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Introduction

The spectrum of the self-adjoint Dirichlet Laplacian is interesting to study due to the huge
amount of its applications and no less for the mathematics itself. The spectrum of the operator
depends on the geometry of the domain in R? on which it acts. These domains can be divided
into two main groups, we have either unbounded or bounded domains. The unbounded domains
according to the Glazman’s classification are of three types, quasi-conical, quasi-cylindrical and
quasi-bounded. For bounded domains it is known that the spectrum is purely discrete and for a
few shapes (rectangular parallelepipeds, balls, tori) we even known the spectrum explicitly. This
thesis studies the spectrum on bounded domains, more precisely we are mainly interested in the
upper bounds for the first eigenvalue (non-trivial, sharp or in arbitrary dimension).

In the beginning of the thesis we study the application of the spectrum in music. Since the
vibrations of the parts of the musical instruments which produce the sound can be modeled
using the wave equation in which figures the Laplace operator (with the Dirichlet, Dirichlet-
Neumann or Neumann boundary conditions), we show that there is a close relationship between
the eigenvalues of the spectrum (not yet knowing that we have found the complete spectrum)
and the frequencies of the sounding tones. Next we compute and compare the spectra of one-
dimensional (string, air column) and two-dimensional vibrating objects (membrane of a drum)
and show the huge importance of the spectrum of the string in the music. Finally we introduce
a special kind of drum called a timpani which surprisingly has a spectrum very similar to the
spectrum of the string, if other physical phenomena are taken into account.

In the second chapter we correctly define the self-adjoint Dirichlet Laplacian on bounded
domains using the quadratic forms and we state some of its properties and the properties of its
spectrum, which will be needed later. We also develop some spectral-analytic tools, such as the
min-max principle, on which the subsequent chapter stands.

The third chapter is the main chapter of the thesis were we state some of the existing bounds
for the first eigenvalue. We start with one lower bound, the Faber-Krahn inequality, first con-
jectured in the book [2]. Next from the monotonicity of the eigenvalues we can easily obtain
the trivial upper bound. We then continue with the Polya and Szegt’s [5], respectively planar
Payne and Weinberger’s [17], upper bound for simply-connected domains which stand on the
min-max principle and on the use of the shrinking, respectively parallel, coordinates. Moreover
we introduce our own result, the generalization of the Pélya and Szegd’s bound for particular,
not simply-connected domains. In the end we state the Antunes and Freitas conjecture based on
some numerical studies [21].

In the last chapter we first present some examples of simply-connected domains to which we
apply the presented bounds and consequently we compare them. Finally we create the particular
hole in these domains, apply our bound to them and show the dependence of the bound on the
size of the domain and the hole.
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Chapter 1

Musical motivation

1.1 Spectrum of 1D objects

Most musical instruments produce sound by the vibration of air column or string. Both these
can be described by the one dimensional wave equation

OPu(w,t) i(?Qu(:c,t)
ox?2 2 o2

The function u = u(z,t) of the coordinate x and time ¢ is the amplitude of vibration and c is
a constant having a meaning of the phase velocity of the wave in the material or air. For our
purposes, we can put this constant equal to 1 without loss of generality. Considering a string of
length L with two fixed edges we have the Dirichlet boundary conditions

u(0,) z 3. (1.1)

u(L,t)

Considering an air column, we have either the Neumann boundary conditions on both sides, i.e.,

ou.)|
0 laso (1.2)

Ou(x,t) _0 '
N P

or the Neumann boundary condition on one side and the Dirichlet boundary condition on the
other. (An air column with the Dirichlet boundary condition on both sides is not possible because
air which is blown into the instrument has to escape somewhere.)

1.1.1 Spectrum of string

First we solve the string boundary spectral problem obtaining the spectrum of the string

OPu(z,t)  u(z,t)

ox2  ot?
u(0,t) =0
u(L,t) =0

subject to the initial conditions.
13



14 CHAPTER 1. MUSICAL MOTIVATION

Assuming u(x,t) = X(x)T'(t), we can separate the time and space part of the preceding
equation. First we solve the space part

2
‘9;;9”) — AX(2) (13)
with the boundary conditions
X(0)=0 (1.4)
X(L) = 0. '

We can also interpret this equation as an eigenvalue problem for the Laplace operator (in case
of the string it consists only of the second partial derivative with respect to the coordinate x).
We will see that not only for the string but also for other geometries in higher dimensions we
can interpret the space part of the wave equation as an eigenvalue problem.

Now we will show that A, eigenvalue of our problem defined in the previous paragraph, is
positive. This will allow us to write the corresponding eigenvectors in the terms of sines and
cosines. Let us take our equation, multiply it with its complex conjugate and integrate over the

whole string

L 52 L

/ 9 X(Zx>X(as)da: - —)\/ X (2)X (z)da.
0o Oz 0

Using the per partes method on the integral on the left hand side we obtain

X (z) Ll oX (x) 0X (x) L
X — =— X
[ 5 (m)} ) /0 5 B dx /\/0 X(2)X (z)dx
where the first term is zero because of the Dirichlet boundary conditions. Expressing A\ we get
L L Y L 2
/ 0X () 8X(:1:)dx / 0X (z) 0X () gz / 0X (x) A
\ o Oz ox o Oz ox _ Jo ox

- L - L L
2 2 2
/0 ’X(m)‘ dx /0 }X(m)‘ dz /0 ‘X(CL‘)‘ dz

which implies that A is nonnegative.
Assuming A = 0 we get
X(z) = Ciz+ Cq

as the general solution of the equation (1.3) and considering the boundary conditions (1.4) we
obtain zero solution X (x) = 0, thus A = 0 cannot be considered as the part of the spectrum,
implying A > 0.

Because \ is positive we can write the general solution of the equation (1.3), for example in
the form

X(x) = C3cos(VAz) + Cysin(v Ax).
Next we apply the Dirichlet conditions (1.4) to solve the boundary value problem
X0)=0=C3=0
k22

Thus the spectrum of the string boundary value problem is

keZ—{0}.

o= {sz’keZ—{o}} (1.5)
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Figure 1.1: Plot of ug(z,0) for k € {1,2,3,4}
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and the corresponding eigenfunctions are
X (z) = Cysin(VAx).

While it is not our goal to find the complete solution, u, we will do it to find out the meaning of
the eigenvalues (1.5).
The separated equation for time is

92T (t)
a1

We already know that A is positive, so we can write the solution in the form

= —AT(t).

T(t) = Ccos(VAt + ¢). (1.6)

The whole solution u(z,t) = X (x)T'(t) is then

up(x,t) = Cssin(y/Apz) cos(vV/ At + @), A€o

where Cs = C - Cy and ¢ depend on the initial conditions. On Figure 1.1 the first four modes
can be seen. From this equation we can see that v/Ax plays the role of the angular frequency of

the movement
vV )\k =W = 27Tf

where f is the frequency. This implies that the frequencies of the modes of vibration of the string
depend proportionally on k, f oc k, k € Z —{0}. The mode with the lowest frequency (k = 1) is
considered as the fundamental. Its frequency is f = 7. All other modes’ frequencies are a whole
number multiples of this fundamental frequency.

1.1.2 Spectrum of air column with two open ends

Next we will look at the instruments where the sound is produced by vibrations of an air
column with both ends open (for example a flute). An air column can be modeled by the
wave equation for the acoustic pressure or for the amplitude as in the string case. For better
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compatibility we consider the wave equation for amplitude. A pressure node is equivalent to
an amplitude antinode and vice versa. Thus the open ends on both sides which mean pressure
nodes imply amplitude antinodes on both sides. We thus get the Neumann boundary conditions
(1.2). So our goal is to solve the following boundary value problem

Q*u(x,t)  Ou(z,t)

ox?2  Ot?
Ju(z,t) B

o |,_o 0 (1.7)
ou(z,t) _0

or |,_;

subject to the initial conditions. Again by assuming u(z,t) = X (x)T(t) and separating time we
obtain the following space problem

0?X (z)
0X (x) _0
or  |,_
0X (x) 0
or |,_;

Analogically as in the string boundary value problem we can show that A is nonnegative.
For A = 0 we have the solution

and considering the Neumann boundary conditions (1.2) we get a constant eigenfunction X (x) =

Cy #0.

For ) strictly positive we have the solution
X (z) = C3cos(VAz) + Cysin(vV )

and applying (1.2) leads to

OX@)| gL =0
Oz =0
0X () k%n?
—_— pr— Z J—
or |, 0= A 72 , k€ {0}

Hence, we can write the spectrum

]{52 2
a—{LZ’keZ} (1.9)

with the corresponding eigenfunctions
X(x) = C3cos(VAz).

As we can see the only difference between this spectrum (1.9) and the previously obtained string
boundary value problem spectrum (1.5) is the eigenvalue 0, which does not play role in the
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Figure 1.2: Plot of ug(z,0) for k € {1,2,3,4}

sound because of its zero energy. So the mode frequencies are again the integer multiples of the
fundamental frequency (k = 1).

The solution of time part of (1.7) is the same as in the string case, (1.6), so we can write the
whole solution as

ug(z,t) = Cs cos(v/ Akx) cos(V Apt + @), A\, €0

where Cs = C - (3. On Figure 1.2 we can see the first four modes omitting the zero mode.

1.1.3 Spectrum of air column with one open end

An air column with both open and closed end is also a usual vibrating object in many
musical instruments (for example a clarinet). We can model this again by the wave equation
for the amplitude but now with the Dirichlet boundary condition on the closed end and the
Neumann boundary condition on the open end. Let us assume that the end at the coordinate
x = 0 is the closed one without loss of generality. Thus our boundary value problem is

OPu(x,t)  Ou(x,t)

0z ot?
u(0,t) =0

ou(x,t) —0
Ox z=L

subject to the initial conditions. Again by separating time we obtain the space problem

2 x
T _ ()
X(0) =0
0X (x) B
o =L =0

with the eigenvalue A which is again nonnegative.
For A = 0 we obtain the solution

X(z) = Chz + Cy
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which considering the boundary conditions leads to zero solution X () = 0 not being considered
as an eigenfunction, thus A = 0 is not an eigenvalue.
For A > 0 the solution can be written in the same form as in the purely Neumann case

X(x) = C3cos(VAz) 4+ Cysin(v )
and the boundary conditions imply

X(0)=0=C35=0

0X k+1)°n?
01 R
or |,_; L
The spectrum is then
k+ 1 27T2
BR{CSICIN

with the eigenfunctions

X(z) = Cysin(VAz).

On the first sight the corresponding frequencies are now not proportional to k, but if we look
more carefully it can be seen that they are integer multiples of a frequency that is half the size
of the frequency in the string case and every odd frequency (even the first one) is missing in the
spectrum. As we will see later this is no problem for the sound. The important thing is that the
spectrum still contains only the integer multiples of some frequency.

The whole solution obtained the same way as before using the time solution (1.6) is then

up(x,t) = Cssin(VAz) cos(v/ Axt + @), M\ € 0

where Cy5 = C' - (4. On figure 1.3 we can see the corresponding first four modes.

1.1.4 Harmonic series

The fact that the previously obtained spectra contain frequencies that are integer multiples
of some fundamental frequency is very important because almost all the sounds we hear and
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which can be considered as tones are produced by what can be modeled as a one-dimensional
vibrating object (string, air column, bar, etc). The fundamental frequency with its integer
multiples sounding above it is then the structure of tones our ear has usually been hearing since
the ancient times. This implies our ear is being used to this structure, this spectrum, and it
sounds nice to it. The frequencies which are included in it generate the so called harmonic series.
This series is definitely the basis of the classical western music.

To show the importance of the harmonic series we will create one. We take 65.4 Hz (note
C2) as the fundamental frequency. The integer multiples of the fundamental are then 130.8 Hz
(note C3), 196.2 Hz (note G3), 261.6 Hz (note C4), 327.0 Hz (note E4), 392.4 Hz (note G4),
457.8 Hz (note Bb4) and so on. The names of the notes are only informative because an exact
pitch associated with a specific note depends on the type of the tuning we choose.

Musical extract 1: Harmonic series. First line denotes the number of the tone, on the second
line there are the names of the notes and the third line has the meaning of the frequency of the

tones

o)

y Il 0 0
b5 o o —©
ANV J S ©

o © =

. O
7 O
r=y

1 2 3 4 ) 6 7 8 9 10
cC2 C3 G3 C4 E4 G4 B C5 D5 E5
65.4 130.8 196.2 261.6 327.0 392.4 457.8 523.2 588.6 654

We can see that the ratio of the frequencies of the first overtone and the fundamental is 2:1.
In musical theory this ratio is called an octave. The ratio of the second and the first overtone is
3:2, called the perfect fifth. The following are 4:3 called the perfect fourth, 5:4 is the major third,
6:5 is the minor third and so on. These are the ratios (called intervals) defined by the harmonic
series which our ear likes because it hears it in every tone. From these we can construct the so
called just intonation, which contains strictly these intervals (ratios of small integers) and hence
it is very consonant. However the music which can be produced in just intonation is very limited
because it is almost impossible to maintain this small integer ratios between all the tones in
every chord or within the succeeding tones. In the past there were many attempts to solve this
problem, for example the Pythagorean tuning which uses only the perfect fifths to get all tones
but leading to the Pythagorean comma which is another problem. The intense development of
the western music in approximately last 500 years forced the formation of the so called equal
temperament. It takes the interval of octave (2:1) and divides it into twelve parts of the same size
equal to /2. This means that no interval except the octave is an exact ratio of small integers.
Hence all of them differ from the corresponding just interval which makes their sound slightly
dissonant. However with equal temperament we can write as rich music as we want. We can
change the keys during one piece (we can imagine this as changing the fundamental frequency
of the harmonic series), we can use complicated chords (some of their notes do not have to be
contained in the appropriate harmonic series) and so on. None of this is easily possible with just
intonation. The classical western music uses, approximately from the times of J. S. Bach, mainly
the equal temperament.
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Although there are differences between intervals in just intonation and equal temperament,
the harmonic series is still the basis of the western music. Not musically trained ear almost
cannot notice that all the intervals (except octave) are dissonant. When performing music only
on the instruments where the tone pitch can be continuously changed (for example violin or
human voice) the performers often tend to play some intervals more just. Of course this is not
possible when playing the instruments with fixed tone pitch (for example piano or organ).

In the next chapter we take a look on the spectrum of the instruments where the vibration
is produced by some two-dimensional source (for example drums).



1.2. SPECTRUM OF 2D DOMAINS 21

1.2 Spectrum of 2D domains

The musical instruments which have the vibrating object that can be modeled as one or more
two-dimensional membranes are called the drums. The vast majority of this membranes has a
round shape, so we will discuss only the spectrum of a circular membrane.

Useful model of vibrations of this membrane is the wave equation in the polar coordinates
with the Dirichlet and cyclic boundary conditions

O*u(r, ot
AU(T, ¢a t) = ug’;2)
U(CL, ¢7 t) =0
u(r, —m,t) = u(r,m,1) (1.10)
ou

(7", -, t) = g;(rv T, t)

subject to the initial conditions where a is the radius of the circle, r € (0,a), ¢ € (—7, ) and

99

o2 Lo 1 o?
or2  ror  r20¢?

is the Laplace operator in the polar coordinates r» and ¢. We have again put the constant ¢ equal
to 1 without loss of generality. Now we will again use the method of the separation of the variables
to separate the space part of the equation. Assuming the solution of type u(r, ¢,t) = A(r, ¢)T(t)
we obtain

PA(r¢)  10A(n¢) 1 9A(r,9)

or? r Or r2  O¢? = A, ¢)
Ala, ) =0
A(r,—m) = A(r,m)
0A 0A
%(Tv —7T) = %(Tv 7T)

where \ is an eigenvalue. Our task is now to calculate all possible A\. By assuming A(r, ¢) =
R(r)®(¢) we can separate the radial and angular part

r2 dQR(r)+ r  dR(r) 1 d*®(¢)

R TR d TN T e de =Y (1.11)
Rla) =0 (1.12)

&(—m) = &(m) (1.13)

261 =5 (1.14)

do> " do
The solution of the angular part without considering the boundary conditions is
O(¢) = C1eV"? 4 Coe™ VY2, (1.15)

assuming v # 0.
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Now we will apply the cyclic boundary conditions. For v < 0 we can rewrite the solution as
®(¢p) = (Cy + Cs) cosh /vg + (Cy — Cy) sinh /v ¢.
From the condition (1.13) and considering the parity of the hyperbolic functions we obtain
—(Cqy — Cy) sinh /v = (Cy — Cy) sinh /v,
This condition can be satisfied only when
sinhv/vr =0V Cy — C; = 0.

The first equation is equal to v = 0, but we are now interested only in v strictly negative. This
implies that Co — C; = 0. From the condition (1.14) and again considering the parity we get

—(C1 + C3) sinh /um = (C1 + Cs) sinh /v

which analogically leads to C1 + Cy = 0. Hence for v strictly negative we get only a trivial
solution for ®.

For v = 0 we have different fundamental system than in the solution (1.15). We can write
the solution for v =0 as

®(¢) = C3 + Cu¢.

The boundary conditions imply Cy = 0, leading to a constant solution.
For v > 0 we can again rewrite solution (1.15) as

D(¢) = i(C1 — C2)sin Vv + (C1 + C2) cos V.

Omitting the trivial solution and considering the parity of the trigonometric functions, the con-
dition (1.13) and (1.14) imply

siny/vm =0
Vim=mm, mEZ

V:m2.

Thus we may take v = m?,m € Zar and the solution of the angular part considering boundary
conditions as

(I)m(gb) = ’L(Cl — 02) sinme + (Cl + CQ) cos mao.

Now we solve the radial part of equation (1.11). First we have to show that X is positive.
Let us denote our membrane by D and its boundary by dD. \ is an eigenvalue of the problem

AA(r, ) = —NA(r, ¢).

Analogically as in the one-dimensional case, we can multiply this equation by the complex
conjugate of A and then integrate it over the whole membrane D

/ AAAdS = —)\/ AAdS. (1.16)
D D
Now we can use the Divergence theorem (|22], Thm. 5.8) for the function AAA

/ (AVA)-ndt = / AANAdS + / IVA%dS
oD D D
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where n is the outward unit normal vector to dS. Here we can substitute the first integral on
the right hand side from the equation (1.16) and use the Dirichlet boundary conditions which

imply
/ (AVA)-ndt =0
oD

because A(r,¢) = 0 on 9D. We obtain an expression for A

/|VA2dS
A= D

/ |A?dS
D

Now we can continue. After substituting for v/~ and rearranging the equation into the form

from which we can see that A > 0.

d’R(r) dR(r)
2
" dr? T dr

+R((\5r)2 - m2> =0

which is possible because A > 0, we obtain the Bessel equation of order m. Its solution with
respect to m can be written as a linear combination of the Bessel functions of order m of the
first and second kind

Rin(1r) = CsJm(VAT) 4+ C Y (VAT).
The Bessel functions can be defined using the power series

° (_1)n T\ 2n+a
Jo@) = 3 iy asla) o o€C

n=0

Jo(x) cosam — J_q(x)
Y, (z) = , —7
(z) sin am acC

Yo(z) = lim Y,(z), n € Z

a—n

where I'(z) is the gamma function defined for z > 0 as

F(x)—/ e T Lat.
0

An important property of the Bessel functions of the second kind is

lim Y, = —00.
J, Vyle) = —oc

For our purposes we need a finite displacement of the membrane

lim R,,(r) # o0

z—0t

which implies that Cgs = 0 and
Rin(r) = CsJm(VAr). (1.17)
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Figure 1.4: Plot of J,,,(x) for m € {0,1,2}

Table 1.1: Table of first j,,, ordered by size

| Jmn
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2.136

2.520

6.380

7.016
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Next we have to apply the Dirichlet boundary conditions (1.12)
R(a) =0 = J,u(VAa) = 0.

The Bessel function of the first kind has infinitely many zeros. The plot of J,, can be seen on
Figure 1.4. We shall denote the nth zero of the Bessel function of the first kind of the order m
as Jmn, Jm(Jmn) = 0. Table 1.2 shows the first jy,, ordered by size.
Thus we can write
\/Xa = Jmn

from which we can finally obtain the spectrum
_ ]mn 2 +
Ao = (—) ,meZf neN. (1.18)
a

The solution of the time part of the equation (1.10)

92T (1)
12

+AT'(t) =0
is the same as in the one-dimensional case

T(t) = C7cos (VAL + ¢).
Thus the whole solution can be written for example in the form

Umn (7, @, 1) = KJm(\/)\mnr)(i(Cl — Cy)sinma¢ + (C1 + C3) cos mgb) cos(\/ Amnt + @) (1.19)

where K = C7-C5. On Figure 1.5, the ten first modes sorted in a non-decreasing order can
be seen. From (1.19) we can see that \/A,, again plays the role of the angular frequency
VAmn =w =21 f.

We have obtained the frequencies of the modes of vibration

s 2ma

These frequencies are definitely not a whole number multiples of the fundamental frequency foi.
Now we would assume a = 0.00585 to attain the same fundamental frequency (65.4 Hz, note C2)
as in the one-dimensional case so we could better compare them. (The radius of the membrane
seems unrealistic because we dismissed the constant ¢ at the beginning). First modes sounding
above the fundamental have frequencies of 104.25 Hz (note G#2), 139.72 Hz (note C#3), 150.18
Hz (note D3), 173.58 Hz (note F3), 190.87 Hz (note G#3) and 206.45 Hz (note Ab3). The names
of the notes are again only informative, the differences between these frequencies and frequencies
obtained using equal temperament for the same notes would be significant.

Musical extract 2: Spectrum of circular membrane
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Figure 1.5: Plot of t,,, (1, ¢,0) for (m,n) € {(0,1),(1,1),(2,1),(0,2),(3,1),(1,2),(4,1),(2,2),(0,3), (5,1)}



1.2. SPECTRUM OF 2D DOMAINS 27

As we can see this series is very different from the previously obtained harmonic series. This
is caused by the two-dimensionality of the membrane and it is the reason for why our ear does
not perceive the sound of a drum as a tone but more as a noise. But there are some drums
which sound musically. First of their sounding overtones are consistent with the harmonic series
thus we can determine the drum’s pitch and classify its sound as a tone. This can be accounted
for other factors from which the most important are the sound radiation and considering the
vibrations of air enclosed in the kettle and above the membrane. We will talk about this in the
next chapter.
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1.3 Sound radiation and air loading

In this section we discuss the phenomena that makes some drums with the kettle sound more
musically. The most important drum with these properties is the timpani. It is being used in
many different types of musical ensembles, for example in the classical symphonic orchestra or
in marching bands.

The first thing we should consider is the place where the membrane is struck because this
significantly affects the decay rate of the modes and thus the sounding spectrum. We shall denote
the individual modes as in the previous section by the two indices m and n, where m € Z[J{ means
the number of the nodal diameters and n € N has the value of the number of the nodal circles.
If one would strike the timpani in the middle, only the modes with m = 0 would participate in
the sound, because all the remaining have a node in the place of the stroke and thus cannot be
excited by this way.

Musical extract 3: Spectrum of membrane when struck in middle
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If we now look at the corresponding tones we can see that for example the interval between the
fundamental and first sounding overtone is approximately 1 : 2.296, something between major
and augmented ninth which is a very dissonant interval. Hence this is not the best way to strike
the timpani. In the book The Theory of Sound [2|, Lord Rayleigh showed that striking the
membrane approximately one quarter of its radius from the edge almost does not excite the first
mode, thus the first sounding mode is the second one in the spectrum (m = 1,n = 1). This
way of striking also causes the modes with n = 1 to be mainly represented in the spectrum
(their amplitudes are the highest). As we will show later, these modes have small decay rates
in contrast with the modes with m = 0 which decay very rapidly and thus their sound can be
considered more as a thump. More importantly the frequencies of the slowly decaying modes
can be shifted to be considered as a part of some harmonic series. Therefore from this point we
would assume the membrane has been struck approximately one quarter of its radius from the
edge.

Now we will look at the sound radiation of the individual modes (see [3]). The mode (m =
0,n = 1) acts as a monopole source which radiates sound very effectively and thus has very high
decay rate and considering the place of hit allows us to omit this mode in the sounding spectrum.
The second mode (m = 1,n = 1) acts as a dipole source which radiates sound less effectively
than the monopole source and so it decays more slowly. The third mode (m = 2,n = 1) acts as
a quadrupole source to which it takes even more time to decay than to the second mode. The
fourth mode can be considered as something between the monopole and dipole source and its
decay time is something between the first and the second mode. However it can be shown that
this mode does not play a big role in the sounding spectrum. As the second and third mode,
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the fifth (m = 3,n = 1), seventh (m = 4,n = 1) and even the tenth mode (m = 5,n = 1),
whose amplitudes can still be considered as enough high, assuming the right stroke, are very
poor sound radiators and they contribute to the sounding spectrum. On the other hand, the
sixth (m = 1,n = 2) and eight mode (m = 2,n = 2) do not participate in the sound when the
timpani is hit correctly, although they decay quite slowly.

Now, considering the initial conditions and the sound radiation we have eliminated the modes
which do not contribute to the musical sound of the drum. Thus we have obtained the following
spectrum

Musical extract 4: Spectrum of membrane considering proper initial conditions and sound
radiation
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We can see that this spectrum is still not a part of the harmonic series for what we want are
only the integer multiples of some frequency and now we have the ratios 1 : 1.35: 1.67 : 1.99 : 2.3.
Further aspect which has not yet been considered is the actual three-dimensionality of the
membrane. A real membrane has to be modeled more like a plate. This means we have to
consider also its bending stiffness and stiffness to shear. These two raise the frequencies of the
overtones. However their effect is not of high importance (see [3]).

More important role plays the so called air loading. On both sides of a real membrane is air,
the inner side is enclosed in the kettle and air in it also vibrates when the drum is struck. Air
on the outer side of the membrane also plays its role. This effect lowers the frequencies of the
low modes and it is the main factor which establishes the harmonicity of the spectrum.

The calculation of the effect of air loading is presented in the paper [1]. They model the
drum as a rigid kettle of a cylindric shape with the length L and radius a, rigid bottom with a
small circular vent hole and the membrane on the top. Moreover they model the vibrations of
the drum using the wave equation not for the amplitude as in the preceding cases but for the
acoustic pressure p

1 9%p(p, d, 2, 1)
C*QAP(/% ¢, 2,t) — oz
where A is the Laplace operator in the cylindrical coordinates

A_lg 2 _|_i672_|_672
“pop\"0p) T 2042 T 922

=0

and c is the speed of the sound in air. To solve this problem they use the method of the Green
functions.

The obtained results can be used to calculate the modes of vibration of an air loaded mem-
brane. It shows that the important modes (those with n = 1) have frequencies in a ratio 1 :
1.51:1.99 : 2.46 : 2.93 for the fundamental frequency 150 Hz, in a ratio 1: 1.5: 1.97 : 2.44 : 2.89
for the frequency 107 Hz or in a ratio 1:1.51: 1.98 : 2.44 : 2.9 for the frequency 145 Hz, where
the fundamental frequency is the frequency of the first sounding mode (m = 1,n = 1) as we have
shown before. In general it can be seen that for fundamental frequencies in a normal playing
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range for timpani (approximately 100 Hz < f < 175 Hz), the modes that participate on the
tone of the drum have frequencies in a ratio approximately 1 : 1.5 : 2 : 2.5 : 3, which is equal
to 2:3:4:5:6 and thus can be considered as a beginning of the harmonic series without
the first frequency. As we will show later the missing fundamental frequency makes no problem
when perceiving the pitch of the sound. If we now take 130.8 Hz as the fundamental frequency
we obtain the following spectrum

Musical extract 5: Spectrum of timpani
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There is a very interesting problem in psychoacoustics called the missing fundamental. It says
that the human ear perceives the pitch of the tones not only by the fundamental frequency but,
when the spectrum consists of the integer multiples of some frequency, then the important role
play the differences between the individual frequencies and it does not matter whether a few of
them are missing. For example a spectrum with the frequencies in aratio 1 :2:3:4:5:6
generates a harmonic series of the first frequency. The differences between the frequencies are
equal to the first frequency. Thus the first frequency is the pitch we perceive. If we now remove
for example the first frequency we obtain a ratio 2 : 3:4:5: 6. As we can see the differences
are still equal to the first frequency. Therefore we again perceive the pitch of the fundamental
even when it is not included the spectrum. We could have also removed for example the fourth
frequency obtaining 1 : 2: 3 : 5: 6. The dominant difference will still be equal to the fundamental
and thus we will perceive the same pitch as before. But the problem is more complicated. Having
1:2:3:4:5:6 and removing all the even frequencies leading to 1 : 3 : 5 also generates a
harmonic series of the fundamental even when the differences are equal to a tone an octave
higher (a tone with a two times higher frequency). Thus the perceived pitch is the same as for
1:2:3:4:5:06, only the timbre is different. It is caused by the relative sizes of amplitudes being
another important factor beside the differences. The amplitude of the fundamental is dominant
and thus the fundamental is perceived as the pitch. This effect can be seen for example in the
wind instruments having only one open end (the Dirichlet boundary conditions on the closed end
and the Neumann boundary conditions on the open end, for example a clarinet) which causes its
spectrum to be equivalent to the spectrum of an instrument twice as long having both ends open
with all the even frequencies missing. This causes that having these two instruments with the
same length, the one with the Neumann boundary conditions on both ends (for example a flute)
would sound an octave higher (frequencies in a ratio 1:2:3:4:5:6...) than the one with the
end with the Dirichlet boundary conditions (frequencies in a ratio 0.5 : 1.5 : 2.5 : 3.5...) because
the sounding spectrum of the wind instrument with both ends open is equal to the spectrum of
the string (the difference in the spectra is the missing zero eigenvalue in the string case which
however does not contribute to the sound, having zero energy) as we said before and because the
corresponding fundamentals (1 and 0.5) are in ratio 2 : 1 which is equal to the interval of octave.
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If we now apply the effect of the missing fundamental to the spectrum of the timpani where
the frequencies are approximately in a ratio 2 : 3 : 4 : 5 : 6, we can see that the differences
are equal to the missing first frequency of this harmonic series. Thus if the amplitudes of the
individual modes would be in the right ratio, then the pitch of the drum could be perceived as
of the fundamental (octave lower than the first sounding mode m = 1,n = 1) even when it is
not contained in the spectrum at all.
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Chapter 2

Dirichlet Laplacian

Our aim in this chapter is to correctly define the Laplace operator with the Dirichlet boundary
conditions on any bounded domain Q in R? using quadratic forms. We will take an advantage
of this approach in the following chapter.

Let © be a domain (an open connected set) in R?. We would like to define an operator A on
L?(9) such that

“AYp =\ in Q
»=0 on 9Q

for all ¢ € Dom(A).

2.1 Preliminaries

In this section we recall some definitions for unbounded operators and unbounded sesquilinear
forms which can be found in the books [10], [11]. Let H be a separable complex Hilbert space
with the inner product denoted by (-, ) and by convention conjugate linear in the first argument
and linear in the second.

Definition 2.1.1 (Densely defined operator). Let A : H O Dom(A) — H. Then A is densely

defined if Dom(A) = H.

Definition 2.1.2 (Symmetric operator). An operator A : H D Dom(A) — H is symmetric if it
is densely defined and (¢, AY) = (Ap, ), Vo, € Dom(A).

Definition 2.1.3 (Adjoint operator). Let A :H D Dom(A) — H. We say that A* is adjoint to
A if the following two conditions are satisfied

Dom(A*) :={¢ € H :3In € H,Vy € Dom(A), (¢, AY) = (n,¥)}
A% =n.

Definition 2.1.4 (Self-adjoint operator). Let A : H D Dom(A) — H. Then A is self-adjoint if
A is symmetric and Dom(A) = Dom(A*)

Definition 2.1.5 (Bounded below operator). Operator A : H O Dom(A) — H is bounded below
if 3c € R, Vb € Dom(A), (v, Ap) > c||v||?, where || - || is the norm on H induced by the inner
product.

33
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Definition 2.1.6 (Compact operator). Let A be an operator defined on the whole Hilbert space
H. Then A is compact if it maps all bounded subsets in H to a precompact subset (a subset with
compact closure).

Now we can proceed to the quadratic forms.

Definition 2.1.7 (Sesquilinear form). A map a : Dom(a) x Dom(a) — C such that

W — a(p, ) is linear
d — a(p, ) is conjugate linear

a(¢,v) = a(y,¢) Ve, € Dom(a)
a(g,) >0 V¢ € Dom(a)

is called a sesquilinear form. We say that a is densely defined if Dom(a) is dense in H.
From now on we would assume that all sesquilinear forms in this text are densely defined.

Definition 2.1.8 (Quadratic form). Let a’ be a sesquilinear form. Then a : Dom(a’) — C
defined by aly)] := a' (¥, ) is called a quadratic form and Dom(a) = Dom(a’).

Using the polarization identities (see [11], Section 1.2) we can see that also every quadratic
form a]¢] determines the sesquilinear form a(¢,) uniquely, hence we can interchange between
them.

Definition 2.1.9 (Bounded below quadratic form). A gquadratic form a : Dom(a) — C is
bounded below if 3c € R, V¢ € Dom(a), a[t] > c|j1|?.

Definition 2.1.10 (Closable quadratic form). A quadratic form a : Dom(a) — C is closable if
V{¢n} C Dom(a) :

m— 00

( lim ¢, =0A lim alt, — ¥n] = 0) = lim afy),] = 0.
n—oo n—oo n—oo

Definition 2.1.11 (Closed quadratic form). A quadratic form a : Dom(a) — C is closed if
V{1, } C Dom(a), ¥ € H :

<nh_{go U =P A nILIgO aftpn — Ym] = 0) = (1[) € Dom(a) A nlim afth, — Y] = 0) .

—00
m—ro0

Definition 2.1.12 (Closure of form). Let a : Dom(a) — C be a closable quadratic form. Then
its closure @ is defined as

Dom(a) := {¢ eH: I} C Dom(a),nli_{glo Yp =9 A lim a[thn, — Vm] = 0}

m— 00

a(, ) = lim a(g,v).

2.2 Definition of the Dirichlet Laplacian

First we introduce a one-by-one correspondence between below bounded self-adjoint operators
and below bounded closed quadratic forms:
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2.2.1 From operator to form

Let A be a below bounded self-adjoint operator. Then the quadratic form a associated with
this operator using

afy] := (¢, A)
Dom(a) = Dom(A)
is below bounded and closable (see [16], Thm. VI.1.27). Thus its closure satisfies the desired
properties.
2.2.2 From form to operator

To get the below bounded self-adjoint operator we use the following important theorem.

Theorem 2.2.1 (Representation theorem, see [16], Thm. V1.2.2). Let a be below bounded closed
form. Then the operator defined as

Dom(A) := {¢ € Dom(a) : In € H,Y¢p € Dom(a), a(¢,v) = (¢,n)}
A =1

1s self-adjoint and below bounded.

2.2.3 Friedrichs extension
Using this correspondence we can now define the self-adjoint Dirichlet Laplacian using the

quadratic forms.

Step 1 Let Q be an arbitrary domain in R%. We can start with the operator

Hip = — Ay 21)
Dom(H) := C°(Q) '

where C§° is space of smooth functions with compact support and thus
H() =0 on dQ.

This operator is certainly densely defined, because C§°(2) = L?(9) (see [14], Thm. 2.1.8). The
space C3° was also chosen because we wanted to avoid assumptions on the regularity of 0€2.
At the same time we see that

(, E) = — /Q DAY = /Q VP - /a FVe = Ve (2.2)

where the first equality is the definition of the inner product on L?(Q) space, the second equality
is obtained using the Green identity (see |15], 8.4.1) and the third equality results from the
Dirichlet boundary conditions. From this we can see that (LZJ,H 1) is greater or equal 0 which
implies H is symmetric and below bounded. Unfortunately this operator is not self-adjoint.
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Remark 2.2.2 (Notation). In (2.2) in the third integral

[ vt

the absolute-value sign |-| actually stands for the norm on R% which is always positive and thus we
omitted writing the absolute value which is needed in the definition of L?()) norm. The correct
notation would be then

(0, Fp) = — /Q DAY = /Q V)2, - /a RIS /Q 19 ¢llgs 12 = |19 %lge 1220

which is certainly much less well-arranged and this is the reason why we rather use the shorter
notation

(W, HY) = | 1Vl 172 () = IV

where the last norm stands obviously for the norm on the space L?(12).

Step 2 As a next step we can assign operator (2.1) to a quadratic form using the inner product
and equality (2.2)

hlY] = (v, Hy) = |[V|?

Dom(h) := Dom(H) = C§°(2).

From the definition we can see that this assignment is uniquely defined, below bounded and
using [16], Thm. VI.1.27 we know that the form h is closable.

Step 3 The closability of h allows us to define a new form h as its closure
hi=h
implying
hly] = [[Vy|?
where now V denotes the weak gradient and the domain of & is

Dom(h) :WHHH

with the norm
17 o= IVol* + 9]

The space C§°(2) " usually denoted as Wol’z(Q) is the Sobolev space (see [10], Sec. 6.1). Hence

hly] = IV

Dom(h) = W,2(). (23)
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Step 4 The form (2.3) is by the definition below bounded and closed. Thus Theorem 2.2.1
states that there exists a below bounded self-adjoint operator associated with this form denoted
by H

Dom(H) = {v € Wy™*(Q) : 3 € L*(Q),¥6 € Wy (), (Ve, Vo) = (¢,0)}
Hip=mn
where again V stands for the weak derivative. This operator is called the Friedrichs extension of

H. Notice that (Vé, Vep) = (¢,1) with ¢ € C° is the definition of the weak Laplacian. Hence
finally we are able to define the self-adjoint Dirichlet Laplacian

A% =H
Dom(—A%) = {¢ € W, ?(Q) : Ay € L(Q)} (2.4)
—ARp = —Adp.

2.3 Spectrum of the Dirichlet Laplacian

In this section we define an alternative classification of the spectrum o of the self-adjoint
operator to the usual one (point, continuous and residual spectrum) and state the theorems
which will be needed later.

Definition 2.3.1 (Discrete spectrum). Let H be a self-adjoint operator. We define the discrete
spectrum og;sc of H as

odisc(H) == {X € 0p(H) : X is isolated N m(\) < oo}
where oy, is the point spectrum and m(X) is the multiplicity of X as an eigenvalue.

Definition 2.3.2 (Essential spectrum). Let H be a self-adjoint operator. Then the essential
spectrum oess of H can be defined as

Oess(H) 1= 0(H) \ 0gisc(H).

Remark 2.3.3. A spectrum o(H) of a self-adjoint operator H can be expressed as a disjoint
union of the discrete and essential spectrum

G(H> = Udisc<H) ) Uess(H)-

Theorem 2.3.4 (Min-max principle, see [10], Sec. 4.5). Let H be a self-adjoint, below bounded
operator on Hilbert space H and h the quadratic form associated with this operator using Theorem

2.2.1. We define {\,}22 as

o (Y, Hy) . hly]
Ap = inf Sup 5 = inf sup o
£ CDom(H) pern  [|Y] £"CDom(H) yeLn |||
dim L"=n dim L"=n
where || - || denotes the norm on L*(H). Then

Aoo := lim A\, = inf oes5(H)

n—oo
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and
{Antnz1 N (=00, Aso) = 0dise(H) N (=00, Axo)

with each A\, € (—00,Ax) being an eigenvalue of H repeated a number of times equal to its
multiplicity.

Remark 2.3.5. \; defined in the min-maz principle are ordered, i.e.:
A< A< < .

Recall the Dirichlet Laplacian (2.4) —A$% on some domain Q defined in the preceding chapter.
We would like to prove that if the domain 2 is bounded, the spectrum of the Dirichlet Laplacian
is only composed of the discrete part. First some definitions and theorems.

Theorem 2.3.6 (Monotonicity of Dirichlet eigenvalues, see [10], Thm. 6.2.3). Let —A%l, —A%Q
be the Dirichlet Laplacians on Q1,Qs. Then Vn € N :

Q1 C Qo = M (AP > M\ (—A%).

Definition 2.3.7 (Compact resolvent). Let H be a closed operator on Hilbert space H. We say
that H has a compact resolvent if

3z € p(H), (H—-z2)"':H = H is compact

where p(H) is the resolvent set, i.e., the complement of o(H). From [12], Thm. XIII.64 we know
that if there exists such z then the resolvent operator is compact for all points in the resolvent
set.

Theorem 2.3.8 (see [13|, Thm. I1X.2.3). Let H be a self-adjoint operator with a compact resol-
vent then
o(H) = 0disc(H).

Theorem 2.3.9 (General criteria for compact resolvent, see [12|, Thm. XII1.64). Let H be a
self-adjoint, below-bounded operator on Hilbert space H and h the quadratic form associated with
this operator using Theorem 2.2.1. Then the following four statements are equivalent

H has a compact resolvent

Dom(H) — H is compact

Dom(h) < H is compact
lim A\, (H) = co.

n—o0

Remark 2.3.10. Considering the Dirichlet Laplacian (2.4) Theorems 2.3.8, 2.5.9 imply that
o(—AL) = 04ise(—AY) & W01’2(Q) — L*(Q) is compact.

Remark 2.3.11 (Dirichlet spectrum of parallelepiped, see [10], Lemma 6.2.1). Let a > 0 and
Q(a) be the d-dimensional parallelepiped of side 2a, i.e. Q(a) = (—a,a) x (—a,a) X -+ X (—a,a).
Then using the Friedrichs extension we see that the Dirichlet Laplacian on Q(a) is a self-adjoint

operator —Ag(a) : Dom (—A%(a)> — L%(Q(a)) and its discrete spectrum can be expressed as

2 2 2
o (2280) = () () (e
9d ( D 2a + 2a + + 2a R na € N



2.3. SPECTRUM OF THE DIRICHLET LAPLACIAN 39

with the corresponding eigenfunctions
D D, D D
wnl,...,nd = ¢n1¢n2 .- 'wnd

where 1#72, i€ {l,...,d}, is the eigenfunction of one-dimensional parallelepiped, i.e. the interval
(—CL, a) :
1 i .7
D(x) _ \/;cos (%m) n; 4s odd
\/gsin (%l’) n; 1s even

The functions 1#51 77777 ny Jorm a complete system. It can be seen that

2 2 2
e (087) =t ((50) +(50) o (50)) =

which by Theorem 2.3.9 implies that Dom (—Ag(a)) — L%(Q(a)) is compact and —Ag(a) has
a compact resolvent. Using the second fact together with Theorem 2.3.8 we can see that the
spectrum of the operator —Ag(a) 15 composed only of its discrete part

o (~A2) = oy (~22).

Next using the preceding theorems we obtain the following statement.

Theorem 2.3.12. Let Q be a bounded domain in R? and —A$} the Dirichlet Laplacian on L*(£2).
Then

o (—A%) = Oisc (—A%) .

Proof. Let Q be a bounded domain in R?. Then there exists a constant a > 0 that Q C Q(a).

Let —A$, respectively — Ag(a) be the Dirichlet Laplacian on €2, respectively Q(a). Using the
monotonicity theorem 2.3.6 we can see that

A (—A8) > A, (-4,
From Remark 2.3.11 it can be seen that

lim A, <—Ag(a)) =0
n—oo
which implies that also

lim A, (—A%) = 00.

n—o0

Involving Theorem 2.3.9 we have that —Ag(a) has a compact resolvent and finally Theorem 2.3.8
states that

o (—A%) = Odisc (—A%)
which proves our statement. O
And finally we can conclude with the variational formulation for the first eigenvalue of the

Dirichlet Laplacian which will be further very useful in the formation of the first eigenvalue’s
upper bounds.
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Remark 2.3.13 (Variational formulation for the first eigenvalue). Let —A$ be the Dirichlet
Laplacian on some bounded domain Q in R® and let h be the quadratic form associated with this
operator using Theorem 2.2.1, i.e., h[y)] = | V¥||?>. Now using the min-maz principle 2.3.4, the
following inequality holds

2
M(—AY) =info(H) = inf ”W!
vewl2) 1Yl

where || - || stands for the norm on L?*(Q)). From Theorem 2.8.12 we have that the spectrum
1s purely discrete. Hence Ay is the first eigenvalue and the equality must be obtained for some
function

IVy?
AM(—=A$) = . (2.5)
DI pewt2 o) 1912
Substituting the first eigenfunction denoted by 11 and using (2.2) we obtain
2 —AQ by —AQ
M(-AD) < IVeull® (W, =A%¢1) _ W1, \M(=Ap)Yr) M(—AD). (2.6)

|91 |2 (Y1,91) (Y1,11)

Thus the equality sign in (2.5) is obtained if 1) is chosen as the first eigenfunction. On the other
hand, if we substitute into (2.5) some function * # 11 not being the first eigenfunction, it can
be seen from (2.6) that we never obtain equality.

Hence we can conclude with

2
M(=A%) = min HV¢!
pewl2@) ¥l

where the equality sign is obtained if, and only if, 1 is chosen as the first eigenfunction.

Remark 2.3.14 (Dirichlet-Neumann Laplacian). For some proofs of the bounds for hollow do-
mains (specifically the bound of Theorem 3.5.1) we will also need to correctly define the self-adjoint
Dirichlet-Neumann Laplacian Apn such as for a bounded domain Q in R® with boundary 09 of
class C? and with outer boundary denoted by 0Qg we have

— A% vu = M in Q

u=0 on 9
ou
6—n:0 on 002\ 09

for u € Dom(—A$ ).

Since this operator does not form a fundamental part of the thesis, we only mention how it
is defined (and how its associated quadratic form looks) and not the procedure of its definition
which is quite similar to the definition of the Dirichlet Laplacian shown above.

ou

Dom(—A$y) =<ue WH(Q) : Au e L*(Q) A —
on IO\

=0Auly, = 0}
~ARyu=—Au
where W12(Q) is the Sobolev space (see [10], Section 6.1) defined as
Wh2(Q) = {4 € L*(Q) : Vy € L*(Q)}.
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The associated quadratic form can be written as follows

QBN = VY|
Dom(Q%y) = {u e wh3(Q) : u‘ago = O}

where V stands for the weak gradient.

41
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Chapter 3

Bounds

This is the main chapter of the thesis where we introduce various upper bounds for the first
eigenvalue of Dirichlet Laplacian on bounded domains in arbitrary dimension. Henceforth let Q
be the bounded domain in R, —A% be a Dirichlet Laplacian on L?(Q) defined in the previous
chapter and A1 (Q) := A\;(—A$) its first eigenvalue.

Nevertheless we will start with one lower bound.

3.1 Faber-Krahn inequality

The Faber-Krahn or Rayleigh-Faber-Krahn inequality first conjectured by Lord Rayleigh in
his 1877 book [2| and proved independently by Faber and Krahn is a lower bound for the first
eigenvalue of (2. It states that the first eigenvalue of 2 is equal to greater than the first eigenvalue
of the ball with the same volume and the equality is obtained if, and only if, €2 is a ball.

Remark 3.1.1. Let R > 0. Since from Remark 3.3.21 below we know that

1
AM(Bgr) = ﬁ/\l(Bl)
where B, is a ball of the radius a and using the well-known relation between the volume of Bgr
and B

|Br| = RY|By| (3.1)
where |- | denotes the d-dimensional Lebesgue measure, we can express \1(Bgr) using A\1(B1) and
using volumes of By and Q) by

1(BRr) = pzMi(B1) (|BR|>

and finally choosing the radius R by the property |Br| = || we obtain

Using this remark we can finally state the theorem.

Theorem 3.1.2. Let Q be a bounded domain in R%. Then the following lower bound holds

2/d
A(Q) > M (B) <"BQI‘|> :
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Q

Figure 3.1: Inradius pgn of domain €2

3.2 Trivial upper bound

Before we proceed to the bounds using shrinking or parallel coordinates we state the trivial
upper bound which follows immediately from the monotonicity of the Dirichlet eigenvalues.

Let © be the bounded domain in R? with inradius pq (the inradius has the meaning of the
radius of the biggest inscribed ball in the domain, see Figure 3.1). Then there exists a ball B,
with radius pqo such that

B,, C .

Now recall the theorem 2.3.6. It states that the following implication holds for the first Dirichlet
eigenvalue

BPQ CcQ=> )\1(9) < )\I(Bpg)
Since the formulas for A\i(B,,,) are explicitly known we can state the theorem.

Theorem 3.2.1 (Trivial upper bound). Let Q be a bounded domain in R with inradius pq.
Then the following upper bound holds

AL(2) < M(Bpg)-

3.3 Poélya and Szego’s bound in arbitrary dimension

In this section we state the generalization to an arbitrary dimension of the sharp planar upper
bound by Pélya and Szegd which appeared in their 1951 book [4]. This result was published in

-----

use of the shrinking coordinates (see Figure 3.3). Before presenting the statement we have to
introduce some notation and definitions involving the geometry of the domain.

Definition 3.3.1 (Lipschitz continuous, see 6], Def. 2.2.7). A map f: X — Y, where (X, px)
and (Y, py) are metric spaces, is called Lipschitz continuous if, and only if, there exists a finite
positive number M such that

pY(f(a)af(b)) SMPX(GJ))? Va,b e X.
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Figure 3.2: Geometrical interpretation of support function he(x)

Definition 3.3.2 (Locally Lipschitz continuous, see [6], Def. 2.2.7). A map f: X — Y, where
(X, px) and (Y, py) are metric spaces, is locally Lipschitz continuous if, and only if, for every
x € X there ezists a neighborhood U, x € U® such that f|y is Lipschitz continuous.

Definition 3.3.3 (Star-shaped domain). A domain Q is said to be star-shaped with respect to
a point £ € Q if for each point x € O the segment joining & with x lies in Q v {z} and is
transversal to OS) at the point x.

Theorem 3.3.4 (Rademacher, see [6], Thm. 3.1.6). Let ¢ : U = U° C R¥™! — R? be Lipschitz
continuous, then ¢ is differentiable almost everywhere in U.

From Rademacher theorem we can see that the outward unit normal vector field n : 9Q — R?
is uniquely defined almost everywhere on 0f).

Definition 3.3.5 (Support function). Let  be a star-shaped domain with respect to & and 0S)
its locally Lipschitz boundary. At the points x € 0 for which the outward unit normal vector
field n(x) is uniquely defined a support function can be introduced

he(x) := (z — &) - n(z)
with - denoting the standard inner product in R<.

Remark 3.3.6. The support function he(x) = (x — &) - n(x) can be interpreted as a scalar
projection of x — & in the direction of unit normal vector field n(x) or as the distance from & to
the tangent space T,(0N), see Figure 3.2.
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Definition 3.3.7 (Strictly star-shaped domain). The domain  is strictly star-shaped with re-
spect to the point £ € Q if Q is star-shaped with respect to € and the support function is uniformly
positive, 1.e.,

inf h 0.
e het) >

Let us denote the set of points with respect to which Q s strictly star-shaped as w.

Definition 3.3.8 (Intrinsic quantity F'). Let £ be the domain with locally Lipschitz boundary
00, w be the set with respect to which Q) is strictly star-shaped and h¢ the corresponding support
function of the domain. Then the intrinsic quantity F' of the domain can be defined as

F(Q) = gilelfj ” het

Now we are ready to state the theorem.

Theorem 3.3.9 (PS bound in arbitrary dimension). Let  be a bounded strictly star-shaped
domain in R with locally Lipschitz boundary 0. Then
F(Q)

M (@) < M(B)gar (3.2)

where A1 (B1) denotes the first eigenvalue of the d-dimensional ball of unit radius and || denotes
the d-dimensional Lebesque measure of §2.

Remark 3.3.10 (Dimension 1). Let us assume d = 1. Then Q reduces to some bounded interval
(a,b), a < b, a > —00, b < oo and | =b—a. From (4.1) below we know the explicit formula
for F(Q) for the parallelepiped of the side 21, implying

Q- 4 4

F(Q)_ﬁ_(b_a)(b—aﬂ T b—a

Since from 2.3.11 we have the spectrum of parallelepipeds explicitly we can write

M) € N (B) G

w2 2

b—af = (b—a?

which proves the bound in one dimension. Moreover the equality is obviously obtained for all
intervals, making this bound sharp for all suitable domains in one dimension.

The previous remark proves Theorem 3.3.9 in one dimension, henceforth let us assume d > 2.
The proof is based on the use of the shrinking coordinates (see Figure 3.3).

3.3.1 Shrinking coordinates

From this time forth, let Q be a bounded strictly star-shaped domain in R? with locally
Lipschitz boundary 0€2. The hypersurface 09 is locally C%!-diffeomorphic to R4~1, i.e., for each
point 2 € 92 there exists an open subset of R whose intersection with the boundary 0 denoted
by V c 09 is C%'-diffeomorphic to an open subset U € R*! by a chart T : U — V.
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4 )

(7 )
:

Figure 3.3: Shrinking coordinates

N

From Rademacher theorem 3.3.4 it can be seen that I' is differentiable almost everywhere in
U. Hence I' induces the metric tensor g of 92 by (see [7], Sec. 1.1.3)

g = (0,0 - (@,T)  pmrvel{l,....d—1}.

Now, let  be strictly star-shaped with respect to £ € w. We can parameterize Q2 \ {{} by the
natural mapping

L£:00x(0,1) = Q\{&} - {(x, 1) = £+ (& = Ot} (3:3)
or locally by £ = Lo (I'® 1) with 1 being the identity function on (0,1)

LR X (0,1) = Q\{&} : {(u,1) = €+ (T(w) — )t}

where u = (u!,...,u?1) are the local coordinates on U, u* = (I'"')*(x). The coordinates u and

t are also called “shrinking” which is motivated by their behavior. All the “shrunk” boundary
L(02 x {t}) is contained in €2 for ¢ € (0,1). See Figure 3.3.
As a next step we need to compute the determinant of the Jacobi matrix J of this transfor-
mation
(OirHt ... (9 THt TH-¢!
Jen=1| z | (3.4)
(0Tt ... (0gT9)t T4 —¢d

For this we will need to use the exterior product, homogeneity of the determinant in each row,
a vector algebra identity and the fact that the transposition of a matrix does not change its
determinant.

Remark 3.3.11 (Exterior product). Let x1,29,...,24_1 € R?, then their esterior product de-
noted by x1 Axa A--- ANxq_1 can expressed in coordinales as

TINTo N NTg_1 = 1' 5 d.
xdil rfdil e xd*l
el €2 . €d

where (e1,e€s,...,eq) is the standard basis in RY,
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Remark 3.3.12 (Identity). Let x1,x2,...,24-1 € R and x € RY. Then

1 2 d
- U
=(r1ANxo N~ NTg_1)- .
22 x
d—1 Ta—1 -+ Ta
22 2

Proof of the remark. Let x1,2o,...,24-1 € R? and € R?. Starting from the right side
and expressing the obtained determinant as a linear combination of the elements of the last row
using the expansion formula by cofactors (see [9], Thm. 3.8) we get

1 2
Ly L1 Ty
(T ANz2 A~ ANxgq) T=] ° 2: d: -z
Lg_1 Tg— L1
(5] €2 €d
1 2 d—1
x7 x§ X x] ... xf
= [(-D)"er]| : D+ +ea| : IR
2 d 1 2 d—1
(L‘d_l P LL’d_l .’Ed_l :Ed—]. . e :Ud_l
2 ... 2 z 3. a:cll_l
(1) gy e 1 : :
2 d 1 2 d—1
T . TG4 Ty, THy ... Ty
1 2 d
x] x] x{
- e SUQ e
d—1 Tq—1 d—1
X .’132 .’L‘d

Thus the determinant can be expressed as
det J(-,t) = (T A ... ANDg_iT) - (D — &) 9L,
Finally for the last adjustment of this formula we will have to use the following.

Remark 3.3.13. Let g be the metric tensor on Q) induced by the local diffeomorphisms I'. Then
(01T A ... AN Dg_1T) is perpendicular to 02 and its magnitude is equal to v/det g.

Proof of the remark. Since the perpendicularity to 92 means the perpendicularity to the
tangent space in every point which is formed by the tangent vectors oI, ..., 0411 in the cor-
responding points, we can prove it by computing the inner product of (1T A... A 9dy_1T") and
an arbitrary tangent vector

alFl 81F2 cee 81Fd
OTA...NOyT)-0,0 =| ° : S
(6 L) O Oy Tt 9y aT2 ... 9y T
12 O A

where p € {1,...,d — 1}, the first equality follows from the identity 3.3.12 and the second from
the fact that the determinant of linearly dependent vectors is zero (see [9], Thm 3.1).
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For the second part of the proof let us compute the Jacobi matrix of the map I'

F520 ALEI Y AU IS
JU = : : :
onrd 9ot .. 9y I
Since
d d
g = (01) - (8, T) = Z aurkavrk = Z(JF),:CM{W
k=1 k=1

the matrix g can be written as g = JTT . JT and thus
rT T
detg =det(J" "~ -J").

At the same time we denote

81F1 (91F2 .. 81Pd
n = (81FA...A8d_1F):
Og_1TY 04412 ... g
€1 (D) ce €4

and from |20] we know that
|det(OiT, ..., 0417, )| = |A|?

where 01T, ..., 041", n form the columns of the matrix from which we compute the determinant.
We can further adjust this formula using the fact that the determinant is invariant with respect
to the transposition of the matrix

ot nr2 ... oy ot 1) A URS PSR nl
|ﬁ|4 _ : : : ) : : : )
6d_1F1 8d_1F2 ce 8d_1Fd 81Pd_1 agrd_l e 8d,1Pd_1 pd-1
nl n2 . nd ord gt .. 9y ¢ pd

which can be rewritten using the block formalism as

A" =

T
AR

. 0
n

and using the fact proved before that all tangent vectors are perpendicular ton = (01T A ... A 9g_1T)

we see
Jrr J g o

- T
o TP = a2 det(J" - J)

.‘JP ﬁ‘:

n

which implies
1722 = det(JT - JT) = det g

and

’(81F VAN 8d,1F)] = /det g.
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Remark 3.3.14 ([9], Sec 1.11). Let a,b € R then their inner product can be computed as
a-b=llall [|b]| cos 6

where 6 is the angle between a and b and ||a|| cos 8 is the scalar projection of a in the direction

of b.

Applying these two facts we can conclude with the local formula for the absolute value of the

Jacobian
|det J(u,t)| = v/det g(u) he(T(u)) t"

for every t € (0,1) and almost every u € U.
Now by the assumption that €2 is strictly star-shaped with respect to &, i.e., essinf,ecpq he(x) > 0,
we can see that
| det J(u,t)| #0 (3.5)

for every ¢ € (0,1) and almost every v € U and thus involving the inverse function theorem
L:00x(0,1) - Q\ {¢} is a diffeomorphism.

Theorem 3.3.15 (Inverse function theorem, see [8], Thm. 12.4). Let p € U = U° C R? and
f:RY = RE feCl. Ifdet Jf(p) # 0, where Jf is the Jacobi matriz of f, then there ewists
V =V°CR? f(p) €V such that f~1 : V — U eaists and f~' € C.

Now we can proceed to the proof of the bound.

3.3.2 Proof of the bound
First we identify Q \ {¢} with a Riemannian manifold

= (02 % (0,1),G)
where G is the metric tensor induced by £ or locally by £. The coefficients of G are locally
G = (0,L) - (0,£)

which can be further adjusted using the definition of the inner product in R? and the Jacobi
matrix J, noticing that, by the definition of the Jacobi matrix, (0,£) is the uth column of J

d
G = (O, => (0,£5)(0,8%) = ZJ;WJ;W = Z LTy
k=1

therefore G = JT - J and

g11 t* e Grd—1 t? (I'=¢&)- (o)t
G- 1) = : : : . 3.6
G:2) ga—11 12 o Ja—1d—1 t* (I'=&) - (9a—1T)t (36)
=& (D)t ... (T =& (0411t |F—§\2

Remark 3.3.16 (Determinant of G). From the formula G = JT - J we can see that the deter-
minant of G is

det G = (det J)2.
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Indeed the manifold M is Riemannian, i.e., the quadratic form x#G " is positive definite
and thus it forms an inner product. The fact that #G 2" is positive semidefinite can be seen
from

ahG et = t2aigad + |0 — €2 (22 +2(0 — &) - (9;T) t a2’

= ((r — &) 2+t (9T) a:j)z >0

where 4,5 € {1,...,d — 1}. Notice that from Remark 3.3.16 and (3.5) we have that det G # 0.
Finally recall that for positive semidefinite quadratic forms we have that the quadratic form is
positive definite if, and only if, the matrix of the form is regular.

Remark 3.3.17 (Volume element of Riemannian manifold M, see [7], Sec. 1.1.1). Let M be an
n-dimensional Riemannian manifold with the metric tensor G and (dx1,...,dx,) be an oriented
basis of its cotangent space in the point x, then the volume element of M s

dvol = /| det G| dzq A - - Aday,.

Using Remarks 3.3.16 and 3.3.17 we can express the volume element of our manifold as

dvol(u, t) = v/det g(u) he(T'(u)) dut?~! dt

or

dvol(z,t) = he(z) do(x) t* 1 dt (3.7)

where do is the measure on 052, du is the measure on U and dt is the measure on (0,1). We will
use the second formula later.

The last step before we proceed to the upper bound for the first eigenvalue is to compute
the norm of the gradient in M of some radially symmetric test function. Hence let us take an
arbitrary function 7 = 7(t) of the form

i=1p®l (3.8)

where 1) is any differentiable function on (0, 1) and 1 denotes a function constantly equal to 1 on
09). For the computation of the norm of the gradient the matrix inverse to G would be needed.
We denote the elements of the inverse matrix by upper indices. As we will see later only the
element G would be necessary. This element can be easily obtained using the adjugate matrix.

Remark 3.3.18 (Element of inverse matrix using adjugate matrix, see [9]). Element G* of
malriz inverse to G can be compuled as

1

Kl _
G = det G

A
where the matriz A with coefficients

Ay = (-1)F By,

1s the adjugate matriz of G and the element By s the determinant of G without kth row and lth
columm.
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Now we can try to compute element G, From the preceding remark we can see that locally

1
dd _
G(%w_daam@B“Wﬁ
1 git? ... gla t?
— . . (u)
det g(u) h2(T'(u)) t2d-2 :
¢ Ga—11t> ... Ga—ra—1 t?
1 9?1 glch ()
= u
det g(u) hE(T(w))
9d—11 -+ Yd—1d—1
B det g;;(u)
~ det g(u) h2(T(w))
= he*(T(w)).

At last we can proceed to the norm of the gradient.

Remark 3.3.19 (Norm of gradient in Riemannian manifold M). In the Riemannian manifold
M with the metric tensor G the norm of the gradient of the function F : M — R is equal to

|VeF|& = 0, F G*O,F
where || - ||g is the norm in the manifold M.

Proof of the remark. Let x' be the Cartesian coordinates in R¢, more specifically in €,

' = £(q',...,q%), where ¢* are the coordinates in M, ¢" := (£~ (z!, ..., z%). First we
express the norm of the gradient of the function f = F o £ in the coordinates z' as
of ;0
v =25 08
ox*  OxJ

where 6 is the Kronecker delta. By the change of the coordinates we obtain

8f5ijﬁ _O(fof) 8q“5ij8q”8(fo£) _ OF 0q" 0q” OF

ort Qxd  Ogt Oxt OxJ  Og¥ Ogt Ozt Ozt Og”
and using the definition of G which implies

dq¢" 0q”
oxt drt

%

we conclude with oF oF
VoF |4 = —Gaw —.
IVaFI = 5m G o

Thus substituting the function 7 into this formula we obtain

Va1 @ ¥)|E = 0,(1®¢)G* 9,(1 @ )
=041 ®¥)G™ 041 @ )
— hﬁ—Q‘wIIQ
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because due to the constant function 1 all other terms are equal to zero. Hence

IVe(1®¥)lla = hg'[¢')- (3.9)

With the last result we already have all the geometric preliminaries to embark on the spectral
problem.

Recall that the Dirichlet Laplacian (2.4) correctly defined in the previous chapter is uniquely
associated with the quadratic form (2.3)

hpl] = V]
Dom(h) = Wy ()

where || - || denotes the L?(2) norm and the Sobolev space Wol’2(Q) is the completion of C§°(Q2)
with respect to the norm
IV 12 - 1),

At the same time using the geometric preliminaries the Hilbert space L2(f2) can be identified
with L2(M) := L%(02 x (0,1), dvol) using a transformation

U:L*(Q) — L*(M) : {f — fog}
and thus the Dirichlet Laplacian is unitarily equivalent to the operator
H:=U(-A%) UL
The quadratic form (2.3) associated with this operator can be expressed using 3.3.19 as
Wl =) = [ VGl dvol = [ Vawle I

0% (0,1)
Dom(h) := UD(h$) = Wy (M)

where the [ - [ z2(3s) denotes the norm on the space L?(M)
1/2
[Wlizan = | [ 10(E0P he(w) 7 dato) de (3.10)
99 (0,1)
and

W, (M) = C5° (09 x (0, 1))\/HVGIZ)”QLQ(]\4)+||¢||2LQ(]\/1).

Employing the identification of the two L? spaces into the variational formulation for the
first eigenvalue 2.3.13, we obtain

11V bl e
o

1 =~ ’ /(/}GWOLQ(M)

Now let us take some radially symmetric function 1 = n(t) of the form

n(t) =(t) @1
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where 1) € WOI’2((O, 1),t4=1dt) and 1 denotes a function constantly equal to 1 on 9. Recall the
requirements for the radially symmetric function 7 introduced before (see (3.8)). The function
1 definitely satisfies these requirements and thus we can compute the norm of its gradient using
formula (3.9). Substituting 7 into (3.10) we can use the Fubini’s theorem obtaining

1
Inllzan) = / he(w) do(x) /0 () 4 dt

o0

and analogically the term || Vg nlla ||L2(M can be expressed as

1
Ve nlle 12 :/hg_l(w) da(w)/o [0/ ()7 £ at.

oN

1
heH(z) do(z) [ [/ 47" dt
M (Q) < /89 : /0 (3.11)

1 |
2 ,d—1
/mhg(mda(x) / (o) 14 dt

Let us define a functional ¢ = p(£2;1,&) as the right hand side of this inequality

1
/ hsl(:p)do(x)/ [/ () L dt
2 d—1 '
/mhg( ) do(z /|¢ )2 14t dt

From Remark 2.3.13 we know that the equality is obtained if, and only if, n = ¥ ® 1 is
chosen as the first eigenfunction. Our aim is to obtain a sharp bound for the first eigenvalue,
thus we would like to find some geometric object for which the equality is attained, i.e. its first
eigenfunction minimizes the functional ¢ with respect to ¥. Let us try as the domain a ball of
unit radius with center at £ denoted by B;. From the geometric interpretation of the support
function as the distance from £ to the tangent space T;(0B1) we can see that (figure 3.4) the
support function of the ball is equal to its radius, i.e.

he(x) =1, x€ 0B

1
/ (1) 4
<=0

()] ¢ dt
0

where A1 (Bj) is a known constant. Notice that the two integrations over the border disappeared.
The consequence of this fact is that the equality is obtained if, and only if, ¢ is the radial
component of the first eigenfunction of —Agl denoted by v*. Indeed, the first eigenfunction of

Hence we obtain

(4 9,8) =

which implies

the ball is radially symmetric and an element of Wol’2((0, 1)) and thus can be written in the form
7 has and used in the variational formulation

/ U 1 dr
/|¢ ()2 ¢4~ 1dt
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Figure 3.4: Support function of ball centered at &

After substituting this function into the functional ¢ we see that the functional no longer depends
on it

—1 ! / 2 ,d—1
RGO /0 () ¢t
[ hewyaote) [P e ar

o0 0

—1
/89 he *(z) do(z)

(9", ¢) = :
/BQ he(x) do(x)

= A\ (B1)

Hence we have found the object whose first eigenfunction minimizes the functional ¢ with respect

to
/ he () do(x)
_,min (9, &) = Ay (By) 2 :
EW(0,1) 441 di) / he () do ()
o0

(3.12)

Further adjustments of this formula are possible.
First, recall the volume element of the manifold M (3.7)

dvol(z, t) = he(x) do(x) t4 dt.
Let us integrate the volume element over the whole domain obtaining its volume

0] = / dvol—/whg(x) da(x)/oltd_ldt—;/mhg(x) do(z).

9% (0,1)

Substituting this result into (3.12) we obtain

hgl (z) do(zx)

min Q9,8 = M\(B /E)Q
¢€W&72((071))90( ¥,§) = M(B1) IS
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Finally we can minimize the last remaining integral with respect to & over the set w obtaining
the intrinsic quantity F'(€2) (see 3.3.8) and concluding the proof of the bound of Theorem 3.3.9

‘ PO
A1(02) < min o(1,8) = )\I(BI)L'
BEWLE2((0,1), 441 d) d[Q

3.3.3 Weaker version for convex domains

Let Q be a bounded convex domain in R?. From the book [13], Sec V.4.1 we know that the
boundary 0 is locally Lipschitz. From the geometrical interpretation of h¢(x) we have

inf he(z) > dist(€, 09
ess in ¢(x) > dist(&, 092)

which implies that the set to which  is strictly star-shaped denoted by w is equal to €, i.e.,

w = ) and also
F(Q) = inf / h‘1§/ hot
) gew=0 Joqn ¢ o0 ¢

for any £ € w = Q and taking £ as the center of the inscribed ball we obtain

/ hélg/ 1ol
9] a0 PQ PO

where pq is the inradius of Q (the radius of the inscribed ball, see 3.1) and |0€?| is the (d — 1)-
dimensional Hausdorff measure of the boundary 0€2. Hence we have obtained a simple upper

bound for F(Q)
%9’

Since all the requirements of the theorem (3.3.9) are satisfied we have the bound

and employing the obtained bound for F(£2) we conclude with

Hence we can state the weaker version of the PS bound in an arbitrary dimension which holds
for convex domains.

Theorem 3.3.20. Let Q be a bounded conver domain of R®. Then

1092

M) d po Q]

< Ai(By)
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3.3.4 Remarks

Remark 3.3.21 (Sharp for balls). From the proof it can be seen that the bound of Theorem 3.3.9
18 sharp for the ball of unit radius. Now let us verify that it is sharp for oll balls. For this we
need to express the first eigenvalue for a ball with an arbitrary radius R denoted by B using the
first eigenvalue of unit ball. Without loss of generality we can assume that Br has the center

at the origin,i.e., B = Br(0). We will use the variational formulation for the first eigenvalue
2.8.13

AV |
_|w112_/BR' o)l da
= Tol? - »

/BRW””' z

where 1 is the first eigenfunction of Br. As a next step we use the substitution

M (BRr)

r = Ry
dz = Rédy

implying
[ wan@Pds [ 9Py
BR By

/B i) e /B (R dy |

Since it is apparent that the equality ¢1(y) = Y1 (Ry) holds, where ¢y is the first eigenfunction of
the unit ball, we can see that

/ 1V, (Ry)P dy / V61 ()P dy
By _ JIB

= =M(B1)
[ w@Pay [ P
Bl Bl
and thus 1
M (BR) = ﬁ/\l(Bl)' (3.13)

At the same time from (4.3) below we know the explicit formula for F(Q) when Q is a ball of
radius R which is a special case of an ellipsoid

F(Br) = | Bl 5. (3.14)

Now we have everything ready to take Q0 = Br and substitute (3.13) and (3.14) into (3.2)

F(Bg)

M (Br) < \i(Bq) dl Bl

:}?AﬂBR}————;c:AﬂBR) (3.15)

and thus the bound of Theorem 3.8.9 is sharp for all balls.

Remark 3.3.22 (Conjecture 1). In the paper [5] it was conjectured that the upper bound for
the bounded convex domains 3.3.20 holds for general bounded domains in R®. We will use this
conjecture for comparison with other bounds for some domains which are strictly star-shaped but
not convez in the subsequent chapter.
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Figure 3.5: Domain )¢, generated from (2

3.4 Generalization of PS bound for particular hollow domains

In this section we would like to introduce our own result, the generalization of the Polya and
Szegd’s bound in arbitrary dimension for some hollow domains of a particular form.

To create such a domain let us take the bounded, strictly star-shaped domain © in R? with
locally Lipschitz boundary 02, the set w containing the points with respect to which €Q is strictly
star-shaped and choose an arbitrary point £ € w. Recall the transformation £ parameterizing
0\ {¢} and identifying it with the Riemannian manifold M

£:09 % (0,1) = Q\{€} : {(z,8) = €+ (x — )t}

Let p be some fixed value of the shrinking coordinate ¢ € (0,1). Now we are ready to define a
new domain €, (see Figure 3.5) with parameters £ and p using a modification of the map L :

Ly 92 x (p,1) = Qe {(w,8) = £+ (2 = 1)

The bounded hollow domain with locally Lipschitz boundary €, is then the domain 2 with
a hole of the “size” p and “centered” at the point £. The boundary of the hole is equal to the
shrunk boundary L£(0Q x {p}) and the outer boundary is equal to the boundary 9 of the
domain €. Let us denote the outer boundary by 89%710 := 0f). Since 89%71) is by assumption
locally Lipschitz, from Rademacher theorem 3.3.4 we again have that the outward unit normal
vector field n : 89%7]) — R? is uniquely defined almost everywhere on 89%{0. Some definitions
are needed before we can proceed to the statement of the bound.

Definition 3.4.1 (Support function of Qg ;). Let Q¢,, be the domain generated from S in the

preceding paragraph with the outer boundary denoted by aﬁép, (8Q%p = 00Q). At such points
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where the outward unit normal vector field n is defined, a support function of the domain can be
introduced as

he(@) = (¢ — €) - n(a).

Remark 3.4.2 (Difference between support function of ¢, and ). Recall the definition of
the support function for the domain Q, Definition 3.3.5, and only for purpose of this remark let
us denote the function by h?. It can be seen that the only difference between the definition of
support function for Q¢ , and for 1 is in the point £. The center of the shrinking coordinates &
lies in Q but by the definition of Q¢ ,, it does not lie in Q¢ ,,. Hence for all points x € 8Qé’p = 0N
we have an equality

he(x) = h? ().

Definition 3.4.3 (Centered intrinsic quantity F¢(€2)). Let Q be strictly star-shaped domain with
respect to the point £ € Q. Then we define the centered intrinsic quantity of the domain Q with
the center at & as
Fe(Q2) := { hgl
o0
where he is the support function of the domain Q.

Definition 3.4.4 (Centered intrinsic quantity F¢(€Q¢yp)). Using the previous definition and de-
notations we define the centered intrinsic quantity for Q¢ , by

Fe(S% ) 22/ he't
o0l

where he is the support function of the domain ¢ .
Now we can state the theorem.

Theorem 3.4.5. Let Q be a bounded domain in RY strictly star-shaped with respect to a point
§ € Q and with locally Lipschitz boundary OS). Let Q¢ be the domain generated from € in the
preceding paragraph and Aqy be an annulus with radii such that § = p and |Aqp| = |Q¢p|. Then
the following upper bound for the first eigenvalue of ¢, holds

b* Fe(Qe p)
A (Qe ) < M (A4s L

3.4.1 Proof of the bound

Let €¢, be the hollow domain with outer boundary 89%}17 generated using the bounded
domain 2 as was shown in the beginning of this section. Recall the proof of Theorem 3.3.9.
Using the same argumentation as in the proof we can introduce the locally Lipschitz continuous
chart I' mapping an open subset U of R4! to the intersection of R¢ and 8(21p. This chart is
from Rademacher theorem 3.3.4 differentiable almost everywhere and thus induces the metric
tensor g of 89 p

Guv = (0,1) - (0, 1) pve{l,...,d—1}.

From the definition of {¢, we see that it can be parameterized by the mapping

Ly: 00, x (p,1) = Qep {(z,t) = £+ (x — )t}
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or locally by
£, R4 x (p, 1) — Qep o {(u,t) = &+ (T(u) =t}

Indeed, the Jacobi matrix J(-,¢) of the transformation £, is equal to the Jacobi matrix of £ (see

(3.4))

(O1THt ... (GgTHt TL—¢t
J(,t) = : : :
(Ot ... (0gTHt Td—¢d

and the absolute value of its determinant is locally equal to

|det J(u,t)| = v/det g(u) he(T(u)) t"

where h¢ is the support function of the domain ()¢ ,,.
Again using the same argumentation as in the preceding proof we see that ¢, can be
identified with the Riemannian manifold

M, := (00}, % (p,1),G)

where G is the metric tensor induced by £, and is also equal to the metric tensor induced by £
(see (3.6))

g11 t2 e Grd—1 t2 (I'=¢)- (o)t
G(-,t) — .
ga—11 t* e Yd—1d—11° (I'= &) - (Qa—1)t
r=9-@n)t ... (=& -(04D)t T — ¢

Recall the definition of the volume element of the Riemannian manifold (3.3.17), whereas the
corresponding terms are equal for Q2 and ¢, we see that the volume element of €)¢ , is

dvol(z, t) = he(x) do(x) t41 dt.
As a next step let us take some test function n of the form
n=9vx1 (3.16)

where 1 denotes a function constantly equal to 1 on 8Q%p and as we saw at the end of the

preceding proof we can now assume ) € VVO1 ’2((p, 1),t%=1dt). We would like to compute its norm
of the gradient. Indeed as in the preceding formulas it can be seen that the result is the same as
for domain 2

IVe(l @ ¥)lle = he .

Now we can proceed to the spectral problem. Recall the Dirichlet Laplacian —A% defined in
the previous chapter and the quadratic form associated with it

hly] = |V
Dom(h) = Wy*(Qe,p)
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with || - || being the L?*(€¢,) norm. We again introduce the identification of the Hilbert space
L%(Q ) with L2(M,) := (691 x (p,1),dvol). The space L?(M,) is equipped with the norm
1/2
[l = | [ Wt hea) ¢! dote) at

Bﬂéypx(p,l)

Thus we can express the quadratic form as
Q
hp W] = 1 IVetle 20
Dom(h) = Wy*(M,)
where
WOM(Mp) _ 080(39%10 \/IIVGwHLz(M yHIZ 2,

Recall the variational formulation of the first elgenvalue 2.3.13. Employing the identification of
the two Hilbert spaces we obtain

11Ve¥lle 122
.

A p) < , YE WOLQ(MZJ)-

As the test function in this formulation we would like to use the function n (3.16). Indeed this
function by the definition belongs to the space W&’2(Mp). The integrals of n appearing in the
formulation can be computed as

sy = | relo)dot) [ o e as

8(2%’?
and 1
11V nlle W2, = / hgl(@da(w)/ [ @) # dt.
oQl P
Hence

(3.17)

P(Qepi ) = —2 - : (3.18)

We would again like to minimize this functional by finding some object for whose first eigenfunc-
tion we obtain equality in (3.17). Let us try the annulus of radii p and 1 denoted by A, 1, where
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(o7

Figure 3.6: Support function of annulus A4, 1 centered at &

p < 1, generated from the unit ball with the same center being also the point ¢ and using the
parameter p, i.e., in our notation Ay, = (B1)¢,p. Recall that the support function of A, 1 which
is equal to the support function of Bj is (see Figure 3.6)

he(x) =1, z¢€ 8A11)71

where the upper index has the meaning of the outer boundary of the annulus. Therefore

/|¢ )2 ¢t at
/|¢ )2t de

where the equality is obtained if, and only if, n = ¢ ® 1 is chosen as the first eigenfunction of
Ap1 which is certainly radially symmetric and thus can be written in the form the function n
requires. Denoting its radial component as ¥* we obtain

/W}*/ ’2td 1dt
/rw R et

Substituting ¢* into functional ¢ we, as in the preceding proof, loose the dependence on the test
function

1
—1 *1(1\|2 pd—1 -1
/891 he  (2) da(m)/p [ ()=t dt /8(2%? he *(z) do(z)

(e p; ") = —= = M(Ap1)
[ e dota)
ont »

1
/ he(z) do(z) / [ (1) 14
8Qé,p P
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and thus we have successfully minimized the functional with respect to

/aszl hgl(:c) do(z)
min 80(957;9;7#) = )\I(ApJ) / =

1,2 de ’
PEW,((p,1) ¢4~ 1de) . he(x) do(x)
ng’p
As a next step we would like to cancel the integral over the support function using the volume
of the domain )¢ ,

1 1— d
Q] = / dvol = / he () do () / it =1 / he () do ().
aQép P agém

o9L % (p.1)

Recalling the centered intrinsic quantity of the domain F¢(€ ;) we can conclude with

F:(Q

M(Oy) < X () S 0en)

|2 |

Now we take an annulus A,y with radii @ and b such that ¢ = p and [A,p| = |Q |- Using (3.1)
we have

| Aap = |Bol —|Ba| = (b7 — a®)| By |. (3.19)
Finally using the equality A\;(Ap1) = b%)q(Aa,b) which can be proven analogically as (3.13) we
can conclude with

Fe(Qp) b°Fe(Qep)

d|Bl|(bd—ad) d|Bb’

which proves Theorem 3.4.5. O

A1L(Qep) < B°A1(Agy) (1—p%) =\ (Aap)

3.4.2 Remarks

Remark 3.4.6 (Existence of Ayp). Our aim is to find the two radii a and b such that § = p
and |Agp| = |Qep|. From (3.19) and (3.13) we get

Q| = (b7 — a) [By| = (1 — p?) | By b?

1
b— ( €2 p] )d .
(1= p9)|Bi]

This together with a = bp defines the annulus Agp.

which implies

Remark 3.4.7 (Sharp for arbitrary annulus). From the proof we can see that this bound is sharp
Jor Ay 1. Let Ay, be an annulus centered at the point £. It can be interpreted as a domain Be m
for Theorem 3.4.5. Since from (4.3) the intrinsic quantity Fe(Am,n) can be expressed as

d
Fﬁ(Amvn) =F(B,) = |Bn’ﬁa (3.20)

we can write ) ()
n Fg m.mn

1(Amn) < M(Ampn) dB,| 1(Amon)

Remark 3.4.8 (Bound as a fraction of two intrinsic quantities). Using (3.20) we can write
F:(Q F:(Q
A1(0) < M(%@)M — /\I(Aa,b>M

F(By) Fe(Aap)
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3.5 Payne and Weinberger’s planar bound

In this chapter we introduce Payne and Weinberger’s planar bound which originally appeared
in their paper [17]. The proof of this bound is based upon the use of the parallel coordinates
(see Figure 3.7). In this bound we use a modern approach to this coordinates developed by Savo
in [18] which appeared also in the paper [19] by Pedro Freitas and David Krej¢ifik.

This bound as presented in the thesis differs from the others when acting on not simply
connected domains. It still works for them but on the inner parts of the boundary we can
demand only the Neumann boundary conditions. Thus for simply connected domains we rather
get an upper bound for the first eigenvalue of the Dirichlet-Neumann operator defined in the
Remark 2.3.14.

Theorem 3.5.1 (Payne and Weinberger’s planar bound). Let Q be a bounded simply-connected
domain in R? with C? boundary 0. Let |Q| be the 2-dimensional Lebesque measure of 0 and
|02 be the 1-dimensional Hausdorff measure of the boundary 0S). Denote by p the value

A
|02

and by k = k(p) the first zero of the transcendental equation

Jo(k)Yi(y/Pk) = Yo(k)J1 (v/Pk) (3.21)

where Jy, respectively J1 stands for the Bessel function of the first kind of the first, respectively
second order and Yy, respectively Y1 stands for the Bessel function of the second kind of the first,
respectively second order. Then the following bound holds

4 2
A(Q) < o8

First we introduce the parallel coordinates.

3.5.1 Parallel coordinates

Let © be a bounded simply-connected domain in R? with the boundary 9Q of class C2. The
boundary 99 can be interpreted as a Jordan curve (i.e., simple and closed curve) of class C?
denoted by I'y.

First we define the map

®:Tox[0,00) = R?: {(s,t) = s —m(s) t}

and locally, denoting by  the natural parametrization by arc length of the curve T'g, 7 : [a, b] —
I’y with p being the coordinate on [a, b],

®o(yx1):Rx(0,00) = R*: {(p,t) = v(p) — n(y(p)) t}

where 1 is an identity function on (0, co) and n is again the outward unit normal to 9€2. Next we
define the so called cut-radius map ¢ : 'y — (0,00) by the property that the segment mapping
t — ®(s,t) minimises the distance from Ty if, and only if, ¢ € [0, ¢(s)]. This map is known to be
continuous and denoting by pq the inner radius of 2 we clearly have

max c(s) = pa-
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s m—
‘ cut-locus ‘ >
|4
N ),
Q

Figure 3.7: Parallel coordinates

Finally we define the cut-locus
C(Ty) :={P(s,c(s)) : s €Ty}
being a closed subset of € of measure zero. If we now restrict the map ® to the open set
U:={(s,t) €y x (0,00): 0 <t <c(s)}

we obtain a diffeomorphism between U and Q2 \ C(I'g). The coordinates s and ¢ based at I'g are
also called “parallel” which is again motivated by their behavior (see Figure 3.7).

For the purposes of the subsequent proof we also need to compute the determinant of the
Jacobi matrix of the transformation ®. First recall that the unit tangent and normal vector to
Iy can be expressed in the point sg using the natural parametrization v(p),v(po) = so as

0v(p)
dp
9*1(p)

Op?

’ 92v(p)

7(s0) =

Po

2
o py

n(so) = '

Using these formulas the Jacobi matrix can be computed as

J(p()atO) = In2

and its determinant as

on?
2 —_— —
Son (so) o

on'
Op

det J(po, to) = Tl(so)nZ(so) — 72(30)711(30) — < nl(so)> t.

First we will analyse the term

7 (so)nz(so) — 7'2(30)711(30).
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Denoting by 7, (sg) the vector perpendicular to 7(sg), i.e., 71 (s0) := (—=7%(s0),7(s0)), the first
term is equal to
n(so) - 71.(s0)

and since n(sg) and 7 (s9) are co-directional unit vectors, we can see from the remark 3.3.14
that
7 (s0)n?(sg) — 72(so)n(sg) = n(sg) - 71 (s0) = 1. (3.22)

Subsequently recall the Frenet equation

(E)-(% 00

defining the curvature x of the curve I'g. Using this equation we can adjust the second term

on' on?
Op

n*(s0) = 5 -
which is equal to —xt by applying (3.22). Hence we can conclude with

Po Op p0n1(80)> t= _H(SO) (Tl (30)n2(80> - 7'2(80)711(80)) t

det J(s,t) =1 — k(s) t. (3.23)

Now we can proceed to the proof of the bound.

3.5.2 Proof of the bound

Using the expression for the determinant of the Jacobi matrix (3.23) we can obtain the
uniform bound
I det (s, Dl gy < 1+ Il ey o2 (3.24)

Moreover we introduce the distance function from the boundary I'g

p:Q—(0,00): {x— dist(z,Ty) = inrf |s — x|}
s€lo

and the function A(t) of the area of the shell {z € Q:0 < p(x) < t}, i.e.,
Aty ={z € Q:0 < p(z) < t}].
Clearly Ap := A(pq) = |92|. Finally we define the length of the boundary curve {p(x) = t} lying
in Q by
L(t) :== / det J(s,t)ds = / 1 — k(s)tds. (3.25)
{se€ly,t<c(s),(s,t)€N} {s€lg,t<c(s),P(s,t)EQ}

It can be seen that Lo := L(0) = |T'g|, where now |I'g| denotes the one-dimensional Hausdorff
measure of the outer boundary. This together with the uniform bound for the Jacobian (3.24)
leads to the crude bound for L(t)

L(t) < Lo(L + |8l zo=(ry) p0).

Using the co-area formula (see [6]) we can write

/t t L(#) dt’

|A(t2) — At1)| =
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from which we see that A(t) is Lipschitz on [0, pg] and for almost every ¢ (see 3.3.4)
A(t) = L(t). (3.26)

Now we would like to use the min-max principle 2.3.4 to estimate the first eigenvalue. For
this let us take some smooth function ¢ : [0, Ag] — R and consider the test function u = ¢o Aop,
Lipschitz in Q and depending only on the distance from the boundary T'y.

By the change of the coorinates from Cartesian to parallel and using the fact that the test
function u depends only on the distance from the outer boundary, we can compute Hu||%2(ﬂ)

Lo c(s)
fulle = [ @) do= [as [7 e o - (o)

then denoting M := {s € T'g,t < ¢(s), P(s,t) € 2} and using the Fubini theorem

Lo c(s) PQ
| s [ arietamE o= nn = [Tar [ asioam)? - ws) .

Since the last integral is from (3.25) equal to L(t), we can write using (3.26)

R PQ
/ at |p(A(1)[? / ds (1 - A(s) £) = /O at [B(A(L)PA' (1)

0 M
and thus oo
fulfae = [ dtotA@?a 0. (3.27)

Analogically we can also compute

Vullag = [ dtoa@P A0 (3.28)

To continue we will use a remarkable idea introduced by Payne and Weinberger in [17] to use
the change of the coordinates

r(t) = VLG — AmA(h) t €0, R] (3.29)

2m ’
with 5
VL5 —4rA
rl :=r(pa) = OTO, (3.30)
L
ro :=1r(0) = 2—72. (3.31)

Recall the isoperimetric inequality for planar bounded domains.

Remark 3.5.2 (Isoperimetric inequality, see [4]). Let Q be a bounded domain in R? and Lo be
the Hausdorff measure of its boundary. Then the following inequality holds

LE > 479

where || stands for the 2-dimensional Lebesgue measure of ). The equality is obtained if, and
only if, the domain is a ball.
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Thanks to this inequality, the transformation (3.29) is well-defined on [0, po] and we can use
it as a substitution in the integrals (3.27) and (3.28). Also note that the transformation was
chosen so that the area of annulus with radii 7 and 72, A, ,,, is equal to the area of €, i.e,,
| Ay, ry| = Ao. Defining

br) = o (j;; =

we obtain .
JulZ ) = 27r/ dr ()2 r (3.32)

1

and v
||VUH%2(Q) = 277/ dr ' (r)2 ' (t)? r. (3.33)

r1

Our aim is to compare 2 with annulus A,, ,,. For this we would like to estimate the term 7/ (t)?

by 1. The following theorem claims that this estimate is possible.

Theorem 3.5.3. Let Q be a bounded domain in R%. Then for the function r(t) defined above
(3.29), we have the following bound for almost every t € [0, pq]

Ir'(t)] < 1.
Proof. First we compute the derivative of r(t)

L(t)

VL3 —AmA(t)

for almost every t € [0, pa]. Recall that for any Jordan curve we have

/ k(s) ds = 2.
To

L(t) < Lo — 27t

r'(t) = —

Hence from (3.25) we can obtain
and using (3.26) also
A(t) < Lot — 7t2.

From the last bound we can express t as a function of A(t) and Ly since it can be reduced to a
problem of solving a quadratic equation

mt? — Lot + A(t) <0 (3.34)
and thus the roots of the associated equation are

. LQ + \/L% — 47TA(t)
2= 2T

and the inequality (3.34) is fulfilled for ¢ € [t1,t2] (see Figure 3.8). Now we can proceed to the
final estimate
L(t)gLo—Qﬂ'tSLo—2ﬂ’t1: L%—47TA(t)

which concludes the proof. O
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i u\_/ t2

Figure 3.8: Plot of inequality (3.34)

Recall the Dirichlet Laplacian defined in the previous chapter. Using the variational formu-
lation for the first eigenvalue, i.e., Remark 2.3.13, and substituting (3.32) and (3.33) and using

Theorem 3.5.3 we get
T2
/ dr o/ (r)?r

T1

/m drap(r)r

1

A (Q) = inf

where the infimum is taken over all smooth non-zero functions 1. At the same time recall the
Dirichlet-Neumann Laplacian defined in Remark 2.3.14. Employing this self-adjoint operator
into the min-max principle 2.3.4 and taking as the domain the annulus A, ,, we obtain

/7‘2 dr ¢} (7")2 r

T1

B HV¢1HZL2(AT1,T2)

T1,r2) T

2 "2
11lZ2 A, ) / dr i (r)?r

T1

DN
A1

where APV is the first Dirichlet-Neumann eigenvalue of A, ., and 91(r) is the first Dirichlet-
Neumann eigenfunction of A,, ,,. Since the radially symmetric function 11 (r) is definitely smooth

we can write v
/ dr wi(r)z r
)‘1(9) < r%"z = )‘IDN(AT17T2)
/ dr wl(r)Q r

1

and APN(A,, ;,) is then the upper bound for A;(€2).

Remark 3.5.4. Using the definitions from the preceding proof let us denote by p the value

_ Ar|Q|
|02

=1

and let k = k(p) be the first zero of the transcendental equation (3.21) then

472

Wk(l?)z = )‘IDN(ATLTz) (3~35)
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Proof of the remark. First let us compute A;(Ay, »,). We solve this problem in polar coordi-
nates p and . Hence

—Au = Au

u(ra, ) =0

ou

onl, ="
u(r,0) = u(r, 2m)
ou _ Ou
9ol Op

27
for all ¢ € [0,27] and r € (r1,72). Writing —A in polar coordinates we obtain

%u  10u 1 9%u
87P2+;87,0+?87902__)\u (3.36)

and using the separation of variables u(p, ) = R(p)®(¢) we have

2 52 2
p°0°R  pOR 9 10°®
st =t A= 3.37
R8p2+R8p+ P @ D2 (3:37)
Since the left-hand side of this equation does not depend on ¢ and also the right-hand side does
not depend on p, we see that both sides are equal to a constant m? obtaining

9’R R
2 2 2
e ) AR - mPR =0
10
P 0?2 m

The second equation together with the cyclic boundary conditions
®(0) = ¢(27)
®'(0) = &' (27)

has the harmonic solution
O (p) = Acos(mep) + Bsin(mep)

for m € Z.
The first equation is the Bessel equation with the solution

R(p) = C1Jm(VAp) + CoYm(VAp).

Applying the two boundary conditions

R(T‘Q) =0
respectively
OR
= =0
8p 1
we get

C1Jm(\&7’2) + CQYm(\/XTQ) =0



3.6. ANTUNES AND FREITAS CONJECTURE 71

respectively
CLVAT11m(VAP) = Jipm(VArD) + CoVAY -1 1m (VA1) = Yipm(VAr)) =0
and by eliminating the constants C; and Cy we have
Yo (VAP2) (=14 (VA1) = Jigem (VA1) = T (VAT2) (Yo 14m (VAT1) = Yigm (VA1) = 0.

Moreover putting m = 0 (we are interested in the first eigenvalue) and thanks to the properties
of the Bessel functions written as

J1 (VA1) Yo (v Aire) = Jo(vAr2) Y1 (v Aur). (3.38)

Finally we check the equality of the two equations (3.21) and (3.38). First we take a look at the
term v/A171. Using (3.30) we can see that

V1092 — 47 |Q V1092 — 47|Q] |00
\/Eﬁ:\/)\i“%ﬂ|=\/)\i1‘ |9 | |:

50 ow T VPF

Analogically using (3.31) we get

\//\>17“2=\/E‘a27§:=/€

which proves the remark. O
The last remark concludes the proof of Theorem 3.5.1.

3.5.3 Remarks

Remark 3.5.5. The parallel coordinates introduced above can also be built for bounded but not
simply-connected domain €. In this case we however obtain an upper bound for PN (Q), i.e.,
we have the Dirichlet boundary conditions on the outer boundary and the Neumann boundary
conditions on the inner boundary of Q).

Remark 3.5.6. The parallel coordinates can also be built for not simply-connected domain
based on its whole boundary (not only on the outer boundary as in the preceding remark). This
procedure leads to the upper bound for the first Dirichlet eigenvalue of Q however in the final part
of the proof we are not able to prove that |r'(t)| < 1. Indeed it can be shown that |r'(t)| may be
larger than 1 for some not simply-connected domains and thus we cannot compare \1(Q2) with
MPN(A,, +,) and obtain the upper bound.

Remark 3.5.7 (Sharp for balls). Let Q2 = Bg. Then |Br| = nR? and |0Br| = 27 R. Substituting
these into the definitions of the radii 1 and ro, (3.30) and (3.31), we obtain the annulus Ao g,

i.e. the ball Bg. Since Br has no inner boundary, we have \PN(Bg) = \{(Bg) which implies
the sharpness of the PW bound for the balls.

3.6 Antunes and Freitas conjecture

Finally we introduce the planar conjecture based on numerical studies of Antunes and Freitas
appearing in their paper [21].
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Theorem 3.6.1 (Conjecture 2). Let Q be a planar simply-connected domain. Then the following

inequality holds
) 2 2
Tig . ™ |0Q° — 4|
A (Q) < ZJor  TITRA — AR
=T T op
with jo1 being again the first positive zero of the Bessel function of the first kind of order one.
The equality is obtained for balls and asymptotically for infinite rectangular strips.

3.7 Summary

Let Q be a bounded domain in R<.
Faber-Krahn inequality
A1(Q) > A (By) i

Trivial upper bound
)‘I(Q) < Al(BPQ)

Pélya and Szeg6’s bound (€ strictly star-shaped with locally Lipschitz boundary)

)\1(9) <

Poélya and Szeg6’s bound for convex domains (2 convex)

09|
d pa 92|

() < Ai(Bh)

Generalization of Pélya and Szegd’s bound for particular hollow domains (£ strictly
star-shaped with locally Lipschitz boundary, ¢ ;, generated from €, annulus A5, § = p, |Aap
Q¢ p|, see Theorem 3.4.5)

szé(Q&p)

M(0p) € (AT

Payne and Weinberger’s planar bound (Q C R?, simply-connected with C? boundary)

472 9
< —
)\1(9) = |8Q|2k(p)

where

47|Q|

|02
and k = k(p) is the first zero of the transcendental equation (3.21).
Conjecture 1

09

Antunes and Freitas conjecture (2 C R? simply connected)

-2 2 2
g1 . ™ |0Q° — 47|
A (Q) < Do TR~ AR
1) = o T Q2



Chapter 4

Examples

This is the last chapter of the thesis where we compare the bounds and conjectures introduced
in the preceding part for some particular domains, more precisely for rectangular parallelepipeds,
ellipsoids, stadiums and swiss crosses.

4.1 Simply-connected domains

For every particular domain we first compute its intrinsic quantity F' appearing in Theorem
3.3.9 and then we compare the bounds of Theorems 3.2.1 (Trivial bound), 3.3.9 (Pélya and
Szegd’s bound, denoted by PS), 3.3.20 (Polya and Szegd’s bound for convex domains, denoted
by PS convex), 3.5.1 (Payne and Weinberger’s bound, denoted by PW), the Conjectures 3.3.22
(denoted by C1) and 3.6.1 (denoted by AF) and specifically for the parallelepipeds we can also
use for the comparison the actual eigenvalues (Remark 2.3.11, denoted by AE). Since the PW
bound which uses the parallel coordinates works only for planar domains, we have to restrict
ourselves to domains in R?.

4.1.1 Rectangular parallelepipeds

Let aj,as,...,aq € RT and R := (—ay,a1) X - - X (—ay, aq) be the rectangular parallelepiped
in R?. First let us compute the intrinsic quantity F'(R). Let £ € R be a point to which R is
strictly star-shaped. We have for every k € {1,...,d},

Va € OR such that zp = ay,

he(z) = (v — &) - n(z)
= (1 =&, =1 — &h—1, 0k — &y T — g1, - -5 g — &a) - (0,...,0,1,0,...,0)
=ar — &

and Vz € OR such that x;, = —ay

he(z) = (z —§) - n(x)
= (1 =&y 1 — k1, —ak — &y Tha1 — Ept1y -5 T — &a) - (0,...,0,—1,0,...,0)
= ag, + &-
73
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Hence
F(R) = inf / hot
(R) inf | e

d a1 ak—1 agt1 aq 1 1
= inf Z/ dz; .. / dmkl/ dzpyr .. / dzg ( + )
§Ew k=1 a1 —Qp—1 —ag41 —aq ag — gk ag + fk (41)

d
2da1a2 .G

= inf
2 2
ew 1 ag —fk

= [R|(a]? + -+ +ay;?).

For the comparison we now take the two dimensional rectangular parallelepiped of sides a
and b, a < b, i.e., Ry = (—2,%) x (=5 x ). Hence A :=|Rs| =a-b, L := |0Rs| = 2(a +b) and
pRr, = %. Recall that in two dimensions A1 (B1) = j§; (see (1.18)). The rectangle Ry is certainly
bounded and convex (therefore strictly star-shaped) and thus we can use for the comparison the
trivial bound, PS bound, PS bound for convex domains, PW bound, AF conjecture and since
they can be explicitly computed, also the actual eigenvalues.

Trivial bound
461

M (Ra) <
1(R) < =20

PS bound
1 1
.2
Al(RZ) S 2]01 (az + b2)

PS bound for convex domains

o a+b
A1(Ra) < 2]31@
PW bound
272
M(R k(p)?
1( 2) = (a+b)2 (p)
with
- mab
P=r" w12

and k = k(p) be the first zero of the transcendental equation (3.21).
AF conjecture
mjo | 7 (a+b)* — 4mab

<7
A (Re) < b + 1 212

Actual eigenvalue
1 1
_ .2
)\1(7?,2) =T <a2 + b2>

Setting ¢ := § we can plot the obtained bounds with respect to the constant ¢ (see Figure

4.1). We can see for example that the AF conjecture is for all values of the parameter ¢ better
than the PW bound. Also the PW bound behaves worse for square-like rectangles (¢ ~ 1) than
the PS bound and even than the trivial bound.
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4A2x1bound!

12

14_
[ T rivial
12 PS
i === PS for convex
10 P\
I e AF
8
. = Actual

PO S S I S S S| L c=2
0.2 0.4 0.6 0.8 1.0 b

Figure 4.1: Plot of bounds for rectangle with sides a and b, with area A and length of boundary
curve L

4.1.2 Ellipsoids

2 2
Let ai,az,...,aqg € RT and & = {x eR?: 3% 4+ 4 %l < 1} be the domain enclosed by
aj ay

an ellipsoid in R¢. Next we compute the intrinsic quantity F(€). The ellipsoid is described by
the implicit equation

2 2
xr x
ay aq

From the symmetry we can conclude, as in the preceding case, that the minimum value in the
definition of the intrinsic quantity is attained for & = 0. Recall that the normalized gradient %
is uniformly equivalent to i or —m on the ellipsoid, thus

Vif=nlVfl=Vf-n=|Vf|

or

Vf=-n|Vfl=-Vf-n=|Vf]

Using this we obtain

Substituting
and

into (4.2) we have
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The desired result can be obtained using the Divergence theorem (see [22], Thm. 5.8)

F(é‘):/ holz/ n(x).(x;’m,xg>d5:/v.(w;,...fn‘;>dvz|5(a12+...+ad2).
o€ o€ aq g £ a1 d

(4.3)
Again for the comparison we need a two dimensional ellipse with axis a and b,a > b, i.e.,
2 2
522{$€R2:2+:1322<1}. We have
a b

A= |&| = mab

2 b2
L::\8€2\:4a/ \/1—<1—aQ>sin29dQ
0

and also pg, = b. The ellipse is again bounded and convex and thus we can use for the comparison
the same bounds as for the rectangle with the exception that the actual eigenvalues for ellipsoids

are not known explicitly.
Trivial bound o
J
A(&2) < %

PS bound -
1

J 1 1
A1(&2) < % (aQ + 2)

S

PS bound for convex domains

0&|
< .2 ’ 2
A(&2) < Jo orab2
PW bound
M(E) < 2T k)
1e2) = 08,2 p
with
1 4m%ab
P= T 98,2

and k = k(p) be the first zero of the transcendental equation (3.21).

AF conjecture

-2 2 2
A R e
Al&2) =7+ (ab)?

Notice that the PS bound for ellipse with axes a and b is the same as for the rectangle with sides
a and b. Setting ¢ := % we obtain a plot of bounds with respect to the constant ¢ (see Figure
4.2). We can see that the PS bound is better than all the other bounds for all the values of the

parameter c. Also the PS bound for convex domains is better than conjecture AF for ¢ € (0,0.1].

4.1.3 Stadium

We proceed to another type of domain called the stadium (see Figure 4.3) defined from the
beginning only in the planar case. Let a,b € RT and let the stadium S C R? be the union of
the rectangle (—b,b) X (—a,a) and two discs of radius a centered at the points (—b,0) and (b, 0).
Let ¢ := g € [0,+00). We now compute the intrinsic quantity F(S). By the symmetry we can
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4A2x1bound!

12

Trivial

PS

PS for convex
PW

AF

b
L 1 L L L 1 L L i c=—
0.2 0.4 0.6 0.8 1.0 a

Figure 4.2: Plot of bounds for ellipse with axes a and b, with area A and length of boundary
curve L

2b

N

Figure 4.3: Stadium with parameters a and b
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again conclude that the infimum is attained for & = 0. First we compute the integral over the
straight line segments of S. For all z € 0S such that 1 = a we have

/bhl—/bd””2 _/bd@_%
Ly 0 _p (a,22) - (L,0) /oy a a
and analogically for all x € 0S such that 1 = —a

[Ny e —— R
0 _p (—a,x9) - (—1,0) p a a’

Next we compute the integral over the two arc segments. We start with the upper one which
can be parameterized using the polar coordinates as

T1 = acosy

To =asing + b

where ¢ € (0, 7). Also the normal n can be expressed as (cos ¢, sin ). Thus we have

/7r ady B /7r dep
o (acosp,asing +b)-(cosp,sing) Jy 1+csing’
Now we use the substitution

¥

t = tan -

an o

2

——dt=d
1+12 4
2arctant = ¢

2t

14 ¢2

/7r dy _/+°° 2 dt _/+°° 2 dt
o L+esing Jy 242ct+1  Jo (t+c)2+1—c2

At this time we have to distinguish between ¢ < 1, c=1 and ¢ > 1.

sinp =

obtaining

ec=1
/+°° 2dt
=2
o (t+1)?
e c<1
2 /+°° dt 2 [ . t r“
—_— = arctan ———
1—c*Jo <t+c >2+1 V1—¢c? V1-¢c2],
V1—c2

2 T c
= — —_ t
m<2 e anm>
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Finally using trigonometric identities

1 T
arctan — = 5~ arctanz, x>0
T

arctanx = 2 arctan

x
1+vV1+22

we obtain the desired result

2 s " c ) V1 —c?
——— | — — arctan = arctan ————
V=2 \2 V1-=¢2 V1i=¢2 c

Vi—cZ T
= —— arctan ¢ = arctan )
1-¢ 14142 VI=¢ bre

C

e c>1

2 [t dt 2 e d(@%)
b Gy Tk Gy

dx
z2—1

The integral of type [

can be computed using the partial fractions

dx rz—1
=1 C.
/x2—1 08 ‘a:—i—l’—i_

Employing this we can conclude with

_t t
2 /+OO d< /027]_) _ 2 log 2—1 1
\/02—1 c ( t )2_1 ?-1 ;_1—1_1
Ve2—1 c

2 o

If we now take a look at the second arc which can be parametrized as

X1 = acosy

xo =asinp —b

for ¢ € (m,2m) with the normal vector n = (cos ¢, sin ¢), we obtain the integral

/27r dg@
. l—csing’
Since sin(p) = —sin(p — ), we get

/27r ng _/7r ng
. l—csing Jy 1+csing’
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i.e., the integrals over the two arcs are equal. Summarizing

A+ 8 1—c
ch —— - °
V1—c2 1+¢

F(S)=1438 c=1,

4
de+ ———1log(c+Vc2—1) e>1.
7 o8l )

arctan c<1,

For the stadium we also have
A= |S| = 4ab + Ta*
L :=|0S| =4b+ 2ma

ps = a.

EXAMPLES

(4.4)

The stadium is obviously bounded and convex and thus we can use for the comparison the same
bounds as for the ellipse since the actual eigenvalues for stadiums are also not known explicitly.

Trivial bound

-2
A(S) < Ja%

PS bound

. F(S)
2
M(8) = 01500 + ma)

PS bound for convex domains

b+ ma
A <q2 -7
1(8) = ‘701a(4ab + ma?)
PW bound )
T
AM(S) < ———k(p)?
1( )— (2b+7ra)2 (p)
with

_ m(4ab+ ma?)
(2b+ ma)?

and k = k(p) be the first zero of the transcendental equation (3.21).
AF conjecture

p:

;2 2 2
o1 5 (2b + ma)® — w(4ab + wa*)
A <
18 = dab + a2 " (4ab + wa?)?

We again plot the preceding results (see Figure 4.4). It can be seen that for example the PS
bound for convex domains is worse than all the other bounds and conjecture AF (except for the

trivial bound) for all the values of the parameter c.

4.1.4 Swiss cross

Finally we use another planar domain called the swiss cross (see Figure 4.5) which is strictly
star-shaped with respect to the origin but non-convex. Let a,b € RT and let the swiss cross
C C R? be the union of the two rectangles (—b —a,b+a) x (—a,a) and (—a,a) x (=b—a,b+a).

We again set ¢ := g € [0, +00). Next we compute the intrinsic quantity F(C).
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SIMPLY-CONNECTED DOMAINS
4A2x§bound
LZ
16}
m T rivial
w— PS
== PS for convex
e P
— AF

Figure 4.4: Plot of bounds for stadium S with area A and length of boundary curve L

2a

Figure 4.5: Swiss cross with parameters a and b

81
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Recall the computation of the intrinsic quantity for the rectangular parallelepipeds. For each
side of the swiss cross we will use the same procedure as for the side of the parallelepiped. Thus

we obtain

B a dzs a+b dxy a+b dzs a dxq
inf hlzinf</ —|—/ _|_/ _|_/
éew/ac € eew\J o gbta-& Jo a-& J. a-& ) a+b-&

a+b dxs ¢ dx a dxs % dx
+ + + — +
a a+€1 —a—ba_§2 —aa+b+§1 —a—ba+£2

% dao /a dzy /—a das /a+b dzy )
+ + | ———t + (4.5)
/—a—ba+€1 —aat+b+ & —a—ba@— &1 a a+&
_inf 4a(a +b) N 4ab 4ab
Ctew\(a+b)?2-&  a?-&  a’-&

B a(a+b)+b£ _81+c+02
T \(a+b)2 " a2) T 14c

For the calculations we will also need

A:=|C| = 8ab + 4a®
L:=|0C| =8(a+10)

_Ja+b b< (V2-1)a
7\ b= (Ve D

The swiss cross is obviously bounded but not convex, still instead of the PS bound for convex
domains we can use the conjecture C1 formally identical to the PS bound for convex domains.
The actual eigenvalues are not known explicitly.

Trivial bound

PS bound
b b2
1+ 5 + 5
A (C) < jo b
<1 + a) (2ab + a?)
PW bound )
d 2
P
with
_ ., m(2ab+ a?)
b= 4(a+b)?

and k = k(p) be the first zero of the transcendental equation (3.21).
AF conjecture

M(C) < i3 7r24(a +b)? — 7(2ab + a?)
8ab + 4a? (4ab + 2a2)?
C1 conjecture
a-+b

A < -
1(C) < ]OIpc(Qab—i—az)
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4 A%x (bound)

12

== Trivial
PS
PW
AF

C1

2 4 6 8 10

Figure 4.6: Plot of bounds for swiss cross C with area A and length of boundary curve L

Plotting these results leads to Figure 4.6. We can see that for very small values of parameter
¢ the trivial bound is better than all the others. Also the conjecture C1 is better than all non-
trivial bounds for all the values of ¢. Finally the PS bound acts better than the conjecture AF
for ¢ € [0, 3.8].

4.2 Domains with particular holes

At the end we would like to show some examples of domains on which our own result,
Theorem 3.4.5, can be applied. We take the already introduced planar shapes (planar only due
to simplicity) and create a hole of size p > 0 in them (see Section 3.4). Since all of the others
preceding bounds (except for the Trivial bound) demand simply-connected domains, we only
plot the dependence of our bound on the size of the domain (as in the previous plots) and on
the parameter p.

Before we proceed to the particular shapes of the domains we need to compute the first
eigenvalue of the Dirichlet Laplacian for some arbitrary annulus A, i.e., we have the following
spectral problem (in the polar coordinates)

—Au = \u

u(s, ) =0

u(t,) =0
u(r,0) = u(r, 2m)
ou|  Ou
d¢l.o Op

27

for all ¢ € [0,27] and r € (s,t). Using the same procedure as in the proof of Remark 3.5.4 we
obtain the angular equation

10°® )

S

® Op?
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with boundary conditions
®(0) = ¢(27)
®'(0) = @' (27)
and having the harmonic solution
®(p) = Acos(mey) + Bsin(me)
for m € Z and we also get the Bessel equation
R(p) = CrJm(VAp) + Ca¥im(VAp)

with the boundary conditions

i.e.,
C1dm(VAs) + CoYp (VAs) = CLIm(VAL) + Co Yo (VAL) = 0.
Reducing the constants and choosing m = 0 (because we are interested in the first eigenvalue)

we get

J()(ﬁs)}/o(ﬁt) = YO<\/XS)J()<\/Xt).

The first eigenvalue of A, is the first zero of this equation.

4.2.1 Rectangles with hole

Let Ro = (—%,%) x (—%,%) be the rectangle with sides a; and ag, a1 < a2, as in
Subsection 4.1.1. Let £ = 0 (we choose the center of our hole to be the origin) and p € (0,1) be
the parameters of the domain Rg ), created from Ry (see Section 3.4). The annulus A, from

Theorem 3.4.5 can be found using Remark 3.4.6

b= R20,| _ ajaz(l — p?) _ \/M
(1—p?)|B| (1—p*)m ™

a = bp.

At the same time we have from (4.1)

a3 + a3
Fo(Raop) = F(R2) = 1ala2 2
Hence we obtain the following bound
b2Fy(R 2(a? + a2
A1(Rao,p) < Al(Aa,b)M = M (4q )M

d|By| Y raian

where Ai(Aqp) is the first zero of the equation
Jo(VAa)Yo(VAb) = Yo (VAa) Jo(VAD). (4.6)

Plot of this bound for p € (0,1) and ¢ := % € (0,1) can be seen on Figure 4.7. We can see that
for p &~ 0 (the hole is very small) we get very similar behavior as for the PS bound for rectangles
without hole.
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2
4 A< x (bound) 15
L2

1.0

10

0.0

0.0
1.0

Figure 4.7: Generalized PS bound for rectangle with sides a; = 1 and a2 and with hole of size
p. Ais area and L is length of boundary of rectangle

4.2.2 Ellipses with hole

2 2
Let & = {w cR2: a:_% + :c_; < 1} be an ellipse with axis a1 and ag,a1 > ao. Again let £ =0
ar a3
and p € (0,1) be the parameters of the domain with the hole &£, First we find the annulus
f4ab

|€20.p maras(1 — p?)

(R o E

Also using (4.3) we have

a% + a%

F0(520,p) = F(gz) = nT—
ai1an

and thus the bound is

b2 Fo(E20,p)
d| By

a%#—a%

2&1&2

A1 (E20,) < Ai(Aap) = A(Aap)

where A(A, ) is again the first zero of equation (4.6). Plot for p € (0,1) and ¢ := a_11 € (0,1)
can be seen on Figure 4.8.

4.2.3 Stadium with hole

Let the stadium S be the union of the rectangle (—aa, a2) x (—a1, a1) and two discs of radius a;
centered at the points (—as,0) and (az,0). Let c:= 22 € [0,400), { =0 and p € (0,1). Assume
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4 A2 x (bound) 40
T2 30

1.0

0.0

1.0

Figure 4.8: Generalized PS bound for ellipse with axes a; and as = 1 and with hole of size p. A
is area and L is length of boundary curve of ellipse

the domain &g p, i.e., the stadium S with the hole of size p. As in the preceding subsections we
find the annulus A,

B |S0.p] _ [(4ab+7ma?)(1 —p?)  [4ab+ ma?
b‘\/(l—p2>|Bl|‘\/ i-pr V=

a = bp.

The intrinsic quantity Fy(Spp) is again equal to the intrinsic quantity of the stadium F(S), see
(4.4). The obtained bound is then
Fo (SO,p)

= )\1 (Aa’b) T

V2 F 0 (SO,;D)

M(S0p) < Au(Aas) =gt

This bound is plotted for a; =1, i.e., c = a9 € (0,8) and p € (0,1) on Figure 4.9.

4.2.4 Swiss cross with hole

In the end we introduce the swiss cross with hole. Let the swiss cross C be the union of
the two rectangles (—as — ai,a2 + a1) X (—a1,a;) and (—ai,a1) X (—ag — a1,a2 + a1). Let
¢ = 22 € [0,400), the center of the hole { = 0 and p € (0,1). So we have the hollow domain
Cop- The required annulus A,y is

B 1Co.pl _ [(8ab+4a?)(1 —p?)  [8ab+ 4a?
b_\/(l—P2)|Bl\ _\/ L-p)r G

a = bp.
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16

4 A2 x (bound) 14

2 12
10

0.0

Figure 4.9: Generalized PS bound for stadium with parameters a; = 1 and a9 and with hole of
size p. A is area and L is length of boundary curve of stadium

Also its intrinsic quantity Fo(Cop) can be written as

1+c+c?
Fo(Coy) = F(C) =872
see (4.5). Therefore we have the bound
bQFo(C() ) 4(1 +c+ CQ)
A <M (Agp) — 22 = N (Agp) ————— >
1(60717) = 1( ,b) dle| 1( ,b) 7'('(1 —|—C)

The plot for a; =1, i.e., c =ag € (0,8) and p € (0,1) is on Figure 4.10.
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Figure 4.10: Generalized PS bound for swiss cross with parameters a; = 1 and as and with hole
of size p. A is area and L is length of boundary curve of swiss cross



Conclusion

In the thesis we introduced the Laplace operator with the Dirichlet boundary conditions and
showed its huge importance in the musical theory. Then we correctly defined the self-adjoint
Dirichlet Laplacian on bounded domains and stated some of its spectral properties.

We used the min-max principle and the shrinking and parallel coordinates to obtain the two
non-trivial and sharp (for balls) upper bounds for the first eigenvalue of the Dirichlet Laplacian,
the Polya and Szégo’s (in arbitrary dimension) and Payne and Weinberger’s (planar) bound.
Moreover we introduced our own result, the generalization of the Pélya and Szégo’s bound for
particular not simply-connected domains. We also stated the trivial bound, two conjectures and
one lower bound, the Faber-Krahn inequality.

In the end we applied the obtained bounds to some types of domains (particularly rectangular
parallelepipeds, ellipsoids, stadiums and swiss crosses) and compared them. And since none of
the others bounds is applicable on not simply-connected domains which we created from the
preceding types, we plotted the dependence of our bound on the size of the domain and the size
of the hole.
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