
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

Department of Physics

Machine learning methods utilization for cosmic
radiation particle identification in the SXRM

detector

Bc. Matěj Vaculčiak

Supervisor: Ing. Michal Marčǐsovský, Ph.D.

Prague, 2019

Declaration

I hereby declare, that I have written this research project by myself and
I’ve used only the materials stated in the references section.

I have no reason to object to use this work according to the section 60 of
Act No. 121/2000 Coll., On Copyright, on Rights Related to Copyright, and on
Change of Some Acts (Copyright Act).

Prague, 2019 ..
Bc. Matěj Vaculčiak

Acknowledgement

I would like to thank my supervisor Ing. Michal Marčǐsovský, Ph.D.and his
always thoughtful spouse Ing. Mária Marčǐsovská, Ph.D. for their valuable advice
and professional guidance and my closest ones, especially my beloved Adla, for
their unceasing support.

Bc. Matěj Vaculčiak

Title:

Machine learning methods utilization for cosmic radiation particle

identification in the SXRM detector

Author: Bc. Matěj Vaculčiak

Field of study: Experimental Nuclear and Particle Physics

Thesis type: Research task

Supervisor: Ing. Michal Marčǐsovský, Ph.D.

Abstract:

This work aims to examine the possibilities of utilization of the machine learning
techniques as an output data processing method for the SXRM detector. The
concept of the SXRM detector and the SpacePix detection chip, which is used
as a sensitive component of the SXRM setup, are presented. The region of the
primary SXRM deployment, a 400 km circular orbit, is also described, together with
the sources accountable for the presence of the ionizing radiation. The simulations
conducted in order to obtain the necessary data, and the employed toolkit Geant4,
are described. The overview of the general machine learning problematics is given,
and the deep neural networks are selected for a further examination. After the
summary of the training procedure and its results, the possible future research
directions are presented, such as the usage of more realistic data, or the utilization
of the convolutional neural networks.

Keywords: machine learning, neural networks, SXRM, SpacePix

Název práce:

Aplikace metod strojového učeńı k identifikaci částic kosmického zá̌reńı

v detektoru SXRM

Autor: Bc. Matěj Vaculčiak

Obor: Experimentálńı jaderná a částicová fyzika

Druh práce: Výzkumný úkol

Vedoućı práce: Ing. Michal Marčǐsovský, Ph.D.

Abstrakt:

Předmětem práce je zkoumáńı využit́ı možnosti aplikace metod strojového učeńı
k analýze výstupńıch dat detektoru SXRM. Je zde p̌redstaven koncept detektoru
SXRM, který je vyv́ıjen v centru CAPADS na FJFI, i v něm použitého detekčńıho
čipu SpacePix. Zároveň je popsána oblast primárńıho nasazeńı detektoru, tedy
kruhová orbita ve výšce 400 km a zdroje ionizuj́ıćıho zá̌reńı, které je ťreba brát v
potaz. Jsou popsány simulace, jejichž prosťrednictv́ım byla zajǐstěna data poťrebná
jako vstup pro p̌ŕıslušné metody strojového učeńı, i softwarové nástroje, které byli
za t́ım účelem použity. Následně je poskytnut p̌rehled problematiky strojového
učeńı, zároveň s určeńım neuronových śıt́ı, jakožto kandidáta pro aplikaci k analýze
výstupu SXRM. Po popisu pr̊uběhu trénováńı a dosažených výsledk̊u jsou nast́ıněny
daľśı možné směry výzkumu v oblasti aplikaćı nejen neuronových śıt́ı, ale i daľśıch
metod strojového učeńı.

Kĺıčová slova: strojové učeńı, neuronové śıtě, SXRM, SpacePix

Contents

Introduction 1

1 The SXRM detector 3
1.1 Primary objective . 3

1.2 The SXRM design . 6

1.2.1 The proto-SXRM layout 6

1.2.2 The conceptual layout . 7

2 Detector simulations 11
2.1 Geant4 . 12

2.2 SXRM simulations . 14

3 Machine learning 17
3.1 Method types . 18

3.1.1 Supervised methods . 19

3.1.2 Unsupervised methods . 20

3.1.3 Semi-supervised methods 20

3.1.4 Reinforcement methods 21

3.2 SXRM-output-analysis method 21

4 Neural networks 23
4.1 Architecture . 23

4.2 Learning . 27

5 Data analysis 31
5.1 The deep neural network . 32

5.2 Used software . 33

5.3 Data loading . 34

5.4 Clean data analysis . 35

5.5 Distorted data analysis . 37

Conclusions 39

XI

XII CONTENTS

Attachments 41

List of Figures

1.1 Van Allen belts visualization. 4
1.2 A Geant4 model of the proto-SXRM layout. 6
1.3 The SOCRAT satellite payload. 7
1.4 A Geant4 model of the conceptual SXRM layout. 8
1.5 A dependency of the energy deposited in sensitive areas of a 5-layer

SXRM model on the initial particle energy. 9
1.6 A Geant4 model of the SpacePix chip. 10

2.1 Graphical output of a Geant4 simulation. 14
2.2 A beam direction of the simulated particles. 15

3.1 A classification problem example. 19

4.1 A neuron scheme. 24
4.2 Activation function examples. 25
4.3 Neural network example. 26
4.4 Neural network training procedure example. 28
4.5 Overtraining visualisation. 29

5.1 A scheme of the examined deep neural network. 31
5.2 Training progress plots for a neural network with 2-layer input layer. 35
5.3 Confusion matrices for a neural network with 2-neuron input layer. . 36
5.4 Deposited energy to induced voltage conversion function. 37
5.5 Training progress plots for a neural network with 2-layer input layer. 38
6 Confusion matrices for a neural network with 4-neuron input layer. . 41
7 Confusion matrices for a neural network with 6-neuron input layer. . 41
8 Confusion matrices for a neural network with 8-neuron input layer. . 42
9 Confusion matrices for a neural network with 10-neuron input layer. 42
10 Training progress plots for a neural network with 4-neuron input

layer, clean data. 43
11 Training progress plots for a neural network with 6-neuron input

layer, clean data. 43
12 Training progress plots for a neural network with 8-neuron input

layer, clean data. 44

XIII

XIV LIST OF FIGURES

13 Training progress plots for a neural network with 10-neuron input
layer, clean data. 44

14 Training progress plots for a neural network with 4-neuron input
layer, distorted data. 45

15 Training progress plots for a neural network with 6-neuron input
layer, distorted data. 45

16 Training progress plots for a neural network with 8-neuron input
layer, distorted data. 46

17 Training progress plots for a neural network with 10-neuron input
layer, distorted data. 46

List of Tables

1.1 Investigated-particle species, energies and maximal integral fluxes. . 5

XV

XVI LIST OF TABLES

Introduction

In the Bachelor thesis [1], a development of the SXRM detector is presented,
namely, the detector simulations were the main point of interest. The SXRM is
a multilayer detector utilizing the silicon pixel detector SpacePix as a sensitive
component. A further description of both devices together with an analysis of the
environment, where the SXRM should operate, is presented in Chapter 1.

After a thorough analysis of the aforementioned simulation-obtained data, a
suggestion to examine the possibilities of machine learning utilization as an output-
data-processing method was made. This examination is the main topic of the
submitted work.

Overall, the SXRM detector is designed to reconstruct the original direction,
species and the initial energy of a detected particle. The SXRM itself should
be able to reconstruct the particle trajectory and provide information about the
energy deposition along the trajectory. The potential aim of the machine learning
algorithm is to take this data as an input and provide the latter two mentioned
information - the particle species and initial energy.

Not being sure, if the provided data is suitable for this task, only the task
of particle-species reconstruction was examined. After a brief introduction to the
concept of machine learning in Chapter 3, the deep neural network algorithm is
chosen to be studied. A big advantage of the deep neural networks could be the
possibility of their implementation directly on FPGAs1, so that its usage could be
very quick (just a basic linear algebra operations are needed) and immediate.

A detailed description of the neural network algorithms, in general, is given
in Chapter 4. The particular deep neural network is then discussed in Chapter 5
together with results of the training procedure.

The presented analysis is conducted on two successive datasets. The first
one consisted of the data obtained directly by the SXRM simulations, which were
fundamentally more physically pure. Afterwards, a small non-linear distortion was
presented in order to study the reconstruction accuracy on a more realistic dataset.

Further steps towards the realistic-data reconstruction, such as the conversion
of the deposited energy to the final so-called ADC units, or the usage of convolu-
tional neural networks, are suggested in conclusions.

1Field Programmable Gate Arrays, [2]

1

2 INTRODUCTION

Chapter 1

The SXRM detector

The abbreviation SXRM denotes the SpacePix Radiation Monitor. It is is a concept
of a multilayer detector designed to register and recognise the ionizing cosmic-
radiation particles in the Earth orbit, namely to detect and measure the properties
of Van Allen radiation belts.

The term SpacePix denotes a new generation of monolithic pixel detection
chips, which are the sensitive component in the SXRM setup.

1.1 Primary objective

Since the near-Earth space has lately become an area of strong research and com-
mercial interest, the need to monitor the radiation conditions there comes naturally.
The so-called space weather conditions influence the possibilities of exploring the
Solar System mostly by the impending radiation damage to both potential human
spaceship crew and electronic equipment.

The space weather monitoring is one of the primary objectives of the SXRM
detector, mainly as having a potential swarm of such satellites orbiting the Earth
could help to prevent losses caused by radiation damage and bring the ability of
the space mission planning improvement.

Having a potential to not only detect but also classify and reconstruct various
properties of the detected radiation, the SXRM could also be used to study the
particles surrounding us and bring a glimpse of further understanding the universe.

The near-Earth radiation conditions

The radiation in the primary deployment area of the SXRM consists of three main
components:

• Van Allen radiation belts,

• galactic cosmic rays,

• solar particle events.

3

4 THE SXRM DETECTOR

All of these being thoroughly studied during the SpacePix detector development
[1], a brief summary follows.

Van Allen radiation belts

These toroid-shaped regions are formed by the Earth’s magnetosphere and capture
mostly high-energy protons and electrons. These originate mainly in the Solar
particle events or in a decay of so-called albedo neutrons, which emerge from
collisions of primary cosmic radiation with the Earth’s atmosphere.

As shown in Fig. 1.1, generally there are two main belts, inner and outer.
However, as a result of the Solar activity the shape and even their number can
vary1. In the regions around Earth’s poles the belts intersect the atmosphere in
so-called horns.

The adjustment of Earth’s magnetic and rotational axes is slightly disordered
causing the lower Van Allen belt to intersect the atmosphere again and give rise
to the so-called South Atlantic Anomaly (SAA).

Fig. 1.1: A simplified visuzalization of the Van Allen belts [3]. The areas, of course,
are not strictly bounded. The particle density rises inside the visualized areas and
even the number of belts can vary.

1Under a specific circumstances a third radiation belt can be observed.

1.1. PRIMARY OBJECTIVE 5

Galactic cosmic rays

Galactic cosmic rays originate outside the Milky Way and contain a wide spectrum
of particles from protons up to heavy ions reaching relativistic energies. Fortu-
nately, a major part of the radiation is shielded by the magnetosphere of Earth and
the whole Solar System, so the particle flux is very low compared to the Van Allen
belts.

However, the relativistic heavy particles can cause so-called single event upsets,
damaging sensitive electronic circuits, which is why their monitoring is also kept
in mind when designing the SXRM.

Solar particle events

Another source of high-energy heavy ions are unpredictable Solar particle events.
There are two main causes of these events: solar flares and coronal mass ejections.

Sudden flashes on the Sun surface, solar flares, are in this sense not that
interesting, as they are mostly a source of high-energy photons, not heavy ions.
On the other hand, during the coronal mass ejections caused by a recombination of
Sun coronal magnetic fields, a bulk of hot plasma is released into the interplanetary
space, being a strong source of the heavy energetic particles.

Simulation point of interest

Considering the aforementioned cosmic radiation sources, several particle-species
were chosen to be used in simulations during the SXRM development.

Firstly, electrons and protons with relevant energy spectra were chosen as their
fluxes are strong (see Tab. 1.1) in the region of Van Allen belts.

From heavier ions originating in both Solar particle events and galactic cosmic
rays, the lightest α-particle fluxes are considerable. The rest of the heavy-ion fluxes
are more or less negligible with a slight peak at 56

26Fe. Helium and iron ions were
therefore chosen to represent all the heavy charged particles.

To conclude, the simulations and following analyses were conducted for elec-
trons, protons, 4

2He and 56
26Fe, with fluxes and energy spectra displayed in Tab. 1.1.

electrons protons 4
2He 56

26Fe

(0 - 10) MeV (0 - 250) MeV (0 - 1) GeV (0 - 10) GeV

106 cm2/s 105 cm2/s 100 cm2/s 0,1 cm2/s

Tab. 1.1: Energy spectra and maximal integral2 fluxes of investigated particles.
Data are generated from [4] for a polar orbit at an altitude of 400 km. Detailed
analysis can be viewed in [1].

6 THE SXRM DETECTOR

1.2 The SXRM design

The SXRM detector is under development. Therefore, the final design has not been
fully decided yet. Currently, there are two main geometric layouts: the conceptual
and the proto-SXRM.

1.2.1 The proto-SXRM layout

The SXRM detector designed in the proto-SXRM consists of only 2 sensitive layers
mediated by X-CHIP-03 chips [5] (red/yellow in Fig. 1.2), both placed on a simple
PCB3 (a blue object in Fig. 1.2) inside an aluminium case (purple in Fig. 1.2).
The acceptance cone milled in the case restricts the direction of source radiation,
making the coincidence measurement possible.

The proto-SXRM layout was together with other detectors developed in CA-
PADS4 brought into space in July 2019 as a first testing model. It operates on the
satellite SOCRAT-R on the 97,5◦ sun-synchronous orbit at the altitude 530 km,
reaching both horns of Van Allen belts and the South Atlantic Anomaly. A picture
of the whole SOCRAT-R load with proto-SXRM is in the Fig. 1.3.

Fig. 1.2: A Geant45model of the proto-SXRM layout. Sensitive X-CHIP-03 chips
are coloured in red/yellow, carrier PCB blue and purple case with an acceptance
cone and drilled-in holes for a mechanical connection.

2Integrated over the energy spectrum.
3Printed Board Circuit
4A research centre at FJFI, CTU in Prague.

1.2. THE SXRM DESIGN 7

Fig. 1.3: The radiation-sensing payload of the SOCRAT-R satellite with proto-
SXRM in the right bottom. The SXRM is connected to the rest of the load with
black cables.

1.2.2 The conceptual layout

The conceptual layout is primary used for SXRM geometry optimization, so the
materials and even the geometry itself vary6 during the development. Latest 10-
layer version is depicted in Fig. 1.4.

In general, the telescopic conceptual SXRM layout consists of 4 main compo-
nents:

• the case (currently Inconel 600),

• the PCB (printed board circuits),

• the absorber (currently tungsten),

• the SpacePix chip.

5Geant4 [6] is a simulation toolkit further described in Chapter 2.
6For example, the number of layers is to be optimized based on its effect on the quality of

data reconstruction with neural networks.

8 THE SXRM DETECTOR

Fig. 1.4: A Geant4 model of the 10-layer conceptual SXRM layout. The yellow
case has an acceptance cone covered with a turquoise titanium shielding layer and
contains telescopic layout of red SpacePix chips, blue PCBs and orange tungsten
absorbers.

Case

The case of the SXRM detector is made of Inconel 600 material as it provides better
shielding of low energy particles then earlier used aluminium. An acceptance cone
is milled in one of its sides in order to partially control the direction of the incoming
radiation.

On the surface of the acceptance cone there is a thin (20 µm) layer of titanium
to shield low energy photons and the active oxygen atoms in LEO7 (turquoise plate
in Fig. 1.4).

PCB

PCBs fulfil the simple purpose of a holder for the SpacePix chips and associated
active electronics, providing their connection to the readout electronics8. The
first PCB can be fabricated with a rectangular hole under the SpacePix chip, to
minimize the interaction between the PCB material and the measured particles.
The low energy particles that would otherwise be stopped can now reach the
second SpacePix chip placed on the other side of the same PCB, so a coincidence
measurement can still be conducted. Thin (100s µm), bendable flex PCBs are
considered for future usage.

Absorber

The tungsten absorbers are one of the crucial components for particle reconstruc-
tion. As all of the particles of interest are ionizing, the principle of their species and

7Low-Earth Orbit
8Possibly placed in the back cavity of SXRM.

1.2. THE SXRM DESIGN 9

initial energy reconstruction lies in the reconstruction of the respective Bethe-Bloch
curve, see [1].

As the ionizing particle traverses the material, the energy-loss rate (dE
dx

) varies
specifically for each particle. Whenever a particle deposits energy in the sensitive
detector, a value9 of the Bethe-Bloch curve is obtained. If there were no absorbers
between the sensitive layers, all these points would be close to each other as the
ionization losses in air are in this sense negligible and the curve reconstruction
would be effectively impossible. The absorbers, on the other hand, sample the
curve in the sense of expanding the distance between particular measured points.
The absorber width can vary along the particle trajectory, so that the sampling
can become more effective for a wide energy spectrum.

The problem of optimizing the number of layers is therefore equivalent to
finding the number of points necessary to reconstruct and distinguish particular
curves. The sampling effect is visible in Fig. 1.5, where the analysis of a 5-layer
SXRM model performance was conducted. The example contains an analysis of
a proton beam perpendicular to the sensitive layers and clearly shows the role of
absorbers. The spectrum of deposited energies gets separated for various initial
proton energies. Furthermore, particular visible patterns can be separated when
adding the information about the hit layer, see [1].

Fig. 1.5: A dependency of the energy deposited in sensitive areas of a 5-layer
SXRM model on the initial particle energy, see [1].

9Actually an integral value over a small distance is obtained.

10 THE SXRM DETECTOR

SpacePix

SpacePix [7] is a radiation-hard silicon monolithic pixel detector (see Fig. 1.6), part
of whose development is described in [1]. Ideally, it should be capable of detecting
all the particles described earlier as a point of simulation interest.

The matrix consists of 64×64 pixels with 60-µm pitch providing high spatial
resolution and is covered with a 14-µm-thick layer of an insensitive material car-
rying essential electronics. The depleted region is created by a bias voltage in the
top 30 µm of a pixel, depicted as a light-red region in the cross-section in Fig. 1.6.

Fig. 1.6: A Geant4 model of the SpacePix chip, the dimensions are in µm. The
insensitive regions with essential electronics are coloured in yellow, the silicon bulk
is red. The light-red area visible in the cross-section (right) is the depleted region,
where the detection occurs.

Chapter 2

Detector simulations

First practical part of this work is dedicated to detector simulations. Many im-
provement ideas and design concepts must be tested during the SXRM detector
development. In an ideal case a full setup would be constructed and sent to the
orbit every time a design change was made or an idea was to be verified. This is
obviously impossible for financial and all sorts of practical reasons, mainly the time
consumption.

Considering more realistic options, particular specialised irradiation facilities
here on Earth, such as proton centres, could be used. This way the setup can be
exposed to a specific kind of radiation, ideally the same as in the case of real usage.
However, utilizing the irradiation facilities is still expensive and time-consuming.
Furthermore, only a specific type of particles with limited properties (i.e. energies,
spatial distribution, etc.) can be provided. Therefore, to cover the testing of the
effects of all particles with energy spectra mentioned in Tab. 1.1, the utilization
of specialized facilities is still not an optimal way of particular development-step
validation.

The fastest and most flexible way to do so is to reproduce the real-life situation
with computer simulations. Simulation tools, such as Geant4, which was used in
this work and will be further described later, were developed for this purpose.
The key feature making simulations a crucial part of detector development is the
variability. Virtually any detector model can be programmed and exposed to any
kind of radiation including various species, energies, and even spatial distributions.

A series of SXRM models was created in Geant4 in order to conduct simulations
of particle-detector interactions and validate individual design changes during the
development process. Particular models vary in number of sensitive layers, used
materials or for example thickness of PCBs. Two of the models (the conceptual
SXRM and the proto-SXRM) were already described in Chapter 1. The 10-layer
conceptual model is this chapter’s main point of interest as it was used to simulate
data used later in this work.

The data obtained by simulations were used for various general design analyses,
such as material optimization, during the development process. In the context of

11

12 DETECTOR SIMULATIONS

this work, the main data usage was as an input dataset for the neural network
training - to see, if this machine learning method is suitable to be employed as an
efficient SXRM output analysis technique.

2.1 Geant4

Geant4 [6] is a toolkit providing a set of C++ libraries to simulate the physical
effects of a particle traversing through a material. It was developed at CERN as a
follow-up of Geant3, which was used earlier to provide simulation data during major
CERN experiments (ATLAS, ALICE) development. Currently, Geant4 accounts for
one of the most widely used simulation tools in detector physics.

Geometry construction

The major advantage of Geant4 is the possibility to create complex geometrical
objects with a wide range of possible materials. Initially, the world volume is
created. It represents the coordinate space - the virtual world in which the whole
simulation takes place.

Generally, the Geant4 objects (including the world mother volume) are created
in three successive levels:

• Solid Volume,

• Logical Volume,

• Physical Volume.

Firstly, a so-called Solid Volume is created. This instance contains merely the
information about the object geometry, i.e. dimensions and shape. Secondly, the
material properties are assigned to the object to create a Logical Volume1. At
last, a Physical Volume is created by placing the Logical Volume properly into
the coordinate space with additional properties such as an index of the particular
object, etc.

All of the objects used in the virtual environment must be created this way
without any intersections as these could cause a subsequent errors in the pro-
gram. Note, that as all of the geometry is defined directly in the C++ code, it is
impossible to change it during a simulation.

Physics List utilization

Another important advantage of Geant4 is the use of so-called Physics Lists. These
classes contain information about physical processes employed during the simula-
tion process. As particle traverses through the material it loses energy via various

1The Logical Volume can be imagined as a particular LEGO building block.

2.1. GEANT4 13

mechanisms dependent on the particle species, energy, etc. (see [1]). Geant4
offers the possibility to pick only the appropriate interaction mechanisms in order
to save computational time. Naturally, the more realistic the simulation is, the
better. However, the possibility to omit negligible physical effects can lead to a
significant speed-up of the simulation. It is up to the physicist conducting the
simulation to be aware of the effects incurred by leaving out parts of physics and
to find the optimal quality to efficiency ratio.

To ensure high simulation quality, there are several reference Physics Lists2,
that are regularly updated and validated by the real physical data provided by
major facilities like CERN.

Particle-passage simulation

Being a set of C++ libraries, Geant4 does not provide a general Graphical User
Interface (GUI). It can only be displayed after the whole geometry of the experi-
mental virtual world is prepared. After the code is compiled, no further geometry
adjustments can be made and the the simulation can be conducted. An optional
GUI can be displayed, so that the simulation performance can be visually validated
and particle trajectories can be observed, see example in Fig. 2.1. Geant4 also
provides the possibility to control the simulation via special macros.

At the beginning of the simulation a particle source is defined. It contains
information about the primary particles such as species, direction and their energy
distribution. The very last information provided is the number of particles to be
generated in one beam. All of the particles are then simulated one by one and
after the whole beam is processed, the particle source properties can be redefined
again.

A simulation of a single particle passage consists of a number of steps. After
a step is done, a distance to another location, where the particle interacts, is
calculated. Afterwards, the particle is propagated to this place, and the process
repeats until the particle energy falls under a pre-set threshold value.

If needed, the data acquisition can be done after every single step (this is, for
example, the case of a Bragg curve analysis) or at the end of a particle propagation,
from a predefined volume. In the latter case, a sensitive detector3 must be assigned
to this volume, e.g. a pixel in a SpacePix chip model.

2Such as the FTFP BERT used for the SXRM simulations. Other reference physics lists can
be found on https://geant4.web.cern.ch/node/155.

3A class storing predefined physical information in a specific volume, e.g. an energy deposition
in a pixel.

14 DETECTOR SIMULATIONS

Fig. 2.1: A graphical output of a Geant4 simulation. A beam of 100 protons with
energies from 0 MeV to 250 MeV traverses through the SXRM detector. The
curves depicting the particle trajectories distinguish between electrically positively
charged (blue), neutral (green) and negatively charged (red) particles.

2.2 SXRM simulations

For the purpose of the SXRM detector development a number of various simu-
lations was conducted. However, as this work aims to verify the possibility of
neural-network usage for the SXRM-output analysis, only some of the simplest
simulations were used.

The sensitive element of the SXRM detector is the SpacePix - an ionizing
radiation detector, therefore the main focus should be put on the electromagnetic
physics. Considering this, the FTFP BERT4 reference Physics List was used during
the simulations as it provides well-validated electromagnetic physics [8]. Because
ions 4

2He and 56
26Fe were also a subject to simulation, slight changes were made to

the original FTFP BERT in order to include the ion elastic physics effects.

In Chapter 1, the role of absorbers in the SXRM setup was explained together
with the method of Bragg-curve reconstruction. Therefore, the first thing to verify
is that neural networks are able to utilize the idea discussed in Chapter 1 and
give satisfactory results for particle classifications. Therefore, the spatial beam

4Used for example by the ATLAS experiment.

2.2. SXRM SIMULATIONS 15

distribution could be neglected5 and unlike in the case of other SXRM simulations,
the particle source was stationary.

Simulations of particles defined in Tab. 1.1 with appropriate energy spectra were
conducted with a beam statistics of 105 particles per species. Simulations with 107

particles per beam were also conducted but did not bring any major improvement
while the training duration increased dramatically. The initial trajectory was always
perpendicular to the telescopic SXRM setup as indicated in Fig. 2.2. Overall, the
data used for a neural-network training was made of 4 · 105 entries, 105 for each
particle.

Fig. 2.2: A beam direction of the simulated particles (electrons, protons, 4
2He and

56
26Fe. The trajectory is depicted on an example of the non-interacting toy particle
geantino.)

5Knowing the fundamental idea behind the particle-species reconstruction it is obvious, that
a more complex spatial source distribution would not affect whether the neural network is fun-
damentally able to utilize the input data to classify particles.

16 DETECTOR SIMULATIONS

Chapter 3

Machine learning

Machine learning methods provide an alternative approach to solving various types
of complex problems1 concerning data analysis and quickly became a widely used
tool in various aspects of everyday life. The current success of machine learning
is related to technological progress as the increase in the available computational
power is significant. Furthermore, large amounts of various training data are avail-
able as a result of unceasing internet usage expansion. These two aspects can be
considered the main reasons that the learning of the algorithms could have become
fast and efficient.

According to [9], the term machine learning designates a field of computer
science that studies algorithms and techniques for automating solutions to complex
problems that are hard to program using conventional programming methods.

Conventional programming methods tackle every individual problem separately.
A detailed program design is created for a particular problem and implemented as
a program in a certain programming language. This means that all the steps
conducted during the program run are predefined and stay changeless during the
problem solution.

Machine learning methods, on the other hand, approach problems in a funda-
mentally different way. The main idea is to exploit the particular analysed data to
adjust the program itself and so reach better performance. Unlike in the case of
conventional programming methods, only a conceptual program design is created
here, and the final state is decided (learned) by the program.

The aforementioned complex data analysis problems approached by machine
learning can be generally categorised in 3 main domains: classification, clustering
and prediction.

1Popular examples of complex problems solved by machine learning methods are hand-written-
text recognition, language translation, or the progress in autonomous-vehicle development.

17

18 MACHINE LEARNING

Classification

Solving a classification problem requests the algorithm to assign an input to one
of the previously defined classes. An example of such a problem is distinguishing
between a picture of a cat and a dog.

Clustering

Clustering means dividing a set of inputs into subsets based on a specific similarity
between the data. However, unlike in the case of classification, the number of
subsets does not have to be known beforehand. Therefore, the clustering can be
particularly useful for revealing previously unknown or unnoticed relations between
the input data.

Prediction

Prediction tasks require the algorithms to learn based on historical data and try
to predict a model of the system’s future behaviour. As an example of these
algorithms’ utilization a stock exchange, where the stock-value prediction is of
interest, can be mentioned.

3.1 Method types

There are two main distinguishable types of input data: labelled and unlabelled.
The labelled inputs consist of pairs containing the data itself and a specific label.
This means that when a machine-learning algorithm is provided with a labelled
input, it can also be verified whether the output is correct or not. Unlabelled data,
on the other hand, do not contain such information, and therefore can only be used
in specific machine-learning methods. Having access to labelled data is obviously
more comfortable. However, obtaining the labels requires often a lot of human
resources and, therefore, it is costly.

As discussed at the beginning of this chapter, machine learning comprehends a
whole field of various algorithms. In order to get a clearer overview, the particular
methods can be categorised based on the fundamental operation principles as
follows [9]:

• supervised learning,

• unsupervised learning,

• semi-supervised learning,

• reinforcement learning.

3.1. METHOD TYPES 19

3.1.1 Supervised methods

Algorithms classified as a supervised learning work with labelled datasets exclu-
sively, so any time a data point is processed, the correctness of the output can
be verified thanks to the provided data label. This way, the supervision over the
learning of a machine is possible.

Intuitively, these methods are, in a way, some of the closest to the case of
natural human learning. Similarly to a child learning to recognise various animal
species, the supervised methods also utilize having somebody to tell them what
animal they are looking at. While in the case of a child this somebody is a parent,
for machines it is the label in the dataset, who gives it the right answer. Based on
this supervision a successive algorithm improvement is possible.

There are two main general problems that can be approached by supervised
methods: classification and regression.

Classification

Classification as described earlier is a problem defined as redistributing points of
dataset into specific predefined subsets. Example of such a problem is depicted in
Fig. 3.1, where data points (points in the scatter plot) are labelled (distinguished
by colour). The machine’s task is to learn to assign a correct colour to a previously
unknown point.

Fig. 3.1: A toy example of a labeled dataset for a classification algorithm. The
classification result is depicted by the blue lines dividing the plot into four distinct
areas. After a previously unknown data point is provided, the machine classifies it
based on which of the four areas it belongs to. Figure taken from [9].

20 MACHINE LEARNING

An important feature of the classification algorithms is that the set of classes
is predefined and distinct2. If the output is considered as a variable it is a distinct
variable.

Regression

Being a subject of supervised learning, regression algorithms also require labelled
dataset as an input, just like the classification ones. However, unlike in the earlier
case, the output comes as a continuous variable3.

The general idea of regression is to create a model able to make forecasts, so
in terms of the earlier problem classifications, regression helps to solve prediction
problems. Therefore, as an example, the prediction of stock value can be given
again.

3.1.2 Unsupervised methods

Knowing the meaning of the supervision in supervised learning methods, it is clear,
that in the case of the unsupervised ones the unlabelled data is used. The machines
learning without supervision do not use any feedback during the training and only
focus on finding trends of similarities in the particular data points.

These methods are tightly connected to clustering problems and can be helpful
in finding complex, previously unseen connections between data points.

3.1.3 Semi-supervised methods

Similarly to the situations with supervised learning with labelled data and the
unsupervised learning with unlabelled data, the semi-supervised learning methods
utilize partially labelled data. This amounts to a machine having a big amount of
input data only a part of which is labelled.

As mentioned earlier, the main difficulty with labelled data is that it is hard to
obtain. Semi-supervised learning methods omit this problem as it is able to use
unsupervised training to cluster the data and follow with using the small number
of labelled ones to assign labels to the whole set. The main difference to the
unsupervised learning is that thanks to the labels, the data is not abstract here
anymore.

2The term ”distinct set” is used in [9]. Describing the set as finite would probably be more
precise.

3Similarly to the classification case, for the set of all possible outputs the term infinite is
probably more precise.

3.2. SXRM-OUTPUT-ANALYSIS METHOD 21

3.1.4 Reinforcement methods

The reinforcement learning methods bring some of the most popular results, such
as computers defeating chess grandmasters.

These methods focus mainly on tasks with huge number of possible states, just
like in the mentioned case of a chess game.

Another focus of reinforcement methods are situations that change during the
program run. This, of course, concerns games again4, but also on practical aspects
of human life such as autonomous-vehicle development. The environment keeps
changing and the machine must be able to react properly in real-time.

The main component of the reinforcement machine is an agent. It is the
program itself, observing and learning from the environment. This environment
changes due to external impulses or due to actions of the agent itself. Because of
the agent-environment interaction, the concept of time also has to be presented, so
the causality can be preserved. Therefore, particular actions happen in time-steps.
Last important thing that has to be well-defined is the agent’s objective. This way
the agent can get feedback to its actions, for example, if it conducts a chess move
leading to a loss, it notes.

The training then happens by the agent trying various decision sequences and
evaluates if the objective was achieved and if the way of achieving it can be
optimized.

3.2 SXRM-output-analysis method

Because of being generated in the Geant4 simulations, the whole input dataset,
used for SXRM development, is labelled. Therefore, the supervised-learning meth-
ods can be utilized.

The main objective is to be able to distinguish detected particles based on their
species (electrons, protons and ions 4

2He and 56
26Fe). Clearly, this is a classification

problem with the result-space of four classes.
From the variety of supervised-learning algorithms, the well documented and

widely used neural networks have been chosen. Therefore, the following chapter
will be dedicated to their thorough description.

Another potentially interesting task could be to use machine-learning algo-
rithms to reconstruct the initial particle energy (a regression problem). This is a
subject to future research.

4One can, for example, find youtube videos of machines playing Snake or Mario.

22 MACHINE LEARNING

Chapter 4

Neural networks

Neural networks are currently a very popular data-analysis programming paradigm.
Opposing the conventional approach, where the general problem is split into smaller
tasks easier to solve by computer, a neural network itself learns by observing the
data, eventually being able to solve complex problems such as hand-written-text
recognition or, as shown in this work, cosmic-radiation-particle classification and
in a way energy reconstruction.

In the context of this work, neural networks are used as a supervised learn-
ing method, as the testing data set is separated from the whole data set at the
beginning and provided to improve performance during the training process.

4.1 Architecture

Each neural network has a specific internal structure defining its learning properties.
This structure, starting with the basic single neuron, is a subject to this section.

Neurons

The centrepiece of a neural network structure is a neuron. This object takes as an
input a set of information (x1, x2, x3 in Fig. 4.1) and returns a number as a result,
so-called activation a. The neuron itself consists of three basic components:

• weight vector ~w,

• threshold b,

• activation function f .

The weight vector ~w encodes the information about the significance of a par-
ticular element of the input vector. The larger effect the input has on the final
decision, the larger the value of the respective weight is. Each element of the weight

23

24 NEURAL NETWORKS

Fig. 4.1: A simplified scheme of a single neuron with three input connections
(w0, w1, w2) ≡ ~w, threshold b and an activation function a.
Processing input data (x0, x1, x2) ≡ ~x results in a single output a(~w · ~x+ b).

vector is represented with a single line connecting the input layer (x1, x2, x3) and
the neuron in Fig. 4.1.

The threshold b is depicted inside the neuron itself. Loosely speaking, it rep-
resents the general willingness of neuron to be activated (to output 1)1.

The activation function f(z) somehow characterises the way, how the neuron
makes the final decision. It usually maps the input real number to a subset of [0, 1]
interval, depending on the chosen function. However, there are exceptions such as
currently widely used ReLU. Since various problems need various approaches, there
are several particular activation functions used. From the most common, following
activation functions (see Fig. 4.2) can be shown:

• the step function f(x) =

{
1, x ≤ 0

0, x > 0
, mapping R→ {0, 1} 2,

• the sigmoid function σ(z) = 1
1+e−z , mapping R→ (0, 1),

• ReLU3 f(x) = max(0, x), mapping R→ R+.

1A nice way to approach the functionality of neuron (for more detailed description see [10])
is to imagine a situation, when one is deciding whether or not to go to a concert, based on if a
friend is to join them (x1), the weather is good (x2) or if the place can be reached by car (x3),
all of these represented by boolean 0 or 1. Multiplying the inputs (0 or 1) by a weight (personal
importance of the factor), one gets a single number that can be compared to a previously stated
threshold and the final decision can be reached

2Such neuron is denoted as a perceptron.
3Rectified Linear Unit

4.1. ARCHITECTURE 25

Fig. 4.2: Comparison of various activation functions: step function, sigmoid func-
tion and ReLU respectively.

In general, the procedure of information passing through a neuron can be
described in three main steps:

1. As the input vector ~x enters a neuron, it is multiplied by the weight vector
~w.

2. The threshold value is added to the result of the scalar product ~w · ~x .

3. The resulting number is fed as an input to an activation function f(z), whose
result is the output of the whole neuron.

This whole operation can be interpreted as a decision made by neuron, based
on the available information.

Mathematically speaking, a neuron is simply a multivariable function whose
output (activation), is a single number and the whole procedure in a single neuron
can be expressed by equation

a(~x) = f(~w · ~x+ b). (4.1)

Neural network structure

Having the neuron described, let us now construct a more complex structure ca-
pable of making more subtle decisions - a neural network.

It consists of neurons organized in layers stacked up one after another. Each
neuron in a layer is connected to all neurons in neighbouring layers. Example of
such a network is depicted in Fig. 4.3.

Three types of layers are distinguished in a neural network.
Input layer is the first one (4 neurons in Fig. 4.3). It contains the input data

and its neurons do not have any bias or weights.
Output layer is obviously the last one (2 neurons in Fig. 4.3), carrying the net’s

final decision.

26 NEURAL NETWORKS

Fig. 4.3: Example of a deep neural network consisting of 4 layers: 4 neurons in
input the layer, 8 and 6 neurons in hidden layers respectively and 2 neurons in the
output layer.

Any layers between these two are denoted as hidden layers (8 and 6 neurons in
Fig. 4.3). Neural networks with two or more hidden layers are called deep neural
networks.

Earlier in this chapter, an output of a single neuron, whose input came from
the very first layer ~x was described. Looking at the neural network as a whole, the
output of a full layer needs to be described instead. To find an expression for the
output of l -th layer, whose input comes from a previous (l -1)-st layer we need to
extend (4.1) to a vector form

~a l(~x) = ~f l(W l · ~a l−1 +~b l). (4.2)

It is straight forward, that the output of the l -th layer will be described with
activation vector ~a and it’s thresholds ~b. The individual weight vectors get organ-
ised into a weight matrix W, for example the matrices W1, W2 and W3 in Fig. 4.3
have dimensions (4, 8), (8, 6) and (6, 2), respectively4.

4By a simple matrix multiplication it can be verified, that element Wjk really connects j-th
neuron in the l -th layer and k-th neuron in the (l-1)-st layer.

4.2. LEARNING 27

4.2 Learning

The training procedure happens under a ”supervision” of the data labels. In the
case of neural networks, the feedback on how well the algorithm performed is
brought by the so-called cost function. Based on its values, the network adapts
its internal properties and learns. An example of the learning process, thoroughly
described later in this chapter, is depicted in Fig. 4.4.

Cost functions

Initially, the weights and thresholds are defined randomly, or at most heuristically,
so at first, as the network processes the input vector. The result may be very
distant from the desired true answer. To quantify the the network quality, the
so-called cost function C(w, b) is introduced. It gives the measure of distance
between the neural network’s classification prediction and a correct result5.

For a simple example of a cost function, a mean squared error

C(w, b) =
1

2n

∑
~x

||~y(~x)− ~a(~x, w, b)||2 (4.3)

can be taken into account. Here n is the total number of training inputs. Vectors
~a(~x, w, b) and ~y(~x) are the final output from the network and the desired correct
result, respectively, while ~x is given as a training input. The summation is done
over all these inputs.

Another, slightly more complex example of a loss6 function is the cross-entropy
function7

C = 1
1

n

∑
~x

[y ln a+ (1− y) ln(1− a)] , (4.4)

where the notation stays the same as in case of the mean square error. This, at the
first sight peculiarly looking cost function8 is widely used as it improves learning
speed especially in case of parameters very far from optimal setting.

A variation of this cost function, so-called categorical cross-entropy is used for
a multi-class classification later in this work’s analysis.

5Say the neural net in Fig. 4.3 classifies fruit as apples

(
1

0

)
or pairs

(
0

1

)
and results

(
0.4

0.1

)
after an apple is given to it. Cost function gives a numerical expression of the result’s correctness.

6Loss function is sometimes used as a synonym to the cost function.
7For a notation simplicity the arguments w, b and parameters ~x are omitted.
8It meets the cost function properties such as being non-negative and being 0 in a limit

a(x)→ y. Note, that the network output should be function with range R = [0, 1], so not e.g.
widely used ReLU.

28 NEURAL NETWORKS

Learning procedure

As indicated by the form of the cost function, it’s variables are w and b, represent-
ing all the weights and thresholds in the net, while other inputs such as vectors
of results are considered to be parameters. An important consequence of this
definition will be clear soon.

The essential problem of the machine learning is to adjust the architecture
of a chosen algorithm to perform as good as possible. In the case of neural
networks, this optimization is conducted by a successive modification of it’s pa-
rameters w, b. It is thanks to the aforementioned cost-function definition that this
essential problem can be simplified and restated as a mathematically thoroughly
described multivariable function minimization.

As mentioned earlier, the initial network-parameter configuration results in ran-
dom outputs, corresponding to high cost function values. However, the training
data set is fed to the network in small batches and after processing each one of
them a discrete step9 in minimizing the cost function is conducted.

This step consists in the evaluation of the cost function10 and adjustment
of the network parameters, so the value of the current cost function decreases.
This cost-function decrease naturally means a slight improvement of the network’s
performance - it slowly learns.

Fig. 4.4: An example of the neural network accuracy11(left) and the loss function
value (right) development through the training procedure. Both are evaluated after
every epoch.

9Numerical methods such as a stochastic gradient descent are used.
10Note that because the cost function is parameterized by the input data, it’s exact form varies

after processing every batch.

4.2. LEARNING 29

After the whole training dataset is processed, bunch by bunch, a so-called train-
ing epoch is finished. The whole training process can contain an arbitrary number
of epochs, where after the end of each of them the performance improvement is
evaluated. As depicted in Fig. 4.4, the evaluation is carried out for two distinct
parts of data.

The training dataset consists of data given to the neural network during train-
ing, while the testing dataset contains data that are excluded from the training
process, simulating a real situation of unknown data classification. Plots in Fig. 4.4
show the training process of a particular neural network used in this work, con-
cretely the development of the accuracy and the loss function values through
training epochs.

Overtraining

The importance of using the testing dataset for a training monitoring is eminent
in the case of a so-called overtraining.

It is a situation when the network performance on the training dataset rises,
but the testing-data performance suddenly plummets or at least does not keep up
anymore. In this case, the network is too adjusted to the training data and can
not be trusted to perform well used outside the set. An example of overtraining
is given in Fig. 4.5. The example shows a binary classifier, being focused on the
training data too much and not being able to predict the data distribution properly.

Fig. 4.5: An example of a well trained (black curve) and an overtrained (red curve)
binary classifier.

11Fraction of correctly classified events over the whole set.

30 NEURAL NETWORKS

Chapter 5

Data analysis

The main objective of this work is to determine whether there is a machine-learning
algorithm that can be utilized for the analysis of the SXRM-detector output.

In the first iteration, a problem of particle classification, that is reconstructing
the detected-particle species, was examined. The question stands: is it funda-
mentally possible to approach this problem with machine learning? Therefore, the
available, labelled and physically very clear simulation data could have been used.
A simple distortion to the data is presented in a later part of this chapter. A deep
neural network depicted in Fig. 5.1 was eventually chosen to be examined.

Fig. 5.1: A scheme of the examined deep neural network. It consists of the input
layer with 10 neurons, hidden layers with 32, 16 and 8 neurons, respectively, and
the output layer with 4 neurons representing classes: electron, proton, 4

2He and
56
26Fe.

31

32 DATA ANALYSIS

5.1 The deep neural network

A deep1 neural network, a popular algorithm utilizing the analogy with human
brain was chosen as the main subject of examination. A structure of the one used
for the purposes of this work is depicted in Fig. 5.1.

Structure

Though the input layer in Fig. 5.1 consists of 10 neurons, other neural networks
were constructed during the analysis, with the number of neurons in the input
layers between 2 and 10. The efficiency of the neural networks was then compared
in order to find the optimal number of sensitive SpacePix detectors in the SXRM
setup. As mentioned in Chapter 1, the general idea of the analysis is to sample a
specific Bragg curve, so the variation in the number of input neurons corresponds
to the number of points needed to conduct an efficient sampling.

The structure and number of the hidden layers were chosen more or less ran-
domly, as tuning these so-called hyper variables is an advanced machine-learning
topic not necessary to solve this work’s problem. Furthermore, a major positive
effect of the tuning is not guaranteed.

The task is to classify incoming particles as electrons, protons, 4
2He or 56

26Fe.
Therefore, the network’s output layer consists of four neurons.

Activations & cost function

In case of all layers except the output one, ReLU was chosen to be the activation
function. Just like with the structure of the neural network, the choice of ReLU
was based purely on its current popularity among the machine learning community.

The activation of the last layer is softmax2 - a function that takes a vector
of real numbers and provides a vector of probabilities on the output. The output
vector meets the probability definition as all the elements are non-negative, less
or equal to one, and their sum is equal to one. Especially the second property is
important in this case because the categorical cross-entropy3 cost function is used
to provide feedback to the neural network during the training.

For the cost function minimization process the Adam optimizer [12] was used.

1As described in Chapter 4, this neural network is denoted as deep, as it has three hidden
layers.

2The softmax function is defined as S(aj) =
eak∑

k

eak
. For more detailed examination of ReLU

and softmax applications see [11].
3As mentioned in Chapter 4, the input of the cross-entropy function must be numbers in

range R = [0, 1].

5.2. USED SOFTWARE 33

5.2 Used software

Several libraries, toolkits and programming languages were utilized during the whole
work. The simulation C++ [13] toolkit Geant4 was presented in Chapter 1, since
it was used to generate the input dataset. The popular analysis toolkit ROOT [14]
was used to store the data and some of the analyses were also conducted. For the
construction and training of the neural networks the Python Keras interface was
used.

Keras

Keras [15] is a high-level neural networks application programming interface, writ-
ten in Python [16] and capable of running on top of TensorFlow [17].

Unlike the rest of the used software, Keras is written in Python, which meant a
slight inconvenience because both languages must have been used simultaneously
sometimes. The Python code of the deep-neural-network model programmed in
Keras reads:

model = S e q u e n t i a l ()

model . add (Dense (3 2 , i n p u t s h a p e = (d . getX () . shape [1] ,)))
model . add (A c t i v a t i o n (’ r e l u ’))
model . add (Dense (1 6))
model . add (A c t i v a t i o n (’ r e l u ’))
model . add (Dense (8))
model . add (A c t i v a t i o n (’ r e l u ’))
model . add (Dense (4))
model . add (A c t i v a t i o n (’ so f tmax ’))

model . compile (
l o s s= ’ c a t e g o r i c a l c r o s s e n t r o p y ’ ,
o p t i m i z e r= ’ adam ’ ,
m e t r i c s =[’ a c c u r a c y ’]
)

Here the d.getX().shape[1] term corresponds to the current number of SpacePix
layers.

ROOT

Among the high-energy-physics community, the ROOT is a widely used data anal-
ysis framework. It was written in C++ programming language at CERN primary
as a tool for large data processing.

34 DATA ANALYSIS

The data obtained from Geant4 simulations was saved in the TTree structure
and exported in the .root format. The main reason is that most of the previ-
ous analyses were conducted in the ROOT toolkit. Furthermore, the format is
optimized for large data storage, so it is very efficient in space usage.

There is also a Python extension module PyROOT is available providing inter-
action directly with arbitrary ROOT class. However, as described later, a different
data-loading method was utilized.

5.3 Data loading

As pointed out earlier, the input dataset was simulated in Geant4 and stored in
a .root format. However, the input data type requested by the Keras sequential
model is a NumPy array [18].

NumPy is a fundamental package for scientific computing with Python. The
NumPy arrays provide N-dimensional objects standardly used for the representation
of numerical data, enabling efficient implementation of numerical computation.

Unfortunately, loading NumPy arrays directly from rootfile4 with PyROOT was
extremely slow in comparison with a .csv file. The first idea was to convert the
rootfile into .csv, keep the .csv file and only reconvert it again when changes were
made to the simulated data. The .csv file would be then used as a standard source
of the training dataset.

An attempt was made to carry this procedure with Python but in compari-
son with the same program written in C++, the time difference was enormous5.
Eventually, the loading program was written in Python, checking, whether the .csv
file is present. If it is not, the subprocess module is used to call a C++ program
root to csv to efficiently create the .csv from a specific rootfile.

i f path . i s f i l e (f i l e c s v) == 0 :
s u b p r o c e s s . run (

[’ . . / data / c o n v e r t e r / b u i l d / r o o t t o c s v ’ ,
p a r t i c l e]
)

As there is a specific rootfile for each particle, the variable particle is used to
determine, which one to process.

Overall, the data provided as an input to the neural network was a combination
of all the simulated particles - altogether 4 · 105 data points. A single data point
consists of a 10-element vector and a label, specifying the particle species. Every
element of the vector represents a size of energy deposition in a particular detector
layer.

4Loading from rootfile means processing the TTree structure inside the .root file.
5Converting with Python took days, while converting with C++ took several minutes. This

is probably not to blame Python but author’s personal Python inexperience.

5.4. CLEAN DATA ANALYSIS 35

5.4 Clean data analysis

Having the training dataset prepared the deep-neural-network training could be
performed. The training length was set to 500 epochs, so the training progress
could be observed properly. The whole process was completed in the order of
minutes6.

In the Fig. 5.2, depicting the training progress, two plots are shown. As
described in Chapter 4, after finishing an epoch (processing the whole training
dataset), the value of the loss function and the accuracy of neural network are
calculated. From these values, the graphs7 are constructed. The two distinct
curves appertain to the two sets of data on which the evaluation is conducted.
Training data, which are presented during the learning process and training data,
only presented for the purpose of progress evaluation.

In the first graph designated as model accuracy, the fraction of correctly classi-
fied points and the whole dataset is plotted. The second graph shows the evolution
of the cost function minimization.

Fig. 5.2: The evolution of the neural-network accuracy and the loss function during
training. Plots for a neural network with 2-layer input layer.

From the trend visible in both plots it is apparent, that the major part of the
training is done in the first approximately 100 epochs. The testing-data accu-
racy after 100 epochs is 0.945, so the remaining 400 epochs correspond to an
improvement of the performance by just two tenths of a percent.

Even better image about the deep-neural-network performance can be provided
by so-called confusion matrix shown in the left part of Fig. 5.3.

6One training took approximately 5 minutes.
7There is no fitting conducted, the lines just connect neighbouring data point.

36 DATA ANALYSIS

Fig. 5.3: Confusion matrices for a neural network with 2-neuron input layer. Left
for clean data, right for distorted data.

The rows of the confusion matrix correspond classes as they are assigned to
the data points by labels while the classes in columns are those assigned by the
neural network. In an ideal case, where the network makes no mistake, the matrix
is diagonal. The advantage of the confusion matrix format is that the non-diagonal
matrix elements carry not only information about an error but also an exact error
specification, e.g. here a proton was falsely classified as an electron 122 times.

The so far shown figures only describe the deep neural networks with 2-neuron
input layer. The rest of plots and confusion matrices for deep neural networks
with 4, 6, 8 and 10 neurons in the input layer is shown in attachments. Simply
by observing the final model accuracy mentioned in the right bottom corners of
the accuracy plots one can conclude, that 6 layers are the highest reasonable
number. The networks with higher number of input neurons reached the same
99.2% accuracy as the one with 6 input neurons.

At this point, the question remains, whether the higher number of input neurons
plays a role when processing distorted data or if higher accuracy can be reached
with a different SXRM layout, e.g. if the absorber thickness was increasing for
later sensitive layers.

To reach a final decision for the problem of SpacePix-layer optimization the
information about possible reconstruction accuracy is only one of many. Eventually,
the most important will restrictions on the physical detector parameters8 such
as total weight, dimensions, or energy consumption. However, these data are
important to reach an optimal final decision.

Ultimately, based on the resulting accuracies it has been shown, that deep
neural networks can be utilized for the analysis of the SXRM output data. Even at
the simplest 2-layer setup, the 94% accuracy can be reached when reconstructing
the clean simulation data.

8Since it is supposed to operate in space.

5.5. DISTORTED DATA ANALYSIS 37

5.5 Distorted data analysis

Another step in the examination of the deep-neural-network suitability was an
examination of a slightly distorted dataset. This distortion consists in the non-
linear relation between the deposited energy (the eralier processed clean data) and
the voltage induced in the SpacePix ASIC9.

Data points to reconstruct this non-linear relation was provided by the designers
of the SpacePix detector. A polynomial fit was carried out to obtain a MeV to V
conversion function as depicted in Fig. 5.4.

Fig. 5.4: A fit to obtain a conversion function between the deposited energy and
the induced voltage.

The fit was calculated in two areas. In the interval (0, 400) keV a 5-th order
polynomial was used, in the interval (100, 1800) keV it was a 9-th order polynomial.
The coefficient values were obtained from a ROOT output as follows:

NAME VALUE ERROR NAME VALUE ERROR
a0 1.61248 e−01 5.19311 e−01 b0 2.86981 e−01 4.03533 e−01
a1 2.35266 e−06 8.25676 e−06 b1 3.78436 e−07 9.18117 e−07
a2 −7.66155e−12 4.07539 e−11 b2 8.99024 e−14 7.90285 e−13
a3 −8.69674e−18 1.25056 e−16 b3 −5.99043e−20 5.31716 e−19
a4 9.69941 e−23 3.45899 e−22 b4 −1.88494e−27 3.34167 e−25
a5 −1.32334e−28 6.93149 e−28 b5 1.17779 e−33 2.05038 e−31

b6 3.34037 e−40 1.22748 e−37
b7 −3.82041e−46 7.09607 e−44
b8 −1.10112e−52 3.90795 e−50
b9 −4.16866e−59 2.00007 e−56

9Application-Specific Integrated Circuit

38 DATA ANALYSIS

Using this conversion function10 the initially clean dataset was distorted and
fed as an input to the deep neural network.

The resulting training plots are shown in Fig. 5.5. Though the data was con-
verted with a non-linear function, the accuracy decrease was only 0.5%. Consid-
ering, there will be only one more similar non-linear conversion to the final data
obtained from SXRM, this result supports the usability of deep neural networks.

Fig. 5.5: The evolution of the neural-network accuracy and the loss function during
training. Plots for a neural network with 2-layer input layer.

As seen in the plots (Fig. 14, Fig. 15, Fig. 16, Fig. 17) in attachments, the
optimal number of input neurons is not 6 anymore for the distorted dataset. The
accuracy still slowly rises with the number of SpacePix layers.

The confusion matrix for the distorted data is shown in Fig. 5.3.

10The conversion function f1 was used for energy depositions from 0 to 115 keV, f2 was used
for the rest.

Conclusions

This work aims to examine the possibility of machine-learning methods utilization
for the analysis of the SXRM detector output. As the main objective was to
determine whether a particular method can be theoretically used, a real output
data was not used during the work. The more accessible and physically-clean
simulation data was used instead.

The primary aim of the analysis was to reconstruct the detected particle species.
Based on the deployment environment analysis, four particle types were used: elec-
trons, protons, and ions 4

2He and 56
26Fe, with energy spectra mentioned in Tab. 1.1.

Based on the reconstruction quality, the optimization of the SXRM-detector ge-
ometry, namely the number of sensitive SpacePix layers, was conducted.

In Chapter 1 the concept of the multilayer SXRM detector was presented.
Firstly, the deployment environment was described together with the radiation
sources, namely Van Allen belts, galactic cosmic rays, and solar particle events.
Subsequently, two main SXRM models were described, the first currently orbiting
the Earth and the second being a subject to simulations for further development.
The SpacePix chip used as an sensitive element in the SXRM setup was also
presented.

The input training dataset for the particular machine-learning method was ob-
tained by simulations of the SXRM detector. This procedure, together with a
thorough characterization of the exploited Geant4 software, is described in Chap-
ter 2.

A brief introduction to the field of machine learning is provided in Chapter 3.
The fundamental paradigm is presented and the main branches of methods are
described. A deep neural network algorithm is selected for an examination of the
suitability for the SXRM-output-analysis.

A further examination of the neural networks was conducted in Chapter 4. This
includes a thorough description of the algorithm architecture, with an explanation
of the purpose of every particular component. The neural-network training is
described and basic utilized mathematical concepts are presented. The concept of
overtraining is also briefly explained.

In Chapter 5 the examination of the chosen deep neural network was described.
Initially, the architecture and specifications of the particular network were pre-

39

40 CONCLUSIONS

sented. The software used during the work, such as Keras and ROOT, was also
briefly described.

The results of the neural-network training for a clean dataset were presented,
including the plots depicting the training progress, and confusion matrices, thor-
oughly describing the final network precision.

Afterwards, a simple distortion to the dataset was presented, based on the
hardware specifications of the SpacePix detector. The physically pure data was
converted to a voltage signal using a non-linear relation. A new training of the
neural network followed. The results suggested, that this kind of a non-linear
distortion does not have a significant effect on the particle-reconstruction quality.

Based on the results, the theoretical optimal number of SpacePix layers in the
SXRM layout was designated to 6. However, other effects, mainly the physical
geometry requirements, such as the total detector weight, will have to be taken
into account.

The future aim of the research will consist of a more-realistic data analysis.
This means mainly the currently unavailable conversion of the simulated data to
the final obtained signal and including spurious effects like plasma effect, charge
diffusion, or the role of noisy pixels. Another step to be made is to exploit the
advantages of the pixel character of the SpacePix detector and use convolutional
neural networks11 for a more complex data analysis.

11The convolution neural networks are currently mostly used for the image recognition.

Attachments

Fig. 6: Confusion matrices for a neural network with 4-neuron input layer. Left for
clean data, right for distorted data.

Fig. 7: Confusion matrices for a neural network with 6-neuron input layer. Left for
clean data, right for distorted data.

41

42 ATTACHMENTS

Fig. 8: Confusion matrices for a neural network with 8-neuron input layer. Left for
clean data, right for distorted data.

Fig. 9: Confusion matrices for a neural network with 10-neuron input layer. Left
for clean data, right for distorted data.

43

Fig. 10: The evolution of the neural-network accuracy and the loss function during
training. Plots for a neural network with 4-neuron input layer processing clean
data.

Fig. 11: The evolution of the neural-network accuracy and the loss function during
training. Plots for a neural network with 6-neuron input layer processing clean
data.

44 ATTACHMENTS

Fig. 12: The evolution of the neural-network accuracy and the loss function during
training. Plots for a neural network with 8-neuron input layer processing clean
data.

Fig. 13: The evolution of the neural-network accuracy and the loss function during
training. Plots for a neural network with 10-neuron input layer processing clean
data.

45

Fig. 14: The evolution of the neural-network accuracy and the loss function during
training. Plots for a neural network with 4-neuron input layer processing distorted
data.

Fig. 15: The evolution of the neural-network accuracy and the loss function during
training. Plots for a neural network with 6-neuron input layer processing distorted
data.

46 ATTACHMENTS

Fig. 16: The evolution of the neural-network accuracy and the loss function during
training. Plots for a neural network with 8-neuron input layer processing distorted
data.

Fig. 17: The evolution of the neural-network accuracy and the loss function during
training. Plots for a neural network with 10-neuron input layer processing distorted
data.

Bibliography

[1] Matěj Vaculčiak. “Simulace odezvy polovodičových pixelových detektor̊u”.
Bakalá̌rská Práce. České vysoké učeńı technické v Praze, Fakulta jaderná a
fyzikálně inženýrská, 2018.

[2] Amos R. Omondi and Jagath C. Rajapakse. FPGA Implementations of Neu-
ral Networks. 1st. Springer Publishing Company, Incorporated, 2010. isbn:
1441939423, 9781441939425.

[3] Johnson Space Center Space Radiation Analysis Group. What is space ra-
diation. 2016. url: https://srag.jsc.nasa.gov/spaceradiation/
What/What.cfm.

[4] Heynderickx D. et al. “New radiation environment and effects models in the
European Space Agency’s Space Environment Information System (SPEN-
VIS)”. In: Space Weather 2.10 (). doi: 10.1029/2004SW000073. eprint:
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/

2004SW000073. url: https://agupubs.onlinelibrary.wiley.com/
doi/abs/10.1029/2004SW000073.

[5] M. Havranek et al. “X-CHIP-03 – SoI MAPS sensor with hit counting and
ADC mode”. In: manuscript in preparation ().

[6] Sea Agostinelli et al. “GEANT4—a simulation toolkit”. In: Nuclear instru-
ments and methods in physics research section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment 506.3 (2003), pp. 250–303.

[7] Marčǐsovská M. et al. “Detection microelectronic IC for orbital measurement
of cosmic radiation [Functional Sample]”. In: (2018).

[8] Sunanda Banerjee and. “Validation of Physics Models of Geant4 using Data
from CMS Experiment”. In: Journal of Physics: Conference Series 898
(2017), p. 042005. doi: 10.1088/1742- 6596/898/4/042005. url:
https://doi.org/10.1088%2F1742-6596%2F898%2F4%2F042005.

[9] Gopinath Rebala, Ajay Ravi, and Sanjay Churiwala. An Introduction
to Machine Learning. Springer, 2019. isbn: 978-3-030-15729-6. url:
https : / / www . amazon . com / Introduction - Machine - Learning -

Gopinath - Rebala - ebook / dp / B07RK2267F ? SubscriptionId =

47

https://srag.jsc.nasa.gov/spaceradiation/What/What.cfm
https://srag.jsc.nasa.gov/spaceradiation/What/What.cfm
https://doi.org/10.1029/2004SW000073
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2004SW000073
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2004SW000073
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004SW000073
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004SW000073
https://doi.org/10.1088/1742-6596/898/4/042005
https://doi.org/10.1088%2F1742-6596%2F898%2F4%2F042005
https://www.amazon.com/Introduction-Machine-Learning-Gopinath-Rebala-ebook/dp/B07RK2267F?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B07RK2267F
https://www.amazon.com/Introduction-Machine-Learning-Gopinath-Rebala-ebook/dp/B07RK2267F?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B07RK2267F
https://www.amazon.com/Introduction-Machine-Learning-Gopinath-Rebala-ebook/dp/B07RK2267F?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B07RK2267F

48 BIBLIOGRAPHY

AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=

2025&creative=165953&creativeASIN=B07RK2267F.

[10] Michael A. Nielsen. Neural Networks and Deep Learning. Determination
Press, 2015. url: http://neuralnetworksanddeeplearning.com.

[11] Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU).
cite arxiv:1803.08375Comment: 7 pages, 11 figures, 9 tables. 2018. url:
http://arxiv.org/abs/1803.08375.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. cite arxiv:1412.6980Comment: Published as a conference paper at
the 3rd International Conference for Learning Representations, San Diego,
2015. 2014. url: http://arxiv.org/abs/1412.6980.

[13] Nicolai M. Josuttis. The C++ Standard Library: A Tutorial and Ref-
erence. 2nd. Addison-Wesley Professional, 2012. isbn: 0321623215,
9780321623218.

[14] I. Antcheva et al. “ROOT — A C++ framework for petabyte data storage,
statistical analysis and visualization”. In: Computer Physics Communications
180.12 (2009). 40 YEARS OF CPC: A celebratory issue focused on qual-
ity software for high performance, grid and novel computing architectures,
pp. 2499 –2512. issn: 0010-4655. doi: https://doi.org/10.1016/j.
cpc.2009.08.005. url: http://www.sciencedirect.com/science/
article/pii/S0010465509002550.

[15] François Chollet et al. Keras. https://keras.io. 2015.

[16] Guido Rossum. Python Reference Manual. Tech. rep. Amsterdam, The
Netherlands, The Netherlands, 1995.

[17] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems. Software available from tensorflow.org. 2015. url: http:
//tensorflow.org/.

[18] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. “The NumPy
Array: A Structure for Efficient Numerical Computation”. In: Computing in
Science and Engg. 13.2 (Mar. 2011), pp. 22–30. issn: 1521-9615. doi: 10.
1109/MCSE.2011.37. url: https://doi.org/10.1109/MCSE.2011.37.

https://www.amazon.com/Introduction-Machine-Learning-Gopinath-Rebala-ebook/dp/B07RK2267F?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B07RK2267F
https://www.amazon.com/Introduction-Machine-Learning-Gopinath-Rebala-ebook/dp/B07RK2267F?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B07RK2267F
https://www.amazon.com/Introduction-Machine-Learning-Gopinath-Rebala-ebook/dp/B07RK2267F?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=B07RK2267F
http://neuralnetworksanddeeplearning.com
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1412.6980
https://doi.org/https://doi.org/10.1016/j.cpc.2009.08.005
https://doi.org/https://doi.org/10.1016/j.cpc.2009.08.005
http://www.sciencedirect.com/science/article/pii/S0010465509002550
http://www.sciencedirect.com/science/article/pii/S0010465509002550
https://keras.io
http://tensorflow.org/
http://tensorflow.org/
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37

	Introduction
	The SXRM detector
	Primary objective
	The SXRM design
	The proto-SXRM layout
	The conceptual layout

	Detector simulations
	Geant4
	SXRM simulations

	Machine learning
	Method types
	Supervised methods
	Unsupervised methods
	Semi-supervised methods
	Reinforcement methods

	SXRM-output-analysis method

	Neural networks
	Architecture
	Learning

	Data analysis
	The deep neural network
	Used software
	Data loading
	Clean data analysis
	Distorted data analysis

	Conclusions
	Attachments

