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List of used symbols

The following list covers some of the mathematical symbols and conventions used
in the work without prior definition.

Symbol Explanation

R the set of real numbers
C the set of complex numbers
x the real number
x the vector
I the identity matrix
A† the hermitian conjugate of a matrix A

AT the transpose of a matrix A

U = U◦ the open set
U = U the closed set
∂U the bound of a set U
U⊥ the orthogonal complement to a set U
f ∈ Cr the function continuously differentiable to the order r
fn the composition of n functions f
|x| the absolute value of a number x
‖x‖ the norm of x
〈x,y〉 the scalar product of x and y

TxW the tangent space of a manifold W at a point x
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Introduction

One of the significant characteristics of a chaotic dynamical system is a sensitive
dependence on initial conditions - two solutions that start nearby will diverge from
each other with the future evolution of the system.

Chaotic dynamical systems are described by nonlinear differential equations.
Most of them are not solvable analytically and we must rely on numerical simu-
lations. We require that the behaviour of a solution generated by the computer is
the same as the behaviour of a true solution. However we should realize that all
computers work with a finite precision. The rounding error made at any step of the
computation causes a numerical trajectory (pseudoorbit) to differ from the true one
and this difference will be amplified exponentially due to the chaotic nature of the
system.

So it is natural to ask if making numerical simulations for chaotic systems is
purposeful and to what these computer generated orbits actually correspond.

Famous shadowing theorem says that for hyperbolic dynamical systems the true
trajectory will really diverge from the computer generated one (for chaotic systems)
but there always exists a shadow - true trajectory with slightly different initial
condition which stays arbitrarily close to the computed orbit for arbitrarily long
time.

In the previous work [26] we dealt with shadowing in discrete dynamical systems.
We would like to extend the knowledge of shadowing and use it to study continuous
dynamical systems.

In the first chapter, we sum up our knowledge about shadowing in discrete dy-
namical systems. We explain in detail what the hyperbolicity is and why it is so
important for shadowing. Then we review the history of shadowing and present
three shadowing theorems. Two of them can be applied also for non-hyperbolic sets
(with the bigger or smaller success).

We can look at the numerical solutions of the differential equations as the discrete
pseudoorbits of the used numerical method, so it might seem that we can directly
apply the shadowing methods constructed for maps to these numerical solutions.
But there is a fundamental difference between a discrete solution to an ordinary
differential equation and a discrete map. The errors have only “space like” character
for discrete maps, whereas the numerical solutions can have errors both in space and
in time. A true orbit and a pseudoorbit can have the same trajectory, but different
time scale. Therefore it is necessary to include time rescaling in the shadowing
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definition for the continuous cases.
We spent a plenty of time by the study of hyperbolic systems because we wanted

to explain the essence of the shadowing. For the same reason, there are many
examples in this diploma thesis.

In the second chapter, we introduce two interesting dynamical systems that ex-
hibit chaotic behaviour. Then we present two useful numerical methods for searching
for the shadows. One method is a generalization of the map method. The other
method comprises the lack of hyperbolicity in the direction of the vector field and
therefore it gives better results. Both methods are purely algebraical and the exis-
tence of the shadow depends on invertibility of a certain linear operator.

The shadowing methods with their advantages and disadvantages are discussed
in full detail. Finally, we use one method to verify that the numerical solutions of
the presented chaotic differential equations are shadowable.

In the last chapter, we examine some systems with unshadowable trajectories and
try to understand the consequences of unshadowability for numerical computation.
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Chapter 1

Shadowing theorem for differential

equations

1.1 Differential equations

We are interested in the solutions of the autonomous ordinary differential equations

ẋ(t) = f(x(t)), (1.1)

where x(t) = (x1(t), . . . , xn(t))
T is an n-dimensional vector and f : U = U◦ ⊂ Rn →

Rn is a continuously differentiable vector-valued function. For each x0 ∈ U there is
a unique solution x(t) of (1.1) with x(0) = x0 defined on a maximal open interval
J(x0) ⊂ R [15].

The set Ω = {(x, t) ∈ Rn × R|t ∈ J(x)} is open and we can define a map
φ(x, t) : Ω → Rn such that φ(x, t) is the solution of the differential equation (1.1)
at time t with initial condition x. Hence

d

dt
φ(x, t) = f(φ(x, t))

for all t such that the solution through x exists and φ(x, 0) = x. We call φ a flow

of the equation (1.1) and write φ(t,x) = φt(x).
Following properties of the flow are simple consequences of its definition.

Lemma 1. [15] Properties of the flow:

1. φs+t(x) = φs(φt(x)).

2. If f is Cr, then φ : Ω → Rn is a Cr map.

3. If f is Cr, then φt is Cr diffeomorphism between U t = {x ∈ U |t ∈ J(x)} and
U−t.
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Although the unique solution exists for all x0, generally it cannot be written ana-
lytically and we search the solutions using numerical simulations. We are interested
in validity of these numerical solutions, i.e., if for every numerical solution exists
true solution (a shadow), which is close to it for sufficiently long time.

The numerical methods lead to difference equations xn+1 = g(xn). Also using
the Poincaré sections, the qualitative study of certain differential equations can be
reduced to the study of the associated difference equations. Moreover the shadowing
problem for the difference equations is much more easier to analyze. Therefore we are
first concerned with the existence of shadows for the numerically generated solutions
of the difference equations.

1.2 Shadowing in discrete dynamical systems

We present the shadowing problem for diffeomorphisms in this section. By a diffeo-

morphism f : U → V we mean a one-to-one map such that both f and f−1 : V → U

are differentiable.

1.2.1 Hyperbolicity for difference equations

Consider
xn+1 = g(xn), (1.2)

where g : U = U◦ ⊂ Rn → Rn is C1 diffeomorphism.
As we have said in the introduction shadowing and hyperbolicity of the system

go hand in hand. We prefer the approach that is presented in [20], where a general
hyperbolic set is deduced from a hyperbolic fixed point, rather than state quite
difficult definition without any explanation.

Definition 1. A point x0 is said to be hyperbolic fixed point of the map g if g(x0) =
x0 and all the eigenvalues of Dg(x0) lie off the unit circle. The sum of generalized
eigenvectors corresponding to the eigenvalues inside (outside) the unit circle is called
the stable (unstable) subspace and is denoted as Es (Eu).

These subspaces are invariant underDg(x0) and there exist constants [16]K1, K2 >

0, λ1, λ2 ∈ (0, 1) such that for all k ≥ 0

‖(Dg(x0))
kξ‖ ≤ K1λ1

k‖ξ‖ for ξ ∈ Es, (1.3)

‖(Dg(x0))
−kξ‖ ≤ K2λ2

k‖ξ‖ for ξ ∈ Eu. (1.4)

If g = A ∈ Rn,n, the stable subspace Es is the set of points attracted by the fixed
point x0. We can find such a set also for nonlinear map g, but it is not the linear
subspace any more.
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Definition 2. Let x0 be a hyperbolic fixed point of the C1 diffeomorphism g : U =
U◦ ⊂ Rn → Rn. The set

W s(x0) = {x ∈ U : gk(x) → x0 as k → ∞}

is called the stable manifold of x0 and the set

W u(x0) = {x ∈ U : gk(x) → x0 as k → −∞}

is called the unstable manifold of x0.

The stable manifold need not to be generally a submanifold of Rn, therefore we
introduce the term local stable manifold (stable manifold with an extra condition)
which already fulfils the manifold definition.

Definition 3. Let x0 be a hyperbolic fixed point of the C1 diffeomorphism g : U =
U◦ ⊂ Rn → Rn. For given ε > 0, the set

W s,ε(x0) = {x ∈ U : gk(x) → x0 as k → ∞, ‖gk(x)− x0‖ < ε ∀k ≥ 0}

is called the local stable manifold of x0.

The following theorem shows that the behaviour of points in the neighbourhood
of hyperbolic fixed point x0 corresponds, at least locally, to the behaviour generated
by the linearization Dg(x0).

Theorem 1 (Stable manifold theorem). [20] Let g : U = U◦ ⊂ Rn → Rn be
a Cr(r ≥ 1) diffeomorphism with hyperbolic fixed point x0 and associated stable
subspace Es. Then for ε sufficiently small, W s,ε(x0) is a Cr submanifold of Rn

containing x0 and moreover Tx0W
s,ε(x0) = Es.

It is obvious that previous theorem also proves that W u,ǫ(x0) is a submanifold of
Rn. If we change the direction of iterations the unstable submanifold changes to a
stable one and vice versa. The precise value of ε depends on g and it can be found
in the proof of the stable manifold theorem.

It also follows from the proof that for x ∈ U the following implication holds

‖gk(x)− x0‖ ≤ δ for k ≥ 0 ⇒ gk(x) → x0 as k → ∞. (1.5)

Therefore if a hyperbolic fixed point is Lyapunov stable, then it is automatically
also asymptotic stable. (The Lyapunov and asymptotic stability are defined in the
Appendix A.) It is a very significant property and for non-hyperbolic systems it need
not be true.

Example 1. Consider A =

(

−1 0
0 λ

)

with |λ| 6= 1. The origin is a non-hyperbolic

fixed point. If we take point x =
(

ε
0

)

from ε neighbourhood of the origin (ε > 0),
we see that it will stay in the ε neighbourhood for all its future evolution but it will
never approach the origin.
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Now we extend the hyperbolicity definition from a fixed point to a general set.
First we look at a periodic point because it helps us to understand why the hyperbolic
set is defined in such a complicated way.

Definition 4. A point x0 is called a periodic point of the map g with period m ≥ 1
if gm(x0) = x0 and m is a minimal integer with this property. The periodic point
x0 is said to be hyperbolic if x0 is hyperbolic as a fixed point of gm.

Example 2. Let us look at the so called Hénon map1 g(x, y) = (1− ax2 + y,−bx)
with a special choice of parameters a = 2, b = 1. There are two periodic points with
period 3: x0 =

(

0,−1
2

)

and y0 =
(

−1
2
, 1
2

)

.

Let us evaluate the Jacobian matrix of g3 in these points in order to see if they
are hyperbolic or not.

Dg3(x0) =

(

2 3
1 2

)

, Dg3(x1) =

(

2 −1
−3 2

)

, Dg3(x2) =

(

4 −1
1 0

)

.

All these matrices have the same eigenvalues 2 ±
√
3 therefore x0 is a hyperbolic

periodic point.
The matrices

Dg3(y0) =

(

−20 −9
9 4

)

, Dg3(y1) =

(

−14 3
9 −2

)

, Dg3(y2) =

(

−14 −9
−3 −2

)

have the eigenvalues −8± 3
√
7 so the point y0 is also a hyperbolic periodic point.

We will see that the conservation of hyperbolicity, and even of the eigenvalues
along the hyperbolic orbit is a general property.

Consider the orbit S = {x0, g(x0), . . . , g
m−1(x0)}. If the starting point x0 is a

hyperbolic periodic point with period m, then there exists splitting Rn = Es ⊕
Eu, where Es, Eu are stable and unstable subspaces of x0 as a fixed point of gm.
These subspaces are invariant under Dgm(x0), and there exist constants K1, K2 > 0,
λ1, λ2 ∈ (0, 1) such that for all k ≥ 0

‖(Dgm(x0))
kξ‖ ≤ K1λ1

k‖ξ‖ for ξ ∈ Es, (1.6)

‖(Dgm(x0))
−kξ‖ ≤ K2λ2

k‖ξ‖ for ξ ∈ Eu. (1.7)

Let us realize that if x0 is a periodic point, then also the other points of S are
periodic with the same period. We would like to know if they are also hyperbolic.

If Es = {~y1, . . . , ~ym}, m ≤ n, is the subspace that contains vectors from the
tangent space at the point x0 and xk = gk(x0), then Dgk(x0)E

s is the subspace
with the same dimension consisting of the tangent vectors at point gk(x0).

1Hénon map was introduced by French astronomer Michel Hénon in 1976 as a simplified model

of the Poincaré section of the Lorenz model. It is one of the most famous dynamical systems that

exhibit chaotic behaviour and the map is not uniformly hyperbolic.
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Let us notice that

Dgm(x0) =
m
∏

i=1

Dg(gm−i(x0))

and

Dgm(gk(x0)) =

m
∏

i=1

Dg(gm+k−i(x0)) =

= (Dg(gk−1(x0)) . . .Dg(x0))Dgm(x0)(Dg(gk−1(x0)) . . .Dg(x0))
−1.

Therefore Dgm(x0) and Dgm(gk(x0)), k ∈ m̂, are really similar matrices and
apparently Es(gk(x0)) = Dgk(x0)E

s, Eu(gk(x0)) = Dgk(x0)E
u.

Thus for x = gk(x0), k ∈ m̂− 1, there is a splitting Rn = Es(x)⊕ Eu(x), where

Es(x) = Dgk(x0)E
s, Eu(x) = Dgk(x0)E

u.

Let us look at invariance properties of these subspaces

Dg(x)(Es(x)) = Dg(gk(x0))(Dgk(x0))(E
s) = Dgk+1(x0) = Es(g(x)).

If we realize that

(Dgm(x0))
k =

(

m
∏

i=1

Dg(gm−i(x0))
)k

, Dgmk(x0) =

mk
∏

i=1

Dg(gmk−i(x0))

and gm(x0) = x0, we see that we can replace the inequalities (1.6), (1.7) by much
more useful ones

‖Dgmk(x0)ξ‖ ≤ K1λ1
k‖ξ‖ for ξ ∈ Es, (1.8)

‖Dg−mk(x0)ξ‖ ≤ K2λ2
k‖ξ‖ for ξ ∈ Eu. (1.9)

By this, we have derived that when k ≥ 0 is a multiple of m, then

‖Dgk(x0)ξ‖ ≤ K1λ̃
k
1‖ξ‖, ξ ∈ Es, λ̃1 = λ1

1
m .

If k is not a multiple of m, it can be written in the form k = ma + b, a ∈ N,

b ∈ m̂− 1.

‖Dgk(x0)ξ‖ ≤ ‖Dgma+b(x0)ξ‖ ≤ ‖Dgb(gma(x0))‖‖Dgma(x0)ξ‖ ≤ K̃1λ̃
ma
1 ‖ξ‖ ≤

≤ L1λ̃
k
1‖ξ‖.

The previous inequality also holds for the other points of S (x = gl(x0), ξ̃ ∈ Es(x)).

‖Dgk(x)ξ̃‖ = ‖Dgk(gl(x0))Dgl(x0)ξ‖ ≤ L1λ̃
l+k
1 ‖ξ‖ ≤ L̃1λ̃

k
1‖ξ̃‖.

We could imagine the general invariant set S of g as an orbit with period m = ∞.
Therefore we hope that the definition of a hyperbolic set is not surprising after the
previous discussion about hyperbolic orbits.
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Definition 5. A compact set S ⊂ U is called a hyperbolic set of the map g if

1. S is invariant, i.e., g(S) = S

2. there is a continuous splitting Rn = Es(x)⊕ Eu(x), x ∈ S

such that the subspaces Es(x) and Eu(x) have constant dimensions ∀x ∈ S, more-
over these subspaces have the invariance properties

Dg(x)(Es(x)) = Es(g(x)), Dg(x)(Eu(x)) = Eu(g(x))

and there are constants K1, K2 > 0, λ1, λ2 ∈ (0, 1) such that for k ≥ 0 and for all
x ∈ S

‖Dgk(x)ξ‖ ≤ K1λ1
k‖ξ‖, ξ ∈ Es(x), (1.10)

‖Dg−k(x)ξ‖ ≤ K2λ2
k‖ξ‖, ξ ∈ Eu(x). (1.11)

K1, K2 are called constants and λ1, λ2 exponents for the hyperbolic set S.

The continuous splitting means that if P (x) is a projection of Rn onto Es(x)
along Eu(x), then P (x) is a continuous function.The continuity of P need not to be
involved in the hyperbolicity definition because it follows from the other assump-
tions.

In the shadowing literature, there is often the hyperbolic set S defined for the
diffeomorphism g : M → M, where M is a smooth submanifold of Rn. In this
case, the condition of the splitting Rn = Es(x) ⊕ Eu(x), x ∈ S, is replaced by the
condition TxM = Es(x)⊕ Eu(x), x ∈ S, where TxM is the tangent space to M at
point x. We use the fact that for any linear space V we can identify the tangent
space TxV with the original space V.

1.2.2 Shadowing for difference equations

In this subsection, we explain exactly what shadowing is and why the hyperbolicity
is so important for it.

Mostly we are unable to solve the difference equations xi = g(xi−1) explicitly, we
search the solutions numerically and hope that such gained solutions, δ pseudoorbits,
are close to the true ones.

Definition 6. A sequence {yi}∞i=0 of points in U ⊂ Rn is a δ pseudoorbit of g if
‖yi+1 − g(yi)‖ < δ for all i.

The following definition shows what exactly we imagine under the term ”the
computed orbit is close to the true one.”

Definition 7. The true orbit {xi}∞i=0 (xi+1 = g(xi)) ε shadows the δ pseudoorbit
{yi}∞i=0 if

‖xi − yi‖ < ε ∀i.
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Our key question if the numerical generated trajectory corresponds to some true
trajectory can be reformulated: ”For given δ pseudoorbit, is there a true trajectory
which ε shadows it? And under what conditions?”

The following theorem gives us the answer.

Theorem 2 (Shadowing theorem). [2] Let S be a hyperbolic set for a diffeomor-
phism g. For each ε > 0 there is a δ > 0 such that every δ pseudoorbit in S is ε

shadowed by a unique true orbit lying in S.

This theorem was first presented by Anosov [2]. Bowen [3] proved that it is
sufficient to assume that certain neighborhood of δ pseudoorbit is hyperbolic for
shadowing.

To understand why the hyperbolicity is the key property for shadowing, let us
look at two simple examples.

Example 3. Consider the contracting mapping g : Rn → Rn,

‖gk(x)− gk(y)‖ ≤ Kk‖x− y‖, K ∈ (0, 1).

It is easy to show that any pseudoorbit {x0,x1 . . . ,xN} is shadowed by the true
orbit beginning at its own initial condition.

‖g(x0)− x1‖ < δ,

‖g2(x0)− x2‖ ≤ ‖g2(x0)− g(x1)‖+ ‖g(x1)− x2‖ ≤ (K + 1)δ,

...

‖gk(x0)− xn‖ ≤ (Kk−1 +Kk−2 + . . .+ 1)δ.

Therefore the true orbit {x0, g(x0), . . . , g
N(x0)} shadows the pseudoorbit

{x0,x1, . . . ,xN} within δ
1−K

.

Example 4. Consider the expanding mapping: g : Rn → Rn,

‖gk(x)− gk(y)‖ ≥ Ck‖x− y‖, C > 1.

In contrast to the previous, the expanding mapping is sensitive to the change of
initial condition. Despite of this sensitivity, all δ pseudoorbits {x0,x1 . . . ,xN} can
be shadowed. The inverse map g−1 is contracting with K = 1

C
so the true orbit

{g−N(xN ), g
−N+1(xN), . . . ,xN} shadows the pseudoorbit within δ

1− 1
C

.

Previous examples seem to be trivial but we should realize that a general hy-
perbolic dynamical system is a combination of these two cases. At each point we
can find some expanding and some contracting directions. The idea of shadowing
hyperbolic sets is based on this simple observation – we can shadow contracting and
expanding maps.
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Unfortunately, the theorem 2 is not particulary convenient for practical compu-
tation. The first problem is that δ that is produced can be smaller than machine
epsilon of currently existing computers. The second and more important problem
is that the hyperbolicity assumption is too restrictive. The hyperbolicity is very
difficult to verify. Moreover, the most of currently studied dynamical systems are
not uniformly hyperbolic.

Although the results of Anosov and Bowen are not directly applicable in practice,
they helped us to understand the background of shadowing and showed the direction
of research when attempting to shadow non-hyperbolic systems.

Hammel et al. [9], [11] first proved the existence of shadows of nontrivial lengths
for twodimensional non-hyperbolic systems. Their method consists of two parts:
refinement and containment.

Refinement is a numerical procedure that for a given δ pseudoorbit {yk}Nk=0 pro-
duces a nearby pseudoorbit {ỹk}Nk=0 with less noise.

Let pk represent the magnitude of a noise at each step

pk+1 = yk+1 − g(yk). (1.12)

The refined orbit {ỹk}Nk=0 is constructed from the original pseudoorbit as

ỹk = yk + ck,

where ck is the correction term. It satisfies the relation

ck+1 = g(ỹk)− g(yk)− pk+1.

Expanding g(ỹk) about yk in Taylor series we get

ck+1 = Dg(yk)ck − pk+1. (1.13)

There is a splitting of R2 as R2 = span(sk)⊕ span(uk) for all k, so we can write
ck as ck = αkuk + βksk and pk as pk = γkuk + δksk.

Given {yk}Nk=0 the coefficients γk and δk can be computed directly from equation
(1.12). We rewrite the equation (1.13) to get the coefficients αk and βk

αk+1uk+1 + βk+1sk+1 = Dg(yk)(αkuk + βksk)− (γk+1uk+1 + δk+1sk+1).

The unit vectors uk and sk have the following “invariance” property

uk+1 =
Dg(yk)uk

‖Dg(yk)uk‖
, sk+1 =

Dg(yk)sk
‖Dg(yk)sk‖

.

Then

αk+1 = αk‖Dg(yk)uk‖ − γk+1,

βk+1 = βk‖Dg(yk)sk‖ − δk+1.
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To achieve numerical stability, we must solve the recursion relation backwards
along the unstable direction

αk =
αk+1 + γk+1

‖Dg(yk)uk‖
, αN = 0 (1.14)

and forwards along the stable direction

βk+1 = βk‖Dg(yk)sk‖ − δk+1, β0 = 0. (1.15)

These recursion relations with such chosen initial points ensure that the refined orbit
is less noisy than the original one.

The next step is containment. We construct a sequence of small parallelograms
{Mk}Nk=0 in this procedure. The points of refined orbit {ỹk}Nk=0 serve as the centers
of these parallelograms. We require that the image g(Mk) lies across Mk+1. Each
parallelogramMk has expanding sides parallel to the unstable unit vector uk at point
ỹk and contracting sides parallel to stable unit vector sk. The image of expanding
sides of Mk must intersect two contracting sides of Mk+1 but cannot intersect the
expanding ones as shown in the figure 1.1.

Figure 1.1: Containment of a true trajectory [9].

There is a true orbit {xk}Nk=0 such that xk ∈ Mk for all k. Let Γ0 be a curve in
M0 connecting one contracting side of M0 with the other. Then g(Γ0) contains the
curve Γ1 connecting one contracting side of M1 with the other. We can map the
curve Γ0 by gk and restrict it to the Mk to gain the sequence of curves {Γk}Nk=0. Then
we choose arbitrary point xN from the curve ΓN and construct backwards the true
orbit {xk}Nk=0, where xk = g−1(xk+1). This true orbit is close to the δ pseudoorbit.

Containment cannot continue forever for non-hyperbolic systems. This method
fails when the angle between the stable and unstable subspace is nearly zero, then
the parallelogram is ”squeezed” to the line. The points, at which this situation
occurs, are called glitches.
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Although it worked in some cases, their method was not rigorous in the sense
that there is no guarantee that the refinement process is convergent for all initial
points. The rigorous verification of shadowing based on the refinement was done by
Sauer and Yorke in [23]. For a given δ pseudoorbit {yk}Nk=0 they found the stable
subspace Sk = span(sk) and unstable subspace Uk = span(uk) at each point yk

and defined the positive number rk to be an upper bound for the expansion rate of
Dg(yk) along Sk and positive number tk to be an upper bound for the expansion
rate of Dg−1(yk) along Uk. Then they defined recursively the sequence of numbers
Ck : Ck = csc θk+rk−1Ck−1, C0 = 0, where θk is the angle between subspaces Sk and
Uk. Similarly they defined the sequence Dk : Dk = csc θk + tkDk+1, DN = 0. If Ck

and Dk are sufficiently bounded, then the δ pseudoorbit {yk}Nk=0 can be shadowed.
Precise formulation is given below.

Theorem 3. [23] Assume δ < 1
20n2 and let B a bound on the first and second partial

derivatives of g and g−1. If

max (Ck, Dk) ≤
1

n5/2B2
√
δ

for all k = 0, . . . , N, then there exists a true orbit {xk}Nk=0 of g such that ‖xk−yk‖ <√
δ for k = 0, . . . , N.

The proof is constructive. The δ pseudoorbit y = {yk}Nk=0 is taken as the initial
orbit and then a sequence of refined δl pseudoorbits yl = {yl

k}Nk=0 with decreasing
noise δl is defined. It can be shown that the sequence {yl} has a limit under the
assumptions of the theorem 3 and this limit is the true orbit which is sufficiently
close to the original δ pseudoorbit.

If g is hyperbolic, then rk and tk are less than one for all k and the angle between
the stable and unstable subspaces at each point is bounded away from zero, so
the constants Ck and Dk are bounded for all k. Therefore the original shadowing
theorem follows from the theorem 3.

Hayes [12] also made the refinement and containment method rigorous. He gen-
eralized it to maps of arbitrary dimensions and finally to differential equations.

The previous shadowing methods were geometrical, i.e., the splitting of the tan-
gent space at each point to stable and unstable subspaces was used to construct
true orbit forwards along the contracting directions and backwards along the ex-
panding ones. Palmer´s approach [20] was purely algebraical. He considered the δ

pseudoorbits y = {yk}∞k=0 as the elements of l∞(Rn) and tried to find true orbits
x = {xk}∞k=0 such that ‖x− y‖∞ < ε.

He defined the map G : l∞(Rn) → l∞(Rn) such that

[G(x)]k = xk+1 − g(xk).

The true orbit x = {xk}∞k=0 is the root of the equation G(x) = 0, while the δ

pseudoorbit y = {yk}∞k=0 satisfies the condition ‖G(y)‖∞ < δ.

14



The equations G(x) = 0, ‖x − y‖∞ < ε have a unique solution if the derivative
L = DG(y) is invertible and the norm of the inverse ‖L−1‖ is suitably bounded.

The linear operator L = DG(y) : l∞(Rn) → l∞(Rn) is defined for u = {uk}∞k=0

as follows
(Lu)k = uk+1 −Dg(yk)uk.

L is invertible and its inverse is bounded if the difference equation

uk+1 = Dg(yk)uk (1.16)

has so called exponential dichotomy on 〈0,∞).
The following two definitions explain what is exactly meant by the exponential

dichotomy property.

Definition 8. The transition matrix φ(k,m) for the difference equation

uk+1 = Akuk, where Ak ∈ R
n,n, detAk 6= 0 ∀k ∈ J ⊂ Z

is defined by:

φ(k,m) =











Ak−1 . . . Am for k > m

I for k = m

(Ak−1 . . . Am)
−1 for k < m.

Definition 9. The difference equation uk+1 = Akuk has an exponential dichotomy

on J if there are projections Pk and constants K1, K2 > 0 and λ1, λ2 ∈ (0, 1) such
that for k,m ∈ J the invariance conditions

φ(k,m)Pm = Pkφ(k,m)

are satisfied and the inequalities

‖φ(k,m)Pm‖ ≤ K1λ1
k−m k ≥ m

‖φ(k,m)(I − Pm)‖ ≤ K2λ2
m−k k ≤ m

hold. K1, K2 are called constants and λ1, λ2 exponents associated with the di-
chotomy.

The following theorem connects hyperbolicity of the system with exponential
dichotomy.

Theorem 4. A compact invariant set S for the diffeomorphism g : U = U◦ ⊂ Rn →
Rn is hyperbolic iff for all x ∈ S the difference equation

uk+1 = Dg(gk(x0))uk (1.17)

has an exponential dichotomy on 〈0,∞) with constants, exponents and rank of
projections independent on x.
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The equation (1.17) has the exponential dichotomy, but the matrices Dg(x) are
evaluated at the points of the true orbit, while we need the exponential dichotomy
for the equation (1.16) for purposes of shadowing. Fortunately, the exponential
dichotomy property is robust under perturbation as the following lemma shows.

Lemma 2. [20] Let S be a compact hyperbolic set with exponents λ1, λ2 for the
diffeomorphism g : U = U◦ ⊂ Rn → Rn, where U is convex. Suppose that α1, α2

are numbers satisfying
λ1 < α1 < 1, λ2 < α2 < 1.

Then if δ is sufficiently small (depending on g, S, α1 and α2), the difference equation
(1.16) has an exponential dichotomy on 〈0,∞) with exponents λ1, λ2, with the rank
of the projection equal to dim Es and with constants depending only on g, S, α1

and α2.

Wemust be satisfied with shadows x = {xk}Nk=0 of finite lengths for δ pseudoorbits
y = {yk}Nk=0 lying in non-hyperbolic sets. The operator L is now finite-dimensional
matrix of the form

L =











−Dg(y0) 1 0 . . . 0
0 −Dg(y1) 1 0

. . .

−Dg(yN) 1 .

It is natural to hope that if ‖L−1‖ will be bounded, the existence of shadows is
guaranteed also in this case. More precisely:

Theorem 5. [20] Let g : Rn → Rn be a C2 map, {yk}Nk=0 be its δ pseudoorbit and
L : (Rn)N+1 → (Rn)N be the linear operator defined for u = {uk}Nk=0 by:

(Lu)k = uk+1 −Dg(yk)uk, k = 0, . . . , N − 1.

Suppose ǫ = 2‖L−1‖δ, where L−1 is the right inverse of L, and

M = sup{‖D2g(x)‖, x ∈ R
n, ‖x− yk‖ ≤ ǫ for some k = 0, . . . , N − 1}.

Then if 2M‖L−1‖2δ ≤ 1, the δ pseudoorbit {yk}Nk=0 is ǫ shadowed by a true orbit
{xk}Nk=0 of g.

In the previous work [26], we used this theorem to prove the existence of a ǫ ≤
1.68 × 10−12 shadow length N = 10000 for the pseudoorbit of the Hénon map
f(x, y) = (1− 1.4x2 + y, 0.3x) starting at the origin (figure 1.3).

1.3 Poincaré map

We begin this section with an example.
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Figure 1.2: Hénon attractor.

Example 5. Consider the system of differential equations

ẋ = x− y − (x2 + y2)x,

ẏ = x+ y − (x2 + y2)y, (1.18)

that has the following form in polar coordinates (r ∈ 〈0,∞), ϕ ∈ 〈0, 2π))

ṙ = r − r3, ϕ̇ = 1.

The differential equations can be easily integrated.

ϕ(t) = ϕ0 + t.

1

r3
ṙ =

1

r2
− 1,

dr−2

dt
+ 2r−2 − 2 = 0, r2(t) =

r0
2

r02 + (1− r02)e−2t
.

We immediately see that one of the solutions of the equations (1.18) is periodic orbit
Γ (r = 1) and this orbit attracts all neighboring points. So the orbit is stable.

Now we choose the half line Σ = {(r, ϕ)|ϕ = 0}. The orbit Γ crosses Σ at point
r = 1. We consider the solutions of (1.18) starting at Σ near r = 1 and look at the
times τ(r) and coordinates P (r) these solutions take to hit Σ again. It is obvious
that τ(r) = 2π for all r and

P (r) =
( 1

1 + ( 1
r2

− 1)e−4π

)

.
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Therefore we can regard the orbit Γ as the fixed point of the map P. Because
DP (1) = e−4π < 1, this fixed point is stable.

The time τ(r) is called first return time, the half line Σ is called Poincaré section

and the map P the Poincaré map. The Poincaré map gives us the correspondence
between the differential equations and diffeomorphisms.

We can construct the Poincaré map for all differential equations

ẋ(t) = f(x(t)), x ∈ R
n (1.19)

with periodic orbit Γ. We choose the point x0 ∈ Γ, then we find the hyperplane Σ
(x0 ∈ Σ) transversal to the flow of the system and let us evolve the points x starting
at Σ. Then we look at the points P (x). The transversality of the section means
that periodic orbits starting on the section do not flow parallel to it. In this way we
can reduce the problem of analyzing the flow near the periodic orbit to the study of
the discrete map with a state space that is one dimension smaller than the original
system. The Poincaré map preserves many of important properties of the original
system, so it is often used to for analyzing the original system. Unfortunately there
is no universal way how to construct the Poincaré map, because we must practically
solve the original system.

Let φt(x0) be a periodic solution of the system (1.19) with period T. Consider
the Poincaré section

Σ = {x ∈ R
n|〈x− x0, f(x0)〉 = 0}.

The following theorem ensures that Poincaré map is well defined on some neighbor-
hood of x0.

Theorem 6. [20] Let f : U = U◦ ⊂ Rn → Rn be a Cr (r ≥ 1) vectorfield, let φ be
the flow associated with (1.19) and let φt(x0) be a periodic solution of (1.19) with
period T. Then there exists ∆ > 0 and Cr function τ : B(x0,∆)∩Σ → R such that

1. φτ(x)(x) ∈ Σ,

2. τ(x0) = T and |τ(x)− T | ≤ 4‖φT (x)−x0‖
‖f(x0)‖ ,

3. τ ′(x)h = − 〈Dφτ(x)(x)h,f(x0)〉
〈f(φτ(x)(x)),f(x0)〉 if h is orthogonal to f(x0) and

4. (∃α > 0)(∀x ∈ Rn)(x, φt(x) ∈ B(x0,∆) ∩ Σ,−α ≤ t ≤ T + α)(t = 0 or t =
τ(x)).

The proof of the theorem is based on the fact that we can find the root of the
equation

g(τ(x),x) = 〈φτ(x)(x)− x0, f(x0)〉 = 0. (1.20)

We can calculate τ ′(x) differentiating the equation (1.20) with respect to x. For
h orthogonal to f(x0), we get

〈f(φτ(x)(x)), f(x0)〉τ ′(x)h+ 〈Dφτ(x)(x)h, f(x0)〉.
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It can be shown that ∂g
∂t
(τ(x),x) = 〈f(φτ(x)(x)), f(x0)〉 > 0. Hence

τ ′(x)h = −〈Dφτ(x)(x)h, f(x0)〉
〈f(φτ(x)(x)), f(x0)〉

.

Therefore it follows that Poincaré map P : B(x0,∆) ∩ Σ → Σ defined by

P (x) = φτ(x)(x)

is a Cr map with x0 as the fixed point. For h ∈ (f(x0))
⊥

DP (x0)h = −‖f(x0)‖−2〈DφT (x0)h, f(x0)〉f(x0) +DφT (x0)h. (1.21)

φ is the flow of the system (1.19), therefore DφT (x0) is invertible and moreover

DφT (x0)f(x0) = f(x0), f(x0) 6= 0. (1.22)

The expression (1.21) is the orthogonal projection of DφT (x0)h to (f(x0))
⊥, so

DP (x0) is invertible map of (f(x0))
⊥ to itself. Therefore it follows from the inverse

function theorem that P : B(x0,∆)∩Σ → P (B(x0,∆)∩Σ) is a Cr diffeomorphism
for sufficiently small ∆.

1.4 Linear differential equations

We first remind some basic, but important facts about the solutions of the system
of the first order linear differential equations with constant coefficients

ẋ = Ax, x ∈ R
n, A ∈ R

n,n. (1.23)

The flow for system (1.23) is φt(x) = etAx, where eA is defined by the power series

eA =
∑∞

k=0
Ak

k!
. This sum is absolutely convergent for all A. So there is only one

problem - how to calculate with exponentials of matrices.
We are interested only in the case when the matrix is diagonalizable. To calculate

eA is very simple matter if A is a diagonal matrix A = diag(λ1, . . . , λn). Then
etA = diag(eλ1t, . . . , eλnt).

Suppose now that the matrix A has n real eigenvalues λ1, . . . , λn with associated
eigenvectors e1, . . . , en. Let P be the matrix with the eigenvectors of A as columns.
Obviously P is regular. Then

AP = [λ1e1, . . . , λnen] = Pdiag(λ1, . . . , λn) ⇒ A = Pdiag(λ1, . . . , λn)P
−1.

So φt(x) = etAx = Pdiag(eλ1t, . . . , eλnt)P−1x.

Now suppose that A ∈ R2,2 with a pair of conjugate eigenvalues ρ ± iω. Then
there is a complex eigenvector z such that Az = (ρ+ iω)z. Let P = [Imz,Rez].

AP = [ρImz+ ωRez, ρRez− ωImz] = P

(

ρ −ω

ω ρ

)

,
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Λ =

(

ρ −ω

ω ρ

)

, Λ1 =

(

ρ 0
0 ρ

)

, Λ2 =

(

0 −ω

ω 0

)

.

We can decompose matrix Λ as Λ = Λ1 + Λ2. Then eΛ = eΛ1eΛ2 .

eΛ1t =

(

eρt 0
0 eρt

)

, eΛ2t =

(

cosωt − sinωt
sinωt cosωt

)

.

The generalization of the previous computation to higher dimensions in straight-
forward and it is sum up in the following theorem.

Theorem 7. Let A ∈ Rn,n has k distinct real eigenvalues λ1, . . . , λk and m =
1
2
(n − k) distinct pairs of complex eigenvalues ρ1 ± iω1, . . . , ρm ± iωm. Then there

exists regular matrix P such that P−1AP = diag(λ1, . . . , λk, B1, . . . , Bm), where

Bi =

(

ρi −ωi

ωi ρi

)

.

Furthermore, etA = PetΛP−1 and etΛ = diag(eλ1t, . . . , eλkt, eB1t, . . . , eBmt), where

etBi = eρit
(

cosωt − sinωt
sinωt cosωt

)

.

There is an eigenspace associated with each eigenvalue. When the eigenvalue
λ is multiple, then its eigenspace is defined as Eλ = span{x ∈ Rn|(A − λI)kx =
0 for some k ∈ N}.

There are three possibilities for an eigenvalue of A. It has negative, positive or
zero real part. First let us assume that all eigenvalues of A have negative real parts.
From theorem 7 it is obvious that all points in Rn moving as dictates (1.23) converge
exponentially to the origin. If real parts of all eigenvalues of A are positive, all points
diverge to infinity. These properties motivate the following definition.

Definition 10. The set Es(A) =
⊕

λ,Reλ<0Eλ is called the stable subspace of A and
the set Eu(A) =

⊕

λ,Reλ>0 Eλ is the unstable subspace of A.

1.5 Hyperbolic stationary point

We would like to deduce the definition of general hyperbolic set for differential
equation

ẋ = f(x(t)), (1.24)

where f : U = U◦ ⊂ Rn → Rn is Cr (r ≥ 1) vectorfield, analogously as in the
discrete case. The simplest hyperbolic set is hyperbolic stationary point.

Definition 11. A point x0 is said to be hyperbolic stationary point of the equation
(1.24) if φt(x0) = x0 for all t and all the eigenvalues of Df(x0) has no zero or
purely imaginary eigenvalues. x0 is a sink if all eigenvalues of Df(x0) have negative
real parts and a source if all the eigenvalues of Df(x0) have positive real parts.
Otherwise x0 is a saddle.
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For linear systems, we have defined the stable, resp. unstable subspace as the set
of points that converge to, resp. diverge away from the origin (the only fixed point
of (1.23)). We can find these sets also for nonlinear differential equations.

Definition 12. Let x0 be a hyperbolic stationary point of the equation (1.24). The
set

W s,ε(x0) = {x ∈ U : φt(x) → x0 as t → ∞, ‖φt(x)− x0‖ ≤ ε ∀t ≥ 0}

is called the local stable manifold of x0 and the set

W u,ε(x0) = {x ∈ U : φt(x) → x0 as t → −∞, ‖φt(x)− x0‖ ≤ ε ∀t ≤ 0}

is called the local unstable manifold of x0.

The correspondence between local stable manifold and stable subspace is given
by the following theorem.

Theorem 8 (Stable manifold theorem). [7] Suppose that the origin is a hyperbolic
stationary point for ẋ = f(x) and Es and Eu are the stable and unstable manifolds
of the linear system ẋ = Df(0)x. Then there exist local stable and unstable mani-
folds W s,ε(0) and W u,ε(0) of the same dimension as Es and Eu respectively. These
manifolds are (respectively) tangential to Es and Eu at the origin and as smooth as
the original function f.

Example 6. Consider the equations

ẋ = 3x+ 2y2 + xy (1.25)

ẏ = −y + 3y2 + x2y − 4x3

with the origin as the stationary point.
The linearized system is ẋ = 3x, ẏ = −y. Therefore the origin is a saddle with

invariant linear subspaces

Es = {(x, y)|x = 0} and Eu = {(x, y)|y = 0}.

Local stable manifold is smooth and tangential to Es, so it can be described by a
smooth function y = V (x) satisfying the condition ∂V

∂x
(0) = 0.We try to approximate

the function V as the power series

V (x) =
∑

i≥2

vix
i.

The linear term is omitted because it has to be tangential to Es at the origin.
Now we know that

ẏ = −y + 3y2 + x2y − 4x3 = −
∑

i≥2

vix
i + 3

(

∑

i≥2

vix
i
)(

∑

k≥2

vkx
k
)

+
∑

i≥2

vix
i+2 − 4x3
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and also

ẏ = ẋ
∂V

∂x
=

[

3x+ 2
(

∑

i≥2

vix
i
)(

∑

k≥2

vkx
k
)

+
∑

i≥2

vix
i+1

]

∑

i≥2

kvkx
k−1.

We approximate it to the cubic term, so equating the terms of order x2 and x3

we get
−v2 = 6v2 and − v3 − 4 = 9v3.

Therefore

W u,ε(x0) = {(x, y)|y = −2

5
x3}.

Similarly, we can describe the local stable manifold by x = S(y) such that ∂S
∂y
(0) =

0. It gives us that

W s,ε(x0) = {(x, y)|x = −2

5
y2 − 1

3
y3}.

x
K0.3 K0.2 K0.1 0 0.1 0.2 0.3

y

K0.2

K0.1

0.1

0.2

Figure 1.3: Stable and unstable manifolds of the equation (1.25).

1.6 Hyperbolic set

Definition 13. Let u(t) be a periodic solution of the equation (1.24) with period
T. Then u(t) is called hyperbolic if all but one of the eigenvalues of DφT (u(0)) lie
off the unit circle.
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We decompose Rn as Rn = span(f(x0)) ⊕ f(x0)
⊥ and now using the equations

(1.22) and (1.21) we see that the matrix DφT (x0) has the following form

DφT (x0) =











1 . . .

0
... DP (x0)
0











.

Therefore u(t) is hyperbolic if and only if x0 = u(0) is hyperbolic fixed point of the
Poincaré map P.

We can find the points attracted by, resp. repelled from the hyperbolic periodic
solution.

Definition 14. Let u(t) be a hyperbolic periodic solution of the equation (1.24).
The set

W s(u) = {x ∈ U : ̺(φt(x),u) = min
0≤s≤T

‖φt(x)− u(s)‖ → 0 as t → ∞}

is called the stable manifold of u(t) and the set

W u(u) = {x ∈ U : ̺(φt(x),u) = min
0≤s≤T

‖φt(x)− u(s)‖ → 0 as t → −∞}

is called the unstable manifold of u(t).

The next proposition connects the sets W s(x0), W
u(x0) with the sets W s(u),

W u(u).

Proposition 1. Let u(t) be a hyperbolic periodic solution of the equation (1.24),
x0 = u(0). Then the stable and unstable manifolds are given by

W s(u) =
⋃

t<0

φt(W s(x0))

and
W u(u) =

⋃

t>0

φt(W u(x0)).

Assume that the equation (1.24) has a periodic solution u(t), x0 = u(0). Then
Rn = span(f(x0)) ⊕ f(x0)

⊥ and we construct Poincaré map in the same way as in
the section 1.3, i.e., P (x) = φτ(x)(x).

From Riesz theorem, we know that there exists such z ∈ f(x0)
⊥ that for every

w ∈ f(x0)
⊥ τ ′(x0)w = −z†w.

From equation (1.21), it follows that

DφT (x0)w = (z†w)f(x0) +DP (x0)w, w ∈ f(x0)
⊥ (1.26)

and
DP (x0)f(x0) = f(x0). (1.27)
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The point x0 is a hyperbolic fixed point of P, therefore 1 is not an eigenvalue
of DP (x0) and consequently 1 is not an eigenvalue of DP (x0)

+
. We may define

the vector z̃ = −(I − (DP (x0))
†)−1z. Denote as Ẽs(x0), resp. Ẽu(x0) the stable,

resp. unstable subspace of x0 considered as the fixed point of P. We can define the
subspaces Es(x0) and Eu(x0) as follows

Es(x0) = {(z̃†w)f(x0) +w, w ∈ Ẽs(x0)}, (1.28)

Eu(x0) = {(z̃†w)f(x0) +w, w ∈ Ẽu(x0)}. (1.29)

DφT (x0)((z̃
†w)f(x0) +w) = DP (x0)w+ (z̃† + z†)wf(x0) = (1.30)

= DP (x0)w+ z̃†DP (x0)wf(x0).

Because Ẽs(x0) and Ẽu(x0) are invariant subspaces for DP (x0), the subspaces
Es(x0), Eu(x0) are invariant under DφT (x0) and moreover they have the same
dimensions as Ẽs(x0) and Ẽs(x0). So we can decompose Rn as Rn = span(f(x0))⊕
Es(x0)⊕Eu(x0).

Using the mathematical induction on the equation (1.30), we get

[DφT (x0)]
k((z̃†w)f(x0) +w) = DP (x0)

kw+ (z̃†DP (x0)
kw)f(x0).

We know that there exist constants K1, K2 > 0, λ1, λ2 ∈ (0, 1) such that for k ≥ 0

‖(DP (x0))
kξ‖ ≤ K1λ1

k‖ξ‖, ξ ∈ Ẽs(x0)

‖(DP (x0))
−kξ‖ ≤ K2λ2

k‖ξ‖, ξ ∈ Ẽu(x0).

If we realize that

(DφkT (x0)) = D(φT ◦ . . . ◦ φT )(x0) =

k
∏

i=1

DφT (φ(k−i)T (x0))

and φT (x0) = x0, we see that DφkT (x0) = (DφT (x0))
k.

Hence for k ≥ 0 and ξ = (z̃†w)f(x0) +w ∈ Es(x0)

‖DφkT (x0)ξ‖ ≤ ‖(z̃†[DP (x0)]
kw)f(x0)‖+ ‖[DP (x0)]

kw‖ ≤ K3λ1
k‖ξ‖. (1.31)

For t ≥ 0 there exists nonnegative integer k such that kT ≤ t ≤ (k + 1)T.

‖Dφt(x0)ξ‖ = ‖Dφt−kT (x0)DφkT (x0)ξ‖ ≤ ‖Dφt−kT (x0)DφkT (x0)ξ‖‖DφkT (x0)ξ‖.

We use Gronwall´s inequality [15] to bound the norm of ‖Dφt−kT (x0)‖.

‖Dφt−kT (x0)‖ ≤ ‖
∫ t−kT

0

d

ds
(Dφs(x0))ds+Dφ0(x0)‖

≤ ‖x0‖+
∫ T

0

‖ d

ds
Dφs(x0)‖ds ≤ ‖x0‖eMT ,
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where M = sup0≤s≤T Df(φs(x0)).
Therefore for t ≥ 0 and ξ ∈ Es(x0),

‖Dφt(x0)ξ‖ ≤ eMTK3λ1
k‖x0‖‖ξ‖ ≤ K4e

−α1t‖ξ‖, (1.32)

where α1 = − lnλ1

T
> 0.

Finally we can define the subspaces Es(u(t)) and Eu(u(t)) for each point of the
periodic orbit

Es(u(t)) = Dφt(x0)E
s(x0), Eu(u(t)) = Dφt(x0)E

u(x0).

Obviously they have the invariance property

Dφt(u(τ))Es(u(τ)) = Es(φt(u(τ))), Dφt(u(τ))Eu(u(τ)) = Eu(φt(u(τ)))

and Rn can be decomposed as

R
n = span(f(u(t)))⊕ Es(u(t))⊕ Eu(u(t)) ∀t.

Let us take ξ ∈ Es(u(τ)) and t ≥ 0. Then

‖Dφt(u(τ))ξ‖ = ‖Dφt(u(τ))Dφτ (x0)ξ̃‖ = ‖Dφt+τ(x0)ξ̃‖ ≤ K4e
−α1(t+τ)‖ξ̃‖

≤ C1e
−α1t‖ξ‖.

Similarly, for ξ ∈ Eu(u(τ)) and t ≥ 0

‖Dφ−t(u(τ))ξ‖ ≤ C2e
−α2t‖ξ‖.

We hope that the definition of a hyperbolic set follows from the previous compu-
tation.

Definition 15. A compact set S ⊂ U is called hyperbolic set for the equation (1.24)
if

1. f(x) 6= 0 for all x ∈ S

2. S is invariant, i.e., φt(S) = S for all t

3. there is a continuous splitting Rn = E0(x)⊕ Es(x)⊕Eu(x), x ∈ S

such that E0(x) = span(f(x0)) and the subspaces Es(x) and Eu(x) have constant
dimensions ∀x ∈ S, moreover these subspaces have the invariance properties

Dφt(x)(Es(x)) = Es(φt(x)), Dφt(x)(Eu(x)) = Eu(φt(x))

and there are positive constants K1, K2, λ1, λ2 such that for t ≥ 0 and for all x ∈ S

‖Dφt(x)ξ‖ ≤ K1e
−λ1t‖ξ‖ ξ ∈ Es(x), (1.33)

‖Dφ−t(x)ξ‖ ≤ K2e
−λ2t‖ξ‖ ξ ∈ Eu(x). (1.34)

Similarly as in the discrete case, the continuity of the splitting need not to be in-
volved in the hyperbolicity definition because it follows from the other assumptions.
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1.7 Shadowing theorem for hyperbolic sets

In this section, we present shadowing definitions and shadowing theorem for hyper-
bolic sets of differential equations of the form

ẋ(t) = f(x(t)), (1.35)

where U is convex open subset of Rn and f : U → Rn is C1 vector field.
The shadowing for differential equations is much more complicated than in the

discrete case. There are problems even with the definition of a shadow. Should it
be a continuous function of time or a sequence of points? Farther problem is caused
by the lack of hyperbolicity in the direction of the vector field as the simple example
shows.

Example 7. Consider the differential equation ẍ = 0 with initial condition x(0) = 0.
The solution of this equation is straight-line motion x = v0t, where v0 is a constant
velocity. Let us assume that numerically generated velocity has the following form

v =

{

v0 for t < 0

v0 + δ for t ≥ 0.

It is obvious that every exact solution with ṽ0 close to v0 will linearly diverge from
it, so for this δ pseudoorbit there is no true trajectory that shadows it for all t.
Although if we allow linear rescaling of time, this δ pseudoorbit will be shadowable.

When we compute the orbit of a discrete map, the errors are only in space, while
when we compute the solution of differential equations, the numerically generated
trajectory can have errors also in time. The errors in the length of each timestep
can accumulate and although the numerically generated trajectory will follow the
trajectory of the exact solution, these two solutions can have different time scale. For
this reason, the rescaling of time is necessary for shadowing in continuous dynamical
systems.

Since the subject of our interest are numerical solutions of differential equations,
we will be dealt with discrete pseudoorbits and our definition of shadow allows to
rescale time.

Definition 16. For a given positive number δ, a sequence of points {yk}∞k=0 in U is
called a discrete δ pseudoorbit for equation (1.35) if there is a bounded sequence of
positive times {hk}∞k=0 such that

‖yk+1 − φhk(yk)‖ < δ for ∀k ≥ 0.

Definition 17. A discrete δ pseudoorbit {yk}∞k=0 with associated times {hk}∞k=0

is said to be ε shadowed by a true trajectory of the equation (1.35) if there are
sequences {xk}∞k=0 and {tk}∞k=0 such that xk+1 = φtk(xk) and

‖xk − yk‖ < ε, |tk − hk| < ε for ∀k ≥ 0.
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Similarly as for diffeomorphisms, the δ pseudoorbit {yk}∞k=0 lying in hyperbolic
set can be shadowed along all its length.

Theorem 9 (Shadowing theorem). [20] Let S be a compact hyperbolic set for
equation (1.35). For a given ε > 0, there is a δ such that any δ pseudoorbit {yk}∞k=0

of equation (1.35) lying in S can be ε shadowed by a unique true orbit {xk}∞k=0.

Moreover
〈f(yk),xk − yk〉 = 0 ∀k.

The shadowing theorem for non-hyperbolic systems will be discussed in the next
chapter.
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Chapter 2

Numerical shadowing

First we introduce two interesting dynamical systems that exhibit chaotic behaviour.
Then we state two shadowing theorems convenient for the practical usage. All
their assumptions can be verified by the computer, and mainly they can be applied
also for non-hyperbolic dynamical systems. Finally we use one of the theorems to
show that the numerical solutions of the presented chaotic differential equations are
shadowable.

2.1 Lorenz equations

In 1963 Edward Lorenz published the article called Deterministic nonperiodic flow
[18]. He studied a fluid cell with the temperature difference ∆T between the bottom
and upper edge maintained at a constant value. For large ∆T, there occurs a
convection which is modeled by two partial differential equations. The variables
in these equations are expanded in Fourier series which leads to an infinite set
of ordinary differential equations. All but three modes are omitted and thus the
following set of three ordinary differential equations is obtained.

ẋ = σ(y − x), (2.1)

ẏ = ρx− y − xz,

ż = xy − βz.

The variable x is proportional to the rate of convective motion. Variables y and
z correspond to the horizontal and vertical temperature variation, respectively. The
constants σ, ρ and β are positive.

Because divf(x, y, z) = −σ − 1 − b < 0, the dynamical system governed by the
Lorenz equations is dissipative and from the Liouville theorem we know that every
volume V is squeezed into the volume V e−(σ+1+b)t during the time t. Moreover we
will show that all trajectories tend towards some bounded ellipsoid E.

These observations suggest that there is a bounded set of zero volume in E to
which all trajectories are attracted. The nature of this set depends on the parameter
ρ as we will see.
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Consider the Lyapunov function V = ρx2+σy2+σ(z−2ρ)2 with V̇ = −2σ(ρx2+
y2+βz2−2βρz). The theory of Lyapunov functions is explained in the Appendix A.
There is certainly a bounded region D with V̇ ≤ 0. Let c be the maximum value of V
inside D and consider the bounded ellipsoid E = {(x, y, z)|ρx2+σy2+σ(z− 2ρ)2 ≤
K} in which V ≤ c+ ε, ε > 0.

If x does not lie in E, then V̇ ≤ −δ(ε) for some small positive δ(ε). V decreases
along the trajectory beginning at point x and thus the trajectory must eventually
enter the ellipsoid E. Of course, both ε and δ can be zero. In this case it would take
an infinite time to enter E and our argument does not sound very convincing. But
the theorem 15 ensures that this entering really occurs.

The ellipsoid E is invariant as the following theorem shows (g(x) = V (x)−K).

Theorem 10. [7] Suppose ẋ = f(x), x ∈ Rn, and there is a continuously differen-
tiable function g : Rn → R such that the set D = {x ∈ Rn|g(x) < 0} is a simply
connected bounded domain with smooth boundary ∂D. If

〈▽f, g〉 < 0 on ∂D

then for all x ∈ D, φt(x) ∈ D for all t ≥ 0.

We now determine the size of the ellipsoid E. Obviously, the Lyapunov function
V reaches its maximum on the boundary ∂D, where ρx2 + y2 + βz2 − 2βρz = 0.
Using the Lagrange function with Lagrange multiplier λ, we find that the maximum
must satisfy the following equations

x = λx, σy = λy, σ(z − 2ρ) = βρ(z − ρ).

There are three possible solutions of the previous equations. We are interested in
classical parameter values σ = 10, β = 8

3
and ρ = 28, where the maximum occurs

for

xmax = 0, λ = σ, zmax =
ρ(β − 2)

β − 1
, y2max =

β2ρ2(β − 2)

(β − 1)2
.

Therefore β ≥ 2 and V (xmax, ymax, zmax) =
σρ2β2

β−1
.

Thus we have proved that all trajectories tend towards an attracting set of a zero
volume contained in the invariant ellipsoid

E =

{

(x, y, z)|ρx2 + σy2 + σ(z − 2ρ)2 ≤ σρ2β2

β − 1

}

.

There are only four possibilities, the attracting set can be a stationary point (figure
2.1), a periodic orbit (figure 2.1) or quasi-periodic orbit and the so called strange
attractor (figure 2.2). The initial point is x0 = (1; 0; 0) in these simulations.

We look at the stationary points of the Lorenz equations. We fix the values of σ
and β as σ = 10 and β = 8

3
, the parameter ρ is allowed to vary. We immediately see

that the origin is a stationary point for all values of ρ. It is stable for ρ ∈ (0, 1).When
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Figure 2.1: Left: stationary point for ρ = 16; right: periodic orbit for ρ = 24.

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

x

z

Figure 2.2: Lorenz attractor for ρ = 28.

parameter ρ increases above 1, the origin loses its stability and two other stationary
points x1 = (

√

β(ρ− 1),
√

β(ρ− 1), ρ− 1), x2 = (−
√

β(ρ− 1),−
√

β(ρ− 1), ρ− 1)
appear. These points are stable for ρ ∈ (1, 470

19
) because the Jacobian matrix at x1,

x2 have three eigenvalues with negative real parts. For ρ = 470
19

the Hopf bifurcation
occurs, i.e., the complex conjugate pair of eigenvalues cross the y-axis. Numerical
simulations prove that the Hopf bifurcation is subcritical – the periodic orbit is
unstable and the points are attracted by the strange attractor.

The chaotic solution (figure 2.2), calculated when σ = 10, β = 8
3
and ρ = 28,
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was described in Lorenz´s paper. This solution has some special features which are
common to all chaotic solutions. The trajectory is non-periodic, it wraps around the
attractor, first on one side, then on the other and this wrapping continues forever.

The general form of an attractor does not depend on the initial conditions and
the used numerical method. Any method gives us the same picture, the difference
is in the exact sequence of loops which the trajectory passes through. However this
sequence of loops is extremely sensitive to the change of initial conditions or the
integrating routine. This sensitivity makes impossible any long time prediction of
the chaotic trajectory.

2.2 Chaos generator

The next interesting example of a dynamical system with chaotic behaviour is a
nonlinear circuit designed at the Technische Universität in Kaiserslautern [17]. Its
simplified scheme is shown in the figure 2.3. This circuit demonstrates the classical
route to chaos. The behaviour of the system is very simple at the beginning, then
the so called period doubling occurs and the sequence of period doublings tends to
the chaos.

Figure 2.3: Chaos generator.

The circuit consists of two capacitors Cm, C, resistors Rm, R, an inductor L,

an amplifier and a squaring module. The variable resistor Rm serves as a control
parameter.

We apply the second Kirchhoff law to the loop RCCm to gain the equation

Q

C
+R(Q̇ + Q̇m)− v2(U − U0)

2 = 0, (2.2)
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where Q and Qm are the charges at C,Cm and U is the voltage at the capacitor Cm.

Similarly for the loop CmCLRm, we obtain

Q

C
− LQ̈m − RmQ̇m − Qm

Cm
= 0. (2.3)

Using a long series of substitutions (the details can be found in [17]), the equations
(2.2), (2.3) can be rewritten as a system of three differential equations

ẋ = y,

ẏ = z, (2.4)

ż = µx(1− x)− y − βz.

The constants β, µ depend on the values of circuit components in a complicated
way. The system (2.4) has two stationary points x1 = 0 and x2 = 1. They correspond
to U1 =

1
2v2

(1 + 2v2U0 +
√
1 + 4v2U0) and U2 =

1
2v2

(1 + 2v2U0 −
√
1 + 4v2U0). The

stationary point x1 is unstable. The stationary point x2 = 1 is stable for β > µ. The
behaviour in the neighbourhood of this stationary point will be studied in a more
detail using the numerical simulations.

The values of circuit components used in the numerical simulations are the fol-
lowing

v = 1.2 V −1/2 R = 3300Ω C = Cm = 47× 10−9 F L = 0.1H U0 = 4 V.

The stability condition β > µ tends to quadratic equation for Rm with only one
positive root. Hence for large values of Rm the voltage U remains at U2 = 2.6447V .
When Rm decreases its critical value Rmcrit = 770.6113 Ω, a Hopf bifurcation occurs,
i.e. the limit cycle appears. For even smaller values of Rm, the system becomes
chaotic.

The system is damped down for Rm = 1000 Ω and all points from a certain
neighbourhood of the stationary point x2 tend to it. This situation is well illustrated
in the figure 2.4 for the initial condition (1.78; 0; 0).

The time evolution of the point (1.78; 0; 0) is quite different when Rm = 500 Ω
as figure 2.5 shows. The stationary point x2 repels the nearby points and they are
attracted by a limit cycle. This behaviour is not much surprising from a physical
point of view. The resistor is not able to damp the signal down anymore so the
signal can begin to oscillate. The variables U, U̇ (scaled x, y) oscillate with the same
frequency so the phase trajectory is an ellipse.

For even lower values of the resistance, the period doubling occurs, i.e., the signal
oscillates with several different amplitudes. We can see a period-2 behaviour for
Rm = 150 Ω and period-4 behaviour for Rm = 130 Ω in the figure 2.6.

For even lower resistance, the behaviour of the circuit becomes chaotic (figure
2.7).
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Figure 2.4: Stable stationary point. Left: phase picture of scaled U and U̇ ; right:
time evolution of the scaled voltage.
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Figure 2.5: Limit cycle. Left: phase picture of scaled U and U̇ ; right: time evolution
of the scaled voltage.

2.3 Finite time shadowing theorem

In this section, we demonstrate that the pseudoorbits of the autonomous system

ẋ = f(x), f : Rn → R
n is C2 vector field, (2.5)

are shadowed for long time by true solutions.
We introduce some notation before we state the shadowing theorem. We use the

Euclidean norm for vectors and associated operator norm for matrices.
Let {yk}Nk=0 be a δ pseudoorbit of (2.5) with associated times {hk}N−1

k=0 . We first
construct three sequences of matrices.

We find such a sequence {Yk}N−1
k=0 (Yk ∈ Rn,n) that

‖Yk −Dφhk(yk)‖ ≤ δ for k = 0, . . . , N − 1.
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Figure 2.6: Period doubling. Left: period-2; right: period-4.
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Figure 2.7: Chaotic behaviour - Rm = 100Ω. Left: phase picture of scaled U and
U̇ ; right: time evolution of the scaled voltage.

Then we define a sequence {Sk}Nk=0 (Sk ∈ Rn,n−1) of matrices such that the
columns of Sk form the orthonormal basis of f(yk)

⊥. Therefore Sk have to satisfy
the following conditions

‖ST
k f(yk)‖ ≤ δ1 ‖ST

k Sk − I‖ ≤ δ1

for some small positive δ1. The value of δ1 depends on the machine epsilon. This
dependence will be discussed in the next section.

Next we compute a sequence {Ak}N−1
k=0 (Ak ∈ Rn−1,n−1), where Ak is Yk restricted

to f(yk)
⊥ and projected to f(yk+1)

⊥, i.e.

‖Ak − ST
k+1YkSk‖ ≤ δ1.

Finally we introduce a linear operator L : (Rn−1)N+1 → (Rn−1)N defined for
u = {uk}Nk=0 by

(Lu)k = uk+1 −Akuk for k = 0, . . . , N − 1.
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Now we define various constants on the convex set U ⊂ Rn containing the δ

pseudoorbit in its interior.

M0 = sup
x∈U

‖f(x)‖, M1 = sup
x∈U

‖Df(x)‖, M2 = sup
x∈U

‖D2f(x)‖

∆ = inf
0≤k≤N

‖f(yk)‖, M 0 = sup
0≤k≤N

‖f(yk)‖, M 1 = sup
0≤k≤N

‖Df(yk)‖

Θ = sup
0≤k≤N−1

‖Yk‖, hmin = inf
0≤k≤N−1

hk, hmax = sup
0≤k≤N−1

hk.

We choose such positive ε0 ≤ hmin that for all k = 0, . . . , N−1 if ‖x−φt(yk)‖ ≤ ε0
then the solution φt(x) exists and remains in U for 0 ≤ t ≤ hk + ε0.

Theorem 11 (Finite time shadowing theorem). [5] Let {yk}Nk=0 be a δ pseudoorbit
of (2.5) with associated times {hk}N−1

k=0 , let

C = max{∆−1(θ‖L−1‖(1 + δ1) + 1), ‖L−1‖
√

1 + δ1},

δ̄ =
C((M1 +

√
1 + δ1)δ + 3δ1(

√
1 + δ1 +∆−1))

1− δ1(1 + ∆−2)

and let

M =(M 0 +M1νδ)(M 1 +M2νδ) + 2(M1 +M2νδ)
√

1 + δ1e
M1(hmax+ε0)+

M2(hmax + ε0)(1 + δ1)e
2M1(hmax+ε0),

where
ν = 2C(eM1(hmax+ε0)

√

1 + δ1 +M0)(1− δ̄)−1 + 1.

If δ, δ1 and ε0 satisfy the inequalities

1. δ1(1 + ∆−2) < 1

2. δ̄ < 1

3. 2C(1− δ̄)−1
√
1 + δ1δ < ε0

4. 2MC2(1− δ̄)−2δ ≤ 1

then the pseudoorbit {yk}Nk=0 is ε shadowed by a true orbit {xk}Nk=0 with the shad-
owing distance ε ≤ 2C(1− δ̄)−1

√
1 + δ1δ.

We now sketch the proof of the previous theorem in order to know why we com-
pute the sequences of the matrices {Yk}N−1

k=0 , {Sk}Nk=0 and {Ak}N−1
k=0 .

For a given δ pseudoorbit ({yk}Nk=0, {hk}N−1
k=0 ), we would like to find its shadow

({xk}Nk=0, {tk}N−1
k=0 ). To do this, we construct a hyperplane Hk through yk, that is

approximately normal to f(yk) and then we show that xk is contained in Hk (figure
2.8).
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Figure 2.8: Hyperplanes [5].

We first identify Hk with Rn−1 via the map z 7→ yk + Skz, z ∈ Rn−1. Then the
problem of finding a shadow transforms to the problem of finding a sequence of
times {tk}N−1

k=0 and a sequence of points {zk}Nk=0 in Rn−1 such that

yk+1 + Sk+1zk+1 = φtk(yk + Skzk), k = 0, . . . , N − 1.

We introduce two Banach spaces: X = (Rn−1)N+1 × RN with norm

‖({wk}Nk=0, {sk}N−1
k=0 )‖ = max{ max

0≤k≤N
‖wk‖, max

0≤k≤N−1
|sk|}

and Y = (Rn)N with norm

‖{gk}N−1
k=0 ‖ = max

0≤k≤N−1
‖gk‖.

Let O = O◦ ⊂ X be the set containing the points v = ({wk}Nk=0, {sk}N−1
k=0 ) with

|sk − hk| < ε0 and ‖wk‖ < ε0√
1+δ1

. We define a function G : O → Y by

[G(v)]k = yk+1 + Sk+1wk+1 − φsk(yk + Skwk), k = 0, . . . , N − 1.

The theorem 11 will be proved if we find a root ṽ = ({zk}Nk=0, {tk}N−1
k=0 ) of the

equation
G(ṽ) = 0 (2.6)

in the closed ball of radius ε about v0 = ({~0}Nk=0, {hk}N−1
k=0 ). The equation is solvable

under the conditions of the following lemma.

Lemma 3. Let X, Y be finite-dimensional vector spaces and let G : O = O◦ ⊂
X → Y be C2 function satisfying the following properties.

1. The derivative DG(v0) at v0 ∈ O has a right inverse (DG(v0))
−1
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2. B(v0, ε) ⊂ O, where ε = 2‖(DG(v0))
−1‖‖DG(v0)‖.

3. 2M‖(DG(v0))
−1‖2‖G(v0)‖ ≤ 1, where M = sup{‖D2G(v)‖ : ‖v− v0‖ ≤ ε}.

Then there is a solution ṽ of the equation

G(ṽ) = 0,

satisfying ‖ṽ− v0‖ ≤ ε.

The lemma follows from the Brouwer fixed point theorem applied to the map
H(v) = v0 − (DG(v0))

−1(G(v)−DG(v0)(v− v0)).
The most difficult part in the verification of the lemma 3 assumptions is the

construction of the right inverse of DG(v0) and the estimation of the bound of its
norm.

Let v = ({wk}Nk=0, {sk}N−1
k=0 ) ∈ X. Then the derivative of G at v0 acts as

[DG(v0)v]k = −skf(φ
hk(yk)) + Sk+1wk+1 −Dφhk(yk)Skwk.

We approximate DG(v0) by the linear operator T : X → Y defined by

[Tv]k = −skf(yk+1) + Sk+1wk+1 −Dφhk(yk)Skwk.

It is a standard result of functional analysis that because

‖T−1DG(v0)− I‖ ≤ ‖T−1‖‖DG(v0)− T‖ ≤ ‖T−1‖ sup
0≤k≤N−1

‖f(φhk(yk))− f(yk+1)‖

≤ M1‖T−1‖ sup
0≤k≤N−1

‖φhk(yk)− yk+1‖ ≤ CM1δ < 1,

the operator T−1DG(v0) is invertible and

(DG(v0))
−1 = (I − T−1(T −DG(v0)))

−1T−1. (2.7)

In order to find a right inverse of T we must solve the equations

(Tu)k = gk

for a given g = {gk}N−1
k=0 , i.e.,

−skf(yk+1) + Sk+1wk+1 −Dφhk(yk)Skwk = gk. (2.8)

We multiply the equation (2.8) first by f(yk+1)
T to gain

−sk‖f(yk+1)‖2 − f(yk+1)
TDφhk(yk+1)Skwk = f(yk+1)

Tgk

and then by ST
k+1 to obtain

wk+1 − Akwk = ST
k+1gk.
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Let us denote as g the sequence g = {ST
k+1gk}N−1

k=0 , then

wk = (L−1g)k

and

sk = − f(yk+1)
T

‖f(yk+1)‖
(Dφhk(yk+1)Sk(L

−1g)k + gk).

It follows that
‖T−1‖ = max(‖L−1‖,∆−1(Θ‖L−1‖+ 1)).

Of course, the situation is not so simple in practice, because we do not know the
matrices Dφhk(yk), we just know their approximations Yk. Also the matrices Sk are
only floating point approximations of orthogonal matrices. This is the reason, why
δ1 appears in the assumptions of the theorem 11.

As a consequence of the relation (2.7)

‖(DG(v0))
−1‖ ≤ ‖T−1‖(1− ‖T−1‖M1δ)

−1.

The verification of the other lemma 3 assumptions is quite straightforward.
We should mention some practical remarks to the theorem 11. The vector valued

function f and its derivatives Df, D2f must be bounded over the entire convex
set U containing the δ pseudoorbit, therefore this theorem is not applicable to the
dynamical systems which may contain poles in U. Moreover computing the bound
on the second derivative of f can be very expensive.

The theorem 3 is directly applicable to differential equations, the map g is the
flow φ of the system in that case. It gives quite satisfactory shadowing times and
shadowing distances, but computing the bounds on the first and second derivatives
of φ is very difficult. Therefore the need of the determination of the bounds of Df

and D2f (however difficult to estimate) is still large improvement. Also the theorem
3 doubles the numerical accuracy, i.e., we need δ = 10−20 to ensure the existence
of the shadow with a shadowing distance ε = 10−10. As we will see, the numerical
accuracy required by the theorem 11 is not so high.

2.4 Finite precision computations

All numerical computations are affected by roundoff errors – a computer does not
work with all real numbers, but only with their subset. This subset is denoted as
F and its elements are called the floating point numbers. The term is derived from
the fact that there is no fixed number of digits before and after the decimal point,
i.e., the decimal point can float.

A floating point number is the number of the form

f = ±.d1d2 . . . dt × βe, d1 6= 0, 0 ≤ di < β.

It is characterized by 4 integers the base β, the precision t and the exponent range
[L, U ]. The typical values for (β, t, L, U) are (2, 16,−64, 64).
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In order to model the effect of rounding errors for a numerical algorithm, we
define the operator fl : G ⊂ R → F, where G is the interval determined by the
values L and U, as the operator which rounds the number to the nearest floating
point number. It can be shown that

fl(x) = x(1 + ε), |ε| ≤ 1

2
β1−t. (2.9)

We assume that the equation 2.9 holds also when for x = x1 ⋄ x2, where ⋄ denotes
one of the four basic arithmetic operations between x1 and x2.

Example 8. We try to estimate the error of the extended product x1x2 . . . xn. Let
us denote pn = fl(x1x2 . . . xn). Then pi, i ∈ n̂, are given by the reccurence

p1 = x1

pk = fl(pk−1xk) = pk−1xk(1 + εk),

where |εk| ≤ 2−t for binary computations.
Therefore

pn = x1x2 . . . xn(1 + ε2)(1 + ε3) . . . (1 + εn),

which implies that
fl(x1x2 . . . xn) = x1x2 . . . xnK,

where
(1− 2−t)n−1 ≤ K ≤ (1 + 2−t)n−1.

Similarly, we can find error bounds for all numerical algorithms. For more detail
see [28], [29].

2.5 Implementation of the theorem

We use the ode45 MATLAB solver for all our numerical integrations of differential
equations. This function implements Runge-Kutta method with a variable time
step.

To determine M0, M1 and M2, we must choose some bounded convex set U,

in which the δ pseudoorbit is contained. It can happen that the pseudoorbit will
leave the set U during the computation and we are therefore forced to enlarge U

and determine constants M0, M1 and M2 again. However, if we choose U, which
is forward invariant under the flow φt of the system (2.5), we can compute these
constants once and for all.

We must determine such an ε0 ≤ hmin that the solution φt(x) is defined and lies
in U for all t ∈ (0, hk + ε0). For forward invariant set U this is true if ε0 satisfies the
condition

ε0 < dist(yk, ∂U). (2.10)
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The flow φt(x) is defined by the equation

d

dt
φt(x) = f(φt(x)).

We assume that the function f is C2 and the flow is as smooth as f, therefore the
matrix Dφt(x) must satisfy the equation

d

dt
Dφt(x) = Df(φt(x))Dφt(x).

So if we are looking for the matrix Yk, we must solve the enlarged set of differential
equations

ẋ = f(x), Ẏ = Df(x)Y (2.11)

with initial conditions
x(0) = yk, Y (0) = I.

After this computation, we can determine the values of the constants ∆, M 0, M 1

and Θ.

The sequence of n×(n−1) matrices {Sk}N−1
k=0 is computed recursively. We choose

S0 in such a way that the matrix

(f(y0)

‖y0‖
∣

∣

∣
S0

)

is orthogonal.
In the next step, we use the fact that every regular matrix A ∈ Rn,n can be

decomposed as a product A = QR, where Q is an orthogonal matrix and R is an
upper triangular matrix. This decomposition is unique if R has positive diagonal
elements.

In order to obtain Sk+1 and Ak we compute the QR factorization of the matrix

(

f(yk+1)

‖f(yk+1)‖
∣

∣

∣
YkSk

)

=

(

f(yk+1)

‖f(yk+1)‖
∣

∣

∣
Sk+1

)

Rk.

The matrix Ak is (n− 1)× (n− 1) submatrix placed in the right low corner of the
matrix Rk.

The last problem is to estimate the norm ‖L−1‖. To find a right inverse of L, we
have to solve the equation

uk+1 = Akuk + gk, (2.12)

i.e., to find u = {uk}Nk=0 for given g = {gk}Nk=0.

We will deal only with three-dimensional dynamical systems, therefore the ma-
trices Ak are two-dimensional and we may write

uk =

(

vk

wk

)

, Ak =

(

ak bk
0 ck

)

.
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The equation (2.12) is in the components

vk+1 = akvk + bkwk + g
(1)
k , (2.13)

wk+1 = ckwk + g
(2)
k . (2.14)

We construct L−1 by solving (2.14) forwards starting with w0 = 0 and then
solving (2.13) backwards starting with vN = 0. The reasons for such a choice are
explained in full detail in [20].

Now we define new variables ṽk, w̃k, k = 0, . . . , N, by the recursions

w̃0 = 0, w̃k+1 = |ck|w̃k + 1, k = 0, . . . , N − 1

and
ṽN = 0, ṽk = |a−1

k |(ṽk+1 + |bk|w̃k), k = N − 1, . . . , 0.

We see that |wk| ≤ w̃k and |vk| ≤ ṽk for g = {gk}Nk=0 such that ‖g‖ ≤ 1. Therefore

‖L−1‖ = max
0≤k≤N

√

v2k + w2
k ≤ max

0≤k≤N

√

ṽ2k + w̃2
k. (2.15)

2.5.1 Lorenz equations

Lorenz chose the values of the parameters σ = 10, ρ = 28 and β = 8
3
, so we will

solve the equations

ẋ = −10x+ 10y,

ẏ = 28x− y − xz, (2.16)

ż = xy − 8

3
z.

We will compute only the δ pseudoorbits starting in U = {(x, y, z)|28x2 + 8
3
y2 +

8
3
(z − 56)2 ≤ 33450}, so we can now determine the constants M0, M1 and M2.

M0 ≤ 5519, M1 ≤ 161, M2 = 2.

We computed many pseudoorbits starting in U and the values of the constants
presented in the theorem 11 were very similar. We choose the δ pseudoorbit pictured
in the figure 2.2 as a representative sample and write the values of these constants
only for it.

We chose ε = 0.0001. Because our solution lies in the set 〈−20; 20〉× 〈−30; 30〉×
〈0; 50〉, the condition ε0 < dist(yk, ∂U) is certainly satisfied.

The values of the constants presented in the theorem 11 computed along the δ

pseudoorbit are
M0 ≤ 438, M 1 ≤ 41, ∆ ≥ 6,

θ ≤ 1.43, hmin = hmax = 0.01.
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The most time-consuming part of the computation was the estimation that the
norm of L−1 satisfy the inequality ‖L−1‖ ≤ 5326. MATLAB computes with δ =
2.22× 10−16. Considerations stated in [28] allow us to estimate that δ1 ≤ 5× 10−14.

The constant δ ≤ 3.5 × 10−13. It gives us C ≤ 5327, δ = 3.1 × 10−7, ν ≤ 5.9 × 107

and M ≤ 1.84× 104.
The assumptions

1. δ1(1 + ∆−2) < 5.2× 10−14 < 1

2. δ̄ ≤ 3.1× 10−7 < 1

3. 2C(1− δ̄)−1
√
1 + δ1δ ≤ 3.8× 10−9 < 0.0001

4. 2MC2(1− δ̄)−2δ ≤ 0.37 ≤ 1

are satisfied. Therefore our chaotic pseudoorbit is shadowed by a true orbit with
the shadowing distance ε ≤ 3.8× 10−9.

2.5.2 Chaos generator

The values of circuit components used for the numerical simulations are the following

v = 1.2 V −1/2, R = 3300Ω, Rm = 100Ω, C = Cm = 47× 10−9 F,

L = 0.1H, U0 = 4 V,

so we will solve the set of differential equations

ẋ = y

ẏ = z (2.17)

ż = 0.7491401416x(1− x)− y − 0.3583243186z.

We choose the set U = 〈−0.2; 2〉 × 〈−1; 0.8〉 × 〈−0.8; 0.8〉, which contains the
chaotic trajectory (figure 2.7). Then

M0 ≤ 2.83, M1 ≤ 2.86 and M2 = µ ≤ 1.5.

We computed the pseudo trajectory starting at point (1; 0; 0) of the length t =
106s. The first one hundred seconds of its time evolution are pictured in the figure
2.7. The values of the constants M 0 and M 1 computed along the δ pseudoorbit are

M 0 ≤ 2.83, M 1 ≤ 2.86.

The values of these constants are smaller than in the previous case, so it could seem
that the chaotic pseudo trajectory is shadowable. However there is still one constant
left – ∆, and unfortunately its zero value does not allow to use the theorem 11 for
the proof of the existence of the shadow for our chaotic trajectory. The constant
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∆ is equal to zero, because the set U contains unstable stationary point and the
pseudo trajectory gets arbitrarily close to it during the time evolution.

We chose the simple set of differential equations (2.17) to show the limitations of
the theorem 11. The verification of the assumptions of this theorem is not difficult
in practice, it gives us very long shadowing times and the shadowing distance is
more than sufficient, but it is not applicable for the sets containing the stationary
points. Let us notice that in the definition of hyperbolic set we have also assumed
that the hyperbolic set is without stationary points. The shadowing theorem for the
sets with stationary points was proved by Pilyugin [21].

We should note that the impossibility to use the theorem 11 does not mean that
the trajectory is unshadowable. The chaotic circuit described above was set up in
our school laboratory and the picture in the oscilloscope screen really corresponds
to the picture gained by the numerical simulation.

2.6 Map method

We have spent plenty of time looking for shadows for the δ pseudoorbits {yk}Nk=0

of diffeomorphisms. We can imagine the δ pseudoorbit ({yk}Nk=0, {hk}N−1
k=0 ) of the

differential equation ẋ = f(x) as the δ pseudoorbit {yk}Nk=0 of the sequence of
diffeomorphisms {φhk}N−1

k=0 ,

‖yk+1 − φhk(yk)‖ < δ, k = 0, . . . , N − 1,

where φhk is the ODE solver with the time step hk. Thus it is natural to try to
apply the map method (theorem 5) to the δ pseudoorbit {yk}Nk=0 of the sequence of
diffeomorphisms {φhk}N−1

k=0 . The theorem 5 can be used directly when the time step
hk is fixed for all steps of the computation. Mostly the times hk are varied so we
must generalize the theorem 5 in order to be applicable to a sequence of maps.

The generalization to the sequence of diffeomorphisms {φhk}N−1
k=0 is straightfor-

ward. We define the linear operator L : (Rn)N+1 → (Rn)N u = {uk}Nk=0 by the
relation

(Lu)k = uk+1 −Dφhk(yk)uk, k = 0, . . . , N − 1

and the constant M will be

M = sup{‖D2φhk(x)‖, ‖x− yk‖ ≤ ǫ, k = 0, . . . , N}.

To use the theorem 5 we must determine the norm ‖L−1‖. We know only the
approximations Yk of the matrices Dφhk(yk)

‖Yk −Dφhk(yk)‖ < δ. (2.18)

These matrices define the linear operator L̃ : (Rn)N+1 → (Rn)N for u = {uk}Nk=0 by

(L̃u)k = uk+1 − Ykuk, k = 0, . . . , N − 1.
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Because ‖L− L̃‖ < δ, the following inequality holds

‖L−1‖ < (1− δ‖L̃−1‖)−1‖L̃−1‖.

To find the right inverse of L̃ means to solve the equation L̃u = g for given
g = {gk}N−1

k=0 , i.e., the difference equation

uk+1 = Ykuk + gk k = 0, . . . , N − 1. (2.19)

Let us take the orthogonal matrix Q0 = I and compute the following QR factor-
izations

YkQk = Qk+1Rk, k = 0, . . . , N − 1.

Now we can introduce new variables ũk : uk = Qkũk. The equation (2.19) trans-
forms into

ũk+1 = Rkũk +QT
k+1gk, k = 0, . . . , N − 1.

We define the linear operator T : (Rn)N+1 → (Rn)N by:

(Tu)k = uk+1 − Rkuk for u = {uk}Nk=0.

(L̃−1g)k = Qkũk = QkT
−1QT

k+1gk. (2.20)

So the inverse T−1 of T defines the inverse L̃−1.

Unfortunately, the situation is not so simple, because the matrices Rk and Qk

are only the floating point approximations of the orthogonal and upper triangular
matrices, respectively, i.e.

‖QT
kQk − I‖ < δ1, ‖Rk −QT

k+1YkQk‖ < δ1.

For this reason we define another linear operator V : (Rn)N+1 → (Rn)N by

(V u)k = QT
k+1Qk+1uk+1 −QT

k+1YkQkuk.

Therefore ‖L̃−1‖ < (1 + δ1)‖V −1‖. Because ‖V − T‖ < 2δ1, the norm ‖V −1‖
satisfies the inequality

‖V −1‖ < (1− 2δ1‖T−1‖)−1‖T−1‖.

The summary of these considerations leads us to the following theorem.

Theorem 12. [5] Let {yk}Nk=0 be a δ pseudoorbit of (2.5) with associated times
{hk}N−1

k=0 , let
C = (1− (δ + δδ1 + 2δ1)‖T−1‖)−1(1 + δ1)‖T−1‖

and
M = M2hmaxe

2M1hmax.

If the following inequalities are satisfied
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1. δ1 < 1,

2. (δ + δδ1 + 2δ1)‖T−1‖ < 1,

3. 2Cδ < ε0,

4. 2MC2δ ≤ 1,

then there is a true orbit {xk}Nk=0 such that xk+1 = φhk(xk) for k = 0, . . . , N − 1
and {xk}Nk=0 ε shadows {yk}Nk=0 within ε ≤ 2Cδ.

We should note that the previous theorem provides only the lower bounds for
the shadowing time and the shadowing distance because in contrast to the theorem
11 the time is not allowed to fluctuate and as we have seen (example 7) the time
rescaling is necessary for the shadowing in the continuous case. Coomes et al. have
found shadows for pseudoorbits of the Lorenz equations lasting only 10 s, while
shadowing time, when they used theorem 11, was 105 s.
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Chapter 3

Unshadowability

3.1 Glitches

We begin this section with the simple example.

Example 9. Consider one-dimensional map f(x) = 1−2x2. The interval I = 〈−1, 1〉
is a compact invariant set of f. It is not a hyperbolic set of f , because Df(−1

4
) = 1,

Df(1
4
) = −1.

Let us compute a δ pseudoorbit beginning at point x0 = 0. If get the inaccurate
value x1 = 1+ǫ, 0 < ǫ < δ in the following step and then our computation continues
without any error

x2 = f(x1) = −1 − 4ǫ− 2ǫ2 < −1, . . . .

The δ pseudoorbit diverges to −∞. But I is an invariant set of f so all true orbits
beginning in I stay in this interval for all future evolution and therefore there is no
shadow for our δ pseudoorbit.

The point x = −1 is a hyperbolic fixed point of f but Eu = R and therefore it
repels all nearby orbits.

Previous example illustrates that even for very simple dynamical systems there
exists points in the phase space at which all true trajectories diverge from the com-
puter generated one. These points are called glitches.

One type of glitches has the same cause as the glitch in example 9. There is a
fixed point x, which has both stable and unstable manifolds nontrivial. The rounding
error pushes the trajectory across the stable manifold, while true trajectories move
to the stable manifold. These manifolds separate exponentially during the time
evolution so no shadow can exist (figure 3.1).

The other type occurs when the system has a Lyapunov exponent which fluctuates
about zero. The theory of Lyapunov exponents is outlined in the Appendix B.

The Lyapunov exponent of a trajectory fluctuates about zero if for any positive
T the time-T Lyapunov exponent is arbitrarily long positive and arbitrarily long
negative along the trajectory.
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Figure 3.1: Glitch [6].

The way, in which a fluctuating Lyapunov exponent causes the unshadowability
of trajectories, was theoretically described by Abraham and Smale [1].

3.2 Shadowing test

There is no other way how to find out whether the pseudoorbit is shadowable or not
than to make the computer assisted proof. However as we have seen the shadowing
methods are very expensive both for time and memory. Dawson et al. [6] introduced
a practical algorithm for a diagnostic of the shadowability.

They introduced so called continuously shadowable pseudo trajectory. It is such a
pseudo trajectory that can be continuously deformed to a true trajectory. The errors
at each point must decrease monotically to zero during the deformation. Although
it seems that the continuous shadowability is stronger property than shadowabil-
ity, it can be shown that the pseudo trajectories, whose shadowability is ensured
by the Anosov-Bowen theorems and also by the theorem 3, are also continuously
shadowable.

Dawson et al. defined the so called brittleness as a constant of proportionality
between the distance between the initial point and the point, in which the δ pseudo
trajectory is deformed into a true one, and the δ. Brittleness of a pseudo trajectory
is a measure of its shadowability. It is necessary that brittleness multiplied by the
error δ is smaller than the size of the attractor for shadowing.

For example, we computed pseudoorbits with noise 10−13 in the neighbourhood
of the attractor of the length of the order 10. So if the brittleness will be greater
than 1014, then we cannot expect the existence of a shadow.

It can be shown (and it is not surprising) that even pseudoorbits of infinite lengths
in hyperbolic systems have finite brittleness. Although the value of the brittleness is
finite, it can be very large, which requires very small δ for shadowing. It can happen
that the δ will be smaller than the machine epsilon of currently existing computers.
This is the same problem which arises from the original Anosov-Bowen shadowing
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theorems. For non-hyperbolic systems, the brittleness increases with the length of
the pseudoorbit.

To determine the distance at which the pseudoorbit is deformed to a true one
(and thus to determine the brittleness) we need to know the true trajectory. This
knowledge is usually not available, so we cannot determine the exact value of the
brittleness in the most cases. But we can gain a first-order approximation using the
Jacobian matrices evaluated at points of the pseudoorbit.

Let δi be the vector of errors at step i (δi ≤ δ) and ci be the correction term to
the orbit {xi}Ni=0. Then

f(xi + ci) = xi+1 + ci+1. (3.1)

Let us assume that the correction term can be decomposed as ci = si + ui, where
si, resp. ui are stable, resp. unstable directions at the point xi, i.e., the system is
nearly hyperbolic. It follows

δi +Df(xi)ci = xi+1 + ci+1

from the equation (3.1).
To achieve numerical stability, we must solve the recursion relation backwards

along the unstable direction

ui = U((Df(xi))
−1ui+1 − δi), αN = 0 (3.2)

and forwards along the stable direction

si+1 = S(Df(xi)si + δi), β0 = 0. (3.3)

S is the projection onto the stable subspace, while U to the unstable one.
Then the brittleness is the maximum of the ratios of the norm of correction term

ci and to the norm of δi.
Dawson et al. computed the brittleness for the double rotor map [10]. In contrast

to the system studied by Abraham and Smale, the double rotor is a real physical
system with a chaotic behaviour whose one Lyapunov exponent fluctuates about
zero. The test brittleness is greater than 1040 for this system, when we want to find
a shadow consisted of N = 104 points. For N = 105, the brittleness is even 10100.
This huge number suggest that this system is unshadowable.
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Conclusion and future work

Many fundamental physical laws are described by the differential equations. In
general, it is not possible to find a closed form solutions and we are obliged to
rely on numerical simulations. All computers work with finite precision, numerical
errors at each step can accumulate, so there is a question to what the pseudoorbits
actually correspond. The shadow is a true trajectory, which is sufficiently close to
the computer generated one. We have tried to find the conditions under which are
the pseudoorbits shadowable.

First we have introduced the idea of shadowing in the discrete dynamical systems.
The shadowing is the property of hyperbolic sets, therefore we have dealt with
hyperbolic systems in order to understand why the hyperbolicity is the key property.
We have presented three shadowing theorems. We have tried to confront their
advantages and disadvantages from the practical usage point of view.

Then we have defined a hyperbolic set for continuous dynamical systems. The
fundamental difference between the discrete and continuous case is that the latter
has the error both in space and time, therefore the shadowing definition in the
continuous case has to allow the time rescaling.

We have generalized the shadowing method developed for maps to the differential
equations. The time is not allowed to fluctuate in this method, therefore it gives us
only lower bounds for shadowing times. We have presented the shadowing theorem
which allows time rescaling, and we have used it to prove the existence of a shadow
for a chaotic solution of the Lorenz equations. Finally we have shown an example
of an unshadowable trajectory.

The aim of this work was to understand the idea of shadowing in the continuous
case and acquaint ourselves with different shadowing methods. These are essential
for the study of the unshadowability, which will be subject of our further research.
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Appendix A

Lyapunov functions

There are three types of the solutions of the differential equation ẋ = f(x) passing
though the point x0

• stationary solutions x0 = φt(x0) ∀t, where f(x0) = 0,

• periodic solutions φt(x0) with period T for which there exists such T > 0 that
φt(x0) = φt+T (x0) and φt1(x0) 6= φt2(x0) for |t1 − t2| < T,

• the solutions, where φt1(x0) = φt2(x0) for t1 6= t2.

The simplest case is the stationary point x0.

Definition 18. A point x0 is Lyapunov stable iff

(∀ǫ > 0)(∃δ > 0)(∀y0 ∈ R
n)(|x0 − y0| < δ ⇒ |φt(x0)− φt(y0)| < ǫ ∀t ≥ 0).

It means that all points from a certain neighbourhood of x0 remain in its neigh-
bourhood during the time evolution. Sometimes x0 has even stronger property – it
attracts all nearby points.

Definition 19. A point x0 is quasi-asymptotically stable iff

(∃δ > 0)(∀y0 ∈ R
n)(|x0 − y0| < δ ⇒ |φt(x0)− φt(y0)| → 0 as t → ∞).

There is no connection between Lyapunov and quasi-asymptotic stability. There
are some trajectories that are quasi-asymptotically stable, but that are not Lyapunov
stable and vice versa [25]. Therefore the asymptotic stability is defined.

Definition 20. A point x0 is asymptotically stable if it is both Lyapunov and quasi-
asymptotically stable.

In order to determine if the stationary point is stable, or not without solving the
original differential equation ẋ = f(x) we introduce so called Lyapunov function.
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Definition 21. Suppose that the origin x0 = 0 is a stationary point for the differ-
ential equation ẋ = f(x). Let U be an open neighbourhood of x0 and V : U → R

be a continously differentiable function. V is called a Lyapunov function on U if

1. V (x0) = 0 and V (x) > 0 for all x ∈ U \ {x0}

2. V̇ (x0) ≤ 0 for all x ∈ U.

The following two theorems connects the Lyapunov function and the stability of
the origin.

Theorem 13 (Lyapunov´s first stability theorem). Suppose that a Lyapunov func-
tion can be defined on a neighbourhood of the origin, x0 = 0, which is a stationary
point of the differential equation ẋ = f(x). Then the origin is Lyapunov stable.

Theorem 14 (Lyapunov´s second stability theorem). Suppose x0 = 0 is a station-
ary point for ẋ = f(x) and let V be a Lyapunov function on a neighbourhood U of
x0 = 0. If V̇ (x) < 0 for all x ∈ U \ {x0}, then x0 is asymptotically stable.

Example 10. Consider the system

ẋ = −y,

ẏ = x. (A.1)

The origin is a stationary point. Let us try a standard guess V (x, y) = x2 + y2 with

V̇ (x, y) =
∂V

∂x
ẋ+

∂V

∂y
ẏ = 2xy − 2xy = 0.

Therefore V is really a Lyapunov function and the origin is Lyapunov stable, but
it is not asymptotically. The equations (A.1) are simply solvable, the solutions are
concentric circles about the origin which confirms its Lyapunov stability.

The theory of Lyapunov functions is very elegant, but unfortunatelly there is
no general rule how to find them and sometimes the problem of finding Lyapunov
function can be very difficult.

The theorem 14 ensures that all trajectories from a certain neighborhood of the
origin tend to it. For many dynamical systems there is no stable stationary point,
but all trajectories are attracted by some bounded set in the phase space. We can
define Lyapunov function V also for the nontrivial set and use it in order to prove
that this set is attracting.

Theorem 15. Let U ⊂ Rn be a simply connected, compact domain and V : Rn → R

a continuously differentiable function. Suppose that for each k > 0, Vk = {x ∈
Rn|V (x) < k} is a simply connected, bounded domain with Vk ⊂ Vl if k < l. If there
exists κ > 0 such that U ⊂ Vκ and δ > 0 such that V̇ (x) ≤ −δ < 0 for all x ∈ Rn \U
then for all x there exists t(x) ≥ 0 such that φt(x) ∈ Vκ for all t > t(x).
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Appendix B

Lyapunov exponents

Consider the dynamical system governed by the differential equation

ẋ = f(x, µ), (B.1)

where µ is a set of parameters. The behaviour of the system can depend significantly
on the values of the parameters as we have seen in the section 2.5.2. We would like
to have some measure of the degree of chaos in order to see how the behaviour
changes with the change of the parameters. We introduce Lyapunov exponents as
a measure of chaos.

We consider one-dimensional phase space for the simplicity. Let us look at two
trajectories φt(x1), φ

t(x2) starting close to each other. Their distance s(t) = φt(x1)−
φt(x2) evolves under the equation

ds

dt
=

d

dt
φt(x1)−

d

dt
φt(x2) = f(x1, µ)− f(x2, µ).

We assumed that x1 is close to x2, therefore we can expand f(x1) by a Taylor series

f(x1) = f(x2) +
df

dx
(x2)(x1 − x2).

Thus
ds

dt
=

df

dx
(x2)(x1 − x2). (B.2)

We assume that the convergence or the divergence of close trajectories is expo-
nential

s(t) = s0e
λt ⇒ ṡ = λs. (B.3)

From equations (B.2) and (B.3), it follows that

λ =
df

dx
(x2).

The λ is called Lyapunov exponent for the dynamical system ẋ = f(x, µ). We see
that close trajectories will diverge from each other when λ > 0.
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In the phase space with a dimension n, we associate Lyapunov exponent with
the rate of divergence, resp. convergence of close trajectories for each of directions
in phase space. The Lyapunov exponents will be the eigenvalues of the Jacobian
matrix {λ1, . . . , λn}.

In practice, Lyapunov exponents {λ1, . . . , λn} varies with x (except the simplest
case, when f is a constant matrix A). Therefore λi, i ∈ n̂, are defined as a time
average over the trajectory.

System which has at least one positive average Lyapunov exponent is called
chaotic.
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