
Cze
h Te
hni
al University in PragueFa
ulty of Nu
lear S
ien
es and Physi
al Engineering

MASTER'S THESISOpti
al Interferometers and Quantum Walks

2009 V�a
lav Poto�
ek



A
knowledgmentsI would like to thank my supervisor, prof. Igor Jex, for kind support and help during the
reation of this thesis, for providing a

ess to all the important referen
es and 
he
king the fa
tual
orre
tness of the manus
ript. I am also grateful to my 
onsultant and 
olleague, Aur�el G�abris, formany insightful dis
ussions and hints on various part of the topi
 and for numerous stylisti
al andfa
tual 
orre
tions improving the text signi�
antly.Collaboration with partner s
ienti�
 groups lead by Erika Andersson (Heriott-Watt Universityof Edinburgh, UK), Christine Silberhorn (Max Plan
k Institute for the S
ien
e of Light, Erlan-gen, Germany) and Tam�as Kiss (Hungarian A
ademy of S
ien
es, Budapest, Hungary) is highlyappre
iated and I would like to thank all the people who made it possible.Last but not least, I would like to thank Thomas Brougham, as well as others who have readthe manus
ript, for helping to proof read the text.



N�azev pr�a
e:Opti
k�e interferometry a kvantov�e pro
h�azkyAutor: V�a
lav Poto�
ekObor: Matemati
k�e in�zen�yrstv��Zam�e�ren��: Matemati
k�a fyzikaDruh pr�a
e: Diplomov�a pr�a
eVedou
�� pr�a
e: Prof. Ing. Igor Jex, DrS
., KF, FJFI, �CVUTKonzultant pr�a
e: Aur�el G�abris, PhD, KF, FJFI, �CVUTAbstrakt: Pr�a
e popisuje n�ekolik experiment�aln�e realizovateln�y
h kon�gura
��, kter�e implementuj��kvantovou n�ahodnou pro
h�azku. V�yhodou navrhovan�y
h realiza
�� je vyu�zit�� omezen�eho po�
tu line�ar-n��
h opti
k�y
h element�u. V�ysledky teoreti
k�eho rozboru ukazuj�� p�rekvapiv�e druhy interferen
e, kter�eby mohly roz�s���rit mo�znosti kvantov�e analogie n�ahodn�y
h pro
h�azek za hrani
e d�r��ve popsan�y
h teori��kvantov�y
h n�ahodn�y
h pro
h�azek.Kl���
ov�a slova: Interferometry, kvantov�a optika, kvantov�e n�ahodn�e pro
h�azky
Title:Opti
al Interferometers and Quantum WalksAuthor: V�a
lav Poto�
ekAbstra
t: The thesis des
ribes several mutually independent experimentally realizable opti
al in-terferometers proposed for implementing a quantum walk. In 
ontrast to other realizations, theadvantage of the presented implementations is the use of a limited number of linear opti
s elements.The results of the theoreti
al study of these devi
es show various means of interferen
e, whi
h 
ouldextend the possibilities of quantum analogy to random walk theory beyond the 
urrent quantumwalk understanding.Key words: Interferometers, Quantum opti
s, Quantum walks



ContentsIntrodu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11. Overview of the topi
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.1 Quantum walks, basi
 types and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Opti
al interferometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42. Quantum walk with a simple delay loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.1 The interfering opti
al paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.2 Corresponden
e to a random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.3 The quantum me
hani
al model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.4 The path sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.5 The re
urren
e relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.6 Probability normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.7 Parameter optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.8 Mean position of the walker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.9 Relation to 
oherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233. Quantum walk using polarization as a 
oin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.1 The polarization degree of freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.2 An interferometer implementing a 
oined quantum walk . . . . . . . . . . . . . . . . . . . . . . . 253.3 The mathemati
al model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.4 The path sum and the re
urren
e relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.5 Current state of experimental realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.6 Optimal layout for single photon use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.7 Imperfe
tions and de
oheren
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354. Quantum walk using a di�ra
tion grating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.1 The properties of di�ra
tion grating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.2 Di�ra
tion grating as a linear opti
s element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384.3 Quantum walk with a line of di�ra
tion gratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.4 Measurement of the walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Appendi
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46A. Coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46A.1 The ladder operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46A.2 The 
oherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49A.3 Basi
 properties of 
oherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51A.4 Example: a beam splitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52B. Hypergeometri
 sums involving two binomial 
oeÆ
ients . . . . . . . . . . . . . . . . . . . . . 55Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



List of used symbolsThe following list 
overs some of the mathemati
al symbols and 
onventions used in the workwithout prior de�nition.Symbol Explanation
N the set of positive integers, i.e., f1; 2; 3; : : :g
N0 the set of nonnegative integers, i.e., f0; 1; 2; 3; : : :g
Z the set of all integers, i.e., f0; 1;�1; 2;�2; : : :g
R the set of real numbers
C the set of 
omplex numbers1 identity operator, identity matrix�∗ 
omplex 
onjugate of a 
omplex number �A† Hermitian adjoint of an operator ATrA tra
e of an operator A
 tensor produ
t of operators, ve
tors or ve
tor spa
es<� the real part of a 
omplex number �=� the imaginary part of a 
omplex number �n!! the double fa
torial of n: n(n� 2)(n� 4) : : :; (�1)!! = 0!! = 1.[x℄ nearest integer to a real number xbx
 the integer part, the largest integer not greater than x 2 R(a; b) an open interval from a to bha; bi a 
losed interval from a to bf = O(g) jf(x)j is bounded above by 
onst:� g(x) asymptoti
allyf = 
(g) jf(x)j is bounded below by 
onst:� g(x) asymptoti
allyf = �(g) f(x) is bounded both above and below by 
onst:� g(x) asymptoti
ally



Introdu
tionQuantum walks are an interesting analogue of 
lassi
al random walks, de�ned in the frameworkof quantum me
hani
s. Many kinds of quantum walks have been studied and several quantumalgorithms are based on them. An experimental realization of a quantum walk 
ould also opena way to implement these algorithms. Despite the number of experimental s
enarios that have beenproposed to implement a quantum walk, e.g., [1,2℄, only a few a
tual experimental demonstrationshave been published so far|the �rst eviden
e is dated 2003 [3℄. This thesis des
ribes three newdi�erent experimentally realizable 
on�gurations whi
h display the behaviour of quantum walksand thus 
ould be used to a
hieve this goal. One of the algorithms is the subje
t of a 
urrentexperiment [4℄.The work is organized as follows. In Chapter 1, we provide a brief overview of quantum walksand opti
al interferometers in general. In Chapter 2, we study the features of a simple interferometer
omposed of beam splitters and mirrors only. When short light pulses or single photons are inserted,a quantum walk behaviour 
an be observed in the output arm. In Chapter 3, a more elaborateinterferometer is studied where light polarization is used to �nd a 
lose 
orresponden
e to a quantumwalk on a line studied by the pioneering works. In Chapter 4, the possibility of using an opti
algrating as a linear opti
s element is presented and a third quantum walk experiment is proposed.Finally, we 
on
lude our results.The main idea of the �rst two proposed implementations is to use one 
losed interferometri
loop for an arbitrary number of the walk steps, as opposed to more straightforward linear opti
simplementations, whose spa
e requirements s
ale quadrati
ally with the number of steps to be per-formed [2℄. Also, the experiment des
ribed in Chapter 2 shows a 
ompletely new form of a quantumwalk sharing many properties with a 
lassi
al random walk.We emphasize that the opti
al interferometers des
ribed in Chapters 2, 3 and 4 were not designedby the author. The �rst studied experimental 
on�guration is a result of 
ollaboration with ErikaAndersson, Aur�el G�abris, Igor Jex, Tam�as Kiss and others, the 
on�guration introdu
ed in Chapter 3is a
tually a des
ription of an existing experiment realized by the group of Andreas S
hreiber,Katius
ia Cassemiro and Christine Silberhorn. The idea of using di�ra
tion gratings to implementquantum walks 
omes from Igor Jex and his 
olleague, Go
e Chadzitaskos. The aim of this thesisis to develop a theoreti
al ba
kground for these 
on�gurations and to show the 
onne
tions betweenthem. The mathemati
al models and their expli
it solutions are original.
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Chapter 1Overview of the topi
Let us introdu
e the most important 
on
epts whi
h will be used in the 
hapters to follow.In this 
hapter, we will review the 
on
epts of quantum walks and opti
al interferometers.1.1 Quantum walks, basi
 types and propertiesThe idea of �nding a quantum 
ounterpart of a random walk was �rst introdu
ed in [5℄ in 1993.The authors of the mentioned paper studied the behaviour of a one-dimensional spin-12 parti
lewhose dynami
s was determined by a spe
ially de�ned evolution operator whi
h shifted the parti
leto the right or to the left depending on its spin state. After every step, a measurement of positionwas done, 
ollapsing the wave fun
tion and bringing randomness into the the time evolution.Sin
e that work, many authors have introdu
ed other models that shared the idea of \quantumwalks". The theory has bran
hed in several ways whi
h are only loosely 
onne
ted. The main ideaextending the �rst example, whi
h was rather 
lassi
al, was to drop the intermediate measurements:we let the system evolve freely for some given time and make only one measurement at the end ofthis interval.The dire
t result of this approa
h is a dis
rete time quantum walk with a 
oin [6,7,8℄, whi
his formulated algebrai
ally as follows. Let HS be a dis
retized position spa
e, where the allowedlo
alized positions of the parti
le form an orthonormal basis whose ve
tors are denoted by integernumbers. Let this spa
e be augmented by a two-dimensional \
oin spa
e" HC , whi
h takes the roleof the spin spa
e of the original system. Let us de�ne two orthonormal basis states in HC , denotedjLi and jRi. An orthonormal basis of the 
omposed system, whose state spa
e is a tensor produ
tHS 
HC , 
an be found as fjx; di = jxi 
 jdi j x 2 Z; d 2 fL;Rgg: (1:1)The quantum walk is obtained by initializing the system in a statej ii = j0i 
 jzi; (1:2)where jzi 2 HC denotes the initial 
oin state (or initial 
hirality), and letting it evolve for a givennumber of dis
rete time steps. One step then 
onsists of \tossing the 
oin" and then taking a 
ondi-tional step of size �1 in the position spa
e. Mathemati
ally speaking, the propagator 
orrespondingto one time step is 
omposed of a unitary 
oin operator C, a
ting on the 
oin spa
e only, followedby a step operator S: U = S � C; (1:3 a)2



where C = 1
 C0;S = ∑

x∈Z

(jx+ 1; Rihx;Rj+ jx� 1; Lihx; Lj) : (1:3 b)As C0 a
ts on the previous 
oin state, there is a strong 
orrelation between the subsequent steps,resulting in a highly non-
lassi
 behaviour of the quantum walk.Making the �nal measurement on the position spa
e, we 
an 
onstru
t a dis
rete probabilitydistribution of the possible positions where the walker will be found. The distribution of a quantumwalk is generally bordered by two sharp peaks whi
h asymptoti
ally move at a linear speed away fromthe origin, as opposed to a 
lassi
al random walk, for whi
h the probability distribution is binomial.In relation to this behaviour, the standard deviation of the quantum walk is asymptoti
ally linearin the iteration 
ount as opposed to the 
lassi
al random walk where it s
ales with the square rootof time. More details about the distribution 
an be found in [6℄.The 
oin plays a fundamental role in a dis
rete time quantum walk. As an example, the generalproperties of a parti
ular quantum walk, su
h as symmetry of the motion to the left or right, aredetermined not only by the 
oin operator C0 but also depend strongly on the initial 
oin state jzi.The ne
essity of using the 
oin spa
e follows from the so-
alled No-Go Lemma [9℄, whi
h states thatthe basi
 properties expe
table from a random walk, 
ombined with the demand of unitary timeevolution, restri
t a 
oinless quantum walk on HS to a trivial form where ea
h step is taken in thesame dire
tion.As a �rst possible generalization of this dis
rete time quantum walk model, we 
an repla
e theline by a more 
ompli
ated graph on whi
h the walker 
an move. Quantum walks on a 
ir
le [6℄,grids with 
y
li
 boundary 
onditions [10℄ or hyper
ubes [11℄ were des
ribed and even attempts to�nd some result for general graphs were made [12℄. As long as the graph is regular, i.e., has thesame number of edges originating from ea
h vertex, it 
an be treated analogously to the above 
aseof a line, the main di�eren
e is that the dimension of the 
oin spa
e must be altered to allow stepsin more dire
tions. The extension to irregular graphs is mu
h more 
ompli
ated.Another generalization of the dis
rete time quantum walk is obtained when we allow positiondependen
e of the 
oin transformation. The 
oin operator then be
omes a quantum gate 
ontrolledby the position spa
e. On a line, for example, a position-dependent 
oin operator 
an be written asC = ∑

x∈Z

jxihxj 
 Cx; (1:4)where Cx is a unitary operator on HC for ea
h x 2 Z. Position-dependent 
oins arise most often inquantum walk-based sear
h algorithms [10,13℄ or as one approa
h to de�ne a dis
rete time quantumwalk on irregular graphs [8℄. Also, a quantum walk on a graph with high symmetry degree 
anbe simpli�ed to a walk on a mu
h simpler graph under some 
onditions [13℄, possibly indu
ing aposition dependen
e of the 
oin on the redu
ed graph.In 
ontrast to the dis
rete time quantum walk model, another way to de�ne a quantum walkfollows the idea of a 
ontinuous time Markov pro
esses. In a 
ontinuous time quantum walk on3



a graph [8,14,15℄, one de�nes a Hamiltonian over the position spa
e HS using the adja
en
y matrixof the graph. The system then evolves a

ording to the S
hr�odinger equation for a given time,after whi
h a measurement is made. A parti
ular feature of 
ontinuous time quantum walks is thatno 
oin spa
e is needed.The relation of dis
rete time and 
ontinuous time models is nontrivial: these two approa
hesshow very similar results in some areas whereas there are signi�
ant di�eren
es in other 
ases [8℄.Only very re
ent arti
les [16,17℄ 
laim to have found some exa
t 
orresponden
es between the twomodels.In the whole s
ope of this work, we will use the term \quantum walks" to refer to dis
rete timequantum walks on a line.1.2 Opti
al interferometersThe main part of the work will be 
on
erned with the a
tion of spe
ially designed opti
alinterferometers. Generally, an opti
al interferometer, or just interferometer for short, is a devi
ein whi
h a light beam or pulse 
oming from a single sour
e is split using a beam splitter to taketwo or more possible opti
al paths [18℄. Using further beam splitters, mirrors and possibly otherlinear opti
s elements, the partial wave pa
kets are later dire
ted to the same interferometer armand the 
ontributions from various paths interfere. Due to the di�eren
es in the opti
al path lengths
orresponding to individual paths, and to phase shifts indu
ed by re
e
tions, the wave pa
kets meetwith di�erent phase and the interferen
e 
an be 
onstru
tive as well as destru
tive.An interferometer has an input arm, where the light sour
e is dire
ted to, and one or moreoutput arms. There may be other available input modes whi
h are not used|generally, it followsfrom quantum opti
s that the numbers of input and output modes must be equal. In order to studythe interferen
e, one pla
es opti
al dete
tors to measure the light properties, e.g., intensity, in theoutput arms. A wide spe
trum of opti
al dete
tors is also available for measuring the quantumproperties of light [19℄.The quality of the interferen
e depends mainly on the stability of the interferometer elements butalso on the magnitude of the opti
al path di�eren
e. If it is mu
h larger than the 
oheren
e lengthof the sour
e light, the interferen
e does not o

ur. After a quantization of the ele
tromagneti
 �eldis done, this phenomenon is explained by the fa
t that in a linear medium, there are almost nointera
tions between distin
t photons, so that every photon 
ontributes to the interferen
e outputon its own. We 
an imagine a single photon as a wave pa
ket propagating along the interferometerarms. This wave pa
ket 
an be split and re
ombined on the beam splitters. However, if the opti
alpath di�eren
e of two interferometer paths is mu
h larger than the mean width of this wave pa
ket,the partial wave pa
kets will have zero overlap and no interferen
e will take pla
e.We will keep the wave pa
ket pi
ture it in the following text. Espe
ially, we will use the samedes
ription for a single photon as for a nonrelativisti
 parti
le and de�ne wave fun
tions whi
h 
anbe linear 
ombinations of states 
orresponding to the wave pa
kets. We will assume that there is anequation of motion for these wave pa
kets, however, we will never need its dire
t form. We note thatwave pa
kets are treated 
orre
tly in quantum opti
s as simultaneous ex
itations of a large numberof opti
al modes [20℄ and share the properties we need.4



Chapter 2Quantum walk with a simple delay loopThe �rst 
on�guration to be studied is based on the prin
iple of a delay loop. It is depi
tedin Fig. 1. It works as follows: a short 
oherent unpolarized light pulse is sent into the input armand gets split on the beam splitter A into the middle and lower arm, denoted M and L. Due totheir di�erent opti
al lengths, the two wavefronts arrive at the beam splitter B at di�erent times.A part of both pulses is then separated into the output arm and measured in the dete
tor, the resttravels through the upper arm U ba
k to the beam splitter A. Due to the geometri
al arrangement,the pro
ess 
an in prin
iple repeat an arbitrary number of times.
A B

input

L

M

U

output

D

ϕU

ϕM

ϕL

Fig. 1: The first configuration. A and B are both classic beam splitters, D denotes a detector. The
interferometer arms can be realized in optical fibre, in which case there is no need for mirrors.Let the time needed for a light pulse to travel the arms U , M and L be denoted by tU , tM andtL, respe
tively. In the following, we will always assume that tM 6= tL and, where it is important,also that tL > tM : (2:1)The time it takes for a pulse to travel through beam splitters, mirrors and phase shifters in thearms is negligible 
ompared to 
hara
teristi
 values of the times tU , tM , tL times (these delays areall in the order of one wavelength whereas tU , tM or tL are about 6 orders of magnitude larger ina typi
al realization1). Let us further denote by tp the mean duration of the pulse.If tL � tM � tp, no interferen
e takes pla
e at the �rst pass through the beam splitter B asthe two parts of the pulse arrive temporally separated. However, if we study the situation afterone or more 
y
les through the upper arm, it 
an happen that two parts of the pulse whi
h wereseparated obtain another time di�eren
e whi
h 
auses them to meet again. In this 
ase, we 
anobserve interferen
e.

1 Values used for this estimate were: wavelength λ ∼ 800 nm, optical lengths l ∼ 1 m.5



2.1 The interfering opti
al pathsThe 
ondition of interferen
e is that the wavefronts of two or more pulses taking di�erent pathsmeet at the same point and at the same time (up to the duration of the pulse, tp), going the samedire
tion. The latter is always met in our 
on�guration: as seen from Fig. 1, ea
h arm has only onedire
tion allowed by the geometri
 layout. From the superposition prin
iple, it follows that we 
anpostpone the 
omputation of the interferen
e till the point where the pulse is measured, as if theinterferen
e took pla
e no sooner.Therefore, all possible opti
al paths through the interferometer, starting simultaneously at theinput arm and ending at the output arm, will split into in�nitely many subsets by their es
ape time.Only the paths within the same subset will interfere.When looking for opti
al paths whi
h take exa
tly the same time, we note that the time neededto travel any path from the input to the output is determined only by the number of passes throughthe lower, middle and upper arm, whi
h we will denote by nL, nM and nU , respe
tively: the time ist = nM tM + nLtL + nU tU ; (2:2)regardless of the order in whi
h the arms are taken. Therefore, two or more paths di�ering only inthis order will ea
h give a di�erent \history" whi
h must be 
onsidered one term in the interferen
e.We will 
reate a simple means of des
ription of the opti
al paths by words 
omposed of lettersU , M and L, written from the left to the right in the order the parti
ular arms are taken. In thisformalism, an example of two interfering paths, ending at beam splitter B, 
an be MUL and LUM .The geometri
 arrangement puts some restri
tions on su
h words. First, in order to des
ribea 
omplete path from the input to the output arm, both its �rst and last letters 
an only be M orL. Every M or L ex
ept for the last one must be followed by a U and every U again by M or L.This is illustrated diagrammati
ally in Fig. 2.
M

L

U

M

L

U

M

L

· · ·input output

Fig. 2: The rules for the word description of possible optical paths through the delay loop.It 
an be seen that one does not lose any information by dropping all the letters U . Thisgives the redu
ed form of the given word, whi
h 
an be any sequen
e of letters M and L. We 
anre
onstru
t the full word by repla
ing M 7!MU and L 7! LU and erasing the last U formed in thisway. For this reason, we will use only the redu
ed form in the following text.As a 
onsequen
e, we 
an noti
e the following equation putting a 
onstraint on the numbers ofthe available letters: nU = nM +nL�1. Plugging this into Eq. (2.2), we 
an simplify the expressionto t = nM t′M + nLt′L � tU ; (2:3)where t′M = tM + tU and t′L = tL + tU : (2:4)6



2.2 Corresponden
e to a random walkFor some 
hoi
es of tM , tL and tU , it is possible that not only the paths whose words arepermutations of ea
h other will interfere. A suÆ
ient 
ondition for interferen
e is that the timesgiven for the two paths by Eq. (2.3) are 
loser than tp. Espe
ially, if the ratio t′M : t′L is a rationalnumber, there are paths whi
h take exa
tly the same time despite they have di�erent nM and nL.Namely, if t′Mt′L = pq ; (2:5 a)then qt′M = pt′L (2:5 b)whi
h implies that the mapping Eq. (2.3) is not inje
tive|it gives the same value of t when wede
rease nM by q and in
rease nL by p or vi
e versa. Note that su
h operation always 
hanges thelength of the word, nM+nL, as p 6= q. If t′L�t′M � tp, two paths whose words have the same lengthbut di�erent nM and nL 
an not interfere as the di�eren
e of their times is an integer multiple oft′L � t′M or, equivalently, tL � tM .The problem of irregularly 
oin
iding es
ape times 
an be solved easily by 
hoosing the times t′Mand t′L themselves mu
h larger than their di�eren
e. (On the other hand, however, we are limitedby the 
ondition of global 
oheren
e.) This 
reates a 
arrier pattern in the time domain: es
apetimes of paths with the same nM + nL will be grouped together and separated in a �ner way bytheir nM : nL ratio. The result is shown in Fig. 3.
t0 M L MM LL

ML or LM

MMM LLL etc.

Fig. 3: The possible escape times of the pulse. A combination of letters is used to represent the time marks
through Eq. (2.3). Only some marks are labeled. Between MMM and LLL, for example, there are other

combinations of three letters in the order of increasing count of L letters.This leads us to re-parametrizing the es
ape time by two new variables,n = nL + nM ;k = nL � nM : (2:6)The former is the word length and 
an be used to index the groups 
reated by the proximity oft′M and t′L. All paths des
ribed by words of a given length will have their es
ape time in the samegroup. The latter parameter then numbers the marks in the range of one su
h group.Note that for ea
h n, k is bounded between �n and n and has the same parity as n. Under theassumption (2.1), the marks on the time axis will follow a lexi
ographi
 ordering of the respe
tive(n; k) 
ouples until the borders of two adja
ent groups meet. This happens whennt′L � tU � (n+ 1)t′M � tUn(t′L � t′M ) � t′Mn � t′Mt′L � t′M ; (2:7)whi
h puts an upper bound on the number of 
learly distinguishable loops.7



The 
orresponden
e of the system's behaviour with a random walk on a line is straightforwardif we 
all n the iteration 
ount and k the position on a thought line. We 
an 
ompare taking themiddle or lower arm to a step left or right, respe
tively. Note that all iterations of the walk areobserved simultaneously in a single run of the des
ribed experiment: they are mapped to a singletime line by the N0�N0 ! R mapping provided by Eq. (2.3). By measuring the es
ape probabilityfor all the marks in a single group, we 
an 
all this a distribution over the possible positions on theline after the given number of steps (see also Se
. 2.6). Finally, re
all that after n steps of a randomwalk, there are exa
tly the same 
onstraints for k as we found above.2.3 The quantum me
hani
al modelBesides the pulse regime des
ribed above, the interferometer 
an also be operated in a singlephoton mode. In this approa
h, instead of measuring the intensity of the output signal at the possiblees
ape times, one would insert single photons into the interferometer and measure the distributionof the time instants they are dete
ted at the output. By performing a suÆ
ient number of runs ofthe experiment, one would use this probability distribution instead of the signal from the intensitydete
tor. In Se
. 2.9, we will prove the exa
t physi
al 
orresponden
e of these two approa
hes.In order to explain single photon phenomena, our mathemati
al model of the system must bebased on quantum me
hani
al treatment of light instead of 
lassi
al wave opti
s. To help with themathemati
al des
ription, let us solve the single photon operation �rst. The simpli�
ation obtainedin this way is that we 
an des
ribe the system using one-parti
le quantum me
hani
s. After the timeevolution is solved, we will rewrite the obtained results in terms of the 
reation and annihilation�eld operators, allowing us to 
onsider multi-photon input states, in Se
. 2.9.The Hilbert spa
e used in the following will be the spa
e of L2-integrable fun
tions de�ned onthe graph of the interferometer and its ve
tors wave fun
tions of the photon. We will not work withthese wave fun
tions dire
tly, rather, we will de�ne several signi�
ant states and study the overlapof the system state with them. These states, as well as the initial state of the in
oming photon,will be 
onstru
ted as minimum un
ertainty wave pa
kets des
ribed by their mean position. Thedire
tion is given by the physi
al arrangement and the speed is 
onstant.Be
ause of the dete
tion pro
ess, the time evolution of the system is not unitary. However, we
an de�ne an output state j oi right at the beginning of the output arm|the amplitude of this statewill be equal to the amplitude of probability of dete
ting the photon after a �xed amount of time.If the photon is not dete
ted, this part of the wave fun
tion is lost, leaving only the part supportedby the inner parts of the interferometer. There is no need to renormalize the wave fun
tion after su
ha proje
tion|this way we 
an re
e
t the fa
t that the subsequent results are a
tually 
onditionalprobabilities with no extra work.There is an alternative approa
h possible: if we repla
e the dete
tor by an half-in�nite line never
oming ba
k to the interferometer, the parts of the wave fun
tion overlapping j oi will 
ontinuetravelling along this line, e�e
tively proje
ted out of the pi
ture. The advantage is that if we do asimilar repla
ement of the input arm, we will re
over the unitary nature of the time evolution. Thisapproa
h justi�es the usage of a propagator to des
ribe the system's time evolution.8



Let us further des
ribe the a
tion of a beam splitter on the example of the beam splitter A inour layout. It has two input and two output modes. As indi
ated above, we will model these usingtwo plus two wave pa
kets labelled by the arms they are lying on. These states are shown in Fig. 4.
A B

|ψi〉 |ψM 〉 |ψo〉

|ψU 〉

|ψL〉

Fig. 4: The selected photon states used for the mathematical description. Both the length of the pulses
and their distance from the beam splitters are highly magnified.If a photon arrives at the beam splitter in a general linear 
ombination of the two input states,�j ii+ �j U i, after a 
ertain time of intera
tion, its state is transformed into a linear 
ombinationof the two output states, 
j M i+ Æj U i, by the rule

( 
Æ ) = ( tA �r∗ArA t∗A )(�� ) = RA (�� ) : (2:8)Here we assume that A is an ideal passive linear beam splitter.Alternatively, we 
ould write j ii 7! tAj M i+ rAj Li;j U i 7! t∗Aj Li � r∗Aj M i: (2:9)The index A denotes the beam splitter we are des
ribing. See also App. A for operator des
riptionof this a
tion.The parameters tA and rA are two 
omplex numbers 
alled transmission and re
e
tion ampli-tudes, respe
tively. They must satisfy the 
onditionjtAj2 + jrAj2 = 1 (2:10)for the matrix RA to be unitary, otherwise they are arbitrary. (The 
ondition on unitarity restri
tsthe elements of RA to two 
omplex degrees of freedom plus a global phase, whi
h is ignored here.)The lo
ation of minus signs and 
omplex 
onjugates in RA is merely a 
onvention, another 
hoi
ewould be balan
ed by 
hange of phases of tA and rA.In the beam splitter A, we have 
hosen the input mode out of the interferometer input to bepreferred by not obtaining any 
omplex 
onjugates in Eq. (2.9). Similarly, we will 
hoose the lefthand side input mode of the beam splitter B for the same.Usually, one also de�nes TA = jtAj2 and RA = jrAj2 (2:11)9




alled the transmittan
e and re
e
tivity of the beam splitter. These parameters are independent ofthe phases of tA and rA and thus provide an in
omplete des
ription of the beam splitter, however,they have a dire
t interpretation familiar from 
lassi
al opti
s. The 
ondition (2.10) 
an be rewrittenas TA +RA = 1: (2:12)For the free travel along the interferometer arms, we 
an de�ne a referen
e wave pa
ket on bothends of ea
h arm (j a1i, j a2i), these two being related by a spatial shift. A photon needs sometime ta to travel the length of the arm. Similarly to a beam splitter, we will des
ribe this timeevolution by a propagator, spe
i�
ally by the matrix element h a2jU(ta)j a1i. This redu
es to someunit 
omplex number, eiϕ. The phase ' will in
lude the phase di�eren
e 
aused by the elapsed timeta, any possible arti�
ial phase shift put on the arm and possibly some other phase shifts negle
tedelsewhere. This way, we will de�ne and use the total phase shifts 'M ; 'L and 'U , 
orresponding tothe middle, lower and upper arms, respe
tively.2.4 The path sumInstead of 
omputing the state of the system after some �xed time, we will aim to �nd anexpression for the matrix element �(t) = h ojU(t)j ii (2:13)dire
tly. This amplitude gives the es
ape probability after time t by the formulaP (t) = j�(t)j2: (2:14)After the �rst a
tion of beam splitter A, the state is a linear 
ombination of j M i and j Li.Thus, we 
an use a de
omposition of unity to obtainUAj ii = PMUAj ii+ PLUAj ii (2:15)where PM and PL are orthogonal proje
tors on the one-dimensional subspa
es spanned by j M iand j Li, respe
tively. Now if t > t′L, the photon must take the upper arm, passing through thestate j U i. However, after the a
tion of both of the proje
tors in Eq. (2.15), the �rst time to rea
hnonzero overlap with this state is uniquely given:h ojU(t)j ii = h ojU(t � t′M )PUU(t′M � tA)PMUAj ii ++ h ojU(t � t′L)PUU(t′L � tA)PLUAj ii == h ojU(t � t′M )j U ih U jU(t′M � tA)PMUAj ii ++ h ojU(t � t′L)j U ih U jU(t′L � tA)PLUAj ii: (2:16)From this equation, we 
an see that the problem of determining �(t) was transformed to 
om-puting several matrix elements of evolution operators on shorter time intervals. In both terms ofthe sum, there is one matrix element with an initial state of j U i and time t shortened by t′M or t′L,10



and one matrix element 
orresponding to taking the middle or the lower path, respe
tively. We will
all the latter an irredu
ible matrix element.When 
omputing the elements with initial state of j U i, we note that we 
an deal with it exa
tlythe same way as we did above with j ii, so the subs
ript 
an be simply substituted in all the aboveformulas.In this way we 
an redu
e the time t down to some remainder tr, leaving the last element ofh ojU(tr)j U i. This element is both irredu
ible and nonzero only if tr = tM or tr = tL. Due tothe algebrai
 independen
e of t′M and t′L, this 
ondition �lters out all elements of the exponentiallygrowing sum ex
ept for those representing the possible opti
al paths from the input arm to theoutput arm, taking exa
tly the time t. (See Fig. 5 for an example of all the opti
al paths taking agiven time.) For this reason, we will 
all this sum a path sum. This 
on
ept is in fa
t a dis
retized
ase of path integral and its usability for des
ribing quantum random walks has been well-knownbefore, see e.g. [6℄.
t

2t′M + t′L − tU

Fig. 5: An illustration of all the optical paths ending at the same escape time of 2t′M + t′L − tU . The time
line is broken to show the artificial partitioning into random walk iterations. Marking the instants the

photon passes the beam splitter B, we can note three possible ways to the chosen mark. From the leftmost
one to the rightmost one, these are called MML, MLM and LMM in our terminology.As de�ned in Se
. 2.1, ea
h opti
al path is des
ribed by a word W 
omposed of letters M andL. For ea
h word 
ontaining the letter M nM times and the letter L nL times, there will be exa
tlyone produ
t of the irredu
ible matrix elements:{ h U jU(t′ℓ � tA)PℓUAj ii, where ` is the �rst letter of W ,{ h U jU(t′ℓ � tA)PℓUAj U i for every letter ` between the �rst and the last one,{ h ojU(tℓ)j U i, where ` is the last letter of W .Note that if W has only one letter, `, there is just one term, h ojU(tℓ)j ii.We will �nd expli
it forms for all these possible irredu
ible matrix elements. Starting with the�rst one, UAj ii = tAj M i+ rAj LiPMUAj ii = tAj M iPLUAj ii = rAj Li (2:17)11



In both 
ases, this is a basis state multiplied by some single matrix element of UA. Now we 
ouldde�ne an analogous orthogonal system near the beam splitter B. We would then split U(t′ℓ � tA)to the free time evolution along the parti
ular arm, the a
tion of the beam splitter B (�lteringthe output to the upper arm) and the free evolution by time tU � tB along the upper arm. Thepro
edure is straightforward, so let us give just the result dire
tly:h U jU(tM � tA)PMUAj ii = tAeiϕM rBeiϕU = ei(ϕM+ϕU )tArBh U jU(tL � tA)PLUAj ii = rAeiϕLt∗BeiϕU = ei(ϕL+ϕU )rAt∗B : (2:18)All the other irredu
ible matrix elements 
an be expressed similarly:h U jU(t′M � tA)PMUAj U i = �ei(ϕM+ϕU )r∗ArBh U jU(t′L � tA)PLUAj U i = ei(ϕL+ϕU )t∗At∗Bh ojU(tM )j U i = �eiϕM r∗AtBh ojU(tL)j U i = �eiϕLt∗Ar∗B�(tM ) = h ojU(tM )j ii = eiϕM tAtB�(tL) = h ojU(tL)j ii = �eiϕLrAr∗B (2:19)
This in fa
t allows us to �nd a 
losed form for �(t) for t given by Eq. (2.3). However, it isne
essary to separate the 
ase n = 1 as shown above and make some general observations startingfrom n = 2. So, for 
omputing �(nM t′M+nLt′L�tU ), whi
h we 
an denote for simpli
ity �(nM ; nL),we need to sum the above produ
t over all words W 
omposed of nM times the letter M and nLtimes the letter L. These words split into four groups depending on their �rst and last letter. Dueto the 
onstru
tion above, we 
an see that all the words in one group will 
ontribute in the sum bythe same term, so only the 
ardinality of ea
h of these four subsets is needed.Using the notation that the binomial 
oeÆ
ients outside the Pas
al's triangle are zero, there are(n−2

nL
) words both beginning and ending by M , (n−2

nM
) words both beginning and ending by L and( n−1

nM−1) for both the remaining 
ases. Thus the general form of the sum �(nM ; nL) is�(nM ; nL) = eiϕ(nM ,nL)

((n� 2nL )(tArB)(�r∗AtB)(�r∗ArB)nM−2(t∗At∗B)nL ++ (n� 2nM )(rAt∗B)(�t∗Ar∗B)(�r∗ArB)nM (t∗At∗B)nL−2 ++ ( n� 2nM � 1)((tArB)(�t∗Ar∗B) + (rAt∗B)(�r∗AtB)) (�r∗ArB)nM−1(t∗At∗B)nL−1

)(2:20)where the phase '(nM ; nL) = nM'M + nL'L + (n� 1)'U
an be found to be exa
tly the same in all terms. Noti
ing other 
ommon terms, this formula 
anbe subsequently signi�
antly simpli�ed to�(nM ; nL) = eiϕ(nM ,nL)(�r∗ArB)nM−1(t∗At∗B)nL−1�� ((n� 2nL )TATB + (n� 2nM )RARB � ( n� 2nM � 1)(TARB +RATB)) ; (2:21)where we reused the symbols de�ned in Eq. (2.11).12



Using the relationTARB+RATB = TA(1�TB)+RA(1�RB) = TA+RA�TATB�RARB = 1�TATB�RARB ; (2:22)we 
an use Pas
al's rule to simplify Eq. (2.21) even further to�(nM ; nL) = eiϕ(nM ,nL)(�r∗ArB)nM−1(t∗At∗B)nL−1�� ((n� 1nL )TATB + (n� 1nM )RARB � ( n� 2nM � 1)) : (2:23)The spe
ial 
ases (
orresponding to the dire
t pass through the interferometer), 
olle
ted inEq. (2.19), �(1; 0) = �(tM ) = eiϕM tAtB ;�(0; 1) = �(tL) = eiϕL(�rAr∗B); (2:24)must be ex
luded from Eq. (2.23) unless we de�ne the binomial 
oeÆ
ients (−1
k ) to be zero for allk. However, we will avoid this sin
e su
h a de�nition would break the Pas
al's rule.2.5 The re
urren
e relationLet us relate the behaviour of the interferometer to a random walk by �nding a suitable re
ur-ren
e relation. Denoting by Pn,k the probability of �nding the walker on the position k after n steps,a 
lassi
al random walk is governed by the relationPn,k = pLPn−1,k+1 + pRPn−1,k−1; (2:25)where pL and pR are the probabilities of taking a step to the left or to the right, respe
tively. It isalso important to state an initial 
ondition whi
h is usually 
hosen to be P0,0 = 1.Studying Eq. (2.23), we observe that Pas
al's rule implies�(nM ; nL) = eiϕ(nM ,nL)−iϕ(nM−1,nL)(�r∗ArB)�(nM � 1; nL)++ eiϕ(nM ,nL)−iϕ(nM ,nL−1)(t∗At∗B)�(nM ; nL � 1) == ei(ϕM+ϕU )(�r∗ArB)�(nM � 1; nL) + ei(ϕL+ϕU )(t∗At∗B)�(nM ; nL � 1): (2:26)Reusing the symbols n and k from Eq. (2.6), we 
an de�nean,k = �(nM ; nL) (n � k (mod 2)) (2:27)and re�ne the relation toan,k = ei(ϕM+ϕU )(�r∗ArB)an−1,k+1 + ei(ϕL+ϕU )(t∗At∗B)an−1,k−1 = C1an−1,k+1 + C2an−1,k−1;C1 = ei(ϕM+ϕU )(�r∗ArB)C2 = ei(ϕL+ϕU )(t∗At∗B); (2:28)with dire
t formal analogy to Eq. (2.25). The main two di�eren
es are that{ the 
onstants C1 and C2 are 
omplex,{ we found a re
urren
e relation for amplitudes, not probabilities.13



Due to the parti
ular behaviour at n = 1, it is ne
essary to spe
ify the initial 
onditions nosooner than at n = 2. Their 
omplete set is thena2,−2 = �(2; 0) = �eiϕ(2,0)r∗ArBtAtBa2,0 = �(1; 1) = eiϕ(1,1)(TATB +RARB � 1)a2,2 = �(0; 2) = �eiϕ(0,2)rAr∗Bt∗At∗B ; (2:29)and we must keep Eq. (2.24) as spe
ial 
ases.However, a mathemati
ally equivalent approa
h is to say that the system is simulating threerandom walks whi
h interfere. These three walks start at both di�erent positions and di�erenttimes. To distinguish from the previous notation, we will use tildes to denote their respe
tive initial
onditions: ~a1,−1 = a1,−1 = �(1; 0) = eiϕM tAtB~a1,1 = a1,1 = �(0; 1) = �eiϕLrAr∗B~a2,0 = a2,0 � (C1a1,1 + C2a1,−1) = �eiϕ(1,1): (2:30)Note that the presen
e of nonzero ~a2,0 prevents Eqs. (2.29) to be extended ba
k to n = 1.These relations allow us to 
laim that the system under study undergoes a spe
ial 
oinlessquantum random walk. This is new sin
e in the theory of quantum walk on a line, a nontrivialquantum walk without a 
oin degree of freedom is ex
luded by the No-Go Lemma mentioned inSe
. 1.1. In our 
ase, this lemma is 
ir
umvented by 
hanging the fundamental approa
h to aphysi
al representation of the random walk time and position. However, this kind of quantum walkhas limited mathemati
al possibilities sin
e all the interferen
e is simply additive. Despite the fa
tthat the 
onstants C1 and C2, from Eq. (2.28), are 
omplex, their phases have no observable e�e
ton the out
ome. We 
an tell so by taking the square of the absolute value of Eq. (2.23):P (nM ; nL) = (RARB)nM−1(TATB)nL−1�� ((n� 1nL )TATB + (n� 1nM )RARB � ( n� 2nM � 1))2 : (2:31)Note that no phase shifts a�e
t this probability, it is expressed 
ompletely in terms of the 
lassi
alparameters of the two beam splitters. The reason for this is that every possible s
enario takenby the photon goes through every phase shift a �xed number of times. As we 
onsidered no timedependen
e of these phase shifts, every term in the path sum gains exa
tly the same phase and thusthey 
an only interfere trivially.2.6 Probability normalizationAs the random walk iterations are nothing more than imaginary divisions of the photon's outputtime, the sum of probabilities P (nM ; nL) over one iteration, given by the 
ondition nM +nL = n == 
onst:, is not 1. Instead, the normalization
∑

nM ,nL∈N0

nM+nL>0

P (nM ; nL) = 1 (2:32)14



holds unless we assume some possible losses inside the interferometer, in whi
h 
ase there would bea � sign.We 
an still 
onsider P (nM ; nL) in the range of one iteration to be relative probabilities butthen it is ne
essary to normalize them by multiplying all of them by a 
ommon fa
tor of 1=C(n)where C(n) = ∑

nM+nL=n

P (nM ; nL): (2:33):In the following, we will evaluate this sum.Let us rewrite the probability (2.31) in terms of new simplifying parameters T and R, whereT = TARA;R = RARB : (2:34)P (nM ; nL) = RnM−1TnL−1

((n� 1nL )T + (n� 1nM )R � ( n� 2nM � 1))2 : (2:35)Furthermore, we 
an rewrite the 
onstraint nM + nL = n to express nL using nM :P (nM ; n� nM ) = RnM−1Tn−nM−1

(( n� 1nM � 1)T + (n� 1nM )R � ( n� 2nM � 1))2 : (2:36)In order to �nd the normalization 
onstant (2.33), we need to evaluate the sumC(n) = n
∑

k=0

Rk−1Tn−k−1

((n� 1k � 1)T + (n� 1k )R � (n� 2k � 1))2 : (2:37)The expression 
an be expanded to several sums of the formRaT b n
∑

k=0

( n1k � k1

)( n2k � k2

)RkTn−k; k1,2 2 f0; 1g; (2:38)whi
h strongly resembles the left hand side of the binomial theorem but di�ers in 
ontaining a prod-u
t of two binomial 
oeÆ
ients instead of one. This di�eren
e means that we need spe
ial fun
tionsto simplify the sum. The most straightforward way is to rewrite the expression to a hypergeometri
fun
tion [21,22℄, whi
h gives
n
∑

k=0

(n1k )(n2k )RkTn−k = Tn2F1

(�n1;�n2; 1; RT )
n
∑

k=0

(n1k )( n2k � 1)RkTn−k = n1RTn−1
2F1

(1� n1;�n2; 2; RT ) ; (2:39)if T 6= 0. Note that if T = 0, we 
an take a limit of the right hand side as T approa
hes 0. This isjusti�ed by noti
ing that Eq. (2.37) is a polynomial in T and R and thus a 
ontinuous fun
tion.15



These expressions 
an be alternatively rewritten using Ja
obi polynomials or, in some spe
ial
ases, Legendre polynomials [23,24℄, nevertheless, neither of these expressions 
an be 
onsidered a
losed form.The 
omplete expression for C(n) 
an be found this way to beC(n) = Tn−1(T +R)2F1(1� n; 1� n; 1;x) ++ Tn−2
(

2F1(2� n; 2� n; 1;x) + 2(n� 1)RT 2F1(1� n; 2� n; 2;x) +� 2T 2F1(1� n; 2� n; 1;x)� 2(n� 1)R2F1(2� n; 2� n; 2;x)); (2:40)where x = R=T .This expression 
an generally be simpli�ed only in two spe
ial 
ases, x = 0 and x = 1. Be
auseof the symmetry of swapping T and R in Eq. (2.37), it also has a limit as x approa
hes +1 whi
his equal to the value at x = 0.The x = 0 
ase 
orresponds to a degenerate 
ase R = 0 or, by the indi
ated symmetry, T = 0,where one or both of the beam splitters are 
ompletely transient or 
ompletely re
e
tive. If bothbeam splitters are degenerate in this way, there is only one possible way the photon 
an take andthus only one possible es
ape time and its probability is one. No features of a random walk 
an beobserved in this 
ase at all.Similarly, there is no interferen
e even if only one of the two beam splitters is nondegenerate.In that 
ase, the system 
an be fully des
ribed using the idea of a pulse whi
h is attenuated by thesame fa
tor after every loop. In ea
h 
ase, there will be only one kind of time di�eren
e between thepossible es
ape times (making the pattern a simple latti
e without the �ne division) and the es
apeprobability will follow a simple exponential de
ay rule. Sin
e there are no features of a quantumwalk again, there is no need to go mu
h into details.Let us fo
us on the x = 1 
ase, or T = R. We note that this 
ondition means that thetransmittan
e of one beam splitter equals the re
e
tivity of the other one and vi
e versa. We willsee another interesting property of su
h a 
on�guration later.In this 
ase, the sum in Eq. (2.38) 
an be 
omputed in 
losed form using the Chu-Vandermonde'sidentity [23℄. It 
an also be found, along with a proof, as Theorem 6 in App. B. The result is
n
∑

k=0

( n1k � k1

)( n2k � k2

) = ( n1 + n2n2 + k2 � k1

) (2:41)and 
onsequentlyC(n) = Tn−2

(2T 2

(2n� 2n� 1 )+ 2T 2

(2n� 2n )+ (2n� 4n� 2 )� 2T ((2n� 3n� 1 )+ (2n� 3n� 2 ))) == Tn−2

(2T 2

(2n� 1n )� 2T(2n� 2n� 1 )+ (2n� 4n� 2 )) == Tn−2

(2n� 4n� 2 )(2T 2 (2n� 4)(2n� 3)(2n� 2)(n� 2)2(n� 1) � 2T (2n� 3)(2n� 2)(n� 2)2 + 1) == Tn−2

(2n� 4n� 2 )(16T 2 � 8T + 1 +O(n−1)) : (2:42)16



In order to �nd some asymptoti
 estimate, we 
an use Stirling's approximation formula [25,26℄to �nd that
(2n� 4n� 2 ) = 22n−4

√(n� 2)� (1 +O(n−1)) : (2:43)The formula for C(n) then be
omesC(n) = Tn−2 4n−2
√(n� 2)� (16T 2 � 8T + 1 +O(n−1)) (1 +O(n−1)) == (4T )n−2
((4T � 1)2 +O(n−1))
√(n� 2)� (1 +O(n−1)) (2:44)for 0 < T < 1

4 . Therefore, the de
ay of the es
ape probability, taken as a fun
tion of the iteration
ount n, is approximately exponential with a quotient of 4T .After the normalization, we 
an de�ne the probability Pn,k of �nding the walker after n stepson the position k as Pn,k = C(n)−1P (nM ; nL) (n � k (mod 2)); (2:45)where nM and nL are linked to n and k via Eq. (2.6). The general shape of the probabilitydistribution over all possible positions k for given n is illustrated in Fig. 6.

Fig. 6: The two most common shapes of the probability distribution of the random walk, Eq. (2.45). Both
plots were computed after n = 100 steps. Note that there can be up to three peaks located near a common

center, however, after a small change in the T and R parameters, the side peaks can vanish. Only even
parity positions are plotted, the probability is zero on odd parity ones.17



2.7 Parameter optimizationIn order to observe the signs of a random walk in the es
ape time probability distribution, itis desirable to rea
h as high values of n as possible sin
e a higher number of iterations allows us toresolve �ner details of the distribution shape.For the same reason, it is important to redu
e the probability of the photon es
aping in the �rsttwo iterations where the behaviour is rather trivial. Therefore, let us 
ompute the total probabilityof es
aping at n = 1 or n = 2 dire
tly,P1+2 = P1,0 + P0,1 + P2,0 + P1,1 + P0,2 == T +R + TR + (T +R � 1)2 + TR == T 2 +R2 + 4TR � T �R + 1: (2:46)We will attempt to minimize this probability by altering the beam splitter parameters.First, however, let us emphasize here that the values of T and R 
an not be 
hosen independently.Starting from Eqs. (2.34) and (2.12), we 
an use the 
onstrained optimization problem methods to�nd that 0 � R � (1�pT )2 (2:47 a)or, equivalently, 0 � pT +pR � 1: (2:47 b)Thus the region rea
hable by all 
hoi
es of beam splitter parameters TA, TB , RA and RB is limitedby the lines T = 0, R = 0 and the 
urve pT +pR = 1.Analyzing the fun
tion f(T;R) = T 2 +R2 + 4TR � T �R + 1 (2:48)due to these 
onstraints reveals the following signi�
ant points:{ a saddle point at T = R = 1
6 with fun
tion value of 5

6 ,{ global maxima f(0; 0) = f(1; 0) = f(0; 1) = 1,{ global minima f (0; 1
2

) = f (1
2 ; 0) = 3

4 and a lo
al minimum on the domain bound f (1
4 ; 1

4

) = 7
8 .We 
an see most of these points fall into some of the degenerate 
ases listed in the previousse
tion as one or both of the T and R parameters are zero or one. After leaving them out, we areleft with only two of the extremal points, both lying on the line of T = R. We have found that thepoint T = R = 1

6 is the lo
al minimum of Eq. (2.48) on this domain subset, whereas the borderpoints T = R = 1
4 and T = R = 0 are lo
al maxima.Let us �nd the exa
t set of parameters yielding T = R = 1

6 . This gives the following system ofequations: T = TATB = 16 ;R = RARB = 16 ;TA +RA = 1;TB +RB = 1: (2:49)18



There are two possible solutions, TA = RB = 1�√1
32 ;RA = TB = 1�√1
32 : (2:50)

As we have 
omputed above, in this 
on�guration, there is a probability of one in six for everyphoton to survive to iterations n � 3. As this is a saddle point, there are 
on�gurations allowinghigher probability outside the T = R line, however, no other lo
al extrema o

urs in this regionprior to rea
hing one of the trivial 
ases.Another task would be to optimize the parameters for the best asymptoti
 behaviour. Fromthe previous se
tion, we know the result when we restri
t ourselves to the 
ase T = R: the optimalpoint under this 
ondition is T = R = 1
4 , the other signi�
ant point found above. On average, sevenof eight input photons es
ape in the �rst two iterations in su
h 
on�guration, whi
h is worse thanthe previous spe
ial 
ase approximately by 4% but the tail of the distribution is more well-behaved.Moreover, we 
an note that this point forms an interse
tion of the line T = R and the border
urve pT +pR = 1. We already know from above that the former means TA = RB and RA = TB ,similarly, the latter is equivalent to TA = TB and RA = RB . Therefore, we do not need to solveanother system of equations: this spe
ial 
ase is rea
hed when both the beam splitters are balan
ed,TA = RA = TB = RB = 12 : (2:51)Eq. (2.44) gives us a very good des
ription of the C(n) fun
tion in this spe
ial 
ase. However,if we were interested only in the de
ay rate (ignoring the overall prefa
tor), this 
oeÆ
ient 
an befound generally. As a 
orollary of Theorem 7 in App. B, we 
an �nd that C(n) behaves in higher napproximately as a geometri
 progression with a quotient ofT √RT + 12 = (pR +pT)2 :In order to minimize the exponential de
ay, one would want to maximize this expression. FromEq. (2.47 b), we 
an note that the maximum of this expression is 1 and it is rea
hed exa
tly on thedomain border 
urve pT +pR = 1. However, we emphasize that a unit exponential quotient doesnot mean that the C(n) fun
tion approa
hes a 
onstant limit|only that the de
ay is slower thanexponential. 19



2.8 Mean position of the walkerIn this se
tion, we will study the behaviour of the mean position of the walker, whi
h is one ofthe main 
hara
teristi
s of any random walk. The 
omputation will also reveal some estimates onthe spread in the position.Up to a normalization 
onstant, the probability of �nding the walker on position k after n stepsof the modelled random walk is given by Eq. (2.35), where the nM and nL indi
es are linked withn and k via Eq. (2.6). The mean position of the walker is then given byhki = n
∑

nM=0
nL=n−nM

(nL � nM )P (nM ; nL)
n
∑

nM=0
nL=n−nM

P (nM ; nL) : (2:52)We are interested in the limit linear speed of the walker, that is,s = lim
n→+∞

hkin : (2:53)In order to solve this problem, we will need to make some observations about the probability distri-bution.After expanding Eq. (2.35), we will obtain several terms of the formRaT b( n� �1nM � �1

)( n� �2nM � �2

)RnMT−nM : (2:54)After introdu
ing x = R=T , we 
an use Lemma 8 from App. B to �nd that this term has a maximumnear nM0
= [ pxpx+ 1n] ; (2:55)where [x℄ denotes the nearest integer to x. Sin
e this expression is independent of the small shifts inthe binomial 
oeÆ
ients, �i and �i, the same result holds for every term in the expanded Eq. (2.35)and thus we 
an assume that the total probability also rea
hes its maximum in the neighbourhoodof nM0

. Note that this is not automati
ally true as some of the terms have negative sign and 
ouldhypotheti
ally 
an
el out the positive ones.In order to re�ne this statement, we 
an 
onje
ture the following lemma: Let � 2 (1
2 ; 1), denote�nM = bnα
. Then an asymptoti
ally negligible part of the probability is distributed outside theinterval hnM0

��nM ; nM0
+�nM i, that is,lim
n→+∞

nM0
+∆nM
∑

nM=nM0
−∆nM

P (nM ; n� nM )
n
∑

nM=0

P (nM ; n� nM ) = 1: (2:56)20



The 
omplete proof is not presented as it is long and te
hni
al. Its main idea is to take a 
om-plement of the ratio to 1, estimate all the fa
torials in the binomial 
oeÆ
ients in Eq. (2.35) usingthe Stirling approximation and study the limit of logarithm of this sequen
e. The rest is a straight-forward pro
edure of usual te
hniques for 
omputing limits of number sequen
es.Using this lemma, we 
an return to Eqs. (2.52) and (2.53). We 
an 
ombine the two equationsinto s = lim
n→+∞

∑

nM=0

(1� 2nMn )P (nM ; n� nM )
n
∑

nM=0

P (nM ; n� nM ) : (2:57)We note that as the fa
tor of 1� 2nM
n is bounded, the above theorem 
an be used dire
tly to restri
tboth the sums to the interval hnM0
��nM ; nM0

+�nM i. We then estimate this fa
tor by1� 2(nM0
+�nM )n � 1� 2nMn � 1� 2(nM0

��nM )n (2:58):As neither of the bounds depends on nM , they 
an be fa
tored out of the sum in the numerator,leaving the same sum in the numerator as in the denominator. After 
an
elling them with ea
hother, we obtain estimates for s:1� 2(nM0
+�nM )n � s � 1� 2(nM0

��nM )n (2:59):To �nd the asymptoti
 speed, we need to take limit as n approa
hes +1 on both sides. Re
allthat nM0
and �nM are fun
tions of n. It follows from the 
orresponding de�nitions thatlim

n→+∞
nM0n = pxpx+ 1 (2:60 a)and that lim

n→+∞
�nMn = 0: (2:60 b)Therefore, both the bounds have the same limit value, givings = 1� 2 pxpx+ 1 = 1�px1 +px: (2:61)Let us 
ompute s in the two signi�
ant 
ases introdu
ed in Se
. 2.7. First, if T = R, i.e.,TA = RB and TB = RA, then x = R=T = 1 and s = 0, i.e., for this parti
ular 
onne
tion betweenthe beam splitter parameters, the mean position of the walker stays in the middle of the line.The se
ond important 
ase was TA = TB and RA = RB . In this 
ase, the square root of x 
anbe easily simpli�ed: px = √RT =√

√

√

√

R2
AT 2
A

= RATA (2:62):21



The asymptoti
 speed 
an then be simpli�ed ass = TA �RATA +RA = TA �RA: (2:63)Note that this provides an easy way of �nding the interferometer parameters to obtain a quantumwalk for an arbitrary given s 2 h�1; 1i.The above theorem also indi
ates that the varian
e of the position distribution is O(n1+ε) forany " > 0. The proof is analogous but we obtain an upper bound only. This property reminds of a
lassi
al random walk, whi
h has a varian
e of 
onst:� n.2.9 Relation to 
oherent statesIn this se
tion, we will point out a 
orresponden
e between the one photon and 
oherent stateoperation of the interferometer, justifying the model used in Se
. 2.3. For this purpose, we willneed to repla
e the dete
tor by an in�nite output line 
ontinuing in one dire
tion, as explained inSe
. 2.3. To be a

urate, we note that the derivation below is valid only in an idealized 
ase whereno de
oheren
e is taken into a

ount.After a given time, the initial state j ii of the photon is transformed to a linear 
ombinationof some number of wave pa
kets inside the loop and some number of wave pa
kets propagating onthe output line. Under the 
onditions given above, all these wave pa
kets are �nitely supportedand spatially separated. We will also assume that the time is 
hosen su
h that the wave fun
tionvanishes in the vi
inity of the beam splitters.Therefore, the state 
an be written asU(t)j ii = N
∑

k=1

�kj oitk + "jri; (2:64)where j oitk denotes a wave pa
ket state on the output line whi
h passed the lo
ation of the dete
torat the es
ape time of tk. The state jri des
ribes the renormalized part of the wave fun
tion supportedon the M , L and U arms. Due to the spatial separation, all the j oitk and the remainder jri aremutually orthogonal.We 
an use the notation of App. A to rewrite Eq. (2.64) to operator form. That is, we willmake a se
ond quantization of the state spa
e and de�ne 
reation operators for all the states usedin that equation: j ii = a†i j0ij oitk = a†tkU(t)j0ijri = a†rU(t)j0i; (2:65)where j0i is the va
uum state. After fa
toring j0i out, Eq. (2.64) be
omesU(t)a†iU(t)† = N
∑

k=1

�ka†tk + "a†r: (2:66)22



We are interested in repla
ing the initial one photon state j ii by a 
oherent pulse based onthis state, that is, j�ii = exp(�a†i � �∗ai)j0i: (2:67):In order to �nd the transformation of this state under U(t), we �rst need to �nd an adjoint ofEq. (2.66), U(t)aiU(t)† = N
∑

k=1

�∗katk + "∗ar; (2:68)and use it to express the transformation of the linear 
ombinationU(t)(�a†i � �∗ai)U(t)† = N
∑

k=1

(��ka†tk � �∗�∗katk) + (�"a†r � �∗"∗ar): (2:69)As the j oitk states are orthogonal and jri is orthogonal to all of them, the linear 
ombinations oftheir 
reation and annihilation operators mutually 
ommute. This enables us to 
omputeU(t) exp(�a†i � �∗ai)U(t)† = N
∏

k=1

exp(��ka†tk � �∗�∗katk) exp(�"a†r � �∗"∗ar): (2:70)When the right hand side is applied on the va
uum ve
tor, it 
reates a produ
t of 
oherent states inthe modes de�ned by the ve
tors j oitk and some 
oherent ex
itations inside the delay loop. Thus,every term �kj oitk in the linear 
ombination (2.66) be
ame a 
oherent pulse at the same lo
ationand having an amplitude of ��k in this operation. The intensity of this partial pulse has an j�kj2ratio to the intensity of the input pulse. In other words, the probability of dete
ting one photon ata given time tk, as des
ribed in Se
. 2.3, be
omes exa
tly the intensity of a partial pulse measuredat the same time if we use a 
oherent state at the input. Hen
e, we 
an safely 
laim that there isan exa
t 
orresponden
e between the two experimentally di�erent approa
hes.2.10 SummaryLet us summarize the results obtained in this 
hapter. The study of the system depi
ted in Fig. 1showed that under 
ertain 
onditions, quantum walk behaviour 
an be observed in the output. Allthe iteration-position pairs are merged to a single time line, and thus all the probability amplitudesof the walk 
an be observed without 
hanging the experiment layout and/or external 
onditions.The walk 
an be des
ribed using a re
urren
e relation between the probability amplitudes.In order to re
onstru
t the quantum walk, the output must be split into a sequen
e of time binsand probability distribution of �nding the walker on the possible positions must be renormalizedwithin ea
h of these bins. The resulting walk s
enario displays similar position and varian
e depen-den
e on the number of steps as a 
lassi
al random walk on a line, although that the probabilitydistribution is not Gaussian. The asymptoti
 speed of the walker was 
omputed exa
tly.Several optimization problems were dis
ussed with the result that there is a straightforward wayof rea
hing higher iterations of the walk with enough �delity. Under this optimality 
ondition, onedegree of freedom is still left, allowing to rea
h any bias of the walk.23



Chapter 3Quantum walk using polarization as a 
oinIn this 
hapter, we will fo
us on the possibilities of realizing a 
oined dis
rete time quantumwalk in a similar way as in Chap. 2.We note that parts of this 
hapter, namely se
tions 3.5, 3.6 and 3.7, are based on the resultsof Andreas S
hreiber, Katius
ia Cassemiro and Christine Silberhorn from the Max Plan
k Insti-tute for the S
ien
e of Light, Erlangen, Germany. We 
laim no 
onne
tion to the design and/orimplementation of the parti
ular experiment.3.1 The polarization degree of freedomIt follows from the fundamentals of quantum opti
s that a s
alar wave fun
tion does not representthe state of one photon fully. There is one additional degree of freedom 
orresponding to polarizationof the ele
tromagneti
 �eld [27℄, as known from 
lassi
al wave opti
s. The existen
e of this degreeof freedom results in extension of the former Hilbert spa
e by taking a tensor produ
t with a two-dimensional spa
e, C2. The resulting system is isomorphi
 to a 
ompound system 
onsisting ofa spinless parti
le and one qubit.As an example of using only one part of this 
ompound system, let us show why polarization
ould be ignored in Chap. 2. This is a nontrivial question sin
e in a 
ompound system, generally,one 
an not 
onsistently de�ne states of the individual subsystems without allowing a system tobe in a mixed state. For this purpose, we must 
onvert the above des
ription using elements ofthe Hilbert spa
e to a more general approa
h using the density matrix, or a statisti
al operator, todes
ribe the state of a quantum system [28℄.In this formalism, we de�ne for any ket j i 2 H a 
orresponding pure state as the orthogonalproje
tor on the one-dimensional linear hull of j i:E|ψ〉 = j ih j: (3:1)Note that this assignment is not inje
tive: kets di�ering in their global phase give the same purestate. This is no 
ontradi
tion, however, sin
e su
h states are physi
ally equivalent. By allowingmixed states, the state spa
e expands to a 
onvex hull of all pure states. Mixed states do not
orrespond to any wave fun
tion, but they 
an be viewed as probability distributions over morethan one pure states the system 
an be in.If the state of a 
ompound system, %, 
an be fa
torized as %1 
 %2, we 
an equivalently 
laimthat the �rst and se
ond subsystem are in states %1 and %2, respe
tively. However, this is not alwaysthe 
ase: by taking 
onvex 
ombinations of fa
torized states, we generally obtain states whi
h 
annot be fa
torized. To assign some states to the subsystems, one uses a partial tra
e operator [28℄.For the above system 
omposed of two subsystems, we say that the �rst and se
ond subsystems are24



in states Tr1 % and Tr2 %, respe
tively. Note that generally, part of the information 
ontained in % islost when only its partial tra
es are known. If and only if one of the of the partial tra
es of % is apure state, we 
an re
onstru
t % as % = (Tr1 %)
 (Tr2 %): (3:2)Returning to the 
ase of Chap. 2, we note that there are no polarization-a
tive elements inthe experimental setup (see Fig. 1). Thus, the propagator of the system, U , fa
torizes to a tensorprodu
t U1 
 U2, where U1 a
ts on the position state spa
e and U2 on the polarization state spa
eof the photon. Let the initial state be fa
torized as%i = %1 
 %2: (3:3)In the density matrix des
ription, the propagator U transforms this state into%o = U%iU†: (3:4)By substituting the above fa
torizations for all the involved operators, we obtain %o in a fa
torizedform %o = (U1 
 U2)(%1 
 %2)(U†
1 
 U†

2) = (U1%1U†
1)
 (U2%2U†

2): (3:5)From this equation, we 
an see that both the subsystems evolve independently of ea
h other, a
-
ording to the partial propagators U1 and U2. Espe
ially, if %1 was a pure state 
orresponding toa ket j ii, then Tr1 %o = U1%1U†
1 (3:6)is a pure state again, 
orresponding to U1j ii, regardless of whether the polarization was pure ormixed.3.2 An interferometer implementing a 
oined quantum walkIn the following, we would like to introdu
e an experimentally realizable linear opti
s implemen-tation of the 
oined quantum walk on a line, as des
ribed in Se
. 1.1, using a similar basi
 idea asin Chap. 2. A

ording to Se
. 3.1, the polarization spa
e is suited perfe
tly to be used as the 
oinspa
e in su
h experiment.In 
ontrast to Fig. 1, the \walker" should take the shorter or longer path a

ording to hispolarization. Thus, we will repla
e the beam splitters A and B by polarizing beam splitters whi
hsplit the two orthogonal polarization states of an in
oming beam in two dire
tions. However, oneadditional normal beam splitter must be added to in-
ouple a pulse into the interferometer andout-
ouple it into a dete
tor. We will assume that it is nontrivial, i.e., both its transmittan
e andre
e
tivity are nonzero. A s
hemati
 of the resulting layout is shown in Fig. 7.25
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Fig. 7: The second configuration. bs denotes a classic beam splitter, pbs a polarizing beam splitter, hwp a
half-wave plate and D a detector.A 
oherent pulse or one photon is inserted into the input arm in a pre
ise polarization state and
ouples into the loop with relative intensity, or probability, given by the transmittan
e of the beamsplitter bs. It �rst rea
hes the half-wave plate hwp, whi
h mixes the polarization states and thusrepresents the a
tion of the C gate. As shown in Se
. 3.3, hwp 
an represent a whole 
lass of gateswith spe
trum f1;�1g. It 
an be repla
ed by another wave plate if another relative phase shift isrequired. By allowing more than one wave plate, any one-qubit gate is obtainable, as follows fromde
omposition of unitary matrix into a produ
t of rotational matri
es [28℄. The pulse then splitson the left hand pbs in the preferred polarization basis, and the lower arm L in Fig. 7 obtains arelative time delay to the middle arm M . The polarization must be maintained reliably so that atthe right hand pbs, a photon 
oming from either arm 
ontinues in the main loop. After 
ompletingthe loop, there is some probability of es
aping to the dete
tor, otherwise the 
y
le is repeated foranother iteration of the quantum walk.3.3 The mathemati
al modelIn order to des
ribe the experiment in Fig. 7 mathemati
ally, we will reuse most of the results ofSe
. 2.3. However, we must adjust them to in
lude the polarization degree of freedom. LetHS denotethe \position" Hilbert spa
e, de�ned analogously as in Se
. 2.3, let HC = C2 be the polarizationHilbert spa
e. The 
omplete Hilbert spa
e of the system 
an be written as H = HS 
HC .To spe
ify a matrix element of an operator fully, we would have to spe
ify position and polar-ization kets for both the initial and �nal state. Alternatively, if we use the previous notation,h 1jU j 2i; j 1i; j 2i 2 HS ; (3:7)this obje
t behaves as an operator on HC and 
ould be spe
i�ed by a matrix in an appropriate basis.We will 
all it a partial matrix element.Let the preferred basis ofHC be spe
i�ed by the polarizing beam splitters. As noted above, theseelements transmit one polarization state and re
e
t the orthogonal one. The basis whi
h determinesthis behaviour is de�ned by the plane of in
iden
e, spanned by two ve
tors: a normal to the planeof the polarizing beam splitter and the propagation ve
tor of the in
ident beam. The re
e
ted26



polarization state is 
alled the s-polarization while the transmitted the p-polarization. This 
omesfrom the German words for perpendi
ular and parallel, respe
tively, speaking about the relativeorientation of the ele
tri
 intensity ve
tor due to this plane. We will de�ne an orthonormal basisdenoted as fjpi; jsig a

ordingly.New elements in the 
on�guration are the half-wave plate and the polarizing beam splitters.The a
tion of the half-wave plate hwp on an in
oming pulse may be spe
i�ed using an unitarymatrix of rank 2 in the sense outlined above. However, the exa
t form of this matrix depends onthe orientation of the plate, determined by the opti
 axis. If this axis is aligned with one of thepreferred polarization dire
tions, say p, the half-wave plate 
reates a relative �=2 phase shift betweenthe polarizations, whi
h 
an be written as the Pauli Z matrix in the preferred basis,�Z = ( 1 00 �1) ; (3:8)a
ting in HC . If the opti
al axis is rotated by an angle ' due to the p axis (the sense of measuring' depends on what we 
onsider the positive dire
tion of the p and s axes), this matrix must betransformed to represent this basis 
hange, resulting inUhwp = ( 
os' � sin'sin' 
os')( 1 00 �1)( 
os' sin'� sin' 
os') = ( 
os 2' sin 2'sin 2' � 
os 2') : (3:9)For example, if ' = �=8, then we obtain the Hadamard matrix,H = 1p2 ( 1 11 �1) : (3:10)We will des
ribe the whole polarizing beam splitter delay loop as one element in this model.Let tM and tL denote again the time needed to travel the arms M and L, respe
tively. Let j 1iand j 2i denote wave pa
kets right before and after the delay loop, analogously to Fig. 4. For theinitial states with their HS 
omponent j 1i, time evolution givesU(tM )j 1ijpi = eϕp j 2ijpi;U(tL)j 1ijsi = eϕs j 2ijsi; (3:11)whi
h 
an be rewritten using the notation of partial matrix elements ash 2jU(tM )j 1i = eϕpE|p〉;h 2jU(tL)j 1i = eϕsE|s〉; (3:12)if the time di�eren
e jtL � tM j is large 
ompared to the duration of the pulse, tp.For further 
onsiderations, we will give names to several other ve
tors in the position spa
e.Their geometri
al meaning is displayed in Fig. 8.
|ψi〉 |ψa〉 |ψ1〉 |ψ2〉

|ψb〉

|ψo〉

Fig. 8: The selected states in HS needed for the mathematical description of the experiment in Fig. 7.27



3.4 The path sum and the re
urren
e relationSimilarly as in Se
. 2.4, we will aim to des
ribe the operation of this experimental 
on�gurationusing the one photon dynami
s and the path sum approa
h. The derivation will be simpli�ed dueto the fa
t that any 
omplete loop must start (in terms of an opti
al path) at the lo
ation of j aiand end in the lo
ation of j bi a

ording to Fig. 8. Any 
omplete opti
al path in the studied layoutis 
omposed of a sequen
e of these loops, with only an in-
oupling and out-
oupling added on itsbeginning and its end, respe
tively, and 
an be des
ribed using a word 
omposed of letters M andL to denote the order of the loops.We will de�ne t′M and t′L as the times needed to take one 
omplete loop via the M or the Larm, respe
tively. The time needed to travel a path des
ribed by any word 
ontaining M and Lletters in the 
ount of nM and nL is then given byt = nM t′M + nLt′L; (3:13)up to a small 
onstant term 
orresponding to the in- and out-
oupling. Also, we will assume thealgebrai
 independen
e of t′M and t′L in the sense pointed out in Se
. 2.2 in order to make thismapping inje
tive, and use the symbols n and k from Eq. (2.6).We 
an 
ompose the path sum of the partial matrix elements of the propagator, introdu
ed inSe
. 3.3. The irredu
ible matrix elements from Se
. 2.4 be
ome two-dimensional linear transforms.Their multipli
ations must be viewed as operator 
ompositions, or multipli
ations of matri
es, andwe must preserve the order of the fa
tors.Due to the experiment layout, there are only two main irredu
ible matrix elements,h bjU(t′M )j ai = eiϕ1h 2jU(tM )j 1ieiϕ2Uhwp = eiϕME|p〉Uhwp;h bjU(t′L)j ai = eiϕ1h 2jU(tL) j 1ieiϕ2Uhwp = eiϕLE|s〉Uhwp; (3:14)supported by the in-
oupling, out-
oupling and re
e
ting matrix elements of the beam splitter bs,whi
h are insensitive of polarization and thus multiplies of the identity operator:h ajUbsj ii = t;h ojUbsj ii = r;h ajUbsj bi = �r∗;h ojUbsj bi = t∗: (3:15)
A photon inserted in the state j ii
jzi 
an be re
e
ted dire
tly to the dete
tor with probabilityamplitude h ojUbsj ii = r. This must be 
onsidered a spe
ial 
ase. For all other es
ape times, we
an 
ompute the partial matrix element h ojU(t)j ii in a uniform manner. However, it 
an not be
onsidered as a probability amplitude anymore sin
e it is a linear operator, transforming the initialpolarization state into a polarization state that 
ould be measured on the es
aped photon, and the28



es
ape probability amplitude serves as a multipli
ative fa
tor. This element 
an be evaluated asfollows:h ojU(nM t′M + nLt′L)j ii = �(nM ; nL) =∑

W

�W ==∑

W

h ojUbsj bin−1
∏

i=1

〈 b∣∣∣U (t′Wn+1−i

) ∣

∣

∣ a〉h ajUbsj bi h bjU(t′W1
)j aih ajUbsj ii == tt∗(�r∗)n−1

∑

W

n
∏

i=1

〈 b∣∣∣U (t′Wn+1−i

) ∣

∣

∣ a〉; (3:16)where a time-ordered produ
t of the irredu
ible matrix elements from Eq. (3.14) is used. The sumdenoted ∑W is taken over all words W 
omposed of M and L letters in the 
ounts nM and nL,respe
tively.By fa
toring out the �rst term of the produ
t and separating the 
ases of the two letters, weget for nM > 0 and nL > 0 the following re
urren
e relation for �(nM ; nL):�(nM ; nL) = �r∗h bjU(t′M )j ai�(nM � 1; nL)� r∗h bjU(t′L)j ai�(nM ; nL � 1) == �r∗eiϕME|p〉Uhwp�(nM � 1; nL)� r∗eiϕLE|s〉Uhwp�(nM ; nL � 1): (3:17)The validity of this relation 
an be extended to 
ases where either nM or nL are zero if we de�ne�(n;�1) = �(�1; n) = 0 (3:18)for all n 2 N. �(0; 0) is assumed to be de�ned 
onsistently with Eq. (3.16) as �tt∗(r∗)−1, despitethe fa
t that it does not represent any a
tual matrix element.To simplify Eq. (3.17), let us de�ne a new operatorC = � (eiϕME|p〉 + eiϕLE|s〉
)Uhwp; (3:19)so that E|p〉C = �eiϕME|p〉Uhwp (3:20 a)and E|s〉C = �eiϕLE|s〉Uhwp: (3:20 b)From the properties of orthogonal proje
tors, it also follows that C is unitary:CC† = (eiϕME|p〉 + eiϕLE|s〉

)UhwpU†
hwp

(e−iϕME|p〉 + e−iϕLE|s〉
) = E|p〉 + E|s〉 = 1: (3:21)Using this operator, we 
an rewrite Eq. (3.17) in the form�(nM ; nL) = r∗ (E|p〉C�(nM � 1; nL) + E|s〉C�(nM ; nL � 1)) : (3:22)As a next step, we will introdu
ean,k = (r∗)−n�(nM ; nL)jzi; (n � k (mod 2)); (3:23)29



whi
h has the physi
al meaning of the non-normalized polarization state of the photon, if it isdete
ted in the output arm at the es
ape time (3.13), where jzi denotes its initial polarizationstate|in other words, if the initial state of the photon is assumed to be j ii 
 jzi. Also, thesubstitution (2.6) was made. Applying the operators on both sides of Eq. (3.22) on the ket jzi, weobtain a re
urren
e relation for an,k :an,k = E|p〉Can,k+1 + E|s〉Can,k−1: (3:24)This formula has the same form as the propagator of a quantum walk on a line, as derived in [6℄.We 
an 
ompare Eq. (3.24) with a 
orresponding equation there:	(n; t+ 1) =M+	(n� 1; t) +M−	(n+ 1; t): (3:25)Here 	(n; t) is the two-
omponent ve
tor of amplitudes of the walker being at point n at time t andM+ and M− is the 
oin matrix multiplied from the left by the orthogonal proje
tor on the left andright 
hirality state, respe
tively. Also, an,k is a mathemati
al obje
t of the same kind as 	(n; t),a ve
tor in C2. In order to 
laim a physi
al 
orresponden
e of the studied system's evolution tothis quantum walk, we should 
he
k the relation between the initial 
onditions of both re
urren
erelations.In [6℄, the walker starts at both time and position zero. Thus, 	(n; 0) is nonzero only for n = 0,	(0; 0) denotes the walker's initial 
hirality state. In our notation, the number of the random walkiteration is denoted by n and the position k. Analogously, a0,k 
an only be nonzero for k = 0be
ause other values of k would represent negative nM or nL when transformed ba
k via Eq. (2.6).A

ording to Eqs. (3.23) and (3.16),a0,0 = �(0; 0)jzi = �tt∗(r∗)−1jzi; (3:26)so this value is proportional to the initial state jzi with some 
omplex fa
tor.Using these observations, we 
an 
on
lude that the system models the quantum walk on a lineas it was introdu
ed in Se
. 1.1. The walk 
an be re
onstru
ted a similar way to Se
. 2.6: 
olle
tingthe output from all es
ape times into groups with the same n and renormalizing the probability inea
h of these bins.In 
ontrast to Se
. 2.6, probability normalization is mu
h simpler. From the exa
t 
orrespon-den
e of the re
urren
e relations and the unitarity of the a
tual quantum walk, we know that thevalue of S(n) = n
∑

k=−n
kan,kk2 (3:27)is 
onserved between the steps of the walk and thus independent of n. Parti
ularly,S(n) = S(0) = ka0,0k2 = jtt∗(r∗)−1j2 = T 2R ; (3:28)where the symbols for transmittan
e T = jtj2 and re
e
tivity R = jrj2 of the beam splitter bs wereused. 30



However, the symbols an,k were s
aled by a power of r∗ in Eq. (3.23) to �(nM ; nL)jzi. Thea
tual probability of measuring a photon es
aping in the n-th iteration of the walk (n > 1) isC(n) = n
∑

nM=0

k�(nM ; n� nM )jzik2 = RnS(n) = T 2Rn−1: (3:29 a)The probability of measuring the photon in dire
t re
e
tion to the dete
tor isC(0) = kh ojUbsj iik2 = R: (3:29 b)As a veri�
ation, we note that the total probability of es
aping at any iteration
+∞
∑

n=0

C(n) = R + ∞
∑

n=1

T 2Rn−1 = R + T 21�R (3:30)is equal to 1 as T +R = 1.3.5 Current state of experimental realizationAt the time of writing this thesis, an experimental group lo
ated at Erlangen, Germany, isworking on a realization of the des
ribed experiment [4℄ (see also the 
hapter introdu
tion foradditional details). In this se
tion, we will give a brief overview of the 
urrent state of the experiment.In order to avoid the risk of high losses and de
oheren
e 
aused by a big number of re
e
tions,the group de
ided to realize the long arms of the delay loop in opti
al �bre. However, a spe
ialpolarization-maintaining �bre must be used and for best results, the pbs elements must be manu-fa
tured as in-�bre 
ouplers. On the other hand, the �bre is made of a birefringent material andhas two preferred working modes, 
orresponding exa
tly to the s and p polarization, general linear
ombinations obtain a nontrivial relative phase shift in this medium whi
h 
an be
ome un
ontrol-lable over ex
essive opti
al distan
es. For this reason, it is ne
essary to 
ouple the �bre to free spa
eoutside of the pbs{pbs delay loop to prevent polarization de
oheren
e.The input in the experimental realization is formed by a pulse laser at wavelength 796 nm, withthe mean pulse duration of 280 fs and the repetition rate of 250 kHz. For our set of parameters, thetimes needed to 
omplete one loop are t′M = 40ns and t′L = 45ns. A 50=50 beam splitter is usedfor the in- and out-
oupling, thus T = R = 1
2 . An equal weight superposition is used as the initialstate, produ
ed by a sequen
e of a polarizing beam splitter, a half-wave plate and a quarter-waveplate applied on the laser output. The orientation of the half-wave plate hwp in Fig. 7 is easily
on�gurable, making it possible to 
omparing quantum walks di�ering in their 
oin.The testing measurements of the individual opti
s elements have shown some additional sour
esof errors, some of whi
h 
ould be negle
ted and the other in
luded in the theory. An in
uen
e ofsome errors on the measurement out
ome is dis
ussed in Se
. 3.7. After the main sour
es of errorsare in
luded in the model, the measurements show a very good agreement with the theoreti
alpredi
tions up to n = 3. Parti
ularly, a Hadamard walk has been arguably observed. The 
hoi
e oft′M and t′L allows up to 8 iterations but due to the high transmittan
e of the beam splitter bs, thepulses are already too weak and in
oherent for n > 3 to give useful measurement output.31



3.6 Optimal layout for single photon useUsing the same approa
h as in Se
. 2.9, we 
an use the transformation of single photon inputstate to �nd a response of the system on multi-photon input states, in
luding 
oherent pulses.However, let us �nd an optimal 
on�guration allowing the use of single photons.The only two parts of the experiment that depend on the desired mode of operation are thelight sour
e and the dete
tor. For single photons, an avalan
he photodiode (APD)-based dete
tormust be used [19℄. Its prin
iple of operation makes it mu
h more sensitive than a pulse dete
tor butalso mu
h more vulnerable. One must take serious 
are that a non-attenuated pulse never rea
hesthe dete
tor in operational mode.As far as the input is 
on
erned, the group de
ided to use a highly attenuated pulse laser output.If we approximate the pulses produ
ed by the laser by 
oherent states (or a superposition of them),the attenuation redu
es the absolute value of their amplitude. However, the probability distributionof the photon number stays Poissonian, whi
h is the result for any 
oherent state (see App. A). Thus,in order to redu
e the probability of measuring multi-photon states as mu
h as possible, the meanphoton number in the pulse is usually attenuated as mu
h as several orders of magnitude below 1.Only a few of the pulses will a
tually initialize a su

essful run of the experiment.In order to get more useful data from the experiment, we will aim for measuring as high iteration
ounts as possible. For this purpose, it is ne
essary to redu
e the exponential de
ay of probabilityper one iteration. A

ording to Eq. (3.29 a), the de
ay will be less when the re
e
tivity R of thebeam splitter bs in
reases. On the other hand, R also determines the probability of trivial result inEq. (3.29 b), so if it is 
lose to 1, nearly every input photon is observed in the dete
tor dire
tly andnot 
oupled into the interferometer at all. This further redu
es the rate of su

essful runs.One 
ould make the input pulse stronger and make this �lter at the in-
oupling beam splittera part of the pulse attenuation 
hain. However, one would risk a damage of the single photondete
tor by the re
e
ted part of the pulse under su
h arrangement. One way would be to s
reenthis pulse out and start the dete
tion afterwards. Another solution of this problem 
an be rea
hedby using two beam splitters, one solely for the purpose of in-
oupling and the other one for out-
oupling, both 
on�gured so that there is nearly unit probability to stay inside the interferometer.In this way, one 
an avoid the risk of damaging the dete
tor without the need for a t′M,L-times
ale
ontrollable prote
tive s
reen.3.7 Imperfe
tions and de
oheren
eExperimental data show various di�eren
es to the ideal behaviour of the opti
al elements, de-s
ribed above. Let us list the main sour
es of errors in this se
tion.First, let us 
on
entrate on losses in the experiment. The measurements in [4℄ have shown thatthe losses at the pbs{pbs loop, for example, are over 50% in addition to the 50% of intensityout-
oupled at bs at every loop. Moreover, the losses are very di�erent for the s- and p-polarizationstates in favour of the s-polarization. 32



In order to in
lude these losses in the des
ription, we 
an de�ne an additional operator on thestate whi
h redu
es the amplitudes of the distin
t polarization 
omponents a

ordingly,L = �sjsihsj+ �pjpihpj; (3:31)and apply it on the polarization state right after the a
tion of the half-wave plate hwp. By de�ning~U = LUhwp; (3:32)the losses 
an be in
luded into the 
oin operator Eq. (3.19), introdu
ing a generalized, non-unitary
oin whi
h 
an be substituted for C in all of the above formulas.Any further losses in other parts of the interferometer 
an be in
luded in the propagator anal-ogously. For polarization-independent losses, the a

ording \loss operator" is a multiple of theidentity operator and applying it on the state 
an be rewritten as multiplying the state ve
tor by aglobal 
onstant fa
tor.Another problem is polarization mixing. It 
an o

ur by various means, in
luding the followingfa
ts:{ the polarizing beam splitters do not separate the basis states perfe
tly, a small part of theimproper polarization state is mixed in ea
h output arm,{ a polarization maintaining �bre 
an fail to maintain the polarization state a

urately whendisposed to me
hani
al stress or when used for ex
essively long opti
al paths,{ small rotations of the mirrors in
line the plane of in
iden
e and thus mix the original s- andp-polarizations.A

ording to the numeri
al values in [4℄, the �rst two sour
es of errors 
an be negle
ted. Thelatter is not quantized in the experimental report.In fa
t, if the rotations of the mirrors are un
ertain or subje
t to thermal os
illations or other
u
tuations, they 
ause a de
oheren
e of the polarization state. Similarly, small un
ontrolled spatialshifts of the mirrors 
ause a de
oheren
e in the position spa
e. As de
oheren
e in quantum walksis a very broad topi
, dis
ussed extensively e.g. in [29℄, we will only demonstrate the e�e
ts ofpolarization de
oheren
e on a simpli�ed example here.Let us 
onsider the intera
tion of a polarized beam with a mirror. Let the in
ident beam be ina pure polarization state, des
ribed by a state ve
torj ii = �jpi+ �jsi = (�� ) ; (3:33)where the jpi and jsi kets are determined geometri
ally by other parts of the experiment. The righthand side is a 
olumn expansion of the ve
tor in this basis. Let the mirror is tilted slightly su
hthat the plane of in
iden
e di�ers from the plane de�ning the preferred basis of HC . As a result, letus assume that the polarization state of the re
e
ted beam is rotated due to the polarization stateof the in
ident beam by an angle of ', that is,j oi = ( 
os' � sin'sin' 
os')(�� ) = R(')j ii: (3:34)33



If the angle ' is unknown and given only by a probability distribution, we will show that thepure state j iih ij is generally transformed to a mixed state, whi
h is the origin of the de
oheren
e.Let us assume that the distribution of the possible angles ' 2 R is Gaussian,w(') = 1p2��2
e− ϕ2

2σ2 : (3:35)The polarization state of the re
e
ted beam is found as an integral of%o = ∫

R

j oih ojw(')d' = ∫

R

Rj iih ijR†w(')d': (3:36)Let %i = j iih ij = ( %11 %12%12 %22 ) = ( j�j2 ��∗��∗ j�j2 ) (3:37)be the initial pure state. After expanding the matrix produ
t in Eq. (3.36), the state %o 
an bewritten as %o = ( ~%11 ~%12~%21 ~%22 ) ; (3:38 a)where ~%11 = h
os2 'i%11 + hsin2 'i%22 � h
os' sin'i(%12 + %21);~%12 = h
os2 'i%12 � hsin2 'i%21 + h
os' sin'i(%11 � %22);~%21 = h
os2 'i%21 � hsin2 'i%12 + h
os' sin'i(%11 � %22);~%22 = h
os2 'i%22 + hsin2 'i%11 + h
os' sin'i(%12 + %21);hf(')i := ∫

R

f(')w(')d': (3:38 b)Using the method of 
ontour integration, we 
an �nd the above expe
tation values for the probabilitydistribution given by Eq. (3.35) to be h
os2 'i = 12 (1 + e−2σ2
) ;hsin2 'i = 12 (1� e−2σ2
) ;h
os' sin'i = 0: (3:39)Plugging these values into Eq. (3.38 b), we obtain the �nal density matrix as%o = (

1
2 + 1

2e−2σ2(%11 � %22) 1
2(%12 � %21) + 1

2e−2σ2(%12 + %21)
1
2(%21 � %12) + 1

2e−2σ2(%12 + %21) 1
2 + 1

2e−2σ2(%22 � %11) ) : (3:40)For � = 0, %o be
omes %i as expe
ted. However, when there is some nonzero varian
e of theangle ', %o is a mixed state ex
ept for some spe
ially 
hosen 
ases of %i. We 
an prove this by
omputing the tra
e of %2o:Tr %2o = 12 (1� (%12 � %21)2 + ((%11 � %22)2 + (%12 + %21)2) e−2σ2
) == 12 (1 + 4%12%21 + (%11 � %22)2 + ((%11 � %22)2 + (%12 + %21)2) (e−2σ2 � 1)) == 12 (a+ b(e−2σ2 � 1)) : (3:41)34



Using the relation that Tr %i = Tr %2i = 1; (3:42)whi
h follows from the fa
t that %i is a pure state, the term a 
an be simpli�ed asa = 1 + 4%12%21 + (%11 � %22)2 = (%11 + %22)2 + (%11 � %22)2 + 4%12%21 == 2%211 + 2%222 + 4%12%21 = 2Tr %2i = 2 (3:43)and thus Tr %2o = 1� b2(1� e−2σ2): (3:44)Using Eq. (3.37), we 
an show that the 
oeÆ
ient b is nonnegative:b = (%11 � %22)2 + (%12 + %21)2 = (j�j2 � j�j2)2 + (2<��∗)2 � 0; (3:45)however, in a spe
ial 
ase � = �i�, it 
an be zero, meaning that %o is a pure state for any �. Thisspe
ial 
ase was allowed by restri
ting the unitary transform in Eq. (3.34) to one degree of freedomonly. If we allowed more general unitary transforms, the de
oheren
e would be even stronger.3.8 SummaryIn this 
hapter, a system depi
ted in Fig. 7 was studied. The mathemati
al model showedthat it is a very straightforward implementation of a 
oined dis
rete time quantum walk on a linedes
ribed by many authors in the referen
es. Therefore, any result from there should have a dire
trepresentation in this system.The re
onstru
tion of the quantum walk from the experiment's output is done the same wayas in Chap. 2, however, it was shown that probability renormalization of the time bins is done bymultiplying them by a simple expression exponential in the iteration 
ount.The implementation dis
ussed in this 
hapter is 
urrently realized by a partner experimentalgroup. The 
urrent state of this experiment was presented as well as some numeri
al data aboutthis parti
ular realization. Also, an optimization approa
h for single photon use was proposed whi
h
ould be used in a future version of the experiment.
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Chapter 4Quantum walk using a di�ra
tion gratingIn this 
hapter, we will present and dis
uss another simple implementation of a quantum walkusing the prin
iple of di�ra
tion on an opti
al grating.4.1 The properties of di�ra
tion gratingTo des
ribe the a
tion of an opti
al grating as a linear opti
s element, we will revert to waveopti
s. The reason is that due to the 
ompli
ated intera
tion of the light and the grating, theprin
iples of quantum ele
trodynami
s (QED) would have to be used, whi
h is outside the s
ope ofthis work. The Huygens-Fresnel prin
iple, used below, is a 
lassi
al, phenomenologi
al version ofthe quantum path integral and a suÆ
ient repla
ement for our purposes.Let a di�ra
tion grating have N slits separated by a and ea
h of width d. Let a mono
hromati
plane wave be in
ident on the grating at an angle of  su
h that the proje
tion of its wave ve
tor ~konto the plane of the grating is orthogonal to the slits. Let us de�ne a two-dimensional polar
oordinate system (r; ') in the plane of in
iden
e, where the angle ' is measured from the normalto the grating. The above parameters and the 
oordinate system are depi
ted in Fig. 9. Assumingthat the slits length is mu
h larger than a, the problem has an approximate translation symmetryin the third orthogonal axis, whi
h justi�es the use of two-dimensional des
ription.
...

...

x

y′

r

ϕ

ψ
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d

y′ sinϕ

Fig. 9: A zoom of a diffraction grating. Various notation used in the text is visualized. Both the incident
and diffracted plane waves are depicted.36



A

ording to the Huygens{Fresnel prin
iple [30℄, we get the amplitude of the di�ra
ted waveat the 
oordinates (r; ') in the far-zone as an integral of in�nitesimal 
ontributions of point sour
esdistributed along the transparent parts of the grating. If the angle  = 0, these sour
es are all inphase, otherwise their relative phase is linear in their y-
oordinate with the fa
tor of kinc.
y = �k sin .Using the notation of Fig. 9, the amplitude is 
omputed as�(r; ') = A(r)K( ;')e−ikr ∫

aperture
e(−ik sinψ+ik sinϕ)y′dy′; (4:1)where A(r) is a normalization fa
tor and K is an in
lination fa
tor dependent on the angle ofdi�ra
tion, j � 'j. We will assume that K is normalized to 1 for  = '. The dependen
e of A onthe geometri
al parameters N , d and a is also noted but not expli
itly written. De�ning� = sin'� sin (4:2)and introdu
ing the parti
ular shape of the aperture, the integral 
an be rewritten to�(r; ') = A(r)K( ;')e−ikr N

∑

j=1

∫ y′j+
d
2

y′j−d
2

eikσzdz; (4:3 a)where y′j = (j � N + 12 ) a: (4:3 b)After 
omputing the auxiliary integral
∫ y′j+

d
2

y′j−
d
2

eikσzdz = eikσy′j ∫ d
2

−d
2

eikσz′dz′ = eikσy′j ∫ d
2

−d
2


osk�z′dz′ = 2eikσy′jk� sin k�d2 ; (4:4)we 
an sum Eq. (4.3 a) as�(r; ') = A(r)K( ;')e−ikr � 2 sin kσd2k� N
∑

j=1

eikσy′j == A(r)K( ;')e−ikr � 2 sin kσd2k� N
∑

j=1

eikσ(j−N+1
2

)

a == A(r)K( ;')e−ikr � 2 sin kσd2k� e−ikσN+1
2
a
N
∑

j=1

eikσja == A(r)K( ;')e−ikr � 2 sin kσd2k� e−ikσN+1
2
a � eikσ(N+1)a � eikσaeikσa � 1 == A(r)K( ;')e−ikr � 2 sin kσd2k� � eikσN

2
a � e−ikσN

2
aeikσ a

2 � e−ikσ a
2

== A(r)e−ikr � 2 sin kσd2k� � sin k�N2 asin k� a2 K( ;'):
(4:5)
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This equation splits into three signi�
ant terms:{ a term indi
ating a 
ylindri
al wave propagating from the axis of symmetry of the gratingperpendi
ular to the plane of in
iden
e,{ an envelope fun
tion given by the nonzero width of the slits,{ a dire
tional 
hara
teristi
 fun
tion, independent of r and d.We also note that Eq. (4.5) is unde�ned for a �nite subset of possible values of � but 
an be
ontinuously extended to 
over these points.Analyzing these terms, we �nd that if the slits are narrow enough, namely ford � �2k ; (4:6)the \envelope" term varies so slowly that it never rea
hes zero for any 
hoi
e of  and '. For anidealized grating with in�nitely narrow slits, it approa
hes a 
onstant in � but on the other hand,only an in�nitesimal part of the in
ident wave is a
tually di�ra
ted.The last term is typi
al for di�ra
tion gratings: aside from the in
lination fa
tor, it is a periodi
fun
tion of � (restri
ted to an interval rea
hable by Eq. (4.2)), rea
hing major maxima of N for� = m2�ka ; m 2 Z: (4:7)Between ea
h adja
ent pair of major maxima, there are N � 2 unequally separated minor maximain the absolute value. For large N , most intensity of the di�ra
ted light is 
on
entrated near theangles ' 
orresponding to major maxima, the other peaks are suppressed.4.2 Di�ra
tion grating as a linear opti
s elementThe previous se
tion 
an be summarized as follows: when a plane wave is in
ident on a di�ra
tiongrating with a large number of narrow slits, it is di�ra
ted into a �nite number of narrow angle ranges(in a proje
tion onto the plane of in
iden
e) with nearly equally distributed intensities. If we repla
ethe plane wave by a beam, the di�ra
tion grating transforms it into several output beams in theplane of in
iden
e. To justify the 
al
ulations exa
tly, we must add to the assumptions that only arelative part of the slit 
ount, ~N , proportional to the mean width of the beam, is 
onsidered, and itis still mu
h greater than 1.If the angle of in
iden
e is  , the angles of the outgoing beams, 'm, are given bysin'm � sin = m2�ka ; m 2 Z; (4:8 a)together with the inequality ��2 � 'm � �2 : (4:8 b)There is always a trivial solution '0 =  . Let us assume that there is another solution, 'n. Notethat if another beam is in
ident at the angle of 'n, the set of solutions is the same|therefore,38



the di�ra
tion grating 
an a
t similarly to a multiport, mixing input beams in
ident at one spotat angles f'mg in output beams under the same set of angles. However, due to the losses andintera
tion with the material, the transformation is not unitary. Also, the divergen
e of the outputbeams, given by the nonzero width of the peaks of Eq. (4.5), 
an be a problem for larger s
ale use.For our purposes, we will need to minimize the number of the multiport 
hannels. FromEq. (4.8 a), we 
an note that the sines of 'm are equidistant, they must naturally also be boundedinside the interval h�1; 1i. For given  , this gives an inequality for m,(�1� sin )ka2� � m � (1� sin )ka2� ; (4:9)whi
h has nm = ⌊(1� sin )ka2�⌋+ ⌊(1 + sin )ka2�⌋+ 1 (4:10)solutions in Z.If we restri
t ourselves to  = 0, there is always an odd number of output beams. The 
asenm = 1 is trivial: the beam is mostly transmitted by the grating with only the negative e�e
tsmentioned above. Thus we 
an say that the nontrivial minimum is 3. In order to rea
h 3 
learlydistinguishable output modes, we 
an put the inner of the whole part to be 1:5:ka2� = 32 ;a = 3�k : (4:11)In terms of the wavelength, � = 2�k ; (4:12)the 
ondition is a = 3
2�. The output modes are obtained by solving Eq. (4.8 a) for m = 0 (zerothorder maximum) and m = �1 (�rst order maxima) with the restri
tion of Eq. (4.8 b), giving'0 = 0; '±1 = � ar
sin 23 � �0:232�: (4:13)Without the restri
tion that one mode is perpendi
ular to the grating, we 
an rea
h a two-modeoperation, resembling a beam splitter. We 
an �nd the 
orresponding a similarly as above, solvinga system (1� sin )ka2� = 12 ;(1 + sin )ka2� = 32 : (4:14)This system gives values for both a and  :a = 2�k = �; = ar
sin 12 = �6 : (4:15)39



Let us �nd the transfer matrix in both 
ases, that is, the matrix transforming the tuple of inputbeam amplitudes to the tuple of output beam amplitudes. In order to �nd it, we will plug every
ombination of the input and output angles into Eq. (4.2) and use these results for taking a limitof Eq. (4.5). For dimensionality purposes, we 
an divide the matrix elements by the measure ofthe aperture, Nd. Also, we will drop the �rst term of Eq. (4.5) out of the matrix as it des
ribesthe behaviour outside the grating and not the transformation itself. With these modi�
ations, onematrix element is redu
ed to 2k�d sin k�d2 K( ;'): (4:16)In the 3-mode 
ase, the �rst, se
ond and third 
omponent of the amplitude ve
tor will 
orrespondto the beams in the dire
tions of '−, '0 and '+, in this order. Using Eq. (4.16), we �nd the transfermatrix as T = 



1 u vu 1 uv u 1 ; (4:17 a)where u = 3kd sin kd3 K(0; '+); v = 32kd sin 2kd3 K('−; '+): (4:17 b)We emphasize that this matrix is generally not unitary.For the 2-mode operation, the transformation is similar,T = ( 1 vv 1) ;v = 2kd sin kd2 K('−; '+): (4:18)Note that the transfer matrix is strongly dependent on the width of the di�ra
tion grating slits, d.For this reason, the grating 
an not be idealized.4.3 Quantum walk with a line of di�ra
tion gratingsLet us try to exploit the properties of a di�ra
tion grating to implement a quantum walks
enario. The 
al
ulations done in Se
. 4.2 are not quantum but their results 
ontain informationabout both absolute value of amplitude and phase of the di�ra
ted beams. Using this, we 
an builda semi-quantum mathemati
al approa
h, as shown below.The proposed experimental 
on�guration is depi
ted in Fig. 10. A line of identi
al di�ra
tiongratings is aligned parallel to ea
h other and spa
ed equally. The distan
e of two neighbouringgratings, b, must be large enough for the far-zone approximation to be used. As dis
ussed inSe
. 4.2, the waves will propagate in a �xed number of preferred dire
tions between ea
h pair ofadja
ent gratings, also, it follows that the beams will meet at n nodes on the n-th grating, if 
ountedfrom the left. All paths leading to a given node have the same mean path length, whi
h guaranteesgood interferen
e. 40
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Fig. 10: The third configuration to be studied. The use of three-mode and two-mode configuration (a
and b, respectively) for a Quincunx-like operation is depicted. Note that the actual behaviour does not

depend only on the angle of incidence of the input beam but also on the ratio of the grating constant a to
the wavelength. The image b) gives two different possibilities of where to place the output detectors.We will assume that the relation between the wavelength and the parameter a and the inputangle  are 
hosen su
h that the di�ra
tion grating de�nes 3 or 2 modes, as des
ribed in Se
. 4.2.In the former 
ase, we will pla
e a dete
tor measuring the middle beam behind ea
h node, leavingonly two beams propagating to the next grating. Alternatively, we 
an s
reen the middle beamsout. We let the light waves in the two-mode 
ase propagate freely.In both 
ases, the beams 
onne
ting the nodes form a grid stru
ture strongly resembling arandom walk. However, in the following, we will show that the behaviour of the system is even
loser to a quantum walk, as des
ribed in Se
. 1.1.Let us denote the nodes in Fig. 10 by pairs of numbers as follows: let n denote the zero-basedindex of the di�ra
tion grating, 
ounted from the left. Thus the leftmost di�ra
tion grating will
orrespond to n = 0, the next one to n = 1, et
. Let m denote the verti
al 
oordinate in the �gure,
ounted in the units of 
. Let the normal at the �rst point of in
iden
e de�ne the axis where m = 0.It then follows from the layout that m is integer for ea
h node and that it is bounded by the followingtwo 
onditions, �n � m � n;m � n (mod 2): (4:19)These 
onditions are the same as the 
onditions where the probability of a parti
le performing arandom walk or a quantum walk on a line 
an be nonzero if n denotes the iteration 
ount and mthe position and the walk starts at m = 0. For this reason, let us identify the n and m parameterswith these physi
al values.Let us des
ribe the system's behaviour in a similar manner to Se
. 1.1. We note that we donot attempt to build a quantum des
ription, we just write the above results in an algebrai
al way,reusing the symbol names from Se
. 1.1. 41



First, let us de�ne two 
omplex ve
tor spa
es, HS of 
ountably in�nite dimension and HC ofdimension 2. Let there be a basis of HS denoted fjxi j x 2 Zg and a basis of HC denoted fjLi; jRig.Let us �nd a ve
tor spa
e H as a tensor produ
t H = HS 
 HC . We 
an �nd a basis of H as atensor produ
t of the two bases using Eq. (1.1).For a �xed n, we 
an build a ve
tor in this spa
e des
ribing the beams in
ident on the di�ra
tiongrating with index n: let a±(n;m) is the amplitude, in
luding relative phase, of the beam in
ident atthe node with 
oordinate m and 
oming from the positive or negative relative m from the previousdi�ra
tion grating. Using these amplitudes, we 
an de�ne an unnormalized ve
tor vn 2 H asvn = ∑

m∈Z

(am,−jm;Ri+ am,+jm;Li) : (4:20)This de�nition is 
orre
t sin
e only a �nite number of the 
oeÆ
ients am,± 
an be nonzero.The propagation from the n-th to the (n + 1)-th di�ra
tion grating 
an be des
ribed as ana
tion of three operators: �rst, the beams are di�ra
ted and transformed by the transfer matrix,after whi
h they are spatially separated by passing the distan
e b. Finally, a partial absorption ofthe beams is 
ounted in before the next iteration.The transformation indu
ed by di�ra
tion 
an be des
ribed by an operatorC = 1
 C0; (4:21)a
ting on HC only. The operator C0 will be de�ned using its matrix in the fjLi; jRig basis, whi
his equal to the transfer matrix Eq. (4.18) in the 2-mode operation. In the 3-mode 
on�guration, theunused middle beam must be proje
ted out by restri
ting the matrix Eq. (4.17 a) to the �rst andthird 
omponent only. In this restri
tion, it obtains formally the same shape as Eq. (4.18), but withthe v parameter given by Eq. (4.17 b).The propagation in free spa
e is des
ribed by the operatorS = A(r)e−ikr ∑
m∈Z

(jm+ 1; Rihm;Rj+ jm� 1; Lihm;Lj) ; (4:22)where the fa
tor A(r) exp(�ikr) 
omes from Eq. (4.5) and r is the distan
e travelled by the beam,r = √b2 + 
2: (4:23)The symbols hm;Rj and hm;Lj are the 
oordinate fun
tionals of the basis ve
tors jm;Ri and jm;Li,respe
tively. For �nite linear 
ombinations, whi
h form the linear span, the 
oordinate fun
tionalsare well-de�ned. Also, Eq. (4.22) maps �nite linear 
ombinations of the basis ve
tors to other �nitelinear 
ombinations of these and so it preserves H.Finally, the losses between two iterations 
an be modelled by multipli
ating the ve
tor by a real
onstant, q.Putting these three transformations together, the relation between the situation at two subse-quent di�ra
tion gratings 
an be des
ribed by the equationvn+1 = qSCvn; (4:24)42



whi
h is, up to a 
onstant of qA(r) exp(�ikr), equivalent to Eq. (1.3 a) with a spe
ial 
hoi
e of C,des
ribed above. The 
onstant fa
tor 
an be in
luded into the operator C, after whi
h the usualmethods of solving or simulations, designed for unitary quantum walks, 
an be used with little orno 
hanges.The initial state of the walk 
an be des
ribed in a straightforward way as the ve
tor v0 if theinitial beam is in
ident on the �rst grating at one of the nonzero preferred angles to the normal. Anexample of this situation is shown in Fig. 10 b). On the other hand, if the input beam is parallel withthe normal, whi
h 
an be the 
ase in the 3-mode variant, the �rst iteration must be 
omputed byhand and the initial 
ondition must be given in the form of v1. A

ording to Eqs. (4.24) and (4.17 a),the initial 
ondition in this 
ase isv1 = quA(r)e−ikr(j1; Ri+ j�1; Li): (4:25)4.4 Measurement of the walkDue to the spatial separation of the nodes, measuring of the magnitude of the 
omponents of vnis straightforward. A

ording to Fig. 10 b), we 
an pla
e a line of dete
tors at the lo
ation wherethe nodes of the grating with index n would be. Alternatively, one dete
tor 
an be used for ea
hindividual mode if desired. This approa
h 
an be used for both experimental s
enarios.In the 
ase of the 3-mode operation, we 
an use dete
tors shown in Fig. 10 a) to measure themiddle output mode of ea
h node in addition to, or instead of, the distribution after n steps asdes
ribed above. However, the meaning of the intensity of these beams needs some explanation.Let the next to the last state ve
tor, vn−1, be written asvn−1 = n−1
∑

m=1−n
(am,−jm;Ri+ am,+jm;Li): (4:26)The beams in
ident at the node at 
oordinate m 
an be written, in the sense of Eq. (4.17 a), as a3-
omponent ve
tor v = ( am,−0am,+ ) : (4:27)The di�ra
tion grating transforms it intoTv = 



am,− + vam,+u(am,− + am,+)am,+ + vam,− 

 ; (4:28)so that the amplitude of the middle output beam is proportional to the sum of amplitudes of thetwo in
ident beams. In other words, the intensity measured at the dete
tor is a result of interferen
eof these two beams. 43



4.5 SummaryIn this 
hapter, a basi
 study of the possibilities of implementing a quantum-like walk usinga di�ra
tion grating was provided. First, the formula for di�ra
tion on a grating was 
arefullyderived and studied. It was shown that under some assumptions, a di�ra
tion grating 
an behavesimilarly to an opti
al multiport a
ting in free spa
e. This fa
t makes it a new element available foruse in opti
al interferometers.A 
on�guration using a line of identi
al di�ra
tion gratings in order to implement a randomwalk s
enario was studied. This idea di�ers signi�
antly from the prin
iple used in the previous two
hapters, one of the most striking di�eren
es is that the spa
e requirements s
ale quadrati
ally inthe maximal number of steps wanted to be performed.Despite the fa
t that the treatment of the di�ra
tion grating was 
lassi
al, the resulting formulaeresemble strongly the quantum walk introdu
ed in Se
. 1.1. For this reason, the result 
ould be 
alleda generalized quantum walk with non-unitary 
oin.
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Con
lusionQuantum walks have be
ome an a
tive �eld of resear
h, in parti
ular in 
onne
tion to quantumalgorithms, during the last de
ade. Several important algorithmi
 tasks have also been solved usingquantum algorithms based on quantum walks. As the theory of quantum walks is already very ri
h,a demand naturally arises to �nd a 
exible experimental implementation. A realization allowingvarious 
hanges to the basi
 quantum walk would be a signi�
ant step towards a quantum 
omputersin
e its framework 
ould allow dire
t realization of some of the quantum walk-based algorithms.There are many ways of implementing quantum algorithms in general. In this thesis, we stud-ied the possibilities of implementing a quantum walk using an opti
al interferometer. One of the
on�gurations proved to have a very 
lose relation to the basi
 
oined dis
rete-time quantum walkon a line and thus o�ers a possible way to pursue this line also in subsequent work. The other
on�gurations feature some generalized forms of quantum walks, whi
h have not been studied so farand thus their potential is not yet 
ompletely explored.As noted in the introdu
tion and in the respe
tive pla
es, some parts of the work were 
ollab-orative. However, most of the work of the original results presented in Chapters 2 to 4 have beenthe author's work within the presented Master's thesis. Naturally, the experiments dis
ussed are
ompletely the work of the 
olleagues in Erlangen.The work done here opens some opportunities for a subsequent resear
h. The next importantstep would be to �nd a realization of some simple quantum algorithm based on one of the presentedimplementations. Another signi�
ant open question is how more 
ompli
ated quantum walks, e.g.,a walk on a 2-dimensional latti
e instead of a line, 
ould be implemented in a similar manner. Workon these topi
s is well under way and we expe
t our partners from Erlangen to 
at
h on these ideasin near future.
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Appendix ACoherent statesCoherent states form an important subset of the state spa
e of an ele
tromagneti
 �eld. In thisAppendix, we will de�ne these states and study some of their properties.A.1 The ladder operatorsLet us begin with introdu
ing the Hamiltonian of a quantum harmoni
 os
illator from elementaryquantum me
hani
s [31℄, H = 12X2 + 12P 2: (A:1)The X and P operators are the position and momentum observables in a set of units where themass of the parti
le, the angular frequen
y of the os
illator and the redu
ed Plan
k 
onstant �h areall equal to 1, and satisfy a 
anoni
al 
ommutation relation[X;P ℄ = i: (A:2)In quantum opti
s, the same Hamiltonian des
ribes the dynami
s of every mode of an ele
tromag-neti
 �eld [27℄. The X and P observables lose their original dire
t meaning but are still observablequantities subsequently referred to as quadratures of the mode.Similarly to a harmoni
 os
illator, any mode of an ele
tromagneti
 �eld has a nondegeneratestate with a lowest energy, the va
uum state j0i. It 
an be shown that the spe
trum of H is dis
reteand all the eigenstates 
an be generated from j0i using so 
alled ladder operators.De�nition 1: A ladder operator (with respe
t to another operator H) is any operator A whi
hsatis�es the 
ommutation relation [H;A℄ = �A; (A:3)where � 2 C.The importan
e of su
h operators follows from the following Lemma.Lemma 2: Let � 2 C, let H and A be two operators su
h that [H;A℄ = �A. Let further j i be aneigenve
tor of H with eigenvalue �, that is,Hj i = �j i: (A:4)Then HAj i = (� + �)Aj i; (A:5)i.e., Aj i is either a zero ve
tor or an eigenve
tor of H with eigenvalue � + �.Proof: Let us expand the 
ommutation relation[H;A℄ = HA �AH = �A (A:6)46



and apply both sides on j i. After rewriting,HAj i = AHj i+ �Aj i: (A:7)Using Eq. (A.4) and the linearity,HAj i = �Aj i+ �Aj i = (�+ �)Aj i: (A:8)
�Let us try to �nd ladder operators of H as linear 
ombinations of X and P . From Eqs. (A.1)and (A.2), it 
an be dire
tly shown that[H;X℄ = �iP and [H;P ℄ = iX; (A:9)thus [H;�X + �P ℄ = i(�X � �P ): (A:10)If we equate the right hand side to �(�X + �P ), we 
an �nd the following two solutions:� = �� for � = �1: (A:11)Letting � a �xed real number, we obtain two mutually adjoint operators, shifting the eigenvaluesof (A.1) by �1. Espe
ially, for � = 1=p2, these operators are 
alled the annihilation operator a andthe 
reation operator a†: a = 1p2(X + iP );a† = 1p2(X � iP ): (A:12)The reason for 
hoosing � in this parti
ular way is that in this 
ase, a and a† follow a simple
ommutation relation [a; a†℄ = 1=2[X + iP;X � iP ℄ = 2 i2[P;X℄ = 1: (A:13)The relations (A.12) 
an be inverted to express X and P in terms of a and a†,X = 1p2(a+ a†);P = � ip2(a� a†); (A:14)allowing us to express H only in terms of the ladder operators:H = 12fa; a†g = 12(aa† + a†a) = 12(2a†a + [a; a†℄) = a†a+ 12 : (A:15)As j0i is the lowest energy state, aj0i is ne
essarily the zero ve
tor. In the units we have beenusing, this implies that Hj0i = 12 : (A:16)47



On the other hand, we 
an apply the 
reation operator or any positive power of it on j0i to obtaineigenstates of H with eigenvalues n+ 1
2 for any n 2 N0. Applying a ladder operator several numberof times 
ould generally end in the zero ve
tor|however, we will qui
kly show that this does nothappen with a† applied on j0i.For this purpose, we will derive from Eq. (A.12) the identitya(a†)n = n(a†)n−1 + (a†)na: (A:17)Let us study the norm of (a†)nj0i, applying this result:k(a†)nj0ik2 = h0jan(a†)nj0i = h0jan−1

(n(a†)n−1 + (a†)na) j0i == nh0jan−1(a†)n−1j0i+ 0 = n∥∥∥(a†)n−1j0i∥∥∥ == n(n� 1)∥∥∥(a†)n−2j0i∥∥∥ = : : : = n!kj0ik == n!: (A:18)We see that the norm is nonzero for any n 2 N0. Therefore, we 
an de�ne normalized number statesjni = 1pn! (a†)nj0i: (A:19)From Eq. (A.19), we 
an indu
e the relationa†jni = pn+ 1jn+ 1i (A:20 a)and similarly, using Eq. (A.17), ajni = pnjni: (A:20 b)Hen
e, the ladder operators preserve the linear span of the number states. It follows that theexisten
e of any other eigenve
tor orthogonal to this set would result in a 
ontradi
tion with thenondegenera
y of the lowest energy level. Therefore, the number states form an orthonormal basisof the one-mode state spa
e.From the shift property Eq. (A.5) of ladder operators and from Eq. (A.16), it immediatelyfollows that Hjni = (n+ 12) jni: (A:21)Comparing with Eq. (A.15), we see that the a
tion of the operator a†a on number states is simplya†ajni = njni: (A:22)Thus, this operator a
ts as a \operator of ex
itation 
ount" and 
an be denoted a

ordingly by N .48



A.2 The 
oherent statesBesides the number states, we 
an de�ne many more states of general interest. The most familiarof these states are 
oherent states. We will build their de�nition on the above formalism. However,we note that in various sour
es, other de�nitions of 
oherent states than the following are also used,not ne
essarily 
ompatible with the one presented here.De�nition 3: Let � 2 C, let j i be a normalized eigenve
tor of the annihilation operator a witheigenvalue of �. We will 
all j i a 
oherent state with amplitude �. If j i also satis�es a phase
ondition h j0i > 0, we will denote j�i := j i.The following theorem shows that there is a 
oherent state for any 
omplex amplitude � andgives a formula how to �nd it.Theorem 4: Let � 2 C, let j0i be the va
uum state of the system with Hamiltonian (A.1). Thena 
oherent state j�i exists and is unique. Moreover, it 
an be expressed in the following ways:j�i = e− |α|2
2 exp(�a†)j0i = exp(�a† � �∗a)j0i: (A:23)Proof: Let us look for the 
oherent state in the formj�i = +∞

∑

n=0


njni: (A:24)The a
tion of the annihilation operator is by Eq. (A.20 b)aj�i = +∞
∑

n=0

pn
njn� 1i = +∞
∑

n=0

pn+ 1 
n+1jni: (A:25)Comparing this series with �j�i, we obtain a re
urren
e relationpn+ 1 
n+1 = �
n (A:26)whi
h 
an be solved as 
n = �npn!
0: (A:27)To show that this de�nes a state in the Hilbert spa
e spanned by the number states, we shall showthat a state de�ned formally by a sum j i = 
0 +∞
∑

n=0

�npn! jni (A:28)has a �nite norm. As the number states de�ne an orthonormal basis, the norm 
an be 
omputed askj k2 = j
0j2 +∞
∑

n=0

j�j2nn! = j
0j2 exp j�j2 < +1: (A:29)49



Hen
e, we 
an also see that to make the state j i normalized, the 
onstant 
0 must satisfyj
0j = e− |α|2
2 : (A:30)The last, \phase" 
ondition of De�nition 3, restri
ts h j0i = 
0 to be real and positive. Thus, thestate is determined uniquely: j�i = e− |α|2

2

+∞
∑

n=0

�npn! jni: (A:31)Using Eq. (A.19), we 
an rewrite Eq. (A.31) asj�i = e− |α|2
2

+∞
∑

n=0

�nn! (a†)nj0i = e− |α|2
2 exp(�a†)j0i; (A:32)whi
h is exa
tly the �rst simpli�ed form mentioned in Theorem 4.We will prove the last equivalen
e in Theorem 4 indire
tly by showing that the right hand sidej�ir = exp(�a† � �∗a)j0i (A:33)satis�es all the 
onditions of De�nition 3. First, we will �nd the 
ommutation relation[a; �a† � �∗a℄ = � (A:34)and analogously to Eq. (A.17), we will prove that[a; (�a† � �∗a)n℄ = n�(�a† � �∗a)n−1: (A:35)Further, we will expand the exponential into a series,j�ir = +∞

∑

n=0

1n! (�a† � �∗a)nj0i: (A:36)Applying a from the left on both sides and using the 
ommutation relation Eq. (A.35) and the fa
tthat aj0i = 0, we obtainaj�ir = +∞
∑

n=0

n�n! (�a† � �∗a)n−1j0i = � +∞
∑

n=1

1(n� 1)!(�a† � �∗a)n−1j0i = �j�ir : (A:37)Next, we will show that j�ir is normalized. Sin
e(�a† � �∗a)† = �∗a � �a† = �(�a† � �∗a); (A:38)the operator �a† ��∗a is skew-adjoint. Hen
e, its exponential is unitary and preserves the norm ofj0i in Eq. (A.33). 50



Finally, we need to 
he
k the phase 
onvention of De�nition 3. Expanding the exponentialagain, we rewrite h0j�ir = +∞
∑

n=0

1n!h0j(�a† � �∗a)nj0i: (A:39)Using the identity that h0ja† = 0 (sin
e the left-hand side is a 
onjugate of aj0i) and the 
ommutationrelation Eq. (A.35), we �nd thath0j(�a† � �∗a)nj0i = ��∗h0ja(�a† � �∗a)n−1j0i == ��∗h0j(�a† � �∗a)n−1aj0i � (n� 1)��∗h0j(�a† � �∗a)n−2j0i == �(n� 1)j�j2h0j(�a† � �∗a)n−2j0i: (A:40)This re
urren
e relation 
an be solved ash0j(�a† � �∗a)nj0i = { (�1)n/2(n� 1)!!j�jn if n is even,0 otherwise, (A:41)sin
e the expression redu
es for even powers of n to �nding h0j0i = 1 while for odd n, it is proportionalto h0j�a† � �∗aj0i = �h0j1i = 0. Using this formula,h0j�ir = +∞
∑

n=0

1n!h0j(�a† � �∗a)nj0i = ∞
∑

n=0

(�1)n(2n� 1)!!jaj2n(2n)! = +∞
∑

n=0

(�1)njaj2n(2n)!! == +∞
∑

n=0

(�jaj2)nn! 2n = e− |α|2
2 = h0j�i > 0: (A:42)This implies that j�ir = j�i: �A.3 Basi
 properties of 
oherent statesIn this se
tion, we will list the very basi
 properties of 
oherent states. We will fo
us only onproperties whi
h are related to our topi
 in some way.First, let us 
larify the relation between number states and 
oherent states with integer ampli-tude. The va
uum state j0i is equal to the 
oherent state with amplitude 0, as 
an be seen e.g. fromEq. (A.32). On the other hand, number states jni with n > 0 are not 
oherent. If a 
ertain physi
alsituation involves 
oherent states with positive integer amplitudes, the notation must be altered toavoid 
onfusion.As opposed to number states, no subset of 
oherent states 
an form an orthonormal basis of thestate spa
e as none of them are mutually orthogonal. Instead, the s
alar produ
t of two 
oherentstates is h�j�i = e− |α|2
2

− |β|2
2

+∞
∑

n=0

�n (�∗)nn! = e− |α|2
2

− |β|2
2

+αβ∗ ; (A:43)where we used the expansion Eq. (A.31) to 
ompute the produ
t in the number basis. However, wenote that a de
omposition of unity using only 
oherent states is still possible in many ways, in fa
t,the set of 
oherent states is over
omplete [27℄. 51



Finally, we 
an study expe
tation values of the operators introdu
ed above on 
oherent states.All of these 
an be derived algebrai
ally from the property aj�i = �j�i easily:{ hai|α〉 = h�jaj�i = h�j�j�i = �,{ ha†i|α〉 = h�ja†j�i = (h�jaj�i)∗ = �∗,{ hXi|α〉 = 1√
2
(hai+ ha†i)|α〉 = 1√

2
(�+ �∗) = p2<�,{ hP i|α〉 = −i√

2
(hai � ha†i)|α〉 = 1

i
√

2
(� � �∗) = p2=�,{ hNi|α〉 = h�ja†aj�i = kaj�ik2 = k�j�ik2 = j�j2,{ hHi|α〉 = hNi|α〉 + 1

2 = j�j2 + 1
2 .From the last two lines, we 
an 
on
lude that the squared magnitude of the amplitude has adire
t relation to the energy of the state. We note that the lowest energy level given by Eq. (A.16)is often subtra
ted from the Hamiltonian H by de
laring it a zero energy level and the quantity j�j2be
omes proportional to the intensity of the pulse.A.4 Example: a beam splitterIn this se
tion, we will give a des
ription of a beam splitter using the 
reation and annihilationoperators, and use this des
ription to 
ompute how a 
oherent state input transforms on a beamsplitter.Let us begin with Eq. (2.9) from Se
. 2.3. However, instead of des
ribing the situation fora single photon, we will de�ne four light modes 
orresponding to the two input and two output armsof the beam splitter and having its own Hilbert spa
e ea
h. This way, we will 
ome to a se
ondquantization of the ele
tromagneti
 �eld: on ea
h of the spa
es, we will postulate the 
reation andannihilation operators, a†j and aj , satisfying the 
anoni
al 
ommutation relation Eq. (A.12), and ava
uum state j0ij whi
h satis�es aj j0ij = 0. We 
an then re
onstru
t all the algebrai
 results ofSe
. A.1. However, instead of referring to a n-th ex
itation of a given mode, we will 
laim that thereare n photons in that mode, ea
h 
arrying an energy of 1.We 
an then identify the states used in Se
. 2.3 with tensor produ
ts of 
ertain states of this
ompound system:j ii = j1ii 
 j0iU 
 j0iM 
 j0iL = (a†i j0ii)
 j0iU 
 j0iM 
 j0iL = a†i j0i; (A:44)where j0i = j0ii 
 j0iU 
 j0iM 
 j0iL and the a†i operator is extended to a
t trivially on the spa
esof the U , M and L modes, and, similarly, j U i = a†U j0i;j M i = a†M j0i;j Li = a†Lj0i: (A:45)It is important to realize that the 
reation and annihilation operators a
ting on di�erent spa
esinherently 
ommute. 52



Using this notation, Eq. (2.9) 
an be rewritten asa†i j0i 7! (tAa†M + rAa†L)j0i;a†U j0i 7! (t∗Aa†L � r∗Aa†M )j0i: (A:46)Re
all that this mapping does not happen instantaneously but takes a �nite time during whi
hthe pulse travels through the beam splitter. During this time, the va
uum state 
an undergo some
hange in phase under the UA operator. Therefore, we should 
orre
tly apply it on the va
uum stateon the right hand side. In terms of this operator, the last pair of equations 
an be rewritten asUAa†i j0i = (tAa†M + rAa†L)UAj0i;UAa†U j0i = (t∗Aa†L � r∗Aa†M )UAj0i: (A:47)Generally, this transition 
ould be mu
h more 
ompli
ated, but for our purposes, we will 
onsider anideal passive beam splitter in 
onstant outer 
onditions in whi
h a va
uum state 
an only transformtrivially.In order to study the a
tion of the beam splitter on more than one photon, we will postulatethat the a
tion is the same on ea
h state as on the va
uum state, i.e.,UAa†i = (tAa†M + rAa†L)UA;UAa†U = (t∗Aa†L � r∗Aa†M )UA: (A:48)A
ting on both equations from the right by U†
A, we obtainUAa†iU†

A = tAa†M + rAa†L;UAa†UU†
A = t∗Aa†L � r∗Aa†M : (A:49)We will 
onsider this the �nal des
ription of the beam splitter's a
tion.Taking produ
ts of powers of Eqs. (A.49) and their linear 
ombinations, we 
an �nd the trans-formation of any possible input state. As an example, let us �nd the transformation of the inputstate j1iij1iU (for brevity, we omitted the tensor produ
t operators and the kets 
orresponding tooutput states): UAa†ia†UU†

A = UAa†iU†
AUAa†UU†

A = (tAa†M + rAa†L)(t∗Aa†L � r∗Aa†M ) == (TA �RA)a†Ma†L � tAr∗A(a†M )2 + rAt∗A(a†L)2 (A:50)Applying both sides of j0i, we 
an see that the input state is transformed to(TA �RA)j1iM j1iL � tAr∗Aj2iM j0iL + rAt∗Aj0iM j2iL; (A:51)whi
h is generally an entangled state of the two output modes.Using the same idea, we 
an �nd the a
tion of the beam splitter when there are 
oherent pulseson the input modes. For this purpose, we will assume the input in the form ofj�iij�iU = e− |α|2+|β|2
2 exp(�a†i ) exp(�a†U )j0i = 
 exp(�a†i+�a†U ) = 
 +∞

∑

n=0

1n! (�a†i+�a†U )nj0i; (A:52)53



where 
 = exp((�j�j2 � j�j2)=2) and we used the fa
t that a†i and a†U 
ommute. The 
orrespondingoutput state is j oi = 
 +∞
∑

n=0

1n! (UA(�a†i + �a†U )U†
A

)n UAj0i == 
 +∞
∑

n=0

1n! (�tAa†M + �rAa†L + �t∗Aa†L � �r∗Aa†M )nUAj0i == 
 exp(�tAa†M + �rAa†L + �t∗Aa†L � �r∗Aa†M )UAj0i == 
 exp((�tA � �r∗A)a†M) exp((�rA + �t∗A)a†L)UAj0i == j�tA � �r∗AiM j�rA + �t∗AiL;
(A:53)

where the splitting of an exponential to a produ
t of two fa
tors was possible sin
e a†M and a†L
ommute. The normalization 
onstant 
 is the same for both the input and the output state, asfollows from the identityj�rA � �t∗Aj2 + j�rA + �t∗Aj2 = j�j2(jtAj2 + jrAj2) + j�j2(jtAj2 + jrAj2)�� �rA�∗tA � �t∗A�∗r∗A + �rA�∗tA + �t∗A�∗r∗A == j�j2 + j�j2: (A:54)Therefore, a produ
t of two 
oherent input states transforms to a produ
t of two 
oherent outputstates, whi
h is by de�nition a fa
torized state. This is interesting in 
ontrast with the above two-photon 
ase where the output was entangled. Also note in Eq. (A.53) that the amplitudes transformand \interfere" exa
tly in the same way as wave amplitudes in 
lassi
al opti
s. For these reasons,
oherent states are understood as the \most 
lassi
al" states of light.
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Appendix BHypergeometri
 sums involving two binomial 
oeÆ
ientsIn this Appendix, we will study some properties of the series of the form
+∞
∑

m=0

( n� �1m� �1

)( n� �2m� �2

)xm; �1; �2; �1; �2 2 N0; (B:1)whi
h are needed at many points throughout Chap. 2. These series satisfy the 
ondition that theratio of two su

essive terms is a rational fun
tion of m and thus they form a subset of so 
alledhypergeometri
 series [21℄. Su
h series 
an be uniformly des
ribed using a 
losely related 
on
eptof hypergeometri
 fun
tions [21,22℄. However, as hypergeometri
 fun
tions are de�ned again ashypergeometri
 series, su
h formal rewriting does not redu
e the 
omplexity of the 
al
ulationsneeded to 
ompute the sum. Similarly, the rewriting does not give us any new information. In thefollowing, we will keep the original series notation.Lemma 5: Let x be a positive real number. In the series Eq. (B.1), only a �nite number of termsis nonzero. These terms are 
onse
utive and bounded bymaxf�1; �2g � m � minfn� �1 + �1; n� �2 + �2g: (B:2)Proof: The binomial 
oeÆ
ient (nk) is zero if k < 0 or k > n and nonzero otherwise. The powerterm is nonzero for all m as long as x is nonzero. Applying the former rule to the two binomial
oeÆ
ients in Eq. (B.1), we �nd that the term is zero only if and only if at least one of the 
onditionsare met: m� �1 < 0 or m� �2 < 0 or m� �1 > n� �1 or m� �2 > n� �2: (B:3)The inverse of this 
ondition yields the lemma. �As the sum for given n, �i and �i is in fa
t a spe
ial fun
tion of x, there are limited possibilitiesto 
ompute it in a 
losed form. One point where the sum is known is x = 1, as shown in the followingtheorem.Theorem 6: (The sum for x = 1) Let �1, �2, �1 and �2 are nonnegative integer 
onstants. Then
+∞
∑

m=0

( n� �1m� �1

)( n� �2m� �2

) = ( 2n� (�1 + �2)n� (�2 � �2 + �1)): (B:4)Proof: Without loss of generality, let us assume that �1 � �2. Using Lemma 5, the sum 
an thenbe rewritten to
n−ν2+µ2
∑

m=µ1

( n� �1m� �1

)( n� �2m� �2

): (B:5)55



By substituting k = m� �1, it transforms into
n−ν2+µ2−µ1

∑

k=0

(n� �1k )( n� �2k + �1 � �2

): (B:6)Let us further study the following two expansions given by the binomial theorem:(1 + x)n−ν1 = n−ν1
∑

k=0

(n� �1k )xk;(1 + x)n−ν2 = n−ν2
∑

l=0

(n� �2l )xl: (B:7)Their produ
t 
an be expressed as(1 + x)n−ν1(1 + x)n−ν2 = n−ν1
∑

k=0

n−ν2
∑

l=0

(n� �1k )(n� �2l )xk+l == 2n−ν1−ν2
∑

m=0

m
∑

k=0

(n� �1k )(n� �2m� k)xm == 2n−ν1−ν2
∑

m=0

m
∑

k=0

(n� �1k )( n� �2k + n� �2 �m)xm: (B:8 a)
However, we 
ould multiply the powers and expand the result:(1 + x)n−ν1(1 + x)n−ν2 = (1 + x)2n−ν1−ν2 == 2n−ν1−ν2

∑

m=0

(2n� �1 � �2m )xm: (B:8 b)Both Eqs. (B.8 a) and (B.8 b) are �nite power expansions of the same expression, thus the
oeÆ
ients of the same power of x must be equal. We 
an note that the 
oeÆ
ient of xm, m =n� �2 + �2 � �1, in Eq. (B.8 a) is exa
tly the sum in Eq. (B.6). Therefore, this sum must be equalto the 
oeÆ
ient of xm in Eq. (B.8 b), whi
h is
(2n� �1 � �2m ) = ( 2n� �1 � �2n� �2 + �2 � �1

):
�The following theorem shows that for large n, the sum rises exponentially in n, and it gives thequotient of this grow.Theorem 7: Let �1, �2, �1 and �2 are nonnegative integer 
onstants, let x is real, x � 0. The limitq(x) = lim

n→+∞
n

√

√

√

√

+∞
∑

m=0

( n� �1m� �1

)( n� �2m� �2

)xn (B:9)exists and equals (px+ 1)2. 56



To prove this theorem, we will �rst need the following useful lemma:Lemma 8: Let the assumptions of Theorem 7 hold, let n 2 N and x are �xed. Then the expression
( n� �1m� �1

)( n� �2m� �2

)xn (B:10)has exa
tly one maximum in m. For n� �i, n� �i, the maximum is rea
hed atm0 = pxpx+ 1n+O(1): (B:11)Proof: Let us denote am = ( n� �1m� �1

)( n� �2m� �2

)xn: (B:12)Let us study the ratio of two su

eeding terms in the interval where they are nonzero, as given byLemma 5: am+1am = (n� �1 �m+ �1)(n� �2 �m+ �2)(m� �1 + 1)(m� �2 + 1) x: (B:13)This is a rational fun
tion in m. In the allowed interval, the denominator is a monotoni
allyin
reasing fun
tion and the numerator a monotoni
ally de
reasing fun
tion. Depending on thevalue in the minimal and maximal m given by the inequality (B.2), the sequen
e (am) is eithermonotoni
ally de
reasing, monotoni
ally in
reasing or has one maximum inside the interval. In all
ases, there is exa
tly one maximum.2 For suÆ
iently large n, the maximum is rea
hed inside theinterval and 
an be found putting the ratio (B.13) equal to 1. This leads to a quadrati
 equationfor m, whi
h 
an be written asymptoti
ally as(n2 � 2mn+m2 +O(n;m))x = m2 +O(m)(x� 1)(mn )2 � 2x(mn )+ x+O(n−1) = 0: (B:14)This equation has two asymptoti
 solutions,mn = x�pxx� 1 +O(n−1) = pxpx� 1 +O(n−1); (B:15)from whi
h only the + variant is a

eptable sin
e the other one gives m outside the bounds (B.2).Multiplying the last equation by n 
ompletes the proof. �Proof of Theorem 7: Let An denote the maximal value of (B.10) for given n 2 N . We 
an thenestimate the root from both sides by
n
√An � n

√

√

√

√

+∞
∑

m=0

( n� �1m� �1

)( n� �2m� �2

)xn � n
√(n+ 1)An: (B:16)

2 Under special conditions, it can happen that the same maximal value is reached at two consecutive
values of m. We will consider this also a single maximum.57



As n approa
hes +1, the n
pn+ 1 term has a limit of 1, so both sides give the same valueq(x) = lim

n→+∞
n
√An: (B:17)We will estimate the maximum An using its approximate position given by the above Lemma.Let us denote � = pxpx+ 1 ; (B:18)so that m0 = �n+O(1).First, let us use the Stirling's approximation [26℄n! = p2�n(ne)n (1 +O(n−1)) (B:19)to make a similar approximation of a binomial 
oeÆ
ient, (nk), when n is large and both k and n�kare 
(n):

(nk) = nn+ 1
2p2�kk+ 1

2 (n� k)n−k+ 1
2

(1 +O(n−1)) (B:20)This 
ondition is met for k = m0 � �i when � 2 (0; 1).Using this approximation formula for An givesAn = (n� �1)n−ν1+ 1
2 (n� �2)n−ν2+ 1

2xαn2�(�n+O)αn+O(�n+O)αn+O(�′n+O)α′n+O(�′n+O)α′n+O
(B:21)where every O is a shorthand for O(1) and�′ = 1� � = 1px+ 1 : (B:22)We 
an use this estimate to �nally 
ompute the limit (B.17). In the following, O′ � O(n−1).q(x) = lim

n→+∞
n
√An == lim

n→+∞
n

√

√

√

√

(n� �1)n−ν1+ 1
2 (n� �2)n−ν2+ 1

2xαn2�(�n+O)αn+O(�n+O)αn+O(�′n+O)α′n+O(�′n+O)α′n+O
== lim

n→+∞
(n� �1)1+O′(n� �2)n+O′xα(2�) 1

n (�n+O)α+O′(�n+O)α+O′(�′n+O)α′+O′(�′n+O)α′+O′

(B:23 a)
After this step, the O′ terms in all the exponents 
an be dropped as a result of �(n)O(1/n) ! 1.Similarly, the (2�)1/n term has a limit of 1:q(x) = lim

n→+∞
(n� �1)(n� �2)xα(�n+O)α(�n+O)α(�′n+O)α′(�′n+O)α′ == lim

n→+∞
(1� ν1

n )(1� ν2
n )xα(� +O′)α(� +O′)α(�′ +O′)α′(�′ +O′)α′

(B:23 b)58



In the �rst line of Eq. (B.23 b), we divided both sides of the fra
tion by n2, using the fa
t that2(� + �′) = 2. As � and �′ are 
onstant, we 
an take the limit easily:q(x) = xα�α�α�′α′(�′)α′= xα�2α�′2α′= x √
x√

x+1

(
√
x√
x+1

)2
√

x√
x+1

(

1√
x+1

)2 1√
x+1= (px+ 1)2: (B:23 
)

�
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