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Abstract:

The weakly-coupled bound states of the Hamiltonian −∆ + εV with a complex-

valued potential V are investigated. We study the perturbation on the threshold

of the essential spectrum using the Birman-Schwinger principle. Our main point

of interest is a sufficient condition for existence and uniqueness of the bound state.

The influence of the singularity of the Green function of the free Hamiltonian on the

existence of bound state is discovered. We conclude with an asymptotic formula for

the eigenvalue of the bound state.

Keywords: Birman-Schwinger principle, bound states, essential spectrum, non-

Hermitian potential, relatively bounded potential
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Abstrakt:

V této práci jsou zkoumány slabě vázané stavy Hamiltoniánu −∆+εV s připuštěńım

možných komplexńıch hodnot potenciálu V . Pomoćı Birman-Schwingerova principu

se zabýváme poruchou prahu esenciálńıho spektra a soustřed́ıme se předevš́ım na

postačuj́ıćı podmı́nku na existenci a jednoznačnost vázaného stavu. Ukazuje se, že

za jeho existenci je zodpovědná singularita Greenovy funkce Hamiltoniánu volné

částice. Na závěr uvád́ıme asymptotický vztah pro vlastńı hodnotu př́ıslušej́ıćı

vázanému stavu.
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Chapter 1

Introduction

The emergence of quantum physics was inspired by several paradoxes that classical

physic could not explain. One of these were observations of discrete frequencies of radia-

tion absorbed or emitted by an atom which was in a dispute with the classical prediction

that any value should be admissible. The phenomenon of discrete energy levels appeared

consequently in many other physical systems and was explained as late as in the frame-

work of quantum mechanics by the existence of a discrete spectrum of the Hamiltonian

describing the system.

Finding these eigenvalues from the discrete spectrum can be a challenging task. In this

paper we are interesting in describing the discrete spectrum of a Hamiltonian corre-

sponding to a free particle which is weakly perturbed by a potential. Mathematically

speaking, we are going to work with Hamiltonian

Hε = −∆ + εV,

where ε is a small and positive coupling parameter. We consider V generally a complex-

valued potential, motivated by a recent interest in non-Hermitian operators caused by the

emergence of phenomenological Hamiltonians in the optical models of nuclear scattering

or the study of unstable lasers (see for instance [3] and references therein). We generalise

known solution of this problem [18] for self-adjoint Hamiltonians to a more general non-

Hermitian case.

In this paper we focus on the problem in one dimension only. There are already some

known results in this area, let us mention for example the bound on the absolute value of

the eigenvalue obtained in [5] for Schrödinger operators with potential εV , V ∈ L1(R),

|λ| ≤ ε2 ‖V ‖
2
1

4
. (1.1)
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This thesis is organized as follows. In Chapter 2 we introduce the Birman-Schwinger

principle, a technique for analysing partial differential equations, which we then in Chap-

ter 3 apply on the problem of finding weakly-coupled bound states. We summarise our

results in Chapter 4.

5



Chapter 2

Birman-Schwinger principle

In this chapter we introduce a useful technique for studying certain types of partial

differential equations, particularly in the analysis of the point spectrum of differential

operators. It was developed independently by M. Sh. Birman [1] and J. Schwinger

[16] in the year 1961 for estimating the number of negative eigenvalues of a self-adjoint

Schrödinger operator. Since its origin it was applied also in finding eigenvalue bounds in

non-Hermitian case [4][5][6][7][11], studying behaviour of the resolvent [10] and finding

weakly coupled bound states [18]. Generally it enables us to solve an eigenvalue problem

for differential operators by solving an eigenvalue problem for integral operators. The

most significant advantages of this procedure include the fact that integral equations

are much more suitable for solving. Among the well established numerical methods for

solving such equations let us mention e.g. the method of sequential approximations.

2.1 Definition of the Hamiltonian

First we introduce a free Hamiltonian

H0 := −∆,

Dom(H0) := H2(R),
(2.1)

acting in a Hilbert space H := L2(R, dx). We consider potentials which can be re-

garded in some sense as small perturbations of H0. Such potential enable us to properly

introduce operator Hε as a closed operator acting on H . We introduce the notion of

relative boundedness to ensure that the considered sum of a self-adjoint operator H0

and a multiplication operator V is well defined.
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Definition 2.1.1 ([12, Sec.X.2]). Let T and V be closed operators in H . We call V

relatively bounded with respect to T (or T -bounded), if Dom(T ) ⊂ Dom(V ) and there

exist nonnegative constants a, b such that

‖V ψ‖ ≤ a‖Tψ‖+ b‖ψ‖

holds for all ψ ∈ Dom(T ). The infimum of constants a for which this relation holds is

called the H0-bound of T (or simply the relative bound).

Investigation of the relative boundedness can be simplified by using the following

criterion.

Theorem 2.1.2. Let T be closed operator in H such that σ(T ) 6= C and V an operator

in H . V is T − bounded if, and only if, V (T − z)−1 is bounded for some z ∈ ρ(T ).

Proof. ⇒) Let ψ ∈ H . It can be written as ψ = (T − z)φ for some φ ∈ Dom(T ) and

z ∈ ρ(T ). Then φ = (T − z)−1ψ ∈ Dom(V ) and we have

‖V (T − z)−1ψ‖ ≤ a‖T (T − z)−1ψ‖+ b‖(T − z)−1ψ‖

= a‖(T − z + z)(T − z)−1ψ‖+ b‖(T − z)−1ψ‖

≤ a‖ψ‖+ (a|z|+ b)‖(T − z)−1ψ‖ < +∞.

Dividing by ‖ψ‖ and taking supremum over all ψ ∈H we get the claim.

⇐) Again, taking ψ ∈H written as ψ = (T − z)φ for some φ ∈ Dom(T ), then from the

assumption there is such constant C ∈ R such that

‖V φ‖ = ‖V (T − z)−1ψ‖ ≤ C‖ψ‖ = C‖(T − z)φ‖ ≤ C‖Tφ‖+ C|z|‖φ‖ < +∞

for all φ ∈ Dom(T ). Then Dom(T ) ⊂ Dom(V ) and our proof is concluded.

The following theorem specifies conditions under which the sum of operators H0 and

multiplication operator V is well defined for H0-bounded potentials V .

Theorem 2.1.3 ([9, Thm. IV-1.1]). Let S and T be operators in H and let T be

S − bounded with the relative bound smaller than 1. Then S + T is closed if, and only

if, S is closed.

Now we can define the operator

H = H0 + V

Dom(H) := Dom(H0) = H2(R)
(2.2)
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as closed operator for the H0-bounded potential V with the H0-bound smaller than 1.

In the following text we are going to consider only potentials

V ∈ L2(R) + L∞(R),

i.e. V = V1 + V2, where V1 ∈ L2(R) and V2 ∈ L∞(R). The considered class of potentials

is natural in R in the sense of the following theorem:

Theorem 2.1.4 ([17, Thm. II.3]). Let V (x) be function on R with lim sup|x|→+∞ |V (x)| <
+∞. If Dom(V ) ⊃ Dom(H0), then V ∈ L2(R)+L∞(R). If moreover lim sup|x|→+∞ |V (x)| =
0, then the L∞(R) part can be chosen with arbitrary small supremum norm ‖ · ‖∞.

Proof. Let us directly construct a decomposition of potential V into V1 ∈ L2(R) and

V2 ∈ L∞(R). Let lim sup|x|→+∞ |V (x)| = n. We set V2(x) = V (x) if |V (x)| < 2n and

V2(x) = 0 otherwise. V1 is then just its complement: V1(x) = V (x) − V2(x). Clearly,

V2 ∈ L∞(R) and V1(x) vanishes for |x| larger than some R. It is possible to find

ψ ∈ Dom(H0) such that it is equal to 1 in (−R,R). Then we have

‖V1‖2 =

∫ R

−R
|V1(x)|2 dx =

∫ R

−R
|V1(x)ψ(x)|2 dx ≤

∫ R

−R
|V (x)ψ(x)|2sdx < +∞

from the assumption that ψ lies also in Dom(V ). The second part of the theorem can

be proven in a similar manner.

Since the property of the potential that its L∞(R) part can be chosen arbitrarily

small is going to turn out as very useful and later on we will restrict ourselves to this

class of potentials, we therefore introduce a special notation for them.

Definition 2.1.5. We say that potential V is from L2(R)+L∞δ (R) if there are for every

δ > 0 such V1 ∈ L2(R) and V2 ∈ L∞(R) that V = V1 + V2 and ‖V2‖∞ < δ.

In the following we are going to show that V is H0-bounded with the relative bound

zero. Thus the assumptions of Theorem 2.1.3 will be fulfilled and the operator (2.2) will

be closed as we desire.

Theorem 2.1.6. V ∈ L2(R) +L∞(R) is H0-bounded with the relative bound equal to 0.

Proof. The proof can be done separately for V1 and V2 and the result then follows from

the Minkowski inequality. For V2 we have

‖V2ψ‖ ≤ ‖V2‖∞‖ψ‖.
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Thus for ψ ∈ Dom(H0) ⊂ L2(R) we have ψ ∈ Dom(V2) and V2 is not only H0-bounded

with relative bound 0, but even bounded. Taking V1 we make use of the fact that

σ(H0) = σess(H0) = [0,+∞) (see e.g. [2, Ex. 7.2.1] for proof) so every λ < 0 lies in

ρ(H0) and that the resolvent function can be for such λ expressed as an integral operator

(Rλφ)(x) :=
(
(H0 − λ)−1φ

)
(x) =

∫

R
Rλ(x, y)φ(y) dy,

where the integral kernel of Rλ takes form

Rλ(x, y) :=
e−
√
−λ|x−y|

2
√
−λ

(2.3)

as can be easily verified by using Fourier transform. We select the branch of the square

root so that Re
√
−λ > 0, as long as λ is not along the non-negative real axis. For

1 ≤ p, q, r ≤ +∞ such that 1
q = 1

r + 1
p−1 holds the Young inequality ‖f ∗g‖q ≤ ‖f‖p‖g‖r,

where f ∈ Lp(R), g ∈ Lr(R) and ‖ · ‖p denotes the norm in the space Lp(R) (see [12, Ex.

IX.4.1] for proof). Applying this to our case we obtain

‖Rλφ‖∞ ≤ ‖φ‖‖R′λ‖,

where

R′λ(x) := Rλ(x, 0), (2.4)

i.e. ‖R′λ‖2 =
∫
R

e−2
√
−λ |x|

−4λ dx. Now we can easily see that limλ→−∞ ‖R′λ‖ = 0, therefore

for every δ > 0 we can find λ(δ) sufficiently negative so that ‖R′λ‖ ≤
δ
‖V1‖ holds. (We

assume V1 6= 0 because for V1 = 0 the claim is fulfilled trivially.) Since every ψ ∈
Dom(H0) can be written as ψ = Rλφ for some φ ∈H and λ ∈ ρ(H0), we conclude with

the inequality

‖V1ψ‖ = ‖V1Rλφ‖ ≤ ‖V1‖2 ‖Rλφ‖∞ ≤ ‖V1‖2 ‖φ‖‖R′λ‖

≤ δ‖φ‖ = δ‖(H0 − λ)ψ‖ ≤ δ‖H0ψ‖+ δλ‖ψ‖ < +∞,

which holds for every ψ ∈ Dom(H0) and every δ > 0. We emphasized by the bottom

index 2 that we norm V as a function in H , not as an operator on H . (An operator

norm of a multiplication operator V is ‖V ‖ = ‖V ‖∞.)

Remark 2.1.7. The proof of Theorem 2.1.6 can be easily generalised for dimension two

only by changing the integral kernel of the resolvent.
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2.2 Birman-Schwinger principle

In the following we present a proof of the generalised Birman-Schwinger principle for

the case of a free particle Hamiltonian with a complex-valued potential.

Theorem 2.2.1 (Birman-Schwinger principle). Let H be an operator defined in (2.2),

where V is H0-bounded with the relative bound smaller than 1, and let λ ∈ C \ [0,+∞).

Then

λ ∈ σp(H) ⇔ −1 ∈ σp(Kλ), (2.5)

where Kλ := |V |1/2(H0 − λ)−1V1/2 with V1/2 := |V |1/2ei arg(V ).

Proof. ⇒: If there is such ψ ∈ L2(R) that (H0 + V )ψ = λψ then by definition we have

ψ ∈ Dom(H) = H2(R). Function φ := |V |1/2ψ is in L2(R), since

‖|V |1/2ψ‖ = ‖|V |1/2(H0 + 1)−1ξ‖

≤ ‖|V |1/2(H0 + 1)−1‖‖ξ‖

= ‖(H0 + 1)−1|V |(H0 + 1)−1‖1/2‖ξ‖

≤ ‖(H0 + 1)−1‖‖|V |(H0 + 1)−1‖‖ξ‖ < +∞,

where ξ ∈ L2(R) and we used the equality ‖T ∗T‖ = ‖T‖2 which holds for every bounded

operator T and the fact that −1 ∈ ρ(H0) and therefore the operator (H0 + 1)−1 exists

and is bounded. Using the assumption we get

Kλφ = |V |1/2(H0 − λ)−1V ψ = −|V |1/2(H0 − λ)−1(H0 − λ)ψ = −|V |1/2ψ = −φ.

⇐: Other way round, we assume that there is such φ ∈ L2(R) that Kλφ = −φ. Our ψ

can be defined as −(H0−λ)−1V1/2φ. Then ψ ∈ Dom(H) (since the resolvent (H0−λ)−1

displays L2(R) to Dom(H) and V1/2φ ∈ L2(R) using the same arguments as in the proof

of the opposite implication) and

(H0 − λ)ψ = −(H0 − λ)(H0 − λ)−1V1/2φ = −V1/2φ = V1/2Kλφ

= V1/2|V |1/2(H0 − λ)−1V1/2φ = −V ψ.

We note that Theorem 2.2.1 can be straightforwardly generalised to higher dimen-

sions since our proof does not depend on the explicit form of the resolvent kernel. Further

on, the resolvent RH0(λ) = (H0 − λ)−1 is an integral operator whose kernel Rz(x, y) is

known in all dimensions for all λ ∈ C \ [0,+∞) (i.e. (Rλψ)(x) =
∫
Rn
Rλ(x, y)ψ(y) dy).

Specifically in the dimension one the integral kernel of Rλ takes form (2.3) There-

fore Kλ is for λ < 0 also an integral operator with the integral kernel Kλ(x, y) =

|V |1/2(x)Rλ(x, y)V1/2(y) and we acquired our pledged integral equation.
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Chapter 3

Weakly coupled bound states in

one dimension

We now apply the results of the preceding chapter on the perturbations of the threshold

of the essential spectrum of the free particle Hamiltonian with a weakly coupled potential

(see Figure 3.1). Our goal is to state sufficient conditions which guarantee the existence

and uniqueness of a bound state for a Hamiltonian

Hε := H0 + εV,

Dom(Hε) := H2(R),
(3.1)

for ε small and positive where V is a relatively bounded potential with respect to H0.

(Further condition on V are going to be imposed later.) We do not have to demand

the relative bound to be smaller than 1 since we can always achieve this by taking

ε sufficiently small. The Birman-Schwinger principle (Theorem 2.2.1) says that λ ∈
C \ [0,+∞) is an eigenvalue of Hε if, and only if, −1 is an eigenvalue of an integral

operator εKλ. The integral kernel of Kλ takes in this case form

Kλ(x, y) = |V (x)|1/2 e−
√
−λ|x−y|

2
√
−λ

V1/2(y). (3.2)

3.1 Preliminary results

The appearance of weakly-coupled eigenvalue is caused by the singularity of Kλ as λ→ 0.

To exploit it, we use the decomposition of Kλ into two integral operators, Lλ and Mλ,

11



essential spectrum

bound state

Re λ

Im λ

0

(
ε‖V ‖1

2

)2

Figure 3.1: Possible spectrum of Hε with the essential spectrum located on the positive

real axis and a unique bound state. The circle denotes the bound (1.1) on the size of

possible eigenvalues.

separating the singularity in Lλ [18]. Their integral kernels are

Lλ(x, y) := |V (x)|1/2 1

2
√
−λ

V1/2(y),

Mλ(x, y) := |V (x)|1/2 e−
√
−λ|x−y| − 1

2
√
−λ

V1/2(y)

(3.3)

respectively. Before proving the main results of this chapter, we state the following

lemma about the operator Mλ.

Lemma 3.1.1. Let V ∈ L1(R, (1 + x2)dx) ∩
(
L2(R,dx) + L∞δ (R, dx)

)
. Then Mλ con-

verges for λ→ 0− in a Hilbert-Schmidt norm to the integral operator M0 with the kernel

M0(x, y) := −|V (x)|1/2 |x− y|
2

V1/2(y), (3.4)

i.e. limλ→0− ‖Mλ −M0‖HS = 0, where ‖ · ‖HS denotes the Hilbert-Schmidt norm on

L2(R).
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Proof. We can check that M0 is a Hilbert-Schmidt operator using simple estimates since

‖M0‖2HS =

∫

R2

|M0(x, y)|2 dx dy

≤ 1

2

∫

R2

|V (x)|(x2 + y2)|V (y)|dx dy

=

∫

R

|V (x)|x2 dx

∫

R

|V (y)|dy

≤ 1

2



∫

R

|V (x)|(1 + x2) dx




2

< +∞.

(3.5)

Mλ converges to M0 pointwise as λ→ 0− and

|Mλ(x, y)| ≤ |M0(x, y)| (3.6)

for all x, y ∈ R and for all λ ∈ C\ [0,+∞). Using the dominated converge theorem yields

desired result. To verify the inequality (3.6) it is sufficient to see that

∣∣∣∣
ea+ib − 1

−(a+ ib)

∣∣∣∣
2

≤ 1

holds for all a, b ∈ R, a < 0. After an explicit calculation of the absolute value on

left-hand side of the inequality and a simple algebraic manipulation, we reformulate our

problem to verification that

1 + e2a − 2ea cos b− a2 − b2 ≤ 0

holds. We employ the estimate cos b ≥ 1− b2/2 which holds for all b ∈ R to get

1 + e2a − 2ea cos b− a2 − b2 ≤ 1 + e2a − 2ea(1− b2

2
)− a2 − b2

≤ 1 + e2a − 2ea1 + b2 − a2 − b2

= 1 + e2a − 2ea − a2.

Using calculus of functions of one variable it is now easy to check that F (a) := 1 + e2a−
2ea − a2 ≤ 0.

Corollary 3.1.2. Mλ converges in the operator norm to M0 for λ→ 0−.

Proof. The corollary follows immediately from the inequality ‖T‖ ≤ ‖T‖HS valid for all

Hilbert-Schmidt operators T [13, Thm. VI.22].
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In the end of this section we introduce a theorem for finding a fixed point of a function

which will come handy in Section 3.3.

Theorem 3.1.3 (Banach contraction theorem, [8, Thm. I.1.1]). Let (X, d) be a complete

metric space anf F : X → X be contractive, i.e. d(F (x), F (y)) ≤ C d(x, y) for all

x, y ∈ X and some constant C < 1. Then F has a unique fixed point u, i.e. F (u) = u,

and limn→+∞ Fn(x) = u for each x ∈ X

3.2 Stability of the essential spectrum

Since we perturb the threshold of the essential spectrum, another condition on the

potential arises. The essential spectrum of Hε could spread to the area where the

bound state should occur. Certain class of potentials in fact leaves σess(H0) invariant. It

requires some decline of the potential in the infinity which is in the case of L2(R)+L∞δ (R)

potential fulfilled. In the following we discuss this condition further. Since the definition

of the essential spectrum for non-Hermitian operators differs in literature, let us specify

this notion.

Definition 3.2.1 ([2]). Let T be a closed operator on H . We say that λ ∈ C belongs to

the essential spectrum of T (denoted σess(T )) if there exists a sequence (ψn)+∞n=1, ‖ψn‖ = 1

for all n, such that it does not contain any convergent subsequence and limn→+∞(T −
λ)ψn = 0.

Let us also remind a known notion of a compact operator.

Definition 3.2.2 ([13]). A bounded operator T is compact if for any bounded sequence

(ψn)n∈N ⊂H , the sequence (Tψn)n∈N contains a Cauchy subsequence.

Again, we would like to view V as a small perturbation of H0 in some sense, we

therefore introduce relative compactness.

Definition 3.2.3 ([14, Def. XIII.4.1]). Let T be a self-adjoint operator. An operator V

with Dom(T ) ⊂ Dom(V ) is called relatively compact with respect to T if V (T − i)−1 is

compact.

We should note that if V (T − i)−1 is compact, then V (T − z)−1 is compact for

all z ∈ ρ(T ) thanks to the first resolvent formula. Therefore it is sufficient to check

compactness only for an operator V (T − z)−1 with an arbitrary z ∈ ρ(T ).

Theorem 3.2.1. V ∈ L2(R) + L∞δ (R) is relatively compact with respect to H0.
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Proof. Let us check that the operator V (H0 − λ)−1 is compact for some λ ∈ ρ(H0) =

C \ [0,+∞). We restrict ourselves to only such λ ∈ R that λ < 0. Let (ψn)n∈N ⊂ H

be an arbitrary bounded sequence and ε > 0. We now want to check that we can find

such strictly increasing sequence (nk)k∈N ⊂ N and some n0 that for every k, l > n0 is

‖V (H0 − λ)−1ψnk − V (H0 − λ)−1ψnl‖ < ε. (In other words we are looking for a Cauchy

subsequence in sequence V (H0 − λ)−1ψn.) We can set V = V1 + V2, where V1 ∈ L2(R)

and V2 ∈ L∞(R) with ‖V2‖∞ < δ. Then V1(H0 − λ)−1 is Hilbert-Schmidt. Indeed,

‖V1(H0 − λ)−1‖2HS =

∫

R2

∣∣∣∣∣V1(x)
e−
√
−λ|x−y|

2
√
−λ

∣∣∣∣∣

2

dx dy

=

∫

R

(
|V1|2 ∗ |R′λ|2

)
(x) dx

≤ ‖|V1|2 ∗ |R′λ|2‖1
≤ ‖|V1|2‖1‖|R′λ|2‖1
= ‖V1‖2‖R′λ‖2 < +∞,

where R′λ is a function defined in (2.4) and we used Young inequality described in the

proof of Theorem 2.1.6. As a consequence, operator V1(H0 − λ)−1 is compact so there

is n0 ∈ N and a strictly increasing sequence (nk)k∈N ⊂ N such that ‖V1(H0− λ)−1ψnk −
V1(H0 − λ)−1ψnl‖ < δ for k, l > n0. V2(H0 − λ)−1 is for a fixed δ bounded with an

arbitrarily small bound since we still have freedom in the choice of λ:

‖V2(H0 − λ)−1‖ ≤ ‖V2‖‖(H0 − λ)−1‖ < δ
1

|λ|
.

In this estimated we used known formula for the norm of the resolvent of a self-adjoint

operator: ‖(H0 − λ)−1‖ = 1/dist(λ, σ(H0)) = 1/|λ|. For k, l > n0 we have:

‖V (H0 − λ)−1ψnk − V (H0 − λ)−1ψnl‖ ≤ δ +K
δ

|λ|
,

which we wanted to show.

The following theorem gives us the desired result about the essential spectrum of Hε.

Theorem 3.2.4 (Weyl theorem, [14, Cor. XIII.4.2]). Let T be a self-adjoint operator

and let V be a relatively compact perturbation of S. Then:

• operator T + V defined with Dom(T + V ) = Dom(T ) is a closed operator

• if V is symmetric, then T + V is self-adjoint
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• σess(T + V ) = σess(T )

This theorem also gives us immediately that the operator H0 + V is closed, which

we derived using other method in Section 2.1.

3.3 Existence and uniqueness of the weakly coupled bound

state

Equipped with the results of the previous section we may state our first theorem regard-

ing the existence of the bound state.

Theorem 3.3.1. Let V ∈ L1(R, (1+x2)dx)∩
(
L2(R,dx) + L∞δ (R, dx)

)
, λ ∈ C\ [0,+∞)

and ε > 0 so small that the inequality ε
∫
R
|V (x)|(1 + x2) dx <

√
2 holds. Then

λ ∈ σp(Hε) ⇔
√
−λ = −ε

2

(
V1/2, (I + εMλ)−1|V |1/2

)
. (3.7)

Proof. Our goal is to find condition to ensure that the operator εKλ has eigenvalue −1.

Under the assumptions and the estimate (3.5) we have ‖εMλ‖ ≤ ε‖M0‖HS < 1 so the

operator (I + εMλ)−1 exists and is bounded. We may write

(I + εKλ)−1 =
(
(I + εMλ)(I + (I + εMλ)−1εLλ)

)−1

=
(
I + (I + εMλ)−1εLλ

)−1
(I + εMλ)−1.

and therefore look only if the operator P ελ := (I + εMλ)−1εLλ has eigenvalue −1. Since

Lλ is a rank-one operator by definition, we can write

P ελ = φ(ψ, ·),

with

ψ := ε
1

2
√
−λ

V1/2, φ := (I + εMλ)−1|V |1/2.

The operator P ελ can have only one eigenvalue, namely (ψ, φ). Putting it equal to −1

we get the condition

−1 =
ε

2
√
−λ

(
V1/2, (I + εMλ)−1|V |1/2

)
,

which we wanted to show.

The preceding theorem reduced our problem to solving an algebraic equation. We

can further work with this result and get an asymptotic expansion for the bound state

and a sufficient condition for its existence and uniqueness, as it is summarized in the

following theorem.
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Theorem 3.3.2. Let V ∈ L1(R, (1 + x2)dx) ∩
(
L2(R,dx) + L∞δ (R, dx)

)
and ε > 0 so

small that the inequality ε
∫
R
|V (x)|(1 + x2) dx < 1 holds. Then Hε possesses the unique

eigenvalue λ = λ(ε) ∈ C \ [0,+∞) if
∫
R

ReV (x) dx < 0. The asymptotic expansion

√
−λ(ε) = −ε

2

∫

R

V (x) dx− ε2

4

∫

R2

V (x)|x− y|V (y) dx dy +O(ε3) (3.8)

holds as ε→ 0.

Proof. We use the following identity to obtain the asymptotic expansion of the implicit

equation (3.7):

(I + εMλ)−1 = I − εMλ(I + εMλ)−1 = I − εMλ + ε2M2
λ(I + εMλ)−1

as ε→ 0+. This expansion should be fulfilled by every solution of (3.7). The use of the

formula (3.7) is justified when
∫
R

ReV (x) dx < 0 since then λ /∈ [0,+∞). For the sake of

the simplicity of the formulae we introduce notation k :=
√
−λ.

Although it might appear that we have obtained our solution, we have yet no evidence

that it actually exists. To ensure its existence we use the Banach fixed point theorem

3.1.3. As our metric space X we set a disc B(k0, r) with the centre in the point k0 :=∫
R
V (x) dx and sufficiently small radius r so that the whole disc lies in the half-plane

Re k > 0.

We first prepare few estimates before we continue with the proof of existence. Since∫
R
V (x) dx 6= 0, we can immediately see from the asymptotic expansion that for every k,

solution of (3.7), holds
1

|k|
≤ C1

ε
, (3.9)

where C1 is a positive constant. This inequality also holds for k0.

The operator valued function Mλ is analytic as a function of λ in the region Re k > 0,

therefore we can apply Cauchy integral formula with a curve γ = k0 + reiϕ (constant

r > 0 so small that the whole curve lies in this region) to get
∥∥∥∥
∂Mλ

∂k

∥∥∥∥ =

∫

R2

(
1

2πi

∮

γ

Mλ(x, y)

(k − k′)2
dk′
)

dx dy

≤ ‖M0‖
2π

∣∣∣∣
∮

γ

1

(k − k′)2
dk′
∣∣∣∣

=
‖M0‖

2π

∣∣∣∣
∫ 2π

0

1

r2e2iϕ
ireiϕ dϕ

∣∣∣∣

=
‖M0‖
2πr

∣∣∣∣
∫ 2π

0
e−iϕ dϕ

∣∣∣∣ ≤
‖M0‖
r

=
C2

|k|

(3.10)

17



by setting r = Re k/2.

We also prepare prescription for differentiating (1 + εMλ)−1 using the second resolvent

formula:

∂

∂k
(1 + εMλ)−1 = lim

k′→k
(1 + εMλ)−1 − (1 + εMλ′)

−1

k − k′

= lim
k′→k

ε
(1 + εMλ)−1 (εMλ − εMλ′) (1 + εMλ′)

−1

k − k′

= ε (1 + εMλ)−1
∂Mλ

∂k
(1 + εMλ)−1 .

(3.11)

Now back to the proof of existence - we define a function

G(λ, ε) := −ε
2

(
V1/2, (I + εMλ)−1|V |1/2

)
(3.12)

and estimate its derivative for Re k > 0 using the hypothesis, estimates (3.9),(3.10) and

formula (3.11):

∣∣∣∣
∂G(λ, ε)

∂k

∣∣∣∣ =

∣∣∣∣
ε2

2

(
V1/2, ε (1 + εMλ)−1

∂Mλ

∂k
(1 + εMλ)−1 |V |1/2

)∣∣∣∣

≤ ε2

2
‖V1/2‖2‖ (1 + εMλ)−1 ‖2

∥∥∥∥
∂Mλ

∂k

∥∥∥∥

≤ ε2

2
‖V1/2‖2‖ (1 + εMλ)−1 ‖2C1C2

ε
= K ε.

(3.13)

Our goal is to show that G(λ, ε) is contractive in the disc B(k0, r). We take arbitrary

k1, k2 ∈ B(k0, r). Taking r sufficiently small we can expand these in Taylor series in the

neighbourhood of the point k0

G(kj , ε) = G(k0, ε) + (kj − k0)
∂G(λ, ε)

∂k
(k0) +O((kj − k0)2),

where j = 1, 2. Using this series we can sum up

|G(k1, ε)−G(k2, ε)| = |G(k1, ε)−G(k0, ε) +G(k0, ε)−G(k2, ε)|

=

∣∣∣∣(k1 − k2)
∂G(λ, ε)

∂k
(k0) +O((k1 − k0)2) +O((k2 − k0)2)

∣∣∣∣

≤
∣∣∣∣
∂G(λ, ε)

∂k
(k0) +O(k1 − k2)

∣∣∣∣ |k1 − k2|.

Setting ε and r sufficiently small, we can make the coefficient by |k1−k2| strictly smaller

than one and therefore conclude that the equation (3.7) has a unique solution in B(k0, ε).

To show that it is unique in the half-plane Re k > 0 we assume that there are two

solutions to (3.7): k1 and k2. We connect them by a straight line and realise that for all

18



k on this line holds estimate (3.9). Writing the equation (3.7) as α = G(α, ε) and using

3.11 we get a contradiction in the following equation:

|k2 − k1| =
∣∣∣∣
∫ k2

k1

∂G(λ, ε)

∂k
dk

∣∣∣∣ ≤ Kε|k2 − k1| < |k2 − k1| (3.14)

for ε sufficiently small.

We note that there is an alternative possibility how to carry out the proof using

Rouché’s theorem [15, Thm. 10.43]. We notice that the bound state indeed arises from

the threshold of the essential spectrum and not from any other point of the essential

spectrum. We emphasize that the condition
∫
R

ReV (x) dx < 0 relates only to the case

when the ε is small enough. It is possible for a bound state to appear even when this

condition is violated, however it needs to happen for large ε. In such case Theorem 3.3.2

gives us no information regarding its existence.
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Chapter 4

Conclusions

In this thesis we investigated the influence of the weakly coupled complex-valued poten-

tial on the spectrum of a free particle Hamiltonian, especially on the emergence of the

bound state from the threshold of the essential spectrum. Our results guarantee presence

and uniqueness of this bound state in the case when the coupling is weak enough. Our

result is consistent with the bound on the magnitude of the eigenvalue obtained in [7].

We reformulate the problem using the Birman-Schwinger principle which gives us an

interesting insight into the problem. We can immediately see that there needs to be a

singularity in the resolvent function of H0 for λ→ 0, otherwise the bound state could not

appear. Indeed, if operator Kλ with integral kernel defined in (3.2) were bounded, norm

of εKλ could be arbitrary small with ε going to 0 and therefore it would be impossible

for it to posses −1 as an eigenvalue. (We recall that the norm of an operator needs to

be larger than or equal to absolute value of any of its eigenvalues.)

We come to the conclusion that the singularity is responsible for the existence of the

bound state. Nevertheless the resolvent function has the singularity only in dimensions

one and two. Therefore it could be expected that the bound state should also appear

in two dimensional case while in more dimensions it could not be ensured for ε small

enough, just as it happens in the selfadjoint case. Generalisation of our results to di-

mension two seems as a natural topic of a further research.
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