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List of used symbolsThe following list overs some of the mathematial symbols and onventions used in the workwithout prior de�nition.Symbol Explanation
N the set of positive integers, i.e., f1; 2; 3; : : :g
N0 the set of nonnegative integers, i.e., f0; 1; 2; 3; : : :g
Z the set of all integers, i.e., f0; 1;�1; 2;�2; : : :g
R the set of real numbers
C the set of omplex numbers1 identity operator, identity matrix�∗ omplex onjugate of a omplex number �A† Hermitian adjoint of an operator ATrA trae of an operator A
 tensor produt of operators, vetors or vetor spaes<� the real part of a omplex number �=� the imaginary part of a omplex number �n!! the double fatorial of n: n(n� 2)(n� 4) : : :; (�1)!! = 0!! = 1.[x℄ nearest integer to a real number xbx the integer part, the largest integer not greater than x 2 R(a; b) an open interval from a to bha; bi a losed interval from a to bf = O(g) jf(x)j is bounded above by onst:� g(x) asymptotiallyf = 
(g) jf(x)j is bounded below by onst:� g(x) asymptotiallyf = �(g) f(x) is bounded both above and below by onst:� g(x) asymptotially



IntrodutionQuantum walks are an interesting analogue of lassial random walks, de�ned in the frameworkof quantum mehanis. Many kinds of quantum walks have been studied and several quantumalgorithms are based on them. An experimental realization of a quantum walk ould also opena way to implement these algorithms. Despite the number of experimental senarios that have beenproposed to implement a quantum walk, e.g., [1,2℄, only a few atual experimental demonstrationshave been published so far|the �rst evidene is dated 2003 [3℄. This thesis desribes three newdi�erent experimentally realizable on�gurations whih display the behaviour of quantum walksand thus ould be used to ahieve this goal. One of the algorithms is the subjet of a urrentexperiment [4℄.The work is organized as follows. In Chapter 1, we provide a brief overview of quantum walksand optial interferometers in general. In Chapter 2, we study the features of a simple interferometeromposed of beam splitters and mirrors only. When short light pulses or single photons are inserted,a quantum walk behaviour an be observed in the output arm. In Chapter 3, a more elaborateinterferometer is studied where light polarization is used to �nd a lose orrespondene to a quantumwalk on a line studied by the pioneering works. In Chapter 4, the possibility of using an optialgrating as a linear optis element is presented and a third quantum walk experiment is proposed.Finally, we onlude our results.The main idea of the �rst two proposed implementations is to use one losed interferometriloop for an arbitrary number of the walk steps, as opposed to more straightforward linear optisimplementations, whose spae requirements sale quadratially with the number of steps to be per-formed [2℄. Also, the experiment desribed in Chapter 2 shows a ompletely new form of a quantumwalk sharing many properties with a lassial random walk.We emphasize that the optial interferometers desribed in Chapters 2, 3 and 4 were not designedby the author. The �rst studied experimental on�guration is a result of ollaboration with ErikaAndersson, Aur�el G�abris, Igor Jex, Tam�as Kiss and others, the on�guration introdued in Chapter 3is atually a desription of an existing experiment realized by the group of Andreas Shreiber,Katiusia Cassemiro and Christine Silberhorn. The idea of using di�ration gratings to implementquantum walks omes from Igor Jex and his olleague, Goe Chadzitaskos. The aim of this thesisis to develop a theoretial bakground for these on�gurations and to show the onnetions betweenthem. The mathematial models and their expliit solutions are original.
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Chapter 1Overview of the topiLet us introdue the most important onepts whih will be used in the hapters to follow.In this hapter, we will review the onepts of quantum walks and optial interferometers.1.1 Quantum walks, basi types and propertiesThe idea of �nding a quantum ounterpart of a random walk was �rst introdued in [5℄ in 1993.The authors of the mentioned paper studied the behaviour of a one-dimensional spin-12 partilewhose dynamis was determined by a speially de�ned evolution operator whih shifted the partileto the right or to the left depending on its spin state. After every step, a measurement of positionwas done, ollapsing the wave funtion and bringing randomness into the the time evolution.Sine that work, many authors have introdued other models that shared the idea of \quantumwalks". The theory has branhed in several ways whih are only loosely onneted. The main ideaextending the �rst example, whih was rather lassial, was to drop the intermediate measurements:we let the system evolve freely for some given time and make only one measurement at the end ofthis interval.The diret result of this approah is a disrete time quantum walk with a oin [6,7,8℄, whihis formulated algebraially as follows. Let HS be a disretized position spae, where the allowedloalized positions of the partile form an orthonormal basis whose vetors are denoted by integernumbers. Let this spae be augmented by a two-dimensional \oin spae" HC , whih takes the roleof the spin spae of the original system. Let us de�ne two orthonormal basis states in HC , denotedjLi and jRi. An orthonormal basis of the omposed system, whose state spae is a tensor produtHS 
HC , an be found as fjx; di = jxi 
 jdi j x 2 Z; d 2 fL;Rgg: (1:1)The quantum walk is obtained by initializing the system in a statej ii = j0i 
 jzi; (1:2)where jzi 2 HC denotes the initial oin state (or initial hirality), and letting it evolve for a givennumber of disrete time steps. One step then onsists of \tossing the oin" and then taking a ondi-tional step of size �1 in the position spae. Mathematially speaking, the propagator orrespondingto one time step is omposed of a unitary oin operator C, ating on the oin spae only, followedby a step operator S: U = S � C; (1:3 a)2



where C = 1
 C0;S = ∑

x∈Z

(jx+ 1; Rihx;Rj+ jx� 1; Lihx; Lj) : (1:3 b)As C0 ats on the previous oin state, there is a strong orrelation between the subsequent steps,resulting in a highly non-lassi behaviour of the quantum walk.Making the �nal measurement on the position spae, we an onstrut a disrete probabilitydistribution of the possible positions where the walker will be found. The distribution of a quantumwalk is generally bordered by two sharp peaks whih asymptotially move at a linear speed away fromthe origin, as opposed to a lassial random walk, for whih the probability distribution is binomial.In relation to this behaviour, the standard deviation of the quantum walk is asymptotially linearin the iteration ount as opposed to the lassial random walk where it sales with the square rootof time. More details about the distribution an be found in [6℄.The oin plays a fundamental role in a disrete time quantum walk. As an example, the generalproperties of a partiular quantum walk, suh as symmetry of the motion to the left or right, aredetermined not only by the oin operator C0 but also depend strongly on the initial oin state jzi.The neessity of using the oin spae follows from the so-alled No-Go Lemma [9℄, whih states thatthe basi properties expetable from a random walk, ombined with the demand of unitary timeevolution, restrit a oinless quantum walk on HS to a trivial form where eah step is taken in thesame diretion.As a �rst possible generalization of this disrete time quantum walk model, we an replae theline by a more ompliated graph on whih the walker an move. Quantum walks on a irle [6℄,grids with yli boundary onditions [10℄ or hyperubes [11℄ were desribed and even attempts to�nd some result for general graphs were made [12℄. As long as the graph is regular, i.e., has thesame number of edges originating from eah vertex, it an be treated analogously to the above aseof a line, the main di�erene is that the dimension of the oin spae must be altered to allow stepsin more diretions. The extension to irregular graphs is muh more ompliated.Another generalization of the disrete time quantum walk is obtained when we allow positiondependene of the oin transformation. The oin operator then beomes a quantum gate ontrolledby the position spae. On a line, for example, a position-dependent oin operator an be written asC = ∑

x∈Z

jxihxj 
 Cx; (1:4)where Cx is a unitary operator on HC for eah x 2 Z. Position-dependent oins arise most often inquantum walk-based searh algorithms [10,13℄ or as one approah to de�ne a disrete time quantumwalk on irregular graphs [8℄. Also, a quantum walk on a graph with high symmetry degree anbe simpli�ed to a walk on a muh simpler graph under some onditions [13℄, possibly induing aposition dependene of the oin on the redued graph.In ontrast to the disrete time quantum walk model, another way to de�ne a quantum walkfollows the idea of a ontinuous time Markov proesses. In a ontinuous time quantum walk on3



a graph [8,14,15℄, one de�nes a Hamiltonian over the position spae HS using the adjaeny matrixof the graph. The system then evolves aording to the Shr�odinger equation for a given time,after whih a measurement is made. A partiular feature of ontinuous time quantum walks is thatno oin spae is needed.The relation of disrete time and ontinuous time models is nontrivial: these two approahesshow very similar results in some areas whereas there are signi�ant di�erenes in other ases [8℄.Only very reent artiles [16,17℄ laim to have found some exat orrespondenes between the twomodels.In the whole sope of this work, we will use the term \quantum walks" to refer to disrete timequantum walks on a line.1.2 Optial interferometersThe main part of the work will be onerned with the ation of speially designed optialinterferometers. Generally, an optial interferometer, or just interferometer for short, is a deviein whih a light beam or pulse oming from a single soure is split using a beam splitter to taketwo or more possible optial paths [18℄. Using further beam splitters, mirrors and possibly otherlinear optis elements, the partial wave pakets are later direted to the same interferometer armand the ontributions from various paths interfere. Due to the di�erenes in the optial path lengthsorresponding to individual paths, and to phase shifts indued by reetions, the wave pakets meetwith di�erent phase and the interferene an be onstrutive as well as destrutive.An interferometer has an input arm, where the light soure is direted to, and one or moreoutput arms. There may be other available input modes whih are not used|generally, it followsfrom quantum optis that the numbers of input and output modes must be equal. In order to studythe interferene, one plaes optial detetors to measure the light properties, e.g., intensity, in theoutput arms. A wide spetrum of optial detetors is also available for measuring the quantumproperties of light [19℄.The quality of the interferene depends mainly on the stability of the interferometer elements butalso on the magnitude of the optial path di�erene. If it is muh larger than the oherene lengthof the soure light, the interferene does not our. After a quantization of the eletromagneti �eldis done, this phenomenon is explained by the fat that in a linear medium, there are almost nointerations between distint photons, so that every photon ontributes to the interferene outputon its own. We an imagine a single photon as a wave paket propagating along the interferometerarms. This wave paket an be split and reombined on the beam splitters. However, if the optialpath di�erene of two interferometer paths is muh larger than the mean width of this wave paket,the partial wave pakets will have zero overlap and no interferene will take plae.We will keep the wave paket piture it in the following text. Espeially, we will use the samedesription for a single photon as for a nonrelativisti partile and de�ne wave funtions whih anbe linear ombinations of states orresponding to the wave pakets. We will assume that there is anequation of motion for these wave pakets, however, we will never need its diret form. We note thatwave pakets are treated orretly in quantum optis as simultaneous exitations of a large numberof optial modes [20℄ and share the properties we need.4



Chapter 2Quantum walk with a simple delay loopThe �rst on�guration to be studied is based on the priniple of a delay loop. It is depitedin Fig. 1. It works as follows: a short oherent unpolarized light pulse is sent into the input armand gets split on the beam splitter A into the middle and lower arm, denoted M and L. Due totheir di�erent optial lengths, the two wavefronts arrive at the beam splitter B at di�erent times.A part of both pulses is then separated into the output arm and measured in the detetor, the resttravels through the upper arm U bak to the beam splitter A. Due to the geometrial arrangement,the proess an in priniple repeat an arbitrary number of times.
A B

input

L

M

U

output

D

ϕU

ϕM

ϕL

Fig. 1: The first configuration. A and B are both classic beam splitters, D denotes a detector. The
interferometer arms can be realized in optical fibre, in which case there is no need for mirrors.Let the time needed for a light pulse to travel the arms U , M and L be denoted by tU , tM andtL, respetively. In the following, we will always assume that tM 6= tL and, where it is important,also that tL > tM : (2:1)The time it takes for a pulse to travel through beam splitters, mirrors and phase shifters in thearms is negligible ompared to harateristi values of the times tU , tM , tL times (these delays areall in the order of one wavelength whereas tU , tM or tL are about 6 orders of magnitude larger ina typial realization1). Let us further denote by tp the mean duration of the pulse.If tL � tM � tp, no interferene takes plae at the �rst pass through the beam splitter B asthe two parts of the pulse arrive temporally separated. However, if we study the situation afterone or more yles through the upper arm, it an happen that two parts of the pulse whih wereseparated obtain another time di�erene whih auses them to meet again. In this ase, we anobserve interferene.

1 Values used for this estimate were: wavelength λ ∼ 800 nm, optical lengths l ∼ 1 m.5



2.1 The interfering optial pathsThe ondition of interferene is that the wavefronts of two or more pulses taking di�erent pathsmeet at the same point and at the same time (up to the duration of the pulse, tp), going the samediretion. The latter is always met in our on�guration: as seen from Fig. 1, eah arm has only onediretion allowed by the geometri layout. From the superposition priniple, it follows that we anpostpone the omputation of the interferene till the point where the pulse is measured, as if theinterferene took plae no sooner.Therefore, all possible optial paths through the interferometer, starting simultaneously at theinput arm and ending at the output arm, will split into in�nitely many subsets by their esape time.Only the paths within the same subset will interfere.When looking for optial paths whih take exatly the same time, we note that the time neededto travel any path from the input to the output is determined only by the number of passes throughthe lower, middle and upper arm, whih we will denote by nL, nM and nU , respetively: the time ist = nM tM + nLtL + nU tU ; (2:2)regardless of the order in whih the arms are taken. Therefore, two or more paths di�ering only inthis order will eah give a di�erent \history" whih must be onsidered one term in the interferene.We will reate a simple means of desription of the optial paths by words omposed of lettersU , M and L, written from the left to the right in the order the partiular arms are taken. In thisformalism, an example of two interfering paths, ending at beam splitter B, an be MUL and LUM .The geometri arrangement puts some restritions on suh words. First, in order to desribea omplete path from the input to the output arm, both its �rst and last letters an only be M orL. Every M or L exept for the last one must be followed by a U and every U again by M or L.This is illustrated diagrammatially in Fig. 2.
M

L

U

M

L

U

M

L

· · ·input output

Fig. 2: The rules for the word description of possible optical paths through the delay loop.It an be seen that one does not lose any information by dropping all the letters U . Thisgives the redued form of the given word, whih an be any sequene of letters M and L. We anreonstrut the full word by replaing M 7!MU and L 7! LU and erasing the last U formed in thisway. For this reason, we will use only the redued form in the following text.As a onsequene, we an notie the following equation putting a onstraint on the numbers ofthe available letters: nU = nM +nL�1. Plugging this into Eq. (2.2), we an simplify the expressionto t = nM t′M + nLt′L � tU ; (2:3)where t′M = tM + tU and t′L = tL + tU : (2:4)6



2.2 Correspondene to a random walkFor some hoies of tM , tL and tU , it is possible that not only the paths whose words arepermutations of eah other will interfere. A suÆient ondition for interferene is that the timesgiven for the two paths by Eq. (2.3) are loser than tp. Espeially, if the ratio t′M : t′L is a rationalnumber, there are paths whih take exatly the same time despite they have di�erent nM and nL.Namely, if t′Mt′L = pq ; (2:5 a)then qt′M = pt′L (2:5 b)whih implies that the mapping Eq. (2.3) is not injetive|it gives the same value of t when wederease nM by q and inrease nL by p or vie versa. Note that suh operation always hanges thelength of the word, nM+nL, as p 6= q. If t′L�t′M � tp, two paths whose words have the same lengthbut di�erent nM and nL an not interfere as the di�erene of their times is an integer multiple oft′L � t′M or, equivalently, tL � tM .The problem of irregularly oiniding esape times an be solved easily by hoosing the times t′Mand t′L themselves muh larger than their di�erene. (On the other hand, however, we are limitedby the ondition of global oherene.) This reates a arrier pattern in the time domain: esapetimes of paths with the same nM + nL will be grouped together and separated in a �ner way bytheir nM : nL ratio. The result is shown in Fig. 3.
t0 M L MM LL

ML or LM

MMM LLL etc.

Fig. 3: The possible escape times of the pulse. A combination of letters is used to represent the time marks
through Eq. (2.3). Only some marks are labeled. Between MMM and LLL, for example, there are other

combinations of three letters in the order of increasing count of L letters.This leads us to re-parametrizing the esape time by two new variables,n = nL + nM ;k = nL � nM : (2:6)The former is the word length and an be used to index the groups reated by the proximity oft′M and t′L. All paths desribed by words of a given length will have their esape time in the samegroup. The latter parameter then numbers the marks in the range of one suh group.Note that for eah n, k is bounded between �n and n and has the same parity as n. Under theassumption (2.1), the marks on the time axis will follow a lexiographi ordering of the respetive(n; k) ouples until the borders of two adjaent groups meet. This happens whennt′L � tU � (n+ 1)t′M � tUn(t′L � t′M ) � t′Mn � t′Mt′L � t′M ; (2:7)whih puts an upper bound on the number of learly distinguishable loops.7



The orrespondene of the system's behaviour with a random walk on a line is straightforwardif we all n the iteration ount and k the position on a thought line. We an ompare taking themiddle or lower arm to a step left or right, respetively. Note that all iterations of the walk areobserved simultaneously in a single run of the desribed experiment: they are mapped to a singletime line by the N0�N0 ! R mapping provided by Eq. (2.3). By measuring the esape probabilityfor all the marks in a single group, we an all this a distribution over the possible positions on theline after the given number of steps (see also Se. 2.6). Finally, reall that after n steps of a randomwalk, there are exatly the same onstraints for k as we found above.2.3 The quantum mehanial modelBesides the pulse regime desribed above, the interferometer an also be operated in a singlephoton mode. In this approah, instead of measuring the intensity of the output signal at the possibleesape times, one would insert single photons into the interferometer and measure the distributionof the time instants they are deteted at the output. By performing a suÆient number of runs ofthe experiment, one would use this probability distribution instead of the signal from the intensitydetetor. In Se. 2.9, we will prove the exat physial orrespondene of these two approahes.In order to explain single photon phenomena, our mathematial model of the system must bebased on quantum mehanial treatment of light instead of lassial wave optis. To help with themathematial desription, let us solve the single photon operation �rst. The simpli�ation obtainedin this way is that we an desribe the system using one-partile quantum mehanis. After the timeevolution is solved, we will rewrite the obtained results in terms of the reation and annihilation�eld operators, allowing us to onsider multi-photon input states, in Se. 2.9.The Hilbert spae used in the following will be the spae of L2-integrable funtions de�ned onthe graph of the interferometer and its vetors wave funtions of the photon. We will not work withthese wave funtions diretly, rather, we will de�ne several signi�ant states and study the overlapof the system state with them. These states, as well as the initial state of the inoming photon,will be onstruted as minimum unertainty wave pakets desribed by their mean position. Thediretion is given by the physial arrangement and the speed is onstant.Beause of the detetion proess, the time evolution of the system is not unitary. However, wean de�ne an output state j oi right at the beginning of the output arm|the amplitude of this statewill be equal to the amplitude of probability of deteting the photon after a �xed amount of time.If the photon is not deteted, this part of the wave funtion is lost, leaving only the part supportedby the inner parts of the interferometer. There is no need to renormalize the wave funtion after suha projetion|this way we an reet the fat that the subsequent results are atually onditionalprobabilities with no extra work.There is an alternative approah possible: if we replae the detetor by an half-in�nite line neveroming bak to the interferometer, the parts of the wave funtion overlapping j oi will ontinuetravelling along this line, e�etively projeted out of the piture. The advantage is that if we do asimilar replaement of the input arm, we will reover the unitary nature of the time evolution. Thisapproah justi�es the usage of a propagator to desribe the system's time evolution.8



Let us further desribe the ation of a beam splitter on the example of the beam splitter A inour layout. It has two input and two output modes. As indiated above, we will model these usingtwo plus two wave pakets labelled by the arms they are lying on. These states are shown in Fig. 4.
A B

|ψi〉 |ψM 〉 |ψo〉

|ψU 〉

|ψL〉

Fig. 4: The selected photon states used for the mathematical description. Both the length of the pulses
and their distance from the beam splitters are highly magnified.If a photon arrives at the beam splitter in a general linear ombination of the two input states,�j ii+ �j U i, after a ertain time of interation, its state is transformed into a linear ombinationof the two output states, j M i+ Æj U i, by the rule

( Æ ) = ( tA �r∗ArA t∗A )(�� ) = RA (�� ) : (2:8)Here we assume that A is an ideal passive linear beam splitter.Alternatively, we ould write j ii 7! tAj M i+ rAj Li;j U i 7! t∗Aj Li � r∗Aj M i: (2:9)The index A denotes the beam splitter we are desribing. See also App. A for operator desriptionof this ation.The parameters tA and rA are two omplex numbers alled transmission and reetion ampli-tudes, respetively. They must satisfy the onditionjtAj2 + jrAj2 = 1 (2:10)for the matrix RA to be unitary, otherwise they are arbitrary. (The ondition on unitarity restritsthe elements of RA to two omplex degrees of freedom plus a global phase, whih is ignored here.)The loation of minus signs and omplex onjugates in RA is merely a onvention, another hoiewould be balaned by hange of phases of tA and rA.In the beam splitter A, we have hosen the input mode out of the interferometer input to bepreferred by not obtaining any omplex onjugates in Eq. (2.9). Similarly, we will hoose the lefthand side input mode of the beam splitter B for the same.Usually, one also de�nes TA = jtAj2 and RA = jrAj2 (2:11)9



alled the transmittane and reetivity of the beam splitter. These parameters are independent ofthe phases of tA and rA and thus provide an inomplete desription of the beam splitter, however,they have a diret interpretation familiar from lassial optis. The ondition (2.10) an be rewrittenas TA +RA = 1: (2:12)For the free travel along the interferometer arms, we an de�ne a referene wave paket on bothends of eah arm (j a1i, j a2i), these two being related by a spatial shift. A photon needs sometime ta to travel the length of the arm. Similarly to a beam splitter, we will desribe this timeevolution by a propagator, spei�ally by the matrix element h a2jU(ta)j a1i. This redues to someunit omplex number, eiϕ. The phase ' will inlude the phase di�erene aused by the elapsed timeta, any possible arti�ial phase shift put on the arm and possibly some other phase shifts negletedelsewhere. This way, we will de�ne and use the total phase shifts 'M ; 'L and 'U , orresponding tothe middle, lower and upper arms, respetively.2.4 The path sumInstead of omputing the state of the system after some �xed time, we will aim to �nd anexpression for the matrix element �(t) = h ojU(t)j ii (2:13)diretly. This amplitude gives the esape probability after time t by the formulaP (t) = j�(t)j2: (2:14)After the �rst ation of beam splitter A, the state is a linear ombination of j M i and j Li.Thus, we an use a deomposition of unity to obtainUAj ii = PMUAj ii+ PLUAj ii (2:15)where PM and PL are orthogonal projetors on the one-dimensional subspaes spanned by j M iand j Li, respetively. Now if t > t′L, the photon must take the upper arm, passing through thestate j U i. However, after the ation of both of the projetors in Eq. (2.15), the �rst time to reahnonzero overlap with this state is uniquely given:h ojU(t)j ii = h ojU(t � t′M )PUU(t′M � tA)PMUAj ii ++ h ojU(t � t′L)PUU(t′L � tA)PLUAj ii == h ojU(t � t′M )j U ih U jU(t′M � tA)PMUAj ii ++ h ojU(t � t′L)j U ih U jU(t′L � tA)PLUAj ii: (2:16)From this equation, we an see that the problem of determining �(t) was transformed to om-puting several matrix elements of evolution operators on shorter time intervals. In both terms ofthe sum, there is one matrix element with an initial state of j U i and time t shortened by t′M or t′L,10



and one matrix element orresponding to taking the middle or the lower path, respetively. We willall the latter an irreduible matrix element.When omputing the elements with initial state of j U i, we note that we an deal with it exatlythe same way as we did above with j ii, so the subsript an be simply substituted in all the aboveformulas.In this way we an redue the time t down to some remainder tr, leaving the last element ofh ojU(tr)j U i. This element is both irreduible and nonzero only if tr = tM or tr = tL. Due tothe algebrai independene of t′M and t′L, this ondition �lters out all elements of the exponentiallygrowing sum exept for those representing the possible optial paths from the input arm to theoutput arm, taking exatly the time t. (See Fig. 5 for an example of all the optial paths taking agiven time.) For this reason, we will all this sum a path sum. This onept is in fat a disretizedase of path integral and its usability for desribing quantum random walks has been well-knownbefore, see e.g. [6℄.
t

2t′M + t′L − tU

Fig. 5: An illustration of all the optical paths ending at the same escape time of 2t′M + t′L − tU . The time
line is broken to show the artificial partitioning into random walk iterations. Marking the instants the

photon passes the beam splitter B, we can note three possible ways to the chosen mark. From the leftmost
one to the rightmost one, these are called MML, MLM and LMM in our terminology.As de�ned in Se. 2.1, eah optial path is desribed by a word W omposed of letters M andL. For eah word ontaining the letter M nM times and the letter L nL times, there will be exatlyone produt of the irreduible matrix elements:{ h U jU(t′ℓ � tA)PℓUAj ii, where ` is the �rst letter of W ,{ h U jU(t′ℓ � tA)PℓUAj U i for every letter ` between the �rst and the last one,{ h ojU(tℓ)j U i, where ` is the last letter of W .Note that if W has only one letter, `, there is just one term, h ojU(tℓ)j ii.We will �nd expliit forms for all these possible irreduible matrix elements. Starting with the�rst one, UAj ii = tAj M i+ rAj LiPMUAj ii = tAj M iPLUAj ii = rAj Li (2:17)11



In both ases, this is a basis state multiplied by some single matrix element of UA. Now we ouldde�ne an analogous orthogonal system near the beam splitter B. We would then split U(t′ℓ � tA)to the free time evolution along the partiular arm, the ation of the beam splitter B (�lteringthe output to the upper arm) and the free evolution by time tU � tB along the upper arm. Theproedure is straightforward, so let us give just the result diretly:h U jU(tM � tA)PMUAj ii = tAeiϕM rBeiϕU = ei(ϕM+ϕU )tArBh U jU(tL � tA)PLUAj ii = rAeiϕLt∗BeiϕU = ei(ϕL+ϕU )rAt∗B : (2:18)All the other irreduible matrix elements an be expressed similarly:h U jU(t′M � tA)PMUAj U i = �ei(ϕM+ϕU )r∗ArBh U jU(t′L � tA)PLUAj U i = ei(ϕL+ϕU )t∗At∗Bh ojU(tM )j U i = �eiϕM r∗AtBh ojU(tL)j U i = �eiϕLt∗Ar∗B�(tM ) = h ojU(tM )j ii = eiϕM tAtB�(tL) = h ojU(tL)j ii = �eiϕLrAr∗B (2:19)
This in fat allows us to �nd a losed form for �(t) for t given by Eq. (2.3). However, it isneessary to separate the ase n = 1 as shown above and make some general observations startingfrom n = 2. So, for omputing �(nM t′M+nLt′L�tU ), whih we an denote for simpliity �(nM ; nL),we need to sum the above produt over all words W omposed of nM times the letter M and nLtimes the letter L. These words split into four groups depending on their �rst and last letter. Dueto the onstrution above, we an see that all the words in one group will ontribute in the sum bythe same term, so only the ardinality of eah of these four subsets is needed.Using the notation that the binomial oeÆients outside the Pasal's triangle are zero, there are(n−2

nL
) words both beginning and ending by M , (n−2

nM
) words both beginning and ending by L and( n−1

nM−1) for both the remaining ases. Thus the general form of the sum �(nM ; nL) is�(nM ; nL) = eiϕ(nM ,nL)

((n� 2nL )(tArB)(�r∗AtB)(�r∗ArB)nM−2(t∗At∗B)nL ++ (n� 2nM )(rAt∗B)(�t∗Ar∗B)(�r∗ArB)nM (t∗At∗B)nL−2 ++ ( n� 2nM � 1)((tArB)(�t∗Ar∗B) + (rAt∗B)(�r∗AtB)) (�r∗ArB)nM−1(t∗At∗B)nL−1

)(2:20)where the phase '(nM ; nL) = nM'M + nL'L + (n� 1)'Uan be found to be exatly the same in all terms. Notiing other ommon terms, this formula anbe subsequently signi�antly simpli�ed to�(nM ; nL) = eiϕ(nM ,nL)(�r∗ArB)nM−1(t∗At∗B)nL−1�� ((n� 2nL )TATB + (n� 2nM )RARB � ( n� 2nM � 1)(TARB +RATB)) ; (2:21)where we reused the symbols de�ned in Eq. (2.11).12



Using the relationTARB+RATB = TA(1�TB)+RA(1�RB) = TA+RA�TATB�RARB = 1�TATB�RARB ; (2:22)we an use Pasal's rule to simplify Eq. (2.21) even further to�(nM ; nL) = eiϕ(nM ,nL)(�r∗ArB)nM−1(t∗At∗B)nL−1�� ((n� 1nL )TATB + (n� 1nM )RARB � ( n� 2nM � 1)) : (2:23)The speial ases (orresponding to the diret pass through the interferometer), olleted inEq. (2.19), �(1; 0) = �(tM ) = eiϕM tAtB ;�(0; 1) = �(tL) = eiϕL(�rAr∗B); (2:24)must be exluded from Eq. (2.23) unless we de�ne the binomial oeÆients (−1
k ) to be zero for allk. However, we will avoid this sine suh a de�nition would break the Pasal's rule.2.5 The reurrene relationLet us relate the behaviour of the interferometer to a random walk by �nding a suitable reur-rene relation. Denoting by Pn,k the probability of �nding the walker on the position k after n steps,a lassial random walk is governed by the relationPn,k = pLPn−1,k+1 + pRPn−1,k−1; (2:25)where pL and pR are the probabilities of taking a step to the left or to the right, respetively. It isalso important to state an initial ondition whih is usually hosen to be P0,0 = 1.Studying Eq. (2.23), we observe that Pasal's rule implies�(nM ; nL) = eiϕ(nM ,nL)−iϕ(nM−1,nL)(�r∗ArB)�(nM � 1; nL)++ eiϕ(nM ,nL)−iϕ(nM ,nL−1)(t∗At∗B)�(nM ; nL � 1) == ei(ϕM+ϕU )(�r∗ArB)�(nM � 1; nL) + ei(ϕL+ϕU )(t∗At∗B)�(nM ; nL � 1): (2:26)Reusing the symbols n and k from Eq. (2.6), we an de�nean,k = �(nM ; nL) (n � k (mod 2)) (2:27)and re�ne the relation toan,k = ei(ϕM+ϕU )(�r∗ArB)an−1,k+1 + ei(ϕL+ϕU )(t∗At∗B)an−1,k−1 = C1an−1,k+1 + C2an−1,k−1;C1 = ei(ϕM+ϕU )(�r∗ArB)C2 = ei(ϕL+ϕU )(t∗At∗B); (2:28)with diret formal analogy to Eq. (2.25). The main two di�erenes are that{ the onstants C1 and C2 are omplex,{ we found a reurrene relation for amplitudes, not probabilities.13



Due to the partiular behaviour at n = 1, it is neessary to speify the initial onditions nosooner than at n = 2. Their omplete set is thena2,−2 = �(2; 0) = �eiϕ(2,0)r∗ArBtAtBa2,0 = �(1; 1) = eiϕ(1,1)(TATB +RARB � 1)a2,2 = �(0; 2) = �eiϕ(0,2)rAr∗Bt∗At∗B ; (2:29)and we must keep Eq. (2.24) as speial ases.However, a mathematially equivalent approah is to say that the system is simulating threerandom walks whih interfere. These three walks start at both di�erent positions and di�erenttimes. To distinguish from the previous notation, we will use tildes to denote their respetive initialonditions: ~a1,−1 = a1,−1 = �(1; 0) = eiϕM tAtB~a1,1 = a1,1 = �(0; 1) = �eiϕLrAr∗B~a2,0 = a2,0 � (C1a1,1 + C2a1,−1) = �eiϕ(1,1): (2:30)Note that the presene of nonzero ~a2,0 prevents Eqs. (2.29) to be extended bak to n = 1.These relations allow us to laim that the system under study undergoes a speial oinlessquantum random walk. This is new sine in the theory of quantum walk on a line, a nontrivialquantum walk without a oin degree of freedom is exluded by the No-Go Lemma mentioned inSe. 1.1. In our ase, this lemma is irumvented by hanging the fundamental approah to aphysial representation of the random walk time and position. However, this kind of quantum walkhas limited mathematial possibilities sine all the interferene is simply additive. Despite the fatthat the onstants C1 and C2, from Eq. (2.28), are omplex, their phases have no observable e�eton the outome. We an tell so by taking the square of the absolute value of Eq. (2.23):P (nM ; nL) = (RARB)nM−1(TATB)nL−1�� ((n� 1nL )TATB + (n� 1nM )RARB � ( n� 2nM � 1))2 : (2:31)Note that no phase shifts a�et this probability, it is expressed ompletely in terms of the lassialparameters of the two beam splitters. The reason for this is that every possible senario takenby the photon goes through every phase shift a �xed number of times. As we onsidered no timedependene of these phase shifts, every term in the path sum gains exatly the same phase and thusthey an only interfere trivially.2.6 Probability normalizationAs the random walk iterations are nothing more than imaginary divisions of the photon's outputtime, the sum of probabilities P (nM ; nL) over one iteration, given by the ondition nM +nL = n == onst:, is not 1. Instead, the normalization
∑

nM ,nL∈N0

nM+nL>0

P (nM ; nL) = 1 (2:32)14



holds unless we assume some possible losses inside the interferometer, in whih ase there would bea � sign.We an still onsider P (nM ; nL) in the range of one iteration to be relative probabilities butthen it is neessary to normalize them by multiplying all of them by a ommon fator of 1=C(n)where C(n) = ∑

nM+nL=n

P (nM ; nL): (2:33):In the following, we will evaluate this sum.Let us rewrite the probability (2.31) in terms of new simplifying parameters T and R, whereT = TARA;R = RARB : (2:34)P (nM ; nL) = RnM−1TnL−1

((n� 1nL )T + (n� 1nM )R � ( n� 2nM � 1))2 : (2:35)Furthermore, we an rewrite the onstraint nM + nL = n to express nL using nM :P (nM ; n� nM ) = RnM−1Tn−nM−1

(( n� 1nM � 1)T + (n� 1nM )R � ( n� 2nM � 1))2 : (2:36)In order to �nd the normalization onstant (2.33), we need to evaluate the sumC(n) = n
∑

k=0

Rk−1Tn−k−1

((n� 1k � 1)T + (n� 1k )R � (n� 2k � 1))2 : (2:37)The expression an be expanded to several sums of the formRaT b n
∑

k=0

( n1k � k1

)( n2k � k2

)RkTn−k; k1,2 2 f0; 1g; (2:38)whih strongly resembles the left hand side of the binomial theorem but di�ers in ontaining a prod-ut of two binomial oeÆients instead of one. This di�erene means that we need speial funtionsto simplify the sum. The most straightforward way is to rewrite the expression to a hypergeometrifuntion [21,22℄, whih gives
n
∑

k=0

(n1k )(n2k )RkTn−k = Tn2F1

(�n1;�n2; 1; RT )
n
∑

k=0

(n1k )( n2k � 1)RkTn−k = n1RTn−1
2F1

(1� n1;�n2; 2; RT ) ; (2:39)if T 6= 0. Note that if T = 0, we an take a limit of the right hand side as T approahes 0. This isjusti�ed by notiing that Eq. (2.37) is a polynomial in T and R and thus a ontinuous funtion.15



These expressions an be alternatively rewritten using Jaobi polynomials or, in some speialases, Legendre polynomials [23,24℄, nevertheless, neither of these expressions an be onsidered alosed form.The omplete expression for C(n) an be found this way to beC(n) = Tn−1(T +R)2F1(1� n; 1� n; 1;x) ++ Tn−2
(

2F1(2� n; 2� n; 1;x) + 2(n� 1)RT 2F1(1� n; 2� n; 2;x) +� 2T 2F1(1� n; 2� n; 1;x)� 2(n� 1)R2F1(2� n; 2� n; 2;x)); (2:40)where x = R=T .This expression an generally be simpli�ed only in two speial ases, x = 0 and x = 1. Beauseof the symmetry of swapping T and R in Eq. (2.37), it also has a limit as x approahes +1 whihis equal to the value at x = 0.The x = 0 ase orresponds to a degenerate ase R = 0 or, by the indiated symmetry, T = 0,where one or both of the beam splitters are ompletely transient or ompletely reetive. If bothbeam splitters are degenerate in this way, there is only one possible way the photon an take andthus only one possible esape time and its probability is one. No features of a random walk an beobserved in this ase at all.Similarly, there is no interferene even if only one of the two beam splitters is nondegenerate.In that ase, the system an be fully desribed using the idea of a pulse whih is attenuated by thesame fator after every loop. In eah ase, there will be only one kind of time di�erene between thepossible esape times (making the pattern a simple lattie without the �ne division) and the esapeprobability will follow a simple exponential deay rule. Sine there are no features of a quantumwalk again, there is no need to go muh into details.Let us fous on the x = 1 ase, or T = R. We note that this ondition means that thetransmittane of one beam splitter equals the reetivity of the other one and vie versa. We willsee another interesting property of suh a on�guration later.In this ase, the sum in Eq. (2.38) an be omputed in losed form using the Chu-Vandermonde'sidentity [23℄. It an also be found, along with a proof, as Theorem 6 in App. B. The result is
n
∑

k=0

( n1k � k1

)( n2k � k2

) = ( n1 + n2n2 + k2 � k1

) (2:41)and onsequentlyC(n) = Tn−2

(2T 2

(2n� 2n� 1 )+ 2T 2

(2n� 2n )+ (2n� 4n� 2 )� 2T ((2n� 3n� 1 )+ (2n� 3n� 2 ))) == Tn−2

(2T 2

(2n� 1n )� 2T(2n� 2n� 1 )+ (2n� 4n� 2 )) == Tn−2

(2n� 4n� 2 )(2T 2 (2n� 4)(2n� 3)(2n� 2)(n� 2)2(n� 1) � 2T (2n� 3)(2n� 2)(n� 2)2 + 1) == Tn−2

(2n� 4n� 2 )(16T 2 � 8T + 1 +O(n−1)) : (2:42)16



In order to �nd some asymptoti estimate, we an use Stirling's approximation formula [25,26℄to �nd that
(2n� 4n� 2 ) = 22n−4

√(n� 2)� (1 +O(n−1)) : (2:43)The formula for C(n) then beomesC(n) = Tn−2 4n−2
√(n� 2)� (16T 2 � 8T + 1 +O(n−1)) (1 +O(n−1)) == (4T )n−2
((4T � 1)2 +O(n−1))
√(n� 2)� (1 +O(n−1)) (2:44)for 0 < T < 1

4 . Therefore, the deay of the esape probability, taken as a funtion of the iterationount n, is approximately exponential with a quotient of 4T .After the normalization, we an de�ne the probability Pn,k of �nding the walker after n stepson the position k as Pn,k = C(n)−1P (nM ; nL) (n � k (mod 2)); (2:45)where nM and nL are linked to n and k via Eq. (2.6). The general shape of the probabilitydistribution over all possible positions k for given n is illustrated in Fig. 6.

Fig. 6: The two most common shapes of the probability distribution of the random walk, Eq. (2.45). Both
plots were computed after n = 100 steps. Note that there can be up to three peaks located near a common

center, however, after a small change in the T and R parameters, the side peaks can vanish. Only even
parity positions are plotted, the probability is zero on odd parity ones.17



2.7 Parameter optimizationIn order to observe the signs of a random walk in the esape time probability distribution, itis desirable to reah as high values of n as possible sine a higher number of iterations allows us toresolve �ner details of the distribution shape.For the same reason, it is important to redue the probability of the photon esaping in the �rsttwo iterations where the behaviour is rather trivial. Therefore, let us ompute the total probabilityof esaping at n = 1 or n = 2 diretly,P1+2 = P1,0 + P0,1 + P2,0 + P1,1 + P0,2 == T +R + TR + (T +R � 1)2 + TR == T 2 +R2 + 4TR � T �R + 1: (2:46)We will attempt to minimize this probability by altering the beam splitter parameters.First, however, let us emphasize here that the values of T and R an not be hosen independently.Starting from Eqs. (2.34) and (2.12), we an use the onstrained optimization problem methods to�nd that 0 � R � (1�pT )2 (2:47 a)or, equivalently, 0 � pT +pR � 1: (2:47 b)Thus the region reahable by all hoies of beam splitter parameters TA, TB , RA and RB is limitedby the lines T = 0, R = 0 and the urve pT +pR = 1.Analyzing the funtion f(T;R) = T 2 +R2 + 4TR � T �R + 1 (2:48)due to these onstraints reveals the following signi�ant points:{ a saddle point at T = R = 1
6 with funtion value of 5

6 ,{ global maxima f(0; 0) = f(1; 0) = f(0; 1) = 1,{ global minima f (0; 1
2

) = f (1
2 ; 0) = 3

4 and a loal minimum on the domain bound f (1
4 ; 1

4

) = 7
8 .We an see most of these points fall into some of the degenerate ases listed in the previoussetion as one or both of the T and R parameters are zero or one. After leaving them out, we areleft with only two of the extremal points, both lying on the line of T = R. We have found that thepoint T = R = 1

6 is the loal minimum of Eq. (2.48) on this domain subset, whereas the borderpoints T = R = 1
4 and T = R = 0 are loal maxima.Let us �nd the exat set of parameters yielding T = R = 1

6 . This gives the following system ofequations: T = TATB = 16 ;R = RARB = 16 ;TA +RA = 1;TB +RB = 1: (2:49)18



There are two possible solutions, TA = RB = 1�√1
32 ;RA = TB = 1�√1
32 : (2:50)

As we have omputed above, in this on�guration, there is a probability of one in six for everyphoton to survive to iterations n � 3. As this is a saddle point, there are on�gurations allowinghigher probability outside the T = R line, however, no other loal extrema ours in this regionprior to reahing one of the trivial ases.Another task would be to optimize the parameters for the best asymptoti behaviour. Fromthe previous setion, we know the result when we restrit ourselves to the ase T = R: the optimalpoint under this ondition is T = R = 1
4 , the other signi�ant point found above. On average, sevenof eight input photons esape in the �rst two iterations in suh on�guration, whih is worse thanthe previous speial ase approximately by 4% but the tail of the distribution is more well-behaved.Moreover, we an note that this point forms an intersetion of the line T = R and the borderurve pT +pR = 1. We already know from above that the former means TA = RB and RA = TB ,similarly, the latter is equivalent to TA = TB and RA = RB . Therefore, we do not need to solveanother system of equations: this speial ase is reahed when both the beam splitters are balaned,TA = RA = TB = RB = 12 : (2:51)Eq. (2.44) gives us a very good desription of the C(n) funtion in this speial ase. However,if we were interested only in the deay rate (ignoring the overall prefator), this oeÆient an befound generally. As a orollary of Theorem 7 in App. B, we an �nd that C(n) behaves in higher napproximately as a geometri progression with a quotient ofT √RT + 12 = (pR +pT)2 :In order to minimize the exponential deay, one would want to maximize this expression. FromEq. (2.47 b), we an note that the maximum of this expression is 1 and it is reahed exatly on thedomain border urve pT +pR = 1. However, we emphasize that a unit exponential quotient doesnot mean that the C(n) funtion approahes a onstant limit|only that the deay is slower thanexponential. 19



2.8 Mean position of the walkerIn this setion, we will study the behaviour of the mean position of the walker, whih is one ofthe main harateristis of any random walk. The omputation will also reveal some estimates onthe spread in the position.Up to a normalization onstant, the probability of �nding the walker on position k after n stepsof the modelled random walk is given by Eq. (2.35), where the nM and nL indies are linked withn and k via Eq. (2.6). The mean position of the walker is then given byhki = n
∑

nM=0
nL=n−nM

(nL � nM )P (nM ; nL)
n
∑

nM=0
nL=n−nM

P (nM ; nL) : (2:52)We are interested in the limit linear speed of the walker, that is,s = lim
n→+∞

hkin : (2:53)In order to solve this problem, we will need to make some observations about the probability distri-bution.After expanding Eq. (2.35), we will obtain several terms of the formRaT b( n� �1nM � �1

)( n� �2nM � �2

)RnMT−nM : (2:54)After introduing x = R=T , we an use Lemma 8 from App. B to �nd that this term has a maximumnear nM0
= [ pxpx+ 1n] ; (2:55)where [x℄ denotes the nearest integer to x. Sine this expression is independent of the small shifts inthe binomial oeÆients, �i and �i, the same result holds for every term in the expanded Eq. (2.35)and thus we an assume that the total probability also reahes its maximum in the neighbourhoodof nM0

. Note that this is not automatially true as some of the terms have negative sign and ouldhypothetially anel out the positive ones.In order to re�ne this statement, we an onjeture the following lemma: Let � 2 (1
2 ; 1), denote�nM = bnα. Then an asymptotially negligible part of the probability is distributed outside theinterval hnM0

��nM ; nM0
+�nM i, that is,lim
n→+∞

nM0
+∆nM
∑

nM=nM0
−∆nM

P (nM ; n� nM )
n
∑

nM=0

P (nM ; n� nM ) = 1: (2:56)20



The omplete proof is not presented as it is long and tehnial. Its main idea is to take a om-plement of the ratio to 1, estimate all the fatorials in the binomial oeÆients in Eq. (2.35) usingthe Stirling approximation and study the limit of logarithm of this sequene. The rest is a straight-forward proedure of usual tehniques for omputing limits of number sequenes.Using this lemma, we an return to Eqs. (2.52) and (2.53). We an ombine the two equationsinto s = lim
n→+∞

∑

nM=0

(1� 2nMn )P (nM ; n� nM )
n
∑

nM=0

P (nM ; n� nM ) : (2:57)We note that as the fator of 1� 2nM
n is bounded, the above theorem an be used diretly to restritboth the sums to the interval hnM0
��nM ; nM0

+�nM i. We then estimate this fator by1� 2(nM0
+�nM )n � 1� 2nMn � 1� 2(nM0

��nM )n (2:58):As neither of the bounds depends on nM , they an be fatored out of the sum in the numerator,leaving the same sum in the numerator as in the denominator. After anelling them with eahother, we obtain estimates for s:1� 2(nM0
+�nM )n � s � 1� 2(nM0

��nM )n (2:59):To �nd the asymptoti speed, we need to take limit as n approahes +1 on both sides. Reallthat nM0
and �nM are funtions of n. It follows from the orresponding de�nitions thatlim

n→+∞
nM0n = pxpx+ 1 (2:60 a)and that lim

n→+∞
�nMn = 0: (2:60 b)Therefore, both the bounds have the same limit value, givings = 1� 2 pxpx+ 1 = 1�px1 +px: (2:61)Let us ompute s in the two signi�ant ases introdued in Se. 2.7. First, if T = R, i.e.,TA = RB and TB = RA, then x = R=T = 1 and s = 0, i.e., for this partiular onnetion betweenthe beam splitter parameters, the mean position of the walker stays in the middle of the line.The seond important ase was TA = TB and RA = RB . In this ase, the square root of x anbe easily simpli�ed: px = √RT =√

√

√

√

R2
AT 2
A

= RATA (2:62):21



The asymptoti speed an then be simpli�ed ass = TA �RATA +RA = TA �RA: (2:63)Note that this provides an easy way of �nding the interferometer parameters to obtain a quantumwalk for an arbitrary given s 2 h�1; 1i.The above theorem also indiates that the variane of the position distribution is O(n1+ε) forany " > 0. The proof is analogous but we obtain an upper bound only. This property reminds of alassial random walk, whih has a variane of onst:� n.2.9 Relation to oherent statesIn this setion, we will point out a orrespondene between the one photon and oherent stateoperation of the interferometer, justifying the model used in Se. 2.3. For this purpose, we willneed to replae the detetor by an in�nite output line ontinuing in one diretion, as explained inSe. 2.3. To be aurate, we note that the derivation below is valid only in an idealized ase whereno deoherene is taken into aount.After a given time, the initial state j ii of the photon is transformed to a linear ombinationof some number of wave pakets inside the loop and some number of wave pakets propagating onthe output line. Under the onditions given above, all these wave pakets are �nitely supportedand spatially separated. We will also assume that the time is hosen suh that the wave funtionvanishes in the viinity of the beam splitters.Therefore, the state an be written asU(t)j ii = N
∑

k=1

�kj oitk + "jri; (2:64)where j oitk denotes a wave paket state on the output line whih passed the loation of the detetorat the esape time of tk. The state jri desribes the renormalized part of the wave funtion supportedon the M , L and U arms. Due to the spatial separation, all the j oitk and the remainder jri aremutually orthogonal.We an use the notation of App. A to rewrite Eq. (2.64) to operator form. That is, we willmake a seond quantization of the state spae and de�ne reation operators for all the states usedin that equation: j ii = a†i j0ij oitk = a†tkU(t)j0ijri = a†rU(t)j0i; (2:65)where j0i is the vauum state. After fatoring j0i out, Eq. (2.64) beomesU(t)a†iU(t)† = N
∑

k=1

�ka†tk + "a†r: (2:66)22



We are interested in replaing the initial one photon state j ii by a oherent pulse based onthis state, that is, j�ii = exp(�a†i � �∗ai)j0i: (2:67):In order to �nd the transformation of this state under U(t), we �rst need to �nd an adjoint ofEq. (2.66), U(t)aiU(t)† = N
∑

k=1

�∗katk + "∗ar; (2:68)and use it to express the transformation of the linear ombinationU(t)(�a†i � �∗ai)U(t)† = N
∑

k=1

(��ka†tk � �∗�∗katk) + (�"a†r � �∗"∗ar): (2:69)As the j oitk states are orthogonal and jri is orthogonal to all of them, the linear ombinations oftheir reation and annihilation operators mutually ommute. This enables us to omputeU(t) exp(�a†i � �∗ai)U(t)† = N
∏

k=1

exp(��ka†tk � �∗�∗katk) exp(�"a†r � �∗"∗ar): (2:70)When the right hand side is applied on the vauum vetor, it reates a produt of oherent states inthe modes de�ned by the vetors j oitk and some oherent exitations inside the delay loop. Thus,every term �kj oitk in the linear ombination (2.66) beame a oherent pulse at the same loationand having an amplitude of ��k in this operation. The intensity of this partial pulse has an j�kj2ratio to the intensity of the input pulse. In other words, the probability of deteting one photon ata given time tk, as desribed in Se. 2.3, beomes exatly the intensity of a partial pulse measuredat the same time if we use a oherent state at the input. Hene, we an safely laim that there isan exat orrespondene between the two experimentally di�erent approahes.2.10 SummaryLet us summarize the results obtained in this hapter. The study of the system depited in Fig. 1showed that under ertain onditions, quantum walk behaviour an be observed in the output. Allthe iteration-position pairs are merged to a single time line, and thus all the probability amplitudesof the walk an be observed without hanging the experiment layout and/or external onditions.The walk an be desribed using a reurrene relation between the probability amplitudes.In order to reonstrut the quantum walk, the output must be split into a sequene of time binsand probability distribution of �nding the walker on the possible positions must be renormalizedwithin eah of these bins. The resulting walk senario displays similar position and variane depen-dene on the number of steps as a lassial random walk on a line, although that the probabilitydistribution is not Gaussian. The asymptoti speed of the walker was omputed exatly.Several optimization problems were disussed with the result that there is a straightforward wayof reahing higher iterations of the walk with enough �delity. Under this optimality ondition, onedegree of freedom is still left, allowing to reah any bias of the walk.23



Chapter 3Quantum walk using polarization as a oinIn this hapter, we will fous on the possibilities of realizing a oined disrete time quantumwalk in a similar way as in Chap. 2.We note that parts of this hapter, namely setions 3.5, 3.6 and 3.7, are based on the resultsof Andreas Shreiber, Katiusia Cassemiro and Christine Silberhorn from the Max Plank Insti-tute for the Siene of Light, Erlangen, Germany. We laim no onnetion to the design and/orimplementation of the partiular experiment.3.1 The polarization degree of freedomIt follows from the fundamentals of quantum optis that a salar wave funtion does not representthe state of one photon fully. There is one additional degree of freedom orresponding to polarizationof the eletromagneti �eld [27℄, as known from lassial wave optis. The existene of this degreeof freedom results in extension of the former Hilbert spae by taking a tensor produt with a two-dimensional spae, C2. The resulting system is isomorphi to a ompound system onsisting ofa spinless partile and one qubit.As an example of using only one part of this ompound system, let us show why polarizationould be ignored in Chap. 2. This is a nontrivial question sine in a ompound system, generally,one an not onsistently de�ne states of the individual subsystems without allowing a system tobe in a mixed state. For this purpose, we must onvert the above desription using elements ofthe Hilbert spae to a more general approah using the density matrix, or a statistial operator, todesribe the state of a quantum system [28℄.In this formalism, we de�ne for any ket j i 2 H a orresponding pure state as the orthogonalprojetor on the one-dimensional linear hull of j i:E|ψ〉 = j ih j: (3:1)Note that this assignment is not injetive: kets di�ering in their global phase give the same purestate. This is no ontradition, however, sine suh states are physially equivalent. By allowingmixed states, the state spae expands to a onvex hull of all pure states. Mixed states do notorrespond to any wave funtion, but they an be viewed as probability distributions over morethan one pure states the system an be in.If the state of a ompound system, %, an be fatorized as %1 
 %2, we an equivalently laimthat the �rst and seond subsystem are in states %1 and %2, respetively. However, this is not alwaysthe ase: by taking onvex ombinations of fatorized states, we generally obtain states whih annot be fatorized. To assign some states to the subsystems, one uses a partial trae operator [28℄.For the above system omposed of two subsystems, we say that the �rst and seond subsystems are24



in states Tr1 % and Tr2 %, respetively. Note that generally, part of the information ontained in % islost when only its partial traes are known. If and only if one of the of the partial traes of % is apure state, we an reonstrut % as % = (Tr1 %)
 (Tr2 %): (3:2)Returning to the ase of Chap. 2, we note that there are no polarization-ative elements inthe experimental setup (see Fig. 1). Thus, the propagator of the system, U , fatorizes to a tensorprodut U1 
 U2, where U1 ats on the position state spae and U2 on the polarization state spaeof the photon. Let the initial state be fatorized as%i = %1 
 %2: (3:3)In the density matrix desription, the propagator U transforms this state into%o = U%iU†: (3:4)By substituting the above fatorizations for all the involved operators, we obtain %o in a fatorizedform %o = (U1 
 U2)(%1 
 %2)(U†
1 
 U†

2) = (U1%1U†
1)
 (U2%2U†

2): (3:5)From this equation, we an see that both the subsystems evolve independently of eah other, a-ording to the partial propagators U1 and U2. Espeially, if %1 was a pure state orresponding toa ket j ii, then Tr1 %o = U1%1U†
1 (3:6)is a pure state again, orresponding to U1j ii, regardless of whether the polarization was pure ormixed.3.2 An interferometer implementing a oined quantum walkIn the following, we would like to introdue an experimentally realizable linear optis implemen-tation of the oined quantum walk on a line, as desribed in Se. 1.1, using a similar basi idea asin Chap. 2. Aording to Se. 3.1, the polarization spae is suited perfetly to be used as the oinspae in suh experiment.In ontrast to Fig. 1, the \walker" should take the shorter or longer path aording to hispolarization. Thus, we will replae the beam splitters A and B by polarizing beam splitters whihsplit the two orthogonal polarization states of an inoming beam in two diretions. However, oneadditional normal beam splitter must be added to in-ouple a pulse into the interferometer andout-ouple it into a detetor. We will assume that it is nontrivial, i.e., both its transmittane andreetivity are nonzero. A shemati of the resulting layout is shown in Fig. 7.25
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Fig. 7: The second configuration. bs denotes a classic beam splitter, pbs a polarizing beam splitter, hwp a
half-wave plate and D a detector.A oherent pulse or one photon is inserted into the input arm in a preise polarization state andouples into the loop with relative intensity, or probability, given by the transmittane of the beamsplitter bs. It �rst reahes the half-wave plate hwp, whih mixes the polarization states and thusrepresents the ation of the C gate. As shown in Se. 3.3, hwp an represent a whole lass of gateswith spetrum f1;�1g. It an be replaed by another wave plate if another relative phase shift isrequired. By allowing more than one wave plate, any one-qubit gate is obtainable, as follows fromdeomposition of unitary matrix into a produt of rotational matries [28℄. The pulse then splitson the left hand pbs in the preferred polarization basis, and the lower arm L in Fig. 7 obtains arelative time delay to the middle arm M . The polarization must be maintained reliably so that atthe right hand pbs, a photon oming from either arm ontinues in the main loop. After ompletingthe loop, there is some probability of esaping to the detetor, otherwise the yle is repeated foranother iteration of the quantum walk.3.3 The mathematial modelIn order to desribe the experiment in Fig. 7 mathematially, we will reuse most of the results ofSe. 2.3. However, we must adjust them to inlude the polarization degree of freedom. LetHS denotethe \position" Hilbert spae, de�ned analogously as in Se. 2.3, let HC = C2 be the polarizationHilbert spae. The omplete Hilbert spae of the system an be written as H = HS 
HC .To speify a matrix element of an operator fully, we would have to speify position and polar-ization kets for both the initial and �nal state. Alternatively, if we use the previous notation,h 1jU j 2i; j 1i; j 2i 2 HS ; (3:7)this objet behaves as an operator on HC and ould be spei�ed by a matrix in an appropriate basis.We will all it a partial matrix element.Let the preferred basis ofHC be spei�ed by the polarizing beam splitters. As noted above, theseelements transmit one polarization state and reet the orthogonal one. The basis whih determinesthis behaviour is de�ned by the plane of inidene, spanned by two vetors: a normal to the planeof the polarizing beam splitter and the propagation vetor of the inident beam. The reeted26



polarization state is alled the s-polarization while the transmitted the p-polarization. This omesfrom the German words for perpendiular and parallel, respetively, speaking about the relativeorientation of the eletri intensity vetor due to this plane. We will de�ne an orthonormal basisdenoted as fjpi; jsig aordingly.New elements in the on�guration are the half-wave plate and the polarizing beam splitters.The ation of the half-wave plate hwp on an inoming pulse may be spei�ed using an unitarymatrix of rank 2 in the sense outlined above. However, the exat form of this matrix depends onthe orientation of the plate, determined by the opti axis. If this axis is aligned with one of thepreferred polarization diretions, say p, the half-wave plate reates a relative �=2 phase shift betweenthe polarizations, whih an be written as the Pauli Z matrix in the preferred basis,�Z = ( 1 00 �1) ; (3:8)ating in HC . If the optial axis is rotated by an angle ' due to the p axis (the sense of measuring' depends on what we onsider the positive diretion of the p and s axes), this matrix must betransformed to represent this basis hange, resulting inUhwp = ( os' � sin'sin' os')( 1 00 �1)( os' sin'� sin' os') = ( os 2' sin 2'sin 2' � os 2') : (3:9)For example, if ' = �=8, then we obtain the Hadamard matrix,H = 1p2 ( 1 11 �1) : (3:10)We will desribe the whole polarizing beam splitter delay loop as one element in this model.Let tM and tL denote again the time needed to travel the arms M and L, respetively. Let j 1iand j 2i denote wave pakets right before and after the delay loop, analogously to Fig. 4. For theinitial states with their HS omponent j 1i, time evolution givesU(tM )j 1ijpi = eϕp j 2ijpi;U(tL)j 1ijsi = eϕs j 2ijsi; (3:11)whih an be rewritten using the notation of partial matrix elements ash 2jU(tM )j 1i = eϕpE|p〉;h 2jU(tL)j 1i = eϕsE|s〉; (3:12)if the time di�erene jtL � tM j is large ompared to the duration of the pulse, tp.For further onsiderations, we will give names to several other vetors in the position spae.Their geometrial meaning is displayed in Fig. 8.
|ψi〉 |ψa〉 |ψ1〉 |ψ2〉

|ψb〉

|ψo〉

Fig. 8: The selected states in HS needed for the mathematical description of the experiment in Fig. 7.27



3.4 The path sum and the reurrene relationSimilarly as in Se. 2.4, we will aim to desribe the operation of this experimental on�gurationusing the one photon dynamis and the path sum approah. The derivation will be simpli�ed dueto the fat that any omplete loop must start (in terms of an optial path) at the loation of j aiand end in the loation of j bi aording to Fig. 8. Any omplete optial path in the studied layoutis omposed of a sequene of these loops, with only an in-oupling and out-oupling added on itsbeginning and its end, respetively, and an be desribed using a word omposed of letters M andL to denote the order of the loops.We will de�ne t′M and t′L as the times needed to take one omplete loop via the M or the Larm, respetively. The time needed to travel a path desribed by any word ontaining M and Lletters in the ount of nM and nL is then given byt = nM t′M + nLt′L; (3:13)up to a small onstant term orresponding to the in- and out-oupling. Also, we will assume thealgebrai independene of t′M and t′L in the sense pointed out in Se. 2.2 in order to make thismapping injetive, and use the symbols n and k from Eq. (2.6).We an ompose the path sum of the partial matrix elements of the propagator, introdued inSe. 3.3. The irreduible matrix elements from Se. 2.4 beome two-dimensional linear transforms.Their multipliations must be viewed as operator ompositions, or multipliations of matries, andwe must preserve the order of the fators.Due to the experiment layout, there are only two main irreduible matrix elements,h bjU(t′M )j ai = eiϕ1h 2jU(tM )j 1ieiϕ2Uhwp = eiϕME|p〉Uhwp;h bjU(t′L)j ai = eiϕ1h 2jU(tL) j 1ieiϕ2Uhwp = eiϕLE|s〉Uhwp; (3:14)supported by the in-oupling, out-oupling and reeting matrix elements of the beam splitter bs,whih are insensitive of polarization and thus multiplies of the identity operator:h ajUbsj ii = t;h ojUbsj ii = r;h ajUbsj bi = �r∗;h ojUbsj bi = t∗: (3:15)
A photon inserted in the state j ii
jzi an be reeted diretly to the detetor with probabilityamplitude h ojUbsj ii = r. This must be onsidered a speial ase. For all other esape times, wean ompute the partial matrix element h ojU(t)j ii in a uniform manner. However, it an not beonsidered as a probability amplitude anymore sine it is a linear operator, transforming the initialpolarization state into a polarization state that ould be measured on the esaped photon, and the28



esape probability amplitude serves as a multipliative fator. This element an be evaluated asfollows:h ojU(nM t′M + nLt′L)j ii = �(nM ; nL) =∑
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∣ a〉; (3:16)where a time-ordered produt of the irreduible matrix elements from Eq. (3.14) is used. The sumdenoted ∑W is taken over all words W omposed of M and L letters in the ounts nM and nL,respetively.By fatoring out the �rst term of the produt and separating the ases of the two letters, weget for nM > 0 and nL > 0 the following reurrene relation for �(nM ; nL):�(nM ; nL) = �r∗h bjU(t′M )j ai�(nM � 1; nL)� r∗h bjU(t′L)j ai�(nM ; nL � 1) == �r∗eiϕME|p〉Uhwp�(nM � 1; nL)� r∗eiϕLE|s〉Uhwp�(nM ; nL � 1): (3:17)The validity of this relation an be extended to ases where either nM or nL are zero if we de�ne�(n;�1) = �(�1; n) = 0 (3:18)for all n 2 N. �(0; 0) is assumed to be de�ned onsistently with Eq. (3.16) as �tt∗(r∗)−1, despitethe fat that it does not represent any atual matrix element.To simplify Eq. (3.17), let us de�ne a new operatorC = � (eiϕME|p〉 + eiϕLE|s〉
)Uhwp; (3:19)so that E|p〉C = �eiϕME|p〉Uhwp (3:20 a)and E|s〉C = �eiϕLE|s〉Uhwp: (3:20 b)From the properties of orthogonal projetors, it also follows that C is unitary:CC† = (eiϕME|p〉 + eiϕLE|s〉

)UhwpU†
hwp

(e−iϕME|p〉 + e−iϕLE|s〉
) = E|p〉 + E|s〉 = 1: (3:21)Using this operator, we an rewrite Eq. (3.17) in the form�(nM ; nL) = r∗ (E|p〉C�(nM � 1; nL) + E|s〉C�(nM ; nL � 1)) : (3:22)As a next step, we will introduean,k = (r∗)−n�(nM ; nL)jzi; (n � k (mod 2)); (3:23)29



whih has the physial meaning of the non-normalized polarization state of the photon, if it isdeteted in the output arm at the esape time (3.13), where jzi denotes its initial polarizationstate|in other words, if the initial state of the photon is assumed to be j ii 
 jzi. Also, thesubstitution (2.6) was made. Applying the operators on both sides of Eq. (3.22) on the ket jzi, weobtain a reurrene relation for an,k :an,k = E|p〉Can,k+1 + E|s〉Can,k−1: (3:24)This formula has the same form as the propagator of a quantum walk on a line, as derived in [6℄.We an ompare Eq. (3.24) with a orresponding equation there:	(n; t+ 1) =M+	(n� 1; t) +M−	(n+ 1; t): (3:25)Here 	(n; t) is the two-omponent vetor of amplitudes of the walker being at point n at time t andM+ and M− is the oin matrix multiplied from the left by the orthogonal projetor on the left andright hirality state, respetively. Also, an,k is a mathematial objet of the same kind as 	(n; t),a vetor in C2. In order to laim a physial orrespondene of the studied system's evolution tothis quantum walk, we should hek the relation between the initial onditions of both reurrenerelations.In [6℄, the walker starts at both time and position zero. Thus, 	(n; 0) is nonzero only for n = 0,	(0; 0) denotes the walker's initial hirality state. In our notation, the number of the random walkiteration is denoted by n and the position k. Analogously, a0,k an only be nonzero for k = 0beause other values of k would represent negative nM or nL when transformed bak via Eq. (2.6).Aording to Eqs. (3.23) and (3.16),a0,0 = �(0; 0)jzi = �tt∗(r∗)−1jzi; (3:26)so this value is proportional to the initial state jzi with some omplex fator.Using these observations, we an onlude that the system models the quantum walk on a lineas it was introdued in Se. 1.1. The walk an be reonstruted a similar way to Se. 2.6: olletingthe output from all esape times into groups with the same n and renormalizing the probability ineah of these bins.In ontrast to Se. 2.6, probability normalization is muh simpler. From the exat orrespon-dene of the reurrene relations and the unitarity of the atual quantum walk, we know that thevalue of S(n) = n
∑

k=−n
kan,kk2 (3:27)is onserved between the steps of the walk and thus independent of n. Partiularly,S(n) = S(0) = ka0,0k2 = jtt∗(r∗)−1j2 = T 2R ; (3:28)where the symbols for transmittane T = jtj2 and reetivity R = jrj2 of the beam splitter bs wereused. 30



However, the symbols an,k were saled by a power of r∗ in Eq. (3.23) to �(nM ; nL)jzi. Theatual probability of measuring a photon esaping in the n-th iteration of the walk (n > 1) isC(n) = n
∑

nM=0

k�(nM ; n� nM )jzik2 = RnS(n) = T 2Rn−1: (3:29 a)The probability of measuring the photon in diret reetion to the detetor isC(0) = kh ojUbsj iik2 = R: (3:29 b)As a veri�ation, we note that the total probability of esaping at any iteration
+∞
∑

n=0

C(n) = R + ∞
∑

n=1

T 2Rn−1 = R + T 21�R (3:30)is equal to 1 as T +R = 1.3.5 Current state of experimental realizationAt the time of writing this thesis, an experimental group loated at Erlangen, Germany, isworking on a realization of the desribed experiment [4℄ (see also the hapter introdution foradditional details). In this setion, we will give a brief overview of the urrent state of the experiment.In order to avoid the risk of high losses and deoherene aused by a big number of reetions,the group deided to realize the long arms of the delay loop in optial �bre. However, a speialpolarization-maintaining �bre must be used and for best results, the pbs elements must be manu-fatured as in-�bre ouplers. On the other hand, the �bre is made of a birefringent material andhas two preferred working modes, orresponding exatly to the s and p polarization, general linearombinations obtain a nontrivial relative phase shift in this medium whih an beome unontrol-lable over exessive optial distanes. For this reason, it is neessary to ouple the �bre to free spaeoutside of the pbs{pbs delay loop to prevent polarization deoherene.The input in the experimental realization is formed by a pulse laser at wavelength 796 nm, withthe mean pulse duration of 280 fs and the repetition rate of 250 kHz. For our set of parameters, thetimes needed to omplete one loop are t′M = 40ns and t′L = 45ns. A 50=50 beam splitter is usedfor the in- and out-oupling, thus T = R = 1
2 . An equal weight superposition is used as the initialstate, produed by a sequene of a polarizing beam splitter, a half-wave plate and a quarter-waveplate applied on the laser output. The orientation of the half-wave plate hwp in Fig. 7 is easilyon�gurable, making it possible to omparing quantum walks di�ering in their oin.The testing measurements of the individual optis elements have shown some additional souresof errors, some of whih ould be negleted and the other inluded in the theory. An inuene ofsome errors on the measurement outome is disussed in Se. 3.7. After the main soures of errorsare inluded in the model, the measurements show a very good agreement with the theoretialpreditions up to n = 3. Partiularly, a Hadamard walk has been arguably observed. The hoie oft′M and t′L allows up to 8 iterations but due to the high transmittane of the beam splitter bs, thepulses are already too weak and inoherent for n > 3 to give useful measurement output.31



3.6 Optimal layout for single photon useUsing the same approah as in Se. 2.9, we an use the transformation of single photon inputstate to �nd a response of the system on multi-photon input states, inluding oherent pulses.However, let us �nd an optimal on�guration allowing the use of single photons.The only two parts of the experiment that depend on the desired mode of operation are thelight soure and the detetor. For single photons, an avalanhe photodiode (APD)-based detetormust be used [19℄. Its priniple of operation makes it muh more sensitive than a pulse detetor butalso muh more vulnerable. One must take serious are that a non-attenuated pulse never reahesthe detetor in operational mode.As far as the input is onerned, the group deided to use a highly attenuated pulse laser output.If we approximate the pulses produed by the laser by oherent states (or a superposition of them),the attenuation redues the absolute value of their amplitude. However, the probability distributionof the photon number stays Poissonian, whih is the result for any oherent state (see App. A). Thus,in order to redue the probability of measuring multi-photon states as muh as possible, the meanphoton number in the pulse is usually attenuated as muh as several orders of magnitude below 1.Only a few of the pulses will atually initialize a suessful run of the experiment.In order to get more useful data from the experiment, we will aim for measuring as high iterationounts as possible. For this purpose, it is neessary to redue the exponential deay of probabilityper one iteration. Aording to Eq. (3.29 a), the deay will be less when the reetivity R of thebeam splitter bs inreases. On the other hand, R also determines the probability of trivial result inEq. (3.29 b), so if it is lose to 1, nearly every input photon is observed in the detetor diretly andnot oupled into the interferometer at all. This further redues the rate of suessful runs.One ould make the input pulse stronger and make this �lter at the in-oupling beam splittera part of the pulse attenuation hain. However, one would risk a damage of the single photondetetor by the reeted part of the pulse under suh arrangement. One way would be to sreenthis pulse out and start the detetion afterwards. Another solution of this problem an be reahedby using two beam splitters, one solely for the purpose of in-oupling and the other one for out-oupling, both on�gured so that there is nearly unit probability to stay inside the interferometer.In this way, one an avoid the risk of damaging the detetor without the need for a t′M,L-timesaleontrollable protetive sreen.3.7 Imperfetions and deohereneExperimental data show various di�erenes to the ideal behaviour of the optial elements, de-sribed above. Let us list the main soures of errors in this setion.First, let us onentrate on losses in the experiment. The measurements in [4℄ have shown thatthe losses at the pbs{pbs loop, for example, are over 50% in addition to the 50% of intensityout-oupled at bs at every loop. Moreover, the losses are very di�erent for the s- and p-polarizationstates in favour of the s-polarization. 32



In order to inlude these losses in the desription, we an de�ne an additional operator on thestate whih redues the amplitudes of the distint polarization omponents aordingly,L = �sjsihsj+ �pjpihpj; (3:31)and apply it on the polarization state right after the ation of the half-wave plate hwp. By de�ning~U = LUhwp; (3:32)the losses an be inluded into the oin operator Eq. (3.19), introduing a generalized, non-unitaryoin whih an be substituted for C in all of the above formulas.Any further losses in other parts of the interferometer an be inluded in the propagator anal-ogously. For polarization-independent losses, the aording \loss operator" is a multiple of theidentity operator and applying it on the state an be rewritten as multiplying the state vetor by aglobal onstant fator.Another problem is polarization mixing. It an our by various means, inluding the followingfats:{ the polarizing beam splitters do not separate the basis states perfetly, a small part of theimproper polarization state is mixed in eah output arm,{ a polarization maintaining �bre an fail to maintain the polarization state aurately whendisposed to mehanial stress or when used for exessively long optial paths,{ small rotations of the mirrors inline the plane of inidene and thus mix the original s- andp-polarizations.Aording to the numerial values in [4℄, the �rst two soures of errors an be negleted. Thelatter is not quantized in the experimental report.In fat, if the rotations of the mirrors are unertain or subjet to thermal osillations or otherutuations, they ause a deoherene of the polarization state. Similarly, small unontrolled spatialshifts of the mirrors ause a deoherene in the position spae. As deoherene in quantum walksis a very broad topi, disussed extensively e.g. in [29℄, we will only demonstrate the e�ets ofpolarization deoherene on a simpli�ed example here.Let us onsider the interation of a polarized beam with a mirror. Let the inident beam be ina pure polarization state, desribed by a state vetorj ii = �jpi+ �jsi = (�� ) ; (3:33)where the jpi and jsi kets are determined geometrially by other parts of the experiment. The righthand side is a olumn expansion of the vetor in this basis. Let the mirror is tilted slightly suhthat the plane of inidene di�ers from the plane de�ning the preferred basis of HC . As a result, letus assume that the polarization state of the reeted beam is rotated due to the polarization stateof the inident beam by an angle of ', that is,j oi = ( os' � sin'sin' os')(�� ) = R(')j ii: (3:34)33



If the angle ' is unknown and given only by a probability distribution, we will show that thepure state j iih ij is generally transformed to a mixed state, whih is the origin of the deoherene.Let us assume that the distribution of the possible angles ' 2 R is Gaussian,w(') = 1p2��2
e− ϕ2

2σ2 : (3:35)The polarization state of the reeted beam is found as an integral of%o = ∫

R

j oih ojw(')d' = ∫

R

Rj iih ijR†w(')d': (3:36)Let %i = j iih ij = ( %11 %12%12 %22 ) = ( j�j2 ��∗��∗ j�j2 ) (3:37)be the initial pure state. After expanding the matrix produt in Eq. (3.36), the state %o an bewritten as %o = ( ~%11 ~%12~%21 ~%22 ) ; (3:38 a)where ~%11 = hos2 'i%11 + hsin2 'i%22 � hos' sin'i(%12 + %21);~%12 = hos2 'i%12 � hsin2 'i%21 + hos' sin'i(%11 � %22);~%21 = hos2 'i%21 � hsin2 'i%12 + hos' sin'i(%11 � %22);~%22 = hos2 'i%22 + hsin2 'i%11 + hos' sin'i(%12 + %21);hf(')i := ∫

R

f(')w(')d': (3:38 b)Using the method of ontour integration, we an �nd the above expetation values for the probabilitydistribution given by Eq. (3.35) to be hos2 'i = 12 (1 + e−2σ2
) ;hsin2 'i = 12 (1� e−2σ2
) ;hos' sin'i = 0: (3:39)Plugging these values into Eq. (3.38 b), we obtain the �nal density matrix as%o = (

1
2 + 1

2e−2σ2(%11 � %22) 1
2(%12 � %21) + 1

2e−2σ2(%12 + %21)
1
2(%21 � %12) + 1

2e−2σ2(%12 + %21) 1
2 + 1

2e−2σ2(%22 � %11) ) : (3:40)For � = 0, %o beomes %i as expeted. However, when there is some nonzero variane of theangle ', %o is a mixed state exept for some speially hosen ases of %i. We an prove this byomputing the trae of %2o:Tr %2o = 12 (1� (%12 � %21)2 + ((%11 � %22)2 + (%12 + %21)2) e−2σ2
) == 12 (1 + 4%12%21 + (%11 � %22)2 + ((%11 � %22)2 + (%12 + %21)2) (e−2σ2 � 1)) == 12 (a+ b(e−2σ2 � 1)) : (3:41)34



Using the relation that Tr %i = Tr %2i = 1; (3:42)whih follows from the fat that %i is a pure state, the term a an be simpli�ed asa = 1 + 4%12%21 + (%11 � %22)2 = (%11 + %22)2 + (%11 � %22)2 + 4%12%21 == 2%211 + 2%222 + 4%12%21 = 2Tr %2i = 2 (3:43)and thus Tr %2o = 1� b2(1� e−2σ2): (3:44)Using Eq. (3.37), we an show that the oeÆient b is nonnegative:b = (%11 � %22)2 + (%12 + %21)2 = (j�j2 � j�j2)2 + (2<��∗)2 � 0; (3:45)however, in a speial ase � = �i�, it an be zero, meaning that %o is a pure state for any �. Thisspeial ase was allowed by restriting the unitary transform in Eq. (3.34) to one degree of freedomonly. If we allowed more general unitary transforms, the deoherene would be even stronger.3.8 SummaryIn this hapter, a system depited in Fig. 7 was studied. The mathematial model showedthat it is a very straightforward implementation of a oined disrete time quantum walk on a linedesribed by many authors in the referenes. Therefore, any result from there should have a diretrepresentation in this system.The reonstrution of the quantum walk from the experiment's output is done the same wayas in Chap. 2, however, it was shown that probability renormalization of the time bins is done bymultiplying them by a simple expression exponential in the iteration ount.The implementation disussed in this hapter is urrently realized by a partner experimentalgroup. The urrent state of this experiment was presented as well as some numerial data aboutthis partiular realization. Also, an optimization approah for single photon use was proposed whihould be used in a future version of the experiment.
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Chapter 4Quantum walk using a di�ration gratingIn this hapter, we will present and disuss another simple implementation of a quantum walkusing the priniple of di�ration on an optial grating.4.1 The properties of di�ration gratingTo desribe the ation of an optial grating as a linear optis element, we will revert to waveoptis. The reason is that due to the ompliated interation of the light and the grating, thepriniples of quantum eletrodynamis (QED) would have to be used, whih is outside the sope ofthis work. The Huygens-Fresnel priniple, used below, is a lassial, phenomenologial version ofthe quantum path integral and a suÆient replaement for our purposes.Let a di�ration grating have N slits separated by a and eah of width d. Let a monohromatiplane wave be inident on the grating at an angle of  suh that the projetion of its wave vetor ~konto the plane of the grating is orthogonal to the slits. Let us de�ne a two-dimensional polaroordinate system (r; ') in the plane of inidene, where the angle ' is measured from the normalto the grating. The above parameters and the oordinate system are depited in Fig. 9. Assumingthat the slits length is muh larger than a, the problem has an approximate translation symmetryin the third orthogonal axis, whih justi�es the use of two-dimensional desription.
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Fig. 9: A zoom of a diffraction grating. Various notation used in the text is visualized. Both the incident
and diffracted plane waves are depicted.36



Aording to the Huygens{Fresnel priniple [30℄, we get the amplitude of the di�rated waveat the oordinates (r; ') in the far-zone as an integral of in�nitesimal ontributions of point souresdistributed along the transparent parts of the grating. If the angle  = 0, these soures are all inphase, otherwise their relative phase is linear in their y-oordinate with the fator of kinc.
y = �k sin .Using the notation of Fig. 9, the amplitude is omputed as�(r; ') = A(r)K( ;')e−ikr ∫

aperture
e(−ik sinψ+ik sinϕ)y′dy′; (4:1)where A(r) is a normalization fator and K is an inlination fator dependent on the angle ofdi�ration, j � 'j. We will assume that K is normalized to 1 for  = '. The dependene of A onthe geometrial parameters N , d and a is also noted but not expliitly written. De�ning� = sin'� sin (4:2)and introduing the partiular shape of the aperture, the integral an be rewritten to�(r; ') = A(r)K( ;')e−ikr N

∑

j=1

∫ y′j+
d
2

y′j−d
2

eikσzdz; (4:3 a)where y′j = (j � N + 12 ) a: (4:3 b)After omputing the auxiliary integral
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2
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2

eikσzdz = eikσy′j ∫ d
2

−d
2

eikσz′dz′ = eikσy′j ∫ d
2
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2

osk�z′dz′ = 2eikσy′jk� sin k�d2 ; (4:4)we an sum Eq. (4.3 a) as�(r; ') = A(r)K( ;')e−ikr � 2 sin kσd2k� N
∑

j=1

eikσy′j == A(r)K( ;')e−ikr � 2 sin kσd2k� N
∑
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eikσ(j−N+1
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a == A(r)K( ;')e−ikr � 2 sin kσd2k� e−ikσN+1
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a
N
∑

j=1

eikσja == A(r)K( ;')e−ikr � 2 sin kσd2k� e−ikσN+1
2
a � eikσ(N+1)a � eikσaeikσa � 1 == A(r)K( ;')e−ikr � 2 sin kσd2k� � eikσN

2
a � e−ikσN
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aeikσ a

2 � e−ikσ a
2

== A(r)e−ikr � 2 sin kσd2k� � sin k�N2 asin k� a2 K( ;'):
(4:5)
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This equation splits into three signi�ant terms:{ a term indiating a ylindrial wave propagating from the axis of symmetry of the gratingperpendiular to the plane of inidene,{ an envelope funtion given by the nonzero width of the slits,{ a diretional harateristi funtion, independent of r and d.We also note that Eq. (4.5) is unde�ned for a �nite subset of possible values of � but an beontinuously extended to over these points.Analyzing these terms, we �nd that if the slits are narrow enough, namely ford � �2k ; (4:6)the \envelope" term varies so slowly that it never reahes zero for any hoie of  and '. For anidealized grating with in�nitely narrow slits, it approahes a onstant in � but on the other hand,only an in�nitesimal part of the inident wave is atually di�rated.The last term is typial for di�ration gratings: aside from the inlination fator, it is a periodifuntion of � (restrited to an interval reahable by Eq. (4.2)), reahing major maxima of N for� = m2�ka ; m 2 Z: (4:7)Between eah adjaent pair of major maxima, there are N � 2 unequally separated minor maximain the absolute value. For large N , most intensity of the di�rated light is onentrated near theangles ' orresponding to major maxima, the other peaks are suppressed.4.2 Di�ration grating as a linear optis elementThe previous setion an be summarized as follows: when a plane wave is inident on a di�rationgrating with a large number of narrow slits, it is di�rated into a �nite number of narrow angle ranges(in a projetion onto the plane of inidene) with nearly equally distributed intensities. If we replaethe plane wave by a beam, the di�ration grating transforms it into several output beams in theplane of inidene. To justify the alulations exatly, we must add to the assumptions that only arelative part of the slit ount, ~N , proportional to the mean width of the beam, is onsidered, and itis still muh greater than 1.If the angle of inidene is  , the angles of the outgoing beams, 'm, are given bysin'm � sin = m2�ka ; m 2 Z; (4:8 a)together with the inequality ��2 � 'm � �2 : (4:8 b)There is always a trivial solution '0 =  . Let us assume that there is another solution, 'n. Notethat if another beam is inident at the angle of 'n, the set of solutions is the same|therefore,38



the di�ration grating an at similarly to a multiport, mixing input beams inident at one spotat angles f'mg in output beams under the same set of angles. However, due to the losses andinteration with the material, the transformation is not unitary. Also, the divergene of the outputbeams, given by the nonzero width of the peaks of Eq. (4.5), an be a problem for larger sale use.For our purposes, we will need to minimize the number of the multiport hannels. FromEq. (4.8 a), we an note that the sines of 'm are equidistant, they must naturally also be boundedinside the interval h�1; 1i. For given  , this gives an inequality for m,(�1� sin )ka2� � m � (1� sin )ka2� ; (4:9)whih has nm = ⌊(1� sin )ka2�⌋+ ⌊(1 + sin )ka2�⌋+ 1 (4:10)solutions in Z.If we restrit ourselves to  = 0, there is always an odd number of output beams. The asenm = 1 is trivial: the beam is mostly transmitted by the grating with only the negative e�etsmentioned above. Thus we an say that the nontrivial minimum is 3. In order to reah 3 learlydistinguishable output modes, we an put the inner of the whole part to be 1:5:ka2� = 32 ;a = 3�k : (4:11)In terms of the wavelength, � = 2�k ; (4:12)the ondition is a = 3
2�. The output modes are obtained by solving Eq. (4.8 a) for m = 0 (zerothorder maximum) and m = �1 (�rst order maxima) with the restrition of Eq. (4.8 b), giving'0 = 0; '±1 = � arsin 23 � �0:232�: (4:13)Without the restrition that one mode is perpendiular to the grating, we an reah a two-modeoperation, resembling a beam splitter. We an �nd the orresponding a similarly as above, solvinga system (1� sin )ka2� = 12 ;(1 + sin )ka2� = 32 : (4:14)This system gives values for both a and  :a = 2�k = �; = arsin 12 = �6 : (4:15)39



Let us �nd the transfer matrix in both ases, that is, the matrix transforming the tuple of inputbeam amplitudes to the tuple of output beam amplitudes. In order to �nd it, we will plug everyombination of the input and output angles into Eq. (4.2) and use these results for taking a limitof Eq. (4.5). For dimensionality purposes, we an divide the matrix elements by the measure ofthe aperture, Nd. Also, we will drop the �rst term of Eq. (4.5) out of the matrix as it desribesthe behaviour outside the grating and not the transformation itself. With these modi�ations, onematrix element is redued to 2k�d sin k�d2 K( ;'): (4:16)In the 3-mode ase, the �rst, seond and third omponent of the amplitude vetor will orrespondto the beams in the diretions of '−, '0 and '+, in this order. Using Eq. (4.16), we �nd the transfermatrix as T = 



1 u vu 1 uv u 1 ; (4:17 a)where u = 3kd sin kd3 K(0; '+); v = 32kd sin 2kd3 K('−; '+): (4:17 b)We emphasize that this matrix is generally not unitary.For the 2-mode operation, the transformation is similar,T = ( 1 vv 1) ;v = 2kd sin kd2 K('−; '+): (4:18)Note that the transfer matrix is strongly dependent on the width of the di�ration grating slits, d.For this reason, the grating an not be idealized.4.3 Quantum walk with a line of di�ration gratingsLet us try to exploit the properties of a di�ration grating to implement a quantum walksenario. The alulations done in Se. 4.2 are not quantum but their results ontain informationabout both absolute value of amplitude and phase of the di�rated beams. Using this, we an builda semi-quantum mathematial approah, as shown below.The proposed experimental on�guration is depited in Fig. 10. A line of idential di�rationgratings is aligned parallel to eah other and spaed equally. The distane of two neighbouringgratings, b, must be large enough for the far-zone approximation to be used. As disussed inSe. 4.2, the waves will propagate in a �xed number of preferred diretions between eah pair ofadjaent gratings, also, it follows that the beams will meet at n nodes on the n-th grating, if ountedfrom the left. All paths leading to a given node have the same mean path length, whih guaranteesgood interferene. 40



b

c

a)

b

c

b)

Fig. 10: The third configuration to be studied. The use of three-mode and two-mode configuration (a
and b, respectively) for a Quincunx-like operation is depicted. Note that the actual behaviour does not

depend only on the angle of incidence of the input beam but also on the ratio of the grating constant a to
the wavelength. The image b) gives two different possibilities of where to place the output detectors.We will assume that the relation between the wavelength and the parameter a and the inputangle  are hosen suh that the di�ration grating de�nes 3 or 2 modes, as desribed in Se. 4.2.In the former ase, we will plae a detetor measuring the middle beam behind eah node, leavingonly two beams propagating to the next grating. Alternatively, we an sreen the middle beamsout. We let the light waves in the two-mode ase propagate freely.In both ases, the beams onneting the nodes form a grid struture strongly resembling arandom walk. However, in the following, we will show that the behaviour of the system is evenloser to a quantum walk, as desribed in Se. 1.1.Let us denote the nodes in Fig. 10 by pairs of numbers as follows: let n denote the zero-basedindex of the di�ration grating, ounted from the left. Thus the leftmost di�ration grating willorrespond to n = 0, the next one to n = 1, et. Let m denote the vertial oordinate in the �gure,ounted in the units of . Let the normal at the �rst point of inidene de�ne the axis where m = 0.It then follows from the layout that m is integer for eah node and that it is bounded by the followingtwo onditions, �n � m � n;m � n (mod 2): (4:19)These onditions are the same as the onditions where the probability of a partile performing arandom walk or a quantum walk on a line an be nonzero if n denotes the iteration ount and mthe position and the walk starts at m = 0. For this reason, let us identify the n and m parameterswith these physial values.Let us desribe the system's behaviour in a similar manner to Se. 1.1. We note that we donot attempt to build a quantum desription, we just write the above results in an algebraial way,reusing the symbol names from Se. 1.1. 41



First, let us de�ne two omplex vetor spaes, HS of ountably in�nite dimension and HC ofdimension 2. Let there be a basis of HS denoted fjxi j x 2 Zg and a basis of HC denoted fjLi; jRig.Let us �nd a vetor spae H as a tensor produt H = HS 
 HC . We an �nd a basis of H as atensor produt of the two bases using Eq. (1.1).For a �xed n, we an build a vetor in this spae desribing the beams inident on the di�rationgrating with index n: let a±(n;m) is the amplitude, inluding relative phase, of the beam inident atthe node with oordinate m and oming from the positive or negative relative m from the previousdi�ration grating. Using these amplitudes, we an de�ne an unnormalized vetor vn 2 H asvn = ∑

m∈Z

(am,−jm;Ri+ am,+jm;Li) : (4:20)This de�nition is orret sine only a �nite number of the oeÆients am,± an be nonzero.The propagation from the n-th to the (n + 1)-th di�ration grating an be desribed as anation of three operators: �rst, the beams are di�rated and transformed by the transfer matrix,after whih they are spatially separated by passing the distane b. Finally, a partial absorption ofthe beams is ounted in before the next iteration.The transformation indued by di�ration an be desribed by an operatorC = 1
 C0; (4:21)ating on HC only. The operator C0 will be de�ned using its matrix in the fjLi; jRig basis, whihis equal to the transfer matrix Eq. (4.18) in the 2-mode operation. In the 3-mode on�guration, theunused middle beam must be projeted out by restriting the matrix Eq. (4.17 a) to the �rst andthird omponent only. In this restrition, it obtains formally the same shape as Eq. (4.18), but withthe v parameter given by Eq. (4.17 b).The propagation in free spae is desribed by the operatorS = A(r)e−ikr ∑
m∈Z

(jm+ 1; Rihm;Rj+ jm� 1; Lihm;Lj) ; (4:22)where the fator A(r) exp(�ikr) omes from Eq. (4.5) and r is the distane travelled by the beam,r = √b2 + 2: (4:23)The symbols hm;Rj and hm;Lj are the oordinate funtionals of the basis vetors jm;Ri and jm;Li,respetively. For �nite linear ombinations, whih form the linear span, the oordinate funtionalsare well-de�ned. Also, Eq. (4.22) maps �nite linear ombinations of the basis vetors to other �nitelinear ombinations of these and so it preserves H.Finally, the losses between two iterations an be modelled by multipliating the vetor by a realonstant, q.Putting these three transformations together, the relation between the situation at two subse-quent di�ration gratings an be desribed by the equationvn+1 = qSCvn; (4:24)42



whih is, up to a onstant of qA(r) exp(�ikr), equivalent to Eq. (1.3 a) with a speial hoie of C,desribed above. The onstant fator an be inluded into the operator C, after whih the usualmethods of solving or simulations, designed for unitary quantum walks, an be used with little orno hanges.The initial state of the walk an be desribed in a straightforward way as the vetor v0 if theinitial beam is inident on the �rst grating at one of the nonzero preferred angles to the normal. Anexample of this situation is shown in Fig. 10 b). On the other hand, if the input beam is parallel withthe normal, whih an be the ase in the 3-mode variant, the �rst iteration must be omputed byhand and the initial ondition must be given in the form of v1. Aording to Eqs. (4.24) and (4.17 a),the initial ondition in this ase isv1 = quA(r)e−ikr(j1; Ri+ j�1; Li): (4:25)4.4 Measurement of the walkDue to the spatial separation of the nodes, measuring of the magnitude of the omponents of vnis straightforward. Aording to Fig. 10 b), we an plae a line of detetors at the loation wherethe nodes of the grating with index n would be. Alternatively, one detetor an be used for eahindividual mode if desired. This approah an be used for both experimental senarios.In the ase of the 3-mode operation, we an use detetors shown in Fig. 10 a) to measure themiddle output mode of eah node in addition to, or instead of, the distribution after n steps asdesribed above. However, the meaning of the intensity of these beams needs some explanation.Let the next to the last state vetor, vn−1, be written asvn−1 = n−1
∑

m=1−n
(am,−jm;Ri+ am,+jm;Li): (4:26)The beams inident at the node at oordinate m an be written, in the sense of Eq. (4.17 a), as a3-omponent vetor v = ( am,−0am,+ ) : (4:27)The di�ration grating transforms it intoTv = 



am,− + vam,+u(am,− + am,+)am,+ + vam,− 

 ; (4:28)so that the amplitude of the middle output beam is proportional to the sum of amplitudes of thetwo inident beams. In other words, the intensity measured at the detetor is a result of interfereneof these two beams. 43



4.5 SummaryIn this hapter, a basi study of the possibilities of implementing a quantum-like walk usinga di�ration grating was provided. First, the formula for di�ration on a grating was arefullyderived and studied. It was shown that under some assumptions, a di�ration grating an behavesimilarly to an optial multiport ating in free spae. This fat makes it a new element available foruse in optial interferometers.A on�guration using a line of idential di�ration gratings in order to implement a randomwalk senario was studied. This idea di�ers signi�antly from the priniple used in the previous twohapters, one of the most striking di�erenes is that the spae requirements sale quadratially inthe maximal number of steps wanted to be performed.Despite the fat that the treatment of the di�ration grating was lassial, the resulting formulaeresemble strongly the quantum walk introdued in Se. 1.1. For this reason, the result ould be alleda generalized quantum walk with non-unitary oin.
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ConlusionQuantum walks have beome an ative �eld of researh, in partiular in onnetion to quantumalgorithms, during the last deade. Several important algorithmi tasks have also been solved usingquantum algorithms based on quantum walks. As the theory of quantum walks is already very rih,a demand naturally arises to �nd a exible experimental implementation. A realization allowingvarious hanges to the basi quantum walk would be a signi�ant step towards a quantum omputersine its framework ould allow diret realization of some of the quantum walk-based algorithms.There are many ways of implementing quantum algorithms in general. In this thesis, we stud-ied the possibilities of implementing a quantum walk using an optial interferometer. One of theon�gurations proved to have a very lose relation to the basi oined disrete-time quantum walkon a line and thus o�ers a possible way to pursue this line also in subsequent work. The otheron�gurations feature some generalized forms of quantum walks, whih have not been studied so farand thus their potential is not yet ompletely explored.As noted in the introdution and in the respetive plaes, some parts of the work were ollab-orative. However, most of the work of the original results presented in Chapters 2 to 4 have beenthe author's work within the presented Master's thesis. Naturally, the experiments disussed areompletely the work of the olleagues in Erlangen.The work done here opens some opportunities for a subsequent researh. The next importantstep would be to �nd a realization of some simple quantum algorithm based on one of the presentedimplementations. Another signi�ant open question is how more ompliated quantum walks, e.g.,a walk on a 2-dimensional lattie instead of a line, ould be implemented in a similar manner. Workon these topis is well under way and we expet our partners from Erlangen to ath on these ideasin near future.
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Appendix ACoherent statesCoherent states form an important subset of the state spae of an eletromagneti �eld. In thisAppendix, we will de�ne these states and study some of their properties.A.1 The ladder operatorsLet us begin with introduing the Hamiltonian of a quantum harmoni osillator from elementaryquantum mehanis [31℄, H = 12X2 + 12P 2: (A:1)The X and P operators are the position and momentum observables in a set of units where themass of the partile, the angular frequeny of the osillator and the redued Plank onstant �h areall equal to 1, and satisfy a anonial ommutation relation[X;P ℄ = i: (A:2)In quantum optis, the same Hamiltonian desribes the dynamis of every mode of an eletromag-neti �eld [27℄. The X and P observables lose their original diret meaning but are still observablequantities subsequently referred to as quadratures of the mode.Similarly to a harmoni osillator, any mode of an eletromagneti �eld has a nondegeneratestate with a lowest energy, the vauum state j0i. It an be shown that the spetrum of H is disreteand all the eigenstates an be generated from j0i using so alled ladder operators.De�nition 1: A ladder operator (with respet to another operator H) is any operator A whihsatis�es the ommutation relation [H;A℄ = �A; (A:3)where � 2 C.The importane of suh operators follows from the following Lemma.Lemma 2: Let � 2 C, let H and A be two operators suh that [H;A℄ = �A. Let further j i be aneigenvetor of H with eigenvalue �, that is,Hj i = �j i: (A:4)Then HAj i = (� + �)Aj i; (A:5)i.e., Aj i is either a zero vetor or an eigenvetor of H with eigenvalue � + �.Proof: Let us expand the ommutation relation[H;A℄ = HA �AH = �A (A:6)46



and apply both sides on j i. After rewriting,HAj i = AHj i+ �Aj i: (A:7)Using Eq. (A.4) and the linearity,HAj i = �Aj i+ �Aj i = (�+ �)Aj i: (A:8)
�Let us try to �nd ladder operators of H as linear ombinations of X and P . From Eqs. (A.1)and (A.2), it an be diretly shown that[H;X℄ = �iP and [H;P ℄ = iX; (A:9)thus [H;�X + �P ℄ = i(�X � �P ): (A:10)If we equate the right hand side to �(�X + �P ), we an �nd the following two solutions:� = �� for � = �1: (A:11)Letting � a �xed real number, we obtain two mutually adjoint operators, shifting the eigenvaluesof (A.1) by �1. Espeially, for � = 1=p2, these operators are alled the annihilation operator a andthe reation operator a†: a = 1p2(X + iP );a† = 1p2(X � iP ): (A:12)The reason for hoosing � in this partiular way is that in this ase, a and a† follow a simpleommutation relation [a; a†℄ = 1=2[X + iP;X � iP ℄ = 2 i2[P;X℄ = 1: (A:13)The relations (A.12) an be inverted to express X and P in terms of a and a†,X = 1p2(a+ a†);P = � ip2(a� a†); (A:14)allowing us to express H only in terms of the ladder operators:H = 12fa; a†g = 12(aa† + a†a) = 12(2a†a + [a; a†℄) = a†a+ 12 : (A:15)As j0i is the lowest energy state, aj0i is neessarily the zero vetor. In the units we have beenusing, this implies that Hj0i = 12 : (A:16)47



On the other hand, we an apply the reation operator or any positive power of it on j0i to obtaineigenstates of H with eigenvalues n+ 1
2 for any n 2 N0. Applying a ladder operator several numberof times ould generally end in the zero vetor|however, we will quikly show that this does nothappen with a† applied on j0i.For this purpose, we will derive from Eq. (A.12) the identitya(a†)n = n(a†)n−1 + (a†)na: (A:17)Let us study the norm of (a†)nj0i, applying this result:k(a†)nj0ik2 = h0jan(a†)nj0i = h0jan−1

(n(a†)n−1 + (a†)na) j0i == nh0jan−1(a†)n−1j0i+ 0 = n∥∥∥(a†)n−1j0i∥∥∥ == n(n� 1)∥∥∥(a†)n−2j0i∥∥∥ = : : : = n!kj0ik == n!: (A:18)We see that the norm is nonzero for any n 2 N0. Therefore, we an de�ne normalized number statesjni = 1pn! (a†)nj0i: (A:19)From Eq. (A.19), we an indue the relationa†jni = pn+ 1jn+ 1i (A:20 a)and similarly, using Eq. (A.17), ajni = pnjni: (A:20 b)Hene, the ladder operators preserve the linear span of the number states. It follows that theexistene of any other eigenvetor orthogonal to this set would result in a ontradition with thenondegeneray of the lowest energy level. Therefore, the number states form an orthonormal basisof the one-mode state spae.From the shift property Eq. (A.5) of ladder operators and from Eq. (A.16), it immediatelyfollows that Hjni = (n+ 12) jni: (A:21)Comparing with Eq. (A.15), we see that the ation of the operator a†a on number states is simplya†ajni = njni: (A:22)Thus, this operator ats as a \operator of exitation ount" and an be denoted aordingly by N .48



A.2 The oherent statesBesides the number states, we an de�ne many more states of general interest. The most familiarof these states are oherent states. We will build their de�nition on the above formalism. However,we note that in various soures, other de�nitions of oherent states than the following are also used,not neessarily ompatible with the one presented here.De�nition 3: Let � 2 C, let j i be a normalized eigenvetor of the annihilation operator a witheigenvalue of �. We will all j i a oherent state with amplitude �. If j i also satis�es a phaseondition h j0i > 0, we will denote j�i := j i.The following theorem shows that there is a oherent state for any omplex amplitude � andgives a formula how to �nd it.Theorem 4: Let � 2 C, let j0i be the vauum state of the system with Hamiltonian (A.1). Thena oherent state j�i exists and is unique. Moreover, it an be expressed in the following ways:j�i = e− |α|2
2 exp(�a†)j0i = exp(�a† � �∗a)j0i: (A:23)Proof: Let us look for the oherent state in the formj�i = +∞

∑

n=0

njni: (A:24)The ation of the annihilation operator is by Eq. (A.20 b)aj�i = +∞
∑

n=0

pnnjn� 1i = +∞
∑

n=0

pn+ 1 n+1jni: (A:25)Comparing this series with �j�i, we obtain a reurrene relationpn+ 1 n+1 = �n (A:26)whih an be solved as n = �npn!0: (A:27)To show that this de�nes a state in the Hilbert spae spanned by the number states, we shall showthat a state de�ned formally by a sum j i = 0 +∞
∑

n=0

�npn! jni (A:28)has a �nite norm. As the number states de�ne an orthonormal basis, the norm an be omputed askj k2 = j0j2 +∞
∑

n=0

j�j2nn! = j0j2 exp j�j2 < +1: (A:29)49



Hene, we an also see that to make the state j i normalized, the onstant 0 must satisfyj0j = e− |α|2
2 : (A:30)The last, \phase" ondition of De�nition 3, restrits h j0i = 0 to be real and positive. Thus, thestate is determined uniquely: j�i = e− |α|2

2

+∞
∑

n=0

�npn! jni: (A:31)Using Eq. (A.19), we an rewrite Eq. (A.31) asj�i = e− |α|2
2

+∞
∑

n=0

�nn! (a†)nj0i = e− |α|2
2 exp(�a†)j0i; (A:32)whih is exatly the �rst simpli�ed form mentioned in Theorem 4.We will prove the last equivalene in Theorem 4 indiretly by showing that the right hand sidej�ir = exp(�a† � �∗a)j0i (A:33)satis�es all the onditions of De�nition 3. First, we will �nd the ommutation relation[a; �a† � �∗a℄ = � (A:34)and analogously to Eq. (A.17), we will prove that[a; (�a† � �∗a)n℄ = n�(�a† � �∗a)n−1: (A:35)Further, we will expand the exponential into a series,j�ir = +∞

∑

n=0

1n! (�a† � �∗a)nj0i: (A:36)Applying a from the left on both sides and using the ommutation relation Eq. (A.35) and the fatthat aj0i = 0, we obtainaj�ir = +∞
∑

n=0

n�n! (�a† � �∗a)n−1j0i = � +∞
∑

n=1

1(n� 1)!(�a† � �∗a)n−1j0i = �j�ir : (A:37)Next, we will show that j�ir is normalized. Sine(�a† � �∗a)† = �∗a � �a† = �(�a† � �∗a); (A:38)the operator �a† ��∗a is skew-adjoint. Hene, its exponential is unitary and preserves the norm ofj0i in Eq. (A.33). 50



Finally, we need to hek the phase onvention of De�nition 3. Expanding the exponentialagain, we rewrite h0j�ir = +∞
∑

n=0

1n!h0j(�a† � �∗a)nj0i: (A:39)Using the identity that h0ja† = 0 (sine the left-hand side is a onjugate of aj0i) and the ommutationrelation Eq. (A.35), we �nd thath0j(�a† � �∗a)nj0i = ��∗h0ja(�a† � �∗a)n−1j0i == ��∗h0j(�a† � �∗a)n−1aj0i � (n� 1)��∗h0j(�a† � �∗a)n−2j0i == �(n� 1)j�j2h0j(�a† � �∗a)n−2j0i: (A:40)This reurrene relation an be solved ash0j(�a† � �∗a)nj0i = { (�1)n/2(n� 1)!!j�jn if n is even,0 otherwise, (A:41)sine the expression redues for even powers of n to �nding h0j0i = 1 while for odd n, it is proportionalto h0j�a† � �∗aj0i = �h0j1i = 0. Using this formula,h0j�ir = +∞
∑

n=0

1n!h0j(�a† � �∗a)nj0i = ∞
∑

n=0

(�1)n(2n� 1)!!jaj2n(2n)! = +∞
∑

n=0

(�1)njaj2n(2n)!! == +∞
∑

n=0

(�jaj2)nn! 2n = e− |α|2
2 = h0j�i > 0: (A:42)This implies that j�ir = j�i: �A.3 Basi properties of oherent statesIn this setion, we will list the very basi properties of oherent states. We will fous only onproperties whih are related to our topi in some way.First, let us larify the relation between number states and oherent states with integer ampli-tude. The vauum state j0i is equal to the oherent state with amplitude 0, as an be seen e.g. fromEq. (A.32). On the other hand, number states jni with n > 0 are not oherent. If a ertain physialsituation involves oherent states with positive integer amplitudes, the notation must be altered toavoid onfusion.As opposed to number states, no subset of oherent states an form an orthonormal basis of thestate spae as none of them are mutually orthogonal. Instead, the salar produt of two oherentstates is h�j�i = e− |α|2
2

− |β|2
2

+∞
∑

n=0

�n (�∗)nn! = e− |α|2
2

− |β|2
2

+αβ∗ ; (A:43)where we used the expansion Eq. (A.31) to ompute the produt in the number basis. However, wenote that a deomposition of unity using only oherent states is still possible in many ways, in fat,the set of oherent states is overomplete [27℄. 51



Finally, we an study expetation values of the operators introdued above on oherent states.All of these an be derived algebraially from the property aj�i = �j�i easily:{ hai|α〉 = h�jaj�i = h�j�j�i = �,{ ha†i|α〉 = h�ja†j�i = (h�jaj�i)∗ = �∗,{ hXi|α〉 = 1√
2
(hai+ ha†i)|α〉 = 1√

2
(�+ �∗) = p2<�,{ hP i|α〉 = −i√

2
(hai � ha†i)|α〉 = 1

i
√

2
(� � �∗) = p2=�,{ hNi|α〉 = h�ja†aj�i = kaj�ik2 = k�j�ik2 = j�j2,{ hHi|α〉 = hNi|α〉 + 1

2 = j�j2 + 1
2 .From the last two lines, we an onlude that the squared magnitude of the amplitude has adiret relation to the energy of the state. We note that the lowest energy level given by Eq. (A.16)is often subtrated from the Hamiltonian H by delaring it a zero energy level and the quantity j�j2beomes proportional to the intensity of the pulse.A.4 Example: a beam splitterIn this setion, we will give a desription of a beam splitter using the reation and annihilationoperators, and use this desription to ompute how a oherent state input transforms on a beamsplitter.Let us begin with Eq. (2.9) from Se. 2.3. However, instead of desribing the situation fora single photon, we will de�ne four light modes orresponding to the two input and two output armsof the beam splitter and having its own Hilbert spae eah. This way, we will ome to a seondquantization of the eletromagneti �eld: on eah of the spaes, we will postulate the reation andannihilation operators, a†j and aj , satisfying the anonial ommutation relation Eq. (A.12), and avauum state j0ij whih satis�es aj j0ij = 0. We an then reonstrut all the algebrai results ofSe. A.1. However, instead of referring to a n-th exitation of a given mode, we will laim that thereare n photons in that mode, eah arrying an energy of 1.We an then identify the states used in Se. 2.3 with tensor produts of ertain states of thisompound system:j ii = j1ii 
 j0iU 
 j0iM 
 j0iL = (a†i j0ii)
 j0iU 
 j0iM 
 j0iL = a†i j0i; (A:44)where j0i = j0ii 
 j0iU 
 j0iM 
 j0iL and the a†i operator is extended to at trivially on the spaesof the U , M and L modes, and, similarly, j U i = a†U j0i;j M i = a†M j0i;j Li = a†Lj0i: (A:45)It is important to realize that the reation and annihilation operators ating on di�erent spaesinherently ommute. 52



Using this notation, Eq. (2.9) an be rewritten asa†i j0i 7! (tAa†M + rAa†L)j0i;a†U j0i 7! (t∗Aa†L � r∗Aa†M )j0i: (A:46)Reall that this mapping does not happen instantaneously but takes a �nite time during whihthe pulse travels through the beam splitter. During this time, the vauum state an undergo somehange in phase under the UA operator. Therefore, we should orretly apply it on the vauum stateon the right hand side. In terms of this operator, the last pair of equations an be rewritten asUAa†i j0i = (tAa†M + rAa†L)UAj0i;UAa†U j0i = (t∗Aa†L � r∗Aa†M )UAj0i: (A:47)Generally, this transition ould be muh more ompliated, but for our purposes, we will onsider anideal passive beam splitter in onstant outer onditions in whih a vauum state an only transformtrivially.In order to study the ation of the beam splitter on more than one photon, we will postulatethat the ation is the same on eah state as on the vauum state, i.e.,UAa†i = (tAa†M + rAa†L)UA;UAa†U = (t∗Aa†L � r∗Aa†M )UA: (A:48)Ating on both equations from the right by U†
A, we obtainUAa†iU†

A = tAa†M + rAa†L;UAa†UU†
A = t∗Aa†L � r∗Aa†M : (A:49)We will onsider this the �nal desription of the beam splitter's ation.Taking produts of powers of Eqs. (A.49) and their linear ombinations, we an �nd the trans-formation of any possible input state. As an example, let us �nd the transformation of the inputstate j1iij1iU (for brevity, we omitted the tensor produt operators and the kets orresponding tooutput states): UAa†ia†UU†

A = UAa†iU†
AUAa†UU†

A = (tAa†M + rAa†L)(t∗Aa†L � r∗Aa†M ) == (TA �RA)a†Ma†L � tAr∗A(a†M )2 + rAt∗A(a†L)2 (A:50)Applying both sides of j0i, we an see that the input state is transformed to(TA �RA)j1iM j1iL � tAr∗Aj2iM j0iL + rAt∗Aj0iM j2iL; (A:51)whih is generally an entangled state of the two output modes.Using the same idea, we an �nd the ation of the beam splitter when there are oherent pulseson the input modes. For this purpose, we will assume the input in the form ofj�iij�iU = e− |α|2+|β|2
2 exp(�a†i ) exp(�a†U )j0i =  exp(�a†i+�a†U ) =  +∞

∑

n=0

1n! (�a†i+�a†U )nj0i; (A:52)53



where  = exp((�j�j2 � j�j2)=2) and we used the fat that a†i and a†U ommute. The orrespondingoutput state is j oi =  +∞
∑

n=0

1n! (UA(�a†i + �a†U )U†
A

)n UAj0i ==  +∞
∑

n=0

1n! (�tAa†M + �rAa†L + �t∗Aa†L � �r∗Aa†M )nUAj0i ==  exp(�tAa†M + �rAa†L + �t∗Aa†L � �r∗Aa†M )UAj0i ==  exp((�tA � �r∗A)a†M) exp((�rA + �t∗A)a†L)UAj0i == j�tA � �r∗AiM j�rA + �t∗AiL;
(A:53)

where the splitting of an exponential to a produt of two fators was possible sine a†M and a†Lommute. The normalization onstant  is the same for both the input and the output state, asfollows from the identityj�rA � �t∗Aj2 + j�rA + �t∗Aj2 = j�j2(jtAj2 + jrAj2) + j�j2(jtAj2 + jrAj2)�� �rA�∗tA � �t∗A�∗r∗A + �rA�∗tA + �t∗A�∗r∗A == j�j2 + j�j2: (A:54)Therefore, a produt of two oherent input states transforms to a produt of two oherent outputstates, whih is by de�nition a fatorized state. This is interesting in ontrast with the above two-photon ase where the output was entangled. Also note in Eq. (A.53) that the amplitudes transformand \interfere" exatly in the same way as wave amplitudes in lassial optis. For these reasons,oherent states are understood as the \most lassial" states of light.
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Appendix BHypergeometri sums involving two binomial oeÆientsIn this Appendix, we will study some properties of the series of the form
+∞
∑

m=0

( n� �1m� �1

)( n� �2m� �2

)xm; �1; �2; �1; �2 2 N0; (B:1)whih are needed at many points throughout Chap. 2. These series satisfy the ondition that theratio of two suessive terms is a rational funtion of m and thus they form a subset of so alledhypergeometri series [21℄. Suh series an be uniformly desribed using a losely related oneptof hypergeometri funtions [21,22℄. However, as hypergeometri funtions are de�ned again ashypergeometri series, suh formal rewriting does not redue the omplexity of the alulationsneeded to ompute the sum. Similarly, the rewriting does not give us any new information. In thefollowing, we will keep the original series notation.Lemma 5: Let x be a positive real number. In the series Eq. (B.1), only a �nite number of termsis nonzero. These terms are onseutive and bounded bymaxf�1; �2g � m � minfn� �1 + �1; n� �2 + �2g: (B:2)Proof: The binomial oeÆient (nk) is zero if k < 0 or k > n and nonzero otherwise. The powerterm is nonzero for all m as long as x is nonzero. Applying the former rule to the two binomialoeÆients in Eq. (B.1), we �nd that the term is zero only if and only if at least one of the onditionsare met: m� �1 < 0 or m� �2 < 0 or m� �1 > n� �1 or m� �2 > n� �2: (B:3)The inverse of this ondition yields the lemma. �As the sum for given n, �i and �i is in fat a speial funtion of x, there are limited possibilitiesto ompute it in a losed form. One point where the sum is known is x = 1, as shown in the followingtheorem.Theorem 6: (The sum for x = 1) Let �1, �2, �1 and �2 are nonnegative integer onstants. Then
+∞
∑

m=0

( n� �1m� �1

)( n� �2m� �2

) = ( 2n� (�1 + �2)n� (�2 � �2 + �1)): (B:4)Proof: Without loss of generality, let us assume that �1 � �2. Using Lemma 5, the sum an thenbe rewritten to
n−ν2+µ2
∑

m=µ1

( n� �1m� �1

)( n� �2m� �2

): (B:5)55



By substituting k = m� �1, it transforms into
n−ν2+µ2−µ1

∑

k=0

(n� �1k )( n� �2k + �1 � �2

): (B:6)Let us further study the following two expansions given by the binomial theorem:(1 + x)n−ν1 = n−ν1
∑

k=0

(n� �1k )xk;(1 + x)n−ν2 = n−ν2
∑

l=0

(n� �2l )xl: (B:7)Their produt an be expressed as(1 + x)n−ν1(1 + x)n−ν2 = n−ν1
∑

k=0

n−ν2
∑

l=0

(n� �1k )(n� �2l )xk+l == 2n−ν1−ν2
∑

m=0

m
∑

k=0

(n� �1k )(n� �2m� k)xm == 2n−ν1−ν2
∑

m=0

m
∑

k=0

(n� �1k )( n� �2k + n� �2 �m)xm: (B:8 a)
However, we ould multiply the powers and expand the result:(1 + x)n−ν1(1 + x)n−ν2 = (1 + x)2n−ν1−ν2 == 2n−ν1−ν2

∑

m=0

(2n� �1 � �2m )xm: (B:8 b)Both Eqs. (B.8 a) and (B.8 b) are �nite power expansions of the same expression, thus theoeÆients of the same power of x must be equal. We an note that the oeÆient of xm, m =n� �2 + �2 � �1, in Eq. (B.8 a) is exatly the sum in Eq. (B.6). Therefore, this sum must be equalto the oeÆient of xm in Eq. (B.8 b), whih is
(2n� �1 � �2m ) = ( 2n� �1 � �2n� �2 + �2 � �1

):
�The following theorem shows that for large n, the sum rises exponentially in n, and it gives thequotient of this grow.Theorem 7: Let �1, �2, �1 and �2 are nonnegative integer onstants, let x is real, x � 0. The limitq(x) = lim

n→+∞
n

√

√

√

√

+∞
∑

m=0

( n� �1m� �1

)( n� �2m� �2

)xn (B:9)exists and equals (px+ 1)2. 56



To prove this theorem, we will �rst need the following useful lemma:Lemma 8: Let the assumptions of Theorem 7 hold, let n 2 N and x are �xed. Then the expression
( n� �1m� �1

)( n� �2m� �2

)xn (B:10)has exatly one maximum in m. For n� �i, n� �i, the maximum is reahed atm0 = pxpx+ 1n+O(1): (B:11)Proof: Let us denote am = ( n� �1m� �1

)( n� �2m� �2

)xn: (B:12)Let us study the ratio of two sueeding terms in the interval where they are nonzero, as given byLemma 5: am+1am = (n� �1 �m+ �1)(n� �2 �m+ �2)(m� �1 + 1)(m� �2 + 1) x: (B:13)This is a rational funtion in m. In the allowed interval, the denominator is a monotoniallyinreasing funtion and the numerator a monotonially dereasing funtion. Depending on thevalue in the minimal and maximal m given by the inequality (B.2), the sequene (am) is eithermonotonially dereasing, monotonially inreasing or has one maximum inside the interval. In allases, there is exatly one maximum.2 For suÆiently large n, the maximum is reahed inside theinterval and an be found putting the ratio (B.13) equal to 1. This leads to a quadrati equationfor m, whih an be written asymptotially as(n2 � 2mn+m2 +O(n;m))x = m2 +O(m)(x� 1)(mn )2 � 2x(mn )+ x+O(n−1) = 0: (B:14)This equation has two asymptoti solutions,mn = x�pxx� 1 +O(n−1) = pxpx� 1 +O(n−1); (B:15)from whih only the + variant is aeptable sine the other one gives m outside the bounds (B.2).Multiplying the last equation by n ompletes the proof. �Proof of Theorem 7: Let An denote the maximal value of (B.10) for given n 2 N . We an thenestimate the root from both sides by
n
√An � n

√

√

√

√

+∞
∑

m=0

( n� �1m� �1

)( n� �2m� �2

)xn � n
√(n+ 1)An: (B:16)

2 Under special conditions, it can happen that the same maximal value is reached at two consecutive
values of m. We will consider this also a single maximum.57



As n approahes +1, the n
pn+ 1 term has a limit of 1, so both sides give the same valueq(x) = lim

n→+∞
n
√An: (B:17)We will estimate the maximum An using its approximate position given by the above Lemma.Let us denote � = pxpx+ 1 ; (B:18)so that m0 = �n+O(1).First, let us use the Stirling's approximation [26℄n! = p2�n(ne)n (1 +O(n−1)) (B:19)to make a similar approximation of a binomial oeÆient, (nk), when n is large and both k and n�kare 
(n):

(nk) = nn+ 1
2p2�kk+ 1

2 (n� k)n−k+ 1
2

(1 +O(n−1)) (B:20)This ondition is met for k = m0 � �i when � 2 (0; 1).Using this approximation formula for An givesAn = (n� �1)n−ν1+ 1
2 (n� �2)n−ν2+ 1

2xαn2�(�n+O)αn+O(�n+O)αn+O(�′n+O)α′n+O(�′n+O)α′n+O
(B:21)where every O is a shorthand for O(1) and�′ = 1� � = 1px+ 1 : (B:22)We an use this estimate to �nally ompute the limit (B.17). In the following, O′ � O(n−1).q(x) = lim

n→+∞
n
√An == lim

n→+∞
n

√

√

√

√

(n� �1)n−ν1+ 1
2 (n� �2)n−ν2+ 1

2xαn2�(�n+O)αn+O(�n+O)αn+O(�′n+O)α′n+O(�′n+O)α′n+O
== lim

n→+∞
(n� �1)1+O′(n� �2)n+O′xα(2�) 1

n (�n+O)α+O′(�n+O)α+O′(�′n+O)α′+O′(�′n+O)α′+O′

(B:23 a)
After this step, the O′ terms in all the exponents an be dropped as a result of �(n)O(1/n) ! 1.Similarly, the (2�)1/n term has a limit of 1:q(x) = lim

n→+∞
(n� �1)(n� �2)xα(�n+O)α(�n+O)α(�′n+O)α′(�′n+O)α′ == lim

n→+∞
(1� ν1

n )(1� ν2
n )xα(� +O′)α(� +O′)α(�′ +O′)α′(�′ +O′)α′

(B:23 b)58



In the �rst line of Eq. (B.23 b), we divided both sides of the fration by n2, using the fat that2(� + �′) = 2. As � and �′ are onstant, we an take the limit easily:q(x) = xα�α�α�′α′(�′)α′= xα�2α�′2α′= x √
x√

x+1

(
√
x√
x+1

)2
√

x√
x+1

(

1√
x+1

)2 1√
x+1= (px+ 1)2: (B:23 )

�
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