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List of used symbols

The following list covers some of the mathematical symbols and conventions used in the work
without prior definition.

Symbol Explanation

N the set of positive integers, i.e., {1,2,3,...}

Ny the set of nonnegative integers, i.e., {0,1,2,3,...}
Z the set of all integers, i.e., {0,1,-1,2,-2,...}

R the set of real numbers

C the set of complex numbers

1 identity operator, identity matrix

a* complex conjugate of a complex number «

Af Hermitian adjoint of an operator A

Tr A trace of an operator A

& tensor product of operators, vectors or vector spaces

Ra the real part of a complex number «

Sa the imaginary part of a complex number «

n!! the double factorial of n: n(n —2)(n—4)...; (=1)!'=0Il=1.
[x] nearest integer to a real number

|z] the integer part, the largest integer not greater than = € R
(a,b) an open interval from a to b

(a, b) a closed interval from a to b

f=0(9) |f(z)| is bounded above by const. X g(x) asymptotically
f=9Q(g) |f(x)| is bounded below by const. x g(z) asymptotically
f=06(g) f(z) is bounded both above and below by const. x g(x) asymptotically



Introduction

Quantum walks are an interesting analogue of classical random walks, defined in the framework
of quantum mechanics. Many kinds of quantum walks have been studied and several quantum
algorithms are based on them. An experimental realization of a quantum walk could also open
a way to implement these algorithms. Despite the number of experimental scenarios that have been
proposed to implement a quantum walk, e.g., [1,2], only a few actual experimental demonstrations
have been published so far—the first evidence is dated 2003 [3]. This thesis describes three new
different experimentally realizable configurations which display the behaviour of quantum walks
and thus could be used to achieve this goal. One of the algorithms is the subject of a current
experiment [4].

The work is organized as follows. In Chapter 1, we provide a brief overview of quantum walks
and optical interferometers in general. In Chapter 2, we study the features of a simple interferometer
composed of beam splitters and mirrors only. When short light pulses or single photons are inserted,
a quantum walk behaviour can be observed in the output arm. In Chapter 3, a more elaborate
interferometer is studied where light polarization is used to find a close correspondence to a quantum
walk on a line studied by the pioneering works. In Chapter 4, the possibility of using an optical
grating as a linear optics element is presented and a third quantum walk experiment is proposed.
Finally, we conclude our results.

The main idea of the first two proposed implementations is to use one closed interferometric
loop for an arbitrary number of the walk steps, as opposed to more straightforward linear optics
implementations, whose space requirements scale quadratically with the number of steps to be per-
formed [2]. Also, the experiment described in Chapter 2 shows a completely new form of a quantum
walk sharing many properties with a classical random walk.

We emphasize that the optical interferometers described in Chapters 2, 3 and 4 were not designed
by the author. The first studied experimental configuration is a result of collaboration with Erika
Andersson, Aurél Gabris, Igor Jex, Tamds Kiss and others, the configuration introduced in Chapter 3
is actually a description of an existing experiment realized by the group of Andreas Schreiber,
Katiuscia Cassemiro and Christine Silberhorn. The idea of using diffraction gratings to implement
quantum walks comes from Igor Jex and his colleague, Goce Chadzitaskos. The aim of this thesis
is to develop a theoretical background for these configurations and to show the connections between
them. The mathematical models and their explicit solutions are original.



Chapter 1
Overview of the topic

Let us introduce the most important concepts which will be used in the chapters to follow.
In this chapter, we will review the concepts of quantum walks and optical interferometers.

1.1 Quantum walks, basic types and properties

The idea of finding a quantum counterpart of a random walk was first introduced in [5] in 1993.
The authors of the mentioned paper studied the behaviour of a one-dimensional spin—% particle
whose dynamics was determined by a specially defined evolution operator which shifted the particle
to the right or to the left depending on its spin state. After every step, a measurement of position

was done, collapsing the wave function and bringing randomness into the the time evolution.

Since that work, many authors have introduced other models that shared the idea of “quantum
walks”. The theory has branched in several ways which are only loosely connected. The main idea
extending the first example, which was rather classical, was to drop the intermediate measurements:
we let the system evolve freely for some given time and make only one measurement at the end of
this interval.

The direct result of this approach is a discrete time quantum walk with a coin [6,7,8], which
is formulated algebraically as follows. Let Hg be a discretized position space, where the allowed
localized positions of the particle form an orthonormal basis whose vectors are denoted by integer
numbers. Let this space be augmented by a two-dimensional “coin space” H, which takes the role
of the spin space of the original system. Let us define two orthonormal basis states in H, denoted
|L) and |R). An orthonormal basis of the composed system, whose state space is a tensor product
Hg @ Her, can be found as

{le,d) =|z)®|d) | v € Z,d € {L,R}}. (1.1)

The quantum walk is obtained by initializing the system in a state

[¥i) = 10) @ |2), (1.2)

where |z) € H¢ denotes the initial coin state (or initial chirality), and letting it evolve for a given
number of discrete time steps. One step then consists of “tossing the coin” and then taking a condi-
tional step of size £1 in the position space. Mathematically speaking, the propagator corresponding
to one time step is composed of a unitary coin operator C, acting on the coin space only, followed
by a step operator S:

U=S-¢, (1.3a)



where
C=1® Cy,

S = Z (lz +1,R){(z,R| + |z — 1, L)(x, L|) . (1.3b)
x€Z
As Cp acts on the previous coin state, there is a strong correlation between the subsequent steps,
resulting in a highly non-classic behaviour of the quantum walk.

Making the final measurement on the position space, we can construct a discrete probability
distribution of the possible positions where the walker will be found. The distribution of a quantum
walk is generally bordered by two sharp peaks which asymptotically move at a linear speed away from
the origin, as opposed to a classical random walk, for which the probability distribution is binomial.
In relation to this behaviour, the standard deviation of the quantum walk is asymptotically linear
in the iteration count as opposed to the classical random walk where it scales with the square root
of time. More details about the distribution can be found in [6].

The coin plays a fundamental role in a discrete time quantum walk. As an example, the general
properties of a particular quantum walk, such as symmetry of the motion to the left or right, are
determined not only by the coin operator Cy but also depend strongly on the initial coin state |z).
The necessity of using the coin space follows from the so-called No-Go Lemma [9], which states that
the basic properties expectable from a random walk, combined with the demand of unitary time
evolution, restrict a coinless quantum walk on Hg to a trivial form where each step is taken in the
same direction.

As a first possible generalization of this discrete time quantum walk model, we can replace the
line by a more complicated graph on which the walker can move. Quantum walks on a circle [6],
grids with cyclic boundary conditions [10] or hypercubes [11] were described and even attempts to
find some result for general graphs were made [12]. As long as the graph is regular, i.e., has the
same number of edges originating from each vertex, it can be treated analogously to the above case
of a line, the main difference is that the dimension of the coin space must be altered to allow steps
in more directions. The extension to irregular graphs is much more complicated.

Another generalization of the discrete time quantum walk is obtained when we allow position
dependence of the coin transformation. The coin operator then becomes a quantum gate controlled
by the position space. On a line, for example, a position-dependent coin operator can be written as

C = Z |z) (x| @ Cy, (1.4)
TEZ

where C; is a unitary operator on H¢ for each x € Z. Position-dependent coins arise most often in
quantum walk-based search algorithms [10,13] or as one approach to define a discrete time quantum
walk on irregular graphs [8]. Also, a quantum walk on a graph with high symmetry degree can
be simplified to a walk on a much simpler graph under some conditions [13], possibly inducing a
position dependence of the coin on the reduced graph.

In contrast to the discrete time quantum walk model, another way to define a quantum walk
follows the idea of a continuous time Markov processes. In a continuous time quantum walk on
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a graph [8,14,15], one defines a Hamiltonian over the position space H g using the adjacency matrix
of the graph. The system then evolves according to the Schrédinger equation for a given time,
after which a measurement is made. A particular feature of continuous time quantum walks is that
no coin space is needed.

The relation of discrete time and continuous time models is nontrivial: these two approaches
show very similar results in some areas whereas there are significant differences in other cases [8].
Ouly very recent articles [16,17] claim to have found some exact correspondences between the two
models.

In the whole scope of this work, we will use the term “quantum walks” to refer to discrete time
quantum walks on a line.

1.2 Optical interferometers

The main part of the work will be concerned with the action of specially designed optical
interferometers. Generally, an optical interferometer, or just interferometer for short, is a device
in which a light beam or pulse coming from a single source is split using a beam splitter to take
two or more possible optical paths [18]. Using further beam splitters, mirrors and possibly other
linear optics elements, the partial wave packets are later directed to the same interferometer arm
and the contributions from various paths interfere. Due to the differences in the optical path lengths
corresponding to individual paths, and to phase shifts induced by reflections, the wave packets meet
with different phase and the interference can be constructive as well as destructive.

An interferometer has an input arm, where the light source is directed to, and one or more
output arms. There may be other available input modes which are not used—generally, it follows
from quantum optics that the numbers of input and output modes must be equal. In order to study
the interference, one places optical detectors to measure the light properties, e.g., intensity, in the
output arms. A wide spectrum of optical detectors is also available for measuring the quantum
properties of light [19].

The quality of the interference depends mainly on the stability of the interferometer elements but
also on the magnitude of the optical path difference. If it is much larger than the coherence length
of the source light, the interference does not occur. After a quantization of the electromagnetic field
is done, this phenomenon is explained by the fact that in a linear medium, there are almost no
interactions between distinct photons, so that every photon contributes to the interference output
on its own. We can imagine a single photon as a wave packet propagating along the interferometer
arms. This wave packet can be split and recombined on the beam splitters. However, if the optical
path difference of two interferometer paths is much larger than the mean width of this wave packet,
the partial wave packets will have zero overlap and no interference will take place.

We will keep the wave packet picture it in the following text. Especially, we will use the same
description for a single photon as for a nonrelativistic particle and define wave functions which can
be linear combinations of states corresponding to the wave packets. We will assume that there is an
equation of motion for these wave packets, however, we will never need its direct form. We note that
wave packets are treated correctly in quantum optics as simultaneous excitations of a large number
of optical modes [20] and share the properties we need.
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Chapter 2

Quantum walk with a simple delay loop

The first configuration to be studied is based on the principle of a delay loop. It is depicted
in Fig. 1. It works as follows: a short coherent unpolarized light pulse is sent into the input arm
and gets split on the beam splitter A into the middle and lower arm, denoted M and L. Due to
their different optical lengths, the two wavefronts arrive at the beam splitter B at different times.
A part of both pulses is then separated into the output arm and measured in the detector, the rest
travels through the upper arm U back to the beam splitter A. Due to the geometrical arrangement,

the process can in principle repeat an arbitrary number of times.

PR
7]
input M output
" N - [onsl o -
O [PM] o DD
A B
_ L,
@

Fig. 1: The first configuration. A and B are both classic beam splitters, D denotes a detector. The
interferometer arms can be realized in optical fibre, in which case there is no need for mirrors.

Let the time needed for a light pulse to travel the arms U, M and L be denoted by tr/, t; and
t,, respectively. In the following, we will always assume that t;; # t;, and, where it is important,
also that

tL >tM. (2.1)

The time it takes for a pulse to travel through beam splitters, mirrors and phase shifters in the
arms is negligible compared to characteristic values of the times t;7, t)s, t7, times (these delays are
all in the order of one wavelength whereas t;7, ) or t; are about 6 orders of magnitude larger in

a typical realization'). Let us further denote by ¢, the mean duration of the pulse.

If t;, —tpr > tp, no interference takes place at the first pass through the beam splitter B as
the two parts of the pulse arrive temporally separated. However, if we study the situation after
one or more cycles through the upper arm, it can happen that two parts of the pulse which were
separated obtain another time difference which causes them to meet again. In this case, we can

observe interference.

! Values used for this estimate were: wavelength A ~ 800 nm, optical lengths [ ~ 1 m.
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2.1 The interfering optical paths

The condition of interference is that the wavefronts of two or more pulses taking different paths
meet at the same point and at the same time (up to the duration of the pulse, ¢,), going the same
direction. The latter is always met in our configuration: as seen from Fig. 1, each arm has only one
direction allowed by the geometric layout. From the superposition principle, it follows that we can
postpone the computation of the interference till the point where the pulse is measured, as if the
interference took place no sooner.

Therefore, all possible optical paths through the interferometer, starting simultaneously at the
input arm and ending at the output arm, will split into infinitely many subsets by their escape time.
Only the paths within the same subset will interfere.

When looking for optical paths which take exactly the same time, we note that the time needed
to travel any path from the input to the output is determined only by the number of passes through
the lower, middle and upper arm, which we will denote by nr, nys and ngs, respectively: the time is

t=nptr +nptp + nyty, (2.2)

regardless of the order in which the arms are taken. Therefore, two or more paths differing only in
this order will each give a different “history” which must be considered one term in the interference.

We will create a simple means of description of the optical paths by words composed of letters
U, M and L, written from the left to the right in the order the particular arms are taken. In this
formalism, an example of two interfering paths, ending at beam splitter B, can be MUL and LU M.

The geometric arrangement puts some restrictions on such words. First, in order to describe
a complete path from the input to the output arm, both its first and last letters can only be M or
L. Every M or L except for the last one must be followed by a U and every U again by M or L.
This is illustrated diagrammatically in Fig. 2.

input output

Fig. 2: The rules for the word description of possible optical paths through the delay loop.

It can be seen that one does not lose any information by dropping all the letters U. This
gives the reduced form of the given word, which can be any sequence of letters M and L. We can
reconstruct the full word by replacing M — MU and L — LU and erasing the last U formed in this
way. For this reason, we will use only the reduced form in the following text.

As a consequence, we can notice the following equation putting a constraint on the numbers of
the available letters: nyy = nyr+ny — 1. Plugging this into Eq. (2.2), we can simplify the expression
to

t =npthy +npth —tu, (2.3)
where
thy =ty +ty and ¢ =tp +ty. (2.4)



2.2 Correspondence to a random walk

For some choices of tps, t;, and tg7, it is possible that not only the paths whose words are
permutations of each other will interfere. A sufficient condition for interference is that the times
given for the two paths by Eq. (2.3) are closer than t,. Especially, if the ratio t?\/[ : t'L is a rational
number, there are paths which take exactly the same time despite they have different n,; and ny,.
Namely, if

t/ p
tTM =5 (2.5a)
L q
then
qthr = Pty (2.5b)

which implies that the mapping Eq. (2.3) is not injective—it gives the same value of ¢ when we
decrease njs by g and increase ny, by p or vice versa. Note that such operation always changes the
length of the word, nps+ny, as p # q. If t’L _tQ\/[ > tp, two paths whose words have the same length
but different nj; and nj, can not interfere as the difference of their times is an integer multiple of
th — 1t or, equivalently, t7, —tyy.

The problem of irregularly coinciding escape times can be solved easily by choosing the times t?\/[
and t’L themselves much larger than their difference. (On the other hand, however, we are limited
by the condition of global coherence.) This creates a carrier pattern in the time domain: escape
times of paths with the same nj,; + ny, will be grouped together and separated in a finer way by
their nps : ny, ratio. The result is shown in Fig. 3.

ML or LM
0 M L MMI| LL MMM LLL etc. t
-ttt

Fig. 3: The possible escape times of the pulse. A combination of letters is used to represent the time marks
through Eq. (2.3). Only some marks are labeled. Between M M M and LLL, for example, there are other
combinations of three letters in the order of increasing count of L letters.

This leads us to re-parametrizing the escape time by two new variables,

n=mnr,+ny,
LM (2.6)

k=np—ny.
The former is the word length and can be used to index the groups created by the proximity of
t?w and t'L. All paths described by words of a given length will have their escape time in the same

group. The latter parameter then numbers the marks in the range of one such group.

Note that for each n, k is bounded between —n and n and has the same parity as n. Under the
assumption (2.1), the marks on the time axis will follow a lexicographic ordering of the respective
(n, k) couples until the borders of two adjacent groups meet. This happens when

nty —ty > (n+ )ty —ty
th —thy) >t
n( L M) = 'M ) (27)
>t
— 4/ /
b —tu
which puts an upper bound on the number of clearly distinguishable loops.

n

Y
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The correspondence of the system’s behaviour with a random walk on a line is straightforward
if we call n the iteration count and k the position on a thought line. We can compare taking the
middle or lower arm to a step left or right, respectively. Note that all iterations of the walk are
observed simultaneously in a single run of the described experiment: they are mapped to a single
time line by the Ng x Ny — R mapping provided by Eq. (2.3). By measuring the escape probability
for all the marks in a single group, we can call this a distribution over the possible positions on the
line after the given number of steps (see also Sec. 2.6). Finally, recall that after n steps of a random
walk, there are exactly the same constraints for k£ as we found above.

2.3 The quantum mechanical model

Besides the pulse regime described above, the interferometer can also be operated in a single
photon mode. In this approach, instead of measuring the intensity of the output signal at the possible
escape times, one would insert single photons into the interferometer and measure the distribution
of the time instants they are detected at the output. By performing a sufficient number of runs of
the experiment, one would use this probability distribution instead of the signal from the intensity
detector. In Sec. 2.9, we will prove the exact physical correspondence of these two approaches.

In order to explain single photon phenomena, our mathematical model of the system must be
based on quantum mechanical treatment of light instead of classical wave optics. To help with the
mathematical description, let us solve the single photon operation first. The simplification obtained
in this way is that we can describe the system using one-particle quantum mechanics. After the time
evolution is solved, we will rewrite the obtained results in terms of the creation and annihilation
field operators, allowing us to consider multi-photon input states, in Sec. 2.9.

The Hilbert space used in the following will be the space of L2-integrable functions defined on
the graph of the interferometer and its vectors wave functions of the photon. We will not work with
these wave functions directly, rather, we will define several significant states and study the overlap
of the system state with them. These states, as well as the initial state of the incoming photon,
will be constructed as minimum uncertainty wave packets described by their mean position. The
direction is given by the physical arrangement and the speed is constant.

Because of the detection process, the time evolution of the system is not unitary. However, we
can define an output state |1,) right at the beginning of the output arm—the amplitude of this state
will be equal to the amplitude of probability of detecting the photon after a fixed amount of time.
If the photon is not detected, this part of the wave function is lost, leaving only the part supported
by the inner parts of the interferometer. There is no need to renormalize the wave function after such
a projection—this way we can reflect the fact that the subsequent results are actually conditional
probabilities with no extra work.

There is an alternative approach possible: if we replace the detector by an half-infinite line never
coming back to the interferometer, the parts of the wave function overlapping |1,) will continue
travelling along this line, effectively projected out of the picture. The advantage is that if we do a
similar replacement of the input arm, we will recover the unitary nature of the time evolution. This
approach justifies the usage of a propagator to describe the system’s time evolution.

8



Let us further describe the action of a beam splitter on the example of the beam splitter A in
our layout. It has two input and two output modes. As indicated above, we will model these using
two plus two wave packets labelled by the arms they are lying on. These states are shown in Fig. 4.

Fig. 4: The selected photon states used for the mathematical description. Both the length of the pulses
and their distance from the beam splitters are highly magnified.

If a photon arrives at the beam splitter in a general linear combination of the two input states,
al;) + By ), after a certain time of interaction, its state is transformed into a linear combination
of the two output states, y|tpr) + 6|¢rr), by the rule

(3)=(t =) (5) =ra(3). .

Here we assume that A is an ideal passive linear beam splitter.

Alternatively, we could write

[i) = tal¥ar) +ralr),

(2.9)
) = t4lvr) — ralvar).

The index A denotes the beam splitter we are describing. See also App. A for operator description
of this action.

The parameters t 4 and r4 are two complex numbers called transmission and reflection ampli-
tudes, respectively. They must satisfy the condition

tal? + |ra)? =1 (2.10)

for the matrix R 4 to be unitary, otherwise they are arbitrary. (The condition on unitarity restricts
the elements of R 4 to two complex degrees of freedom plus a global phase, which is ignored here.)
The location of minus signs and complex conjugates in R 4 is merely a convention, another choice
would be balanced by change of phases of t 4 and r 4.

In the beam splitter A, we have chosen the input mode out of the interferometer input to be
preferred by not obtaining any complex conjugates in Eq. (2.9). Similarly, we will choose the left
hand side input mode of the beam splitter B for the same.

Usually, one also defines
Ty = |tA|2 and Ry = |7“A|2 (2.11)

9



called the transmittance and reflectivity of the beam splitter. These parameters are independent of
the phases of t 4 and r4 and thus provide an incomplete description of the beam splitter, however,
they have a direct interpretation familiar from classical optics. The condition (2.10) can be rewritten
as

Th+ Ry=1. (2.12)

For the free travel along the interferometer arms, we can define a reference wave packet on both
ends of each arm (|1q1), |¥q2)), these two being related by a spatial shift. A photon needs some
time t, to travel the length of the arm. Similarly to a beam splitter, we will describe this time
evolution by a propagator, specifically by the matrix element (1)42|U (t4)|t0gq1). This reduces to some
unit complex number, ¢/, The phase ¢ will include the phase difference caused by the elapsed time
tq, any possible artificial phase shift put on the arm and possibly some other phase shifts neglected
elsewhere. This way, we will define and use the total phase shifts @, @, and g7, corresponding to
the middle, lower and upper arms, respectively.

2.4 The path sum

Instead of computing the state of the system after some fixed time, we will aim to find an
expression for the matrix element

a(t) = (YolU(t) ;) (2.13)
directly. This amplitude gives the escape probability after time ¢ by the formula

P(t) = |a(t)]?. (2.14)

After the first action of beam splitter A, the state is a linear combination of |15s) and [¢).
Thus, we can use a decomposition of unity to obtain

Uali) = PyUali) + PrUaliq) (2.15)

where Pj; and Pj, are orthogonal projectors on the one-dimensional subspaces spanned by |1r)
and |¢r), respectively. Now if ¢ > /| the photon must take the upper arm, passing through the
state |¢r7). However, after the action of both of the projectors in Eq. (2.15), the first time to reach
nonzero overlap with this state is uniquely given:

(PolU (@) |00s) = (olU(t — thy)PuU (#hy — t4) ParUaltsi) +
+ (WolU(t = ) PyU(th, — tA) PLUAls) =
= (YolU(t = th)[r) (WulU(thy —ta) ParUalibs) +
+ (olU (t — ) [0r) (YulU (#], — taA)PLU Alvi).

(2.16)

From this equation, we can see that the problem of determining «(t) was transformed to com-
puting several matrix elements of evolution operators on shorter time intervals. In both terms of
the sum, there is one matrix element with an initial state of |¢;7) and time ¢ shortened by t’M or t/, |

10



and one matrix element corresponding to taking the middle or the lower path, respectively. We will
call the latter an irreducible matrix element.

When computing the elements with initial state of |1;7), we note that we can deal with it exactly
the same way as we did above with |1;), so the subscript can be simply substituted in all the above
formulas.

In this way we can reduce the time ¢ down to some remainder ¢,, leaving the last element of
(YolU(tr)|1prr). This element is both irreducible and nonzero only if ¢, = tj; or t, = t;,. Due to
the algebraic independence of tﬁ/[ and t’L, this condition filters out all elements of the exponentially
growing sum except for those representing the possible optical paths from the input arm to the
output arm, taking exactly the time t. (See Fig. 5 for an example of all the optical paths taking a
given time.) For this reason, we will call this sum a path sum. This concept is in fact a discretized
case of path integral and its usability for describing quantum random walks has been well-known
before, see e.g. [6].

2th, + 1 —ty

Fig. 5: An illustration of all the optical paths ending at the same escape time of 2¢}; 4+ ¢} — ty. The time
line is broken to show the artificial partitioning into random walk iterations. Marking the instants the
photon passes the beam splitter B, we can note three possible ways to the chosen mark. From the leftmost
one to the rightmost one, these are called MML, MLM and LM M in our terminology.

As defined in Sec. 2.1, each optical path is described by a word W composed of letters M and
L. For each word containing the letter M n,; times and the letter L nj, times, there will be exactly
one product of the irreducible matrix elements:

~ (YulU(t), —ta)PyUAlY;), where £ is the first letter of W,
— (WulU(t), —ta)PUalpy) for every letter £ between the first and the last one,
— (Yo|U(ty)|¢rr), where £ is the last letter of W.

Note that if W has only one letter, ¢, there is just one term, (|U (t7)|1;).

We will find explicit forms for all these possible irreducible matrix elements. Starting with the

first one,
Ualbi) = talvar) +ralr)

PrUalYs) = talnm) (2.17)
PrUlwi) = ralvr)

11



In both cases, this is a basis state multiplied by some single matrix element of U 4. Now we could
define an analogous orthogonal system near the beam splitter B. We would then split U (t’é —ta)
to the free time evolution along the particular arm, the action of the beam splitter B (filtering
the output to the upper arm) and the free evolution by time t;; — tg along the upper arm. The
procedure is straightforward, so let us give just the result directly:

(WulU(tar — ta) PrUalts) = tae™#Mrpel?U = /oM e0)t s

. ) ) (2.18)
WulU(tn —ta)PLUAIY;) = raet®ltfyel?V = e Prteu)y pr,
All the other irreducible matrix elements can be expressed similarly:
(Wu|Uthy —ta) PryUaldy) = —PMHe0)p% pp
(WulUt], —ta) PLUARY) = ePrtev)es s

(ol (tr1) ) =~V it 219)

(olU(tr)|vhy) = —e“Lthyrp

altar) = (olUltar)ts) = €Mt gt
alty) = (WolU(tp) ) = —eLryrp

This in fact allows us to find a closed form for «(t) for ¢ given by Eq. (2.3). However, it is
necessary to separate the case n = 1 as shown above and make some general observations starting
from n = 2. So, for computing a(n sty +npt; —trr), which we can denote for simplicity a(naz,nr),
we need to sum the above product over all words W composed of nj; times the letter M and nj,
times the letter L. These words split into four groups depending on their first and last letter. Due
to the construction above, we can see that all the words in one group will contribute in the sum by
the same term, so only the cardinality of each of these four subsets is needed.

Using the notation that the binomial coefficients outside the Pascal’s triangle are zero, there are
("2} words both beginning and ending by M, (n;f) words both beginning and ending by L and

nLl
(n

Py — 1) for both the remaining cases. Thus the general form of the sum a(ns,ny) is

, -2
a(nyg,ng) = ePmrne) ((" )(tArB>(—rjatB)<—rjar3>"M—2<tf4t§>”L +
nr
n—2 V=55 (=1 N (P % ny—2
|y, ) TAtE) (AT (—rars)™ (E4th) " +

+ < ol ) ((tarp)(=thrp) + (ratp)(—ratp)) (—TZTB)”M_l(tZtE)"L_1>
(2.20)
where the phase
e(narnp) =nyem +nper + (n— ey
can be found to be exactly the same in all terms. Noticing other common terms, this formula can
be subsequently significantly simplified to

) = ePmrnn) (—p ) =L () x

) -9 -9 2.21
x ((" )TATB + (” )RARB - ( " )(TARB +RATB>> @A)
nr, A ny — 1

where we reused the symbols defined in Eq. (2.11).

afnpr,ng,
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Using the relation
TARB+RATg =TA(1-TB)+RA(1—Rp) = Tp+RA—Ty1p—RaRp = 1-TpTg—RsRp, (2.22)
we can use Pascal’s rule to simplify Eq. (2.21) even further to

a(npp,ng) = ePOMML) (_pt g pynm =L (g g e =1y

n—1 n—1 n—2 (2.23)
X TyTp + RoRpB — .
nr, nAf ny — 1
The special cases (corresponding to the direct pass through the interferometer), collected in

Eq. (2.19),

a(1,0) = alty) = Mzt g, (2.24)
a(0,1) = alt) = L (—rarp), '

must be excluded from Eq. (2.23) unless we define the binomial coefficients (_kl) to be zero for all
k. However, we will avoid this since such a definition would break the Pascal’s rule.

2.5 The recurrence relation

Let us relate the behaviour of the interferometer to a random walk by finding a suitable recur-
rence relation. Denoting by P, j the probability of finding the walker on the position £ after n steps,
a classical random walk is governed by the relation

Py =00Po—1 k41 +PRPp—1.k—1, (2.25)

where p; and pg are the probabilities of taking a step to the left or to the right, respectively. It is
also important to state an initial condition which is usually chosen to be Py = 1.

Studying Eq. (2.23), we observe that Pascal’s rule implies
anpg,np) = ePmrni)=ieu=Lns) (e pya(ny — 1,np)+
+ ei<ﬂ(nM7nL)_i<P(nM7nL_1)(t*At*B)a(nM,nL —1)= (2.26)

= ei(‘pM+‘pU)(—rj1rB)a(nM —1,np)+ ei(‘pL+‘pU)(tj1t*B)a(nM,nL —1).

Reusing the symbols n and £ from Eq. (2.6), we can define
ank = a(ny,ng) (n=k (mod 2)) (2.27)
and refine the relation to

ap g = TV (¥ pYa, gy + EPLTRO) (Y a, g gy = Crag_1gy1 + Coan 1 k1,

Cy = e!Prteu) ()
Cy = ellertev) (),

with direct formal analogy to Eq. (2.25). The main two differences are that

(2.28)

— the constants C7 and C9 are complex,

— we found a recurrence relation for amplitudes, not probabilities.

13



Due to the particular behaviour at n = 1, it is necessary to specify the initial conditions no
sooner than at n = 2. Their complete set is then

ag—2 = a(2,0) = —€i¢(2’O)TZTBtAtB
azp = a(1,1) = ?ED (T Ty + RyRp — 1) (2.29)
ag2 = a(0,2) = —ew(o’2)rAr%tf4t%,
and we must keep Eq. (2.24) as special cases.

However, a mathematically equivalent approach is to say that the system is simulating three
random walks which interfere. These three walks start at both different positions and different
times. To distinguish from the previous notation, we will use tildes to denote their respective initial
conditions: .

a1,-1 = a1,-1 = a(1,0) = e"Mtytp
a1 =a;1 = o0,1) = —ei‘erAr*B (2.30)
ag0 = a0 — (Cra11 + Coa1,—1) = —ele(ll),
Note that the presence of nonzero ag o prevents Eqgs. (2.29) to be extended back to n = 1.

These relations allow us to claim that the system under study undergoes a special coinless
quantum random walk. This is new since in the theory of quantum walk on a line, a nontrivial
quantum walk without a coin degree of freedom is excluded by the No-Go Lemma mentioned in
Sec. 1.1. In our case, this lemma is circumvented by changing the fundamental approach to a
physical representation of the random walk time and position. However, this kind of quantum walk
has limited mathematical possibilities since all the interference is simply additive. Despite the fact
that the constants C7 and Cs, from Eq. (2.28), are complex, their phases have no observable effect
on the outcome. We can tell so by taking the square of the absolute value of Eq. (2.23):

P(npr,np) = (RaRp)™ YTy Tp) 1 x

(Yoo (- (22))
X TATp + RARp — .
ny, nys ny —1

Note that no phase shifts affect this probability, it is expressed completely in terms of the classical
parameters of the two beam splitters. The reason for this is that every possible scenario taken
by the photon goes through every phase shift a fixed number of times. As we considered no time
dependence of these phase shifts, every term in the path sum gains exactly the same phase and thus
they can only interfere trivially.

2.6 Probability normalization

As the random walk iterations are nothing more than imaginary divisions of the photon’s output
time, the sum of probabilities P(nys,ny ) over one iteration, given by the condition ny; +ny =n =
= const., is not 1. Instead, the normalization

> Plny,ng) =1 (2.32)
npr,nr €Ny
npy+np>0
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holds unless we assume some possible losses inside the interferometer, in which case there would be
a < sign.

We can still consider P(njys,ny) in the range of one iteration to be relative probabilities but
then it is necessary to normalize them by multiplying all of them by a common factor of 1/C(n)

where

C(n) = Z P(npr,ng). (2.33).

ny+nL=n

In the following, we will evaluate this sum.

Let us rewrite the probability (2.31) in terms of new simplifying parameters 7" and R, where

T =TyRy,
R=R,Rp:

2
P(nyr,ng) = R —1pni—1 <<nn_Ll>T—|— (77;7;41>R— <n7;4__21>> . (2.35)

Furthermore, we can rewrite the constraint nys + ny = n to express ny, using nj;:

2
—1 1 _2
PmMm—nMy=HW—WW%M4<<n >T+<" )R—(" )). (2.36)
ny —1 i ny — 1

In order to find the normalization constant (2.33), we need to evaluate the sum

n 2
C(n) = Y RF-1n—h-1 <<Z - DT + (" . 1>R - <Z - f)) . (2.37)

k=0

(2.34)

The expression can be expanded to several sums of the form

n
Y (k Tm) <k ?kz)Ran_k’ f2€0,1}h (2.38)
k=0

which strongly resembles the left hand side of the binomial theorem but differs in containing a prod-
uct of two binomial coefficients instead of one. This difference means that we need special functions
to simplify the sum. The most straightforward way is to rewrite the expression to a hypergeometric
function [21,22], which gives

ni n2 kamn—k n R>
3 Tk = 1% Py (—nq, —no; 1; =
<k><k>R 21<n1, n2; 1

k=0
" R
> " (" )RR = g RIS Ry (1 —ny, —ng;2; —) ,

=\ k) k-1 T

if T'# 0. Note that if 7= 0, we can take a limit of the right hand side as T approaches 0. This is
justified by noticing that Eq. (2.37) is a polynomial in 7" and R and thus a continuous function.

(2.39)
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These expressions can be alternatively rewritten using Jacobi polynomials or, in some special
cases, Legendre polynomials [23,24], nevertheless, neither of these expressions can be considered a
closed form.

The complete expression for C(n) can be found this way to be
Cln) =T""Y T+ R)oF1(1—n,1—n;1;2) +
+ 712 (2F1(2 —n,2—n;L;z)+2(n—1)RT2F (1 —n,2 —n;2;x) + (2.40)
2T F (1 —n,2 —n; L) — 2(n — 1)RoFy (2 — 0,2 — n; 2; m)),
where x = R/T.

This expression can generally be simplified only in two special cases, © = 0 and « = 1. Because
of the symmetry of swapping 7' and R in Eq. (2.37), it also has a limit as « approaches +o0o which
is equal to the value at © = 0.

The & = 0 case corresponds to a degenerate case R = 0 or, by the indicated symmetry, 7' = 0,
where one or both of the beam splitters are completely transient or completely reflective. If both
beam splitters are degenerate in this way, there is only one possible way the photon can take and
thus only one possible escape time and its probability is one. No features of a random walk can be
observed in this case at all.

Similarly, there is no interference even if only one of the two beam splitters is nondegenerate.
In that case, the system can be fully described using the idea of a pulse which is attenuated by the
same factor after every loop. In each case, there will be only one kind of time difference between the
possible escape times (making the pattern a simple lattice without the fine division) and the escape
probability will follow a simple exponential decay rule. Since there are no features of a quantum
walk again, there is no need to go much into details.

Let us focus on the # = 1 case, or T" = R. We note that this condition means that the
transmittance of one beam splitter equals the reflectivity of the other one and vice versa. We will
see another interesting property of such a configuration later.

In this case, the sum in Eq. (2.38) can be computed in closed form using the Chu-Vandermonde’s
identity [23]. It can also be found, along with a proof, as Theorem 6 in App. B. The result is

n
Z ni n2 _ ny+n2 (2.41)
=0 k—ki)\k—ko no + ko — k1 ’
and consequently

On) =172 <2T2(2" f) 2T2< 2)*@ - 24>_2T<<2: - 13>+<2:—_ 23>>>:
(e () - (D) (072) -

o[ 2n—4 (2n —4)(2n —3)(2n — 2) (2n —3)(2n — 2) B
=T 2<n—2>(2 ot (n—2)2(n—1) B (n —2)2 +1>_
— n—2 (2:__24> (1672 — 87 +1+0(n™")).

(2.42)
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In order to find some asymptotic estimate, we can use Stirling’s approximation formula [25,26]

to find that , \ o
(n_2> BNV.CEL (1+0(n‘1))- (2.43)
The formula for C'(n) then becomes
- 4n—2 ~ -
Cln) =177 -2 (1672 =87 + 1+ 0(n™H) (14 0(n 7)) = (2.44)
(1) (4T = 1)2 + O(n 1)) ) :
= B (1+0m™h)

for0 < T < i. Therefore, the decay of the escape probability, taken as a function of the iteration
count n, is approximately exponential with a quotient of 47'.

After the normalization, we can define the probability P, ;. of finding the walker after n steps
on the position k as
Py = C(n) 'P(npr,ng) (n=k (mod 2)), (2.45)
where njp; and nj are linked to n and k via Eq. (2.6). The general shape of the probability
distribution over all possible positions k for given n is illustrated in Fig. 6.

0.16 T T T T T T T
T=0.16, R = 0.36 ——
T—014, R=034 — — —
0.14 + _|
0.12 + _|
~
g
&5 0.10 —
o
= 008 i
I
=
s 0.06 _|
jang
0.04 _|
0.02 |
0 | | | | | |

-100  -80 -60 20 40 60 80 100

Fig. 6: The two most common shapes of the probability distribution of the random walk, Eq. (2.45). Both
plots were computed after n = 100 steps. Note that there can be up to three peaks located near a common
center, however, after a small change in the T and R parameters, the side peaks can vanish. Only even
parity positions are plotted, the probability is zero on odd parity ones.
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2.7 Parameter optimization

In order to observe the signs of a random walk in the escape time probability distribution, it
is desirable to reach as high values of n as possible since a higher number of iterations allows us to
resolve finer details of the distribution shape.

For the same reason, it is important to reduce the probability of the photon escaping in the first
two iterations where the behaviour is rather trivial. Therefore, let us compute the total probability
of escaping at n = 1 or n = 2 directly,

Piyg=Pio+Po1+Peo+Pr1+P2=
—T+R+TR+(T+R—-1?+TR= (2.46)
=T?+R*+4TR-T-R+1.

We will attempt to minimize this probability by altering the beam splitter parameters.

First, however, let us emphasize here that the values of 7" and R can not be chosen independently.

Starting from Eqs. (2.34) and (2.12), we can use the constrained optimization problem methods to
find that
0<R<(1-VT)? (2.47a)

or, equivalently,
0<VT+VR<1, (2.47b)

Thus the region reachable by all choices of beam splitter parameters Ty, Tg, R4 and Rp is limited
by the lines 7' = 0, R = 0 and the curve VT + VR =1.

Analyzing the function
f(T,R)=T*+R?*+4TR-T - R+1 (2.48)
due to these constraints reveals the following significant points:
— a saddle point at T'= R = % with function value of %,
— global maxima f(0,0) = f(1,0) = f(0,1) =1,
— global minima f (0, %) =f (%, 0) = % and a local minimum on the domain bound f (%, i) = %
We can see most of these points fall into some of the degenerate cases listed in the previous
section as one or both of the T' and R parameters are zero or one. After leaving them out, we are
left with only two of the extremal points, both lying on the line of 7' = R. We have found that the

point T'= R = % is the local minimum of Eq. (2.48) on this domain subset, whereas the border
points T'= R = i and T"'= R = 0 are local maxima.

Let us find the exact set of parameters yielding 7' = R = L. This gives the following system of
equations:

1
T'=TpTp = 6’
1

R=Rakp =g, (2.49)
Ty+Rp=1,
TB+RB =1.
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There are two possible solutions,

1+,/4
Ta=Rp=—5—,
2.
1 (2:50)
1:F\/;
Rp=Tp = 5 -

As we have computed above, in this configuration, there is a probability of one in six for every
photon to survive to iterations n > 3. As this is a saddle point, there are configurations allowing
higher probability outside the 7' = R line, however, no other local extrema occurs in this region

prior to reaching one of the trivial cases.

Another task would be to optimize the parameters for the best asymptotic behaviour. From
the previous section, we know the result when we restrict ourselves to the case 7' = R: the optimal
point under this condition is T'= R = i, the other significant point found above. On average, seven
of eight input photons escape in the first two iterations in such configuration, which is worse than

the previous special case approximately by 4% but the tail of the distribution is more well-behaved.

Moreover, we can note that this point forms an intersection of the line 7' = R and the border
curve T + VR = 1. We already know from above that the former means 74 = R and Ry = T'g,
similarly, the latter is equivalent to T4 = Tg and R4 = Rp. Therefore, we do not need to solve

another system of equations: this special case is reached when both the beam splitters are balanced,

1
Toa=Ra=Tp=Rp=7 (2.51)

Eq. (2.44) gives us a very good description of the C'(n) function in this special case. However,
if we were interested only in the decay rate (ignoring the overall prefactor), this coefficient can be
found generally. As a corollary of Theorem 7 in App. B, we can find that C(n) behaves in higher n

approximately as a geometric progression with a quotient of
R 2
2
T(\Z+1] = (VR+VT)".

In order to minimize the exponential decay, one would want to maximize this expression. From
Eq. (2.47b), we can note that the maximum of this expression is 1 and it is reached exactly on the
domain border curve VT + vR = 1. However, we emphasize that a unit exponential quotient does
not mean that the C'(n) function approaches a constant limit—only that the decay is slower than

exponential.
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2.8 Mean position of the walker

In this section, we will study the behaviour of the mean position of the walker, which is one of
the main characteristics of any random walk. The computation will also reveal some estimates on
the spread in the position.

Up to a normalization constant, the probability of finding the walker on position k after n steps
of the modelled random walk is given by Eq. (2.35), where the nj; and nj, indices are linked with
n and k via Eq. (2.6). The mean position of the walker is then given by

n
> (ngp —np)P(nag,ng)
TLMIO
(k) = = (2.52)
> P(nag,ng)
nM:0
nr=n—nps
We are interested in the limit linear speed of the walker, that is,
k
s = lim Q (2.53)

n—+oo n

In order to solve this problem, we will need to make some observations about the probability distri-
bution.

After expanding Eq. (2.35), we will obtain several terms of the form
gort( "L T2 ) prmpnm (2.54)
nyp — M M — K2
After introducing = R/T, we can use Lemma 8 from App. B to find that this term has a maximum

\/5
Vo +1

where [z] denotes the nearest integer to z. Since this expression is independent of the small shifts in

near

naf, = n, (2.55)

the binomial coefficients, u; and v;, the same result holds for every term in the expanded Eq. (2.35)
and thus we can assume that the total probability also reaches its maximum in the neighbourhood
of npz,. Note that this is not automatically true as some of the terms have negative sign and could
hypothetically cancel out the positive ones.

In order to refine this statement, we can conjecture the following lemma: Let a € (%, 1), denote
Anjyr = [n®]. Then an asymptotically negligible part of the probability is distributed outside the
interval (nyg, — Anpr,nag, + Anpy), that is,

nMQ"'AnM

Z P(”M7n_nM)

TZM:TIMO—ATLM

lim . ~ 1. (2.56)
> P(na,n—np)
TLMIO
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The complete proof is not presented as it is long and technical. Its main idea is to take a com-
plement of the ratio to 1, estimate all the factorials in the binomial coefficients in Eq. (2.35) using
the Stirling approximation and study the limit of logarithm of this sequence. The rest is a straight-
forward procedure of usual techniques for computing limits of number sequences.

Using this lemma, we can return to Eqgs. (2.52) and (2.53). We can combine the two equations

Z (1 - %TM> P(nyr,n —npr)

nM:0

nto

s= lim
n—-4o00

n (2.57)
Z P(”M: n— nM)

nM:0
We note that as the factor of 1 — %TM is bounded, the above theorem can be used directly to restrict
both the sums to the interval (nps, — Anpr, nag, + Anpy). We then estimate this factor by

2(nMO + Anyy) 1 2n s 1 2(nM0 — Anyy)
n - n n

1—

(2.58).

As neither of the bounds depends on nj;, they can be factored out of the sum in the numerator,
leaving the same sum in the numerator as in the denominator. After cancelling them with each
other, we obtain estimates for s:

2(npg, + Anpy) el 2(npg, — Anpy)
n - n

1—

(2.59).

To find the asymptotic speed, we need to take limit as n approaches +oo on both sides. Recall
that npz, and Anyy are functions of n. It follows from the corresponding definitions that

Ny \/E

li =Y 2.60
n—too m Vo +1 (2:602)
and that A
lim —M _, (2.60b)
n——+oo n
Therefore, both the bounds have the same limit value, giving
1—
sl Y 1oV (2.61)

Vr+1  1+a

Let us compute s in the two significant cases introduced in Sec. 2.7. First, if T = R, i.e.,
To=Rp and Tg = Ry, then © = R/T =1 and s = 0, i.e., for this particular connection between
the beam splitter parameters, the mean position of the walker stays in the middle of the line.

The second important case was 1’4 = 1g and R4 = Rp. In this case, the square root of = can

IR RY Ry
Ve T T3 7 Ty (2.62)
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The asymptotic speed can then be simplified as
s=—">==T4 — Ry. (2.63)

Note that this provides an easy way of finding the interferometer parameters to obtain a quantum
walk for an arbitrary given s € (—1, 1).

The above theorem also indicates that the variance of the position distribution is O(n!*¢) for
any € > 0. The proof is analogous but we obtain an upper bound only. This property reminds of a
classical random walk, which has a variance of const. x n.

2.9 Relation to coherent states

In this section, we will point out a correspondence between the one photon and coherent state
operation of the interferometer, justifying the model used in Sec. 2.3. For this purpose, we will
need to replace the detector by an infinite output line continuing in one direction, as explained in
Sec. 2.3. To be accurate, we note that the derivation below is valid only in an idealized case where
no decoherence is taken into account.

After a given time, the initial state |¢);) of the photon is transformed to a linear combination
of some number of wave packets inside the loop and some number of wave packets propagating on
the output line. Under the conditions given above, all these wave packets are finitely supported
and spatially separated. We will also assume that the time is chosen such that the wave function
vanishes in the vicinity of the beam splitters.

Therefore, the state can be written as

N
U)i) = Y aglto), +elr), (2.64)
k=1
where [1),)y, denotes a wave packet state on the output line which passed the location of the detector
at the escape time of ¢;.. The state |r) describes the renormalized part of the wave function supported

on the M, L and U arms. Due to the spatial separation, all the |1,);, and the remainder |r) are

23
mutually orthogonal.

We can use the notation of App. A to rewrite Eq. (2.64) to operator form. That is, we will
make a second quantization of the state space and define creation operators for all the states used
in that equation:

i) = af[0)
o)t = af, U(t)[0) (2.65)
ry = alU(£)[0),
where |0) is the vacuum state. After factoring |0) out, Eq. (2.64) becomes

N
U)alU®) = agaf +caf. (2.66)
k=1
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We are interested in replacing the initial one photon state |¢);) by a coherent pulse based on
this state, that is,
la); = exp(aaT a*a;)|0). (2.67).

-
In order to find the transformation of this state under U(t), we first need to find an adjoint of
Eq. (2.66),

N
Ut)a; Ut =3 ajay, +<*ar, (2.68)
k=1
and use it to express the transformation of the linear combination
N
U(t)(aa;-r —afa)) U = Z (aaka:{k —afagay,) + (asa;[ —a’e¥ay). (2.69)
k=1

As the |tp,)¢, states are orthogonal and |r) is orthogonal to all of them, the linear combinations of
their creation and annihilation operators mutually commute. This enables us to compute

N
Ul(t) exp(oza;r —a*a)) U = II exp(aakazk — o ajaq,) exp(aaai —a’etay). (2.70)
k=1
When the right hand side is applied on the vacuum vector, it creates a product of coherent states in
the modes defined by the vectors |,)¢, and some coherent excitations inside the delay loop. Thus,
every term oy|t))y, in the linear combination (2.66) became a coherent pulse at the same location
and having an amplitude of aqj in this operation. The intensity of this partial pulse has an |ak|2
ratio to the intensity of the input pulse. In other words, the probability of detecting one photon at
a given time ¢, as described in Sec. 2.3, becomes exactly the intensity of a partial pulse measured
at the same time if we use a coherent state at the input. Hence, we can safely claim that there is
an exact correspondence between the two experimentally different approaches.

2.10 Summary

Let us summarize the results obtained in this chapter. The study of the system depicted in Fig. 1
showed that under certain conditions, quantum walk behaviour can be observed in the output. All
the iteration-position pairs are merged to a single time line, and thus all the probability amplitudes
of the walk can be observed without changing the experiment layout and/or external conditions.
The walk can be described using a recurrence relation between the probability amplitudes.

In order to reconstruct the quantum walk, the output must be split into a sequence of time bins
and probability distribution of finding the walker on the possible positions must be renormalized
within each of these bins. The resulting walk scenario displays similar position and variance depen-
dence on the number of steps as a classical random walk on a line, although that the probability
distribution is not Gaussian. The asymptotic speed of the walker was computed exactly.

Several optimization problems were discussed with the result that there is a straightforward way
of reaching higher iterations of the walk with enough fidelity. Under this optimality condition, one
degree of freedom is still left, allowing to reach any bias of the walk.
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Chapter 3
Quantum walk using polarization as a coin

In this chapter, we will focus on the possibilities of realizing a coined discrete time quantum
walk in a similar way as in Chap. 2.

We note that parts of this chapter, namely sections 3.5, 3.6 and 3.7, are based on the results
of Andreas Schreiber, Katiuscia Cassemiro and Christine Silberhorn from the Max Planck Insti-
tute for the Science of Light, Erlangen, Germany. We claim no connection to the design and/or
implementation of the particular experiment.

3.1 The polarization degree of freedom

It follows from the fundamentals of quantum optics that a scalar wave function does not represent
the state of one photon fully. There is one additional degree of freedom corresponding to polarization
of the electromagnetic field [27], as known from classical wave optics. The existence of this degree
of freedom results in extension of the former Hilbert space by taking a tensor product with a two-
dimensional space, C2. The resulting system is isomorphic to a compound system consisting of
a spinless particle and one qubit.

As an example of using only one part of this compound system, let us show why polarization
could be ignored in Chap. 2. This is a nontrivial question since in a compound system, generally,
one can not consistently define states of the individual subsystems without allowing a system to
be in a mixed state. For this purpose, we must convert the above description using elements of
the Hilbert space to a more general approach using the density matrix, or a statistical operator, to
describe the state of a quantum system [28].

In this formalism, we define for any ket |¢)) € H a corresponding pure state as the orthogonal
projector on the one-dimensional linear hull of |¢):

Bl = ). (3.1)

Note that this assignment is not injective: kets differing in their global phase give the same pure
state. This is no contradiction, however, since such states are physically equivalent. By allowing
mixed states, the state space expands to a convex hull of all pure states. Mixed states do not
correspond to any wave function, but they can be viewed as probability distributions over more
than one pure states the system can be in.

If the state of a compound system, g, can be factorized as g1 ® p2, we can equivalently claim
that the first and second subsystem are in states g1 and g2, respectively. However, this is not always
the case: by taking convex combinations of factorized states, we generally obtain states which can
not be factorized. To assign some states to the subsystems, one uses a partial trace operator [28].
For the above system composed of two subsystems, we say that the first and second subsystems are
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in states Trq ¢ and Tro g, respectively. Note that generally, part of the information contained in p is
lost when only its partial traces are known. If and only if one of the of the partial traces of p is a

pure state, we can reconstruct p as

0= (Tr10) ® (Trz ). (3.2)

Returning to the case of Chap. 2, we note that there are no polarization-active elements in
the experimental setup (see Fig. 1). Thus, the propagator of the system, U, factorizes to a tensor
product Uy ® U, where Uy acts on the position state space and Us on the polarization state space
of the photon. Let the initial state be factorized as

0; = 01 ® 02. (3.3)
In the density matrix description, the propagator U transforms this state into
00 =Up;UT. (3.4)

By substituting the above factorizations for all the involved operators, we obtain g, in a factorized

form

00 = (U1 © U2) (01 ® 02)(U] © UJ) = (U101U}) © (U202U3). (3.5)

From this equation, we can see that both the subsystems evolve independently of each other, ac-
cording to the partial propagators U; and Us. Especially, if p; was a pure state corresponding to
a ket |1);), then

Tr1 00 = U191U1T (3.6)

is a pure state again, corresponding to Ut|y;), regardless of whether the polarization was pure or

mixed.

3.2 An interferometer implementing a coined quantum walk

In the following, we would like to introduce an experimentally realizable linear optics implemen-
tation of the coined quantum walk on a line, as described in Sec. 1.1, using a similar basic idea as
in Chap. 2. According to Sec. 3.1, the polarization space is suited perfectly to be used as the coin

space in such experiment.

In contrast to Fig. 1, the “walker” should take the shorter or longer path according to his
polarization. Thus, we will replace the beam splitters A and B by polarizing beam splitters which
split the two orthogonal polarization states of an incoming beam in two directions. However, one
additional normal beam splitter must be added to in-couple a pulse into the interferometer and
out-couple it into a detector. We will assume that it is nontrivial, i.e., both its transmittance and
reflectivity are nonzero. A schematic of the resulting layout is shown in Fig. 7.
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Fig. 7: The second configuration. BS denotes a classic beam splitter, PBS a polarizing beam splitter, HWP a
half-wave plate and D a detector.

A coherent pulse or one photon is inserted into the input arm in a precise polarization state and
couples into the loop with relative intensity, or probability, given by the transmittance of the beam
splitter BS. It first reaches the half-wave plate HWP, which mixes the polarization states and thus
represents the action of the C' gate. As shown in Sec. 3.3, HWP can represent a whole class of gates
with spectrum {1, —1}. It can be replaced by another wave plate if another relative phase shift is
required. By allowing more than one wave plate, any one-qubit gate is obtainable, as follows from
decomposition of unitary matrix into a product of rotational matrices [28]. The pulse then splits
on the left hand PBS in the preferred polarization basis, and the lower arm L in Fig. 7 obtains a
relative time delay to the middle arm M. The polarization must be maintained reliably so that at
the right hand PBS, a photon coming from either arm continues in the main loop. After completing
the loop, there is some probability of escaping to the detector, otherwise the cycle is repeated for
another iteration of the quantum walk.

3.3 The mathematical model

In order to describe the experiment in Fig. 7 mathematically, we will reuse most of the results of
Sec. 2.3. However, we must adjust them to include the polarization degree of freedom. Let H g denote
the “position” Hilbert space, defined analogously as in Sec. 2.3, let H = C2 be the polarization
Hilbert space. The complete Hilbert space of the system can be written as H = Hg ® H¢.

To specify a matrix element of an operator fully, we would have to specify position and polar-
ization kets for both the initial and final state. Alternatively, if we use the previous notation,

(V11U2),  11), [v2) € Hg, (3.7)

this object behaves as an operator on H and could be specified by a matrix in an appropriate basis.
We will call it a partial matrix element.

Let the preferred basis of H be specified by the polarizing beam splitters. As noted above, these
elements transmit one polarization state and reflect the orthogonal one. The basis which determines
this behaviour is defined by the plane of incidence, spanned by two vectors: a normal to the plane
of the polarizing beam splitter and the propagation vector of the incident beam. The reflected
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polarization state is called the s-polarization while the transmitted the p-polarization. This comes
from the German words for perpendicular and parallel, respectively, speaking about the relative
orientation of the electric intensity vector due to this plane. We will define an orthonormal basis
denoted as {|p), |s)} accordingly.

New elements in the configuration are the half-wave plate and the polarizing beam splitters.
The action of the half-wave plate HWP on an incoming pulse may be specified using an unitary
matrix of rank 2 in the sense outlined above. However, the exact form of this matrix depends on
the orientation of the plate, determined by the optic axis. If this axis is aligned with one of the
preferred polarization directions, say p, the half-wave plate creates a relative /2 phase shift between
the polarizations, which can be written as the Pauli Z matrix in the preferred basis,

0y = ((1) _?) , (3.8)

acting in H¢. If the optical axis is rotated by an angle ¢ due to the p axis (the sense of measuring
¢ depends on what we consider the positive direction of the p and s axes), this matrix must be
transformed to represent this basis change, resulting in
UHWP:<cpsnp —sinnp)(l 0) ( cos ¢ sing0>:<cps2go sin2g0)' (3.9)
sin @ Cos ¢ 0 -1 —singy cosy sin2¢p —cos 2y

For example, if ¢ = 7/8, then we obtain the Hadamard matrix,

H=%(i _}) (3.10)

We will describe the whole polarizing beam splitter delay loop as one element in this model.
Let tj; and t7, denote again the time needed to travel the arms M and L, respectively. Let |¢q)
and |19) denote wave packets right before and after the delay loop, analogously to Fig. 4. For the
initial states with their Hg component |¢1), time evolution gives

U(tar)l¥n)lp) = €77 [v2)p),

(3.11)
Utp)[¥1)ls) = €7 [i2)ls),
which can be rewritten using the notation of partial matrix elements as
(V2|U(tar)|th1) = e¥P By,
) (3.12)

(Yo|U(tL) 1) = e”° By,
if the time difference |t7, —t;/| is large compared to the duration of the pulse, .

For further considerations, we will give names to several other vectors in the position space.
Their geometrical meaning is displayed in Fig. 8.

‘_i|¢b>

Fig. 8: The selected states in Hg needed for the mathematical description of the experiment in Fig. 7.
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3.4 The path sum and the recurrence relation

Similarly as in Sec. 2.4, we will aim to describe the operation of this experimental configuration
using the one photon dynamics and the path sum approach. The derivation will be simplified due
to the fact that any complete loop must start (in terms of an optical path) at the location of |¢g)
and end in the location of |¢3) according to Fig. 8. Any complete optical path in the studied layout
is composed of a sequence of these loops, with only an in-coupling and out-coupling added on its
beginning and its end, respectively, and can be described using a word composed of letters M and
L to denote the order of the loops.

We will define t9\4 and t’L as the times needed to take one complete loop via the M or the L
arm, respectively. The time needed to travel a path described by any word containing M and L
letters in the count of njs and ny, is then given by

t =npthy +npth, (3.13)

up to a small constant term corresponding to the in- and out-coupling. Also, we will assume the
algebraic independence of t9\4 and t’L in the sense pointed out in Sec. 2.2 in order to make this
mapping injective, and use the symbols n and k from Eq. (2.6).

We can compose the path sum of the partial matrix elements of the propagator, introduced in
Sec. 3.3. The irreducible matrix elements from Sec. 2.4 become two-dimensional linear transforms.
Their multiplications must be viewed as operator compositions, or multiplications of matrices, and
we must preserve the order of the factors.

Due to the experiment layout, there are only two main irreducible matrix elements,

(WolU (thp)1a) = €1 (Wa|U (tar) [$1)e"* Unwe = €M Eppy Unwe,

, . . . (3.14)
<¢b|U(tL)|¢a> = e'¥1 ("/)2| U(tL) |¢1>€W2UHWP = 6WLE|3>UHWP;

supported by the in-coupling, out-coupling and reflecting matrix elements of the beam splitter BS,
which are insensitive of polarization and thus multiplies of the identity operator:

(Va|Uss|¥i)
("/)0|UBS|"/)Z'>
Ya|Uss|tp)
ol Uss|thp)

(3.15)

t,
r,

*
—r
t*

{
{

A photon inserted in the state |1;) ®|z) can be reflected directly to the detector with probability
amplitude (1,|Ugs|®;) = r. This must be considered a special case. For all other escape times, we
can compute the partial matrix element (1,|U(t)|¢;) in a uniform manner. However, it can not be
considered as a probability amplitude anymore since it is a linear operator, transforming the initial
polarization state into a polarization state that could be measured on the escaped photon, and the
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escape probability amplitude serves as a multiplicative factor. This element can be evaluated as
follows:

(WolU (nartyy +npty)ls) = alnar,ng) ZaW =

=7 |

= Z (0| Uss |vn) (
= tt* (—r*)" 1y
Wi

(| (.., ) ¢a><wa|UBs|wb>) (Wbl (E1y7 ) ba) (al Uns[ths) =
1

<1/)b‘U ( n—i—l z)
(3.16)

where a time-ordered product of the irreducible matrix elements from Eq. (3.14) is used. The sum

<.
I

Ya),

==

denoted )y is taken over all words W composed of M and L letters in the counts nys and ny,
respectively.

By factoring out the first term of the product and separating the cases of the two letters, we
get for nyy > 0 and nj, > 0 the following recurrence relation for a(nps,ny):

alnar,ny) = =" (Wp|U(Ey ) la)alna — 1,np) = r* (U E7) a)alnag, ny — 1) =

3.17
=—r ewME| >UHWpa(nM—1 nr) —r* e‘PLE| >UHWpa(nM,nL—1) ( )

The validity of this relation can be extended to cases where either nj; or nj, are zero if we define

a(n,—1) =a(-1,n) =0 (3.18)

for all n € N. a(0,0) is assumed to be defined consistently with Eq. (3.16) as —tt*(r*) ™1, despite
the fact that it does not represent any actual matrix element.

To simplify Eq. (3.17), let us define a new operator

C = — ("M By + €L B ) Unwe, (3.19)
so that
E|p>C = —6“‘0ME|p> UHWP (3.20 a)
and
E|8>C = _e“pLE|8>UHWP' (320 b)

From the properties of orthogonal projectors, it also follows that C' is unitary:
CCT = (6Z¢ME|p> + 6Z¢LE|S>> UHWPUITIWP (e_i¢ME|p> + €_i¢LE|S>> = E|p> + E|s) =1. (3.21)
Using this operator, we can rewrite Eq. (3.17) in the form

alnpr,ng) =1r* (E|p>Ca(nM —1,np) + E|S>Ca(nM,nL - 1)) ) (3.22)

As a next step, we will introduce

an g = (r*) "a(ny,np)lz), (n=k (mod 2)), (3.23)
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which has the physical meaning of the non-normalized polarization state of the photon, if it is
detected in the output arm at the escape time (3.13), where |z) denotes its initial polarization
state—in other words, if the initial state of the photon is assumed to be |¢;) ® |z). Also, the
substitution (2.6) was made. Applying the operators on both sides of Eq. (3.22) on the ket |z), we
obtain a recurrence relation for a,, j:

ank = EjpyCap k1 + B Cap 1. (3.24)

This formula has the same form as the propagator of a quantum walk on a line, as derived in [6].
We can compare Eq. (3.24) with a corresponding equation there:

U(n,t+1) = MyU(n—1,¢)+ M_U(n+1,t). (3.25)

Here ¥(n,t) is the two-component vector of amplitudes of the walker being at point n at time ¢ and
My and M_ is the coin matrix multiplied from the left by the orthogonal projector on the left and
right chirality state, respectively. Also, a, j is a mathematical object of the same kind as ¥(n,t),
a vector in C2. In order to claim a physical correspondence of the studied system’s evolution to
this quantum walk, we should check the relation between the initial conditions of both recurrence
relations.

In [6], the walker starts at both time and position zero. Thus, ¥(n,0) is nonzero only for n = 0,
U(0,0) denotes the walker’s initial chirality state. In our notation, the number of the random walk
iteration is denoted by n and the position k. Analogously, agj can only be nonzero for k = 0
because other values of k would represent negative n,; or ny, when transformed back via Eq. (2.6).
According to Egs. (3.23) and (3.16),

ag,0 = a(0,0)]z) = —tt* ()" |z), (3.26)
so this value is proportional to the initial state |z) with some complex factor.

Using these observations, we can conclude that the system models the quantum walk on a line
as it was introduced in Sec. 1.1. The walk can be reconstructed a similar way to Sec. 2.6: collecting
the output from all escape times into groups with the same n and renormalizing the probability in
each of these bins.

In contrast to Sec. 2.6, probability normalization is much simpler. From the exact correspon-
dence of the recurrence relations and the unitarity of the actual quantum walk, we know that the

value of
n

S)= Y lankl? (3.27)

k=—n
is conserved between the steps of the walk and thus independent of n. Particularly,
T2
f;
|2

S(n) = 5(0) = [lag,ol|® = [tt* (™)} = (3.28)

where the symbols for transmittance 7" = |¢|> and reflectivity R = |r|? of the beam splitter BS were

used.
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However, the symbols a,, ;. were scaled by a power of 7* in Eq. (3.23) to a(nps,np)|2). The
actual probability of measuring a photon escaping in the n-th iteration of the walk (n > 1) is

C(n)= Y lalnar,n—mny)l2)|* = R"S(n) = T? R, (3:29a)

nM:0

The probability of measuring the photon in direct reflection to the detector is

C(0) = ||(vo|Uns|os)|I* = R. (3.29b)
As a verification, we note that the total probability of escaping at any iteration
400 (e%e) ) ) T2
Cn)=R+ > T°R"" =R+ 3.30
Sy = 20

isequaltol asT+ R=1.

3.5 Current state of experimental realization

At the time of writing this thesis, an experimental group located at Erlangen, Germany, is
working on a realization of the described experiment [4] (see also the chapter introduction for
additional details). In this section, we will give a brief overview of the current state of the experiment.

In order to avoid the risk of high losses and decoherence caused by a big number of reflections,
the group decided to realize the long arms of the delay loop in optical fibre. However, a special
polarization-maintaining fibre must be used and for best results, the PBS elements must be manu-
factured as in-fibre couplers. On the other hand, the fibre is made of a birefringent material and
has two preferred working modes, corresponding exactly to the s and p polarization, general linear
combinations obtain a nontrivial relative phase shift in this medium which can become uncontrol-
lable over excessive optical distances. For this reason, it is necessary to couple the fibre to free space
outside of the PBS—PBS delay loop to prevent polarization decoherence.

The input in the experimental realization is formed by a pulse laser at wavelength 796 nm, with
the mean pulse duration of 280 fs and the repetition rate of 250 kHz. For our set of parameters, the
times needed to complete one loop are t?\/[ = 40uns and t’L = 45ns. A 50/50 beam splitter is used
for the in- and out-coupling, thus T' = R = 1 An equal weight superposition is used as the initial
state, produced by a sequence of a polarizing beam splitter, a half-wave plate and a quarter-wave
plate applied on the laser output. The orientation of the half-wave plate HWP in Fig. 7 is easily
configurable, making it possible to comparing quantum walks differing in their coin.

The testing measurements of the individual optics elements have shown some additional sources
of errors, some of which could be neglected and the other included in the theory. An influence of
some errors on the measurement outcome is discussed in Sec. 3.7. After the main sources of errors
are included in the model, the measurements show a very good agreement with the theoretical
predictions up to n = 3. Particularly, a Hadamard walk has been arguably observed. The choice of
th, and t} allows up to 8 iterations but due to the high transmittance of the beam splitter BS, the
pulses are already too weak and incoherent for n > 3 to give useful measurement output.
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3.6 Optimal layout for single photon use

Using the same approach as in Sec. 2.9, we can use the transformation of single photon input
state to find a response of the system on multi-photon input states, including coherent pulses.
However, let us find an optimal configuration allowing the use of single photons.

The only two parts of the experiment that depend on the desired mode of operation are the
light source and the detector. For single photons, an avalanche photodiode (APD)-based detector
must be used [19]. Its principle of operation makes it much more sensitive than a pulse detector but
also much more vulnerable. One must take serious care that a non-attenuated pulse never reaches
the detector in operational mode.

As far as the input is concerned, the group decided to use a highly attenuated pulse laser output.
If we approximate the pulses produced by the laser by coherent states (or a superposition of them),
the attenuation reduces the absolute value of their amplitude. However, the probability distribution
of the photon number stays Poissonian, which is the result for any coherent state (see App. A). Thus,
in order to reduce the probability of measuring multi-photon states as much as possible, the mean
photon number in the pulse is usually attenuated as much as several orders of magnitude below 1.
Only a few of the pulses will actually initialize a successful run of the experiment.

In order to get more useful data from the experiment, we will aim for measuring as high iteration
counts as possible. For this purpose, it is necessary to reduce the exponential decay of probability
per one iteration. According to Eq. (3.29a), the decay will be less when the reflectivity R of the
beam splitter BS increases. On the other hand, R also determines the probability of trivial result in
Eq. (3.29b), so if it is close to 1, nearly every input photon is observed in the detector directly and
not coupled into the interferometer at all. This further reduces the rate of successful runs.

One could make the input pulse stronger and make this filter at the in-coupling beam splitter
a part of the pulse attenuation chain. However, one would risk a damage of the single photon
detector by the reflected part of the pulse under such arrangement. One way would be to screen
this pulse out and start the detection afterwards. Another solution of this problem can be reached
by using two beam splitters, one solely for the purpose of in-coupling and the other one for out-
coupling, both configured so that there is nearly unit probability to stay inside the interferometer.
In this way, one can avoid the risk of damaging the detector without the need for a t?\/[, ;7 -timescale
controllable protective screen.

3.7 Imperfections and decoherence

Experimental data show various differences to the ideal behaviour of the optical elements, de-
scribed above. Let us list the main sources of errors in this section.

First, let us concentrate on losses in the experiment. The measurements in [4] have shown that
the losses at the PBS-PBS loop, for example, are over 50 % in addition to the 50 % of intensity
out-coupled at BS at every loop. Moreover, the losses are very different for the s- and p-polarization
states in favour of the s-polarization.
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In order to include these losses in the description, we can define an additional operator on the
state which reduces the amplitudes of the distinct polarization components accordingly,

L = Xsls)(s[ + Aplp)(pl, (3.31)
and apply it on the polarization state right after the action of the half-wave plate HWP. By defining
U - LUHWP; (332)

the losses can be included into the coin operator Eq. (3.19), introducing a generalized, non-unitary
coin which can be substituted for C' in all of the above formulas.

Any further losses in other parts of the interferometer can be included in the propagator anal-
ogously. For polarization-independent losses, the according “loss operator” is a multiple of the
identity operator and applying it on the state can be rewritten as multiplying the state vector by a
global constant factor.

Another problem is polarization mixing. It can occur by various means, including the following
facts:

— the polarizing beam splitters do not separate the basis states perfectly, a small part of the
improper polarization state is mixed in each output arm,

— a polarization maintaining fibre can fail to maintain the polarization state accurately when
disposed to mechanical stress or when used for excessively long optical paths,

— small rotations of the mirrors incline the plane of incidence and thus mix the original s- and
p-polarizations.

According to the numerical values in [4], the first two sources of errors can be neglected. The
latter is not quantized in the experimental report.

In fact, if the rotations of the mirrors are uncertain or subject to thermal oscillations or other
fluctuations, they cause a decoherence of the polarization state. Similarly, small uncontrolled spatial
shifts of the mirrors cause a decoherence in the position space. As decoherence in quantum walks
is a very broad topic, discussed extensively e.g. in [29], we will only demonstrate the effects of
polarization decoherence on a simplified example here.

Let us consider the interaction of a polarized beam with a mirror. Let the incident beam be in
a pure polarization state, described by a state vector

i) =alp)+ 815 = (§ ). (333

where the |p) and |s) kets are determined geometrically by other parts of the experiment. The right
hand side is a column expansion of the vector in this basis. Let the mirror is tilted slightly such
that the plane of incidence differs from the plane defining the preferred basis of H. As a result, let
us assume that the polarization state of the reflected beam is rotated due to the polarization state
of the incident beam by an angle of ¢, that is,

woh = (08 "o () = Rl (339

sin Cos
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If the angle ¢ is unknown and given only by a probability distribution, we will show that the
pure state |1;)(¥;| is generally transformed to a mixed state, which is the origin of the decoherence.
Let us assume that the distribution of the possible angles ¢ € R is Gaussian,

1 ¥

w(p) = —F—=e€ 202_ 335
MV 3:5)
The polarization state of the reflected beam is found as an integral of
0= [ Wo)wolu(e)do = [ R wilRTw(e)dp, (3.30)
Let | |2
i — (011 012 _ (e aﬂ*) 537
o= oo = (41 22 ) = (o, (3.37)
be the initial pure state. After expanding the matrix product in Eq. (3.36), the state g, can be
written as . -
= (g1 212 3.38
go (QQl 922) ’ (3.382)
where ) .y _
011 = (cos” p)o11 + (sin” ) 022 — (cos psinp) (012 + 021),
d12 = (cos” p)o1a — (sin” ) g21 + (cos @sinp) (011 — 022),
921 = (cos? @)oo — (sin? )12 + (cos sinp)(o11 — 022),
022 = (cos® @)z + (sin @) e11 + (cos psinp) (012 + 021),
(o) = [ e (3.38D)

Using the method of contour integration, we can find the above expectation values for the probability
distribution given by Eq. (3.35) to be

(cos2 ) = (1 + 6_202> )

(Sin2 L,O> — (1 _ 6—20'2> 7 (339)

N =N =

(cos psiny) = 0.
Plugging these values into Eq. (3.38b), we obtain the final density matrix as
00 = ( 1 s+ %6_2012 (611 - 022) S(o12 — 921)_+ %26_202(912 + Q21)> ' (3.40)
3(021 — 012) + 3727 (012 + 021) 3+ 5e72 (022 — 011)
For o = 0, g, becomes p; as expected. However, when there is some nonzero variance of the

angle . g, is a mixed state except for some specially chosen cases of p;. We can prove this by
computing the trace of p2:

1 5.2
Tro2 = 3 (1 — (012 — 021)2 + ((911 —029)? + (012 + 021)2) e 20 ) =

1 5.2
=3 (1 + 4012091 + (011 — 022)* + ((911 — 022)* + (012 + 921)2) (720" — 1)) — (341
1
=3 (a + 6(6_2‘72 — 1)) .
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Using the relation that
Tro; = Trof =1, (3.42)

which follows from the fact that g; is a pure state, the term a can be simplified as

a =1+ 4019001 + (011 — 022)% = (011 + 022)% + (011 — 022)? + 4012021 =

(3.43)
= 29%1 + 29%2 + 4012001 = 2Tr Q% =2
and thus b
2
Tro2=1- 5= e, (3.44)
Using Eq. (3.37), we can show that the coefficient b is nonnegative:
b= (011 — 022)° + (12 + 021)* = (|a]” — |8]*)% + (2Ra*)* > 0, (3.45)

however, in a special case § = +iq, it can be zero, meaning that g, is a pure state for any ¢. This
special case was allowed by restricting the unitary transform in Eq. (3.34) to one degree of freedom
only. If we allowed more general unitary transforms, the decoherence would be even stronger.

3.8 Summary

In this chapter, a system depicted in Fig. 7 was studied. The mathematical model showed
that it is a very straightforward implementation of a coined discrete time quantum walk on a line
described by many authors in the references. Therefore, any result from there should have a direct
representation in this system.

The reconstruction of the quantum walk from the experiment’s output is done the same way
as in Chap. 2, however, it was shown that probability renormalization of the time bins is done by
multiplying them by a simple expression exponential in the iteration count.

The implementation discussed in this chapter is currently realized by a partner experimental
group. The current state of this experiment was presented as well as some numerical data about
this particular realization. Also, an optimization approach for single photon use was proposed which
could be used in a future version of the experiment.
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Chapter 4
Quantum walk using a diffraction grating

In this chapter, we will present and discuss another simple implementation of a quantum walk
using the principle of diffraction on an optical grating.

4.1 The properties of diffraction grating

To describe the action of an optical grating as a linear optics element, we will revert to wave
optics. The reason is that due to the complicated interaction of the light and the grating, the
principles of quantum electrodynamics (QED) would have to be used, which is outside the scope of
this work. The Huygens-Fresnel principle, used below, is a classical, phenomenological version of
the quantum path integral and a sufficient replacement for our purposes.

Let a diffraction grating have N slits separated by a and each of width d. Let a monochromatic
plane wave be incident on the grating at an angle of ¢ such that the projection of its wave vector k
onto the plane of the grating is orthogonal to the slits. Let us define a two-dimensional polar
coordinate system (r, ) in the plane of incidence, where the angle ¢ is measured from the normal
to the grating. The above parameters and the coordinate system are depicted in Fig. 9. Assuming
that the slits length is much larger than a, the problem has an approximate translation symmetry
in the third orthogonal axis, which justifies the use of two-dimensional description.

v

¢ —

y' sin

Fig. 9: A zoom of a diffraction grating. Various notation used in the text is visualized. Both the incident
and diffracted plane waves are depicted.
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According to the Huygens—Fresnel principle [30], we get the amplitude of the diffracted wave
at the coordinates (r, ) in the far-zone as an integral of infinitesimal contributions of point sources
distributed along the transparent parts of the grating. If the angle ¢» = 0, these sources are all in
phase, otherwise their relative phase is linear in their y-coordinate with the factor of k%/nc' = —ksin.
Using the notation of Fig. 9, the amplitude is computed as

alr,0) = AWK (@)™ [ cliksintiksingqy, (4.1)
a

perture

where A(r) is a normalization factor and K is an inclination factor dependent on the angle of
diffraction, [) — ¢|. We will assume that K is normalized to 1 for ¢» = ¢. The dependence of A on
the geometrical parameters N, d and « is also noted but not explicitly written. Defining

o =siny —siny (4.2)

and introducing the particular shape of the aperture, the integral can be rewritten to

N yig
a(r, o) = A(r)K (¥, p)e” ™" Z // 4 ko2, (4.3a)
j=1"Y%i"2
where Na41
! .
y; = <] — T) a. (4.3b)

After computing the auxiliary integral

d d ikoy’;
yi+4 AN R g1 (3 2¢"%Yi  kod
/ ¢thozdy = Zkgyﬂ/ ¢thoz q,! = elkoyﬂ/ coskoz/ds = sin ——, (4.4)
;-4 4 % TR

we can sum Eq. (4.3a) as

kad N

a(r,e) = A(r)K (¢, go)e_ikr . %L Z ezkay] _

. 2sin kgd N (i N1
= AWK ) 2T 5 ke (i
j=1
. 2 sin kad N+1, N o
= A(r)K —ikr 277 2 —iko~5—= tkoja _
L R y
j=1 (4.5)
i 2sin kg4 w1, eho(NtDa _ gikoa
= ANKW, o)e " TQ e etkoa _ 1 -
. N . N
. 2sin kod 6Zk07a _ 6—Zk0?a
— —ikr 2 _
— A 2
. 2sinkgd sin ko
= A(r)e . =2 2 K (W, ).

ko sin ka%
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This equation splits into three significant terms:

— a term indicating a cylindrical wave propagating from the axis of symmetry of the grating
perpendicular to the plane of incidence,

— an envelope function given by the nonzero width of the slits,

— a directional characteristic function, independent of r and d.

We also note that Eq. (4.5) is undefined for a finite subset of possible values of o but can be
continuously extended to cover these points.

Analyzing these terms, we find that if the slits are narrow enough, namely for

™

d< —
-2k’

(4.6)

the “envelope” term varies so slowly that it never reaches zero for any choice of ¢ and ¢. For an
idealized grating with infinitely narrow slits, it approaches a constant in ¢ but on the other hand,
only an infinitesimal part of the incident wave is actually diffracted.

The last term is typical for diffraction gratings: aside from the inclination factor, it is a periodic
function of o (restricted to an interval reachable by Eq. (4.2)), reaching major maxima of N for
27
oc=m-—, mEZ. 4.7
= @)
Between each adjacent pair of major maxima, there are N — 2 unequally separated minor maxima
in the absolute value. For large N, most intensity of the diffracted light is concentrated near the
angles  corresponding to major maxima, the other peaks are suppressed.

4.2 Diffraction grating as a linear optics element

The previous section can be summarized as follows: when a plane wave is incident on a diffraction
grating with a large number of narrow slits, it is diffracted into a finite number of narrow angle ranges
(in a projection onto the plane of incidence) with nearly equally distributed intensities. If we replace
the plane wave by a beam, the diffraction grating transforms it into several output beams in the
plane of incidence. To justify the calculations exactly, we must add to the assumptions that only a
relative part of the slit count, NV, proportional to the mean width of the beam, is considered, and it
is still much greater than 1.

If the angle of incidence is 9, the angles of the outgoing beams, ¢, are given by

2T

sinnpm—sinzbzmk—, m € Z, (4.8a)
a
together with the inequality - -

5 < om < 5 (4.8Db)

There is always a trivial solution g = 1. Let us assume that there is another solution, ¢,. Note
that if another beam is incident at the angle of ¢y, the set of solutions is the same—therefore,
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the diffraction grating can act similarly to a multiport, mixing input beams incident at one spot
at angles {(;,} in output beams under the same set of angles. However, due to the losses and
interaction with the material, the transformation is not unitary. Also, the divergence of the output
beams, given by the nonzero width of the peaks of Eq. (4.5), can be a problem for larger scale use.

For our purposes, we will need to minimize the number of the multiport channels. From
Eq. (4.8a), we can note that the sines of p,, are equidistant, they must naturally also be bounded
inside the interval (—1,1). For given v, this gives an inequality for m,

(—l—sinw)];—jr <m< (l—sinw)];—jr, (4.9)
which has k k
mn:{ﬂ—sm¢5%J+Vl+$n¢5%J+l (4.10)

solutions in 7Z.

If we restrict ourselves to ¢ = 0, there is always an odd number of output beams. The case
ngm = 1 is trivial: the beam is mostly transmitted by the grating with only the negative effects
mentioned above. Thus we can say that the nontrivial minimum is 3. In order to reach 3 clearly
distinguishable output modes, we can put the inner of the whole part to be 1.5:

ka

o 2
S (4.11)

a=—.
k
In terms of the wavelength,
- (4.12)
- ]C ) .

the condition is a = %)\. The output modes are obtained by solving Eq. (4.8a) for m = 0 (zeroth
order maximum) and m = %1 (first order maxima) with the restriction of Eq. (4.8b), giving

2
wo =0, @41 = tarcsin 3 ~ +0.2327. (4.13)

Without the restriction that one mode is perpendicular to the grating, we can reach a two-mode
operation, resembling a beam splitter. We can find the corresponding a similarly as above, solving

a system
k
(1 - Sln'(/))_a = 5
zZ g (4.14)
1+ si — =
(1+sine) 5 = 3
This system gives values for both a and :
2 \
Q= — = ,
k (4.15)

1

i s
P = arcsm§ =5
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Let us find the transfer matrix in both cases, that is, the matrix transforming the tuple of input
beam amplitudes to the tuple of output beam amplitudes. In order to find it, we will plug every
combination of the input and output angles into Eq. (4.2) and use these results for taking a limit
of Eq. (4.5). For dimensionality purposes, we can divide the matrix elements by the measure of
the aperture, Nd. Also, we will drop the first term of Eq. (4.5) out of the matrix as it describes
the behaviour outside the grating and not the transformation itself. With these modifications, one
matrix element is reduced to

—sin — K (¢, ¢). (4.16)

In the 3-mode case, the first, second and third component of the amplitude vector will correspond
to the beams in the directions of ¢_, ¢y and ¢, in this order. Using Eq. (4.16), we find the transfer

matrix as
1 v v
T=(u 1 u], (4.17a)
v ou 1
where 5 kd 5 okd
u = Esin ?K(O,go+), v = %sin ?K(SD—,SOH- (4.17Db)

We emphasize that this matrix is generally not unitary.

For the 2-mode operation, the transformation is similar,

T:G) 11)>’ (4.18)

2 . kd

U=yt ?K(SO—,SDJr)-

Note that the transfer matrix is strongly dependent on the width of the diffraction grating slits, d.
For this reason, the grating can not be idealized.

4.3 Quantum walk with a line of diffraction gratings

Let us try to exploit the properties of a diffraction grating to implement a quantum walk
scenario. The calculations done in Sec. 4.2 are not quantum but their results contain information
about both absolute value of amplitude and phase of the diffracted beams. Using this, we can build

a semi-quantum mathematical approach, as shown below.

The proposed experimental configuration is depicted in Fig. 10. A line of identical diffraction
gratings is aligned parallel to each other and spaced equally. The distance of two neighbouring
gratings, b, must be large enough for the far-zone approximation to be used. As discussed in
Sec. 4.2, the waves will propagate in a fixed number of preferred directions between each pair of
adjacent gratings, also, it follows that the beams will meet at n nodes on the n-th grating, if counted
from the left. All paths leading to a given node have the same mean path length, which guarantees

good interference.

40



b)

Fig. 10: The third configuration to be studied. The use of three-mode and two-mode configuration (a
and b, respectively) for a Quincunx-like operation is depicted. Note that the actual behaviour does not
depend only on the angle of incidence of the input beam but also on the ratio of the grating constant a to
the wavelength. The image b) gives two different possibilities of where to place the output detectors.

We will assume that the relation between the wavelength and the parameter a and the input
angle ¢ are chosen such that the diffraction grating defines 3 or 2 modes, as described in Sec. 4.2.
In the former case, we will place a detector measuring the middle beam behind each node, leaving
only two beams propagating to the next grating. Alternatively, we can screen the middle beams
out. We let the light waves in the two-mode case propagate freely.

In both cases, the beams connecting the nodes form a grid structure strongly resembling a
random walk. However, in the following, we will show that the behaviour of the system is even
closer to a quantum walk, as described in Sec. 1.1.

Let us denote the nodes in Fig. 10 by pairs of numbers as follows: let n denote the zero-based
index of the diffraction grating, counted from the left. Thus the leftmost diffraction grating will
correspond to n = 0, the next one to n = 1, etc. Let m denote the vertical coordinate in the figure,
counted in the units of ¢. Let the normal at the first point of incidence define the axis where m = 0.
It then follows from the layout that m is integer for each node and that it is bounded by the following

two conditions,
—n<m<n,
(4.19)
m=n (mod 2).
These conditions are the same as the conditions where the probability of a particle performing a
random walk or a quantum walk on a line can be nonzero if n denotes the iteration count and m
the position and the walk starts at mm = 0. For this reason, let us identify the n and m parameters

with these physical values.

Let us describe the system’s behaviour in a similar manner to Sec. 1.1. We note that we do
not attempt to build a quantum description, we just write the above results in an algebraical way,
reusing the symbol names from Sec. 1.1.
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First, let us define two complex vector spaces, Hg of countably infinite dimension and H of
dimension 2. Let there be a basis of Hg denoted {|z) | z € Z} and a basis of H denoted {|L), |R)}.
Let us find a vector space H as a tensor product H = Hg ® Ho. We can find a basis of H as a
tensor product of the two bases using Eq. (1.1).

For a fixed n, we can build a vector in this space describing the beams incident on the diffraction
grating with index n: let a4 (n,m) is the amplitude, including relative phase, of the beam incident at
the node with coordinate m and coming from the positive or negative relative m from the previous
diffraction grating. Using these amplitudes, we can define an unnormalized vector v, € H as

vn =Y (am,—|m, R) + am,+|m,L)). (4.20)
meZ

This definition is correct since only a finite number of the coefficients a;, + can be nonzero.

The propagation from the n-th to the (n + 1)-th diffraction grating can be described as an
action of three operators: first, the beams are diffracted and transformed by the transfer matrix,
after which they are spatially separated by passing the distance b. Finally, a partial absorption of
the beams is counted in before the next iteration.

The transformation induced by diffraction can be described by an operator
C =1 Cy, (4.21)

acting on H¢ only. The operator Cy will be defined using its matrix in the {|L), |R)} basis, which
is equal to the transfer matrix Eq. (4.18) in the 2-mode operation. In the 3-mode configuration, the
unused middle beam must be projected out by restricting the matrix Eq. (4.17a) to the first and
third component only. In this restriction, it obtains formally the same shape as Eq. (4.18), but with
the v parameter given by Eq. (4.17b).

The propagation in free space is described by the operator

S=A(r)e”™*" 3" (Im +1,R)(m, R| + |m — 1,L)(m, L]), (4.22)
me7Z

where the factor A(r)exp(—ikr) comes from Eq. (4.5) and r is the distance travelled by the beam,
r=Vb2+c2 (4.23)

The symbols (m, R| and (m, L| are the coordinate functionals of the basis vectors |m, R) and |m, L),
respectively. For finite linear combinations, which form the linear span, the coordinate functionals
are well-defined. Also, Eq. (4.22) maps finite linear combinations of the basis vectors to other finite
linear combinations of these and so it preserves H.

Finally, the losses between two iterations can be modelled by multiplicating the vector by a real
constant, q.

Putting these three transformations together, the relation between the situation at two subse-
quent diffraction gratings can be described by the equation

Up41 = qSCup, (4.24)
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which is, up to a constant of ¢gA(r)exp(—ikr), equivalent to Eq. (1.3a) with a special choice of C,
described above. The constant factor can be included into the operator C, after which the usual
methods of solving or simulations, designed for unitary quantum walks, can be used with little or
no changes.

The initial state of the walk can be described in a straightforward way as the vector vg if the
initial beam is incident on the first grating at one of the nonzero preferred angles to the normal. An
example of this situation is shown in Fig. 10 b). On the other hand, if the input beam is parallel with
the normal, which can be the case in the 3-mode variant, the first iteration must be computed by
hand and the initial condition must be given in the form of v;. According to Eqgs. (4.24) and (4.17a),
the initial condition in this case is

v = quA(r)e (|1, R) +|—1,L)). (4.25)

4.4 Measurement of the walk

Due to the spatial separation of the nodes, measuring of the magnitude of the components of v,
is straightforward. According to Fig. 10 b), we can place a line of detectors at the location where
the nodes of the grating with index n would be. Alternatively, one detector can be used for each
individual mode if desired. This approach can be used for both experimental scenarios.

In the case of the 3-mode operation, we can use detectors shown in Fig. 10 a) to measure the
middle output mode of each node in addition to, or instead of, the distribution after n steps as
described above. However, the meaning of the intensity of these beams needs some explanation.

Let the next to the last state vector, v,,_1, be written as
n—1
o= > (am—m, R+ amt Im, L)). (4.26)

m=1—-n

The beams incident at the node at coordinate m can be written, in the sense of Eq. (4.17a), as a

Um,—
v = 0 . (4.27)
am7+
The diffraction grating transforms it into

Um,— + Vam +
Tv=| ulam,— +am+) |, (4.28)
Um 4+ + V@, —

3-component vector

so that the amplitude of the middle output beam is proportional to the sum of amplitudes of the
two incident beams. In other words, the intensity measured at the detector is a result of interference
of these two beams.
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4.5 Summary

In this chapter, a basic study of the possibilities of implementing a quantum-like walk using
a diffraction grating was provided. First, the formula for diffraction on a grating was carefully
derived and studied. It was shown that under some assumptions, a diffraction grating can behave
similarly to an optical multiport acting in free space. This fact makes it a new element available for

use in optical interferometers.

A configuration using a line of identical diffraction gratings in order to implement a random
walk scenario was studied. This idea differs significantly from the principle used in the previous two
chapters, one of the most striking differences is that the space requirements scale quadratically in
the maximal number of steps wanted to be performed.

Despite the fact that the treatment of the diffraction grating was classical, the resulting formulae
resemble strongly the quantum walk introduced in Sec. 1.1. For this reason, the result could be called

a generalized quantum walk with non-unitary coin.
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Conclusion

Quantum walks have become an active field of research, in particular in connection to quantum
algorithms, during the last decade. Several important algorithmic tasks have also been solved using
quantum algorithms based on quantum walks. As the theory of quantum walks is already very rich,
a demand naturally arises to find a flexible experimental implementation. A realization allowing
various changes to the basic quantum walk would be a significant step towards a quantum computer
since its framework could allow direct realization of some of the quantum walk-based algorithms.

There are many ways of implementing quantum algorithms in general. In this thesis, we stud-
ied the possibilities of implementing a quantum walk using an optical interferometer. One of the
configurations proved to have a very close relation to the basic coined discrete-time quantum walk
on a line and thus offers a possible way to pursue this line also in subsequent work. The other
configurations feature some generalized forms of quantum walks, which have not been studied so far
and thus their potential is not yet completely explored.

As noted in the introduction and in the respective places, some parts of the work were collab-
orative. However, most of the work of the original results presented in Chapters 2 to 4 have been
the author’s work within the presented Master’s thesis. Naturally, the experiments discussed are
completely the work of the colleagues in Erlangen.

The work done here opens some opportunities for a subsequent research. The next important
step would be to find a realization of some simple quantum algorithm based on one of the presented
implementations. Another significant open question is how more complicated quantum walks, e.g.,
a walk on a 2-dimensional lattice instead of a line, could be implemented in a similar manner. Work
on these topics is well under way and we expect our partners from Erlangen to catch on these ideas
in near future.
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Appendix A
Coherent states

Coherent states form an important subset of the state space of an electromagnetic field. In this
Appendix, we will define these states and study some of their properties.

A.1 The ladder operators

Let us begin with introducing the Hamiltonian of a quantum harmonic oscillator from elementary
quantum mechanics [31],

1 1
H = 5X2 + 5P2. (A1)

The X and P operators are the position and momentum observables in a set of units where the
mass of the particle, the angular frequency of the oscillator and the reduced Planck constant i are
all equal to 1, and satisfy a canonical commutation relation

(X, P] =i. (A.2)

In quantum optics, the same Hamiltonian describes the dynamics of every mode of an electromag-
netic field [27]. The X and P observables lose their original direct meaning but are still observable
quantities subsequently referred to as quadratures of the mode.

Similarly to a harmonic oscillator, any mode of an electromagnetic field has a nondegenerate
state with a lowest energy, the vacuum state |0). It can be shown that the spectrum of H is discrete
and all the eigenstates can be generated from |0) using so called ladder operators.

Definition 1: A ladder operator (with respect to another operator H) is any operator A which

satisfies the commutation relation
[H, A] = oA, (A.3)

where o € C.
The importance of such operators follows from the following Lemma.

Lemma 2: Let o € C, let H and A be two operators such that [H, A] = aA. Let further |¢)) be an
eigenvector of H with eigenvalue A, that is,

H{p) = Aj¢). (A.4)

Then
HAW) = (A + a)AlY), (A.5)

i.e., A1) is either a zero vector or an eigenvector of H with eigenvalue A + a.
Proof: Let us expand the commutation relation
[HyAl]=HA—-AH =aA (A.6)
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and apply both sides on [¢). After rewriting,

HAJp) = AH|S) + aAly). (A7)

Using Eq. (A.4) and the linearity,
HA[p) = M) + aAly) = (A + ) AJ). (A.8)
|

Let us try to find ladder operators of H as linear combinations of X and P. From Eqgs. (A.1)
and (A.2), it can be directly shown that

[H,X]=—iP and [H,P]=iX, (A.9)

thus
[H,aX + fP] = i(fX — aP). (A.10)

If we equate the right hand side to A(aX + SP), we can find the following two solutions:
f==xa for A=FI. (A.11)

Letting « a fixed real number, we obtain two mutually adjoint operators, shifting the eigenvalues
of (A.1) by £1. Especially, for a« = 1/+/2, these operators are called the annihilation operator a and

the creation operator al:
1
a=—(X+1iP),

(A.12)

al = —(X —iP).

Sk

The reason for choosing « in this particular way is that in this case, a and al follow a simple
commutation relation

[a,aT] = 1/2[X +iP, X —iP] = 2%[1), X]=1. (A.13)

The relations (A.12) can be inverted to express X and P in terms of a and af,

X = —(a+ah)
=—(a+a'),
\/i. (A.14)
P = —L(a —ah)
\/5 )
allowing us to express H only in terms of the ladder operators:
Lo afy = Lot 1 ata) = 124 ) = ata s L
Hzg{a,a}zg(aa +aa)=§(2a a—i—[a,a])zaa—i—i (A.15)

As |0) is the lowest energy state, a|0) is necessarily the zero vector. In the units we have been
using, this implies that

H|0) = % (A.16)
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On the other hand, we can apply the creation operator or any positive power of it on |0) to obtain
eigenstates of H with eigenvalues n + % for any n € Ng. Applying a ladder operator several number
of times could generally end in the zero vector—however, we will quickly show that this does not

happen with af applied on |0).

For this purpose, we will derive from Eq. (A.12) the identity
T\ _ Tyn—1 \n
a(a")" =n(a")"" " + (a")"a. (A.17)
Let us study the norm of (aT)”|O>, applying this result:

(a2 = {0la”(@1)710) = (0la"" (n(ah)" " + (a')"a) o) =
= n(0|an_1(aT)n_1|0> +0= nH(aT)n_HO)H = (A.18)

= n(n - 1) (@20 = ... = nllj0)]| =

=nl.

We see that the norm is nonzero for any n € Ng. Therefore, we can define normalized number states

1
vl

From Eq. (A.19), we can induce the relation

In) (a’)™|0). (A.19)

alln) = vVn+1|n +1) (A.20a)
and similarly, using Eq. (A.17),
aln) = v/n|n). (A.20D)

Hence, the ladder operators preserve the linear span of the number states. It follows that the
existence of any other eigenvector orthogonal to this set would result in a contradiction with the
nondegeneracy of the lowest energy level. Therefore, the number states form an orthonormal basis

of the one-mode state space.

From the shift property Eq. (A.5) of ladder operators and from Eq. (A.16), it immediately
follows that

1
Hin) = <n + 5) In). (A21)
Comparing with Eq. (A.15), we see that the action of the operator a'a on number states is simply
alaln) = nn). (A.22)

Thus, this operator acts as a “operator of excitation count” and can be denoted accordingly by N.
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A.2 The coherent states

Besides the number states, we can define many more states of general interest. The most familiar
of these states are coherent states. We will build their definition on the above formalism. However,
we note that in various sources, other definitions of coherent states than the following are also used,
not necessarily compatible with the one presented here.

Definition 3: Let o € C, let |¢)) be a normalized eigenvector of the annihilation operator a with
eigenvalue of o. We will call |¢)) a coherent state with amplitude «. If |¢)) also satisfies a phase
condition (¢)|0) > 0, we will denote |a) := |¢)).

The following theorem shows that there is a coherent state for any complex amplitude a and
gives a formula how to find it.

Theorem 4: Let a € C, let |0) be the vacuum state of the system with Hamiltonian (A.1). Then
a coherent state |«) exists and is unique. Moreover, it can be expressed in the following ways:

la) = 6_% exp(aa’)|0) = exp(aa’ — a*a)|0). (A.23)

Proof: Let us look for the coherent state in the form

+00
la) = Z cnln). (A.24)

n=0

The action of the annihilation operator is by Eq. (A.20b)
+00 +00

ala) = Z Vnepln — 1) = Z vn+lepyq|n). (A.25)
n=0 n=0

Comparing this series with «|«), we obtain a recurrence relation

vn+lepi1 = acy (A.26)

which can be solved as n
o

Cp = co- (A.27)

3

To show that this defines a state in the Hilbert space spanned by the number states, we shall show
that a state defined formally by a sum

= Z \/—In (A.28)

has a finite norm. As the number states define an orthonormal basis, the norm can be computed as

1117 = [eol® Z

|a|2" 2 2
= |cg|” exp |a]* < +oo0. (A.29)
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Hence, we can also see that to make the state |¢)) normalized, the constant ¢y must satisfy

2
o]

leol =€ 2. (A.30)

The last, “phase” condition of Definition 3, restricts (1|0) = ¢ to be real and positive. Thus, the
state is determined uniquely:

af? too n
la) = e 2 T;)ﬁm) (A.31)

Using Eq. (A.19), we can rewrite Eq. (A.31) as

—+00
o a” o2

o) =e” 2 ) F(GT)”IO) =7 exp(aal)|0), (A.32)
n=0 """

which is exactly the first simplified form mentioned in Theorem 4.

We will prove the last equivalence in Theorem 4 indirectly by showing that the right hand side
la), = exp(aal — a*a)|0) (A.33)
satisfies all the conditions of Definition 3. First, we will find the commutation relation
[a,aa’ — a*d] = o (A.34)
and analogously to Eq. (A.17), we will prove that
[a, (aa’ — o*a)"] = na(aa’ — a*a)? 1. (A.35)

Further, we will expand the exponential into a series,

Too g
) =Y E(aaT — a*a)"|0). (A.36)
n=0 """

Applying a from the left on both sides and using the commutation relation Eq. (A.35) and the fact
that a|0) = 0, we obtain

+o00 1

+o00
ala)y = @(aaf —a*a)" 0y =a ) (aal — a*a)"1|0) = ala),. (A.37)
n=0 """ n=1 (n—1)!
Next, we will show that |a), is normalized. Since
(aal — a*a)t = a*a — aal = —(adl — a*a), (A.38)

the operator aal — a*a is skew-adjoint. Hence, its exponential is unitary and preserves the norm of
|0) in Eq. (A.33).
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Finally, we need to check the phase convention of Definition 3. Expanding the exponential

again, we rewrite
+00

Oy, = %(0|(aaT — o*a)™|0). (A.39)

n=0
Using the identity that (0]a’ = 0 (since the left-hand side is a conjugate of a|0)) and the commutation
relation Eq. (A.35), we find that
(0(aal — a*a)?]0) = —a*(0]a(aa’ — a*a)*1|0) =
— —a*(0](aa’ — a*a)"1a[0) — (n — 1)aa* (0](aal — a%a)""2j0) = (A.40)
= —(n— 1)|af*(0/(aa’ — a*a)""2|0).

This recurrence relation can be solved as

—D)2(n — DMl ifni
oltaa’ — a*a)™10 :{( 1)"2(n — D!a|™ if n is even, A4l
(Olaa’ —a”a)™|0) 0 otherwise, ( )
since the expression reduces for even powers of n to finding (0|0) = 1 while for odd n, it is proportional
to (0laat — a*al0) = a(0[]1) = 0. Using this formula,

400 1 00
Olayr = > E(oua(ﬂ — a*a)"|0) = Z
n=0"" —
o (aP)”
=3 % = = (0a) >

n=0

2” — DUl X (=1)7a]*
- (2n)!

2 n=0 (A.42)

This implies that |a), = |a). |

A.3 Basic properties of coherent states

In this section, we will list the very basic properties of coherent states. We will focus only on
properties which are related to our topic in some way.

First, let us clarify the relation between number states and coherent states with integer ampli-
tude. The vacuum state |0) is equal to the coherent state with amplitude 0, as can be seen e.g. from
Eq. (A.32). On the other hand, number states |n) with n > 0 are not coherent. If a certain physical
situation involves coherent states with positive integer amplitudes, the notation must be altered to
avoid confusion.

As opposed to number states, no subset of coherent states can form an orthonormal basis of the
state space as none of them are mutually orthogonal. Instead, the scalar product of two coherent
states is

ol? 2 +00 n (p*\N al2 2 .
Bloy =T 8D (5, R e (A.43)

where we used the expansion Eq. (A.31) to compute the product in the number basis. However, we
note that a decomposition of unity using only coherent states is still possible in many ways, in fact,
the set of coherent states is overcomplete [27].
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Finally, we can study expectation values of the operators introduced above on coherent states.
All of these can be derived algebraically from the property ala) = o|a) easily:

(a}jy = (alala) = (alala) = o,

~ {al)q) = (ala’|) = ((e]ala))* = o,

(X)) = %((@ +(al)jey = %(Oxﬁ- a*) = V2Ra,
= (Play = 73(( a) = (al))q) = ﬁ(a —a*) = V23,
~ (V) = (falala) = [lala)|* = [la|)||? = |af?,

- (H)jgy = (N)jgy + 3 = la* + 3.

From the last two lines, we can conclude that the squared magnitude of the amplitude has a
direct relation to the energy of the state. We note that the lowest energy level given by Eq. (A.16)
is often subtracted from the Hamiltonian H by declaring it a zero energy level and the quantity |a|2
becomes proportional to the intensity of the pulse.

A.4 Example: a beam splitter

In this section, we will give a description of a beam splitter using the creation and annihilation
operators, and use this description to compute how a coherent state input transforms on a beam
splitter.

Let us begin with Eq. (2.9) from Sec. 2.3. However, instead of describing the situation for
a single photon, we will define four light modes corresponding to the two input and two output arms
of the beam splitter and having its own Hilbert space each. This way, we will come to a second
quantization of the electromagnetic field: on each of the spaces, we will postulate the creation and
annihilation operators, a;r- and a;, satisfying the canonical commutation relation Eq. (A.12), and a
vacuum state |0); which satisfies a;]0); = 0. We can then reconstruct all the algebraic results of
Sec. A.1. However, instead of referring to a n-th excitation of a given mode, we will claim that there
are n photons in that mode, each carrying an energy of 1.

We can then identify the states used in Sec. 2.3 with tensor products of certain states of this
compound system:

i) = 11); @ [0)r @ [0) as © [0y, = (al]0);) © [0)y @ [0)pr ©10), = ] [0), (A.44)

where |0) = |0); ® |0)y ®]0) 7 ® |0), and the a;-r operator is extended to act trivially on the spaces
of the U, M and L modes, and, similarly,

Yr) = al;]0),
Yar) = al]0), (A.45)
4r) = al|0).

It is important to realize that the creation and annihilation operators acting on different spaces
inherently commute.
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Using this notation, Eq. (2.9) can be rewritten as

al|0) = (tqah, +raal)|0),

1

: : (A.46)
ar|0) = (thap —riay,)0).

Recall that this mapping does not happen instantaneously but takes a finite time during which
the pulse travels through the beam splitter. During this time, the vacuum state can undergo some
change in phase under the U 4 operator. Therefore, we should correctly apply it on the vacuum state
on the right hand side. In terms of this operator, the last pair of equations can be rewritten as

UAGZT|0> = (tAaM + TAGTL)UA|0>7

1

: : (A.47)
Upay|0) = (thap —rqay)UA|O).

Generally, this transition could be much more complicated, but for our purposes, we will consider an
ideal passive beam splitter in constant outer conditions in which a vacuum state can only transform
trivially.

In order to study the action of the beam splitter on more than one photon, we will postulate
that the action is the same on each state as on the vacuum state, i.e.,

Unal = (taal; +raal)Us, (A45)
UAa}L] = (tjzlaz - rjlaT Wa.
Acting on both equations from the right by UL, we obtain
UaalUh = taal, +7aal
1A AaM TAaL’ (A 49)
T T T '

UpayUy = thap —ray,.

We will consider this the final description of the beam splitter’s action.
Taking products of powers of Eqs. (A.49) and their linear combinations, we can find the trans-
formation of any possible input state. As an example, let us find the transformation of the input

state |1);|1);y (for brevity, we omitted the tensor product operators and the kets corresponding to
output states):

UAaZaJ{JUA = UACL;[ULUAaJ{JUJr = (tAa}rw + rAaTL)(tZaTL — rZaT ) =

1 1

R ; - ) o F (A.50)
(Ta A)aMaL ATA(GM) +T4 A(GL)

Applying both sides of |0), we can see that the input state is transformed to

(Ta = R ML — tara2)ml0) L + rat310)ar2) 1, (A.51)
which is generally an entangled state of the two output modes.

Using the same idea, we can find the action of the beam splitter when there are coherent pulses
on the input modes. For this purpose, we will assume the input in the form of

al2 2 +00
0)il8)e = ¢ explaal) exp(8af)|0) = cexplaa] +Hal) = ¢ Y —(aaf+8af)"10), (4.52)

n=0""
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where ¢ = exp((—|a|? — |3|%)/2) and we used the fact that a;-r and aTU commute. The corresponding
output state is

|¢o):cz (UA aa] —I-BaU)UA) U4l0) =

+oo
1
:CZ atAaM—l-arAaL—l-BtAaL BrAaM)"UA|O> (4.5
= cexp(atAa}rV[ + arAaE + ﬁtj‘az - BrZa}LM)UMO) =
= cexp ((atA - ﬁrjil)a}rv[) exp ((arA + 6tf4)a2) Uyl0) =
= |atg = Brig)mlora + L)L,
T t

where the splitting of an exponential to a product of two factors was possible since a;, and aj
commute. The normalization constant ¢ is the same for both the input and the output state, as
follows from the identity

jarg = B4 + |ara + B84 17 = [ (jtal® + [ral®) + 1B (1Al + |ral®) -
—argfTty — Btha’ iy +aryg Bt + fthatry = (A.54)
= o> + 8.

Therefore, a product of two coherent input states transforms to a product of two coherent output
states, which is by definition a factorized state. This is interesting in contrast with the above two-
photon case where the output was entangled. Also note in Eq. (A.53) that the amplitudes transform
and “interfere” exactly in the same way as wave amplitudes in classical optics. For these reasons,
coherent states are understood as the “most classical” states of light.

o4



Appendix B
Hypergeometric sums involving two binomial coefficients

In this Appendix, we will study some properties of the series of the form

X (n—n n— vy
Z( >< )wm, vi,v2, 1, 2 € Ny, (B.1)

m=0 \/"* — K1 m— 2

which are needed at many points throughout Chap. 2. These series satisfy the condition that the
ratio of two successive terms is a rational function of m and thus they form a subset of so called
hypergeometric series [21]. Such series can be uniformly described using a closely related concept
of hypergeometric functions [21,22]. However, as hypergeometric functions are defined again as
hypergeometric series, such formal rewriting does not reduce the complexity of the calculations
needed to compute the sum. Similarly, the rewriting does not give us any new information. In the
following, we will keep the original series notation.

Lemma 5: Let 2 be a positive real number. In the series Eq. (B.1), only a finite number of terms
is nonzero. These terms are consecutive and bounded by

max{uy,p2} <m < min{n — vy + p1,n —ve + pa}t. (B.2)

Proof: The binomial coefficient () is zero if £ < 0 or k& > n and nonzero otherwise. The power
term is nonzero for all m as long as z is nonzero. Applying the former rule to the two binomial
coefficients in Eq. (B.1), we find that the term is zero only if and only if at least one of the conditions
are met:

m—pur<0orm—puy<0orm—p >n—viorm—uy>n—=uv. (B.3)

The inverse of this condition yields the lemma. [ |

As the sum for given n, p; and v; is in fact a special function of x, there are limited possibilities
to compute it in a closed form. One point where the sum is known is = 1, as shown in the following
theorem.

Theorem 6: (The sum for x = 1) Let uq, po, v1 and v9 are nonnegative integer constants. Then
+o00
Z n—ug n—vy\ _ 2n — (v1 + 19) (B.4)
=y \m— 1 ) \m— pg n— (vo —pg + p1)

Proof: Without loss of generality, let us assume that @1 > po. Using Lemma 5, the sum can then

n—va+pu2 _ _
3 (" ’“)(" VQ). (B.5)
m=p1 m—p] m — [2
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By substituting k = m — u1, it transforms into

n‘”2§2—ﬂl n—u n— vy (B 6)
k=0 k k+ H1 — K2 - -

Let us further study the following two expansions given by the binomial theorem:

- n—uvi n—m\ .
(I+a™ =5 | )

k=0

e (B.7)
n—u: P (- l
(I4+x)" "2 = Z ;)
=0
Their product can be expressed as
(1 + x)n—ul(l 4 x)n—yg — n_zyl n_zy2 n—ur n—1uvy xk+l _
k l
k=0 [=0
2n—i—u2 i <n — 1/1> <n — l/2> m (B 8 )
= T = Oa
m=0 h=o\ ¥ m—k
2n_i_y2 i (n — I/1> ( n— vy > m
= .
oy k k+n—vo—m
However, we could multiply the powers and expand the result:
(1 + :C)n_yl(l + Z,)n—l/g — (1 + Z,)Qn—l/l—l/g —
2n—i—u2 <2n - V2> . (B.8b)
= ™,
m
m=0

Both Egs. (B.8a) and (B.8b) are finite power expansions of the same expression, thus the
coefficients of the same power of x must be equal. We can note that the coefficient of ™, m =
n—vo + uo — pu1, in Eq. (B.8a) is exactly the sum in Eq. (B.6). Therefore, this sum must be equal
to the coefficient of 2™ in Eq. (B.8b), which is

2n—vy—vy\ 2n —v1 — o
m n—vy+pug—p1)

The following theorem shows that for large n, the sum rises exponentially in n, and it gives the
quotient of this grow.

Theorem 7: Let p1, po, v1 and v are nonnegative integer constants, let x is real, > 0. The limit

RS n—v n —vrv
- {E ()

m=0

exists and equals (v/z + 1)2.
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To prove this theorem, we will first need the following useful lemma:

Lemma 8: Let the assumptions of Theorem 7 hold, let n € N and x are fixed. Then the expression

n—uv n—uvy n
(1) (2%), o0

has exactly one maximum in m. For n > u;, n > v;, the maximum is reached at

NG
mao =
07 Vo+1

n+0(1). (B.11)

Proof: Let us denote

am, = R TR P (B.12)
m— gy ) \m — o

Let us study the ratio of two succeeding terms in the interval where they are nonzero, as given by
Lemma 5:

a1 _ (n—vi—m+p)(n—vy —m+pg)

am — (m—m+D(m—pa+1) (B.13)

This is a rational function in m. In the allowed interval, the denominator is a monotonically
increasing function and the numerator a monotonically decreasing function. Depending on the
value in the minimal and maximal m given by the inequality (B.2), the sequence (a,,) is either
monotonically decreasing, monotonically increasing or has one maximum inside the interval. In all
cases, there is exactly one maximum.? For sufficiently large n, the maximum is reached inside the
interval and can be found putting the ratio (B.13) equal to 1. This leads to a quadratic equation
for m, which can be written asymptotically as

(n? — 2mn + m? + O(n,m))z = m? + O(m)

2 (B.14)
(& — 1) (T) )y (T) +ao+0m =0
n n
This equation has two asymptotic solutions,
+
m_TEVE L ol = Y o, (B.15)

_\/E:F1+

from which only the + variant is acceptable since the other one gives m outside the bounds (B.2).

n z—1

Multiplying the last equation by n completes the proof. [ |

Proof of Theorem 7: Let A, denote the maximal value of (B.10) for given n € N. We can then
estimate the root from both sides by

VA, < «f <n_yl><n_y2>wns (n+ 1) A, (B.16)

m=0 m— m— p2

2 Under special conditions, it can happen that the same maximal value is reached at two consecutive
values of m. We will consider this also a single maximum.
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As n approaches +00, the {/n + 1 term has a limit of 1, so both sides give the same value

q(z) = lim Y/A,. (B.17)

n—-4o00

We will estimate the maximum A,, using its approximate position given by the above Lemma.

Vi

Let us denote

= B.18
Vo +1 (B.18)
so that mg = an + O(1).
First, let us use the Stirling’s approximation [26]
n n
n! =v2mn <—) (1 + O(n_l)) (B.19)
e

to make a similar approximation of a binomial coefficient, (Z), when n is large and both £ and n —k
are Q(n):

n nts -
<k> - \/ﬁkk"‘% (n — k)n—k—i—% (1 +0(n 1)) (B.20)

This condition is met for k = mg — p; when « € (0,1).

Using this approximation formula for A,, gives

. n—l/l—&—% _ n—uz—&-% an
A, = (n—11) (n— 1) 2 , (B.21)
21 (an + 0)en+0(an 4+ 0)2ntO0 (o/n + 0)¢'n+0 (o/n 4+ 0)'n+0
where every O is a shorthand for O(1) and
, 1
a=1l-a=—. (B.22)

Vo+1

We can use this estimate to finally compute the limit (B.17). In the following, O’ = O(n™1).

g(x) = lim {/A, =

n—-+o0o
i n (n— 1/1)”_”1“'% (n — 1/2)"_”24'%x0‘”
= 11m =
n— 400 27r(an + O)an+0(an + O)an+0(a/n + O)a’n+0(a/n + O)a’n+0 (B.23 a)
/ /
i (n _ V1)1+O (n _ V2)n+0 «@

n=+%0 (9% (an + 0)0' (an + 0)0+0' (o/n + 0)'+0' (a/n + 0)'+0

After this step, the O’ terms in all the exponents can be dropped as a result of @(n)o(l/”) — 1.
Similarly, the (2r)/" term has a limit of 1:

L (n—v1)(n —vo)x®
g(x) = 111_T|_l a oy o () o
n—-+oo (an + 0)%(an + O) (an—i—O) (a/'n+ 0)
. (1)1~ 20
n—-+o0o (a + O/)a(a + O/)a(a + O’) (a/ + O/)a/

(B.23Db)
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In the first line of Eq. (B.23b), we divided both sides of the fraction by n2, using the fact that
2(a+a’) =2. As a and o/ are constant, we can take the limit easily:

e
Q(Z') = aaaaa/a/(a/)a,
e
- a2aa/20/
e (B.23¢)

RV _1
(\/\gl)zﬁﬂ (ﬁfﬁﬂ
= (Vr+1)%
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