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Abstrakt:

Cilem této prace je prozkoumat tiicasticové interakce v ramci modelu nahodnych
unitarnich operaci. Hlavni duraz je kladen nalezeni tzv. minimélniho atrak-
torového prostoru a zkoumani vlivu topologie dané interakce na asymptoticky vyvoj
dané ndhodné unitarni operace. Daéle jsou diskutovany vlastnosti asymptotickych
stavu tiicasticovych interakci a je provedeno jejich srovnani s asymptotickymi stavy

dvoucasticovych interakeci.

Klicovd slova: Otevieny kvantovy systém, ndhodnd unitarni operace, asymp-
totickéd dynamika, kvantova sit, kvantové poéitani, kvantova op-

erace, dvoucasticova interakce, tii¢casticova interakce

Title: Quantum networks with three body interactions

Author: Be. Jifi Maryska

Abstract:

This thesis is devoted to the study of three-particle interactions with the help of
random unitary operations. We focus primarily on finding the so-called base attrac-
tor state and examination how the topology of given interaction affects the resulting
asymptotic dynamic of the corresponding random unitary operation. Next we study
the properties of the asymptotic states of three-particle interactions and the com-

parison with asymptotic states of two-particle interaction is made.
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List of used symbols

The following list gives an overview of the symbols used through the thesis.

Symbol Meaning

N The set of all positive integers, i.e., {1,2,3,...}
N The set {1,2,...,N} with N € N

H The Hilbert space

|) The ket-vector - element of the Hilbert space ¢
(x| The bra-vector - adjoint of the ket vector |z)

Af The hermitean adjoint of an operator A

TrA The trace of an operator A

Iy The identity operator on the space # = C*V

U@V  The direct sum of vector spaces U and V
Ker(A)  The subspace of the Hilbert space ¢ defined as {|z) € J|A|z) = 0}
Ran(A)  The subspace of the Hilbert space J# defined as {|z) |3|y) € A, |z) = A |y)}

® The tensor procuct

|zy) The tensor product of vectors |z) and |y), i.e. |zy) = |z) ® |y)
|z), The ket-vector corresponding to the i-th particle

(] The bra-vector corresponding to the i-th particle

&) The addition modulo 2

(Z) The set of all subsets U of the set V', which meet the condition

U| =k with k < |V|



Structure of thesis

The aim of this thesis is to investigate the asymptotic evolution of a quantum network
consisting of qubits, which are interacting with each other via applications of controlled
unitary three-qubit gates with one or two control qubits. These gates are chosen in

analogy with previously studied cotrolled unitary two-qubit interactions [1].

This thesis is structured as follows. Chapter 1 is devoted to the short introduction
to the description of the time evolution of open quantum systems with stress putted
on the model of quantum operations. Next, we describe the most widely used models
of quantum computation, the adiabatic quantum computing and the quantum circuit

model and we introduce the specific quantum gates, which are important for this thesis.

In Chapter 2, we define random unitary operations, we review their basic properties
which are important for the description of asymptotic evolution of given random unitary
operation and discuss the use of random unitary operations for describing multi-qubit

interaction.

In Chapter 3 basic concepts of graph theory and hypergraphs are defined. Graphs
and hypergraphs are going to be instrumental for visual representation of multi-qubit

interactions and for the classification of their asymptotic evolution.

In Chapter 4, we review previous results concerning the control unitary two-qubit in-
teractions and we discuss how the concept of control unitary three-qubit interactions is
related to this topic. Then we present the main result of this thesis - so-called base at-

tractor spaces of control unitary three-qubit interactions with one or two control qubits



CONTENTS

and we present base graphs of these interactions. Using the obtained results we analyze
basic properties of asymptotic states of controlled unitary three-qubit interactions. The

comparison with basic properties of controlled unitary two-qubit interaction is made.

The results of this thesis are summed up in Chapter 5.
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Chapter 1

Introduction

Every real physical system is in contact with its environment. The system (called
usually the principal system) interacting with its environment can be made isolated by
taking the combined system consisting of the principal system and the environment.
The combined system is closed and its time evolution is thus described by an unitary
operator. The contact of the environment with the principal system can introduce ir-
reversibilities [2] into the time evolution of the principal system and thus the principal
system itself does not have to evolve according to the action of some unitary operator.
Systems of this kind are called open systems. If the contact with environment introduces
irreversibilities into the time evolution the open quantum system is called the dissipative

system.

There are several ways how to approach the problem of time evolution of a general open
quantum system. One can derive the time evolution of the composed system (which is
closed and thus the time evolution is unitary) and then take trace over the environment,
which defines the time evolution on the given system. However, this method is often
not very efficient since environment can be large and the mathematical description of its
interaction with the principal system can be complicated. We refer to this approach as

to the environment-trace description.

The other possibility how to model the action of the environment on the principal system

is to introduce a non-Hermitean Hamiltonian [3] which describes this action. The

11



INTRODUCTION

non-hermicity of the Hamiltonian results in the exchange of energy between the principal
system and its environment. The time evolution of the state of the given system is then
described by the non-Hermitean Schrédinger equation. Since the generator of the time

evolution is non-Hermitean, the propagator of the principal system is not unitary.

The last model of open quantum systems we mention is the model of quantum opera-
tions [4, 5] which is widely used in the theory of quantum information. Since our main
concern in this thesis is closely related to quantum operations, we will describe the basic

concept of quantum operations in the following section.

1.1 Quantum operations

Within the model of quantum operations, we describe the action of the environment
on the principal system by a completely positive map & which acts on the principal
system. We require the principal system and its environment to start in the separable

state p = p® ® p&) and we define the map & as

&(p'%) = Trg [U(p(s) @ pPHUT] .

Although the right-hand side of this equation is identical with the environment-trace
description, within the model of quantum operations we do not specify properties of the
environment as its Hilbert space 7%, we merely define the map & and use it to describe
the evolution of the principal system. This description is significantly different from
the previous one since it describes the evolution of system as a discrete process which
takes the initial state of the principal system p(®), brings it into the contact with the

(E) and after a fixed finite time T the interaction of

environment in the initial state p
the principal system and environment is terminated. The resulting state of the principal

system is then & (p(%).

There exists a very useful form of quantum operation called the operator-sum repre-
sentation [4, 5]. Let |e;) be the orthonormal basis of Hilbert space of the environment
and let the initial state of the environment be |ep). There is no loss of generality by as-

suming that the environment begins in a state with a well defined state vector, since we

12



INTRODUCTION

can always use the quantum purification process to do so [5]. Then we define operators

on the principal system as

Ei = (ep|Uleo) .

With help of these operators we can rewrite the action of a quantum operation as
=Y Byl
kpLsy-
k
Since &(p) must be a density matrix we require for all density matrices p

1=Tr[&(p)| =Tr

ZEkaAZ = ZTI‘ [EA};EA]C,O} = ZE};Ek = j
k k k

This representation has a following physical interpretation. Let p; be the operator

Pk = Aiur
TrlEypE,]
Clearly py is a density matrix. With help of these density matrices we can rewrite the

action of the quantum operation as

ol
Zpkpk =Y P——k 2102

—~ " TrEppE]]
with P, =Tr [Eka,Z} We can thus interpret the action of the map & on the state p as

follows. & takes the state p and replaces it randomly by the state p, with the probability
Py.

1.2  Quantum computation

The main part of this thesis is concerned with the random unitary operations model.
Although this model can be used to solve a very wide range of problems in physics and
biology, one of the most useful applications of this model is certainly its application to the
quantum computation, where it can describe the contact with the principal system and
its environment, which leads to decoherence of the system. As quantum computation
is a powerful tool to solve various problems it is of a significant interest of present-day

science. To process information, quantum computation uses qubits. Although our main

13



INTRODUCTION

concern is going to be the quantum circuit model of quantum computation, we mention
the adiabatic quantum computing model to stress the fact that there are various paths

we can take in the quantum computation.

The model of adiabatic quantum computing [6] is based on the adiabatic theo-
rem [7]. First, the complex Hamiltonian, whose ground state gives the solution of the
given problem is found. This Hamiltonian has usually a form [§]
H=) hZ+Y NXi+)Y JiZ;0Z+> KiX;® X (1.1)
i i i<j i<j
Here X; represents the Pauli matrix o, which acts on the qubit ¢ and Z; stands for the
Pauli matrix o, which acts on the qubit ¢. It was proven that Hamiltonian of the form

(1.1) is the simplest Hamiltonian that allows the universal adiabatic quantum computing

8].

In the next step, the system, whose dynamic is governed by a simple Hamiltonian is
initialized in its ground state. Finally, the Hamiltonian of the system is slowly (adiabat-
ically) varied towards the complex Hamiltonian H. By adiabatic theorem, the resulting
state of the system will be the ground state of the complex Hamiltonian and thus this

method leads to the solution of given problem.

The model of quantum computation we are going to be most concerned about is the
quantum circuit model [4, 9]. This is a direct analog of classical circuit model used
in classical computers. Within the quantum circuit model we have at our disposal the
set of so-called quantum gates. Quantum gates are objects performing operations on
input qubits. The idea is to initialize the system in some specific state, then run it
through a specific set of quantum gates. The resulting state of the system then encodes

the solution of the problem.

There are two basic types of quantum gates - single-qubit gates and multi-qubit gates.
As the names suggest, single-qubit gates operate on the single qubit and multi-qubit
gates operate on at least two qubits. The important kind of multi-qubit gates are con-

trol gates. These gates change the state of one set of qubits (called the target qubits)

14



INTRODUCTION

conditionally on the state of the second set of qubits (called the control qubits). Because
of their importance in this thesis, we will describe two of these gates - the CNOT gate
and the Toffoli gate.

The CNOT [4, 5, 9] or control NOT gate is a quantum gate which acts on two qubits.
This action is usually described in the so-called computational basis. In this basis

the CNOT gate can be written as

Upg = 10) 1,(0] ® I+ |1) 11 (1] @ [|0) 9 (1] 4 [1) 95(0l] -

In this expression I exceptionally stands for the identity operator on the Hilbert space
of the second qubit. The CNOT gate thus changes the state of second qubit only if the
first qubit is in the state |1).

The Toffoli gate [4, 5, 9], which is sometimes called the double CNOT gate acts on
three qubits by the following rule:

012,3 = [12 — |11) 12 12{11]] ® I3+ |11) 12 12011 @ [|0) 35(1] + [1) 55(0]] -

In this expression I; exceptionally stands for the identity operator on the Hilbert

1o
space of the system consisting of qubits i1, ...7;. Thus the Toffoli gate can be viewed as
the CNOT gate with two control qubits. The state of the third qubits is changed only

if both first and second qubit are in the state |1).

Any quantum gate can be viewed as the map & which describes the time evolution
of the principal system within the model of the quantum operation. Thus the quantum
circuit model of the quantum computation and the quantum operation model of the time
evolution of open systems are closely related. As we will see in the next chapter, we can
always find the analytical form of the asymptotic dynamic of special case of quantum
operations - random unitary operations, which makes it a powerful tool for studying

decoherence effects in open quantum systems.

15



Chapter 2

Random unitary operations

In the previous chapter we described the general concept of quantum operations.
Now we turn to the case where the operators in the operator-sum representation Ek
are unitary. Since the unitarity implies the equation E’;LE’;C = I the equation P, =
Tr[EA]:EAkp] = Trp = 1 holds. Thus operators P lose their probabilistic interpretation.
Since the relation

S Bl =1
k

must hold, we are forced to introduce the probabilistic nature of the outcome artificially
by defining probability distribution pg. In this manner we arrive at the random unitary
operation (RUO), which is going to be denoted as ® and the unitary operators in the

operator-sum representation of ® are going to be denoted as Up.

Before we take a step towards the formal definition of RUO [10], let us name some
of the results derived with the help of this model. The most important result related
to this thesis is the asymptotic dynamic of the quantum network consisted of qubits
interacting in pairs via controlled unitary interactions [1]. From the other results let
us name the following. The existence of two kinds of entangled states - robust one and
fragile one [11], the asymptotic dynamic of the quantum Markov chain [12] and the effect

of graph percolations on the quantum walks [13].

16



RANDOM UNITARY OPERATIONS

2.1 Basic properties of random uniteary operations

A random unitary operation ® on a finite-dimensional Hilbert space ¢ is a com-
pletely positive trace-preserving map ® : B(J¢) — B(#) admitting a convex decompo-

sition of the form [10]

®(p) = > pUkpU}.
k=1

Here the ﬁk are unitary operators and p; > 0 fulfill the relation ), p, = 1. The inter-
pretation of action of @ is the following: The state of the system p is by applying the map
® randomly replaced by the state U'kpﬁ,i with the probability p;. These probabilities
are the result of the classical uncertainties which can have different origins. They can
be the result of an unknown error mechanism, an unknown unitary evolution involving

an additional ancillary system or the result of uncertainty about its degrees of freedom.

The main focus of this thesis is devoted to the asymptotic dynamic of a special kind of
RUO in which the certain quantum gates are applied on several qubits. Starting with

the initial state of the system p(0), we iterate this state by the rule p(n+ 1) = ®(p(n)).

Before we turn our attention to the asymptotic dynamic, we summarize the basic prop-
erties of random unitary operations. They belong to the class of unital maps which leave

the maximally mixed state invariant:
n n
(1) =Y pUpdU = ppl =1.
k=1 k=1
With respect to the Hilbert-Schmidt scalar product [14] the adjoint map ® is given by

n
o' (p) = > Ul pUs.
k=1
This equation immediately implies that RUO @ is generally not unitary, neither Her-
mitean or even normal and thus it needs not to be diagonalizable. However, it turns

out that the Jordan form of ®” has in the limit n — oo diagonal from. This property is

going to be beneficial for the description of the asymptotic dynamic of ®.

The following properties of random unitary operations are introduced without proof,

17



RANDOM UNITARY OPERATIONS

which can be found in [10].

The norm of the RUO & induced by the Hilbert-Schmidt scalar product fulfils the
equation ||®||gs = 1. This property follows from the unitary invariance of the Hilbert-
Schmidt norm and the unitality of the RUO ®. The most important consequence of this

statement is that if A is an eigenvalue of ®, then we must have |A| < 1.

If X € B(H) is a generalized eigenvector corresponding to the eigenvalue A of @, then ei-
ther A = 1 or Tr[X ] = 0. The proof of this property follows directly from the definition of
generalized eigenvector of linear map and the equation Tr [(® — AI)" X | = (1—-A)"Tr[X ]

which can be proved by induction on n.

There exists a subspace of B(.7) which is of extreme importance for the description

of asymptotic evolution of RUO ®. It is called the attractor space and it is defined as

Atr(®) = @D Ker(® — AI).
<1

As we will see in the next section, the asymptotic dynamics of RUO & is completely de-

termined by its attractor space. The elements of the attractor space are called attractors.

The main result about the structure of the attractor space of RUO & is the follow-

ing theorem.

Theorem 2.1.1. The eigenspace Ker(® —AI) of RUO ® with |A\| =1 is equal to the set
Dy = {X € B()|U,X = AXUy,Vk € i}

The fact that every X € D) belongs to the kernel of ¢ corresponding to the eigenvalue
A is almost trivial, thus this theorem proves the converse and it gives us the instrument

to construct the attractor space of RUO ®.

From this structure theorem of the attractor space we can easily derive the basic proper-
ties of attractors of ®. These are particularly useful when searching for the explicit form

of the attractor space. The straightforward consequence of the structure theorem is, that

18



RANDOM UNITARY OPERATIONS

if X, and X, are attractors corresponding to eigenvalues A; and Ay with |\;| = 1, then
X, X, is an attractor corresponding to eigenvalue Aj A2 or a zero operator. Furthermore

XL is an attractor corresponding to eigenvalue A7.

2.2 Asymptotic evolution of random unitary operations

The Jordan form of RUO @ has properties which are useful for the description of
asymptotic evolution of ®. It was shown that if we consider the Jordan form of RUO
®, then all Jordan blocks corresponding to eigenvalues A of ® with |A| = 1 are one-
dimensional and thus all generalized eigenvectors corresponding to eigenvalues with
magnitude equal to one are eigenvectors. This is the simple consequence of the fact,

that for eigenvalue A with |A| = 1, we have

Ker[® — AI] N Ran[® — \I] = {0}.
Next, it is straightforward to show, that all Jordan blocks Js corresponding to eigenvalues
As with [Ag| < 1 vanish in the limit of large numbers of iterations [10]:

lim (J,)" = 0.

n—o0

Thus ®" has a diagonal form in the limit of large n. As a last step, it was shown that

the mutually orthogonal subspaces

Jo= @ Ker[® - AI] and Ji= (] Ran[®— ]
A€oy A€oy

are invariant under map ® and they fulfill the relation Jy @ J; = B(5) [10]. These

properties imply that the asymptotic dynamic of ® is given by the state

dx

poo(n) = > A"Tr[p(0)X] ] X,
>\~60—|11‘

in the sense

Jim {[p(n) = peo(n)]] = 0.

19



RANDOM UNITARY OPERATIONS

In this expression, o)1 = {A € o(®), [A| = 1}, p(n) = ®"(p(0)) and {Xx1..., Xna,} is

the orthonormal basis of the subspace Ker[® — AI].

To summarize, the asymptotic dynamic of RUO & is completely determined by the
attractor space of ®. Furthermore, the asymptotic dynamic is completely independent
on the probabilities p;. This follows immediately from the independence of the attractor
space on these probabilities. Thus two RUOs with the same unitary operators in their
convex decomposition have the same asymptotic dynamic. The nonzero probabilities
determine only the rate of convergence of the iteration process towards the attractor

space.

2.3 Random unitary operations as the model for multi-qubit interaction

The unitarity is the only condition which must be satisfied by operators U; which
arise in the convex decomposition of RUO ®. Because of that RUOs form a broad class
of quantum operations with a wide spectrum of behavior. There are two basic cases. In
the first one, operators U; act nontrivially on the whole Hilbert space 5. The opposite
of this case is the situation in which operators U; act nontrivially only on the small
fraction of the Hilbert space 7. Multi-qubit interactions are an example of such RUO.
These are of particular interest in quantum computation since the quantum gate model
of quantum computation is based on the concept of quantum gates, which act on one or
several qubits. The multi-qubit interaction model introduced in the Chapter 4 can be
also viewed as a simple model of particle collisions. Consider a rarefied gas with a short-
range interaction and suppose we are not able to track the positions of the molecules,
but we are able to track if they are in the ground state or in the excited state. The
inability of tracking positions of particles leads to uncertainty about the system and thus
introduces random behavior. Since the gas is rarefied, we can decompose the interaction
of the molecules into steps which are well separated in time and during each step there
is only one interacting pair or triplet of molecules. Since this subsystem is closed at this
particular step, it evolves according to some unitary operator. These considerations lead

us thus to model of random unitary operations.

20



Chapter 3

Graphs and hypergraphs

Many physical systems can be visualized by means of graphs. Informally speaking,
graph is a set of items with connections (called edges) between them. Graphs are useful
in many physical models, they can for instance represent the Internet, social networks,
distribution networks or interacting physical systems [15]. There are many different
kinds of graphs, which depend on the properties of their vertices and edges. The prop-
erties of graphs were extensively investigated during past decades. In recent years, the
attention was drawned towards graphs with a large number of vertices. Large graphs are
of interest because they represent systems composed of a huge number of elements and
they can thus represent the above mentioned systems. With increasing size of the graph
the computational complexity of its properties is also increasing, thereby the analysis of
even the simple properties of graphs such as its connectivity becomes problematic. One
thus turns to the study of large-scale properties of graphs e.g. clustering [16], but as
we will see in next chapter, the small-scale properties e.g. connectivity still do play an
important role for large graphs. An useful generalization of a graph called a hypergraph
accounts for more complex connection between vertices and will be particularly useful

in this thesis.
The purpose of this chapter is to introduce the basic concepts of graph theory, which

are used in next chapters. We will be interested in both graphs and hypergraphs, but

we will define only those properties of these structures, which we are going to use.

21



GRAPHS AND HYPERGRAPHS

3.1 Graphs and their basic properties

We define an undirected graph as the ordered triplet G = (V, E, @), where V =
{v1,...vn} is the set of vertices, E = {ej...e,} is the set of edges and ¢ : F — (‘2/)
Such definition of a graph does not include graphs with loops (edges with both ends at
same vertex), but it does allow multiple edges (two vertices can be connected by more

than one edge).

A finite sequence P = (e;, . . ., ;) of edges, which fulfils the conditions ¢(e;, )N¢(ei;,,) #
0 and @(e;;) # (e, for every j € [—1is called a path in G, the vertex u € V,
which fulfils v N ¢(e;,) = 0 is called the beginning of path P, the vertex v, which fulfils
vNp(e;,_,) = 0 is called the end of path P and the length of path P is I —1. We will call
the path with the beginning v and the end v simply as the path between v and v and
we will denote it P,,. We say that u and v are connected in G. A undirected graph G

is called connected, if every pair of its vertices is connected.

If op: E -V xV, we call G a directed graph. The elements of a E of directed
graph are called directed edges or arrows. If ¢(e;) = (vj;,vx), we call v; the tail of e; and

vy, the head of e;.

There are two kinds of connectivity in a directed graph. If a directed graph G is connected

@ O

Figure 3.1: An example of an undirected graph which is not connected and an example

of a path in an undirected graph (in red).
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GRAPHS AND HYPERGRAPHS

Figure 3.2: An example of a directed graph and an example of a path in a directed graph
(in red).

in the sense of an undirected graph, we say that G is weakly connected. If every u,v €
V are connected by a path Py, = (e, ...,e;) which fulfils [p(e;,)]2 N [p(es;+1)]1 # 0,
where [¢(e;, )]; is the 1-th component of ¢(e;, ), we say that G is strongly connected.
This kind of path is called the directed path.

A graph G equipped with the map C : {1,...,k} — FE is called edge-colored graph
and C(e) for e € E is called as color of the edge e. We will call the graph G m-
connected, if for every pair of m vertices (uy,...,un),(v1,...,vy) there are paths
Py, ... Py, with P, = (e;,,...e;), where P; connects u; with v; and for every i,j € m

and for every n € [ the paths P; and P; fulfill the relation C(e;,) = C(e;,,).

() ()
O @
(a) An example of a weakly (b) An example of a strongly
connected directed graph. connected directed graph.
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3.2 Hypergraphs and their basic properties

A hypergraph [17] is a direct generalization of a graph in which we do not restrict
the relations between vertices to be the binary ones. Instead we define the undirected
hypergraph as the ordered pair H = (V| FE) where E is an arbitrary subset of set of
all subsets of V. The elements of E are called hyperedges. We dropped the map ¢ in
the definition of hypergraph to simplify the notation, since we are not going to need

multiple edges while using hypergraphs.

Rather as a sequence of hyperedges, we define a path in hypergraph as a sequence

of pairs of vertices P = (u = v, vj,,...,0;,_,v;;, = v) for which there is a sequence of
hyperedges (e;,,...,€;,_,) with e;; = Ej such that v;, € En, v;; € Ej—1 and for every
J €{2,...,1 -1} the condition v;; € E; 1 N E; holds. We denote this path by P, and
we say that v and v are connected in H. A hypergraph H is called connected if every

pair of vertices u,v € V' is connected.

A directed hypergraph is H = (V, E), where E is arbitrary subset of the set of all
pairs of disjoint subsets of V. More precisely, if e € E, then e = (X,Y) with X, Y C V
and X NY = (. If u € X, then u is called the tail of hyperedge e, if v € Y, then v is

called the head of hyperedge e.

Figure 3.4: An example of a strongly connected directed hypergraph and an example of

a path in a directed hypergraph (in red).
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GRAPHS AND HYPERGRAPHS

(a) An example of a F-graph. (b) An example of a B-graph.

For a given directed hypergraph H; = (V,E) we define a corresponding undirected
hypergraph H, = (V, F), where F = {(X UY)|(X,Y) € E}. We say that the directed
hypergraph H,; is weakly connected if the undirected hypergraph H, is connected.
We say that the hypergraph H is strongly connected, if for every u,v € V there is a
path P,, = (u = v, viy, ..., 0;,_,v;, = v) such that if v;; 18 the tail of hyperedge e then
vi;,, is the head of hyperedge e holds for every j € L.

There are special types of hyperedges which will be particularly useful for us. Let
e = (X,Y) be a hyperedge. If |[X| = 1, e is called a F-arc, if |Y| = 1, e is called a
B-arc. A hypergraph H in which all the hyperedges are F-arcs is called a F-graph, a
hypergraph H in which all the hyperedges are B-arcs is called a B-graph.

3.3 Incidency matrix

Both graphs/hypergraphs can be represented by the so-called incidency matrix. Let
n be number of vertices of a given graph/hypergraph, let m be the number of its
edges/hyperedges. For undirected graphs/hypergraphs, the incidency matrix is A €
{0,1}™™ with matrix elements defined as
1 if v; is incident with e;

Aij =
0 otherwise
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For directed graphs/hypergraphs, the incidency matrix is A € {—1,0,1}™™ with matrix

1 if v; is head of e;
Ajj=4 -1 if v; is tail of e;
0

otherwise

elements defined as

Figure 3.6: An example of a directed hypergraph G and it’s corresponding incidency

matrix Agq.

With increasing number of vertices and edges of a given graph/hypergraph, the visual
representation tends to be chaotic. The incidency matrix of a given graph/hypergraph

can be very useful in this situation since it encodes the whole information about a given

graph/hypergraph.

26



Chapter 4

Three body interactions

The properties of two body interactions were extensively studied within the random
unitary operations model [1, 11, 12]. Since we know that the attractor space is indepen-
dent on the nonzero probabilities which appear in the convex decomposition of a given
RUO, the question arises, how three body interactions affect the resulting attractor
space. As was already stated in Section 2.3, there are two distinct types of RUOs. The
first one is represented for instance by the two body interactions, the operators involved
in the convex decomposition of this RUO act nontrivially only on the low-dimensional
subspace of given Hilbert space. The other are RUOs, where the operators involved in
the convex decomposition act nontrivially on the whole Hilbert space. As an example of
this case we can list quantum walks on percolation graphs [13]. Three body interactions
then represent the first and the simplest step from the first case towards the second one.
Thus it is interesting to look for their attractor space and search for new features, which
are not present within the two body interactions. As the three body interaction can be
studied from different point of views, we will focus on the two following cases. We will
examine the case with a single control qubit and with two control qubits, from which we

deduce the influence of number of control qubits on the resulting dynamics.
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4.1 Base attractor space and base graphs

A very sophisticated and unifying model of multi-qubit interaction is the model of
quantum networks. A quantum network in our context is the set of qubits which are
coupled with each other by the quantum gates. For sake of simplicity, qubit networks
in which qubits interact with each other via controlled unitary multi-qubit interactions

will be referred to simply as qubit networks.

When studying multi-qubit interaction, one finds that the resulting attractor space
strongly depends on the topology of the interaction. The topology of the interaction
is encoded in the so-called interaction graph of a given system, the definition of this
graph depends on the particular interaction. Generally, there exists a topology of the
interaction, corresponding attractor space of which is a subspace of any attractor space
of given type of interaction. This attractor space is called the base attractor space
and the corresponding interaction graphs are called base graphs. Because of their

importance we study them in following sections.

4.2 Controlled unitary two-qubit interactions

Let us consider a quantum network consisting of N > 2 qubits interacting with each
other by application of controlled unitary two-qubit gates U , which are applied to the
pairs of qubits according to the prescribed probability distribution p;; with ), jpij = 1.

We are interested in the one-parameter family of controlled unitary two-qubit inter-

actions which in the computational basis have the form

Ui(jfb) =0) ;0| ® I; + 1), (1| ® agd))’

where

ﬁ§-¢) = COS¢(|0>jj<0’ - ’1>jj<1‘) + Sin¢(‘0>jj<1’ + ’1>jj<0‘)'

Thus the considered RUOs have the form
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@

()
1 2

Figure 4.1: An example of an interaction graph G corresponding to the RUO (I)(C?)

o (p) =3 " p U pUI).
eclk

Here E is the subset of the set of the ordered pairs (7,7). In the special case ¢ = 7, the
controlled unitary transformation Ui(;b) reduces to a CNOT gate with a control qubit ¢
and a target qubit j. The eigenvalues of the transformation Ul(j)) are given by Ay =1 and
A2 = —1. Because of that, the attractor spectrum oy fulfils the relation o, C {—1,1}.

For ¢ = 0 or ¢ = 7 the RUO @ is diagonal in the computational basis.

We begin the description of controlled unitary two-qubit interactions by construction
of an interaction graph corresponding to such qubit network. Let us consider a graph
G = (V,E,p) with V = N, where the vertex i € V corresponds to the qubit i. The
vertices ¢ and j are connected in G by a directed edge e € E, whose head is j and whose
tail is 4, if p;; > 0. Since G contains no multiple edges, the map ¢ is not needed in
the description of the graph. Because of this we will use the notation G = (V, E) and
e = (i,7). The directed graph G = (V, E)) which is constructed in this way is called the

interaction graph of the given qubit network.

Concerning the base attractor space and base graphs of this one-parameter family of

interactions, the following theorem was proved [1]:
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Theorem 4.2.1. For ¢ # 0,7 the base graphs of the considered family of interactions
are ezxactly all strongly connected interaction graphs G = (V, E). For a given number of
qubits N with N > 2, the associated base attractors are elements of a five-dimensional

(2))

attractor space Atr(®5’). An orthonormal basis system of linear operators in this space

of base attractors is given by

X1 =10n) (On],  Xo=|0n) (¥l
X3 = |¥n) (On|, X4 = |Yn) (¥n], (4.1)
X5 = \/2;—_2 (fN —0N) (On| — [¥N) WN’)

with N-qubit states

Ox) = [0)°7,
1
-6y,
[¥N) o) On)
N—7(z) 7(2)
|On) = Z <cos(§> <sin;b> |2) .
0#z€l N

Iy denotes the set of all possible binary N-tuples and 7(2) is the sum of the bit values
of all N qubits of the N-qubit string z. All of these base attractors solve the attractor
equations with eigenvalue A = 1. For N > 2 there are no non-trivial solutions of attrac-

tor equations with eigenvalue A = —1.

In the special case of two qubits, i.e. N = 2, the attractor space Atr(qD(GQ)) of the base
attractors is siz-dimensional. There is a five-dimensional subspace associated with eigen-
value X = 1 whose orthonormal basis is given by {X;|i € {1,...,5}}. But now, also a
non-trivial one-dimenstonal subspace exists that corresponds to the eigenvalue A = —1

and that contains the normalized linear operator,

Xg = ;(cosg(ml) (11] — [10) (11] — |11) (01| + |11) [10)) —
V2 +2c0s ¢

.0
— sin 2(/01) (10| - [10) <o1|)).

Base graphs of the one-parameter family of two-qubit interactions ®? with ¢ € (0,7)
for any N > 2 are thus strongly connected interaction graphs. The asymptotic dynamic

of quantum networks with strongly connected interaction graphs for N > 2 is stationary
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and takes place on the five-dimensional subspace of B(.7") with the basis given by (4.1),
which are the solutions of the attractor equations for A = 1. This subspace is also the
subspace of the attractor space of these particular interactions for N = 2, but in this
case the asymptotic dynamic can express periodic behavior provided by the solution of

attractor equations X¢ which corresponds to the eigenvalue A = —1.

For the generic case N > 2 any initial quantum state py, approaches by the iterative

application of the map ®@ to the state

52)  p(2) > 5(2)

P\ o P Iy —

@ _ 2N PintN _ NN TN

Poc =P TR Al (4.2)

with P = [0n) (On] + [1hn) (] and p@ = Tr[pnPP]. P is the projector onto

an N-qubit decoherence-free subspace of the quantum states which are not affected by

£ (6)

unitary transformations i

4.3 Controlled unitary three-qubit interactions with one control qubit

The controlled unitary three-qubit interactions with one control qubit are the direct
analogy of the the two-qubit interactions which were reviewed in the previous section.
Let us suppose we are given a quantum network consisting of N > 3 qubits interacting
with each other by application of the controlled unitary two-qubit gates U, which are
applied to the triplets of qubits according to a prescribed probability distribution p; j,

with >2; o pige = 1.

In analogy with the two-qubit interactions, we define the one-parameter family of three-
qubit interactions with one control qubit, which have in the computational basis the
form
A > ($) o (6

@ =10) ;01 @ I + 1) (1 @0l @ 2,

where

a? = cos ¢(|0) ;;(0] — [1) ;;(1]) + sin ¢([0) ;;(1] + [1) ;;(0]).
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Figure 4.2: An example of an interaction Fi-graph G corresponding to the RUO &4

Thus the considered RUOs have the form

dGD(p) = Zpe(}e(@p(}g(@_
eck

Here E is the subset of the set of partially ordered triples (i;7,k) = (i;k,j). As in the
previous case, we will discard cases ¢ = 0,7 since the RUO ®® is then diagonal in
(¢)
J

the computational basis. The eigenvalues of the transformation UZ j; are again given

by A1 = 1 and Ay = —1 and thus the attractor spectrum oy fulfils the relation oy C

{~1,1}.

The hypergraphs are more convenient mathematical object to represent the three-qubit
interactions with. More precisely, we are going to describe given RUOs by F-graphs.
We define the interaction Fj-graph of corresponding RUO &3V as G = (V, E), with
V= ]\7, where the vertex i corresponds to the qubit 7. If p; j > 0 then the vertices 1, j
and k are connected in G by a F-arc e € E whose head are the qubits j and k£ and whose

tail is the qubit .

The base Fi-graphs and the base attractor space is given by the following theorem.

Theorem 4.3.1. For ¢ # 0,7, the base Fy-graphs of the considered family of interactions
are exactly all strongly connected interaction Fy-graphs G = (V,E). For the case ¢ # 7§
and any number of qubits N > 3, the associated base attractors are elements of a ten-

dimensional attractor space Atr(q)g”l)). An orthonormal basis system of linear operators
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in this space of base attractors is given by

X1 =10n) (On],  Xo=[0n) (oX],

X =0n) (onl,  Xa=lok) Onl,

X5 =lon) Onl,  Xo=lod) (0}l (4.3)
Xr=lem) (enl,  Xs=loy) (0hl,

Xo = lox) (enl,

Yo = g (Ix ~ 105} On] = e (el = lem) (el) . (@3b)

with N -qubits states

QN QN
|<p}> = (cos;b |0) + sing |1>> , lon) = <sin¢25 |0) — cos% |1)> ,

e ) () )

COS 3

All of these base attractors solve the attractor equations with eigenvalue X\ = 1. Thus for

¢ # 5 there are no non-trivial solutions of attractor equations with eigenvalue A = —1.

In the special case ¢ = 5, for N > 3 the base attractor space Atr(q)g”l)) s eleven-

dimensional. The orthonormal basis of the attractor space is given by the operators
{XZ|Z € 9} and the following two operators:

1

51
XlO_ oN—1 2

1
oN-T 1

(e = 10w Ol = § (130 + low) (o1 + (o) )

A 1 (4.4)
(IN,O = 5 (Iex) = len)) (il - <s07v|)> :

Ine=5 3 (14 (1079) 2,

zeIln

vo=3 3 (1= (-17®) ) (ol

zeln
All of these base attractors solve the attractor equations with eigenvalue A = 1. As in the

previous case, there are no non-trivial solutions of attractor equations with eigenvalue

A=—1.
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For the case N = 3, the base attractor space is twelve-dimensional. It is consisting of
the eleven-dimensional subspace given by operators {Xl, .. .,Xg,X{O,Xil} correspond-
ing to the eigenvalue A = 1. The eigenspace corresponding to the value A = —1 is

one-dimensional. It is given by the operator

X192 = = (]101) (011] — [110) (011] + |110) (101 — [011) (101| + [011) (110| — |101) (110]) .

[ I

The proof of this theorem is given in the appendices A and B.

Similarly to the previous case of the controlled unitary two-qubit interaction, for the
generic case N > 3 and ¢ # 7, the initial quantum state p;, approaches by the iterative

application of the map ®31) to the state

5(3.1)  5(3,1) > 5(3,1)
P P Iy — P
61 _,6nIN Pty o BIIN TN

. 531 S = - 3,11 A1) .
with PG = [0n) (O] + o) (0] + o) (o] and p®D = Tefp PSV). PP s the
projector onto an N-qubit decoherence-free subspace of the quantum states which are

()

not affected by unitary transformations Uj; ik

4.4  Controlled unitary three-qubit interactions with two control qubits

As we will see in this section, there are significant differences between the asymp-
totic dynamic of the controlled unitary three-qubit interactions with two control qubits
and the previous cases. Let us suppose we are given a quantum network consisting of
N > 3 qubits interacting with each other by the application fo the controlled unitary
three-qubit gates U, which are applied to triplets of qubits according to the prescribed

probability distribution p;; with Z”k Pijk = 1.

The considered three-qubit interactions belong to the one-parameter family of trans-
formations with two control qubits which have in the computational basis form

- - - N

O = (fiy = 111 5 (11]) @ B+ 1) (11| @,

where
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i = cos §(10) (0] = |1) gi(1]) + sin §(10) (1] + 1) 11, (0]).

The considered RUOs have the form

@ (p) =" p U pUf@.
eelE

Similar to the previous case, E is the subset of the set of partially ordered triples
(i,j5k) = (4,4;k). We will discard the cases ¢ = 0,7 since the RUO ®(32) is then
diagonal in the computational basis. The eigenvalues of the transformation Uz(f,)c are
again given by A\ = 1 and A2 = —1 and thus the attractor spectrum o)y fulfils the

relation o)) C {—1,1}.

As mentioned in the previous section, hypergraphs are more natural object to describe
the topology of three-qubit interactions. However, the useful hypergraph representation
of three-qubit interactions with two control qubits is significantly different from the hy-
pergraph representation of three-qubit interactions with one control qubit. If we would
construct the interaction hypergraph to these interactions as an analogy to the interac-
tion hypergraph of three-qubit interactions with one control qubit, we would arrive to

B-graph. If we look at the nature of the three-qubit interactions with two control qubits,

Figure 4.3: An example of an interaction Fa-graph G corresponding to the RUO ‘I>(Gs’2).

This Fo-graph belongs to the class of the base graphs of RUO ®(3:2),
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Figure 4.4: An example of a graph of symmetries corresponding to the interaction F-

graph G.

we need both control qubits to be in the state |1) to produce a nontrivial action on the
target qubit. This cannot be described by paths in B-graphs as each edge in the path
connects exactly two vertices of given B-graph. Thus we have to construct a F-graph

which encodes the information about qubit couplings.

Let us consider a oriented hypergraph G = (V, E), where V = {{i,j}i < j € N.
Thus vertices of V' represent pairs of qubits, for instance vertex {i,j} represents qubits
i and j. Thus |V| = (];[) If pij . > 0, then the vertices {i,j}, {i,k} and {j, k} are joined
with a F-arc whose head is the vertex {i,j} and whose tail is the vertices {i,k} and

{j,k}. We call G the interaction Fs-graph of ®(2),

Another useful representation of controlled unitary three-qubit interactions with two

control qubits can be constructed. The interaction Fa-graph of given three-qubit in-
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teraction with two control qubits lacks the information about the symmetry of qubit
interactions. Thus it is favorable to define so-called graph of symmetries. Despite
the name it is a set of N graphs, each having N — 1 vertices. Each vertex represents
given qubit, so the vertex i represents the qubit ¢. The i-th graph in this set of graphs is
the graph G; = (V;, E;), where V; = N\{i}. If p;jr > 0, then (i,k) € E; and (j,k) € E;.
We can immediately see that the graph of symmetries is defined in the symmetrical way
in the control qubits. The interaction Fa-graph G = (V, E) and the graph of symme-
tries {G; = (Vi, E;)|i € {1,...,N}} are related to each other in the following way. The
subgraph H; C G, where V(H;) = {ij|j € {1,..., N}\{i}} is exactly the graph G;.

The base Fa-graphs and the base attractor space are given by the following theorem.

Theorem 4.4.1. For ¢ # 0,7 the base Fa-graphs of the considered family of interactions
are the F-graphs with the following property. The F-graph G = (V, E) is a base graph
if every vertex {i,j} € V is connected to a vertex {k,l} for every possible k # i,j and
for any 1, € N. For any N > 3 and any ¢ € (0,m) the associated base attractors are
elements of a ((N + 2)? + 1)-dimensional attractor space Atr(i’g”Q)). An orthonormal

basis system of linear operators in this space of base attractor is given by

X1 =10n) (O],
X1 = |0n) (L] i € N,
Xn+14i = [13) (On],i € N,
Xeyipnajo1 = [1a) (] ,4,5 € N,
X(N+1)2+1 = ’0N> <77BN| ,
Un|,i €N, (4.6)

R 1 . L
X(Nt2)241 = VoL e Iy — Z |2) (2| = [¥N) (YN
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with N -qubits states

(On10n)
- ) N—7(2) L 7(z)
ON) = Z (COS2 sin |2) .
z€ln,m(2)>1
All of these base attractors solve the attractor equations with eigenvalue X\ = 1. There

are no non-trivial solutions of attractor equations with eigenvalue A = —1.

For the generic case N > 3 the initial quantum state pi, approaches by iterative appli-

cation of the map ®®2) to the state

5(3.2)  p(3.2) P p2
(32) _ p(3,2)m . p<372))IN_7PN) (@7)
= p2) 2N — N -2’ '
with P> = > ‘ ) ) d 32 = Trlp. P2 The di :
N T 2ur(2)<lz€ly z) (2| + [¢¥) (¥n| and p = Tr[pin Py"’]. The dimension

)

of the decoherence-free subspace PJ(\? ) 4 is thus in this case directly dependent on the

number of qubits V.

4.5 Properties of asymptotic states of three-qubit interactions

In this section we derive basic properties of asymptotic states of three-qubit inter-
actions with one and two control qubits. We consider the case when the interaction
F-graph belongs to the class of base graphs. Then we compare results obtained for
controlled unitary three-qubit interactions with results obtained for controlled unitary

two-qubit interactions.

From the results of the previous section we can see that the asymptotic states of the
considered interaction can be easily compared in the case N > 3 and ¢ # 5. They are
given by (4.2), (4.5) and (4.7). All of these asymptotic states have the same nature, the
only difference is in the size of the decoherence-free subspace of the individual cases. It is
clear that the relation ]3](\,2 o ]5](\? ) # holds with i = 1,2. As we will see, this result

has an impact on the value of the von Neumann entropy [4, 5, 18] of the individual cases.
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In the case of the controlled unitary three-qubit interactions with one control qubit,

we have seen that for ¢ = 7 there are two independent mixed states given by (4.4),

5)

which belong to the attractor space. It is so because operators U ( .. preserve the parity

Y]
of 7(z) for z € Iy. Let us define % as the subspace of . with orthonormal ba-
sis {|z) |,z € In,7(2) = 2k,k € NU{0}} and s as the subspace of # with basis
{|2) |z € In,7(2) = 2k — 1,k € IN}. For sake of simplicity we will call these subspaces
the even and the odd part of 7. We can say that the even and the odd part of the
input changes independently on the other one. It turns out that in this case a more
suitable orthonormal basis of the attractor space exists. It is given by substituting the
three orthonormal eigenvectors [On) and |p+) for vectors [0y), |x%) and |x§) defined

as

p_ 1 2
T 1)(rsofv>+\saN> o).

— net
oy_ L+ -
X&) = ﬁ(’ﬁﬂzﬂ — len))-
These vectors form an orthonormal basis of the subspace ]5](\? D # and furthermore, for

¢ = % vectors |On) and |x¥) form an orthonormal basis of the even part of 15](\? D

and the vector X% forms an orthonormal basis of the odd part of P](\? Y . Now we can

construct the projectors

5(3,1
P = 10x) (x| + B (I

~(3,1
e =1 0K

With these projectors, we can separate the even and odd part of the asymptotic state

which can be written as

31 —

p(371)p, p(&l) fNE . ]_:,(3,1)
N,E P+ N E » N,E
Poo (po+pep)—————"—+ (P —p0o —PE)— "7

Po + PE 2N —2
~(3,1) (3,1 - - (3,1
R N O

- 0=PO) N 1

+
(4.8)

+ po

The relation (4.8) is a direct analogy of the asymptotic state (4.5) with Pg = Tr[Iy £pin],

Po = Tr[In0pinl, Po = (ON|pin|ON), pE = (X% |pn|X%) and po = (xF o x$)-
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To compare the von Neumann entropies of asymptotic states pgg we choose a suit-
able orthonormal basis of the Hilbert space 7. First we choose an orthonormal basis
of the subspace P](\? ) #. Then we add another vector to get the orthonormal basis of
the subspace ]5](\? D In the last step we pick an orthonormal basis of the subspace

<f N — PJ(\? ’1)) €. We have thus constructed an orthonormal basis of the Hilbert space
€. In this basis the density matrices (4.2) and (4.5) have the block diagonal form

pY . ply 0 0
N Pint N ’PJ(\I)’% ,
0 b 0
— 00,
p(()g _ 2N —dim(Py,’ ) (4 9)
10
0 0 2N —dim(P{)) .#)
Furthermore, in this basis pﬁ’l)pinﬁ’](\?’l)]ﬁ(z)% = P](\,Z)pinp](\?)lp(g)%. This relation im-
N - N

mediately implies that for the same initial density matrix pi, the equation

S (/ﬁ?) > S (péi’l)>

holds. An analogous result could be derived for the controlled unitary three-qubit inter-
actions with two control qubits, i.e. S (pé?) >S5 (pgi’Q)). The value of the entropy can

be written as

dim(P{) )

| ' 2N _ dim(P{)
S(pc(x))):— Z >\i10g>\i+(1_p())log< 1—1(7(-)N )>’
=1

where \; are the eigenvalues of the matrix 15](\,) pinpj(\}) | PO The eigenvalues of the ma-
N

~ ~ : A()
trix P](\})pinP](\})\P](\})% A; satisfy the relation Z?:T(PN ) i = p.

Let us examine a K qubit subsystem S of a quantum network consisting of N + K
qubits, which are interacting via controlled unitary three-qubit interactions with one
control qubit. In analogy with controlled unitary two-qubit interaction, the asymptotic
state of the subsystem S can be for N > 1 written for any ¢ € (0,7) as

I

GO = po |0kc) x| + i Ik} (95| + B 07 (Rl + (1 =10 — Py — o)

Poo
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with po = (Ot x|plON1r) P+ = (PRyklpnlolik) and po = (on g lpnlon 4 x)-

Similar result could be obtained for controlled unitary three-qubit interactions with
two control qubits. This result follows from the fact that for N > 1 limy_,o |6N> =
|Ox). Since this density matrix is diagonal, the resulting state is not entangled, i.e. the

concurrence [19] of the resulting state is zero:

C (pg,n,(a) —0.

The resulting state pg’l)’(s) is symmetric with respect to all possible permutations of

the qubits. In analogy with controlled unitary two-qubit interactions [1], the entropy
can be extracted from the K-qubit subsystem. This is easily seen from the case where

the initial state of the subsystem is given by

C
Pin = 5r K-
The coefficients of pg’;l)’(s) are then given by pg = py+ = p_ = 2% and thus the equation

S (p(oi’l)’(s)) <S8 <p(s)) holds. The asymptotic state of a single qubit subsystem of a

in

quantum network consisting of NV > 1 qubits can be written as

pEn.m L L+ po + (p+ — p-) cos ¢ (p+ —p—)sing
2 (p+ —p—)sing 1—po— (py —p—)cos¢

which can be also expressed as pg’l)’(l) = %(fl +d- ), where & = (X,Y, Z) is the vector

whose elements are Pauli matrices and @ = ((py — p—)sin®, 0, po + (p+ — p—)cos @) is

S
1.00¢

095"
0.90 "

085"

3 ¢

ST
4

e
N 1R

Figure 4.5: The value of the entropy S of a single qubit as the function of the parameter

¢ for the case pg =1, p; —p_ = 1.
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the Bloch vector [18]. The eigenvalues of the density matrix pg’;l)’(l) are Ay = 3(1+|dl).
This result gives us some insight on the influence of the value of the parameter ¢ on
physical quantities of a single qubit subsystem, e.g. on entropy (fig. 4.5). For pg = 0
the eigenvalues A+ are independent on the value of ¢, but for other cases the eigenvalues

A+ depend on the value of ¢.

Similar calculations can be done for a subsystem consisting of two qubits. We find
that the index of correlation S(A : B) = S(A) + S(B) — S(A4, B) [20] of arbitrary two
qubits A and B is independent on the size of the quantum network N. The index of
correlation thus depends only on values of overlaps pp and pi. These are shown on

figures 4.6-4.8 for the special cases. By choosing the initial state p;, such that pL = %

S(A:B)

0.08
0.06
0.04r

0.021

02 04 06 08 10 PO

Figure 4.6: The value of the index of correlation of arbitrary two qubits A and B as the

function of pg for the case py =p_ =0 and ¢ = 7.

S(A:B)

0.26
024
0.22
0.201
0.18
0.16
0.14

01 02 03 04 o05P0
Figure 4.7: The value of the index of correlation of arbitrary two qubits A and B as the
function of pg for the case p; = p_ = % and ¢ = 5. This result shows that the shape of

the curve S(A : B) depends for this case on the value of p = p; + p_
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S(A:B)
10¢

081
061
04r

021

02 04 06 08 10 P
Figure 4.8: The value of the index of correlation of arbitrary two qubits A and B as the

function of p = p; + p_ for the case py =p_, po =0 and ¢ = 7.

we get the value S(A : B) =1 for ¢ = 7, which is the maximal possible value in agree-

T
PR
ment with the previous result C' (pgi’”’(S )) =0.

We have shown that the entropy of the asymptotic state of quantum network inter-
acting via three-qubit interactions can never exceed the entropy of the asymptotic state
of quantum network interacting via two-qubit interactions, i.e., S (p@) > 8 (p(oi))
The asymptotic state of a K qubit subsystem of a quantum network consisting of N + K
qubits interacting via three-qubit interactions is analogous to the asymptotic state of a
K qubit subsystem of a quantum network consisting of N + K qubits interacting via
two-qubit interactions. The concurrence of arbitrary two qubits is equal to 0. This

result is in an agreement with the calculation of the index of correlation, for which the

equation S(A: B) <1 holds.

These results imply that the randomness introduced by the probability distribution
pe in the convex decomposition of given RUO () tends to destroy the non-classical
properties of the two-qubit states for quantum networks with base graph. It seems that
three-qubit interactions can lead to stronger correlations of assymptotic states than two-
qubit interactions, as there are two-qubit asymptotic states with the value of the index
of correlation equal to 1. On the contrary there are no asymptotic states of two-qubit

interactions with the value of index of correlation this high.
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Chapter 5

Conclusion

The aim of this thesis was to study the controlled unitary three-qubit interactions
with one or two control qubits which are defined as an analogy with the two-qubit in-
teractions. The main results are given in theorems 4.3.1 and 4.4.1. These theorems
completely determine the asymptotic evolution of the controlled unitary three-qubit in-
teraction with one or two control qubits for certain class of interaction F-graphs. We can
easily see that the base attractor space of controlled unitary two-qubit interactions which
is given by theorem 4.2.1. is a subspace of the base attractor space of the controlled
unitary three-qubit interactions with one or two control qubits. We can thus conclude
that allowing the three-qubit interactions within the quantum network interacting via
two-qubit interactions with strongly connected interaction graph does not affect the re-

sulting asymptotic state.

Despite the fact that the base attractor space of controlled unitary two-qubit inter-
actions forms a subspace of the base attractor space of controlled unitary three-qubit
interactions with one or two control qubits, there are significant differences between the
former and the latter. The attractor space of controlled unitary three-qubit interactions
with one control qubit is dependent on the value of the parameter ¢. The dimension
of the base attractor space of the controlled unitary three-qubit interactions with two
control qubits is strongly dependent on the size of the corresponding quantum network.
The topology of the base graphs of controlled unitary three-qubit interactions with two

control qubits is significantly different from the topology of base graphs of the controlled
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unitary two-qubit interactions and the controlled unitary three-qubit interactions with
one control qubit as it is more constraining than the latter. We can easily check that the
minimum number of hyperedges needed for an interaction Fo-graph to be a base graph
is (];f ) which is for N > 3 larger than the minimum number of edges/hyperedges needed

for an interaction graph/Fi-graph, which is equal to N.

Furthermore, from the results we can expect the validity of general rules holding for
controlled unitary N-qubit interactions. We can see that increasing of the number of the
target qubits of the considered interactions results in the creation of new eigenvectors
and thus enlarges the attractor space. Increasing of the number of the control qubits of
the considered interactions results in the different topology of the base graphs as well
as in the creation of new eigenvectors. The proof of the form of base graphs suggests
that two-connectedness of the index graph is the only property which determines the
resulting attractor space. Thus we can expect two different controlled unitary n-qubit
interactions @gn’k) and @gn’k) with k£ control qubits to have the same attractor space
if and only if the corresponding index graphs ¢g; and go have identical two-connected

components.
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Appendix A

The base attractor space

In this appendix we derive the form of the base attractor space of control unitary
three-qubit interactions with one or two control qubits. Since the nature of these in-
teractions are different, we will treat both cases separately. However, our method of

deriving the form of the base attractor spaces will be analogous for both cases.

The base attractor space definitely appears in the case, where every possible triplets
are present in the set E of an interaction F-graph G = (V| E)). We call this F-graph the
maximal interaction F-graph. We can directly form and solve the attractor equations for
this interaction F-graph. First we will consider the case ¢ = 5. After justifying the form
of the attractor space for this case, we show that the number of independent solutions
of attractor equations for ¢ # 5 must be less or equal to the number of solutions for the
case ¢ = 5. In the final step we solve the attractor equations for the case ¢ # 5 with
the help of symmetry of the attractor equations which is resulting from the maximality

of the interaction F-graph.

In the following we denote the orthonormal basis states of the computational basis by
|z) with z = (21,...,2n) € {0,1}¥ = Iy. Any operator X € B(J) can be written in

the form

x= 3 xti)Gl.

i,jeln
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A.1 The base attractor space the of controlled unitary three-qubit in-

teractions with one control qubit

In case of control unitary three-qubit interactions with one control qubit, we can

rewrite the attractor equations for ¢ = 7 as

Ot X = 3 X0 1) G = 32 XFI) G = AX O =
ij ijeln

=AY X Gl Upmn = A ) X[ i) 5

ijeln i,j€IN

Because of the property U, lan = Iy, the following form of this equations hold

DoXTIGI=A Y X

ijeln ijelyn

and thus can be reduced to equations for matrix elements
i i
X; = AXp,

where i = (i1, .., lmy e ylnyeveyinN)y 1= (81, oy by Digy ooy iy Dig, ..., in) and similar

relation holds for j.

The set of all pairs of indices [i,j] € In X In can be divided into several subsets with
the property, that matrix elements corresponding to a particular set are coupled only to

matrix elements which correspond to this set. These subsets are given by
Ar={[0,0]}, Ay ={[0,i][r(i) = 2k, k € IN},
As = {(]0,i]|7(i) = 2k — 1,k € N},

Ag = {[i,0]|7(i) = 2k, k € IN}, As = {[i,0]|7(i) = 2k — 1,k € IN},

Ag = {[i,i]|r(i) = 2k, k e N}, A7 = {[i,i]|r(i) = 2k — 1,k € N}, "
As = {[i,j]|lT(i) = 2k, 7(j) = 2L, k,l € N},

Ay = {[i,3)I7(i) = 2k — 1,7(j) = 21, k,l €N},

Ao = {[i,jll7(i) = 2k, () = 20 — 1, k,1 € N},

Ap = {[i,j]l7() = 2k — 1,7() = 20 — 1, k,1 € N}.
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First, we consider the case A = 1. Suppose we have a quantum network consisting
of N > 3 qubits with the maximal interaction Fi-graph. We pick randomly 3 of those
qubits. For this moment, we will forget that those qubits are coupled to other qubits and
we will consider only the couplings between qubits induced by the operator U (%)C After
that it is rather straightforward to prove that the found attractors solve the attractor
equations for maximal interaction Fi-graph. This is due to symmetry of the considered
interactions which is a consequence of the maximality of the interaction Fi-graph. To
simplify the notation we skip all other indices apart from those which correspond to our

picked qubits.

The attractor equations for any ¢ € (0,7) can be then written in the following form

sin ¢ (X&ZO]O X&lljl) = cos ¢ (X&%l + X&}jo)

. . . (A.2)
sin ¢ ( 100 Xlﬁ) =cos¢ (Xléjl + Xl%) )

100 111
(%] Ozg

sin? o X310 + sin ¢ cos ¢ (X X0 —

0ij 14 cos® ¢) X,

0ij 7

100 111
(%] Oz]

)~ (
)~ (

X0 = X15) = (1+ cos? 6
)-(

sin? o X3 4 sin ¢ cos ¢ (X, ) 61131 0,

0ij 1+ cos? ¢

sin? gi)Xlﬁ) + sin ¢ cos ¢ X%]l =0,

sin? ¢X101 + sin ¢ cos ¢ X%% X?ﬁ + cos? <b) X?i% =0,

A/—\/—\/—\

s (X343 = X19) = coso (X1 -+ 18 — X308 — X1).
s (X195 — X111 = coso (XL -+ X1 + X300 + X1).
sin (X1 = XI) = coso (XI5 — 11 + X331 — XI).
s (X191 = XH) = coso (1§ — 19 + X331 — XI).

101

100 111 110 110
101 — XlOl X X

110 — 110 + 111 100

sin ¢ (X

sin ¢ (X

9

100 _ y111
1

o X101 + XllO 100 100

111 111 101 110

)

100 111
111 — X

)

)
)
)
)
X116 — Xiig + Xii1 — X1hh)
)
)
)

f\/\/\/\/\/\/\/‘\

( ) =
( ) =
( )
( ) =
sin ¢ (X1 — Xi1§) = cos ¢
( ) =
( ) =
( )

. 101 110 _ w111 _ yl11
sin ¢ (X X+ Xii1 — Xio1 — X0
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101 110
111 — 100

2 w101 | X101, yio1 1 100 2
2cos” Xy +singcos ¢ (Xi91 + X179 + X190 — Xip9) +8in" ¢
Y110 _ y101

110 | 110 111 100
+ X 111 — X100

110 T 101 100 — 100

2 cos? ¢ X130 + sin ¢ cos ¢ + sin? ¢
X111 _ x100

X101 x 110 100 _ 5100
+ X 101 — X110

101 101 110 — 100

2 cos? pX1§7 + sin ¢ cos ¢ + sin? ¢

100 100
101 — 110

) (X )
) (X )
) (X )
) (X )
10 + Xiio + X1t — Xigp) + sin” ¢ (X139 — Xq07)
) (X )
) (X )
) +sin ¢ (X )

+sin? ¢

2 cos? (;SXll%] + sin ¢ cos ¢

100 111
110 — 101

111 111 101 110
111 — 100 110 110

2cos® pX 11116 + sin ¢ cos ¢ + sin? ¢

101 110
100 — 111

111 100 101 101
111 — 111 110 101

2 cos? ¢X11?11 + sin ¢ cos ¢ + sin? ¢

110 101
100 — 111

111 100 110 110

(X
(X
(X
2cos” X g1 +singcos ¢ (X111 — Xigg — Xigl — X161
(x
(X
(X
(111 X111 — Xior — X110

2 cos? X119 + sin ¢ cos ¢ + sin

The remaining equations are trivial, i.e X(())/Zc]l = Xg,’jl or identical with the previous equa-

tions. From the form of these equations, we can see that the number of solutions for
s

¢ # 5 cannot be higher than the number of solutions for ¢ = 7 as the equations have

the same form for both of these cases and, furthermore, for the case ¢ = Z some of the

™
2
attractor equations connect fewer matrix elements than for the case ¢ # 7.
First, we can notice that the equations (A.1) are exactly the same as the equations

for eigenvectors. They have two solutions |<p}) and |py). Together with an obvious

eigenvector |0y) they form the basis of mutual eigenvectors of all possible operators
S

a,bc’

For ¢ = 7 each of the previous equations creates a connection between elements of
set A; for some j. By identifying those equations, we can immediately solve the attrac-

tor equations and get the following result:

For the set A; the corresponding attractor is obviously given by |0x) (On|. Attractors
corresponding to sets Ay and Aj are given by [0n) ((px| + (¢x]) and |0x) (o] — (px])-
Similarly attractors corresponding to sets A4 and As are given by (\cp}) + \90]_\7>) (ON]
and (|o}) — l¢x)) (On|. Attractors corresponding to the sets Ag and A7 are given by
I ~,g and I N,0- Attractors corresponding to the remaining sets As, ..., A1 are given

by (lek) £1en)) ((ex] £ (¢x]). By orthonormalizing these solution we arrive to the
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eigenspace corresponding to value A = 1 stated in the theorem 4.3.1.

For the case ¢ # § we already have 10 solution of attractor equations for the eigen-
value A = 1. We know that if |z) and |y) are mutual eigenvectors to all of the operators
(Aféﬁ)c, then all the operators of the form |z) (y| belong to the attractor space. In our case
we have three mutual eigenvectors which are given by |0x), L) and [py) thus we got
9 solutions of attractor equations. Furthermore, the operator Iy always belongs to the

attractor space.

First, we will discuss the possible form of the last attractor which can possibly ex-
ist. From the general properties of attractors we know that it must be a symmetric or
an antisymmetric operator Y, since if Y is an attractor corresponding to the eigenvalue
A =1, then YT is an attractor corresponding to the same eigenvalue. From the sym-
metry of attractor equations for A = 1 we can immediately discard the possibility of an
antisymmetric solution. Furthermore, the last attractor cannot have the form |z) (x|,
since then there would exist attractors of the form |z) (¢} |. Since we consider the max-
imal interaction Fi-graph, all solutions must be symmetric with respect to all possible

permutations of qubits.

Based on the previous considerations we know the following: in = Xij, in = X:((Jl))
We can thus make a further simplification in the notation. In the following we will de-

note the matrix elements by X7W+70) = X1+ Furthermore, we will separate diagonal

2k
diag®

and off-diagonal matrix elements. The diagonal elements will be denoted by X
Now we must show that those 10 solutions form all the solutions of attractor equations
for the case ¢ # 5. As attractor equations form a standard system of linear equations,
the number of solutions is given by the number of variables and the number of equations.

We will thus compare the number of equations and the number of variables for ¢ = T

2
and ¢ # 3.

In the simplified notation attractor equations for the case ¢ = 5 have the form
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XK= xk2 L e{1,...,2N -3},

X, = Xgi‘;g‘*,k e{l,...,N -2}

We can thus see that this is the system of 3N — 5 equations for 3N — 1 variables and

thus there are four solutions. Those solutions are given by the operators I N,E, I N,O,

(led) + len)) (el + (enl) and (lef) — len)) (k] — (enl)-

For the case ¢ # 5 simplified attractor equations have the form
sin ¢ (Xk - Xk+2) — 2cospX*H ke {1,...,2N — 3},

sin ¢ (X(%};g - Xdzgf) = 2cospX2H e {1,... N —1}.

This is a system of 3N —4 linear equations for 3N —1 variables. There are three solutions
which are given by Iy, lo) (x| and |@y) (x| Therefore, we have justified the form
s

of the eigenspaces corresponding to eigenvalue A = 1 for both cases ¢ = 5 and ¢ # 5

since the case ¢ # 7 has one solution less.

Let us turn our attention to the possible eigenvalue A = —1. Since we are consider-
ing the maximal interaction F-graph, every qubit plays the role of the control qubit in

)

some transformation Uéd; .. Thus for N > 3 and for any set A; we can always find the
matrix element ngi which yields the attractor equation ngi = —ngi and because of the
symmetry of the attractor equations with respect to all possible permutations of qubits,

for N > 3 there is no non-trivial attractor corresponding to the eigenvalue A — 1.

The previous argument fails for the case N = 3 and ¢ = 7, because for the set Ag
there is no such pair of indices i # j € Iny_1. The resulting attractor equations for this

case are

110 __ 101 110 __ 011 110 __ 101
XlOl - _X1107 XlOl - _Xl(]l’ XOll — T 4011>

The normalized solution of these equations is given by Xio.
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For the case N = 3 and ¢ # 5 the previous argument can be used again as the matrix
elements which belong to the set Ag are now connected with the matrix elements from
other sets and thus for this case no non-trivial solution of attractor equations corre-

sponding to the eigenvalue A = —1 exists.

This concludes the derivation of the form of the base attractor space of control uni-

tary three-qubit interactions with one control qubit.

A.2 The base attractor space of the controlled unitary three-qubit in-

teractions with two control qubits

The derivation of the form of the base attractor space of controlled random unitary
three-qubit interactions with two control qubits follows exactly the same path as the

previous case, though it is simpler as the attractor equations have the same form for all

¢ € (0,m).

Similarly to the previous case, we can rewrite the attractor equations for ¢ = 7 as

Yo X Gl=A ) XP Gl

ijeln i,je€In
The matrix equations can be thus reduced to the equations for matrix elements which

have the form

where for U, (f)

wm We have 1 = (ig,... 0y, ... in), i

similarly for j and similar relation holds for j.

If we divide the set of all pairs of indices (i,j) € Iy X In as in the previous case,

the resulting subsets will have the following form:
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Ay = {[0,0]},
ANnt14i = {[1:, 0]},

Az = {[0,i]|7(0) > 1},

Ay = {[0, 1;]},
A(i+1)N+j+1 = {[1ia 1j]}a

Avyzqiv = {1,0]7G) > 1},

Anvsrzense = {[L0]]7(0) > 1}, Avgozantots = U Lll7() > 1},

An2pz = {[i]|7(i) > 1},

1

7

where 1, = (0,. .., S

In the next step we consider the maximal interaction Fo-graph of a quantum network

consisting of N > 3 qubits. As previously we pick randomly three qubits which are

interacting with each other through the

Angoe41 = {LJllE#§,7(3) > 1,7() > 1},

. 0) and i,j € N.

(¢)

operator U_," .

a

case A = 1 which emerge from this interaction are the following ones

The attractor equations for the

111 _ . P 110
cos §X0ij = sin §X0ij )
¢ L0ij . P 0ij
cos §X111 = sin §X1107
?an o ?Xno
COS 2 10] = Sin 2 ZO] 3
O 0 . P i0f
cos §X111 = sin §X110,
110 _ y 111
Xi11 = Xi10;
¢ 110 _ . @ /5110 111
2 cos §X111 =sing (X110 — Xi11) -

The remaining equations have the trivial form X J‘ =X J‘ From the form of the equations,
we can see that number of the solutions of these equations is same for all possible values

of the parameter ¢ € (0,7) as the coefficients sin% and cos%

never vanish. By solving
the eigenvector equations, we find that there exist N + 2 eigenvectors corresponding
to the eigenvalue A = 1 which are mutual eigenvectors of all operators Uiz))c These
eigenvectors are [Oy), |pk) and [1;), i € N. With the help of these eigenvectors we
can immediately construct the (N + 2)? independent solutions of attractor equations.
Each of these solutions corresponds for ¢ = 7 to one of the subset of indices A;. The
only subset which is left without solution is the set A(y42)2. By putting in = 0 for

[i,j] ¢ A(N42)2 we arrive to the set of equations corresponding to this subset. Their
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solution is the operator

T(2)>1,2€ln

By orthonormalizing all the solutions we arrive to the base attractor space which is

stated in theorem 4.4.1.
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Appendix B

Base graphs

In this appendix we focus on the derivation of the form of base graphs of the con-
sidered three-qubit interactions. Although we will derive the form of the base attractor
space for different cases, all of these derivations share similar steps. First, we need to
find a suitable condition for an interaction graph to be a base graph. This condition is
provided by the so-called index graph, which is an undirected colored graph correspond-
ing to a given interaction graph. Index graph is going to be defined in the next section.
Then we show, that a maximal interaction graph fulfils this condition. In the last step
of the proof, we are concerned about the number of edges which can be removed from

the maximal interaction graph without loosing the validity of this condition.

B.1 Index graph

The index graph g = (In,eq, @) is an undirected colored graph which is associated
with an interaction graph (or an interaction F-graph) G = (V, E). Each vertex of the
index graph corresponds to an element of the computational basis, i.e. vertex i corre-
sponds to the vector |i). The index graph g is equipped with a map C : e — {e € E}.
Thus the edges of the interaction graph G denote the color of edges of the index graph
g and to simplify the terminology, they will be referred to as colors in the context of
the index graph. If the elements of the computational basis |i) and |j) with i # j are

7@

connected through the operator Ue"’, then the set e contains the edge ij with C'(ij) = e.

Since each pair i and j can be connected by more than one operator, the index graph can
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have multiple edges. To simplify the notation we will drop the map ¢ from the definition
of the index graph g as if the vertices i and j are connected by more than one edge, these
edges have different colors and thus the concerned edge can be always uniquely specified.
Furthermore it is clear that if i is connected with j then j is connected with i, thus the

index graph is undirected.

Since for the controlled unitary interactions the element of the computational basis
|0) is not connected with any of the other elements of computational basis, the vertex
0 of the index graph always forms a single element component. For the control unitary
three-qubit interactions with two control qubits there are even more of vertices with this
property. Since such vertices are not our concern, we will slightly modify the definition

of the index graph so it corresponds to the particular case.

With the help of the index graph we can form a necessary and sufficient condition
for an interaction graph to be a base graph. For an eigenvalue A = 1, we can easily see
that the corresponding eigenspace stays minimal as long as the number of the subsets of
pairs of indices {A;| | € m} stays as low as possible. This condition can be for all cases
which are discussed in the following sections expressed in terms of two-connectedness.
For the case of the eigenvalue A = —1 the condition is easily found from the proof of the

form of the corresponding eigenspace.
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B.2 Base graphs of the controlled unitary three-qubit interactions with

one control qubit

For the case of controlled unitary three-qubit interactions with one control qubit
we exclude the vertex 0 from the definition of the index graph g corresponding to the

interaction Fi-graph G.
There are two different cases for the controlled unitary three-qubit interactions with

one control qubit, ¢ = 5 and ¢ # 5. The differences are so significant that we will treat

them separately. First we will discuss the simpler case ¢ # 3.
4: :3
2

1100

O
0001 0010 0100 1000

Figure B.1: An example of an interaction Fi-graph and the corresponding index graph
for ¢ # 5. The vertex 0 is not included as it would only create a trivial component in the
index graph. As we can see even for low number of vertices and edges the corresponding

index graph can be rather complicated.
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?

1 2

Figure B.2: An example of an interaction Fi-graph G31) and corresponding two-qubit

interaction graph G2,

For ¢ # % the set of all pairs of indices (i,j) can be divided into four subsets which

are invariant under all possible transformations U ]((Z)l These subsets are given by

A = {[070]}7 Ap = {[Ovi”T(l) > 0}7 Az = {[Ovi”T(l) > 0}7

Ay = A{[i,jll7(i) > 0, 7(j) > 0}

We can easily see that the subset A; remains invariant as it contains only one element.
The subsets As and As remain invariant, if the corresponding index graph ¢ is connected.
The subset A4 remains invariant, if the corresponding index graph g is two-connected. As
two-connectedness implies connectedness, we arrive to the statement that the interaction
F-graph of given three-qubit RUO &1 with one control qubit and ¢ # 5 is the base

graph if and only if the corresponding index graph is two-connected.

For the proof of the two-connectedness of strongly connected interaction Fi-graphs we

can use the proof of the form of base graphs of controlled unitary two-qubit interactions.

Because three-qubit transformations U ]((Z)l have the property U ]((,i)l =U J(Z))U ](lqs ) we can

construct for a given three-qubit RUO ®(31) a corresponding two-qubit RUO &) by

79

replacing transformations Kl in the convex decomposition of &)

by two transforma-
tions U]((Z) and Uﬁ) with pjr = pj = %pj,kl. An example of such a construction of the

corresponding RUO &) is given on the figure B.2.
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Now we can easily show that if index graph ¢(®) which is associated with an interac-

tion graph G of a two-qubit interaction ®2 is two-connected, then the index graph

3,1) (3,1)

which is associated with an interaction Fi-graph G of a three-qubit interaction

g
&1 must be also two-connected. This follows from the fact that if we do not consider
coloring C() of graphs ¢ and ¢®, then ¢@® c ¢(3b. This follows from the fact
that if the vertices i and j are connected in the index graph ¢(?) via operator U, ,gf) then
they are connected in the index graph ¢ via operator U,ngzn for any m. Since ¢(?
is two-connected, each pair of vertices [i1, 2] is connected to any pair of vertices [j;, jo]
via paths P, j, = (iruz,ugus. .., uziz) and P} ;, = (j;ve,vavs..., Vijy) such that for
every | € k the equation C'?) (u,upy1) = c® (v, vig1) with u; =iy, ugqq =g, vi = j;
and P

and vigi1 = jo,. We can simply check that the paths P are connecting

1,i2 142
the pairs [i1, is] and [j;,jo] in the index graph ¢(>Y (due to the property g(® c g(31))
and, furthermore, the equation 0(371)(ul,ul+1) = 0(3’1)(vl,vl+1) holds for every [ € k.
As a consequence, 9(3’1) is two-connected and G is thus a base Fi-graph. From the
construction of G it is obvious that G is strongly connected if and only if GG is
strongly connected. As a result all strongly connected interaction Fi-graphs GG of
RUO &G have the minimal eigenspace corresponding to the eigenvalue A = 1. On the
contrary if G®1) is not strongly connected then the corresponding index graph ¢®1) has
more than one component and thus it cannot be two-connected. The conclusion is that

(3.1)

the eigenspace of ¢ corresponding to the eigenvalue A = 1 is minimal if and only if

G®1) is strongly connected interaction F-graph.

The case ¢ = 7 is more complicated. Although the relation U 1(5) Al(gg ) = ffl(gz,? still holds
the index graph of the controlled unitary two-qubit interaction made in the same way as
in the case ¢ # 7 is not a subgraph of the corresponding index graph of the controlled
unitary three-qubit interaction with one control qubit. Nevertheless, we begin our proof
for the case A = 1 also by dividing the set of pairs of indices [i, j] into invariant subsets.
These subsets are the subsets A;, i € 11 which are given by (A.1). As an analog to the
previous case these subsets remain invariant as long as the following properties of the
index graph hold: The subgraph of the index graph g; which is formed by the vertices i
with 7(i) = 2k, k € N must be two-connected. The same applies also to the subgraph
of the index graph go which is formed by the vertices i with 7(i) = 2k — 1, k € N.
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1100

0001 0010 0100 1000

O
0001 0010 0100 1000

Figure B.3: The index graph ¢ associated with the interaction F-graph G (figure
B.2) and the corresponding index graph g?.
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O
0001 0010 0100 1000

Figure B.4: The index graph associated with the interaction F-graph on the figure B.2

for the case ¢ = 7.

Furthermore, these components must be jointly connected in the sense that for any pair
of vertices [i1,i2] € g1 and any pair of vertices [j;,]js] € g2 must be simultaneously con-
nected by paths P ;, = (iiuz,ugus...,wiz) and P} ;, = (j;va2,Vavs..., Vijy) such
that for every [ € k the equation C(wuyyr) = C(vyvigq) with uy = iy, ugy; = io,
vy = j; and Vg4 = jo. From the form of the given transformations we can easily see

that satisfying of one of these condition is sufficient for satisfying of the other conditions.

As a first step towards the proof of the form of base graphs we prove that the subgraph go

of the index graph associated with the maximal interaction Fi-graph is two-connected.

(V) which we call star

Fi-graph on N > 3 vertices and we prove the two-connectedness of the subgraph géN)

To prove this we create a special type of an interaction Fi-graph G

of the index graph associated with this type of graph.
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For N = 3, the star Fy-graph is the hypergraph G®) = (V) E®)) with V©® = {1,2,3}
and E®) = {(1;2,3),(2:3,1),(3;1,2)}. Suppose we have the star F;-graph on N > 3
vertices GN) = (VIV) EV)) The star Fi-graph on N + 1 vertices is then defined as

GNHD — (y N+ p(N+1y -y (N1 — (V) (N 41},

ENHD = EM U {(1;2,N +1),(21L,N +1),(N + 1;1,2)}.

This induction step is for N = 3 visualized on figure B.5. The two-connectedness of
the component ggN) of the index graph associated with the star Fi-graph on N vertices
can be proved by induction on the number of vertices of this graph. For N = 3 the

component ggg) is apparently two-connected. Let us suppose that the component ggN) is

two-connected. Thus the component ggN) is also two-connected. The component géNH)

can be created in two steps. In the first step we take components ggN) and ggN) and

we relabel their vertices. The vertex i € ggN) is labeled as il and the vertex i € géN) is

labeled as i0. We mark the newly emerged graphs as g/l(N) and g;(N). Next we create
the graph gVt = gll(N) U gll(N) U {01}. This graph has three components: the compo-
nent b is consisted of vertices {i0 € Iny1|7(i) > 0}, the component by is consisted of
vertices {il € In41|7(i) > 0} and the last component is consisted of the single vertex
{01}. From the construction, components h; and hy are two-connected. We finish the

construction of the component ggNH) by addition of edges to the graph gN*+1) which

1

Figure B.5: The construction of star Fi-graph on 4 vertices. The edges which are not

present in the star Fi-graph on 3 vertices are red.
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0001 0010 0100 1000

Figure B.6: The index graph associated with the star Fi-graph on 4 vertices constructed

from the index graph associated with the star Fi-graph on 3 vertices. This graph has 2

components 634) and 654). Black edges correspond to the subgraphs of these components

which are isomorphic to the component (’553), blue edges correspond to the subgraphs
of these components which are isomorphic to the component (’553) of the index graph

associated with the star Fi-graph on 3 vertices.

1110 @, 1101 111
0 1011 0 0

0001 0010 0100 1000

Figure B.7: The component Qigl) of the index graph associated with the star Fi-graph

on 4 vertices.
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correspond to the F-arcs from the set {(1;2, N +1),(2;1,N 4+ 1), (N + 1;1,2)} of the
interaction Fi-graph. These edges are connecting the trivial component {01} with the
component ho as well as they are connecting the component h; with the component bs.
The important fact is that the added edges also connect vertices within the component
ho. From the construction it is straightforward to prove that the component géNH) is
two-connected. The only non-trivial case is, if we want to connect the pairs of vertices
(i1,i2) and (j;,Jj2) with ix € by and j, € b2. In this case the two-connectedness is the
result of the newly added edges in the component hs. As these edges have no counterpart
in the component h; we can freely move between vertices in the component by without
moving within component b;.

Since the component ggN) of the index graph corresponding to the star Fi-graph on
N vertices is a subgraph of the component go of the index graph corresponding to the
maximal interaction Fi-graph on N vertices, the component gs of the index graph corre-
sponding to the maximal interaction F';-graph on IV vertices must be also two-connected

as the addition of edges cannot disturb the property of two-connectedness.

In the last step of the proof we show that we do not violate the property of two-
connectedness of the index graph by removing edges from the interaction Fi-graph as
long as the corresponding interaction Fi-graph stays strongly connected. We prove

this by induction on the length d of the path connecting the vertices i; and 4411

13

o @i

1
Figure B.8: The removal of the F-arc containing the directed edge (i1,i4+2) from the

interaction Fq-graph.
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(%)
!

in the interaction Fi-graph. The considered transformations U,

J7
ooR oo - o)

m*~ j,kl 7,km”
the path P = (iyig,i2i3) of length d = 2. Let us mark (i1;ia,7) = e, (i2;i3,k) = f.

have the property

Suppose that the vertices ¢; and i3 are connected by

Suppose the edges i1 and i3 are also connected with the F-arc (i1;i3,1) = g. Because
of the previously mentioned property, applying the sequence of colors fefe in the index
graph has the same result as applying the color g. Thus all the edges with color g can
be removed from the index graph without loosing the property of two-connectedness.
In the corresponding interaction Fi-graph we remove the F-arc (i1;43,1). The resulting
interaction Fi-graph is a base graph and it is still strongly connected. Let us suppose
that for every path of length d > 2 the F-arc connecting the beginning and the end
of the path can be removed from the interaction graph as long as it is not violating
desired connectivity of other vertices. Let us take a path of length d + 1 of the form
P = (iyia,i2ls, ..., idid+1, id+1id+2). Suppose that the vertices i1 and 442 are connected
with the F-arc (i1;4442, m) We will temporarily add the edge igigio to the interaction
Fi-graph. By this addition, the vertices i1 and i449 are connected by path P’ of length
d. We can thus remove the F-arc (i1;i442,m) from the interaction Fi-graph. This com-

pletes the proof by induction.

Concerning the case A = —1 as it is easily seen from the proof of the form of the
corresponding eigenspace, this eigenspace stays minimal as long as all qubits ¢ play the
role of control qubit of some transformation UZ(?,)C for any ¢ € (0,m). Thus for the

strongly connected interaction Fi-graphs the eigenspace corresponding to the eigenvalue

A = —1 is the minimal eigenspace.

To summarize, the base graphs of controlled unitary three-qubit interactions with one
control qubit base graphs for any parameter ¢ € (0, 7) are exactly all strongly connected

interaction Fi-graphs.
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B.3 Base graphs of the controlled unitary three-qubit interactions with

two control qubits

For the case of controlled unitary three-qubit interactions with two control qubits
we exclude the vertices z with 7(z) < 1 from the definition of the index graph g corre-
sponding to the interaction Fa-graph G. Although the proof of the form of base graphs
for this case is analogous to the previous case, there are differences which need to be
pointed out. They are the result of the different structure of the visual representation -

the interaction Fao-graph.

(¢)

Because of the form of transformations U Kl and the corresponding attractor space it is

clear that there are no technical differences between the cases ¢ = 5 and ¢ # % Thus

the proof of the form of the base attractor space for ¢ = 7 is also proof for general

¢ € (0, 7). Similar to the proof from the previous section, we start our consideration for

1 2
4 4
2 3 1 3
3 4
4 3
1 2 1 2

Figure B.9: The construction of graph of symmetries corresponding to the star Fo-graph
on 4 vertices. The edges which are not present in the graph of symmetries corresponding

to the star Fo-graph on 3 vertices are red.
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A = 1 by dividing the set of all pairs of indices [i, j] into subsets which are invariant under
transformations U ](kgl) This division was made in the appendix A.2. It is consisting of
(N +2)2 4 1 subsets A;. Analogous to the previous case, we can easily see that the
number of invariant subsets does not increase if and only if the index graph g of given

RUO #©2) is two-connected.

The proof of two-connectedness of the index graph associated with the maximal in-
teraction Fo-graph can be done in two steps. First, we construct a certain interaction
Fy-graph GN) on N > 3 vertices, its associated index graph ¢™) and we prove that
g™ is two-connected. This interaction Fa-graph can be viewed as an analogy of the
oriented star graph. For sake of simplicity we will call this interaction Fs-graph as star
Fo-graph. We construct the star Fo-graph by constructing the corresponding graph of

symmetries. This construction is done by induction.

For N = 3, the graph of symmetries corresponding to the star Fo-graph is the set of
three graphs G {V Z( )}, i€ 3and GES) being maximal graph for all i. Suppose
we got the graph of symmetries corresponding to the star Fo-graph on N vertices. The
graph of symmetries corresponding to the star Fa-graph on N + 1 vertices is constructed

by defining following

GZ(NJrl) _ (V(N+1) EN+1)7 V(N+1) _ V](N) U {N+ 1},i c N’

(2 2

ENY = EM U {(i, N +1), (N +1),i},i € {1,2},

ENTY = EM U {(N+1,1),(N+1,2)},i € {3,..., N},
W+ yVHD) p(N+1) N+1)
N+1 = N+1 Exyi ' h V]S/H =N,

ESY = {6, D)€ {2,..., N} U{(},2)l € {1,3,4,..., N}}.

This procedure is for N = 3 visualized on the figure B.9. Next we prove that the
two-connectedness of the index graph associated with the star Fs-graph for any num-
ber of vertices N > 3. This is done also by induction. The two-connectedness of the
index graph ¢(3 corresponding to the star Fa-graph on 3 vertices is trivial. Let us

suppose that the index graph corresponding to the star Fo-graph on N vertices is two-
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00110 01010 0110 O 10010 01010 O 1100

Figure B.10: The construction of the index graph corresponding to the star Fo-graph on
4 vertices from the index graph corresponding to the star Fa-graph on 3 vertices without
the real marking of color of the edges. The black edges correspond to the subgraph
of this index graph, which is isomorphic to the index graph corresponding to the star

Fo-graph on 3 vertices.

connected. From this index graph we create the index graph corresponding to the star
Fy-graph on N + 1 vertices in two steps. First, we add 2¥ — 1 new vertices to the
index graph, which correspond to the new qubit which was added to the system. The
newly-emerged index graph has N 4 2 components. The first component g; is formed
by vertices {(i,0)|i € In,7(i > 1)}. The second component g is formed by vertices
{(i,1)]i € In,7(i > 1)}. These two components are isomorphic to the index graph corre-
sponding to the star Fo-graph on N vertices and thus both g; and go are two-connected.
The remaining components are formed by single vertices {1;1} for i € N. In the second
step, we create the index graph corresponding to the star Fo-graph on N + 1 vertices by
adding edges to this index graph. The whole procedure is visualized on the figure B.10
for the case N = 3. The added edges connect the components g; and gs as well as they
connect the trivial components with component go. What is important is that they also
connect vertices within the component gs. From the construction it is straightforward
to prove that the index graph corresponding to the star Fa-graph on N + 1 vertices is
two-connected. The only non-trivial case is if we want to connect the pairs of vertices
[i1,12] and [j;,Jo] with ix € g1 and j, € go. In this case the two-connectedness is the

result of the newly added edges in the component gs. As these edges have no counterpart
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in the component g; we can freely move between vertices in the component go without

moving within component g;.

Since the index graph corresponding to the star Fo-graph on IV vertices is a subgraph of
the index graph corresponding to the maximal Fa-graph on N vertices, the index graph
corresponding to the maximal Fo-graph on N vertices must be also two-connected as

the addition of edges cannot disturb the property of two-connectedness.

In the last step of the proof we show that we do not violate the condition of two-
connectedness of the index graph by removing edges from the maximal interaction Fo-
graph as long as the condition that any vertex ij € V is connected to a vertex klj
for every possible k # i,j and for any I € {1,...,N} holds. We prove this by in-
duction on the length of the path connecting the vertices 75 and kl;. The considered

() (5) () p(3) 5(3) _ p(3)

transformations Uy have the property Uy .U Up”n Us’l = Uyl’n

Suppose we
are given a path of length d = 2: Pj 45, = ((i12,12i3), (i2¢3,4314)). Let us note
e = (i1,192;13), f = (i2,13;14) and g = (i1,142;74). Because of the previously mentioned
property, applying the sequence of edges colors fefe in the index graph has the same
result as applying the edge with the color g. Thus all the edges with color g can be
removed from the index graph without loosing the property of two-connectedness. In

the corresponding interaction Fa-graph we remove the F-arc (11,142;44). The resulting

interaction Fa-graph is a base graph and there exists a path connecting vertices i1t9

Tdid+1

i394 @

i9is 1d4+1%d+2

1192 1d+2%d+3

Figure B.11: The removal of the F-arc containing the directed edge (i1i2,i4+2,94+3) from

the interaction F-graph.
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with 7404 with {4 € N. Let us suppose that for every path of length d > 2 the F-arc
connecting the beginning and the end of the path can be removed from the interaction
graph as long as it is not violating desired connectivity of other vertices. Let us take a
path of length d + 1. Without loss of generality let us assume that this path has the
form P = ((i1i2,i2i3), ., (idid+1,9d+19d+2), (id+19d+2, ld+2ia+3)). We will temporarily
add the edge (igig+1,i4+274+3) to the interaction F-graph. By this addition, the vertices
{i1,i2} and {igio,i413} are connected by path P’ of length d. We can thus remove the
F-arc containing the vertices 4179 and ¢442%413 as long as it does not violate the connec-
tivity of other vertices. The same holds for any path of length d+ 1. This completes the

proof by induction.

The condition that {,j} € V is connected to a vertex {k,;} for every possible k # i, j
and for any I, € N holds for any vertex {i,j} € V is a needed condition. We can easily
check that if this condition is violated, the corresponding index graph has more than one
components and thus it is not two-connected. Thus we have proved that this condition
is sufficient and needed for the minimality of eigenspace of RUO & corresponding to the

eigenvalue A = 1.

As can be easily see from the proof of the form of the base attractor space which was
made in the appendix A.1, as long as all pairs of qubits play role of the control qubits in
some transformation U J(lf)l, there are no non-trivial solutions of attractor equations for
the eigenvalue A = —1. Thus all interaction F-graph which satisfy the condition have

trivial eigenspace corresponding to the eigenvalue A = —1 and thus these graphs are the

all base graphs corresponding to controlled unitary interactions with two control qubits.

To summarize, we have proved that the sufficient and needed condition for an inter-
action Fo-graph to be a base graph is that any vertex ij € V is connected to a vertex

kly. for every possible k # i, j and for any [ € N.
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