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List of used symbols

The following list gives an overview of the symbols used through the thesis.

Symbol Meaning

N The set of all positive integers, i.e., {1, 2, 3, . . . }

N̂ The set {1, 2, . . . , N} with N ∈ N

H The Hilbert space

|x〉 The ket-vector - element of the Hilbert space H

〈x| The bra-vector - adjoint of the ket vector |x〉

Â† The hermitean adjoint of an operator Â

TrÂ The trace of an operator Â

ÎN The identity operator on the space H = C2N

U
⊕
V The direct sum of vector spaces U and V

Ker(A) The subspace of the Hilbert space H defined as {|x〉 ∈H |Â |x〉 = 0}

Ran(A) The subspace of the Hilbert space H defined as {|x〉 |∃ |y〉 ∈H , |z〉 = Â |y〉}

⊗ The tensor procuct

|xy〉 The tensor product of vectors |x〉 and |y〉, i.e. |xy〉 = |x〉 ⊗ |y〉

|x〉i The ket-vector corresponding to the i-th particle

i〈x| The bra-vector corresponding to the i-th particle

⊕ The addition modulo 2(
V
k

)
The set of all subsets U of the set V , which meet the condition

|U | = k with k ≤ |V |
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Structure of thesis

The aim of this thesis is to investigate the asymptotic evolution of a quantum network

consisting of qubits, which are interacting with each other via applications of controlled

unitary three-qubit gates with one or two control qubits. These gates are chosen in

analogy with previously studied cotrolled unitary two-qubit interactions [1].

This thesis is structured as follows. Chapter 1 is devoted to the short introduction

to the description of the time evolution of open quantum systems with stress putted

on the model of quantum operations. Next, we describe the most widely used models

of quantum computation, the adiabatic quantum computing and the quantum circuit

model and we introduce the specific quantum gates, which are important for this thesis.

In Chapter 2, we define random unitary operations, we review their basic properties

which are important for the description of asymptotic evolution of given random unitary

operation and discuss the use of random unitary operations for describing multi-qubit

interaction.

In Chapter 3 basic concepts of graph theory and hypergraphs are defined. Graphs

and hypergraphs are going to be instrumental for visual representation of multi-qubit

interactions and for the classification of their asymptotic evolution.

In Chapter 4, we review previous results concerning the control unitary two-qubit in-

teractions and we discuss how the concept of control unitary three-qubit interactions is

related to this topic. Then we present the main result of this thesis - so-called base at-

tractor spaces of control unitary three-qubit interactions with one or two control qubits

9



CONTENTS

and we present base graphs of these interactions. Using the obtained results we analyze

basic properties of asymptotic states of controlled unitary three-qubit interactions. The

comparison with basic properties of controlled unitary two-qubit interaction is made.

The results of this thesis are summed up in Chapter 5.
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Chapter 1

Introduction

Every real physical system is in contact with its environment. The system (called

usually the principal system) interacting with its environment can be made isolated by

taking the combined system consisting of the principal system and the environment.

The combined system is closed and its time evolution is thus described by an unitary

operator. The contact of the environment with the principal system can introduce ir-

reversibilities [2] into the time evolution of the principal system and thus the principal

system itself does not have to evolve according to the action of some unitary operator.

Systems of this kind are called open systems. If the contact with environment introduces

irreversibilities into the time evolution the open quantum system is called the dissipative

system.

There are several ways how to approach the problem of time evolution of a general open

quantum system. One can derive the time evolution of the composed system (which is

closed and thus the time evolution is unitary) and then take trace over the environment,

which defines the time evolution on the given system. However, this method is often

not very efficient since environment can be large and the mathematical description of its

interaction with the principal system can be complicated. We refer to this approach as

to the environment-trace description.

The other possibility how to model the action of the environment on the principal system

is to introduce a non-Hermitean Hamiltonian [3] which describes this action. The
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INTRODUCTION

non-hermicity of the Hamiltonian results in the exchange of energy between the principal

system and its environment. The time evolution of the state of the given system is then

described by the non-Hermitean Schrödinger equation. Since the generator of the time

evolution is non-Hermitean, the propagator of the principal system is not unitary.

The last model of open quantum systems we mention is the model of quantum opera-

tions [4, 5] which is widely used in the theory of quantum information. Since our main

concern in this thesis is closely related to quantum operations, we will describe the basic

concept of quantum operations in the following section.

1.1 Quantum operations

Within the model of quantum operations, we describe the action of the environment

on the principal system by a completely positive map E which acts on the principal

system. We require the principal system and its environment to start in the separable

state ρ = ρ(S) ⊗ ρ(E) and we define the map E as

E (ρ(S)) = TrE

[
Û(ρ(S) ⊗ ρ(E))Û †

]
.

Although the right-hand side of this equation is identical with the environment-trace

description, within the model of quantum operations we do not specify properties of the

environment as its Hilbert space HE , we merely define the map E and use it to describe

the evolution of the principal system. This description is significantly different from

the previous one since it describes the evolution of system as a discrete process which

takes the initial state of the principal system ρ(S), brings it into the contact with the

environment in the initial state ρ(E) and after a fixed finite time T the interaction of

the principal system and environment is terminated. The resulting state of the principal

system is then E (ρ(S)).

There exists a very useful form of quantum operation called the operator-sum repre-

sentation [4, 5]. Let |ek〉 be the orthonormal basis of Hilbert space of the environment

and let the initial state of the environment be |e0〉. There is no loss of generality by as-

suming that the environment begins in a state with a well defined state vector, since we
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INTRODUCTION

can always use the quantum purification process to do so [5]. Then we define operators

on the principal system as

Êk = 〈ek|Û |e0〉 .

With help of these operators we can rewrite the action of a quantum operation as

E (ρ) =
∑
k

ÊkρÊ
†
k.

Since E (ρ) must be a density matrix we require for all density matrices ρ

1 = Tr [E (ρ)] = Tr

[∑
k

ÊkρÊ
†
k

]
=
∑
k

Tr
[
Ê†kÊkρ

]
⇒
∑
k

Ê†kÊk = Î .

This representation has a following physical interpretation. Let ρk be the operator

ρk =
ÊkρÊ

†
k

Tr[ÊkρÊ
†
k]
.

Clearly ρk is a density matrix. With help of these density matrices we can rewrite the

action of the quantum operation as

E (ρ) =
∑
k

Pkρk =
∑
k

Pk
ÊkρÊ

†
k

Tr[ÊkρÊ
†
k]

with Pk = Tr[ÊkρÊ
†
k]. We can thus interpret the action of the map E on the state ρ as

follows. E takes the state ρ and replaces it randomly by the state ρk with the probability

Pk.

1.2 Quantum computation

The main part of this thesis is concerned with the random unitary operations model.

Although this model can be used to solve a very wide range of problems in physics and

biology, one of the most useful applications of this model is certainly its application to the

quantum computation, where it can describe the contact with the principal system and

its environment, which leads to decoherence of the system. As quantum computation

is a powerful tool to solve various problems it is of a significant interest of present-day

science. To process information, quantum computation uses qubits. Although our main
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INTRODUCTION

concern is going to be the quantum circuit model of quantum computation, we mention

the adiabatic quantum computing model to stress the fact that there are various paths

we can take in the quantum computation.

The model of adiabatic quantum computing [6] is based on the adiabatic theo-

rem [7]. First, the complex Hamiltonian, whose ground state gives the solution of the

given problem is found. This Hamiltonian has usually a form [8]

H =
∑
i

hiZi +
∑
i

∆iXi +
∑
i<j

J ijZi ⊗ Zj +
∑
i<j

KijXi ⊗Xj . (1.1)

Here Xi represents the Pauli matrix σx which acts on the qubit i and Zi stands for the

Pauli matrix σz which acts on the qubit i. It was proven that Hamiltonian of the form

(1.1) is the simplest Hamiltonian that allows the universal adiabatic quantum computing

[8].

In the next step, the system, whose dynamic is governed by a simple Hamiltonian is

initialized in its ground state. Finally, the Hamiltonian of the system is slowly (adiabat-

ically) varied towards the complex Hamiltonian H. By adiabatic theorem, the resulting

state of the system will be the ground state of the complex Hamiltonian and thus this

method leads to the solution of given problem.

The model of quantum computation we are going to be most concerned about is the

quantum circuit model [4, 9]. This is a direct analog of classical circuit model used

in classical computers. Within the quantum circuit model we have at our disposal the

set of so-called quantum gates. Quantum gates are objects performing operations on

input qubits. The idea is to initialize the system in some specific state, then run it

through a specific set of quantum gates. The resulting state of the system then encodes

the solution of the problem.

There are two basic types of quantum gates - single-qubit gates and multi-qubit gates.

As the names suggest, single-qubit gates operate on the single qubit and multi-qubit

gates operate on at least two qubits. The important kind of multi-qubit gates are con-

trol gates. These gates change the state of one set of qubits (called the target qubits)
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INTRODUCTION

conditionally on the state of the second set of qubits (called the control qubits). Because

of their importance in this thesis, we will describe two of these gates - the CNOT gate

and the Toffoli gate.

The CNOT [4, 5, 9] or control NOT gate is a quantum gate which acts on two qubits.

This action is usually described in the so-called computational basis. In this basis

the CNOT gate can be written as

Û12 = |0〉 11〈0| ⊗ Î2 + |1〉 11〈1| ⊗ [|0〉 22〈1|+ |1〉 22〈0|] .

In this expression Î2 exceptionally stands for the identity operator on the Hilbert space

of the second qubit. The CNOT gate thus changes the state of second qubit only if the

first qubit is in the state |1〉.

The Toffoli gate [4, 5, 9], which is sometimes called the double CNOT gate acts on

three qubits by the following rule:

Û12,3 = [Î12 − |11〉 12 12〈11|]⊗ Î3 + |11〉 12 12〈11| ⊗ [|0〉 33〈1|+ |1〉 33〈0|] .

In this expression Îi1...ik exceptionally stands for the identity operator on the Hilbert

space of the system consisting of qubits i1, . . . ik. Thus the Toffoli gate can be viewed as

the CNOT gate with two control qubits. The state of the third qubits is changed only

if both first and second qubit are in the state |1〉.

Any quantum gate can be viewed as the map E which describes the time evolution

of the principal system within the model of the quantum operation. Thus the quantum

circuit model of the quantum computation and the quantum operation model of the time

evolution of open systems are closely related. As we will see in the next chapter, we can

always find the analytical form of the asymptotic dynamic of special case of quantum

operations - random unitary operations, which makes it a powerful tool for studying

decoherence effects in open quantum systems.
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Chapter 2

Random unitary operations

In the previous chapter we described the general concept of quantum operations.

Now we turn to the case where the operators in the operator-sum representation Êk

are unitary. Since the unitarity implies the equation Ê†kÊk = I the equation Pk =

Tr[Ê†kÊkρ] = Trρ = 1 holds. Thus operators Pk lose their probabilistic interpretation.

Since the relation ∑
k

Ê†kÊk = I

must hold, we are forced to introduce the probabilistic nature of the outcome artificially

by defining probability distribution pk. In this manner we arrive at the random unitary

operation (RUO), which is going to be denoted as Φ and the unitary operators in the

operator-sum representation of Φ are going to be denoted as Ûk.

Before we take a step towards the formal definition of RUO [10], let us name some

of the results derived with the help of this model. The most important result related

to this thesis is the asymptotic dynamic of the quantum network consisted of qubits

interacting in pairs via controlled unitary interactions [1]. From the other results let

us name the following. The existence of two kinds of entangled states - robust one and

fragile one [11], the asymptotic dynamic of the quantum Markov chain [12] and the effect

of graph percolations on the quantum walks [13].
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RANDOM UNITARY OPERATIONS

2.1 Basic properties of random uniteary operations

A random unitary operation Φ on a finite-dimensional Hilbert space H is a com-

pletely positive trace-preserving map Φ : B(H )→ B(H ) admitting a convex decompo-

sition of the form [10]

Φ(ρ) =

n∑
k=1

pkÛkρÛ
†
k .

Here the Ûk are unitary operators and pk > 0 fulfill the relation
∑

k pk = 1. The inter-

pretation of action of Φ is the following: The state of the system ρ is by applying the map

Φ randomly replaced by the state ÛkρÛ
†
k with the probability pk. These probabilities

are the result of the classical uncertainties which can have different origins. They can

be the result of an unknown error mechanism, an unknown unitary evolution involving

an additional ancillary system or the result of uncertainty about its degrees of freedom.

The main focus of this thesis is devoted to the asymptotic dynamic of a special kind of

RUO in which the certain quantum gates are applied on several qubits. Starting with

the initial state of the system ρ(0), we iterate this state by the rule ρ(n+ 1) = Φ(ρ(n)).

Before we turn our attention to the asymptotic dynamic, we summarize the basic prop-

erties of random unitary operations. They belong to the class of unital maps which leave

the maximally mixed state invariant:

Φ(Î) =
n∑
k=1

pkÛkÎÛ
†
k =

n∑
k=1

pkÎ = Î .

With respect to the Hilbert-Schmidt scalar product [14] the adjoint map Φ† is given by

Φ†(ρ) =
n∑
k=1

pkÛ
†
kρÛk.

This equation immediately implies that RUO Φ is generally not unitary, neither Her-

mitean or even normal and thus it needs not to be diagonalizable. However, it turns

out that the Jordan form of Φn has in the limit n→∞ diagonal from. This property is

going to be beneficial for the description of the asymptotic dynamic of Φ.

The following properties of random unitary operations are introduced without proof,
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RANDOM UNITARY OPERATIONS

which can be found in [10].

The norm of the RUO Φ induced by the Hilbert-Schmidt scalar product fulfils the

equation ||Φ||HS = 1. This property follows from the unitary invariance of the Hilbert-

Schmidt norm and the unitality of the RUO Φ. The most important consequence of this

statement is that if λ is an eigenvalue of Φ, then we must have |λ| ≤ 1.

If Xλ ∈ B(H) is a generalized eigenvector corresponding to the eigenvalue λ of Φ, then ei-

ther λ = 1 or Tr[Xλ] = 0. The proof of this property follows directly from the definition of

generalized eigenvector of linear map and the equation Tr [(Φ− λI)nXλ] = (1−λ)nTr[Xλ]

which can be proved by induction on n.

There exists a subspace of B(H ) which is of extreme importance for the description

of asymptotic evolution of RUO Φ. It is called the attractor space and it is defined as

Atr(Φ) =
⊕
|λ|≤1

Ker(Φ− λI).

As we will see in the next section, the asymptotic dynamics of RUO Φ is completely de-

termined by its attractor space. The elements of the attractor space are called attractors.

The main result about the structure of the attractor space of RUO Φ is the follow-

ing theorem.

Theorem 2.1.1. The eigenspace Ker(Φ−λI) of RUO Φ with |λ| = 1 is equal to the set

Dλ = {X ∈ B(H )|ÛkX = λXÛk, ∀k ∈ n̂}.

The fact that every X ∈ Dλ belongs to the kernel of Φ corresponding to the eigenvalue

λ is almost trivial, thus this theorem proves the converse and it gives us the instrument

to construct the attractor space of RUO Φ.

From this structure theorem of the attractor space we can easily derive the basic proper-

ties of attractors of Φ. These are particularly useful when searching for the explicit form

of the attractor space. The straightforward consequence of the structure theorem is, that

18



RANDOM UNITARY OPERATIONS

if Xλ1 and Xλ2 are attractors corresponding to eigenvalues λ1 and λ2 with |λi| = 1, then

Xλ1Xλ2 is an attractor corresponding to eigenvalue λ1λ2 or a zero operator. Furthermore

X†λi is an attractor corresponding to eigenvalue λ∗i .

2.2 Asymptotic evolution of random unitary operations

The Jordan form of RUO Φ has properties which are useful for the description of

asymptotic evolution of Φ. It was shown that if we consider the Jordan form of RUO

Φ, then all Jordan blocks corresponding to eigenvalues λ of Φ with |λ| = 1 are one-

dimensional and thus all generalized eigenvectors corresponding to eigenvalues with

magnitude equal to one are eigenvectors. This is the simple consequence of the fact,

that for eigenvalue λ with |λ| = 1, we have

Ker[Φ− λI] ∩ Ran[Φ− λI] = {0}.

Next, it is straightforward to show, that all Jordan blocks Js corresponding to eigenvalues

λs with |λs| < 1 vanish in the limit of large numbers of iterations [10]:

lim
n→∞

(Js)
n = 0.

Thus Φn has a diagonal form in the limit of large n. As a last step, it was shown that

the mutually orthogonal subspaces

J0 =
⊕
λ∈σ|1|

Ker[Φ− λI] and J1 =
⋂

λ∈σ|1|

Ran[Φ− λI]

are invariant under map Φ and they fulfill the relation J0 ⊕ J1 = B(H ) [10]. These

properties imply that the asymptotic dynamic of Φ is given by the state

ρ∞(n) =

dλ∑
λ∈σ|1|
i=1

λnTr[ρ(0)X†λ,i]Xλ,i,

in the sense

lim
n→∞

||ρ(n)− ρ∞(n)|| = 0.
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RANDOM UNITARY OPERATIONS

In this expression, σ|1| = {λ ∈ σ(Φ), |λ| = 1}, ρ(n) = Φn(ρ(0)) and {Xλ,1 . . . , Xλ,dλ} is

the orthonormal basis of the subspace Ker[Φ− λI].

To summarize, the asymptotic dynamic of RUO Φ is completely determined by the

attractor space of Φ. Furthermore, the asymptotic dynamic is completely independent

on the probabilities pi. This follows immediately from the independence of the attractor

space on these probabilities. Thus two RUOs with the same unitary operators in their

convex decomposition have the same asymptotic dynamic. The nonzero probabilities

determine only the rate of convergence of the iteration process towards the attractor

space.

2.3 Random unitary operations as the model for multi-qubit interaction

The unitarity is the only condition which must be satisfied by operators Ûi which

arise in the convex decomposition of RUO Φ. Because of that RUOs form a broad class

of quantum operations with a wide spectrum of behavior. There are two basic cases. In

the first one, operators Ûi act nontrivially on the whole Hilbert space H . The opposite

of this case is the situation in which operators Ûi act nontrivially only on the small

fraction of the Hilbert space H . Multi-qubit interactions are an example of such RUO.

These are of particular interest in quantum computation since the quantum gate model

of quantum computation is based on the concept of quantum gates, which act on one or

several qubits. The multi-qubit interaction model introduced in the Chapter 4 can be

also viewed as a simple model of particle collisions. Consider a rarefied gas with a short-

range interaction and suppose we are not able to track the positions of the molecules,

but we are able to track if they are in the ground state or in the excited state. The

inability of tracking positions of particles leads to uncertainty about the system and thus

introduces random behavior. Since the gas is rarefied, we can decompose the interaction

of the molecules into steps which are well separated in time and during each step there

is only one interacting pair or triplet of molecules. Since this subsystem is closed at this

particular step, it evolves according to some unitary operator. These considerations lead

us thus to model of random unitary operations.
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Chapter 3

Graphs and hypergraphs

Many physical systems can be visualized by means of graphs. Informally speaking,

graph is a set of items with connections (called edges) between them. Graphs are useful

in many physical models, they can for instance represent the Internet, social networks,

distribution networks or interacting physical systems [15]. There are many different

kinds of graphs, which depend on the properties of their vertices and edges. The prop-

erties of graphs were extensively investigated during past decades. In recent years, the

attention was drawned towards graphs with a large number of vertices. Large graphs are

of interest because they represent systems composed of a huge number of elements and

they can thus represent the above mentioned systems. With increasing size of the graph

the computational complexity of its properties is also increasing, thereby the analysis of

even the simple properties of graphs such as its connectivity becomes problematic. One

thus turns to the study of large-scale properties of graphs e.g. clustering [16], but as

we will see in next chapter, the small-scale properties e.g. connectivity still do play an

important role for large graphs. An useful generalization of a graph called a hypergraph

accounts for more complex connection between vertices and will be particularly useful

in this thesis.

The purpose of this chapter is to introduce the basic concepts of graph theory, which

are used in next chapters. We will be interested in both graphs and hypergraphs, but

we will define only those properties of these structures, which we are going to use.
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GRAPHS AND HYPERGRAPHS

3.1 Graphs and their basic properties

We define an undirected graph as the ordered triplet G = (V,E, ϕ), where V =

{v1, . . . vN} is the set of vertices, E = {e1 . . . em} is the set of edges and ϕ : E →
(
V
2

)
.

Such definition of a graph does not include graphs with loops (edges with both ends at

same vertex), but it does allow multiple edges (two vertices can be connected by more

than one edge).

A finite sequence P = (ei1 , . . . , eil) of edges, which fulfils the conditions ϕ(eij )∩ϕ(eij+1) 6=

∅ and ϕ(eij ) 6= ϕ(eij+1) for every j ∈ l̂ − 1 is called a path in G, the vertex u ∈ V ,

which fulfils v ∩ ϕ(ei2) = ∅ is called the beginning of path P , the vertex v, which fulfils

v∩ϕ(eil−1
) = ∅ is called the end of path P and the length of path P is l−1. We will call

the path with the beginning u and the end v simply as the path between u and v and

we will denote it Puv. We say that u and v are connected in G. A undirected graph G

is called connected, if every pair of its vertices is connected.

If ϕ : E → V × V , we call G a directed graph. The elements of a E of directed

graph are called directed edges or arrows. If ϕ(ei) = (vj , vk), we call vj the tail of ei and

vk the head of ei.

There are two kinds of connectivity in a directed graph. If a directed graph G is connected

Figure 3.1: An example of an undirected graph which is not connected and an example

of a path in an undirected graph (in red).

22



GRAPHS AND HYPERGRAPHS

Figure 3.2: An example of a directed graph and an example of a path in a directed graph

(in red).

in the sense of an undirected graph, we say that G is weakly connected. If every u, v ∈

V are connected by a path Puv = (ei1 , . . . , eil) which fulfils [ϕ(eij )]2 ∩ [ϕ(eij+1)]1 6= ∅,

where [ϕ(eik)]l is the l-th component of ϕ(eik), we say that G is strongly connected.

This kind of path is called the directed path.

A graph G equipped with the map C : {1, . . . , k} → E is called edge-colored graph

and C(e) for e ∈ E is called as color of the edge e. We will call the graph G m-

connected, if for every pair of m vertices (u1, . . . , um), (v1, . . . , vm) there are paths

P1, . . . Pm, with Pi = (ei1 , . . . eil), where Pi connects ui with vi and for every i, j ∈ m̂

and for every n ∈ l̂ the paths Pi and Pj fulfill the relation C(ein) = C(ejn).

(a) An example of a weakly

connected directed graph.

(b) An example of a strongly

connected directed graph.
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3.2 Hypergraphs and their basic properties

A hypergraph [17] is a direct generalization of a graph in which we do not restrict

the relations between vertices to be the binary ones. Instead we define the undirected

hypergraph as the ordered pair H = (V,E) where E is an arbitrary subset of set of

all subsets of V . The elements of E are called hyperedges. We dropped the map ϕ in

the definition of hypergraph to simplify the notation, since we are not going to need

multiple edges while using hypergraphs.

Rather as a sequence of hyperedges, we define a path in hypergraph as a sequence

of pairs of vertices P = (u = vi1vi2 , . . . , vil−1
vil = v) for which there is a sequence of

hyperedges (ei1 , . . . , eil−1
) with eij = Ej such that vi1 ∈ E1, vil ∈ El−1 and for every

j ∈ {2, . . . , l − 1} the condition vij ∈ Ej−1 ∩ Ej holds. We denote this path by Puv and

we say that u and v are connected in H. A hypergraph H is called connected if every

pair of vertices u, v ∈ V is connected.

A directed hypergraph is H = (V,E), where E is arbitrary subset of the set of all

pairs of disjoint subsets of V. More precisely, if e ∈ E, then e = (X,Y ) with X,Y ⊂ V

and X ∩ Y = ∅. If u ∈ X, then u is called the tail of hyperedge e, if v ∈ Y , then v is

called the head of hyperedge e.

Figure 3.4: An example of a strongly connected directed hypergraph and an example of

a path in a directed hypergraph (in red).
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(a) An example of a F-graph. (b) An example of a B-graph.

For a given directed hypergraph Hd = (V,E) we define a corresponding undirected

hypergraph Hu = (V, F ), where F = {(X ∪ Y )|(X,Y ) ∈ E}. We say that the directed

hypergraph Hd is weakly connected if the undirected hypergraph Hu is connected.

We say that the hypergraph H is strongly connected, if for every u, v ∈ V there is a

path Puv = (u = vi1vi2 , . . . , vil−1
vil = v) such that if vij is the tail of hyperedge e then

vij+1 is the head of hyperedge e holds for every j ∈ l̂.

There are special types of hyperedges which will be particularly useful for us. Let

e = (X,Y ) be a hyperedge. If |X| = 1, e is called a F-arc, if |Y | = 1, e is called a

B-arc. A hypergraph H in which all the hyperedges are F-arcs is called a F-graph, a

hypergraph H in which all the hyperedges are B-arcs is called a B-graph.

3.3 Incidency matrix

Both graphs/hypergraphs can be represented by the so-called incidency matrix. Let

n be number of vertices of a given graph/hypergraph, let m be the number of its

edges/hyperedges. For undirected graphs/hypergraphs, the incidency matrix is A ∈

{0, 1}n,m with matrix elements defined as

Aij =

 1 if vi is incident with ej

0 otherwise
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For directed graphs/hypergraphs, the incidency matrix is A ∈ {−1, 0, 1}n,m with matrix

elements defined as

Aij =


1 if vi is head of ej

−1 if vi is tail of ej

0 otherwise

v1 v2

v3v4

e1

e2

e3
e4

Figure 3.6: An example of a directed hypergraph G and it’s corresponding incidency

matrix AG.

With increasing number of vertices and edges of a given graph/hypergraph, the visual

representation tends to be chaotic. The incidency matrix of a given graph/hypergraph

can be very useful in this situation since it encodes the whole information about a given

graph/hypergraph.
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Chapter 4

Three body interactions

The properties of two body interactions were extensively studied within the random

unitary operations model [1, 11, 12]. Since we know that the attractor space is indepen-

dent on the nonzero probabilities which appear in the convex decomposition of a given

RUO, the question arises, how three body interactions affect the resulting attractor

space. As was already stated in Section 2.3, there are two distinct types of RUOs. The

first one is represented for instance by the two body interactions, the operators involved

in the convex decomposition of this RUO act nontrivially only on the low-dimensional

subspace of given Hilbert space. The other are RUOs, where the operators involved in

the convex decomposition act nontrivially on the whole Hilbert space. As an example of

this case we can list quantum walks on percolation graphs [13]. Three body interactions

then represent the first and the simplest step from the first case towards the second one.

Thus it is interesting to look for their attractor space and search for new features, which

are not present within the two body interactions. As the three body interaction can be

studied from different point of views, we will focus on the two following cases. We will

examine the case with a single control qubit and with two control qubits, from which we

deduce the influence of number of control qubits on the resulting dynamics.
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4.1 Base attractor space and base graphs

A very sophisticated and unifying model of multi-qubit interaction is the model of

quantum networks. A quantum network in our context is the set of qubits which are

coupled with each other by the quantum gates. For sake of simplicity, qubit networks

in which qubits interact with each other via controlled unitary multi-qubit interactions

will be referred to simply as qubit networks.

When studying multi-qubit interaction, one finds that the resulting attractor space

strongly depends on the topology of the interaction. The topology of the interaction

is encoded in the so-called interaction graph of a given system, the definition of this

graph depends on the particular interaction. Generally, there exists a topology of the

interaction, corresponding attractor space of which is a subspace of any attractor space

of given type of interaction. This attractor space is called the base attractor space

and the corresponding interaction graphs are called base graphs. Because of their

importance we study them in following sections.

4.2 Controlled unitary two-qubit interactions

Let us consider a quantum network consisting of N ≥ 2 qubits interacting with each

other by application of controlled unitary two-qubit gates Û , which are applied to the

pairs of qubits according to the prescribed probability distribution pij with
∑

i,j pij = 1.

We are interested in the one-parameter family of controlled unitary two-qubit inter-

actions which in the computational basis have the form

Û
(φ)
ij = |0〉 ii〈0| ⊗ Îj + |1〉 ii〈1| ⊗ û

(φ)
j ,

where

û
(φ)
j = cosφ(|0〉 jj〈0| − |1〉 jj〈1|) + sinφ(|0〉 jj〈1|+ |1〉 jj〈0|).

Thus the considered RUOs have the form
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1 2

34

Figure 4.1: An example of an interaction graph G corresponding to the RUO Φ
(2)
G

Φ(2)(ρ) =
∑
e∈E

peÛ
(φ)
e ρÛ †(φ)e .

Here E is the subset of the set of the ordered pairs (i, j). In the special case φ = π
2 , the

controlled unitary transformation Û
(φ)
ij reduces to a CNOT gate with a control qubit i

and a target qubit j. The eigenvalues of the transformation Û
(φ)
ij are given by λ1 = 1 and

λ2 = −1. Because of that, the attractor spectrum σ|1| fulfils the relation σ|1| ⊂ {−1, 1}.

For φ = 0 or φ = π the RUO Φ is diagonal in the computational basis.

We begin the description of controlled unitary two-qubit interactions by construction

of an interaction graph corresponding to such qubit network. Let us consider a graph

G = (V,E, ϕ) with V = N̂ , where the vertex i ∈ V corresponds to the qubit i. The

vertices i and j are connected in G by a directed edge e ∈ E, whose head is j and whose

tail is i, if pij > 0. Since G contains no multiple edges, the map ϕ is not needed in

the description of the graph. Because of this we will use the notation G = (V,E) and

e = (i, j). The directed graph G = (V,E) which is constructed in this way is called the

interaction graph of the given qubit network.

Concerning the base attractor space and base graphs of this one-parameter family of

interactions, the following theorem was proved [1]:
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Theorem 4.2.1. For φ 6= 0, π the base graphs of the considered family of interactions

are exactly all strongly connected interaction graphs G = (V,E). For a given number of

qubits N with N > 2, the associated base attractors are elements of a five-dimensional

attractor space Atr(Φ
(2)
G ). An orthonormal basis system of linear operators in this space

of base attractors is given by

X̂1 = |0N 〉 〈0N | , X̂2 = |0N 〉 〈ψN | ,

X̂3 = |ψN 〉 〈0N | , X̂4 = |ψN 〉 〈ψN | ,

X̂5 =
1√

2N − 2

(
ÎN − |0N 〉 〈0N | − |ψN 〉 〈ψN |

) (4.1)

with N -qubit states

|0N 〉 = |0〉⊗N ,

|ψN 〉 =
1√
〈θN |θN 〉

|θN 〉 ,

|θN 〉 =
∑

06=z∈IN

(
cos

φ

2

)N−τ(z)(
sin

φ

2

)τ(z)
|z〉 .

IN denotes the set of all possible binary N -tuples and τ(z) is the sum of the bit values

of all N qubits of the N -qubit string z. All of these base attractors solve the attractor

equations with eigenvalue λ = 1. For N > 2 there are no non-trivial solutions of attrac-

tor equations with eigenvalue λ = −1.

In the special case of two qubits, i.e. N = 2, the attractor space Atr(Φ
(2)
G ) of the base

attractors is six-dimensional. There is a five-dimensional subspace associated with eigen-

value λ = 1 whose orthonormal basis is given by {X̂i|i ∈ {1, . . . , 5}}. But now, also a

non-trivial one-dimensional subspace exists that corresponds to the eigenvalue λ = −1

and that contains the normalized linear operator,

X̂6 =
1√

2 + 2 cos2 φ2

(
cos

φ

2
(|01〉 〈11| − |10〉 〈11| − |11〉 〈01|+ |11〉 |10〉)−

− sin
φ

2
(|01〉 〈10| − |10〉 〈01|)

)
.

Base graphs of the one-parameter family of two-qubit interactions Φ(2) with φ ∈ (0, π)

for any N ≥ 2 are thus strongly connected interaction graphs. The asymptotic dynamic

of quantum networks with strongly connected interaction graphs for N > 2 is stationary
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and takes place on the five-dimensional subspace of B(H ) with the basis given by (4.1),

which are the solutions of the attractor equations for λ = 1. This subspace is also the

subspace of the attractor space of these particular interactions for N = 2, but in this

case the asymptotic dynamic can express periodic behavior provided by the solution of

attractor equations X̂6 which corresponds to the eigenvalue λ = −1.

For the generic case N > 2 any initial quantum state ρin approaches by the iterative

application of the map Φ(2) to the state

ρ(2)∞ = p(2)
P̂

(2)
N ρinP̂

(2)
N

p(2)
+ (1− p(2))

ÎN − P̂ (2)
N

2N − 2
, (4.2)

with P̂
(2)
N = |0N 〉 〈0N | + |ψN 〉 〈ψN | and p(2) = Tr[ρinP̂

(2)
N ]. P̂

(2)
N is the projector onto

an N -qubit decoherence-free subspace of the quantum states which are not affected by

unitary transformations Û
(φ)
ij .

4.3 Controlled unitary three-qubit interactions with one control qubit

The controlled unitary three-qubit interactions with one control qubit are the direct

analogy of the the two-qubit interactions which were reviewed in the previous section.

Let us suppose we are given a quantum network consisting of N ≥ 3 qubits interacting

with each other by application of the controlled unitary two-qubit gates Û , which are

applied to the triplets of qubits according to a prescribed probability distribution pi,jk,

with
∑

i,jk pi,jk = 1.

In analogy with the two-qubit interactions, we define the one-parameter family of three-

qubit interactions with one control qubit, which have in the computational basis the

form

Û
(φ)
i,jk = |0〉 ii〈0| ⊗ Îjk + |1〉 ii〈1| ⊗ û

(φ)
j ⊗ û

(φ)
k ,

where

û
(φ)
j = cosφ(|0〉 jj〈0| − |1〉 jj〈1|) + sinφ(|0〉 jj〈1|+ |1〉 jj〈0|).
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1 2
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Figure 4.2: An example of an interaction F1-graph G corresponding to the RUO ΦG

Thus the considered RUOs have the form

Φ(3,1)(ρ) =
∑
e∈E

peÛ
(φ)
e ρÛ †(φ)e .

Here E is the subset of the set of partially ordered triples (i; j, k) = (i; k, j). As in the

previous case, we will discard cases φ = 0, π since the RUO Φ(3,1) is then diagonal in

the computational basis. The eigenvalues of the transformation Û
(φ)
i,jk are again given

by λ1 = 1 and λ2 = −1 and thus the attractor spectrum σ|1| fulfils the relation σ|1| ⊂

{−1, 1}.

The hypergraphs are more convenient mathematical object to represent the three-qubit

interactions with. More precisely, we are going to describe given RUOs by F-graphs.

We define the interaction F1-graph of corresponding RUO Φ(3,1) as G = (V,E), with

V = N̂ , where the vertex i corresponds to the qubit i. If pi,jk > 0 then the vertices i, j

and k are connected in G by a F-arc e ∈ E whose head are the qubits j and k and whose

tail is the qubit i.

The base F1-graphs and the base attractor space is given by the following theorem.

Theorem 4.3.1. For φ 6= 0, π, the base F1-graphs of the considered family of interactions

are exactly all strongly connected interaction F1-graphs G = (V,E). For the case φ 6= π
2

and any number of qubits N ≥ 3, the associated base attractors are elements of a ten-

dimensional attractor space Atr(Φ
(3,1)
G ). An orthonormal basis system of linear operators
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in this space of base attractors is given by

X̂1 = |0̃N 〉 〈0̃N | , X̂2 = |0̃N 〉 〈ϕ+
N | ,

X̂3 = |0̃N 〉 〈ϕ−N | , X̂4 = |ϕ+
N 〉 〈0̃N | ,

X̂5 = |ϕ−N 〉 〈0̃N | , X̂6 = |ϕ+
N 〉 〈ϕ

+
N | , (4.3a)

X̂7 = |ϕ−N 〉 〈ϕ
−
N | , X̂8 = |ϕ−N 〉 〈ϕ

+
N | ,

X̂9 = |ϕ+
N 〉 〈ϕ

−
N | ,

X̂10 =
1√

2N − 3

(
ÎN − |0̃N 〉 〈0̃N | − |ϕ+

N 〉 〈ϕ
+
N | − |ϕ

−
N 〉 〈ϕ

−
N |
)
, (4.3b)

with N -qubits states

|ϕ+
N 〉 =

(
cos

φ

2
|0〉+ sin

φ

2
|1〉
)⊗N

, |ϕ−N 〉 =

(
sin

φ

2
|0〉 − cos

φ

2
|1〉
)⊗N

,

|0̃N 〉 =
1√

1 +
(

cos φ2

)2N
+
(

sin φ
2

)2N
(
|0N 〉 −

(
cos

φ

2

)N
|ϕ+
N 〉 −

(
sin

φ

2

)N
|ϕ−N 〉

)
.

All of these base attractors solve the attractor equations with eigenvalue λ = 1. Thus for

φ 6= π
2 there are no non-trivial solutions of attractor equations with eigenvalue λ = −1.

In the special case φ = π
2 , for N > 3 the base attractor space Atr(Φ

(3,1)
G ) is eleven-

dimensional. The orthonormal basis of the attractor space is given by the operators

{X̂i|i ∈ 9̂} and the following two operators:

X̂ ′10 =
1√

2N−1 − 2

(
ÎN,E − |0̃N 〉 〈0̃N | −

1

2

(
|ϕ+
N 〉+ |ϕ−N 〉

) (
〈ϕ+

N |+ 〈ϕ
−
N |
))

,

X̂ ′11 =
1√

2N−1 − 1

(
ÎN,O −

1

2

(
|ϕ+
N 〉 − |ϕ

−
N 〉
) (
〈ϕ+

N | − 〈ϕ
−
N |
))

,

(4.4)

with

ÎN,E =
1

2

∑
z∈IN

(
1 + (−1)τ(z)

)
|z〉 〈z| ,

ÎN,O =
1

2

∑
z∈IN

(
1− (−1)τ(z)

)
|z〉 〈z| .

All of these base attractors solve the attractor equations with eigenvalue λ = 1. As in the

previous case, there are no non-trivial solutions of attractor equations with eigenvalue

λ = −1.
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For the case N = 3, the base attractor space is twelve-dimensional. It is consisting of

the eleven-dimensional subspace given by operators {X̂1, . . . , X̂9, X̂
′
10, X̂

′
11} correspond-

ing to the eigenvalue λ = 1. The eigenspace corresponding to the value λ = −1 is

one-dimensional. It is given by the operator

X̂12 =
1

6
(|101〉 〈011| − |110〉 〈011|+ |110〉 〈101| − |011〉 〈101|+ |011〉 〈110| − |101〉 〈110|) .

The proof of this theorem is given in the appendices A and B.

Similarly to the previous case of the controlled unitary two-qubit interaction, for the

generic case N > 3 and φ 6= π
2 , the initial quantum state ρin approaches by the iterative

application of the map Φ(3,1) to the state

ρ(3,1)∞ = p(3,1)
P̂

(3,1)
N ρinP̂

(3,1)
N

p(3,1)
+ (1− p(3,1))

ÎN − P̂ (3,1)
N

2N − 3
, (4.5)

with P̂
(3,1)
N = |0̃N 〉 〈0̃N | + |ϕ+

N 〉 〈ϕ
+
N | + |ϕ

−
N 〉 〈ϕ

−
N | and p(3,1) = Tr[ρinP̂

(3,1)
N ]. P̂

(3,1)
N is the

projector onto an N -qubit decoherence-free subspace of the quantum states which are

not affected by unitary transformations Û
(φ)
i,jk.

4.4 Controlled unitary three-qubit interactions with two control qubits

As we will see in this section, there are significant differences between the asymp-

totic dynamic of the controlled unitary three-qubit interactions with two control qubits

and the previous cases. Let us suppose we are given a quantum network consisting of

N ≥ 3 qubits interacting with each other by the application fo the controlled unitary

three-qubit gates Û , which are applied to triplets of qubits according to the prescribed

probability distribution pij,k with
∑

ij,k pij,k = 1.

The considered three-qubit interactions belong to the one-parameter family of trans-

formations with two control qubits which have in the computational basis form

Û
(φ)
ij,k =

(
Îij − |11〉 ij ij〈11|

)
⊗ Îk + |11〉 ij ij〈11| ⊗ û(φ)k ,

where
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û
(φ)
k = cosφ(|0〉 kk〈0| − |1〉 kk〈1|) + sinφ(|0〉 kk〈1|+ |1〉 kk〈0|).

The considered RUOs have the form

Φ(3,2)(ρ) =
∑
e∈E

peÛ
(φ)
e ρÛ †(φ)e .

Similar to the previous case, E is the subset of the set of partially ordered triples

(i, j; k) = (j, i; k). We will discard the cases φ = 0, π since the RUO Φ(3,2) is then

diagonal in the computational basis. The eigenvalues of the transformation Û
(φ)
ij,k are

again given by λ1 = 1 and λ2 = −1 and thus the attractor spectrum σ|1| fulfils the

relation σ|1| ⊂ {−1, 1}.

As mentioned in the previous section, hypergraphs are more natural object to describe

the topology of three-qubit interactions. However, the useful hypergraph representation

of three-qubit interactions with two control qubits is significantly different from the hy-

pergraph representation of three-qubit interactions with one control qubit. If we would

construct the interaction hypergraph to these interactions as an analogy to the interac-

tion hypergraph of three-qubit interactions with one control qubit, we would arrive to

B-graph. If we look at the nature of the three-qubit interactions with two control qubits,

12 13

14

2324

34

Figure 4.3: An example of an interaction F2-graph G corresponding to the RUO Φ
(3,2)
G .

This F2-graph belongs to the class of the base graphs of RUO Φ(3,2).

35



THREE BODY INTERACTIONS
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Figure 4.4: An example of a graph of symmetries corresponding to the interaction F-

graph G.

we need both control qubits to be in the state |1〉 to produce a nontrivial action on the

target qubit. This cannot be described by paths in B-graphs as each edge in the path

connects exactly two vertices of given B-graph. Thus we have to construct a F-graph

which encodes the information about qubit couplings.

Let us consider a oriented hypergraph G = (V,E), where V = {{i, j}|i < j ∈ N̂ .

Thus vertices of V represent pairs of qubits, for instance vertex {i, j} represents qubits

i and j. Thus |V | =
(
N
2

)
. If pij,k > 0, then the vertices {i, j}, {i, k} and {j, k} are joined

with a F-arc whose head is the vertex {i, j} and whose tail is the vertices {i, k} and

{j, k}. We call G the interaction F2-graph of Φ(3,2).

Another useful representation of controlled unitary three-qubit interactions with two

control qubits can be constructed. The interaction F2-graph of given three-qubit in-
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teraction with two control qubits lacks the information about the symmetry of qubit

interactions. Thus it is favorable to define so-called graph of symmetries. Despite

the name it is a set of N graphs, each having N − 1 vertices. Each vertex represents

given qubit, so the vertex i represents the qubit i. The i-th graph in this set of graphs is

the graph Gi = (Vi, Ei), where Vi = N̂\{i}. If pij,k > 0, then (i, k) ∈ Ej and (j, k) ∈ Ei.

We can immediately see that the graph of symmetries is defined in the symmetrical way

in the control qubits. The interaction F2-graph G = (V,E) and the graph of symme-

tries {Gi = (Vi, Ei)|i ∈ {1, . . . , N}} are related to each other in the following way. The

subgraph Hi ⊂ G, where V (Hi) = {ij|j ∈ {1, . . . , N}\{i}} is exactly the graph Gi.

The base F2-graphs and the base attractor space are given by the following theorem.

Theorem 4.4.1. For φ 6= 0, π the base F2-graphs of the considered family of interactions

are the F-graphs with the following property. The F-graph G = (V,E) is a base graph

if every vertex {i, j} ∈ V is connected to a vertex {k, lk} for every possible k 6= i, j and

for any lk ∈ N̂ . For any N ≥ 3 and any φ ∈ (0, π) the associated base attractors are

elements of a
(
(N + 2)2 + 1

)
-dimensional attractor space Atr(Φ

(3,2)
G ). An orthonormal

basis system of linear operators in this space of base attractor is given by

X̂1 = |0N 〉 〈0N | ,

X̂1+i = |0N 〉 〈1i| , i ∈ N̂ ,

X̂N+1+i = |1i〉 〈0N | , i ∈ N̂ ,

X̂(1+i)N+j+1 = |1i〉 〈1j| , i, j ∈ N̂ ,

X̂(N+1)2+1 = |0N 〉 〈ψ̃N | ,

X̂(N+1)2+1+i = |1i〉 〈ψ̃N | , i ∈ N̂ ,

X̂(N+1)2+N+2 = |ψ̃N 〉 〈0N | ,

X̂(N+1)2+N+2+i = |ψ̃N 〉 〈1i| , i ∈ N̂ ,

X̂(N+2)2 = |ψ̃N 〉 〈ψ̃N | ,

X̂(N+2)2+1 =
1√

2N −N − 2

ÎN − ∑
τ(z)=1

|z〉 〈z| − |ψ̃N 〉 〈ψ̃N |

 .

(4.6)
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with N -qubits states

|1i〉 = |0〉 ⊗ · · · ⊗ |1〉︸︷︷︸
i

⊗ · · · ⊗ |0〉 ,

|ψ̃N 〉 =
1√
〈θ̃N |θ̃N 〉

|θ̃N 〉 ,

|θ̃N 〉 =
∑

z∈IN ,τ(z)>1

(
cos

φ

2

)N−τ(z)(
sin

φ

2

)τ(z)
|z〉 .

All of these base attractors solve the attractor equations with eigenvalue λ = 1. There

are no non-trivial solutions of attractor equations with eigenvalue λ = −1.

For the generic case N ≥ 3 the initial quantum state ρin approaches by iterative appli-

cation of the map Φ(3,2) to the state

ρ(3,2)∞ = p(3,2)
P̂

(3,2)
N ρinP̂

(3,2)
N

p(3,2)
+ (1− p(3,2))

ÎN − P̂ (3,2)
N

2N −N − 2
, (4.7)

with P̂
(3,2)
N =

∑
τ(z)≤1,z∈IN |z〉 〈z|+ |ψ̃N 〉 〈ψ̃N | and p(3,2) = Tr[ρinP̂

(3,2)
N ]. The dimension

of the decoherence-free subspace P̂
(3,2)
N H is thus in this case directly dependent on the

number of qubits N .

4.5 Properties of asymptotic states of three-qubit interactions

In this section we derive basic properties of asymptotic states of three-qubit inter-

actions with one and two control qubits. We consider the case when the interaction

F-graph belongs to the class of base graphs. Then we compare results obtained for

controlled unitary three-qubit interactions with results obtained for controlled unitary

two-qubit interactions.

From the results of the previous section we can see that the asymptotic states of the

considered interaction can be easily compared in the case N > 3 and φ 6= π
2 . They are

given by (4.2), (4.5) and (4.7). All of these asymptotic states have the same nature, the

only difference is in the size of the decoherence-free subspace of the individual cases. It is

clear that the relation P̂
(2)
N H ⊂ P̂ (3,i)

N H holds with i = 1, 2. As we will see, this result

has an impact on the value of the von Neumann entropy [4, 5, 18] of the individual cases.
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In the case of the controlled unitary three-qubit interactions with one control qubit,

we have seen that for φ = π
2 there are two independent mixed states given by (4.4),

which belong to the attractor space. It is so because operators Û
(π2 )
i,jk preserve the parity

of τ(z) for z ∈ IN . Let us define HE as the subspace of H with orthonormal ba-

sis {|z〉 |, z ∈ IN , τ(z) = 2k, k ∈ N ∪ {0}} and HO as the subspace of H with basis

{|z〉 |z ∈ IN , τ(z) = 2k − 1, k ∈ N}. For sake of simplicity we will call these subspaces

the even and the odd part of H . We can say that the even and the odd part of the

input changes independently on the other one. It turns out that in this case a more

suitable orthonormal basis of the attractor space exists. It is given by substituting the

three orthonormal eigenvectors |0̃N 〉 and |ϕ±N 〉 for vectors |0N 〉, |χEN 〉 and |χON 〉 defined

as

|χEN 〉 =
1√

2
(
1− 1

2N−1

) (|ϕ+
N 〉+ |ϕ−N 〉 −

2√
2N
|0N 〉

)
,

|χON 〉 =
1√
2

(|ϕ+
N 〉 − |ϕ

−
N 〉).

These vectors form an orthonormal basis of the subspace P̂
(3,1)
N H and furthermore, for

φ = π
2 vectors |0N 〉 and |χEN 〉 form an orthonormal basis of the even part of P̂

(3,1)
N H

and the vector χON forms an orthonormal basis of the odd part of P̂
(3,1)
N H . Now we can

construct the projectors

P̂
(3,1)
N,E = |0N 〉 〈0N |+ |χEN 〉 〈χEN | ,

P̂
(3,1)
N,E = |χON 〉 〈χON | .

With these projectors, we can separate the even and odd part of the asymptotic state

which can be written as

ρ(3,1)∞ =(p0 + pE)
P̂

(3,1)
N,E ρinP̂

(3,1)
N,E

p0 + pE
+ (PE − p0 − pE)

ÎN,E − P̂ (3,1)
N,E

2N − 2
+

+ pO
P̂

(3,1)
N,O ρinP̂

(3,1)
N,O

pO
+ (PO − pO)

ÎN,O − P̂ (3,1)
N,O

2N − 1
.

(4.8)

The relation (4.8) is a direct analogy of the asymptotic state (4.5) with PE = Tr[ÎN,Eρin],

PO = Tr[ÎN,Oρin], p0 = 〈0N |ρin|0N 〉, pE = 〈χEN |ρin|χEN 〉 and pO = 〈χON |ρin|χON 〉.
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To compare the von Neumann entropies of asymptotic states ρ
(·)
∞ we choose a suit-

able orthonormal basis of the Hilbert space H . First we choose an orthonormal basis

of the subspace P̂
(2)
N H . Then we add another vector to get the orthonormal basis of

the subspace P̂
(3,1)
N . In the last step we pick an orthonormal basis of the subspace(

ÎN − P̂ (3,1)
N

)
H . We have thus constructed an orthonormal basis of the Hilbert space

H . In this basis the density matrices (4.2) and (4.5) have the block diagonal form

ρ(·)∞ =



P̂
(·)
N ρinP̂

(·)
N |P̂ (·)

N H
0 · · · 0

0 1−p(·)

2N−dim(P̂
(·)
N H )

· · · 0

...
...

. . .
...

0 0 · · · 1−p(·)

2N−dim(P̂
(·)
N H )


. (4.9)

Furthermore, in this basis P̂
(3,1)
N ρinP̂

(3,1)
N |

P̂
(2)
N H

= P̂
(2)
N ρinP̂

(2)
N |P̂ (2)

N H
. This relation im-

mediately implies that for the same initial density matrix ρin the equation

S
(
ρ(2)∞

)
≥ S

(
ρ(3,1)∞

)
holds. An analogous result could be derived for the controlled unitary three-qubit inter-

actions with two control qubits, i.e. S
(
ρ
(2)
∞
)
≥ S

(
ρ
(3,2)
∞

)
. The value of the entropy can

be written as

S
(
ρ(·)∞

)
= −

dim(P̂
(·)
N H )∑

i=1

λi log λi + (1− p(·)) log

(
2N − dim(P̂

(·)
N H )

1− p(·)

)
,

where λi are the eigenvalues of the matrix P̂
(·)
N ρinP̂

(·)
N |P̂ (·)

N H
. The eigenvalues of the ma-

trix P̂
(·)
N ρinP̂

(·)
N |P̂ (·)

N H
λi satisfy the relation

∑dim(P̂
(·)
N H )

i=1 λi = p(·).

Let us examine a K qubit subsystem S of a quantum network consisting of N + K

qubits, which are interacting via controlled unitary three-qubit interactions with one

control qubit. In analogy with controlled unitary two-qubit interaction, the asymptotic

state of the subsystem S can be for N � 1 written for any φ ∈ (0, π) as

ρ(3,1),(S)∞ = p0 |0K〉 〈0K |+ p+ |ϕ+
K〉 〈ϕ

+
K |+ p− |ϕ−K〉 〈ϕ

−
K |+ (1− p0 − p+ − p−)

ÎK
2K
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with p0 = 〈0N+K |ρin|0N+K〉, p+ = 〈ϕ+
N+K |ρin|ϕ

+
N+K〉 and p− = 〈ϕ−N+K |ρin|ϕ

−
N+K〉.

Similar result could be obtained for controlled unitary three-qubit interactions with

two control qubits. This result follows from the fact that for N � 1 limN→∞ |0̃N 〉 =

|0N 〉. Since this density matrix is diagonal, the resulting state is not entangled, i.e. the

concurrence [19] of the resulting state is zero:

C
(
ρ(3,1),(S)∞

)
= 0.

The resulting state ρ
(3,1),(S)
∞ is symmetric with respect to all possible permutations of

the qubits. In analogy with controlled unitary two-qubit interactions [1], the entropy

can be extracted from the K-qubit subsystem. This is easily seen from the case where

the initial state of the subsystem is given by

ρ
(S)
in =

1

2K
ÎK .

The coefficients of ρ
(3,1),(S)
∞ are then given by p0 = p+ = p− = 1

2k
and thus the equation

S
(
ρ
(3,1),(S)
∞

)
< S

(
ρ
(S)
in

)
holds. The asymptotic state of a single qubit subsystem of a

quantum network consisting of N � 1 qubits can be written as

ρ(3,1),(1)∞ =
1

2

1 + p0 + (p+ − p−) cosφ (p+ − p−) sinφ

(p+ − p−) sinφ 1− p0 − (p+ − p−) cosφ

 ,

which can be also expressed as ρ
(3,1),(1)
∞ = 1

2(Î1 +~a ·~σ), where ~σ = (X,Y, Z) is the vector

whose elements are Pauli matrices and ~a = ((p+ − p−) sinφ, 0, p0 + (p+ − p−) cosφ) is

0
p

4

p

2

3 p

4

p

f

0.85

0.90

0.95

1.00

S

Figure 4.5: The value of the entropy S of a single qubit as the function of the parameter

φ for the case p0 = 1
4 , p+ − p− = 1

4 .
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the Bloch vector [18]. The eigenvalues of the density matrix ρ
(3,1),(1)
∞ are λ± = 1

2(1±|~a|).

This result gives us some insight on the influence of the value of the parameter φ on

physical quantities of a single qubit subsystem, e.g. on entropy (fig. 4.5). For p0 = 0

the eigenvalues λ± are independent on the value of φ, but for other cases the eigenvalues

λ± depend on the value of φ.

Similar calculations can be done for a subsystem consisting of two qubits. We find

that the index of correlation S(A : B) = S(A) + S(B) − S(A,B) [20] of arbitrary two

qubits A and B is independent on the size of the quantum network N . The index of

correlation thus depends only on values of overlaps p0 and p±. These are shown on

figures 4.6-4.8 for the special cases. By choosing the initial state ρin such that p± = 1
2

0.2 0.4 0.6 0.8 1.0
p0

0.02

0.04

0.06

0.08

S HA : BL

Figure 4.6: The value of the index of correlation of arbitrary two qubits A and B as the

function of p0 for the case p+ = p− = 0 and φ = π
2 .

0.1 0.2 0.3 0.4 0.5
p0

0.14

0.16

0.18

0.20

0.22

0.24

0.26

S HA : BL

Figure 4.7: The value of the index of correlation of arbitrary two qubits A and B as the

function of p0 for the case p+ = p− = 1
4 and φ = π

2 . This result shows that the shape of

the curve S(A : B) depends for this case on the value of p = p+ + p−
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0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

S HA : BL

Figure 4.8: The value of the index of correlation of arbitrary two qubits A and B as the

function of p = p+ + p− for the case p+ = p−, p0 = 0 and φ = π
2 .

we get the value S(A : B) = 1 for φ = π
2 , which is the maximal possible value in agree-

ment with the previous result C
(
ρ
(3,1),(S)
∞

)
= 0.

We have shown that the entropy of the asymptotic state of quantum network inter-

acting via three-qubit interactions can never exceed the entropy of the asymptotic state

of quantum network interacting via two-qubit interactions, i.e., S
(
ρ
(2)
∞
)
≥ S

(
ρ
(3,·)
∞
)

.

The asymptotic state of a K qubit subsystem of a quantum network consisting of N+K

qubits interacting via three-qubit interactions is analogous to the asymptotic state of a

K qubit subsystem of a quantum network consisting of N + K qubits interacting via

two-qubit interactions. The concurrence of arbitrary two qubits is equal to 0. This

result is in an agreement with the calculation of the index of correlation, for which the

equation S(A : B) ≤ 1 holds.

These results imply that the randomness introduced by the probability distribution

pe in the convex decomposition of given RUO Φ(3,·) tends to destroy the non-classical

properties of the two-qubit states for quantum networks with base graph. It seems that

three-qubit interactions can lead to stronger correlations of assymptotic states than two-

qubit interactions, as there are two-qubit asymptotic states with the value of the index

of correlation equal to 1. On the contrary there are no asymptotic states of two-qubit

interactions with the value of index of correlation this high.
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Chapter 5

Conclusion

The aim of this thesis was to study the controlled unitary three-qubit interactions

with one or two control qubits which are defined as an analogy with the two-qubit in-

teractions. The main results are given in theorems 4.3.1 and 4.4.1. These theorems

completely determine the asymptotic evolution of the controlled unitary three-qubit in-

teraction with one or two control qubits for certain class of interaction F-graphs. We can

easily see that the base attractor space of controlled unitary two-qubit interactions which

is given by theorem 4.2.1. is a subspace of the base attractor space of the controlled

unitary three-qubit interactions with one or two control qubits. We can thus conclude

that allowing the three-qubit interactions within the quantum network interacting via

two-qubit interactions with strongly connected interaction graph does not affect the re-

sulting asymptotic state.

Despite the fact that the base attractor space of controlled unitary two-qubit inter-

actions forms a subspace of the base attractor space of controlled unitary three-qubit

interactions with one or two control qubits, there are significant differences between the

former and the latter. The attractor space of controlled unitary three-qubit interactions

with one control qubit is dependent on the value of the parameter φ. The dimension

of the base attractor space of the controlled unitary three-qubit interactions with two

control qubits is strongly dependent on the size of the corresponding quantum network.

The topology of the base graphs of controlled unitary three-qubit interactions with two

control qubits is significantly different from the topology of base graphs of the controlled
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unitary two-qubit interactions and the controlled unitary three-qubit interactions with

one control qubit as it is more constraining than the latter. We can easily check that the

minimum number of hyperedges needed for an interaction F2-graph to be a base graph

is
(
N
2

)
which is for N > 3 larger than the minimum number of edges/hyperedges needed

for an interaction graph/F1-graph, which is equal to N .

Furthermore, from the results we can expect the validity of general rules holding for

controlled unitary N-qubit interactions. We can see that increasing of the number of the

target qubits of the considered interactions results in the creation of new eigenvectors

and thus enlarges the attractor space. Increasing of the number of the control qubits of

the considered interactions results in the different topology of the base graphs as well

as in the creation of new eigenvectors. The proof of the form of base graphs suggests

that two-connectedness of the index graph is the only property which determines the

resulting attractor space. Thus we can expect two different controlled unitary n-qubit

interactions Φ
(n,k)
1 and Φ

(n,k)
2 with k control qubits to have the same attractor space

if and only if the corresponding index graphs g1 and g2 have identical two-connected

components.
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Appendix A

The base attractor space

In this appendix we derive the form of the base attractor space of control unitary

three-qubit interactions with one or two control qubits. Since the nature of these in-

teractions are different, we will treat both cases separately. However, our method of

deriving the form of the base attractor spaces will be analogous for both cases.

The base attractor space definitely appears in the case, where every possible triplets

are present in the set E of an interaction F-graph G = (V,E). We call this F-graph the

maximal interaction F-graph. We can directly form and solve the attractor equations for

this interaction F-graph. First we will consider the case φ = π
2 . After justifying the form

of the attractor space for this case, we show that the number of independent solutions

of attractor equations for φ 6= π
2 must be less or equal to the number of solutions for the

case φ = π
2 . In the final step we solve the attractor equations for the case φ 6= π

2 with

the help of symmetry of the attractor equations which is resulting from the maximality

of the interaction F-graph.

In the following we denote the orthonormal basis states of the computational basis by

|z〉 with z = (z1, . . . , zN ) ∈ {0, 1}N = IN . Any operator X ∈ B(H ) can be written in

the form

X =
∑

i,j∈IN

X i
j |i〉 〈j| .
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A.1 The base attractor space the of controlled unitary three-qubit in-

teractions with one control qubit

In case of control unitary three-qubit interactions with one control qubit, we can

rewrite the attractor equations for φ = π
2 as

Ûl,mnX =
∑
i,j

X i
jÛl,mn |i〉 〈j| =

∑
i,j∈IN

X i
j |i’〉 〈j| = λXÛl,mn =

= λ
∑

i,j∈IN

X i
j |i〉 〈j| Ûl,mn = λ

∑
i,j∈IN

X i
j |i〉 〈j’|

Because of the property Û2
l,mn = ÎN , the following form of this equations hold

∑
i,j∈IN

X i’
j |i〉 〈j| = λ

∑
i,j∈IN

X i
j’ |i〉 〈j|

and thus can be reduced to equations for matrix elements

X i’
j = λX i

j’,

where i = (i1, . . . , im, . . . , in, . . . , iN ), i’ = (i1, . . . , im⊕ il, . . . , in⊕ il, . . . , iN ) and similar

relation holds for j.

The set of all pairs of indices [i, j] ∈ IN × IN can be divided into several subsets with

the property, that matrix elements corresponding to a particular set are coupled only to

matrix elements which correspond to this set. These subsets are given by

A1 = {[0,0]}, A2 = {[0, i]|τ(i) = 2k, k ∈ N},

A3 = {([0, i]|τ(i) = 2k − 1, k ∈ N},

A4 = {[i,0]|τ(i) = 2k, k ∈ N}, A5 = {[i,0]|τ(i) = 2k − 1, k ∈ N},

A6 = {[i, i]|τ(i) = 2k, k ∈ N}, A7 = {[i, i]|τ(i) = 2k − 1, k ∈ N},

A8 = {[i, j]|τ(i) = 2k, τ(j) = 2l, k, l ∈ N},

A9 = {[i, j]|τ(i) = 2k − 1, τ(j) = 2l, k, l ∈ N},

A10 = {[i, j]|τ(i) = 2k, τ(j) = 2l − 1, k, l ∈ N},

A11 = {[i, j]|τ(i) = 2k − 1, τ(j) = 2l − 1, k, l ∈ N}.

(A.1)
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First, we consider the case λ = 1. Suppose we have a quantum network consisting

of N ≥ 3 qubits with the maximal interaction F1-graph. We pick randomly 3 of those

qubits. For this moment, we will forget that those qubits are coupled to other qubits and

we will consider only the couplings between qubits induced by the operator Û
(φ)
a,bc. After

that it is rather straightforward to prove that the found attractors solve the attractor

equations for maximal interaction F1-graph. This is due to symmetry of the considered

interactions which is a consequence of the maximality of the interaction F1-graph. To

simplify the notation we skip all other indices apart from those which correspond to our

picked qubits.

The attractor equations for any φ ∈ (0, π) can be then written in the following form

sinφ
(
X100

0ij −X111
0ij

)
= cosφ

(
X101

0ij +X110
0ij

)
,

sinφ
(
X0ij

100 −X
0ij
111

)
= cosφ

(
X0ij

101 +X0ij
110

)
,

(A.2)

sin2 φX110
0ij + sinφ cosφ

(
X100

0ij −X111
0ij

)
−
(
1 + cos2 φ

)
X101

0ij = 0,

sin2 φX101
0ij + sinφ cosφ

(
X100

0ij −X111
0ij

)
−
(
1 + cos2 φ

)
X111

0ij = 0,

sin2 φX0ij
110 + sinφ cosφ

(
X0ij

100 −X
0ij
111

)
−
(
1 + cos2 φ

)
X0ij

101 = 0,

sin2 φX0ij
101 + sinφ cosφ

(
X0ij

100 −X
0ij
111

)
−
(
1 + cos2 φ

)
X0ij

110 = 0,

sinφ
(
X111

100 −X100
111

)
= cosφ

(
X100

101 +X100
110 −X101

100 −X110
100

)
,

sinφ
(
X100

100 −X111
111

)
= cosφ

(
X111

101 +X111
110 +X101

100 +X110
100

)
,

sinφ
(
X110

101 −X101
110

)
= cosφ

(
X101

100 −X101
111 +X111

101 −X100
101

)
,

sinφ
(
X101

101 −X110
110

)
= cosφ

(
X110

100 −X110
111 +X111

101 −X100
101

)
,

sinφ
(
X101

101 −X110
110

)
= cosφ

(
X100

110 −X111
110 +X101

111 −X101
111

)
,

sinφ
(
X101

101 −X110
101

)
= cosφ

(
X100

110 −X111
110 +X110

111 −X110
100

)
,

sinφ
(
X100

100 −X111
111

)
= cosφ

(
X101

111 +X110
111 +X100

101 +X100
110

)
,

sinφ
(
X100

111 −X111
100

)
= cosφ

(
X101

111 +X110
111 −X111

101 −X111
110

)
,
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2 cos2 φX101
100 + sinφ cosφ

(
X101

101 +X101
110 +X111

100 −X100
100

)
+ sin2 φ

(
X101

111 −X110
100

)
= 0,

2 cos2 φX110
100 + sinφ cosφ

(
X110

110 +X110
101 +X111

100 −X100
100

)
+ sin2 φ

(
X110

111 −X101
100

)
= 0,

2 cos2 φX100
101 + sinφ cosφ

(
X101

101 +X110
101 +X100

110 −X100
100

)
+ sin2 φ

(
X111

101 −X100
110

)
= 0,

2 cos2 φX111
101 + sinφ cosφ

(
X111

111 −X111
100 −X110

101 −X101
101

)
+ sin2 φ

(
X100

101 −X100
110

)
= 0,

2 cos2 φX100
110 + sinφ cosφ

(
X110

110 +X101
110 +X100

111 −X100
100

)
+ sin2 φ

(
X111

110 −X100
101

)
= 0,

2 cos2 φX111
110 + sinφ cosφ

(
X111

111 −X111
100 −X101

110 −X110
110

)
+ sin2 φ

(
X100

110 −X111
101

)
= 0,

2 cos2 φX101
111 + sinφ cosφ

(
X111

111 −X100
111 −X101

110 −X101
101

)
+ sin2 φ

(
X101

100 −X110
111

)
= 0,

2 cos2 φX110
111 + sinφ cosφ

(
X111

111 −X100
111 −X110

101 −X110
110

)
+ sin2 φ

(
X110

100 −X101
111

)
= 0.

The remaining equations are trivial, i.e X0ij
0kl = X0ij

0kl or identical with the previous equa-

tions. From the form of these equations, we can see that the number of solutions for

φ 6= π
2 cannot be higher than the number of solutions for φ = π

2 as the equations have

the same form for both of these cases and, furthermore, for the case φ = π
2 some of the

attractor equations connect fewer matrix elements than for the case φ 6= π
2 .

First, we can notice that the equations (A.1) are exactly the same as the equations

for eigenvectors. They have two solutions |ϕ+
N 〉 and |ϕ−N 〉. Together with an obvious

eigenvector |0N 〉 they form the basis of mutual eigenvectors of all possible operators

Û
(φ)
a,bc.

For φ = π
2 each of the previous equations creates a connection between elements of

set Aj for some j. By identifying those equations, we can immediately solve the attrac-

tor equations and get the following result:

For the set A1 the corresponding attractor is obviously given by |0N 〉 〈0N |. Attractors

corresponding to setsA2 andA3 are given by |0N 〉
(
〈ϕ+

N |+ 〈ϕ
−
N |
)

and |0N 〉
(
〈ϕ+

N | − 〈ϕ
−
N |
)
.

Similarly attractors corresponding to sets A4 and A5 are given by
(
|ϕ+
N 〉+ |ϕ−N 〉

)
〈0N |

and
(
|ϕ+
N 〉 − |ϕ

−
N 〉
)
〈0N |. Attractors corresponding to the sets A6 and A7 are given by

ÎN,E and ÎN,O. Attractors corresponding to the remaining sets A8, . . . , A11 are given

by
(
|ϕ+
N 〉 ± |ϕ

−
N 〉
) (
〈ϕ+

N | ± 〈ϕ
−
N |
)
. By orthonormalizing these solution we arrive to the
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eigenspace corresponding to value λ = 1 stated in the theorem 4.3.1.

For the case φ 6= π
2 we already have 10 solution of attractor equations for the eigen-

value λ = 1. We know that if |x〉 and |y〉 are mutual eigenvectors to all of the operators

Û
(φ)
a,bc, then all the operators of the form |x〉 〈y| belong to the attractor space. In our case

we have three mutual eigenvectors which are given by |0N 〉 , |ϕ+
N 〉 and |ϕ−N 〉 thus we got

9 solutions of attractor equations. Furthermore, the operator ÎN always belongs to the

attractor space.

First, we will discuss the possible form of the last attractor which can possibly ex-

ist. From the general properties of attractors we know that it must be a symmetric or

an antisymmetric operator Ŷ , since if Ŷ is an attractor corresponding to the eigenvalue

λ = 1, then Ŷ † is an attractor corresponding to the same eigenvalue. From the sym-

metry of attractor equations for λ = 1 we can immediately discard the possibility of an

antisymmetric solution. Furthermore, the last attractor cannot have the form |x〉 〈x|,

since then there would exist attractors of the form |x〉 〈ϕ+
N |. Since we consider the max-

imal interaction F1-graph, all solutions must be symmetric with respect to all possible

permutations of qubits.

Based on the previous considerations we know the following: X i
j = Xj

i , X
i
j = X

τ(i)
τ(j) .

We can thus make a further simplification in the notation. In the following we will de-

note the matrix elements by Xτ(i)+τ(j) ≡ X i+j. Furthermore, we will separate diagonal

and off-diagonal matrix elements. The diagonal elements will be denoted by X2k
diag.

Now we must show that those 10 solutions form all the solutions of attractor equations

for the case φ 6= π
2 . As attractor equations form a standard system of linear equations,

the number of solutions is given by the number of variables and the number of equations.

We will thus compare the number of equations and the number of variables for φ = π
2

and φ 6= π
2 .

In the simplified notation attractor equations for the case φ = π
2 have the form

50



THE BASE ATTRACTOR SPACE

Xk = Xk+2, k ∈ {1, . . . , 2N − 3},

X2k
diag = X2k+4

diag , k ∈ {1, . . . , N − 2}.

We can thus see that this is the system of 3N − 5 equations for 3N − 1 variables and

thus there are four solutions. Those solutions are given by the operators ÎN,E , ÎN,O,(
|ϕ+
N 〉+ |ϕ−N 〉

) (
〈ϕ+

N |+ 〈ϕ
−
N |
)

and
(
|ϕ+
N 〉 − |ϕ

−
N 〉
) (
〈ϕ+

N | − 〈ϕ
−
N |
)
.

For the case φ 6= π
2 simplified attractor equations have the form

sinφ
(
Xk −Xk+2

)
= 2 cosφXk+1, k ∈ {1, . . . , 2N − 3},

sinφ
(
X2k

diag −X2k+2
diag

)
= 2 cosφX2k+1, k ∈ {1, . . . , N − 1}.

This is a system of 3N−4 linear equations for 3N−1 variables. There are three solutions

which are given by ÎN , |ϕ+
N 〉 〈ϕ

+
N | and |ϕ−N 〉 〈ϕ

−
N |. Therefore, we have justified the form

of the eigenspaces corresponding to eigenvalue λ = 1 for both cases φ = π
2 and φ 6= π

2

since the case φ 6= π
2 has one solution less.

Let us turn our attention to the possible eigenvalue λ = −1. Since we are consider-

ing the maximal interaction F-graph, every qubit plays the role of the control qubit in

some transformation Û
(φ)
a,bc. Thus for N > 3 and for any set Aj we can always find the

matrix element X0i
0j which yields the attractor equation X0i

0j = −X0i
0j and because of the

symmetry of the attractor equations with respect to all possible permutations of qubits,

for N > 3 there is no non-trivial attractor corresponding to the eigenvalue λ− 1.

The previous argument fails for the case N = 3 and φ = π
2 , because for the set A8

there is no such pair of indices i 6= j ∈ IN−1. The resulting attractor equations for this

case are

X110
101 = −X101

110 , X110
101 = −X011

101 , X110
011 = −X101

011 ,

X101
110 = −X011

110 , X110
011 = −X011

110 , X101
011 = −X011

101 .

The normalized solution of these equations is given by X̂12.
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For the case N = 3 and φ 6= π
2 the previous argument can be used again as the matrix

elements which belong to the set A8 are now connected with the matrix elements from

other sets and thus for this case no non-trivial solution of attractor equations corre-

sponding to the eigenvalue λ = −1 exists.

This concludes the derivation of the form of the base attractor space of control uni-

tary three-qubit interactions with one control qubit.

A.2 The base attractor space of the controlled unitary three-qubit in-

teractions with two control qubits

The derivation of the form of the base attractor space of controlled random unitary

three-qubit interactions with two control qubits follows exactly the same path as the

previous case, though it is simpler as the attractor equations have the same form for all

φ ∈ (0, π).

Similarly to the previous case, we can rewrite the attractor equations for φ = π
2 as

∑
i,j∈IN

X i
j |i〉 〈j| = λ

∑
i,j∈IN

X i’
j’ |i〉 〈j| .

The matrix equations can be thus reduced to the equations for matrix elements which

have the form

X i
j = λX i’

j’ ,

where for Û
(φ)
kl,m we have i = (i1, . . . , im, . . . , iN ), i’ = (i1, . . . , im ⊕ ik · il, . . . , iN ) and

similarly for j and similar relation holds for j.

If we divide the set of all pairs of indices (i, j) ∈ IN × IN as in the previous case,

the resulting subsets will have the following form:
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A1 = {[0,0]}, A1+i = {[0,1i]},

AN+1+i = {[1i,0]}, A(i+1)N+j+1 = {[1i,1j ]},

A(N+1)2+1 = {[0, i]|τ(i) > 1}, A(N+1)2+i+1 = {[1i, j]|τ(j) > 1},

A(N+1)2+N+2 = {[i,0]|τ(i) > 1}, A(N+1)2+N+2+i = {[i,1j ]|τ(i) > 1},

A(N+2)2 = {[i, i]|τ(i) > 1}, A(N+2)2+1 = {[i, j]|i 6= j, τ(i) > 1, τ(j) > 1},

where 1i = (0, . . . , 1︸︷︷︸
i

, . . . , 0) and i, j ∈ N̂ .

In the next step we consider the maximal interaction F2-graph of a quantum network

consisting of N ≥ 3 qubits. As previously we pick randomly three qubits which are

interacting with each other through the operator Û
(φ)
ab,c. The attractor equations for the

case λ = 1 which emerge from this interaction are the following ones

cos
φ

2
X111

0ij = sin
φ

2
X110

0ij ,

cos
φ

2
X0ij

111 = sin
φ

2
X0ij

110,

cos
φ

2
X111
i0j = sin

φ

2
X110
i0j ,

cos
φ

2
Xi0j

111 = sin
φ

2
Xi0j

110,

X110
111 = X111

110 ,

2 cos
φ

2
X110

111 = sin
φ

2

(
X110

110 −X111
111

)
.

The remaining equations have the trivial form X i
j = X i

j . From the form of the equations,

we can see that number of the solutions of these equations is same for all possible values

of the parameter φ ∈ (0, π) as the coefficients sin φ
2 and cos φ2 never vanish. By solving

the eigenvector equations, we find that there exist N + 2 eigenvectors corresponding

to the eigenvalue λ = 1 which are mutual eigenvectors of all operators Û
(φ)
ab,c. These

eigenvectors are |0N 〉, |ϕ+
N 〉 and |1i〉, i ∈ N̂ . With the help of these eigenvectors we

can immediately construct the (N + 2)2 independent solutions of attractor equations.

Each of these solutions corresponds for φ = π
2 to one of the subset of indices Aj . The

only subset which is left without solution is the set A(N+2)2 . By putting X i
j = 0 for

[i, j] /∈ A(N+2)2 we arrive to the set of equations corresponding to this subset. Their
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solution is the operator

Ŷ =
∑

τ(z)>1,z∈IN

|z〉 〈z| .

By orthonormalizing all the solutions we arrive to the base attractor space which is

stated in theorem 4.4.1.
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Appendix B

Base graphs

In this appendix we focus on the derivation of the form of base graphs of the con-

sidered three-qubit interactions. Although we will derive the form of the base attractor

space for different cases, all of these derivations share similar steps. First, we need to

find a suitable condition for an interaction graph to be a base graph. This condition is

provided by the so-called index graph, which is an undirected colored graph correspond-

ing to a given interaction graph. Index graph is going to be defined in the next section.

Then we show, that a maximal interaction graph fulfils this condition. In the last step

of the proof, we are concerned about the number of edges which can be removed from

the maximal interaction graph without loosing the validity of this condition.

B.1 Index graph

The index graph g = (IN , eG, ϕ) is an undirected colored graph which is associated

with an interaction graph (or an interaction F-graph) G = (V,E). Each vertex of the

index graph corresponds to an element of the computational basis, i.e. vertex i corre-

sponds to the vector |i〉. The index graph g is equipped with a map C : eG → {e ∈ E}.

Thus the edges of the interaction graph G denote the color of edges of the index graph

g and to simplify the terminology, they will be referred to as colors in the context of

the index graph. If the elements of the computational basis |i〉 and |j〉 with i 6= j are

connected through the operator Û
(φ)
e , then the set eG contains the edge ij with C(ij) = e.

Since each pair i and j can be connected by more than one operator, the index graph can
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have multiple edges. To simplify the notation we will drop the map ϕ from the definition

of the index graph g as if the vertices i and j are connected by more than one edge, these

edges have different colors and thus the concerned edge can be always uniquely specified.

Furthermore it is clear that if i is connected with j then j is connected with i, thus the

index graph is undirected.

Since for the controlled unitary interactions the element of the computational basis

|0〉 is not connected with any of the other elements of computational basis, the vertex

0 of the index graph always forms a single element component. For the control unitary

three-qubit interactions with two control qubits there are even more of vertices with this

property. Since such vertices are not our concern, we will slightly modify the definition

of the index graph so it corresponds to the particular case.

With the help of the index graph we can form a necessary and sufficient condition

for an interaction graph to be a base graph. For an eigenvalue λ = 1, we can easily see

that the corresponding eigenspace stays minimal as long as the number of the subsets of

pairs of indices {Al| l ∈ m̂} stays as low as possible. This condition can be for all cases

which are discussed in the following sections expressed in terms of two-connectedness.

For the case of the eigenvalue λ = −1 the condition is easily found from the proof of the

form of the corresponding eigenspace.
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B.2 Base graphs of the controlled unitary three-qubit interactions with

one control qubit

For the case of controlled unitary three-qubit interactions with one control qubit

we exclude the vertex 0 from the definition of the index graph g corresponding to the

interaction F1-graph G.

There are two different cases for the controlled unitary three-qubit interactions with

one control qubit, φ = π
2 and φ 6= π

2 . The differences are so significant that we will treat

them separately. First we will discuss the simpler case φ 6= π
2 .

1 2

34

0001 0010 0100 1000

0011 0101 0110 1001
1010

1100

0111
1011

1101 1110

1111

Figure B.1: An example of an interaction F1-graph and the corresponding index graph

for φ 6= π
2 . The vertex 0 is not included as it would only create a trivial component in the

index graph. As we can see even for low number of vertices and edges the corresponding

index graph can be rather complicated.
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1 2

34

1 2

34

Figure B.2: An example of an interaction F1-graph G(3,1) and corresponding two-qubit

interaction graph G(2).

For φ 6= π
2 the set of all pairs of indices (i, j) can be divided into four subsets which

are invariant under all possible transformations Û
(φ)
j,kl. These subsets are given by

A1 = {[0,0]}, A2 = {[0, i]|τ(i) > 0}, A3 = {[0, i]|τ(i) > 0},

A4 = {[i, j]|τ(i) > 0, τ(j) > 0}.

We can easily see that the subset A1 remains invariant as it contains only one element.

The subsets A2 and A3 remain invariant, if the corresponding index graph g is connected.

The subset A4 remains invariant, if the corresponding index graph g is two-connected. As

two-connectedness implies connectedness, we arrive to the statement that the interaction

F-graph of given three-qubit RUO Φ(3,1) with one control qubit and φ 6= π
2 is the base

graph if and only if the corresponding index graph is two-connected.

For the proof of the two-connectedness of strongly connected interaction F1-graphs we

can use the proof of the form of base graphs of controlled unitary two-qubit interactions.

Because three-qubit transformations Û
(φ)
j,kl have the property Û

(φ)
j,kl = Û

(φ)
jk Û

(φ)
jl we can

construct for a given three-qubit RUO Φ(3,1) a corresponding two-qubit RUO Φ(2) by

replacing transformations Û
(φ)
j,kl in the convex decomposition of Φ(3,1) by two transforma-

tions Û
(φ)
j,k and Û

(φ)
j,l with pjk = pjl = 1

2pj,kl. An example of such a construction of the

corresponding RUO Φ(2) is given on the figure B.2.
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Now we can easily show that if index graph g(2) which is associated with an interac-

tion graph G(2) of a two-qubit interaction Φ(2) is two-connected, then the index graph

g(3,1) which is associated with an interaction F1-graph G(3,1) of a three-qubit interaction

Φ(3,1) must be also two-connected. This follows from the fact that if we do not consider

coloring C(·) of graphs g(3,1) and g(2), then g(2) ⊂ g(3,1). This follows from the fact

that if the vertices i and j are connected in the index graph g(2) via operator Û
(φ)
kl then

they are connected in the index graph g(3,1) via operator Û
(φ)
k,lm for any m. Since g(2)

is two-connected, each pair of vertices [i1, i2] is connected to any pair of vertices [j1, j2]

via paths Pi1,i2 = (i1u2,u2u3 . . . ,uki2) and Pj1,j2 = (j1v2,v2v3 . . . ,vkj2) such that for

every l ∈ k̂ the equation C(2)(ul,ul+1) = C(2)(vl,vl+1) with u1 = i1, uk+1 = i2, v1 = j1

and vk+1 = j2. We can simply check that the paths Pi1,i2 and Pj1,j2 are connecting

the pairs [i1, i2] and [j1, j2] in the index graph g(3,1) (due to the property g(2) ⊂ g(3,1))

and, furthermore, the equation C(3,1)(ul,ul+1) = C(3,1)(vl,vl+1) holds for every l ∈ k̂.

As a consequence, g(3,1) is two-connected and G(3,1) is thus a base F1-graph. From the

construction of G(2) it is obvious that G(2) is strongly connected if and only if G(3,1) is

strongly connected. As a result all strongly connected interaction F1-graphs G(3,1) of

RUO Φ(3,1) have the minimal eigenspace corresponding to the eigenvalue λ = 1. On the

contrary if G(3,1) is not strongly connected then the corresponding index graph g(3,1) has

more than one component and thus it cannot be two-connected. The conclusion is that

the eigenspace of Φ(3,1) corresponding to the eigenvalue λ = 1 is minimal if and only if

G(3,1) is strongly connected interaction F1-graph.

The case φ = π
2 is more complicated. Although the relation Û

(π2 )
12 Û

(π2 )
13 = Û

(π2 )
1,23 still holds

the index graph of the controlled unitary two-qubit interaction made in the same way as

in the case φ 6= π
2 is not a subgraph of the corresponding index graph of the controlled

unitary three-qubit interaction with one control qubit. Nevertheless, we begin our proof

for the case λ = 1 also by dividing the set of pairs of indices [i, j] into invariant subsets.

These subsets are the subsets Ai, i ∈ 1̂1 which are given by (A.1). As an analog to the

previous case these subsets remain invariant as long as the following properties of the

index graph hold: The subgraph of the index graph g1 which is formed by the vertices i

with τ(i) = 2k, k ∈ N must be two-connected. The same applies also to the subgraph

of the index graph g2 which is formed by the vertices i with τ(i) = 2k − 1, k ∈ N .
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Figure B.3: The index graph g(3,1) associated with the interaction F-graph G(3,1) (figure

B.2) and the corresponding index graph g(2).
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Figure B.4: The index graph associated with the interaction F-graph on the figure B.2

for the case φ = π
2 .

Furthermore, these components must be jointly connected in the sense that for any pair

of vertices [i1, i2] ∈ g1 and any pair of vertices [j1, j2] ∈ g2 must be simultaneously con-

nected by paths Pi1,i2 = (i1u2,u2u3 . . . ,uki2) and Pj1,j2 = (j1v2,v2v3 . . . ,vkj2) such

that for every l ∈ k̂ the equation C(ulul+1) = C(vlvl+1) with u1 = i1, uk+1 = i2,

v1 = j1 and vk+1 = j2. From the form of the given transformations we can easily see

that satisfying of one of these condition is sufficient for satisfying of the other conditions.

As a first step towards the proof of the form of base graphs we prove that the subgraph g2

of the index graph associated with the maximal interaction F1-graph is two-connected.

To prove this we create a special type of an interaction F1-graph G(N) which we call star

F1-graph on N ≥ 3 vertices and we prove the two-connectedness of the subgraph g
(N)
2

of the index graph associated with this type of graph.
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For N = 3, the star F1-graph is the hypergraph G(3) = (V (3), E(3)) with V (3) = {1, 2, 3}

and E(3) = {(1; 2, 3), (2; 3, 1), (3; 1, 2)}. Suppose we have the star F1-graph on N ≥ 3

vertices G(N) = (V (N), E(N)). The star F1-graph on N + 1 vertices is then defined as

G(N+1) = (V (N+1), E(N+1)), V (N+1) = V (N) ∪ {N + 1},

E(N+1) = E(N) ∪ {(1; 2, N + 1), (2; 1, N + 1), (N + 1; 1, 2)}.

This induction step is for N = 3 visualized on figure B.5. The two-connectedness of

the component g
(N)
2 of the index graph associated with the star F1-graph on N vertices

can be proved by induction on the number of vertices of this graph. For N = 3 the

component g
(3)
2 is apparently two-connected. Let us suppose that the component g

(N)
2 is

two-connected. Thus the component g
(N)
1 is also two-connected. The component g

(N+1)
2

can be created in two steps. In the first step we take components g
(N)
1 and g

(N)
2 and

we relabel their vertices. The vertex i ∈ g
(N)
1 is labeled as i1 and the vertex i ∈ g

(N)
2 is

labeled as i0. We mark the newly emerged graphs as g
′(N)
1 and g

′(N)
2 . Next we create

the graph g(N+1) = g
′(N)
1 ∪ g

′(N)
1 ∪ {01}. This graph has three components: the compo-

nent h1 is consisted of vertices {i0 ∈ IN+1|τ(i) > 0}, the component h2 is consisted of

vertices {i1 ∈ IN+1|τ(i) > 0} and the last component is consisted of the single vertex

{01}. From the construction, components h1 and h2 are two-connected. We finish the

construction of the component g
(N+1)
2 by addition of edges to the graph g(N+1) which

1

2

3 4

Figure B.5: The construction of star F1-graph on 4 vertices. The edges which are not

present in the star F1-graph on 3 vertices are red.
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Figure B.6: The index graph associated with the star F1-graph on 4 vertices constructed

from the index graph associated with the star F1-graph on 3 vertices. This graph has 2

components G
(4)
1 and G

(4)
2 . Black edges correspond to the subgraphs of these components

which are isomorphic to the component G
(3)
2 , blue edges correspond to the subgraphs

of these components which are isomorphic to the component G
(3)
1 of the index graph

associated with the star F1-graph on 3 vertices.

0001 0010 0100 1000

0111
1011

1101 1110

Figure B.7: The component G
(4)
2 of the index graph associated with the star F1-graph

on 4 vertices.
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correspond to the F-arcs from the set {(1; 2, N + 1), (2; 1, N + 1), (N + 1; 1, 2)} of the

interaction F1-graph. These edges are connecting the trivial component {01} with the

component h2 as well as they are connecting the component h1 with the component h2.

The important fact is that the added edges also connect vertices within the component

h2. From the construction it is straightforward to prove that the component g
(N+1)
2 is

two-connected. The only non-trivial case is, if we want to connect the pairs of vertices

(i1, i2) and (j1, j2) with ik ∈ h1 and jk ∈ h2. In this case the two-connectedness is the

result of the newly added edges in the component h2. As these edges have no counterpart

in the component h1 we can freely move between vertices in the component h2 without

moving within component h1.

Since the component g
(N)
2 of the index graph corresponding to the star F1-graph on

N vertices is a subgraph of the component g2 of the index graph corresponding to the

maximal interaction F1-graph on N vertices, the component g2 of the index graph corre-

sponding to the maximal interaction F1-graph on N vertices must be also two-connected

as the addition of edges cannot disturb the property of two-connectedness.

In the last step of the proof we show that we do not violate the property of two-

connectedness of the index graph by removing edges from the interaction F1-graph as

long as the corresponding interaction F1-graph stays strongly connected. We prove

this by induction on the length d of the path connecting the vertices i1 and id+1

i1

i2

i3 id

id+1

id+2

Figure B.8: The removal of the F-arc containing the directed edge (i1, id+2) from the

interaction F1-graph.
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in the interaction F1-graph. The considered transformations Û
(π2 )
j,kl have the property

Û
(π2 )
k,lm.Û

(π2 )
j,kl .Û

(π2 )
k,lm.Û

(π2 )
j,kl = Û

(π2 )
j,km. Suppose that the vertices i1 and i3 are connected by

the path P = (i1i2, i2i3) of length d = 2. Let us mark (i1; i2, j) = e, (i2; i3, k) = f .

Suppose the edges i1 and i3 are also connected with the F-arc (i1; i3, l) = g. Because

of the previously mentioned property, applying the sequence of colors fefe in the index

graph has the same result as applying the color g. Thus all the edges with color g can

be removed from the index graph without loosing the property of two-connectedness.

In the corresponding interaction F1-graph we remove the F-arc (i1; i3, l). The resulting

interaction F1-graph is a base graph and it is still strongly connected. Let us suppose

that for every path of length d ≥ 2 the F-arc connecting the beginning and the end

of the path can be removed from the interaction graph as long as it is not violating

desired connectivity of other vertices. Let us take a path of length d + 1 of the form

P = (i1i2, i2i3, . . . , idid+1, id+1id+2). Suppose that the vertices i1 and id+2 are connected

with the F-arc (i1; id+2,m) We will temporarily add the edge idid+2 to the interaction

F1-graph. By this addition, the vertices i1 and id+2 are connected by path P ′ of length

d. We can thus remove the F-arc (i1; id+2,m) from the interaction F1-graph. This com-

pletes the proof by induction.

Concerning the case λ = −1 as it is easily seen from the proof of the form of the

corresponding eigenspace, this eigenspace stays minimal as long as all qubits i play the

role of control qubit of some transformation Û
(φ)
i,jk for any φ ∈ (0, π). Thus for the

strongly connected interaction F1-graphs the eigenspace corresponding to the eigenvalue

λ = −1 is the minimal eigenspace.

To summarize, the base graphs of controlled unitary three-qubit interactions with one

control qubit base graphs for any parameter φ ∈ (0, π) are exactly all strongly connected

interaction F1-graphs.
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B.3 Base graphs of the controlled unitary three-qubit interactions with

two control qubits

For the case of controlled unitary three-qubit interactions with two control qubits

we exclude the vertices z with τ(z) ≤ 1 from the definition of the index graph g corre-

sponding to the interaction F2-graph G. Although the proof of the form of base graphs

for this case is analogous to the previous case, there are differences which need to be

pointed out. They are the result of the different structure of the visual representation -

the interaction F2-graph.

Because of the form of transformations Û
(φ)
j,kl and the corresponding attractor space it is

clear that there are no technical differences between the cases φ = π
2 and φ 6= φ

2 . Thus

the proof of the form of the base attractor space for φ = π
2 is also proof for general

φ ∈ (0, π). Similar to the proof from the previous section, we start our consideration for

1 2

4

1 2

3

2 3

4

1 3

4
1 2

3 4

Figure B.9: The construction of graph of symmetries corresponding to the star F2-graph

on 4 vertices. The edges which are not present in the graph of symmetries corresponding

to the star F2-graph on 3 vertices are red.
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λ = 1 by dividing the set of all pairs of indices [i, j] into subsets which are invariant under

transformations Û
(π2 )
jk,l . This division was made in the appendix A.2. It is consisting of

(N + 2)2 + 1 subsets Ai. Analogous to the previous case, we can easily see that the

number of invariant subsets does not increase if and only if the index graph g of given

RUO Φ(3,2) is two-connected.

The proof of two-connectedness of the index graph associated with the maximal in-

teraction F2-graph can be done in two steps. First, we construct a certain interaction

F2-graph G(N) on N ≥ 3 vertices, its associated index graph g(N) and we prove that

g(N) is two-connected. This interaction F2-graph can be viewed as an analogy of the

oriented star graph. For sake of simplicity we will call this interaction F2-graph as star

F2-graph. We construct the star F2-graph by constructing the corresponding graph of

symmetries. This construction is done by induction.

For N = 3, the graph of symmetries corresponding to the star F2-graph is the set of

three graphs G
(3)
i = {V (3)

i , E
(3)
i }, i ∈ 3̂ and G

(3)
i being maximal graph for all i. Suppose

we got the graph of symmetries corresponding to the star F2-graph on N vertices. The

graph of symmetries corresponding to the star F2-graph on N +1 vertices is constructed

by defining following

G
(N+1)
i = (V

(N+1)
i , EN+1

i ), V
(N+1)
i = V

(N)
I ∪ {N + 1}, i ∈ N̂ ,

E
(N+1)
i = E

(N)
i ∪ {(i,N + 1), (N + 1), i}, i ∈ {1, 2},

E
(N+1)
i = E

(N)
i ∪ {(N + 1, 1), (N + 1, 2)}, i ∈ {3, . . . , N},

G
(N+1)
N+1 = {V (N+1)

N+1 , E
(N+1)
N+1 }, V

(N+1)
N+1 = N̂ ,

E
(N+1)
N+1 = {(i, 1)|i ∈ {2, . . . , N}} ∪ {(j, 2)|j ∈ {1, 3, 4, . . . , N}}.

This procedure is for N = 3 visualized on the figure B.9. Next we prove that the

two-connectedness of the index graph associated with the star F2-graph for any num-

ber of vertices N ≥ 3. This is done also by induction. The two-connectedness of the

index graph g(3) corresponding to the star F2-graph on 3 vertices is trivial. Let us

suppose that the index graph corresponding to the star F2-graph on N vertices is two-
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0011 0101 0110 1001 1010 1100

0111 1011 1101 1110

1111

Figure B.10: The construction of the index graph corresponding to the star F2-graph on

4 vertices from the index graph corresponding to the star F2-graph on 3 vertices without

the real marking of color of the edges. The black edges correspond to the subgraph

of this index graph, which is isomorphic to the index graph corresponding to the star

F2-graph on 3 vertices.

connected. From this index graph we create the index graph corresponding to the star

F2-graph on N + 1 vertices in two steps. First, we add 2N − 1 new vertices to the

index graph, which correspond to the new qubit which was added to the system. The

newly-emerged index graph has N + 2 components. The first component g1 is formed

by vertices {(i, 0)|i ∈ IN , τ(i > 1)}. The second component g2 is formed by vertices

{(i, 1)|i ∈ IN , τ(i > 1)}. These two components are isomorphic to the index graph corre-

sponding to the star F2-graph on N vertices and thus both g1 and g2 are two-connected.

The remaining components are formed by single vertices {1i1} for i ∈ N̂ . In the second

step, we create the index graph corresponding to the star F2-graph on N + 1 vertices by

adding edges to this index graph. The whole procedure is visualized on the figure B.10

for the case N = 3. The added edges connect the components g1 and g2 as well as they

connect the trivial components with component g2. What is important is that they also

connect vertices within the component g2. From the construction it is straightforward

to prove that the index graph corresponding to the star F2-graph on N + 1 vertices is

two-connected. The only non-trivial case is if we want to connect the pairs of vertices

[i1, i2] and [j1, j2] with ik ∈ g1 and jk ∈ g2. In this case the two-connectedness is the

result of the newly added edges in the component g2. As these edges have no counterpart

68



BASE GRAPHS

in the component g1 we can freely move between vertices in the component g2 without

moving within component g1.

Since the index graph corresponding to the star F2-graph on N vertices is a subgraph of

the index graph corresponding to the maximal F2-graph on N vertices, the index graph

corresponding to the maximal F2-graph on N vertices must be also two-connected as

the addition of edges cannot disturb the property of two-connectedness.

In the last step of the proof we show that we do not violate the condition of two-

connectedness of the index graph by removing edges from the maximal interaction F2-

graph as long as the condition that any vertex ij ∈ V is connected to a vertex klk

for every possible k 6= i, j and for any lk ∈ {1, . . . , N} holds. We prove this by in-

duction on the length of the path connecting the vertices ij and klk. The considered

transformations Û
(π2 )
jk,l have the property Û

(π2 )
kl,m.Û

(π2 )
jk,l .Û

(π2 )
kl,m.Û

(π2 )
jk,l = Û

(π2 )
jk,m. Suppose we

are given a path of length d = 2: Pi1i2,i3i4 = ((i1i2, i2i3), (i2i3, i3i4)). Let us note

e = (i1, i2; i3), f = (i2, i3; i4) and g = (i1, i2; i4). Because of the previously mentioned

property, applying the sequence of edges colors fefe in the index graph has the same

result as applying the edge with the color g. Thus all the edges with color g can be

removed from the index graph without loosing the property of two-connectedness. In

the corresponding interaction F2-graph we remove the F-arc (ı1, i2; i4). The resulting

interaction F2-graph is a base graph and there exists a path connecting vertices i1i2

i1i2

i2i3

i3i4
idid+1

id+1id+2

id+2id+3

Figure B.11: The removal of the F-arc containing the directed edge (i1i2, id+2, id+3) from

the interaction F-graph.
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with i4l4 with l4 ∈ N̂ . Let us suppose that for every path of length d ≥ 2 the F-arc

connecting the beginning and the end of the path can be removed from the interaction

graph as long as it is not violating desired connectivity of other vertices. Let us take a

path of length d + 1. Without loss of generality let us assume that this path has the

form P = ((i1i2, i2i3), . . . , (idid+1, id+1id+2), (id+1id+2, id+2id+3)). We will temporarily

add the edge (idid+1, id+2id+3) to the interaction F-graph. By this addition, the vertices

{i1, i2} and {id+2, id+3} are connected by path P ′ of length d. We can thus remove the

F-arc containing the vertices i1i2 and id+2id+3 as long as it does not violate the connec-

tivity of other vertices. The same holds for any path of length d+ 1. This completes the

proof by induction.

The condition that {i, j} ∈ V is connected to a vertex {k, lk} for every possible k 6= i, j

and for any lk ∈ N̂ holds for any vertex {i, j} ∈ V is a needed condition. We can easily

check that if this condition is violated, the corresponding index graph has more than one

components and thus it is not two-connected. Thus we have proved that this condition

is sufficient and needed for the minimality of eigenspace of RUO Φ corresponding to the

eigenvalue λ = 1.

As can be easily see from the proof of the form of the base attractor space which was

made in the appendix A.1, as long as all pairs of qubits play role of the control qubits in

some transformation Û
(φ)
jk,l, there are no non-trivial solutions of attractor equations for

the eigenvalue λ = −1. Thus all interaction F-graph which satisfy the condition have

trivial eigenspace corresponding to the eigenvalue λ = −1 and thus these graphs are the

all base graphs corresponding to controlled unitary interactions with two control qubits.

To summarize, we have proved that the sufficient and needed condition for an inter-

action F2-graph to be a base graph is that any vertex ij ∈ V is connected to a vertex

klk for every possible k 6= i, j and for any lk ∈ N̂ .
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