written as

J1(
√
λ1r1)Y0(

√
λ1r2) = J0(

√
λ1r2)Y1(

√
λ1r1). (3.38)

Finally we check the equality of the two equations (3.21) and (3.38). First we take a look at the
term

√
λ1r1. Using (3.30) we can see that

√
λ1r1 =

√
λ1

√
|∂Ω|2 − 4π|Ω|

2π
=
√
λ1

√
|∂Ω|2 − 4π|Ω|
|∂Ω|

|∂Ω|
2π

=
√
pk.

Analogically using (3.31) we get

√
λ1r2 =

√
λ1
|∂Ω|
2π

= k

which proves the remark.
The last remark concludes the proof of Theorem 3.5.1.

3.5.3 Remarks

Remark 3.5.5. The parallel coordinates introduced above can also be built for bounded but not
simply-connected domain Ω. In this case we however obtain an upper bound for λDN1 (Ω), i.e.,
we have the Dirichlet boundary conditions on the outer boundary and the Neumann boundary
conditions on the inner boundary of Ω.

Remark 3.5.6. The parallel coordinates can also be built for not simply-connected domain Ω
based on its whole boundary (not only on the outer boundary as in the preceding remark). This
procedure leads to the upper bound for the �rst Dirichlet eigenvalue of Ω however in the �nal part
of the proof we are not able to prove that |r′(t)| ≤ 1. Indeed it can be shown that |r′(t)| may be
larger than 1 for some not simply-connected domains and thus we cannot compare λ1(Ω) with
λDN1 (Ar1,r2) and obtain the upper bound.

Remark 3.5.7 (Sharp for balls). Let Ω = BR. Then |BR| = πR2 and |∂BR| = 2πR. Substituting
these into the de�nitions of the radii r1 and r2, (3.30) and (3.31), we obtain the annulus A0,R,
i.e. the ball BR. Since BR has no inner boundary, we have λDN1 (BR) = λ1(BR) which implies
the sharpness of the PW bound for the balls.

3.6 Antunes and Freitas conjecture

Finally we introduce the planar conjecture based on numerical studies of Antunes and Freitas
appearing in their paper [21].
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Theorem 3.6.1 (Conjecture 2). Let Ω be a planar simply-connected domain. Then the following
inequality holds

λ1(Ω) ≤ πj2
01

|Ω|
+
π2

4

|∂Ω|2 − 4π|Ω|
|Ω|2

with j01 being again the �rst positive zero of the Bessel function of the �rst kind of order one.
The equality is obtained for balls and asymptotically for in�nite rectangular strips.

3.7 Summary

Let Ω be a bounded domain in Rd.
Faber-Krahn inequality

λ1(Ω) ≥ λ1(B1)

(
|B1|
|Ω|

)2/d

Trivial upper bound

λ1(Ω) ≤ λ1(BρΩ)

Pólya and Szegö's bound (Ω strictly star-shaped with locally Lipschitz boundary)

λ1(Ω) ≤ λ1(B1)
F (Ω)

d|Ω|

Pólya and Szegö's bound for convex domains (Ω convex)

λ1(Ω) ≤ λ1(B1)
|∂Ω|

d ρΩ |Ω|

Generalization of Pólya and Szegö's bound for particular hollow domains (Ω strictly
star-shaped with locally Lipschitz boundary, Ωξ,p generated from Ω, annulus Aa,b, ab = p, |Aa,b| =
|Ωξ,p|, see Theorem 3.4.5)

λ1(Ωξ,p) ≤ λ1(Aa,b)
b2Fξ(Ωξ,p)

d|Bb|

Payne and Weinberger's planar bound (Ω ⊂ R2, simply-connected with C2 boundary)

λ1(Ω) ≤ 4π2

|∂Ω|2
k(p)2

where

p := 1− 4π|Ω|
|∂Ω|2

and k = k(p) is the �rst zero of the transcendental equation (3.21).
Conjecture 1

λ1(Ω) ≤ λ1(B1)
|∂Ω|

d ρΩ |Ω|

Antunes and Freitas conjecture (Ω ⊂ R2 simply connected)

λ1(Ω) ≤ πj2
01

|Ω|
+
π2

4

|∂Ω|2 − 4π|Ω|
|Ω|2



Chapter 4

Examples

This is the last chapter of the thesis where we compare the bounds and conjectures introduced
in the preceding part for some particular domains, more precisely for rectangular parallelepipeds,
ellipsoids, stadiums and swiss crosses.

4.1 Simply-connected domains

For every particular domain we �rst compute its intrinsic quantity F appearing in Theorem
3.3.9 and then we compare the bounds of Theorems 3.2.1 (Trivial bound), 3.3.9 (Pólya and
Szegö's bound, denoted by PS), 3.3.20 (Pólya and Szegö's bound for convex domains, denoted
by PS convex), 3.5.1 (Payne and Weinberger's bound, denoted by PW), the Conjectures 3.3.22
(denoted by C1) and 3.6.1 (denoted by AF) and speci�cally for the parallelepipeds we can also
use for the comparison the actual eigenvalues (Remark 2.3.11, denoted by AE). Since the PW
bound which uses the parallel coordinates works only for planar domains, we have to restrict
ourselves to domains in R2.

4.1.1 Rectangular parallelepipeds

Let a1, a2, . . . , ad ∈ R+ and R := (−a1, a1)×· · ·×(−ad, ad) be the rectangular parallelepiped
in Rd. First let us compute the intrinsic quantity F (R). Let ξ ∈ R be a point to which R is
strictly star-shaped. We have for every k ∈ {1, . . . , d},
∀x ∈ ∂R such that xk = ak

hξ(x) = (x− ξ) · n(x)

= (x1 − ξ1, . . . , xk−1 − ξk−1, ak − ξk, xk+1 − ξk+1, . . . , xd − ξd) · (0, . . . , 0, 1, 0, . . . , 0)

= ak − ξk

and ∀x ∈ ∂R such that xk = −ak

hξ(x) = (x− ξ) · n(x)

= (x1 − ξ1, . . . , xk−1 − ξk−1,−ak − ξk, xk+1 − ξk+1, . . . , xd − ξd) · (0, . . . , 0,−1, 0, . . . , 0)

= ak + ξk.

73
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Hence

F (R) = inf
ξ∈ω

∫
∂R

h−1
ξ

= inf
ξ∈ω

d∑
k=1

∫ a1

−a1

dx1 . . .

∫ ak−1

−ak−1

dxk−1

∫ ak+1

−ak+1

dxk+1 . . .

∫ ad

−ad
dxd

(
1

ak − ξk
+

1

ak + ξk

)

= inf
ξ∈ω

d∑
k=1

2da1a2 . . . ad
a2
k − ξ2

k

= |R|(a−2
1 + · · ·+ a−2

d ).

(4.1)

For the comparison we now take the two dimensional rectangular parallelepiped of sides a
and b, a < b, i.e., R2 = (−a

2 ,
a
2 )× (− b

2 ×
b
2). Hence A := |R2| = a · b, L := |∂R2| = 2(a+ b) and

ρR2 = a
2 . Recall that in two dimensions λ1(B1) = j2

01 (see (1.18)). The rectangle R2 is certainly
bounded and convex (therefore strictly star-shaped) and thus we can use for the comparison the
trivial bound, PS bound, PS bound for convex domains, PW bound, AF conjecture and since
they can be explicitly computed, also the actual eigenvalues.
Trivial bound

λ1(R2) ≤ 4j2
01

a2

PS bound

λ1(R2) ≤ 2j2
01

(
1

a2
+

1

b2

)
PS bound for convex domains

λ1(R2) ≤ 2j2
01

a+ b

a2b

PW bound

λ1(R2) ≤ 2π2

(a+ b)2
k(p)2

with

p = 1− πab

(a+ b)2

and k = k(p) be the �rst zero of the transcendental equation (3.21).
AF conjecture

λ1(R2) ≤ πj2
01

ab
+
π2

4

(a+ b)2 − 4πab

a2b2

Actual eigenvalue

λ1(R2) = π2

(
1

a2
+

1

b2

)
Setting c := a

b we can plot the obtained bounds with respect to the constant c (see Figure
4.1). We can see for example that the AF conjecture is for all values of the parameter c better
than the PW bound. Also the PW bound behaves worse for square-like rectangles (c ≈ 1) than
the PS bound and even than the trivial bound.
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0.2 0.4 0.6 0.8 1.0
c=

a

b
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10

12

14

4A2× bound

L2

Trivial

PS

PS for convex

PW

AF

Actual

Figure 4.1: Plot of bounds for rectangle with sides a and b, with area A and length of boundary
curve L

4.1.2 Ellipsoids

Let a1, a2, . . . , ad ∈ R+ and E :=

{
x ∈ Rd :

x2
1

a2
1

+ · · ·+
x2
d

a2
d

< 1

}
be the domain enclosed by

an ellipsoid in Rd. Next we compute the intrinsic quantity F (E). The ellipsoid is described by
the implicit equation

f(x) :=
x2

1

a2
1

+ · · ·+
x2
d

a2
d

− 1 = 0.

From the symmetry we can conclude, as in the preceding case, that the minimum value in the
de�nition of the intrinsic quantity is attained for ξ = 0. Recall that the normalized gradient ∇f|∇f |
is uniformly equivalent to n or −n on the ellipsoid, thus

∇f = n|∇f | ⇒ ∇f · n = |∇f |

or
∇f = −n|∇f | ⇒ −∇f · n = |∇f |.

Using this we obtain

h−1
0 (x) =

1

x · n(x)
=
|∇f(x)|
x · ∇f(x)

= n(x) · ∇f(x)

x · ∇f(x)
. (4.2)

Substituting

∇f =

(
2x1

a2
1

, . . . ,
2xd
a2
d

)
and

x · ∇f(x) = 2(f(x) + 1) = 2

into (4.2) we have

h−1
0 = n(x) ·

(
x1

a2
1

, . . . ,
xd
a2
d

)
.
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The desired result can be obtained using the Divergence theorem (see [22], Thm. 5.8)

F (E) =

∫
∂E
h−1

0 =

∫
∂E

n(x) ·
(
x1

a2
1

, . . . ,
xd
a2
d

)
dS =

∫
E
∇·
(
x1

a2
1

, . . . ,
xd
a2
d

)
dV = |E|(a−2

1 + · · ·+a−2
d ).

(4.3)
Again for the comparison we need a two dimensional ellipse with axis a and b,a > b, i.e.,

E2 =

{
x ∈ R2 :

x2
1

a2
+
x2

2

b2
< 1

}
. We have

A := |E2| = πab

L := |∂E2| = 4a

∫ π
2

0

√
1−

(
1− b2

a2

)
sin2 θ dθ

and also ρE2 = b. The ellipse is again bounded and convex and thus we can use for the comparison
the same bounds as for the rectangle with the exception that the actual eigenvalues for ellipsoids
are not known explicitly.
Trivial bound

λ1(E2) ≤ j2
01

b2

PS bound

λ1(E2) ≤ j2
01

2

(
1

a2
+

1

b2

)
PS bound for convex domains

λ1(E2) ≤ j2
01

|∂E2|
2πab2

PW bound

λ1(E2) ≤ 4π2

|∂E2|2
k(p)2

with

p = 1− 4π2ab

|∂E2|2

and k = k(p) be the �rst zero of the transcendental equation (3.21).
AF conjecture

λ1(E2) ≤ j2
01

ab
+

1

4

|∂E2|2 − 4π2ab

(ab)2

Notice that the PS bound for ellipse with axes a and b is the same as for the rectangle with sides
a and b. Setting c := b

a we obtain a plot of bounds with respect to the constant c (see Figure
4.2). We can see that the PS bound is better than all the other bounds for all the values of the
parameter c. Also the PS bound for convex domains is better than conjecture AF for c ∈ (0, 0.1].

4.1.3 Stadium

We proceed to another type of domain called the stadium (see Figure 4.3) de�ned from the
beginning only in the planar case. Let a, b ∈ R+ and let the stadium S ⊂ R2 be the union of
the rectangle (−b, b)× (−a, a) and two discs of radius a centered at the points (−b, 0) and (b, 0).
Let c := b

a ∈ [0,+∞). We now compute the intrinsic quantity F (S). By the symmetry we can
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Trivial
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Figure 4.2: Plot of bounds for ellipse with axes a and b, with area A and length of boundary
curve L

Figure 4.3: Stadium with parameters a and b
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again conclude that the in�mum is attained for ξ = 0. First we compute the integral over the
straight line segments of ∂S. For all x ∈ ∂S such that x1 = a we have∫ b

−b
h−1

0 =

∫ b

−b

dx2

(a, x2) · (1, 0)
=

∫ b

−b

dx2

a
=

2b

a

and analogically for all x ∈ ∂S such that x1 = −a∫ b

−b
h−1

0 =

∫ b

−b

dx2

(−a, x2) · (−1, 0)
=

∫ b

−b

dx2

a
=

2b

a
.

Next we compute the integral over the two arc segments. We start with the upper one which
can be parameterized using the polar coordinates as

x1 = a cosϕ

x2 = a sinϕ+ b

where ϕ ∈ (0, π). Also the normal n can be expressed as (cosϕ, sinϕ). Thus we have∫ π

0

a dϕ

(a cosϕ, a sinϕ+ b) · (cosϕ, sinϕ)
=

∫ π

0

dϕ

1 + c sinϕ
.

Now we use the substitution

t = tan
ϕ

2
2

1 + t2
dt = dϕ

2 arctan t = ϕ

sinϕ =
2t

1 + t2

obtaining ∫ π

0

dϕ

1 + c sinϕ
=

∫ +∞

0

2 dt

t2 + 2ct+ 1
=

∫ +∞

0

2 dt

(t+ c)2 + 1− c2
.

At this time we have to distinguish between c < 1, c = 1 and c > 1.

• c = 1 ∫ +∞

0

2 dt

(t+ 1)2
= 2

• c < 1

2

1− c2

∫ +∞

0

dt(
t+c√
1−c2

)2
+ 1

=
2√

1− c2

[
arctan

t√
1− c2

]+∞

c

=
2√

1− c2

(
π

2
− arctan

c√
1− c2

)
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Finally using trigonometric identities

arctan
1

x
=
π

2
− arctanx, x > 0

arctanx = 2 arctan
x

1 +
√

1 + x2

we obtain the desired result

2√
1− c2

(
π

2
− arctan

c√
1− c2

)
=

2√
1− c2

arctan

√
1− c2

c

=
4√

1− c2
arctan

√
1−c2
c

1 +
√

1 + 1−c2
c2

=
4√

1− c2
arctan

√
1− c
1 + c

.

• c > 1

2

c2 − 1

∫ +∞

0

dt(
t+c√
c2−1

)2
− 1

=
2√
c2 − 1

∫ +∞

c

d
(

t√
c2−1

)
(

t√
c2−1

)2
− 1

.

The integral of type
∫

dx
x2−1

can be computed using the partial fractions

∫
dx

x2 − 1
= log

√∣∣∣∣x− 1

x+ 1

∣∣∣∣+ C.

Employing this we can conclude with

2√
c2 − 1

∫ +∞

c

d
(

t√
c2−1

)
(

t√
c2−1

)2
− 1

=
2√
c2 − 1

log

√√√√ t√
c2−1

− 1

t√
c2−1

+ 1

+∞

c

=
2√
c2 − 1

log(c+
√
c2 − 1).

If we now take a look at the second arc which can be parametrized as

x1 = a cosϕ

x2 = a sinϕ− b

for ϕ ∈ (π, 2π) with the normal vector n = (cosϕ, sinϕ), we obtain the integral∫ 2π

π

dϕ

1− c sinϕ
.

Since sin(ϕ) = − sin(ϕ− π), we get∫ 2π

π

dϕ

1− c sinϕ
=

∫ π

0

dϕ

1 + c sinϕ
,
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i.e., the integrals over the two arcs are equal. Summarizing

F (S) =


4c+

8√
1− c2

arctan

√
1− c
1 + c

c < 1,

8 c = 1,

4c+
4√
c2 − 1

log(c+
√
c2 − 1) c > 1.

(4.4)

For the stadium we also have

A := |S| = 4ab+ πa2

L := |∂S| = 4b+ 2πa

ρS = a.

The stadium is obviously bounded and convex and thus we can use for the comparison the same
bounds as for the ellipse since the actual eigenvalues for stadiums are also not known explicitly.
Trivial bound

λ1(S) ≤ j2
01

a2

PS bound

λ1(S) ≤ j2
01

F (S)

2(4ab+ πa2)

PS bound for convex domains

λ1(S) ≤ j2
01

b+ πa

a(4ab+ πa2)

PW bound

λ1(S) ≤ π2

(2b+ πa)2
k(p)2

with

p = 1− π(4ab+ πa2)

(2b+ πa)2

and k = k(p) be the �rst zero of the transcendental equation (3.21).
AF conjecture

λ1(S) ≤ πj2
01

4ab+ πa2
+ π2 (2b+ πa)2 − π(4ab+ πa2)

(4ab+ πa2)2

We again plot the preceding results (see Figure 4.4). It can be seen that for example the PS
bound for convex domains is worse than all the other bounds and conjecture AF (except for the
trivial bound) for all the values of the parameter c.

4.1.4 Swiss cross

Finally we use another planar domain called the swiss cross (see Figure 4.5) which is strictly
star-shaped with respect to the origin but non-convex. Let a, b ∈ R+ and let the swiss cross
C ⊂ R2 be the union of the two rectangles (−b− a, b+ a)× (−a, a) and (−a, a)× (−b− a, b+ a).
We again set c := b

a ∈ [0,+∞). Next we compute the intrinsic quantity F (C).
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b
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4A2× bound
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Trivial

PS

PS for convex

PW

AF

Figure 4.4: Plot of bounds for stadium S with area A and length of boundary curve L

Figure 4.5: Swiss cross with parameters a and b
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Recall the computation of the intrinsic quantity for the rectangular parallelepipeds. For each
side of the swiss cross we will use the same procedure as for the side of the parallelepiped. Thus
we obtain

inf
ξ∈ω

∫
∂C
h−1
ξ = inf

ξ∈ω

(∫ a

−a

dx2

b+ a− ξ1
+

∫ a+b

a

dx1

a− ξ2
+

∫ a+b

a

dx2

a− ξ1
+

∫ a

−a

dx1

a+ b− ξ2

+

∫ a+b

a

dx2

a+ ξ1
+

∫ −a
−a−b

dx1

a− ξ2
+

∫ a

−a

dx2

a+ b+ ξ1
+

∫ −a
−a−b

dx1

a+ ξ2

+

∫ −a
−a−b

dx2

a+ ξ1
+

∫ a

−a

dx1

a+ b+ ξ2
+

∫ −a
−a−b

dx2

a− ξ1
+

∫ a+b

a

dx1

a+ ξ2

)
= inf

ξ∈ω

(
4a(a+ b)

(a+ b)2 − ξ2
1

+
4ab

a2 − ξ2
2

+
4ab

a2 − ξ2
1

)
= 8

(
a(a+ b)

(a+ b)2
+
ba

a2

)
= 8

1 + c+ c2

1 + c
.

(4.5)

For the calculations we will also need

A := |C| = 8ab+ 4a2

L := |∂C| = 8(a+ b)

ρC =

{
a+ b b < (

√
2− 1)a√

2a b ≥ (
√

2− 1)a.

The swiss cross is obviously bounded but not convex, still instead of the PS bound for convex
domains we can use the conjecture C1 formally identical to the PS bound for convex domains.
The actual eigenvalues are not known explicitly.
Trivial bound

λ1(C) ≤ j2
01

ρ2
C

PS bound

λ1(C) ≤ j2
01

1 +
b

a
+

(
b

a

)2

(
1 +

b

a

)
(2ab+ a2)

PW bound

λ1(C) ≤ π2

16(a+ b)2
k(p)2

with

p = 1− π(2ab+ a2)

4(a+ b)2

and k = k(p) be the �rst zero of the transcendental equation (3.21).
AF conjecture

λ1(C) ≤ πj2
01

8ab+ 4a2
+ π2 4(a+ b)2 − π(2ab+ a2)

(4ab+ 2a2)2

C1 conjecture

λ1(C) ≤ j2
01

a+ b

ρC(2ab+ a2)
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Figure 4.6: Plot of bounds for swiss cross C with area A and length of boundary curve L

Plotting these results leads to Figure 4.6. We can see that for very small values of parameter
c the trivial bound is better than all the others. Also the conjecture C1 is better than all non-
trivial bounds for all the values of c. Finally the PS bound acts better than the conjecture AF
for c ∈ [0, 3.8].

4.2 Domains with particular holes

At the end we would like to show some examples of domains on which our own result,
Theorem 3.4.5, can be applied. We take the already introduced planar shapes (planar only due
to simplicity) and create a hole of size p > 0 in them (see Section 3.4). Since all of the others
preceding bounds (except for the Trivial bound) demand simply-connected domains, we only
plot the dependence of our bound on the size of the domain (as in the previous plots) and on
the parameter p.

Before we proceed to the particular shapes of the domains we need to compute the �rst
eigenvalue of the Dirichlet Laplacian for some arbitrary annulus As,t, i.e., we have the following
spectral problem (in the polar coordinates)

−∆u = λu

u(s, ϕ) = 0

u(t, ϕ) = 0

u(r, 0) = u(r, 2π)

∂u

∂ϕ

∣∣∣∣
r,0

=
∂u

∂ϕ

∣∣∣∣
r,2π

for all ϕ ∈ [0, 2π] and r ∈ (s, t). Using the same procedure as in the proof of Remark 3.5.4 we
obtain the angular equation

1

Φ

∂2Φ

∂ϕ2
= −m2
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with boundary conditions

Φ(0) = Φ(2π)

Φ′(0) = Φ′(2π)

and having the harmonic solution

Φ(ϕ) = A cos(mϕ) +B sin(mϕ)

for m ∈ Z and we also get the Bessel equation

R(ρ) = C1Jm(
√
λρ) + C2Ym(

√
λρ)

with the boundary conditions

R(s) = R(t) = 0,

i.e.,

C1Jm(
√
λs) + C2Ym(

√
λs) = C1Jm(

√
λt) + C2Ym(

√
λt) = 0.

Reducing the constants and choosing m = 0 (because we are interested in the �rst eigenvalue)
we get

J0(
√
λs)Y0(

√
λt) = Y0(

√
λs)J0(

√
λt).

The �rst eigenvalue of As,t is the �rst zero of this equation.

4.2.1 Rectangles with hole

Let R2 = (−a1
2 ,

a1
2 ) × (−a2

2 ,
a2
2 ) be the rectangle with sides a1 and a2, a1 < a2, as in

Subsection 4.1.1. Let ξ = 0 (we choose the center of our hole to be the origin) and p ∈ (0, 1) be
the parameters of the domain R20,p created from R2 (see Section 3.4). The annulus Aa,b from
Theorem 3.4.5 can be found using Remark 3.4.6

b =

√
|R20,p|

(1− p2)|B1|
=

√
a1a2(1− p2)

(1− p2)π
=

√
a1a2

π

a = bp.

At the same time we have from (4.1)

F0(R20,p) = F (R2) = 4
a2

1 + a2
2

a1a2
.

Hence we obtain the following bound

λ1(R20,p) ≤ λ1(Aa,b)
b2F0(R20,p)

d|Bb|
= λ1(Aa,b)

2(a2
1 + a2

2)

πa1a2

where λ1(Aa,b) is the �rst zero of the equation

J0(
√
λa)Y0(

√
λb) = Y0(

√
λa)J0(

√
λb). (4.6)

Plot of this bound for p ∈ (0, 1) and c := 1
a2
∈ (0, 1) can be seen on Figure 4.7. We can see that

for p ≈ 0 (the hole is very small) we get very similar behavior as for the PS bound for rectangles
without hole.
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Figure 4.7: Generalized PS bound for rectangle with sides a1 = 1 and a2 and with hole of size
p. A is area and L is length of boundary of rectangle

4.2.2 Ellipses with hole

Let E2 =

{
x ∈ R2 :

x2
1

a2
1

+
x2

2

a2
2

< 1

}
be an ellipse with axis a1 and a2,a1 > a2. Again let ξ = 0

and p ∈ (0, 1) be the parameters of the domain with the hole E20,p. First we �nd the annulus
Aa,b

b =

√
|E20,p|

(1− p2)|B1|
=

√
πa1a2(1− p2)

(1− p2)π
=
√
a1a2

a = bp.

Also using (4.3) we have

F0(E20,p) = F (E2) = π
a2

1 + a2
2

a1a2

and thus the bound is

λ1(E20,p) ≤ λ1(Aa,b)
b2F0(E20,p)

d|Bb|
= λ1(Aa,b)

a2
1 + a2

2

2a1a2

where λ1(Aa,b) is again the �rst zero of equation (4.6). Plot for p ∈ (0, 1) and c := 1
a1
∈ (0, 1)

can be seen on Figure 4.8.

4.2.3 Stadium with hole

Let the stadium S be the union of the rectangle (−a2, a2)×(−a1, a1) and two discs of radius a1

centered at the points (−a2, 0) and (a2, 0). Let c := a2
a1
∈ [0,+∞), ξ = 0 and p ∈ (0, 1). Assume
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Figure 4.8: Generalized PS bound for ellipse with axes a1 and a2 = 1 and with hole of size p. A
is area and L is length of boundary curve of ellipse

the domain S0,p, i.e., the stadium S with the hole of size p. As in the preceding subsections we
�nd the annulus Aa,b

b =

√
|S0,p|

(1− p2)|B1|
=

√
(4ab+ πa2)(1− p2)

(1− p2)π
=

√
4ab+ πa2

π

a = bp.

The intrinsic quantity F0(S0,p) is again equal to the intrinsic quantity of the stadium F (S), see
(4.4). The obtained bound is then

λ1(S0,p) ≤ λ1(Aa,b)
b2F0(S0,p)

d|Bb|
= λ1(Aa,b)

F0(S0,p)

2π
.

This bound is plotted for a1 = 1, i.e., c = a2 ∈ (0, 8) and p ∈ (0, 1) on Figure 4.9.

4.2.4 Swiss cross with hole

In the end we introduce the swiss cross with hole. Let the swiss cross C be the union of
the two rectangles (−a2 − a1, a2 + a1) × (−a1, a1) and (−a1, a1) × (−a2 − a1, a2 + a1). Let
c := a2

a1
∈ [0,+∞), the center of the hole ξ = 0 and p ∈ (0, 1). So we have the hollow domain

C0,p. The required annulus Aa,b is

b =

√
|C0,p|

(1− p2)|B1|
=

√
(8ab+ 4a2)(1− p2)

(1− p2)π
=

√
8ab+ 4a2

π

a = bp.
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Figure 4.9: Generalized PS bound for stadium with parameters a1 = 1 and a2 and with hole of
size p. A is area and L is length of boundary curve of stadium

Also its intrinsic quantity F0(C0,p) can be written as

F0(C0,p) = F (C) = 8
1 + c+ c2

1 + c
,

see (4.5). Therefore we have the bound

λ1(C0,p) ≤ λ1(Aa,b)
b2F0(C0,p)

d|Bb|
= λ1(Aa,b)

4(1 + c+ c2)

π(1 + c)
.

The plot for a1 = 1, i.e., c = a2 ∈ (0, 8) and p ∈ (0, 1) is on Figure 4.10.
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Figure 4.10: Generalized PS bound for swiss cross with parameters a1 = 1 and a2 and with hole
of size p. A is area and L is length of boundary curve of swiss cross



Conclusion

In the thesis we introduced the Laplace operator with the Dirichlet boundary conditions and
showed its huge importance in the musical theory. Then we correctly de�ned the self-adjoint
Dirichlet Laplacian on bounded domains and stated some of its spectral properties.

We used the min-max principle and the shrinking and parallel coordinates to obtain the two
non-trivial and sharp (for balls) upper bounds for the �rst eigenvalue of the Dirichlet Laplacian,
the Pólya and Szëgo's (in arbitrary dimension) and Payne and Weinberger's (planar) bound.
Moreover we introduced our own result, the generalization of the Pólya and Szëgo's bound for
particular not simply-connected domains. We also stated the trivial bound, two conjectures and
one lower bound, the Faber-Krahn inequality.

In the end we applied the obtained bounds to some types of domains (particularly rectangular
parallelepipeds, ellipsoids, stadiums and swiss crosses) and compared them. And since none of
the others bounds is applicable on not simply-connected domains which we created from the
preceding types, we plotted the dependence of our bound on the size of the domain and the size
of the hole.
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