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1 Introduction

According to the Bohr’s correspondance principle, the quantum evolution of an
observable is close to its classical evolution as the Planck constant # is small. In the
mathematical literature this result is known as Egorov Theorem [Ho|, [Rol]. There
is a lot of semiclassical methods, which attack classical limit in quantum mechanics.
Nice summary of these methods, with large overview of literature dealing with this
topic is [Ro2]. There is also different point of view, WKB approximation in Feynman
path integral [Sch].

The goal of this work is to prove that quantum evolution of an obbservable, in the
system with time dependent Hamiltonian, may be computed (up to an error of order
h2) with help of the classical flow, if the observable, Hamiltonian and the classical flow
are bounded in suitable sense. Physical interpratention of this fact is clear. When the
quantities of the dimension same as h, like E.t, p.q are much larger then numerical
value of & (i.e. that is possible limit # — 0), then quantum evolution of an observable
tends to the classical one. The theory of this type use so called Weyl-quantization, as
powerfull tool to construct quantum observables (i.e. symmetric or even essentially
self-adjoint operators) according to the principal of corespondance.

Starting point of this work is the preprint [BR|. This work deals only with
C case, but the statement of the main theorem is improved. The assumptions on
Hamiltonian are weaker (it is possible cubic increasment in infinity) and the error is
estimated to order A” instead of A in [BR].

The heart of this work is the time dependent case. It is schown (for Hamiltonian
of the Schrédinger type) that even in this more general case the consequences of the
semiclassical theorem are the same, if observable depends only on coordinate and
momentum.

I would like to thank very much to Prof. Ing. Pavel Stoviéek, DrSc, supervisor
of this work for his perfect leadership. Also i would like to thank very much to the
consultant of this work, Prof. Pierre Duclos, from Université de Toulon et du Var,
France for intoduction in this problematics. Finally i want to thank to Dr. Michel
Vittot and Prof. Pierre Duclos for their care during my stage in Marseille, where the
main part of this work came into begin.



2 Notation and conventions

Let us denote by X = R" the configuration space of a classical mechanical system
with n degrees of freedom. The corresponding phase space Z is identified with R*"
equipped with the symplectic form o defined by

o(z;2") = (Jz,2"). (1)

where (, ) is the Euclidean scalar product and J is the 2n x 2n matrix

0 1
=% o)
A generic point in Z is denoted z and its coordinates by (g, p) where ¢,p € R". We
will also use notation (z) = (1 + |z|?)'/2.
A classical Hamiltonian is a smooth real function H : Z — R. Our basic example
will be H(q,p) = % +V(q) (m > 0) where ||p||> =< p,p >. In what follows we put
emphasis on the case X = R".

The motion of the classical system is determined by the system of Hamilton’s equa-

tions dg  OH d OH
i~ o (¢,p), o 9 (¢, p). (2)

The equations (2) generate a flow ® on the phase space Z, defined by
®'(q(0),p(0)) = (q(t),p(t)); ®° = 1. &’ exists locally by the Cauchy-Lipchitz Theo-
rem for O.D.E. But we need more assumptions on H to define ®* globally on Z.

®' defines a symplectic diffeomorphism (canonical transformation) group of transfor-
mations on Z. Let us consider a classical observable A, i.e A a smooth real valued
function defined on phase space Z. The time evolution of A can be easily computed

L A@() = (B, A} @), == (0.p) (3)

where {H, A} is the Poisson bracket defined by
(H, A} = 0,H - 9,A — 8,H - 9,A.

Here we have used the notation 9, = a%' Now let us assume that H, A are quantizable.

That means that we can associate to them the quantum observables Hand A
i.e self-adjoint operators in L?(X). By solving the Schrodinger equation :
ihdy, = Hap,, we can define the one parameter group of unitary operators
U(t) = exp (—%ﬁ ) The quantum time evolution of A is then given by

which satisfies the Heisenberg-von Neumann equation
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dA(t) Qs -
——=—-|H,A
dt h[ Al
where [A, B] = AB — BA is the commutator of A, B.



3 Weyl quantization

Definition 3.1 A € O(m), m € R, if and only if Z A Cis C® in Z and for every
multi-index v € N*" there exists C > 0 such that

|0]A(z)] < C(z)™, Yz € Z.

Definition 3.2 Let A € O(m). We will define A as operator from S(X) to itself,
called h-Weyl quantization of A, by the following formula, with ¢ € S(X),

(/X 4 (x + y’p) eih1<w‘y’p>¢(y)dy> dp. (5)

dup(w) = @rm) [

X 2

Example: Let us focus for example to observable A := z.p. To compute A we will
use

?

h

1

pexp( (&~ y)p) = 20, xp(; (=~ u)p)

and after integration by parts we yeild

For A € §(Z) we will compute, (with help of integral kernel) inverse prescription of
Weyl symbol if operator is given as integral operator.

(Av)(w) = @am) " [[ A (Y p) e e p(y)aydp = [ Kalo,y)i)dy

Ka(z,y) = (2771)_”/ A (x ; y,p) e He—up) gy

After inverse Fourier transform.

v

A(z,€) = /R Ka (a: +5.T %) e 70 dy (6)

The class O(m) has nice properties. For example, if A € O(m) is real-valued function,
then A is symmetric operator in L*(X), with domain S(X). Further there exists a
product formula. For proof one can see [Rol], [Fo] or [Ho|.



Theorem 3.3 Let A € O(m), B € O(p), then there exists C € O(m + p), such that

And there exists following asympotic expansion of Weyl symbol of this operator

i
C(q,p)—exp<2 0(Dy, Dyp; Dy, D, )) A(q,p)B(d, Pl (a0)=(¢' )+

where o is the symplectic bilinear form (1) and D = i~'V. By expanding the ezpo-
nential term, we get

C(q,p)=zhj(; (Dg; Dy; Dy, D))’ Ag, p)B(d', ')

>0

(g,p)=(q':p')-

So that C(q,p) is a formal power serie in h with coefficients given by

1 ( 1)‘,6' B aa aqpf
Cj(g,p) = > Z| ol (D0, A).(D70, B)(q,p)- (7)
a+pl=j

We will show this for A, B € §(Z)

(A-B¥) @) = [ Kas(e.p)v(y)dy

where
1 T+ z zZ+y i o)Az
ICA_B(Q‘/‘”(J) = W /]Rgn A ( 2 ’p) B ( 2 ’n> e h( ’p>+( ya")dzdpdn
Let’s define R o
C=A-B

then Weyl symbol of C can be computed with help of formula (6).
v v i
Cw.€) = [ Kan (m + - 5) e HvEdy
1 rT+z-—2 Z4y—2
= - Al "3 g2 "2
@ e ( 2 ’p> ( 2 ’") §
wet (@3 -zp)He—atgm-u) dzdpdndv

We apply the change of variables

1 1 1 1
s = §(z+z)+1v, t:= 5(2}—!—2)—11) = z=s+t—x, v=2(s—t), dzdv=4"dsdt



to get

1 i
/ . A(s,p) B(t,n) e (st —@—t6) gsdpdtdn

Cla,6) = (rh)? Jr

Now using Taylor formula

s—1x)(t—x)P
As,p)BLn) = 3 0°A(w,p) 0°Bla,n) S =)

la+B|<N al Bl
_ a . B
+ W%: N/ (1-0)No%A(x +o(s — x),p) Bz + ot —z),7) (s a!a:) (t 5!$) o
we obtain
— 1 o 8 (S—,’I,‘)a (t—.’E)’B
e (wh)*" Ia+%:<1v/ % Alwp) % Blwm) o! I

L ((z—s,6—nm)—(z— t’g_p))dsdpdtdn+ RN_l(A,B;Z; h),

where the remainder is defined by:

C(z) — > WCj(z) =: Rn(4, B;z;h). (8)
0<j<N
z=(z.8) €2
Using
. AL ”i ,
(s—x)a(t—x)’geﬁ“m 5,6—m)—(z—t,§—p)) _ (2_7,> (_1)|/3| 3355 en (z=sg—m)—(z—t.E—p))

and integrating by parts we get

Clz,8) =
1

>

( ) la+B|<N
e (@=s&m—e—tE=) godndtdn + Ry_i(A, B; z; h).

(h ) jal+18] 1y 050 A, p) 0707 B(w,m)

2i R4" a! B!

Finally

A 3’380‘ A(z, €) 0208 B(x, 'S)
C,8 = Y |5 1)l :
(z,¢) atBI<N (2@) (=1) a! B!
+ RNfl(A,B; Z, h)



Remainder (8) can be also expressed as
Ry_1(A, B;z;h) ==

1 l_gNaxGS—x BB(r+ ot — o
(7h)?" |a+§|::N/0(1 YNOFA(x + o(s — x),p) 9Bz +o(t —z),n)

S=2)* (t—2)° sp se m ot
S a!) ( ﬁ!) o ¥ (e=s&=m~(e=tE=2)) g dsdpditdy

After the change of variables

o(s—z)=:5, o(t—z)=t, n-&=0, p—E=:p

and using the same trick with integrating by parts (and in what follows omitting
primes) we finally get

Ry_1(A, B; zh) =

AN (=% 590 o 58
(2_Z> /0 (mho)?n a-l-%—N alp! 0,0z Az +5,p+€) 0,0, B(z +1,1+&) X

2
X exp (% ((s,n) — (t,p))) dodsdpdtdn =

@)N A % [ epl= 5o, 0)0™ Dy, D) Al + 2)B(v + 2)dudvs.

Now we estimate this remainder and his derivatives.

Theorem 3.4 There exists K, > 0 and for every m € IN, m > 4n, for every s > 4n
there exists a constant ppms such that for every A, B € S(Z), for every N > 1, for
every multi-index vy, the following estimate holds, for every z € Z,

|8Z (C(Z) - Z h]CJ(z)> | < hN+1pn,m,sKn,Na|’Y| X

0<j<N

X sup [(1 + u? 4 2)E=m/2|@B R A (4 + 2) |0 B(v + z)|] (9)
(%)
where sup means that the supremum holds under the conditions
(*)
u,v € Z, |u| +v| <m+1|y], la|+ 8| =N +1 (u,v € N, o, 8 € N").

Proof :
We shall use the following lemma to estimate Ry (A, B;z,h).

Lemma 3.5 Let us consider F € S(Z x Z) and the integral

I(\) = )\2”/ exp[—iAo(u, v)|F (u,v)dudv.

ZXZ



Then for every real number s > 4n and every integer m > 4n there exists
k(n,s,m) > 0 depending only on n,s,m (but independent of F') such that
the following estimate holds

EN)] < w(n,s,m) sup (1 +u? +v2)™/2|980 F (u, v)].

u,vEZ,
[u|+lv|<m

Proof : Let us introduce a cut-off xo, C* on R, xo(z) = 1 for |z|] < 1/2 and
Xo(z) = 0 for |x| > 1. We split I()\) into three pieces

() = A0 /Z  exp[=ido(u,v)]xo(u” + v2)xo(A(u” + v)F(u, v)dud,

L(\) = A2 /

VA VA

L(\) = A2 / exp[—iAo(u, v)](1 — xo(u? + v?))F(u, v)dudv.

ZXZ

exp[—iAo(u,v)] (1 — xo(A(u? + 1)2))) xo(u? + v*)F(u, v)dudv,

For I(X), we easily have
‘IO(/\)| S W4pn SUP |F(U, U)|:

u2+v2<1

where wy,, is the volume of the unit ball in Z2. For I;(\) and I()\), we integrate by
parts with the differential operator

where J is the matrix associated to the symplectic form (o(u,v) =< Ju,v >). It
holds true that
L (exp[—ido(u,v)]) = Aexp[—ido(u,v)].

Performing 4n integrations by parts, we can see that it exists a constant ¢, such that

[L(A)| <e¢, sup |04Oy F(u,v)l|.
u24v2<1
Iul+|v|<an

Similarly, performing m integrations by parts,

1 u v
< . oo Lria 9 ) v v
L) < |/Mexp[ io(u, )] (1 xal(5 (0 +%)) P(5, =) dud
u| + v Lo, 2 u v
< m m YV _ _ e
— Cm/ZxZ( u2+v2) |u|<skl|lul|)§m|auav (1 XO()\(U tv ))F(\/xa\/x) ‘dUdU

Using the existence of integral

u| + |v m=s
/sz(‘ul+l)2|)m(1+u2+u2) = dudv



we get for a constant ¢(n, s, m),

(L] < e sup (1+u? +0°)C ™20 F(u,v)|.

w,WEZ
[ul+v|<m

[ |
Now we can complete the proof of the theorem by using Lemma 3.5, the Leibniz
formula and the following elementary estimate, using in Z the coordinates u = (z, £),
v=(y,m),

| (02, 0g; 0y, 0n)) Az, €) By, )| <

(2n)Y  sup |020f A(z,£)d502 By, n).
la|+|B|=N

Remark 3.6 We can easily extend the estimate (9) for observables A, B with poly-
nomial growth at infinity, by choosing m large enough to get a finite r.h.s. Let us
assume that A € O(pa), B € O(up), where pa, up € R. Then we can apply (9) to
A (u) = e~*" A(u) and B.(v) = e~V B(v) for e > 0 and pass to the limit € — 0 with
m—s 2 g+ pB.



4 Main theorem

Theorem 4.1 Let us consider a Hamiltonian H and an observable A satisfying

OVH(2) < Cyy for [y] >3
AR <Oy, for 4] >1 (10)
0972 < Ky), for P21, 7€ (0,4

We know that I:I, A are symmetric operators on the Schwartz space. If they are more-
over essentially self-adjoint operators in L?(X), with core S(X), then the quantum

evolution "
U(t) = exp(—H)

is well defined for all t € R. And the quantum evolution of observable A can be
approzimated by the operator with the Weyl symbol

Ao(t, z) = A(2'(2)) (11)
in the following sense:
||A(t) - 14/0(\t)||L2 S th2Kn,m,s(t)

Proof: By Taylor formula
HeOH4), A€0O(2)
For any ¢ € §(X) it holds true that
d — d
—Agp = (A 12
9 Ao = (S a0y (12)

Under assumptions propagator exists and conserves §(&X'), because Hamiltonian does.
On Schwartz space holds equation

U(-)AU() - Aylt) = [ t d%(U(—s)A ST-+U(s)) ds
_ / ( [F1, Ayt — 5)] — {H, A} 0 qw) Us)ds,  (13)

where (3), (4), (12), conservation of Poisson bracket and Hamiltonian along the clas-
sical flow were used. With help of (7) we compute that the Weyl symbol of expression

. A

= —|H,A
C h[ Y ]
1S

ZRZ(Ha Aa 2 h) )

C=0+{H A} +0+25
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where
R2(H5A; 2, h) = (14)

<%>3 /01 % /sz exp(—f—;a(u, )0 (Dy, Dy)A(u + 2) B(v + 2)dudvdr.

Aplying L? norm to (13) we obtain
. . to—~
1A4@) = Ao(®)llz2 < 2 [|B2(H, A; 2, )| 2.

But there is a Calderon- Vaillancourt Theorem with improvement by A. Boulkhemair
[Bo], which estimates the norm of Weyl-quantized operator

IBllz <7 sup (837 B(2)]. (15)

lal,[8|<[n/2]+1
z2€Z

So we need to estimate

sup |8?’ﬂR2(H,A,z,h)|
\al,lﬂ\zSGUZ%/?Hl

This is exactly what we have prepared in the Theorem 3.4. Using (10) we deduce
that for each s < m there exist K, ;(t), such that:

Kyms(t) ==

sup [(1 + u? + 0?2219 @A (4 4 2)||0PO T A(DT (u + z)|] < o0
(*)

where sup means that the supremum holds under the conditions

(x)
wv,z € Z,7 € (0,4, [l + |v| < m+[n/2] + 4, o + 18] = 3 (v € N*", a, 8 € N").
We have also used following estimate on derivatives of composition of functions

0%(fog) < Kn,\al SUPO |aﬂfHaﬂyg‘

Y
18:|v[<lel

Combining all these facts we may finish the proof. [}
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5 Time dependent case
We will consider the time dependent Hamiltonian of special type
1

on line. The trick is to extend the phase space about the time and energy (canonical
momentum of time), to define new parameter o which describes the trajectory and
to take Floquet Hamiltonian instead of the original one.

1
K(q1,92,p1,p2) := §p% + Vg1, q2) + po,

where

g1 = q 1is the original coordinate
p1 = p is the original momentum
go =t is time

py = E 1is energy.

New Hamilton equations of motion will be

dg 9K dp 0K

da_ﬁ—pl’ da__a—ql
de, _ 0K —dp, 0K

do ~ Op, do  Og

Hence
dq dp oV
-1 _ Y= 1
do P 4o 0g (16)
¢ _, d& _ oV
do 7 do Ot

We need initial conditions
qg(oc =0) =qq, p(0 =0) =pg, t(c =0) =ty, E(c =0) = Ey (17)

But because the right hand sides of Hamiltonian equations for ¢, p, ¢t does not depend
on energy F and so doesn‘t the initial conditions, we may conclude that the classical
flow ®° will be of this type

q Q(QOaPOathU)
o | P | 2| Plao:posto,0)

t o+t

E E(qo, po, o, Eo, o)

So we see that the trajectories of ¢, p, t are independent on energy E. This cause that
we can make weaker assumptions on potential V', then in case of R*.

12



Theorem 5.1 Consider the time dependent Hamiltonian of type

1
H= 5192 + V(g t)

on line. Denote the classical flow ®, given by Hamilton equations in extended space
(16). Suppose that

03400V (2,1)| < Cup, for |a], |8]>0
0JA(z)| < C,, for |y]>1
0707 (2)| < K,(0), for |y|>1, 7€]0,0]

If moreover H, A are essentially self-adjoint operators in L(X), with core S(X), then
the quantum evolution .

Ulo) = exp(—7H)
is well defined for all o € R. And the quantum evolution of observable A can be

approzimated by the operator with the Weyl symbol (11)
14(0) = Ao(@)lz2 < 01" Ko s(0)

Proof: The situation is almost the same as in the Theorem 4.1, except the expres-
sion (14), which may by substituted by the following better estimate

Ry (K, A;2,h) =
A\ (1= )Y 9%
<E> /0 %/ﬁs eXp(_y_;(€C+fd—ga—hb)) X

X2V (z + a,t + b)) A 0 &7 (x + e,t + f,p + g)dadbdeddded fdg.

End of the proof follows the proof of Theorem 4.1 . [}
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6 Examples

Example 1:
Firstly, we will deal with time independent harmonic oscilator. Hamiltonian is

1
H = §(p2 +¢%)

Either by direct computations of the remainder (7), or by estimate (9), one can see
that in this case semiclassical approximation of quantum evolution of an observable
(11) is exact solution (even any observalbe A € O(m) without restrictions (10) ). If
we observe expectation values (¢, 121¢> of such quantities as ¢, p, which are linear, on
wave packets

(x—a)?® i

\Ila,b, (Aa)2 (l‘) = (27T(A(I,)2)7i exp(—m + gbﬂi)
then thanks to relations
<\Ija,b, (Aa)?) (j \Ija,b, (Aa)2> =a
<\Ila,b, (Aa)zaﬁ \Ija,b, (Aa)2> =b

expactation values follow exactly the classical evolution of these quantities. On the
other hand if we focus on hamiltonian, which is of course conserving, then because of
dispersion of mimimalizing wave packets:

(A‘I’a,b,(Aa)2 @)2 - (Aa)2

h2
N2 _ 2
(A\I’a,b, (Aa)2 p) - 4(Aa)2 - (Ab)
we yield
] 1 2 2 A 2 hQ 1 2 2 A 2 A 2
<\I]a,b, (Aa)zaH \Ila,b, (Au)2> = 5(@ +b )+( CL) +4(Aa)2 = i(a +0b )+( a) +( b)

Additional terms are not quantum effects (although they contain terms propotional
to h?), but they are the consequences of error during measuring.

Example 2:
Our next Hamiltonian will be

1
H = §p2 —qcost

14



Hamilton equations in extended space (16) are

@ = d_p = cost
do P, do

dt 1 dE 0t
— = — =gsin
do " do 4

The solution with initial conditions (17) is desribed by relations:

q(c) = q+ (p—sint)o — cos(t + o) + cost
p(c) = p+sin(t+o)—sint
to) = o+t
1
E(c) = E+ (cost+q)(cost — cos(t+ o) + —(cos2(t + o) — cos 2t) +

4
+ (p—sint)(sin(t + o) — o cos(t + o) — sint)

We will not care about observables explicitly dependent on t, E. After Weyl quan-
tization procedure (5) in extended space, we discover that the result would be the
same (except the measuring of the time from point ¢, instead of 0), if we computeted
it directly as time independent Hamiltonian.

15
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