
Czech Tchnical University in Prague

Faculty of Nuclear Sciences and Physical
Engineering

Department of Physics

Perkolace a kvantové procházky

Percolations and quantum walks

RESEARCH WORK

Author: Bc. Jan Mare²

Supervisor: prof. Ing. Igor Jex, DrSc.

Consultant: Ing. Jaroslav Novotný, Ph.D.

Year: 2013



Prohlá²ení

Prohla²uji, ºe jsem sv·j výzkumný úkol vypracoval samostatn¥ a pouºil jsem pouze
podklady uvedené v p°iloºeném seznamu.

Nemám závaºný d·vod proti uºití ²kolního díla ve smyslu �60 Zákona £ 212/2000
Sb., o právu autorském, o právech souvisejících s právem autorským a o zm¥n¥
n¥kterých zákon· (autorský zákon).

Declaration

I declare, I wrote my Research Project independently and exclusively with the use
of cited bibliography.

I agree with the usage of this thesis in the purport of the �60 Act 121/2000 (Copyright
Act).

V Praze dne ....................
........................................

Bc. Jan Mare²



Acknowledgments

I would like to thank my supervisor, especially for a very interesting subject of
the work in a currently developing area of research. I am also grateful for various
corrections and recommendations during writing the work.

Bc. Jan Mare²



Contents

Introduction 6

1 Percolation 7

1.1 What is percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Classical percolation results . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Dynamic percolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Quantum walks 10

2.1 Classical random walk . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Quantum walk on a line . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Quantum walk on a 2D lattice . . . . . . . . . . . . . . . . . . . . . . 12

3 Percolation in QW - Numerical approach 16

3.1 Percolated QW on a line . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Dynamic gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.2 Quantum tunnelling . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Percolation in QW on 2D lattice . . . . . . . . . . . . . . . . . . . . . 17

4 Percolation in QW - Asymptotic dynamics 20

4.1 QW on a general percolated graph . . . . . . . . . . . . . . . . . . . 20

4.2 The attractor subspace . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 p-attractors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Attractors for QW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 General attractors . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.2 Method summary . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3.3 The step condition . . . . . . . . . . . . . . . . . . . . . . . . 24

4



5 Fluctuating space 29

5.1 1D graph example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.2 Perfect graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.3 Percolated graph . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 2D graph example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Perfect graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.2 Percolated graph . . . . . . . . . . . . . . . . . . . . . . . . . 33

Conclusion 36

Literature 37

5



Introduction

This work deals with percolation in coined quantum walks. Quantum walks are a
quantum counterpart of classical random walks. There is quite a big interest in
quantum walks recently as they can be used for example to simulate other physical
quantum systems or even be utilised for quantum computing. Great part of the
research is done on imperfections in quantum walks. It is important to know, how
is the evolution in�uenced by various external e�ects.

Here we use the model of percolation known from classical physics as an example
of a disturbance in quantum walks. In particular we are interested in asymptotic
behaviour.

First we summarize some published results mainly about spreading of a quantum
walk on an in�nite percolated graph. The main part of this work is than �nding
possible asymptotic states for a partially percolated quantum walk on two particular
�nite graphs.
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Chapter 1

Percolation

1.1 What is percolation

In this chapter we will introduce the concept of a classical percolation. Percolation is
a very simple model of disordered media. To illustrate the concept of percolation on
a physical model, one can think of a big block of some porous material submerged
in water. Such material contains narrow channels through which water can leak into
the block. We assume, that (compared to the size of channels), the block can be
considered "in�nitely" large. Now we ask, what is the probability of the center of
the block getting wet given a microscopic structure of the material. This is actually
how the problem of percolation was originally stated.

In modern terms, percolation takes place on some graph G = (V,E), where V is
set of vertices and E set of edges. This graph is connected (there is a path between
any two vertices) and for simplicity undirected. Standard terminology in percolation
theory is using sites instead of vertices and bonds instead of edges. (In this work we
will sometimes use these terms interchangeably.)

In a percolation model we basically create a new graph form G by removing some
of it's sites or bonds. Therefore we have two types of percolation: site percolation

and bond percolation if we remove sites or bonds respectively. In both cases there
is a given p (0 ≤ p ≤ 1) and each site/bond is independently maintained with
the probability p or removed with the probability 1 − p. It is said, that remaining
sites/bonds are open and removed sites/bonds are closed. The value p is sometimes
called percolation probability.

We can now ask about the properties of the resulting graph as a function of p.
In particular an important question is whether there exists an in�nite cluster of
connected sites. This takes us back to our motivation example with the block of
porous material. The existence of such in�nite open cluster containing the centre
of the block is equivalent to the center being reached by the water coming from
outside.

For a given graph there is a particular critical probability pc. For p < pc, the prob-
ability of the existence of an in�nite open cluster is zero and for p > pc there surely
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is exactly one such cluster. Except for several special cases, �nding exact values
of pc for di�erent graphs is a very di�cult problem. Nevertheless much progress
has been done in answering another questions about percolation. In particular, so
called power laws have been discovered. Those are formulas describing distributions
of open clusters in percolated graphs with p close to pc, which hold for large classes
of graphs.

1.2 Classical percolation results

We will use the symbol θ(p) for the probability of the existence of an open path
from the origin to in�nity. This θ(p) is often called percolation probability, which we
have also used for p. Hopefully, there will be no misunderstanding due to this. We
can now de�ne the critical probability as pc = sup{p|θ(p) = 0}.

Further we denote the open cluster containing the vertex x by C(x) and speci�cally
the open cluster containing the origin as C(0).

If p < pc, all open clusters are �nite. On the other hand p > pc means, that C(0) is
in�nite with strictly positive probability. If we have a lattice (or another homoge-
neous graph), the probability of C(x) being in�nite is the same for all x. By using
Kolmogorov's zero-one law, we obtain the result that there is some in�nite cluster
with probability 1. It can also be seen intuitively. If C(0) is �nite, we just pick some
vertex not belonging to C(0) and try again, so we have in�nitely many "attempts"
with non-zero chance of success.

Exact values of pc were found just for several types of graphs. For example pc = 1
2

for bond percolation on a square 2D lattice and site percolation on a triangular 2D
lattice. Some other values of pc where foud numerically with good precision. For
example, for site percolation on a 2D square lattice it is pc = 0.59277± 0.00005 [8].

We will now just very brie�y describe, what those earlier mentioned power laws are.
Although it has been proven only for some special 2D lattices and higher dimensional
graphs (about d > 19), it is believed that some functions of p are given by universal
formulas independently of a speci�c graph structure. (Possibility of getting results
for high dimensional graphs is given by their similarity with regular trees.) For
example the expected number of vertices in C(0) behaves like (pc− p)−γ for some γ
as p grows towards pc. Further θ(p) behaves like (p− pc)β as we go down to pc.

These critical exponents (γ, β, ...) are believed to depend only on dimensionality of
the graph. So for example all 2D lattices should have the same γ.

1.3 Dynamic percolation

So far we have been discussing only cases when the percolation graph is given at
the beginning and undergoes no change during the process. When we model our
system with some discrete time process like e.g. random walks or coined quantum
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walks, we can naturally consider some changes in the graph structure during the
process. If these changes are still much slower than the characteristic time step of
the process, we call it static �uctuations (may lead to Anderson localisation). On
the other hand if the typical time of the graph change in comparable to the step
time we have dynamic �uctuations (may lead to di�usion). An obvious example of
the later case is when we generate a new percolated graph in every time step of the
process.
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Chapter 2

Quantum walks

Here we introduce the concept of a classical random walk and than focus on quantum
walks. Even though a quantum walk (QW) is a quantum counterpart of a classical
random walk, the di�erence is signi�cant. While perfect quantum walks rely heavily
on coherence and can exhibit speci�c wave properties, classical random walks are
incoherent processes. Nevertheless, when we introduce some disturbance in a QW
(partial measurements, classical randomness like percolation,...) the di�erence may
be suppressed or even vanish.

2.1 Classical random walk

Let us �rst very brie�y introduce a classical random walk. Random walk is a discrete
stochastic process on a graph. In the simplest scenario, we have an in�nite line of
discrete uniformly distributed points and a walker with a coin. In discrete time steps,
the walker �ips a coin and makes one step to the left or to the right according to
the coin �ip.

Now we can ask, what is the probability of the walker being at a given position
x (relative to his starting point) after n steps. In other words, we want to �nd the
probability distribution of his position. Let us assume, that the coin is unbiased (the
same probability for heads and tails) and so we get a balanced random walk. It is
easy to see, that the walker's position mean is his starting point (for all n). Actually
in our case his position follows a binomial distribution (Figure 2.1) and therefore
the standard deviation is

√
n.

2.2 Quantum walk on a line

In the quantum version we will also begin with a walk on a line. The underlying
graph is the same (line of nodes with edges between nearest neighbours), but now the
vertices represent orthonormal states in the position Hilbert space of the quantum
walker (denoted Hx). The walker has a coin as well. (As in the classical version, we
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Figure 2.1: The probability distribution of a classical random walk with unbiased
coin after 20 steps. If we consider only even positions (odd positions are unoccupied
in even steps and vice versa), we get a binomial distribution.

will consider only discrete time quantum walk - a continuous time walk has no coin
in either case.) Here the coin is some two level quantum system (spin, polarisation,
...) with the coin Hilbert space (denoted Hc). Let us use the symbols |−1〉 and |+1〉
for orthonormal bases states in Hc. The entire state of a quantum walker is a vector
from the tensor product of the position Hilbert space and the coin space Hx ⊗Hc.
In contrast to classical random walk, the state of a walker can be now an arbitrary
superposition of all position and coin states.

The time evolution of a quantum walk is given by the unitary operator U = SC.
Here C = (1x ⊗Cc) is the coin operator. Cc acting only on Hc is extended by unity
on position space Hx. S stands for the step operator governing the walker's motion
on the lattice. The resulting state of the walker starting in the state |ψin〉 after t
steps is therefore:

|ψt〉 = U t |ψin〉 = (SC)t |ψin〉 .

In the case of a quantum walk on a line, the operator C is represented by an unitary
2× 2 matrix in each vertex. In general it can be written in the form:

C(gen)
c =

[
cos(ξ) eiθ sin(ξ)

eiφ sin(ξ) −ei(θ+φ) cos(ξ)

]
, (2.1)

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ π and 0 ≤ ξ ≤ 2π. A commonly used example is the
Hadamard coin:

C(Hadamard)
c =

[
1√
2

1√
2

1√
2
− 1√

2

]
=

1√
2

[
1 1
1 −1

]
.

The step operator can be written as:
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S =
∑
x

|x+ 1,+1〉 〈x,+1|+ |x− 1,−1〉 〈x,−1| .

Here we are using notation |X〉x ⊗ |C〉c ≡ |X,C〉 and the order of symbols is the
same for dual bra vectors. So the action of the step operator on bases states is:

S |x,+1〉 = |x+ 1,+1〉 , (2.2)

S |x,−1〉 = |x− 1,−1〉 .

It shifts the position of the walker according to state of the coin and leaves the coin
part of the system unchanged. Note, that the action of this operator is the same for
all x.

The walker is at the beginning in some state |ψin〉, which is typically chosen in the
form:

|ψin〉 = |0〉 (α |−1〉+ β |+1〉).

The walker starts at the origin with the coin in some superposition. The evolution
"spreads" the walker from the origin by creating superposition of still more distant
vertex states.

There are numerous di�erences between classical random walks and quantum walks.
A typical quantum feature is interference, which in a quantum walk fundamentally
in�uences the resulting probability distribution. Figure 2.2 shows the probability
distribution of the walker's position (summed over coin states) for a quantum walk on
line with the Hadamard coin and the initial state |ψin〉 = |0〉 1√

2
(|−1〉+ i |+1〉) after

100 steps. This setting produces a symmetric position distribution of the quantum
walker.

As can be seen from the �gure, a quantum walk (here we are still talking just
about 1D walk) spreads much faster than a classical random walk. It's standard
deviation grows linearly with the number of steps. (That is a quadratic speed-up
over classical.) This property is not in�uenced by changing the initial state or the
coin operator. An illustration of this is presented on �gures 2.3 and 2.4. The �gure
2.3 shows the probability distribution of quantum walks with di�erent initial states
and 2.4 for various coins. The ballistic spread is obvious in all cases, even if the
scaling prefactor depends on the coin choise.

2.3 Quantum walk on a 2D lattice

Let us consider a square two dimensional regular lattice of vertices. (Nearest neigh-
bours are connected with edges.) In the classical case, the walker would need a
four sided "coin" (rather a dice) to toss at each step. The same holds for a quan-
tum walk, where this coin is some four level quantum system with basis states
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Figure 2.2: Position probability distribution (summed over coin states) for a quan-
tum walk on line with the Hadamard coin and the initial state |ψin〉 = |0〉 1√

2
(|−1〉+

i |+1〉) after 100 steps. Only even positions are displayed since the probability at
odd positions is zero in even time steps.

Figure 2.3: Position distribution (summed over coin states) for quantum walk on
line with Hadamard coin and the initial states: a) |ψa〉 = |0〉 1√

2
(|−1〉 + i |+1〉) b)

|ψb〉 = |0〉 (i |+1〉) and c) |ψa〉 = |0〉 |−1〉 after 100 steps. Only even positions are
displayed since the probability at odd positions is zero in even time steps.
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Figure 2.4: Position distribution (summed over coin states) for quantum walk on line
with the initial state |ψa〉 = |0〉 1√

2
(|−1〉 + i |+1〉) and the coin 2.1 with a) ξ = π/4

(Hadamard), b)ξ = π/6 and c) ξ = π/8 after 100 steps. Even though the speed of
the spread di�ers for di�erent choices of ξ, it is still ballistic (proportional to the
number of steps). Only even positions are displayed since the probability at odd
positions is zero in even time steps.

|L〉 , |R〉 , |D〉 , |U〉. In contrast to a 1D walk, the choice of the coin in�uences signif-
icantly the behaviour of a quantum walk. For illustration of a 2D quantum walk,
we will use for example so called Grover's coin. In the matrix representation it is
written as:

C(Grover)
c =

1

2


−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

 . (2.3)

The advantage of the Grover's coin is it's symmetry. (Although is is not the only
coin allowing for a symmetric QW.) It treats all directions equally except from a
sign �ip performed on the direction the walker came from. This choice also requires
a modi�cation of the step operator (to preserve unitarity [4]) - it inverts coin states:

S4 |x, y, L〉 = |x− 1, y, R〉 , (2.4)

S4 |x, y, R〉 = |x+ 1, y, L〉 ,
S4 |x, y,D〉 = |x, y − 1, U〉 ,
S4 |x, y, U〉 = |x, y + 1, D〉 .

A quantum walk on a 2D grid is signi�cantly di�erent from the one dimensional
version. While ballistic spread is a robust e�ect (not dependent on the initial state
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nor the coin) in a walk on a line, it is not so here. There is one speci�c initial
state exhibiting spread like 1D walk, but for most initial states, there is a central
peak of probability in the origin. Nevertheless the spread is still faster than for a
classical random walk. The situation is illustrated on �gures 2.5(a) and 2.5(b). Figure
2.5(a) shows the walk with the special initial state mentioned above, speci�cally
|ψin〉 = 1

2
|0, 0〉 (|L〉 + |R〉 + |D〉 + |U〉). On the �gure 2.5(b) there is probability

distribution averaged over 500 walks with randomly chosen initial states.

From this we see, that in 2D quantum walk, it matters which initial state we choose.
Therefore in further investigation, we will be careful to indicate whether we use
the fast spreading initial state presented above or some other one or possibly some
averaging over more initial states.

(a) Random states (b) Random phases

Figure 2.5: Figure 2.5(a) shows a probability distribution of 2D quantum walk
with 20 steps, Grover's coin and special initial state |ψin〉 = 1

2
|0, 0〉 (|L〉 +

|R〉 + |D〉 + |U〉). Figure 2.5(b) shows an average probability distribution
for 500 2D quantum walks with 20 steps, Grover's coin and randomly
chosen initial states. The random initial states are of the form |0, 0〉 ⊗
(rand(-1,1) |L〉+ rand(-1,1) |R〉+ rand(-1,1) |D〉+ rand(-1,1) |U〉) after normalisa-
tion.

15



Chapter 3

Percolation in QW - Numerical

approach

In this chapter we will summarize results by Leung et al [4] to introduce some basic
phenomena which can occur in percolated quantum walks on in�nite graphs.

3.1 Percolated QW on a line

First let us consider a walk on a line. In the scope of percolation, there is an obvious
problem. For any percolation probability p < 1, there will certainly be some broken
edge both on the left and on the right of the origin. The walker can not pass through
those broken links and the walk becomes just a quantum walk on a �nite line. Two
approaches solving this problem are suggested in [4] - dynamic gaps and quantum
tunnelling.

For purposes of this summary, we will stick to the notation of the paper and use
slightly di�erently (but equivalently) parametrized form of a general coin operator:

C(gen)
c =

[ √
η eiθ

√
1− η

eiφ
√

1− η −ei(θ+φ)√η

]
,

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ π and 0 ≤ η ≤ 1.

3.1.1 Dynamic gaps

Here we use the concept of dynamic percolation mentioned earlier. We generate a
new percolation lattice at every time step. This ensures, that broken sites/edges do
not block the walker permanently. We modify the step operator by making it position
and time dependent. If the edge in a given direction is present we use operator (2.2).
If the edge in plus or minus direction is absent, we use a transformation
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|x,+1〉 → |x,−1〉 , (3.1)

|x,−1〉 → |x,+1〉 ,

respectively. The walker is re�ected on a missing edge.

While using the Hadamard coin, this type of disruption of a quantum walk leads
after some number of steps (scaling as 1/(1−p)) to a classical spreading of the walk.
It has an e�ect similar to nonunitary evolution caused by random measurements.
The speed of such a quantum walk is proportional to

√
t (with a higher prefactor

than for a classical random walk).

3.1.2 Quantum tunnelling

This model considers the well known phenomenon on quantum particles - tunnelling
through potential barriers. The quantum walker can now pass broken links, but here
we use a biased coin (3.1) with η < 0, 5 on both sides of the gap. This corresponds
to a slower spreading over broken links.

Figure 3.1 shows numerical results for a quantum walk with 100, 1000 and 10000
steps with η = 0, 25 and di�erent percolation probabilities. We can see that quantum
coherence remains for some time (100 steps), but asymptotically the walk with
0 < p < 1 spreads like a classical random walk on an unpercolated line. (The scaling
prefactor is again higher for a quantum walk.) Long-term quantum coherence lasts
only for extreme cases of all edges present or pure tunnelling.

3.2 Percolation in QW on 2D lattice

On percolated lattice we have vertices of di�erent degree, so we must de�ne ap-
propriate coin operators to keep the evolution unitary. In [4] generalized Grover's
coin is used which for dimension d has elements (CGrover

d )ij = 2/d − δij. (Matrix
�lled with the number 2/d and the diagonal reduced by 1.) The coin for particular
con�guration is a matrix with one-dimensional blocks -1 for broken edges and the
rest constructed from corresponding Grover's matrix.

Simulations were done for three settings. For two pure initial states states:

|ψmax〉 =
1

2
|0, 0〉 (|L〉+ |R〉+ |D〉+ |U〉), (3.2)

|ψmin〉 =
1

2
|0, 0〉 (− |L〉 − |R〉+ |D〉+ |U〉),

with maximal respectively minimal spreading and also for walk averaged over ran-
dom choices of sign.
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Figure 3.1: Quantum walk with tunnelling (η = 0.25) with various setting: 100 (top),
1000 (middle) and 10000 (bottom) steps with percolation probability p = 1 (black),
0.75 (red), 0.5 (green), 0.25 (blue) and 0 (orange). Only even positions are displayed,
since probability at odd positions is zero in even time steps. [4].

As a measure of spreading, the mean distance from the origin:

r̄ =
∑
x,y

√
x2 + y2p(x, y)

is used, where p(x, y) is probability of the walker being measured at vertex (x, y)
(summed over coin states). Figure 3.2 shows results for the setting with random
states.

With very small p, the walker has basically nowhere to go. Than r̄ starts growing
(before classical percolation probability - 0.5 for bond and 0.59 for site percolation).
At some point the growth slows down, when the size of a typical open cluster out-
grows the area covered by the walk with given number of steps. At p close to 1 both
bond and site percolated walks behave equally. Due to restoring lattice symmetry,
the spread grows to perfect-lattice walk values.

We can further study the scaling of r̄ with growing t for given p. Figure 3.3 shows
log-log plot. We can see, that after over-going initial �nite-size e�ects we get straight
lines (neglecting four-steps periodic zig-zag behaviour). It means, that r̄ scales as
tα. For p around 0.9, the coe�cient α reaches the value 0.5 (spreading for classical
random walk on perfect lattice) and than rises fast to α = 1 for perfect quantum
walk. Examining similar data for |ψmax〉 shows, that spreading in this case has higher
α than averaged walks [4], so spreading scales di�erently.
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Figure 3.2: Value r̄ of 2D quantum walk as a function of percolation probability p
for di�erent numbers of steps using initial states with random phases (both, bond
and site percolation). [4].

Figure 3.3: Value r̄ of 2D quantum walk as a function number of steps t for various
percolation probabilities p using initial states with random phases. [4].
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Chapter 4

Percolation in QW - Asymptotic

dynamics

Applying the results by Novotný et al on asymptotic dynamic of random unitary
operations [5], Kollár et al [6, 7] describes asymptotic dynamics of coined quantum
walks on �nite percolated graphs. We will now introduce these ideas and use them
in the next chapter.

4.1 QW on a general percolated graph

First we need to describe quantum walk on an arbitrary bond-percolated graph. Let
the graph be G = (V,E), where V is the set o vertices (sites) and E the set of edges
(bonds). As in previous cases the walk is driven by an evolution operator UK . Here
K ⊂ E stands for a subset of edges which remained open, thus (V,K) is a graph
given by particular realisation of the percolation process. We can describe UK as:

UK = SKC, (4.1)

where C is an operator acting on the coin space and SK is a step operator given by:

SK =
∑
a∈V,d

(a,a⊕d)∈K

|a⊕ d, d〉 〈a, d|+
∑
a∈V,d

(a,a⊕d)/∈K

Ra |a, d〉 〈a, d| . (4.2)

Here d goes over all directions possible at the vertex a, a ⊕ d denotes the nearest
neighbouring vertex of a in the direction d and Ra is the re�ection operator in the
vertex a. The operator SK moves the walker to an appropriate neighbouring site if
the edge needed is present in K and leaves him at the current position if this edge is
missing. In the case of a missing edge the re�ection operator Ra acting on the coin
state is applied, which ensures unitarity of SK .
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In the case of a d-regular graph, we may use the same coin operator (Cc) in all
vertices and than the resulting coin operator can be written as C = Ix ⊗ Cc, where
again Ix is the identity operator acting on the position space. It is important, that
even if the coin in every vertex is di�erent, the evolution operator UK decomposes
into subsequent application of two other unitary operators C and SK .

Now the problem of investigation is to obtain analytical results about the behaviour
of a dynamical percolation on �nite graphs. Due to the presence of a classical un-
certainty in generating a new percolation graph in every step, we need to describe
our walker by a density operator. The initial state is now some ρ0 and the evolution
is given by a superoperator Φ derived from UK as

ρ(n+ 1) = Φ(ρ(n)) =
∑
K

πK(p)UKρ(n)U †K , (4.3)

where πK(p) is the probability that the percolation process leads to the con�guration
K if the percolation probability is p.

4.2 The attractor subspace

Equation (4.3) for Φ exactly corresponds with the de�nition of random unitary
operator investigated in [5], therefore we can use methods described there to �nd the
asymptotic dynamics of our quantum walk. First we need to �nd so called attractors.
Those are special operators forming a subspace of the possible asymptotic states of
the walker. (They are not necessarily valid density operators.) All other components
of the initial state are suppressed after a su�cient number of iterations. Attractors
are all possible solutions Xλ,i of the equation:

UKXλ,iU
†
K = λXλ,i, where |λ| = 1, for ∀K. (4.4)

The index i distinguishes di�erent orthogonal "eigenvectors" (operators solving the
equation) of a given eigenvalue λ. We will denote the set of all eigenvalues λ as σ.
By ∀K we either mean ∀K ⊂ E or a subset of 2E containing all possible con�gu-
rations, when we consider only partial percolation on some edges. (Therefore some
con�gurations are not allowed by de�nition of the problem.)

The asymptotic state is given by:

ρ(n) = Φn(ρ0)
n→∞−→

∑
λ∈σ,i

λnTr(X†λ,iρ0)Xλ,i. (4.5)

From there we can observe, that the asymptotic behaviour is independent of values
πK(p) and therefore independent of p as long as 0 < p < 1. These probabilities
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only determine the speed of convergence of the actual state towards our predicted
asymptotic behaviour.

If there is just one attractor, it is the only possible asymptotic state. On the other
hand, if there are attractors corresponding to eigenvalues λ 6= 1, there can be asymp-
totic cycles in the walker state.

4.2.1 p-attractors

The article [7] gives a method, how to �nd some attractors more easily by using
common eigenvectors of all operators UK . Let us denote the basis of those common
eigenvectors {|φα,iα〉}. Therefore these states ful�l the equation

UK |φα,iα〉 = α |φα,iα〉 , for ∀K. (4.6)

Now we can simply construct attractors corresponding to λ from matrices of the
type |φα,iα〉

〈
φβ,iβ

∣∣ as:
Yλ,i =

∑
αβ∗=λ,iα,iβ

Aα,iαβ,iβ
|φα,iα〉

〈
φβ,iβ

∣∣ . (4.7)

We will call these attractors p-attractors. It is important to know, that p-attractors
are not the only attractors of the system.

It is easy to see, that p-attractors satisfy the condition

YλUK = λUK′Yλ,i, where |λ| = 1 for ∀K,K ′, (4.8)

In fact this relation is equivalent to Yλ,i being an p-attractor [7].

4.3 Attractors for QW

4.3.1 General attractors

If we use the speci�c form of UK given by (4.1), we can rewrite equation (4.4) into
the form

CXλ,iC
† = λS†KXλ,iSK for ∀K. (4.9)

The left hand side of the equation is independent of chosen K ⊂ E and therefore:
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SKXλ,iS
†
K = S†K′Xλ,iSK′ for ∀K,K ′. (4.10)

We can therefore separately solve

CXλ,iC
† = λS†KXλ,iSK (4.11)

for one particular choice of K and than constrain the result by the step conditions
4.10. In comparison to solving fully percolated walk (where all edges undergo perco-
lation), in our case we have a problem. For partial percolation (where some edges are
always present) we can not use the convenient con�guration with all edges missing
(resulting to local conditions). It means, that we really have to solve the equation
in the whole Hilbert space (with dimension of the number of all possible directions
in all vertices combined).

Hypothetically we could use a brute-force method. In fact the equation 4.12 is equiv-
alent to

(SC)⊗ (SC)∗x = λx, (4.12)

where x is de�ned by 〈a, b |x〉 = 〈a |X | b〉. This is just the task of �nding eigenstates
of an unitary operator, but the problem is it's size. For example for our rather small
4-regular graph with 3×6 sites the dimension of the space on which SC acts is 72 and
therefore (SC)⊗(SC)∗ is a 5184×5184 matrix. Finding eigenstates for such a matrix
has signi�cant demands on computation resources. (It is not reasonably feasible on
a 2,6 GHz processor, 6 GB RAM computer using the function Eigensystem[] in
Wolfram Mathematica software.)

To overcome the di�culty described above we can use p-attractors. We can use the
fact, that p-attractors can be constructed from common eigenstates of the evolution
operator. The general attractor equation

CXλ,iC
† = λS†KXλ,iSK (4.13)

can be understood as being the p-attractor equation

CXλ,iC
† = λS†LXλ,iSL′ (4.14)

where we have just chosen both L and L′ to be K. This will allow us tu �nd the
solution of one con�guration (on which we will subsequently apply the step condition
4.10) using pure states requiring just a fraction of computer resources compared to
the straightforward approach.
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4.3.2 Method summary

The method we will use is the following: Let the dimension of the full Hilbert space
be N . First, we �nd all N eigenstates {|φα,iα〉} of one chosen operator UK = SKC
(not common eigenstates). From those we can construct N ×N operators

Zα,iα,β,iβ = |φα,iα〉
〈
φβ,iβ

∣∣ . (4.15)

Those all solve the equation

SKCZα,iα,β,iβS
†
KC

† = αβ∗Zα,iα,β,iβ . (4.16)

On the other hand we want to solve the equation

CXλ,iC
† = λS†KXλ,iSK ,

SKCXλ,i(SKC)† = λXλ,i. (4.17)

Note, that all Zα,iα,β,iβ are solutions of 4.17 with λ = αβ∗. As we cannot �nd more
than N ×N mutually orthogonal solutions, we have them all.

The next step is to �nd restrictions given by the step condition. We do not want to
loose any attractors and therefore instead of using the condition for pure states

S†K |φα,iα〉 = S†K′ |φα,iα〉 , for ∀K,K ′, (4.18)

(4.19)

we will instead be follow

SKXλ,iS
†
K = S†K′Xλ,iSK′ for ∀K,K ′. (4.20)

It is important that we do not only test Zα,iα,β,iβ on ful�lling the step condition. We
must consider all linear combinations within each eigenvalue subspace and �nd all
that �t 4.20.

4.3.3 The step condition

Here we will present some general �ndings about the step condition 4.10 for par-
tially percolated graphs. Let us have have two operators SK1 and SK2 . (This can
be obviously generalised for comparing more operators.) Let us use the notation
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Figure 4.1: Illustration of the notation in solving the step condition.

K = K1 ∩K2 (edges present in both sets), L1 = K1 \K (edges present just in K1),
L2 = K2 \K (edges present just in K2) and M = E \ (L1 ∪K ∪ L2) (edges missing
in both sets). (See �gure 4.1.) Now we can write:

SK1 =
∑

(a,a⊕d)∈K

|a⊕ d, d〉 〈a, d|+
∑

(a,a⊕d)∈L1

|a⊕ d, d〉 〈a, d|+
∑

(a,a⊕d)∈L2

Ra |a, d〉 〈a, d|+

+
∑

(a,a⊕d)∈M

Ra |a, d〉 〈a, d| ≡ A+B1 + C1 +D,

SK2 =
∑

(a,a⊕d)∈K

|a⊕ d, d〉 〈a, d|+
∑

(a,a⊕d)∈L1

Ra |a, d〉 〈a, d|+
∑

(a,a⊕d)∈L2

|a⊕ d, d〉 〈a, d|+

+
∑

(a,a⊕d)∈M

Ra |a, d〉 〈a, d| ≡ A+B2 + C2 +D,

where A,B1, B2, C1, C2 and D are just a shorthand for corresponding terms. Now
the equation is

SK1XS
†
K1

= SK2XS
†
K2
,

(A+B1 + C1 +D)X(A+B1 + C1 +D)† = (A+B2 + C2 +D)X(A+B2 + C2 +D)†.

After removing terms that are the same on both sides we have

(A+D)X(B1 + C1)
† + (B1 + C1)X(B1 + C1)

† + (B1 + C1)X(A+D)† =

= (A+D)X(B2 + C2)
† + (B2 + C2)X(B2 + C2)

† + (B2 + C2)X(A+D)†.

The operator X can be in general written as X =
∑

s1,c1,s2,c2
Xs1,c1
s2,c2
|s1, c1〉 〈s2, c2|.

After plugging this form into the above equation we can perform scalar products
and we are left with just particular coe�cients Xs1,c1

s2,c2
given by the "bra part" of S

and operators given by the "ket part" of S.

Now we should note, that these "ket parts" are the resulting states after applying
the step operator with the given con�guration. There are two ways how the walker
can get into a particular state (position and orientation) - by passing the edge or
by re�ection. For one given edge con�guration only one of those e�ects may happen
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for every initial state (before the application of the step operator). It is often the
case, that each state can be reached only from one initial state by applying the step
operator. (A typical example is a regular square lattice with the re�ection operator
that just �ips direction.) In such a situation it can not happen, that two terms on
one side of the equation would contain the same ket.

Let us now "de�ne" the re�ection operator. Let R be such that it does not a�ect the
walker's position and if the walker faces some edge and it happens to be closed, he
is re�ected to the direction he would have been facing if he had reached the vertex
by traversing that edge. In particular we have two cases in mind here. The �rst
one is again the square lattice with the re�ection operator that �ips directions. The
other is a "reversed" situation. Here the re�ection operator does nothing (identity
operator), but the normal step turns the walker to return. We will use both these
settings later.

Let us use the notation that c̃ is the state after re�ection if the original state was c,
therefore R |s, c〉 = |s, c̃〉.

Using our assumptions and because the states are mutually orthogonal, the condition
splits into equality of individual terms. The only restriction is that we have to hold
together terms associated with each edge, because those swap due to percolation.

Let us for example �rst examine:

AX(B1)
† = AX(B2)

†,

which is explicitly written as

 ∑
(a,a⊕d)∈K

|a⊕ d, d〉 〈a, d|

( ∑
s1,c1,s2,c2

Xs1,c1
s2,c2
|s1, c1〉 〈s2, c2|

) ∑
(b,b⊕e)∈L1

|b⊕ b, e〉 〈b, e|

† =

=

 ∑
(a,a⊕d)∈K

|a⊕ d, d〉 〈a, d|

( ∑
s1,c1,s2,c2

Xs1,c1
s2,c2
|s1, c1〉 〈s2, c2|

) ∑
(b,b⊕e)∈L1

|b, ẽ〉 〈b, e|

† .
After performing scalar products we have:

∑
(a,a⊕d)∈K
(b,b⊕e)∈L1

|a⊕ d, d〉Xa,d
b,e 〈b⊕ b, e| =

∑
(a,a⊕d)∈K
(b,b⊕e)∈L1

|a⊕ d, d〉Xa,d
b,e 〈b, ẽ| .

Now we can make a step similar to the substitution but it really is just renaming
the summing index. Let us exchange b for b⊕ e and e for ẽ on the right hand side.
Now the equation is:
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∑
(a,a⊕d)∈K
(b,b⊕e)∈L1

|a⊕ d, d〉Xa,d
b,e 〈b⊕ b, e| =

∑
(a,a⊕d)∈K
(b⊕e,b)∈L1

|a⊕ d, d〉Xa,d
b⊕e,ẽ 〈b⊕ e, e| .

Finally we just have to realise, that the graph is undirected and therefore (b, b⊕e) ∈
L1 ⇔ (b⊕e, b) ∈ L1, so the conditions in sums are identical. Finally we can compare
individual terms in the sum and get the condition

Xa,d
b,e = Xa,d

b⊕e,ẽ

for all (a, a⊕ d) ∈ K and (b, b⊕ e) ∈ L1. By using the other equations with just one
"indexed term" (B1, B2, C1 or C2), we have the overall conditions

Xa,d
b,e = Xa,d

b⊕e,ẽ and Xb,e
a,d = Xb⊕e,ẽ

a,d

for all (a, a⊕ d) ∈ K ∪M and (b, b⊕ e) ∈ L1 ∪ L2.

Let us now have a look at the equation

B1X(B1)
† = B2X(B2)

†.

Again the explicit expression is

 ∑
(a,a⊕d)∈L1

|a⊕ d, d〉 〈a, d|

( ∑
s1,c1,s2,c2

Xs1,c1
s2,c2
|s1, c1〉 〈s2, c2|

) ∑
(b,b⊕e)∈L1

|b⊕ b, e〉 〈b, e|

† =

=

 ∑
(a,a⊕d)∈L1

∣∣∣a, d̃〉 〈a, d|
( ∑

s1,c1,s2,c2

Xs1,c1
s2,c2
|s1, c1〉 〈s2, c2|

) ∑
(b,b⊕e)∈L1

|b, ẽ〉 〈b, e|

† .
After performing scalar products we have:

∑
(a,a⊕d)∈L1

(b,b⊕e)∈L1

|a⊕ d, d〉Xa,d
b,e 〈b⊕ e, e| =

∑
(a,a⊕d)∈L1

(b,b⊕e)∈L1

∣∣∣a, d̃〉Xa,d
b,e 〈b, ẽ|

and �nally using the same trick as before we have
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∑
(a,a⊕d)∈L1

(b,b⊕e)∈L1

|a⊕ d, d〉Xa,d
b,e 〈b⊕ e, e| =

∑
(a,a⊕d)∈L1

(b,b⊕e)∈L1

|a⊕ d, d〉Xa⊕d,d̃
b⊕e,ẽ 〈b⊕ e, e| .

Together with the three remaining equations the resulting conditions are

Xa,d
b,e = Xa⊕d,d

b⊕e,ẽ

for all (a, a⊕ d) ∈ L1 and (b, b⊕ e) ∈ L1 or (a, a⊕ d) ∈ L2 and (b, b⊕ e) ∈ L2 and
further

Xa,d
b⊕e,ẽ = Xa⊕d,d

b,e

for all (a, a⊕ d) ∈ L1 and (b, b⊕ e) ∈ L2 or (a, a⊕ d) ∈ L2 and (b, b⊕ e) ∈ L1.

We will use these results in the next chapter to solve some simple particular cases.
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Chapter 5

Fluctuating space

In this chapter we will examine QWs on some speci�c partially percolated (some
edges will always remain present) �nite graphs.

The �rst graph (�gure 5.1) can be thought as representing two 1D systems weakly
coupled to each other. This can be for instance two molecules forming a weakly
bond system. The other possibility is to understand this literally as two coupled one
dimensional spaces.

The second graph (�gure 5.3) may represent two 2D spaces with a connection that
changes it's dimensionality. A one-dimensional connection is still present and the
other two connecting edges only open randomly in some time steps. We want to
examine the in�uence of this dimensionality change.

5.1 1D graph example

5.1.1 Settings

Our �rst graph consists of two 4-loops connected by one edge, see �gure (5.1).
Only this connecting edge (dashed line) undergoes percolation, all others are still
present. This scheme also shows the coin state notation. The vertices with just two
neighbours have the coin states in clockwise direction labelled "+" and in counter-
clockwise direction labelled "-". Connecting vertices have one additional direction
labelled "0".

In analogy to any other discrete quantum walk on a graph, the evolution of our
system is given by the unitary operator U , which consists of the coin operator C
and the step operator S. We have one �uctuating edge and therefore two di�erent
unitary operators U1 = CS1 for the graph with the connection and U2 = CS2 for
the graph without the connecting edge.

Let us now specify the exact behaviour of our step operator. In vertices {1, 2, 3, 6, 7, 8}
we just follow the de�nition given by 4.2, where the second part with the re�ection
operator is not even needed. In connecting vertices 4 and 5, we will also use this
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Figure 5.1: The diagram of the investigated graph. The dashed line represents the
only percolated edge.

de�nition with the identity operator as the re�ection operator. This choice implies
the following behaviour: If the walker comes through the connecting edge, he will
face to return. If he faces the connecting edge and it is closed, he just does nothing.
In loops the walker circulates unless his direction is changed by the coin operator.

As the coin operator, we will use the Hadamard coin C2 in vertices of degree 2 and
the Grover coin C3 at vertices of degree 3. In the matrix representation it is:

C2 =
1√
2

[
1 1
1 −1

]
, C3 =

1

3

 −1 2 2
2 −1 2
2 2 −1

 .
The whole coin operator C is therefore a direct sum: C = C2⊕C2⊕C2⊕C3⊕C3⊕
C2 ⊕ C2 ⊕ C2.

5.1.2 Perfect graph

Let us �rst solve the behaviour of the QW on the perfect graph (with the connecting
edge present). We will use this result when investigating the percolated version. Here
we only need to �nd eigenstates of the unitary evolution operator U1 = CS1. It is
very straightforward to do, but U1 is represented by 18× 18 matrix. I have done the
calculation using Wolfram Mathematica software, see appendix space_1.nb.

5.1.3 Percolated graph

Now we want to restrict our asymptotic states with the step condition to those, that
remain even with the percolation of the connecting edge. Here we can use the result
from the previous chapter because it is not possible that the re�ection would send
the walker to a state that he could also reach through some other edge.

We still use the notation SK1 for the step operator for the perfect graph and SK2

for the step operator for the graph with the connecting edge missing. Therefore
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SK1 = E and SK2 = E \ (4, 5). To �t the notation to what we used in the previous
chapter we have: K = E \ (4, 5), L1 = (4, 5), L2 = ∅,M = ∅.

Let us remind the previous result that we will now use. The attractors must ful�l:

Xa,d
b,e = Xa,d

b⊕e,ẽ and Xb,e
a,d = Xb⊕e,ẽ

a,d

for all (a, a⊕ d) ∈ K ∪M and (b, b⊕ e) ∈ L1 ∪ L2 and further

Xa,d
b,e = Xa⊕d,d

b⊕e,ẽ

for all (a, a⊕ d) ∈ L1 and (b, b⊕ e) ∈ L1 or (a, a⊕ d) ∈ L2 and (b, b⊕ e) ∈ L2 and

Xa,d
b⊕e,ẽ = Xa⊕d,d

b,e

for all (a, a⊕ d) ∈ L1 and (b, b⊕ e) ∈ L2 or (a, a⊕ d) ∈ L2 and (b, b⊕ e) ∈ L1.

In our particular case that is

Xa,d
4,0 = Xa,d

5,0 and X4,0
a,d = X5,0

a,d ,

for all (a, a⊕ d) ∈ K and

X4,0
4,0 = X5,0

5,0 , X4,0
5,0 = X5,0

4,0 .

5.1.4 Results

All calculations are to be found in the appendix space_1.nb. The evolution operator
for the perfect graph (with the connecting edge) has 18 non-degenerate eigenvalues,
so each eigenstate represents a whole subspace. Those give rise to the total number
of 82 "operator eigenvalues". The degeneracy of the eigenvalue 1 is 18. The subspace
of states corresponding to the eigenvalue 1 is the only one where density matrices
can be found.

After introducing the percolation only 41 di�erent eigenvalues remain corresponding
in total to 82 attractors. 10 of those attractors are in the subspace of the eigenvalue 1
and can be made density operators. They give 10 di�erent full-state distributions and
6 di�erent distributions summed over coin states. Nevertheless all these distributions
follow the symmetry of the graph.

It is important to note, that these distributions are not asymptotic states of some
simple initial states (like a state starting at one vertex). It would be very di�cult to
produce such states and therefore this should be understood just as a visualisation
of some building blocks that make up the asymptotic state.
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Figure 5.2: Di�erent asymptotic probability distributions of 1D walk that remain
after introducing percolation.

Figure 5.3: Schema of the second investigated graph. Symbols A and B just denote
edges (3, 3− 3, 4) and (1, 3− 1, 4).

5.2 2D graph example

5.2.1 Perfect graph

Our second graph consists of two small two-dimensional square grids connected by
three edges (5.3). Two of those edges �uctuate between being simultaneously open
and closed. This changes locally the dimensionality of the connection.

In our investigation let us �rst solve a QW on an unpercolated graph with only the
middle connecting edge present. There are no step conditions, we just have to �nd
eigenstates of the evolution operator. We will use the same coin Cc at all vertices
and the re�ecting boundaries settings. It corresponds to a situation, where there are
permanently closed edges pointing out of the graph.

Due to the fact, that the graph we are examining is not homogeneous, there is no
obvious simpli�cation for �nding eigenstates of the evolution operator U . As the
graph has 18 vertices each corresponding to a 4-dimensional subspace, we have in
total the operator U acting on a 64-dimensional Hilbert space.

Our QW is fully de�ned when we choose the coin. Let us follow [7] and examine the
Hadamard coin (CH), the Grover coin(CG) and the Fourier (CF ) coin:
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CH =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 , CG =
1

2


−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

 ,

CF =
1

2


1 1 1 1
1 −i 1 i
1 −1 1 −1
1 i −1 −i

 .
When we investigate the eigenstates the symmetry of the graph and the whole
walk should be conserved. It is obvious in cases of one-dimensional subspaces of
eigenstates corresponding to one eigenvalue. Showing this for example for eigenvalue
λ = 1 (large degeneracy for all three coins) would require �nding convenient bases
instead of the one given by the numerical solution. That appears to be rather di�cult
because of possible sign �ips in both directions associated with the symmetrical
re�ection. We will not discuss this question further in this work.

5.2.2 Percolated graph

Let us now examine the QW on the graph shown in the �gure 5.3 with the two
percolated edges (dashed lines). We have two edges determining the step conditions.
In particular the interesting directions are φ1,3,R with φ1,4,L and φ3,3,R with φ3,4,L.
We will use the setting where both these edges are closed or open simultaneously.
Therefore we again have just two step operators to examine. Here again in the
notation of the preceding chapter we have: K = E \ {(1, 3− 1, 4), (3, 3− 3, 4)}, L1 =
{(1, 3− 1, 4), (3, 3− 3, 4)}, L2 = ∅,M = ∅.

Let us once more repeat the general result for the step condition. The attractors
must ful�l:

Xa,d
b,e = Xa,d

b⊕e,ẽ and Xb,e
a,d = Xb⊕e,ẽ

a,d

for all (a, a⊕ d) ∈ K ∪M and (b, b⊕ e) ∈ L1 ∪ L2 and further

Xa,d
b,e = Xa⊕d,d

b⊕e,ẽ

for all (a, a⊕ d) ∈ L1 and (b, b⊕ e) ∈ L1 or (a, a⊕ d) ∈ L2 and (b, b⊕ e) ∈ L2 and

Xa,d
b⊕e,ẽ = Xa⊕d,d

b,e

for all (a, a⊕ d) ∈ L1 and (b, b⊕ e) ∈ L2 or (a, a⊕ d) ∈ L2 and (b, b⊕ e) ∈ L1.
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Figure 5.4: Some example probability distributions for 2D percolated walk with the
Hadamard coin.

In our particular case that is

Xa,d
1,3,R = Xa,d

1,4,L, X1,3,R
a,d = X1,4,L

a,d ,

Xa,d
3,3,R = Xa,d

3,4,L, X3,3,R
a,d = X3,4,L

a,d

for all (a, a⊕ d) ∈ K and further

X1,3,R
1,3,R = X1,4,L

1,4,L , X1,3,R
1,4,L = X1,4,L

1,3,R,

X3,3,R
3,3,R = X3,4,L

3,4,L , X3,3,R
3,4,L = X3,4,L

3,3,R,

X1,3,R
3,3,R = X1,4,L

3,4,L , X1,3,R
3,4,L = X1,4,L

3,3,R,

X3,3,R
1,3,R = X3,4,L

1,4,L , X3,3,R
1,4,L = X3,4,L

1,3,R.

Due to the fact that here we have more than one-dimensional subspaces, we cannot
apply conditions directly on found states and we have to consider linear combinations
within particular eigenvalue subspaces.

Hadamard coin

If we use the Hadamard coin, there are in total 36 di�erent eigenvalues of the evolu-
tion operator U , and 544 "attractor eigenvalues" for the walk on the perfect graph.
For the perfect walk the total degeneracy of the eigenvalue 1 is 280.

After introducing the percolation only 96 eigenvalues remain corresponding in total
to 1602 attractors. The most - 150 of them correspond to eigenvalue 1 and therefore
are candidates for proper density operators. All 150 attractors corresponding to 1
can be made density operators (Hermitian, trace equal to one, attractor) and give
rise to a lot of non-uniform non-symmetrical distributions (even when summed in
vertices).
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Grover coin

If we use the Grover coin, there are in total 22 di�erent eigenvalues of the evolution
operator U (signi�cantly bigger degeneracy of eigenvalue 1 than in the case of the
Hadamard coin), and 222 "attractor eigenvalues" for the walk on the perfect graph.
For the perfect walk the total degeneracy of the eigenvalue 1 is 996.

After introducing the percolation only 52 eigenvalues remain corresponding in total
to 2116 attractors. The most - 808 of them correspond to eigenvalue 1 and there-
fore are candidates for proper density operators. Unfortunately I was not able to
construct proper density matrices from those states. The conditions for hermicity
produces too large system of equations due to 808 states in the linear combination
(about 3 million equations for 808 variables). The combination of my method and
my computer was not capable of such a computation.

Nevertheless it can be presumed that there will again be states with non-uniform
probability distributions. Maybe better method or longer computation time will
solve this in the future.

Fourier coin

If we use the Fourier coin, all 72 eigenvalues of the evolution operator U are di�erent
(no degeneracy), and there are in total 4464 "attractor eigenvalues" for the walk on
the perfect graph. For the perfect walk the total degeneracy of the eigenvalue 1 is
just 72 (minimum constructed as λλ∗ for all 72 eigenvalues of U).

After introducing the percolation only the eigenvalue 1 remains corresponding to just
2 attractors. Those can be both made proper density matrices both giving a uniform
(full state - not summed in vertices) probability distribution. The only di�erence is
in anti-diagonal terms.
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Conclusion

This work has two goals. One is to give some introduction to the �elds of random and
quantum walks and percolation and also present some previous work on spreading
of a percolated quantum walk on an in�nite lattice.

The other part deals with asymptotic evolution of quantum walks on �nite perco-
lated graphs. Here I have examined two particular �nite graphs representing 1D
and 2D walks. I have calculated possible asymptotic states for perfect graphs and
for partially percolated graphs (graphs consist of two parts connected by percolated
edges).

In order to do these calculations I had to examine the step condition for those
problems. I consider the general result for the step condition for comparing two step
operators to be the main analytical result of my work. It can now be easily used for
investigation of various similar graphs.

The two speci�c example graphs presented here were chosen to represent 1D and
2D walks and in particular the exact form of the percolation of the later graph is
supposed to represent a dimensionality change of the connection. This work is just
a �rst step in investigating this phenomenon. For now we only have asymptotic
states (the simplest problem we may address) for a few choices of coins in two
particular graphs. It is apparent that the coin choice has a fundamental in�uence on
the possible asymptotic states, therefore it is necessary to explore more coins and
�nd some general behaviour that is independent of their choice.

If we really want to focus on the dimensionality changes, we should also vary the
graphs and percolation settings. Further it would be desirable to solve larger graphs
to eliminate the in�uence of the boundary conditions. I must admit that using my
current methods without further optimization I am not able to solve much larger
walks than is the 2D case presented here. Nevertheless some modi�cation can surely
be done especially if one would be interested in just some particular property of the
asymptotic evolution and some general analytical results and uses of some symmetry
or homogeneity may help.
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