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Abstrakt: Ćılem tohoto výzkumného úkolu je posktnout náhled do problematiky
teoretických neurčitost́ı kinematiky jetové produkce. Jako zdroje této neučitosti
jsou brány komplexńı modely simulaćı protonových srážek. Speciálńı pozornost
je pak věnována neurčitosti při volbě vazbové konstanty silné interakce, αS Vzh-
ledem k tomu, že jej́ı hodnota neńı př́ımo měřitelná, je d̊uležité pochopit principy
použité při jej́ım určováńı. Z tohoto d̊uvodu je jedna kapitola věnována popisu
r̊uzných zp̊usob̊u nepř́ımého měřeńı silné vazbové konstanty a jejich výhodám
a zádrhel̊um. Stěžejńı část této práce se věnuje rozboru analýzy čtyř r̊uzných
sad dat źıskaných pomoćı r̊uzných Monte Carlo model̊u. Tyto modely byly: LO
QCD Pythia, LO QCD Herwig, LO Matchbox a NLO Matchbox. V rámci této
analýzy je porovnán vliv variaćı αS v rámci model̊u LO Pythia a LO Match-
box Herwig na tvar normalizovaých spekter př́ıčné hybnosti, pseudorapidity a
azimutálńı úhlové dekorelace, s vlivem změny modelu jako takového.
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Chapter 1

Standard model of particle
physics

As the main objective of this thesis is the study of theoretical uncertainties of the
theory of strong interactions on kinematic variables of particle jet production. It
is only natural to present a brief overview of the standard model(SM) of particle
physics, of which the strong interaction is an important part. Throughout this
thesis, the reader is expected to be familiar with such concepts as particle jet,
jet algorithms and basic kinematic variables used for describing them such as
transverse momentum or pseudorapidity. In this thesis, the standard natural
units notation is used: c = ~ = 1.

1.1 Elementary particles

Every elementary particle is a manifestation of its quantum field and can be
viewed as its material fluctuation. Every particle can exist only within the
boundaries of Heisenberg uncertainty principle. This means that even if the
energy available in system is not sufficient to reach the mass of the particle,
the particle can be said to exist withing a sufficiently small time window. Each
particle is characterized by its mass, lifetime and a set of various quantum num-
bers for example intrinsic angular momentum (spin), electric charge and colour
charge (charge of the strong interaction), parity, flavour and lepton number.
The common classification is into quarks, leptons and intermediate bosons. A
brief overview of their properties can be found in Fig. 1.1. It should be men-
tioned, that bosons are generally particles with integral spin and so the particles
in Fig. 1.1 are not the only bosons in existence. Quarks and leptons are included
in the category called fermions, those are particles with half-integral spin that
abide the Pauli exclusion principle.

Quarks: As can be seen in Fig. 1.1 there are three generations of quarks with
each generation more massive than the other. In each generation there are

11



12 CHAPTER 1. STANDARD MODEL OF PARTICLE PHYSICS

Fig. 1.1: A table of quarks, leptons and intermediate bosons. [23]

two quarks with different mass and charge. Each quark has its flavour,
three colours and the charge of either − 1

3 or + 2
3 of elementary charge (e).

This means that quarks are susceptible to all four interactions. Another
interesting property of quarks is that they can never be found isolated and
are ever in a bound into composite particles called hadrons. This property
is more thoroughly discussed in the following chapter, along with other
properties of quantum chromodynamics. Hadrons can be divided into
mesons (bound states of a quark and an anti-quark, another example of
bosons) and baryons (fermions that have three valence quarks).

Leptons: Those are the particles that do not participate in the strong interac-
tion. They have the electric charge of either −1 e for electron, muon and
tauon or 0 for their neutrinos.

Intermediate Bosons: The last category of particles shown in Fig. 1.1 is in-
termediate bosons. The gauge bosons, are the quanta of strong (8 glu-
ons), weak (W+,W− and Z0) and electromagnetic (photon) field. The
one scalar boson is the Higgs boson which is the boson that belongs to
higgs field - the field that causes through interaction with all the other
fields that their quanta gain their mass.
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1.2 Fundamental interactions

The four forces above are all except for the gravitational described in terms of
quantum field theory. And the theory that describes the behaviour of Electro-
magnetic, Weak and Strong interaction together is called the Standard Model
(SM) of particle physics. The gravitational interaction is the weakest interaction
and plays almost no role in particle physic (except for experiments like AeGiS
or GBar that explore the effects of gravity on antimatter). Gravity is described
using general relativity that is separate from SM and is omitted in this thesis.

1.2.1 Weak interaction

It is the weakest of the three interactions in SM with about 1.166 · 10−5 the
strength of the strong interaction at the mZ scale [19]. Its quantum field for-
mulation is called Quantum Flavour Dynamics (QFD), although this name is
rarely used. It can affect every known particle but it has a finite range of about
10−18 m because of the high mass of its gauge bosons. The high mass is a con-
sequence of spontaneous symmetry breaking caused by the Higgs mechanism.
It is interesting that existence of the boson Z was discovered and explained
first after unification of the electromagnetic and weak interaction into one Elec-
toweak (EW) theory and the subsequent discovery of neutral currents in data
measurement. Up until that point it was thought that there were only the
charged bosons W± that are responsible for the β-decay of nuclei.

1.2.2 Electromagnetic interaction

It has the middle strength in the SM with about 1
137.035 the strength of the

strong interaction [19]. Its quantum field formulation is called Quantum Elec-
trodynamics (QED). It can only influence particles that carry electric charge
and it has infinite range due to the zero mass of photon. It is the best known
interaction and is described by the Maxwell equations. It is the interaction that
governs our day-to-day life because it binds electrons and nuclei into atoms and
atoms into molecules and even light itself is an electromagnetic field.

1.2.3 Strong interaction

It is the strongest known interaction. Its quantum field formulation is called
Quantum Chromodynamics (QCD). It influences only particles that carry colour
charge(there are three colours and three anti-colours)but it has a finite range
of about 10−15 m which is roughly the diameter of a proton. This of course
does not mean that the interaction does not reach beyond this threshold and
the remnant force that remains is the nuclear force that binds nuclei together in
a loose analogy to the Van der Waals force, a remnant of EM interaction, that
can bind atoms into molecules. A more thorough description of QCD is in the
following chapter about the proton scattering and the properties of QCD
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1.2.4 Standard model

The Standard Model of particle physics is the theory that binds together the
three interactions above along with the Higgs mechanism into one compact the-
ory. The Lagrangian of this theory is rather extensive and so it is not mentioned
here because it plays only a background role in the context of this thesis as an un-
derlying principle. The main theoretical idea behind its construction was that it
should be invariant under the groups of symmetries SU(3)×SU(2)×SU(1) from
which properties and/or existence of elementary particles arise. It describes how
quarks and leptons come to be and how they acquire their mass through the
Higgs mechanism. Another part is describing the electroweak interaction and
the breaking of the SU(2) symmetry that causes gauge bosons of weak interac-
tion to gain mass. Yet another part describes the existence of colour and why
there are 8 gluons (this is caused by the fact that the Lagrangian is invariant
under the group of SU(3)). The last part of the Lagrangian deals with the vir-
tual particles. It is clear that the standard model is not perfect as evidenced by
observations of neutrino oscillations that hint at the non-zero mass of neutrinos
which is in contradiction with the SM condition that the neutrinos have similar
to the photon zero mass. However this does not mean that SM is completely
wrong because its predictions are in many experiments highly precise.



Chapter 2

Proton scattering and QCD

The aim of this project is to shed light on the influence of certain theoretical
uncertainties on the kinematics of jet production. The chosen property that is
studied is the strong coupling. Its influence is studied in proton-proton collisions
at LHC at the centre of mass energy of 13 TeV. It is useful to recapitulate the ba-
sic principles of scattering processes. The fundamental theory that describes the
dominant proton scatterings at the LHC is Quantum Chromodynamics (QCD).
However it is impossible at the moment to describe proton proton scattering
using only basic QCD principles, the crux being the composite structure of a
proton.

2.1 Proton structure

The first hints at proton being a composite particle came from electron-proton
scatterings at SLAC and DESY at beam energy between 1 and 20 GeV. Similar
structure in electron-proton has been observed in the secondary electron spectres
as in electron-nucleus scattering which was a clear sign of inner structure. Later
these components of proton have been identified as quarks. The cross section
of elastic scattering of electron on proton that takes into account spin as well
as magnetic moment of proton, in dependence on the square of four-momentum
transfer Q2 = −q2 = (k − k′)2, has been derived by Rosenbluth and can be
written as:

(
dσ

dΘ

)
Rsb

=
2α2E2

Q4

cos2(θ/2)

1 + 2E
mp

sin2(θ/2)

[
A(Q2) + B(Q2) tan2 θ

2

]
, (2.1)
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16 CHAPTER 2. PROTON SCATTERING AND QCD

where A(Q2) and B(Q2) are formfactors:

A(Q2) =
GE(Q2) +

(
Q2

4m2
p

)
GM (Q2)

1 + Q2

4m2
p

,

B(Q2) =
Q2GM (Q2)

2m2
p

The dependence of both formfactors is in good agreement with an experimen-
tally determined dipole formula:

G(Q2) =
1(

1 + Q2

m2

)2 (2.2)

The relation between both proton formfactors is quite simple: GpE =
Gp

m

µp
m

where µpm is the anomalous magnetic moment of proton.
As values of Q2 increase the overall importance of elastic scattering decreases

and inelastic scattering rises into prominence. Let us consider the process ep→
eX where X is a hadron system with the invariant mass W . The square of
invariant mass in laboratory frame is W 2 = (p + q)2 = 2mpν + m2

p + q2,
where ν is the transfered energy and p is the four momentum of proton in
laboratory frame with the component (mp, 0, 0, 0). Therefore

Q2 = 2mpν = m2
p −W 2. (2.3)

In case of inelastic scattering W 2 can differ from m2
p which means that Q2 and

ν are independent variables. The differential cross section of inelastic e − p
scattering in laboratory frame can be written in similar form as (2.1):

d2σ

dΩdE′
=

4πα2E′2

Q4

[
W2(Q2, ν) cos2 θ

2
+ 2W1(Q2, ν) sin2 θ

2

]
, (2.4)

where W1(Q2, ν) and W2(Q2, ν) are so called structure functions of proton which
replace the elastic fromfactors GE and GM . Inelastic processes are best de-

scribed by the momentum transfer Q2 and the Bjorken variable x = Q2

2pq . For

elastic scattering is x = 1 and for inelastic is always x < 1 because W 2 > m2
p.

For low x and high Q2 there is the region of the Deep Inelastic Scattering (DIS).
Meaning of DIS is that the inner structure of proton comes into play. In 1969,
Richard Feynman has proposed a hypothesis that DIS cross section of electron
on proton can be expressed as a composite spectrum of elastic scatterings of
electron on partons, that carry only a portion of the whole momentum of the
whole proton, this portion being expressed by the Bjorken x. [13] Assuming that
partons are spin 1/2 particles, we can express the cross section for scattering of
electron on i-th parton as:

d2σi

dΩdE′
=

4πα2E′2

Q4

[
e2
i cos2 θ

2
+ e2

i

Q2

2m2
i

sin2 θ

2

]
δ(ν − Q2

2mi
), (2.5)
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where ei is the charge of parton expressed in units of positron charge. As every
parton carries different part of the momentum x, it is necessary to multiply
the cross section (2.5) by a weighting function fi(x) that defines the probability
that parton i carries fraction of momentum x before adding it into the composite
DIS cross section. Approximating that the electron-parton scattering leaves the
state of other partons unchanged, the whole cross section of electron proton can
be expressed as following sum:

d2σ

dΩdE′
=
∑
i

∫ 1

0

d2σi

dΩdE′
fi(x)dx. (2.6)

A new form of expression of the structure functions W1 and W2 can be
obtained by comparing (2.4) and (2.6):

mpW1(ν,Q2) ≡ F1(x) =
∑
i

e2
i

2
fi(x) (2.7)

νW2(ν,Q2) ≡ F2(x) =
∑
i

e2
ixfi(x). (2.8)

It is rather obvious that the new structure functions F1 and F2 depend
exclusively on x, this property is known as Bjorken scaling. Their relationship
is summarised into the Callan-Gross relation:

2xF1(x) = F2(x) (2.9)

that holds only if the spin of parton is 1/2, which has been experimentally
confirmed in the SLAC laboratory. [14] This exclusive dependence on Bjorken
x holds for x & 0.05 as is demonstrated in Fig. 2.1. This is discussed below
after the introduction of running coupling.

This experimental proof has been one of the reasons that partons have been
identified as quarks. Those have been successfully used for explaining some
static hadron properties. Quantum numbers of a proton can be explained using
the assumption that the proton consists of two up(u) a one down(d) quarks.
Those are called valence quarks. The same numbers can be obtained if proton
contains any number of additional quark-antiquark pairs, because their additive
quantum numbers are equal to zero. Those are called the see quarks. Let fi(x)
denote the parton distribution function(PDF) of the parton i in a nucleon. It is
possible to express any PDF in the form of a distribution function for valence
and see quarks:

fi(x) = Vi(x) + Si(x). (2.10)

If the only flavours that are taken into account are up, down and strange,
the structure functions of proton and neutron can rewritten as:

F ep2 =
x

9
[4Vu(x) + Vd(x)] +

4

3
xS(x),

F en2 =
x

9
[Vu(x) + 4Vd(x)] +

4

3
xS(x),
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Fig. 2.1: The dependence of structure function F2(x,Q2) on the momentum
transfer Q2.

where Vi are the valence quark PDFs and S is the sea quarks PDF (assuming
that all see quarks have the same distribution). The Vs and those of antiquarks
have been omitted due to them being equal to zero as expected.

Considering scattering of a proton on a nucleus with equal number of protons
and neutrons, a average structure function of a nucleon N can be expressed as:

F eN2 =
1

2
(F ep2 + F en2 ),

F eN2 = x

[
5

18
[fu(x) + fu(x) + fd(x) + fd(x)] +

1

9
[fs(x) + fs(x)]

]
It would be reasonable to expect, that the summed momentum of partons

should be equal to the momentum of the proton, i.e.:∫ 1

0

x[fu(x) + fu(x) + fd(x) + fd(x) + fs(x) + fs(x)]dx = 1
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Therefore it could be assumed that, approximating the influence of strange
quarks as negligible:

18

5

∫ 1

0

F eN2 dx ' 1.

However the experimental value derived from cross sections of charged lep-
tons on nucleus of carbon is around 0.5, which means that quarks and antiquarks
share only about half of the whole momentum of a nucleon. The rest of the mo-
mentum is carried away by other components that are inside a nucleon but are
invisible to the electromagnetic and weak force. These components are called
gluons and have no electric or weak charge, but they do have colour charge.
The direct consequence of gluons carrying colour charge is that they are capa-
ble of interacting with themselves, this property and its other consequences are
discussed in the followign section. The distribution of momentum carried by
gluons is characterised by the gluon distribution function, usually denoted g(x).

2.2 Quantum Chromodynamics

Now it is time to introduce QCD in greater detail. QCD is a non-abelian
gauge theory which is based on the SU(3) colour gauge group due to the fact
that QCD has to comply to several experimental and theoretical conditions
such as the existence of qq(mesons),qqq(baryons) and potential tetra- or penta-
quark bound states, asymptotic freedom of quarks and long range cut-off of the
strong interaction. From the existence of bound states such as ∆++ which has
three identical quarks, the need for three different colour states(red, green and
blue) can be derived. To this day, the existence of tetra- and penta-quarks is
the subject of intense studies for example at the LHCb experiment such as [3]
for tetra-quarks and [4] for penta-quarks. Expecting the particle/antiparticle
symmetry one arrives to:

3 ⊗ 3 = 1⊕ 8 (2.11)

which gives the colour octet of gauge bosons = gluons that supply the colour
interaction and one colour singlet that does not. The colour octet states of
gluons are:

1√
2
(rb + br) −i√

2
(rb − br)

1√
2
(rg + gr) −i√

2
(rg − gr)

1√
2
(bg + gb) −i√

2
(bg − gb)

1√
2
(rr − bb) −i√

6
(rr + bb − 2 gg)

and the colour singlet state is:

1√
3

(rr + bb + gg).
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The lagrangian of quantum chromodynamics has a standard form [20]:

LQCD = ψ(iγµDµ − m)ψ − 1

2
Tr(GµνG

µν), (2.12)

where ψ is the spinor colour triplet of quarks

ψ =

qrqb
qg

 , (2.13)

and Dµ is the covariant derivative :

Dµ = ∂µ + igBµ (2.14)

where Bµ is a 3x3 matrix in colour space composed from colour gauge fields
blµ and the generators of the SU(3) group λl/2:

Bµ =
1

2
λ · bµ =

1

2
λlblµ. (2.15)

The Gµν in (2.12) is the gluon field-strength tensor:

Gµν = (ig)−1 [Dν ,Dµ] = ∂νBµ − ∂µBν + ig[Bν , Bµ].

A more in-depth discussion of properties of the λ matrices, along with more
rigorous derivation of QCD as group theory can be found for example in [20].
Following paragraphs are focused more on a few crucial aspects and properties
of QCD and its’ perturbative variant.

2.2.1 Running coupling

One of the key things about QCD is the value of its coupling constant which can
serve as an expression of the relative strength of QCD in comparison with the
other interactions. The definition of coupling constant of the strong interaction
is standard:

αS =
g2

4π
, (2.16)

where g is the dimensionless coupling constant from the definiton of covariant
derivation (2.14) and gluon strength tensor Gµν .

The value of αS is important mainly in perturbative QCD (pQCD) where
observables are usually expressed in terms of the renormalized coupling. Con-
trary to what its name suggests, αS is not constant, but has dependency on the
(non-physical) renormalization scale µ2

R. In order to compare the strength of
QCD, the value of renormalization scale must be close to the value of momen-
tum transfer: αS(µ2

R ' Q2). The behaviour of the value of αS in relation to
Q2 is called the running coupling and is governed by the renormalization group
equation [19]:
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µ2
R

dαS
dµ2

R

= β(αS) = −(c0α
2
S + c1α

3
S + . . .), (2.17)

c0 =
33− 2nf

12π
(2.18)

c1 =
153− 12nf

24π2
(2.19)

where the ck are the (k+1)-loop β-function coefficients, nf is the number of
quark flavours considered light (mq � µR). The precise value of loop coefficients
ck depends on the renormalization scheme with the value given here coming from
the most widely used modified minimal subtraction scheme (MS). If all, but c0
loop coefficients are neglected and the number of flavours is taken asi constant,
then the exact analytic solution for equation (2.17) is

αS(µ2
R) =

1

c0 ln
(
µ2
R

Λ2

) . (2.20)

The Λ is a constant of integration which denotes the scale where the pertur-
bative coupling would diverge. Its value indicates the energy range where non-
perturbative effects dominate. Because the exact value of Λ that defines the
value of αS is scheme and nf dependent, the standard practice for quoting the
value of αS is to state the value at a given scale, typically mass of Z boson MZ

instead of at the value of Λ.
An example of the running coupling can be seen in the Fig. 2.2 along

with the comparison of shift of the curve that is caused by using a different
renormalization scheme.

More detailed discussion of the effects of different renormalization schemes
and nf values on the running coupling can be found in [12].

As was demonstrated in Fig. 2.1, the constant behaviour of structure func-
tion breaks down for small values of Bjorken x. This behaviour can be ex-
plained using renormalization procedures which yield the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi(DGLAP) parton evolution equations (2.21) and (2.22)
for redefining the quark an gluon PDFs into their renormalized forms where the
factorization scale µF is introduced to ensure the logarithmic scaling.

∂fi(x, µ
2
F )

∂ logµ2
F

=
αS
2π

∫ 1

x

dz

z

[
Pqiqj (z, αS)fj(

x

z
, µ2
F ) + Pqig(z, αS)g(

x

z
, µ2
F )
]
,

(2.21)
∂g(x, µ2

F )

∂ logµ2
F

=
αS
2π

∫ 1

x

dz

z

[
Pgqj (z, αS)qj(

x

z
, µ2
F ) + Pgg(z, αS)g(

x

z
, µ2
F )
]
, (2.22)

The Pab(z, αS) are splitting functions, where first index denotes the final state
particle that carries the momentum fraction z and the second index is the initial
particle that undergoes splitting. Usually the factorization scale µF is taken to
be identical to the renormalisation scale µR
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Fig. 2.2: The demonstration of the effect of different renormalization schemes
on the running coupling of QCD. [12]

2.2.2 Colour confinement and asymptotic freedom

One of the interesting properties of quantum chromodynamics is the phenomenon
of asymptotic freedom. That is if a colour charge is inspected under small space
scales, in other words in processes with high momentum transfer, the value of
strong coupling is falling precipitously as can be seen in Fig. (2.2). As a result
of this low value of αS , the relative strength of force that is affecting a colour
charge is falling and the charge can behave almost freely. Other interpretation
can be that the effective colour charge of the object is distorted by creation of
pairs of colourful objects such as quark and gluon loops as is demonstrated in
Fig.2.3.

On the other hand, αS rises as a logarithm at larger distances/smaller mo-
mentum transfers. However due to the fact, that proton has a finite size this
growth cannot be indefinite. This means that the colour charge has to be con-
fined. That in turn implies existence of a certain cutoff for the value of αS .
The specific value of this cutoff is the subject of phenomenological studies and
is omitted.
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Fig. 2.3: Demonstration of colour charge antiscreening via the creation of
quark and gluon loops. [12]





Chapter 3

Review of methods for
measurement of αS

The aim of this chapter is to put forth a brief overview of the methods of mea-
surement of αS that are, or have been, used. The value of strong coupling can
be evaluated using a number of different measurement techniques that involve
hadronic processes. Some constraints can be obtained from lattice gauge the-
ory calculation, however those exceed the frame of this thesis. The comparison
between the various methods of measurement can be drawn by evolving them
to a common scale, typically the mass of the Z boson MZ . The evolution of the
world average value of the strong coupling constant as compiled by the Particle
Data Group in 2014 can be found in Fig. 3.1.

Fig. 3.1: The evolution of the value of strong coupling constant since 1990. [18]

There is a clear shift towards high precision measurements in the last years.

25
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The present range of momentum transfers that has been used for measurement
is (0.05 < Q2 < 103)GeV2, although in order to safely evolve the data with
well controlled perturbative equations, the Q2 should be at least above one
GeV2. A compilation of results from a few different methods of measurement
can be found in Fig. 3.2
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Fig. 3.2: An overview of the values of αS as compiled by the Particle Data
Group in 2016. [19]

Due to the overall agreement between the methods of determination, the
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conclusion can be drawn that the pQCD is rather consistent throughout the
Q2 range. Nevertheless there are still inconsistencies between various measure-
ments, those are however attributed more to the underestimation of uncertain-
ties, rather than failure of QCD or effects from physics beyond the Standard
Model. The descriptions of a few measuring methods are the content of follow-
ing sections. A more detailed discussion and description of measuring methods
and their pros and cons can be found for example in [12,21]

3.1 Deep Inelastic Scattering

The concept of DIS has been introduced in previous chapter. The main sensi-
tivity of the inclusive DIS data stems from violation of Bjorken scaling induced
at LO by gluon bremsstrahlung from the struck quark as well as photon-gluon
fusion and pair creation processes that are underlying the pQCD. DIS data pro-
vide the most robust way to obtain αS , the argument being that the observables
(the nucleon structure function F2(x,Q2) and the gluon distribution g1(x,Q2))
are fully inclusive and therefore have no uncertainties from final-state hadronic
corrections.

The precision of αS from DIS is in order of percents due to the high precision
of the measurements of the structure function F2(x,Q2) over a wide kinematic
range. The biggest uncertainty in this case comes from the uncertainties of the
gluon density distribution where theoretical understanding of the underlying
evolution is well developed, but the precision of data is a bit lacking.

Another possible observable for determination of αS come from jet produc-
tion in DIS. For example the production rate based on the subprocess γ∗q → qg
is directly proportional to αS . The processes underlying the production of gluon
jet are the same ones as with the Q2 dependence of DIS structure functions.
The correct kinematic domain is high Q2 and large mean transverse energy of
the two leading jets. The value of αS can be then extracted from the resulting
scaling violations. The precision is then limited by the correlation between αS
and the gluon distribution. The advantage of this approach is the ability to
directly measure the Q2 dependence of the strong coupling.

3.2 Collision of e+e−

Observables from the e+e− provide more inclusive processes used for extraction
of αS . In leading order approximation, the electron annihilates with positron
radiating a virtual photon or a Z boson which in turn decays into quark and
antiquark pair.

In the vicinity o the Z-boson pole the thinkable observables are:

• decay width ΓZ

• ratio RZ = ΓZ(hadrons)
ΓZ(leptons)

• hadronic and leptonic cross sections.



28 CHAPTER 3. REVIEW OF METHODS FOR MEASUREMENT OF αS

The leptonic cross section incorporates the ΓZ and therefore is sensitive to
αS . In the domain away from the pole the production of virtual photons is
competing with the Z production. The ratio of hadron production to lepton
production can be measured and in each case the sensitivity to αS comes from
the decay width ΓZ and its predominant hadronic decays. The two cases have
another advantage in that their experimental setups are different and easily
distinguishable which yields independent and uncorrelated experimental sys-
tematic uncertainties. The main influence of αS on these measurements stems
at LO from bremsstrahlung on the qq lines into which the Z boson or photon
have decayed. Similarly to DIS, the corrections from vertex and self-energy en-
ter at NLO.

One of the important final states in the lepton channel of Z decay is the
ττ one. It is especially useful for the extraction of αS at low momentum scale
Mτ = 3.157 GeV [9]. The method of extraction is again based on the ratio
of hadronic to leptonic decay, this time for the τ meson. The downside of this
method is that the higher pQCD corrections as well as nonperturbative effects
step into fray at these low Q2 scales.

Another measurement of αS comes from the analysis of Q2 dependence of the
average gluon and quark jet multiplicities using an improved formalism shown
in [8]

3.3 Proton-proton collisions

One of the methods of extraction of αS from proton collisions is through fitting
the measured values of pT spectra and other observables using different PDF
sets, all with variations in αS as well, and then using statistical tools to deter-
mine the average value and its precision. These studies typically demand the use
of NLO QCD predictions in order to achieve competitive precision. An example
of such an analysis has been done by the ATLAS collaboration in 2012 [17].
There are four different PDF sets used for simulation of inclusive jet cross sec-
tions in several pT and rapidity bins. Within every PDF set, the value of αS
is varied with the step of dαS = 0.0001 from the appropriate extreme values,
provided by the respective author of each PDFset. The simulations are then
analysed using two different jet radii. Then the αS is extracted using statistical
methods such as simple and geometric average or χ2/DOF minimalization. An
example of αS distribution extracted from simulations can be found in Fig. 3.3

The correlations between (pt, y) bins are then discussed as well in order to
better understand the uncertainty of the resulting αS value.
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Fig. 3.3: An example of αS distribution obtained from pseudo-experiments,
for Anti-kT jets with radius parameter R = 0.6 in the central rapidity region
(0 ≤ |y| ≤ 0.3). [17]





Chapter 4

Analysis of theoretical
uncertainties

This chapter is dedicated to the discussion of the influence the value of αS has
on the shape of a few selected variables in proton-proton collisions and if these
effects have bigger influence than generator effects.

4.1 Motivation

One of the goals of this chapter and the thesis as a whole is to gain insight into
the consequences of choosing a different values of the strong coupling constant
during simulation of proton proton collisions. The exact value of the coupling
can result in rather severe fluctuations in values of cross sections for processes
such as the Higgs boson or top-quark production. The reduction of these cross
sections is about 8−9% going down from αS = 0.118 to αS = 0.113 according
to [21]. This uncertainty is bigger than that from higher order corrections
(about 4− 6% for Higgs [5]) or experimental uncertainties (about 3− 4% for tt
production [2]). In order to justifiably neglect the αS uncertainties, the value
has to be known with precision higher than 1%. Because even at 1% this leads to
uncertainties in cross sections that are comparable to any other single theoretical
uncertainty [21].

Another goal is to asses the influence that the value of αS has on the shape
of the spectrum of the normalised dijet azimuthal angular separation:

1

σ

dσ

d∆φ
. (4.1)

This variable has been chosen in order to minimalize the influence of jet energy
uncertainties as much as possible. That is beccause it is primarily space-related
variable and the momentum of particles comes into play only indirectly during
the clustering of particles using jet algorithm. The azimuthal angular separation
has been also chosen because it has been measured several times by the CMS

31
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collaboration at the LHC [11, 16] and thus can have a grounded comparison to
data in future studies. However at this stage it is more important to analyse
the influence of different generator types on the shape of these spectra.

4.2 Simulated data

The data used throughout this chapter are simulations of proton-proton colli-
sions and have been generated using the Monte-Carlo generators Pythia 8.2.3.5
and Herwig 7.1.2. There has been generated six data sets for different values of
αS surrounding the central value that has been chosen as αS(MZ) = 0.118,
for both LO QCD Pythia and LO Matchbox Herwig models. The central value
has been chosen as an approximation of the world average taken from [19] The
values are:

αS ∈ (0.116, 0.117, 0.1175, 0.1185, 0.119, 0.120),

which is equivalent to variation of the αS up to 1.7% from its default. Energy
of collisions has in all cases been set to 13 TeV. In both cases, the data are
processed using the Anti-kT algorithm from FastJets library [10] in order to
reduce the memory needed to store all particles. The output data have then the
form of TTree structure where the branches contain the information about the
event. Four branches of standard vectors of float type varibales that contain the
pT , η, φ and E of jets in current event. And two branches of simple float type
variables containing the weight and cross section of current event.

The specifics of both generators are discussed in the following subsections.

4.2.1 Pythia

The main advantage of Pythia is in its simple applicability and malleability
due to its structure as C++ library. The hadronization model implemented
in Pythia is the Lund String Model, which is a phenomenological model based
on the idea of stretching g-strings between colour charges and then combining
them into colourless objects. The showering is separated into time-like and
space-like showering and both are handled by a pT ordered algorithm. More
rigorous information on the hadronization and showering process can be found
in the manual [22].

The data have been generated in Leading Order (LO) of pQCD, with the
PDF NNPDF23-LO-as-0119-qed taken from the LHAPDF6 library along with
the standard ATLAS tune A14 [1]. All data have been generated in 17 p̂T bins
with 106 events per bin in order to achieve sufficient amount of data through-
out the whole kinematic range. The Pythia data set is used as a baseline to
which the data sets generated using Herwig are compared. The integrated
cross section of data generated by Pythia is σPyt = 0.115 µb for jets with
pT ∈ (100, 8000) GeV and |η| < 4.8

The downside of Pythia is the need to set the value of αS for each pro-
cess involved in generation of the data individually. This means that if one
would wish so, the value could be different for the matrix element, Time-like
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showering, Space-like showering and Multiparton interaction. Of course, such
flexibility could be seen as an advantage if the aim were to study the influence
of αS on the individual processes, that is however not the case in this analysis.
The flexibility has caused (in early stages of this analysis) a certain discord be-
tween the values of data generated using the value of αS said to be default in
the documentation and the data generated without the modification of values
of αS . The exact cause of this issue has not been identified, however one of the
working theories were the use of an archaic PDF CTEQ and the lack of proper
tuning, which have been amended in the current version of analysis.

4.2.2 Herwig

An advantage of Herwig is that there is only one central value of αS that needs
to be set. The hadronization model implemented in Herwig is the Cluster model,
which is not as physically rigorous as the Lund String Model in Pythia. The
cluster model simply combines the present colour charges into colourless objects
and then treats these as decaying massive particles. The default showering al-
gorithm used by Herwig is angular ordered. More information on Herwig can
be found in the release note [6].

Another advantage is the ability to generate NLO precision data, through the
Matchbox procedure, which allows to match an external matrix element(either
LO or NLO) acquired from MadGraph-OpenLoops package with showering pro-
vided by Herwig. The main role of the matchbox procedure comes into play
especially in NLO calculations. If the wish is to study the influence of αS on
the pT spectra of jet production, it essentially comes down to generating pro-
cesses of QCD 2 to 3 type, because the standard back to back jets fro QCD 2
to 2 are not really useful in this case. The 2 to 3 processes are by definition
NLO. The matchbox is however very time-consuming. For this reason there is
only one set of data, with 1.5 · 106 events, generated in NLO Matchbox, with
the value of αS left at default αS(MZ) = 0.118 and the PDF MMHT2014.
This NLO Matchbox dataset is included in order to have a approximation of
the NLO behaviour. LO Matchbox generation has been done using the PDF
MMHT2014 with default tune in six pT,jet bins with 106 events per bin and one
inclusive sample with 107 events.

It is important to remark that there is a slight difference in the generation
proceedings between Herwig Matchbox and Pythia. It concerns the generation
in p̂T (pT,jet) bins. Where Pythia makes the cut on the pT on the matrix element
level, Herwig cuts are applied at the jet level, this means that there is ambiguity
in the origin of the jets due to the matrix element having possible additional
external lines(mainly in NLO). Because the pT,jet bins are not completely ex-
clusive (the cut being applied only to the jet with the highest pT ) there is a need
for a merging procedure that would produce a correct inclusive spectrum after
the combination of data from all samples. Our working approach is to exclude
all jets that does not fall into the appropriate bin. This produces a reasonably
smooth pT spectra, but at the cost of relatively high jet-rejection rates (circa
30%). Therefore it would be best to implement an additional merging algorithm
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that would be more sophisticated and would have better rejection rate. For this
reason, there is another data set generated by herwig with the pdf MMHT2014
in the leading order but with the matrix element QCD2to2 that is provided by
Herwig by default with the integrated cross section of σQCD2to2 = 0.198 µb.
Here the rejection rate is much better due to the cuts taking place again at
matrix element level, same as with Pythia.

The issue with Matchbox is that all generations are rather time consuming.
Since version 7.1.0, Herwig has the option of using a reweighting procedure,
which would greatly reduce the needed number of generated events, eliminate
the need for generation in p̂T bins and therefore shorten generation time [7].
The reweighting works with the premise of generating a flat spectrum of events
and then shifting the weight of events according to their pT and energy scale in
order to achieve physical correctness. There has been an attempt to test this
procedure in this analysis for the matchbox data, this has however proven to be
difficult and has lead to issues such as negative cross sections and weights. For
these reasons the reweighting has been left out of this analysis. Nevertheless the
hope remains that should it be fixed in following versions of Herwig, the options
for feasible NLO generations would open and the speed of LO generations would
greatly increase.

4.3 Analysis of results

Now follows the presentation and discussion of the findings in this analysis.
Throughout this section, the blue lines are representing the data sets generated
by Herwig Matchbox LO, green lines for Herwig Matchbox NLO, red lines for
default Herwig QCD 2 to 2 and black lines for Pythia LO, all of which are
generated with the default values of αS(MZ) = 0.118. The rest of the colours
represents the variations in αS as shown in Tab. 4.1.

αS(MZ) colour
0.116 crimson
0.117 orange
0.1175 yellow
0.1185 spring green
0.119 cyan
0.120 violet

Tab. 4.1: Colour coding of different αS values.
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4.3.1 Control variables

The control variables normalised transverse momentum pT and normalised pseu-
dorapidity η are to be found in Fig.4.1(a,b) and 4.3 respectively. The effects of
generators are demonstrated in those figures without the additional αS varia-
tions in order to keep the figures easy to take in. The effects of αS variations
on the shape of normalised pT spectrum for Matchbox LO and Pythia Models
can be found in Fig.4.2.

Over the course of this analysis, the influence of the value of αS has proven
to be less significant than that of the generator effects. This is demonstrated in
Fig. 4.1(b,c,d) for the pT spectra.

It is clear that the shape of the spectra is different for each generator in
4.1. The shape of pT varies from Pythia LO up to 30% for the default Herwig
QCD2to2 model, up to 40% for the Matchbox LO model and up to 70% for the
Matchbox NLO model. However upon closer examination it has been discovered
that the most violent shape variations occur at the border of each p̂T used during
the generation of respective data sets for each model. The best example is for
the default QCD 2 to 2. What is interesting is that the variation in shape
seems to be of opposite sign for the default QCD2to2 model and the Matchbox
models. These deviations suggest an error in merging of the p̂T samples that will
have to be remedied before further analysis, for example by implementing the
reweighting procedure mentioned in previous section, which would effectively
eliminate the need for merging altogether. On top of this merging error, the
NLO have large statistical errors in some regions. That shall be resolved by
simply generating more data.

The consistency between generators is better in space - or so suggests the
Fig.4.3. It seems that the Matchbox LO model produces more particles with
higher pseudorapidities than Pythia. Nevertheless in the pseudorapidity region
of the ATLAS inner detector |η| < 2.5, the shapes seem to be consistent within
statistical fluctuations. This is true for the default QCD2to2 as well, although
generally the situation for production rates for this model is reversed, and one
can see a hint of a peak at zero and steeper drop outside the inner detector
region. The worst consistency with Pythia has the Matchbox NLO that tends
to produce more higher pseudorapidities. On the other hand these higher η
regions have large statistical fluctuations and even the rest of the spectrum has
bigger statistical uncertainties than the other models. This could play a role as
well and with more data the shape could grow closer to the other generators.

The effects of different generators and merging of data samples throughout
the pT spectrum are roughly between 10% to 20%. The effect of αS variations is
especially for pythia in the range of units of per cent. The Matchbox model is not
as consistent for the αS variations, mainly in the region pT ∈ (200, 1000) GeV,
but that is again probably caused by the merging of data samples than the actual
effect of αS variation, the reason for this suspicion is that no such fluctuations
are present for Phythia data set that have been generated in much finer samples
where the exponential drop within the sample would not be as severe.
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(a) Normalised spectrum
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(b) Generator effects

Fig. 4.1: The normalised spectrum of transverse momentum for all four models
and the ratio plots demonstrating the effect of αS variation on the shape of the
spectrum within Herwig Matchbox LO and Pythia LO models for jets with
|y| < 4.8 and pT > 100 GeV. Blue represents Herwig Matchbox in Leading
Order. Red represents Herwig QCD2to2 in Leading order and green represents
Herwig Matchbox NLO. Black represents Pythia LO

4.3.2 Spectrum of azimuthal decorrelation

The better consistency between generators in space-like variables such as pseu-
dorapidity as suggested by Fig.4.3 has lead to the decision to investigate the
aforementioned normalized azimuthal decorrelation 1

σ
dσ
d∆φ .
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(a) Variation of αS for Pythia
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(b) Variation of αS for Herwig

Fig. 4.2: The ratio plots demonstrating the effect of αS variation on the shape
of the spectrum within Herwig Matchbox LO and Pythia LO models for jets
with |y| < 4.8 and pT > 100 GeV.

This variable expresses the extent to which the leading dijet (the two jets
with the highest pT ) is so called back to back. If there are only two jets in event,
they should be fully back to back from the conservation of momentum and so
their azimuthal decorrelation should be ∆Φ = π. If there is however another
jet (comming from the same vertex) to be found then the ∆φ could no longer
be π unless the third jet were infinitely soft, which would then of course have
no physical meaning. A sketch of the two situations just described is shown in
Fig.4.4.
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Fig. 4.3: The spectrum of normalized pseudorapidity for different generator
types and the ratio of their value vs. the value of Pythia LO. Spectra for jets
with pT > 100 GeV.

The emission of additional jet causes then the flattening of ∆φ spectrum.
If the Fig.4.5(a) is inspected then it is obvious that the naive image of one
single peak at π is far from reality. That is because of the existence of jets
comming from showering. It is however clearly visible that these effects decrease
exponentially. Fig.4.5 do not show the entire range from zero, but only the
region of ∆φ ∈ (π2 , π). This is so because the effects of additional parton jet
are the most pronounced in the region around 2

3π and therefore again the need
arises to have the most precise and consistent description in this region. As can
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Fig. 4.4: The demonstration of the meaning of azimuthal decorrelation. [15]

be seen in 4.5(c) and (d), the influence of variation of αS in generators is much
lower than that of the different generators them selves. This is partly due to the
merging procedures that has taken many jets out of the game and in polishing
the pT spectrum jeopardised the ∆φ one. This could be either remedied by
better merging procedure or higher statistics.

Fig.4.7 demonstrates the flattening of the peak at ∆φ = π, when the condi-
tion on having at least three jets per event is added. There is a clear plateau
forming from ∆φ & 2.1 in the Fig.4.7(a), that reflects the idea of decreas-
ing azimuthal decorrelation through emission of additional jets. This plateau is
there, due to the fact that all three jets never have the exactly same momentum
and therefore their orientation in space is always at least a bit twisted from the
exact equidistant orientation. It can be expected that this shift in ∆φ would be
more pronounced in the NLO, because in LO the only production mechanism
for additional jets is from shower which is not as exclusively sensitive to αS as
desired.
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(a) Normalised spectrum
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Fig. 4.5: The spectrum of normalized azimuthal decorrelation of the two lead-
ing jets in event for different generator types and the ratio of their value vs. the
value of Pythia LO. Spectra for jets with |y| < 4.8 and pT > 100 GeV.

4.4 Future development

The future of this work is to try and eliminate the discrepancies between the
generators by correcting the merging of data samples from different p̂T bins.
This will probably be best achieved by requesting official data set from ATLAS
and a reference MC sample with correct official tune, where such effects as
showering algorithm and hadronization scheme could be taken to be negligible.
This could then be used as a new baseline to which the models used so far
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(a) Herwig αS variations
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(b) Pythia αS variations

Fig. 4.6: The effects of αS variation on the shape of ∆φ spectrum within
Herwig Matchbox LO model(a) and Pythia LO(b).

could be tuned. The tuned monte carlo models can be then theoretically used
for generation of original data sets with different values of αS which could then
in turn yield information about the influence of these variations. In order to
speed up the generation of the original data sets, more thorough research of
the reweighting procedure mentioned above is one possible approach that could
be very useful. Another future goal is to take into account the uncertainties
stemming from PDF variations and try and minimise these.
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(a) At least three jets per event
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(b) At least two jets per event

Fig. 4.7: The comparison of spectra of normalized azimuthal decorrelation of
the two leading jets in event for different generator types for event with at least
three jets per event(a) and at least two jets per event(b). Spectra for jets with
|y| < 4.8 and pT > 100 GeV.



Chapter 5

Conclusion

The main theme of this thesis is the investigation of the possibility of measuring
the value of strong coupling αS from the jet kinematics at the ATLAS detector.
Therefore we focus on four models simulating proton collisions and quantify the
uncertainties from their predictions.

In order to better understand the physics motivation for this research, the
thesis provides a brief overview of the standard model of particle physics in the
first chapter, with the focus on the theory of quantum chromodynamics and
the structure of proton in the second chapter. The third chapter reviews several
possible methods of measuring the value of alpha S, such as the fitting of nucleon
structure function and gluon distributions from electron-positron collisions, the
examination of decay ratios of Z boson and τ leptons and the fitting of PDFs
from proton-proton collisions.

This is followed by a chapter depicting the endeavour to test the influence of
αS on the shape of some kinematic variables against the influence of generator
effects. The latter has proven to be the stronger so far, especially in case of pT
where the differences between the models are at their strongest. The generators
in question were Pythia 8.2.3.5 with the PDF NNPDF23 tuned according to
ATLAS A14 tune and three models implemented in Herwig 7 generator with
the PDF MMHT2014. One with default LO matrix element QCD2to2 that is
the part of Herwig 7 default equipment. And the other two models has been
the Matchbox procedure in combination with MadGraph:OpenLoops package
for matrix elements. Matchbox provides the matching of matrix element with
showering procedure from Herwig in order to correctly merge the jet spectra
from parton and shower. The Matchbox has been used in for LO and NLO ma-
trix elements and showers. The most probable cause of discrepancies between
the models have been identified as a possible error in merging different data
samples during the generation of respective data sets. The evidence for this
assumption is that the number and placement of the highest deviations agrees
with that of the pT ranges used during generation (see Appendix B). This must
be remedied before continuing the endeavour to asses the theoretical uncertain-
ties stemming from αS variation within each model.
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Future goals are then:

• Fixing the merging of data samples and correctly implementing the reweight-
ing procedure for Matchbox models.

• Finding the correct tuning of all generators in order to minimise or ideally
eliminate their influence.

• Assessing the uncertainty of ∆φ spectra stemming from PDFs and take it
into account during the analysis of the influence of αS on the shape.

• Finding a reasonably fast way to generate NLO data for more precise
measurements of αS .

• Determining if the shape of ∆φ spectrum in NLO can be used to measure
the value of αS .



Appendix A

Steering parameters of
Pythia generator

PT samples for Pythia: [50 200 300 400 500 642 786 894 952 1076 1162 1310 1530 1992 2500 3137 3937 4941]

Main:numberOfEvents = 1000000

PDF:pSet = LHAPDF6:NNPDF23_lo_as_0119_qed.LHgrid

Tune:pp=21

Beams:idA = 2212 ! first incoming beam is a 2212, a proton

Beams:idB = 2212 ! second beam is also a proton

Beams:eCM = 13000. ! cm energy of collisions

HardQCD:all = on

PartonLevel:FSR = on

PartonLevel:ISR = on

PartonLevel:MPI = on

111:mayDecay = off ! Do not decay pi0 -> shorter&faster outputs

Print:quiet = on

Random:setSeed = on

PhaseSpace:pTHatMin = pTHatMin

PhaseSpace:pTHatMax = pTHatMax

SigmaProcess:alphaSvalue = lphaS

TimeShower:alphaSvalue = alphaS

SpaceShower:alphaSvalue = alphaS

MultipartonInteractions:alphaSvalue = alphaS
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Appendix B

Steering parameters of
Herwig generator

B.1 QCD2to2

#PT range of samples: [40. 100. 200. 400. 800. 1600. 5000. 8000.]

read snippets/PPCollider.in

cd /Herwig/Generators

set EventGenerator:EventHandler:LuminosityFunction:Energy 13000.0

cd /Herwig/MatrixElements/

# QCD 2-2 scattering

insert SubProcess:MatrixElements[0] MEQCD2to2

set /Herwig/Cuts/JetKtCut:MinKT minkt*GeV

set /Herwig/Cuts/JetKtCut:MaxKT maxkt*GeV

cd /Herwig/Analysis

create Mira::Browser BrowserAnalysis Browser.so

insert /Herwig/Generators/EventGenerator:AnalysisHandlers 1 BrowserAnalysis

cd /Herwig/Generators

saverun LHC EventGenerator
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B.2 Matchbox LO/NLO

PT samples of LO: [50. 650. 1000. 1500. 2000. 8000.]

read snippets/Matchbox.in

read snippets/PPCollider.in

cd /Herwig/EventHandlers

set EventHandler:LuminosityFunction:Energy 13000*GeV

read Matchbox/StandardModelLike.in

read Matchbox/DiagonalCKM.in

cd /Herwig/MatrixElements/Matchbox

set Factory:OrderInAlphaS 2

set Factory:OrderInAlphaEW 0

set /Herwig/Couplings/NLOAlphaS:input_scale 91.1876*GeV

set /Herwig/Couplings/NLOAlphaS:input_alpha_s alphaS

set /Herwig/Model:QCD/RunningAlphaS /Herwig/Couplings/NLOAlphaS

do Factory:Process p p -> j j

set /Herwig/UnderlyingEvent/MPIHandler:IdenticalToUE 0

read Matchbox/MadGraph-OpenLoops.in

cd /Herwig/MatrixElements/Matchbox

set Factory:ScaleChoice Scales/MaxJetPtScale

cd /Herwig/Cuts

set Cuts:JetFinder JetFinder

insert Cuts:MultiCuts 0 JetCuts

insert JetCuts:JetRegions 0 FirstJet

cd /Herwig/Cuts

set FirstJet:PtMin @minkt@*GeV

set FirstJet:PtMax @maxkt@*GeV

do FirstJet:YRange -5. 5.0

set JetFinder:Variant AntiKt

set JetFinder:ConeRadius 0.4

## LO

read Matchbox/LO-DefaultShower.in
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## NLO

#read Matchbox/MCatNLO-DefaultShower.in

read Matchbox/FiveFlavourScheme.in

read Matchbox/MMHT2014.in

cd /Herwig/Analysis

create Mira::Browser BrowserAnalysis Browser.so

insert /Herwig/Generators/EventGenerator:AnalysisHandlers 1 BrowserAnalysis

do /Herwig/MatrixElements/Matchbox/Factory:ProductionMode

cd /Herwig/Generators

saverun LHC-Matchbox-LO EventGenerator
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