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Jan Čepila

2006



Contents

1 Introduction 3
1.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 What are hadrons? . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Discoveries of first hadrons 5
2.1 Ernest Rutherford . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Proton discovery process and properties . . . . . . . . . . . 6
2.3 James CHadwick . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The Neutron discovery process and properties . . . . . . . . . . . 9

3 The prediction and discovery of π meson 12
3.1 Hideki Yukawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Strong nuclear force theory . . . . . . . . . . . . . . . . . . . . . 13

4 Strange particles 15
4.1 Discoverers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Strange discoveries . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Quark model 17
5.1 Murray Gell-Mann . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Searching for symmetry . . . . . . . . . . . . . . . . . . . . . . . 18

6 Parton model 20
6.1 Electron-proton scattering - the chase for quarks . . . . . . . . . 20
6.2 Dynamic solution of quark model . . . . . . . . . . . . . . . . . . 21
6.3 Genesis of Quantum chromodynamics . . . . . . . . . . . . . . . 21

7 More quarks on scene 23
7.1 Charm quark,SU(4) . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Bottom quark,SU(5) . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.3 Top quark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.4 Quark properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.5 Pentaquarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.6 Final conclusion - present state . . . . . . . . . . . . . . . . . . . 26

1



CONTENTS 2

8 Mathematical framework of Lie groups 29
8.1 General introduction into group theory . . . . . . . . . . . . . . . 29

8.1.1 Interpretation of commutators . . . . . . . . . . . . . . . 32
8.1.2 Cartan’s criterion for semisimplicity . . . . . . . . . . . . 33
8.1.3 Casimir operators . . . . . . . . . . . . . . . . . . . . . . 34
8.1.4 Invariance under symmetry group . . . . . . . . . . . . . 34
8.1.5 Construction of Casimir operators . . . . . . . . . . . . . 35
8.1.6 The connection between coordinate and function trans-

formations . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.2 Special unitary group SU(N) and it’s representation . . . . . . . 38

8.2.1 Special unitary group SU(2) . . . . . . . . . . . . . . . . . 39
8.2.2 Special unitary group SU(3) . . . . . . . . . . . . . . . . . 40
8.2.3 Subalgebras of SU(3);shifting operators . . . . . . . . . . 41

8.3 Physical connection to multiplets . . . . . . . . . . . . . . . . . . 44

9 References 49
9.1 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



Chapter 1

Introduction

1.1 Abstract

This project compiles in general the present status of knowledge about this
group of subatomic particles. It also shows important milestones in the process
of their recognition. The history of hadrons discovery will be recapitulated here.
Theories attempting to classify them are presented. The last evolutional step
is the quark model. Mathematical framework of groups and algebras necessary
for the description of theories is exposed in the last chapter. It will be referred
to it’s conclusions in the text. Every particle has its own history of discovery.
I believe it’s discoverer is a part of it and if we want to understand the process
of discovery, we have to familiarize ourselves with persons involved. So, short
biographies of the leading personalities are included.

1.2 What are hadrons?

The name ”hadron” comes from the Greek word for ”strong”[6]. These are
particles built from quarks and experiencing the strong nuclear force. Except
proton, all other hadrons (free from forces) are unstable. Even if proton was
not absolutely stable, experiments show, that it’s lifetime would be in excess
of 1032 years. Neutron is the second most stable hadron with lifetime about
16 minutes. Most hadrons, however, last for less than 10−8 seconds. If the
lifetime of a hadron is more than 10−20 we denote it as ”stable”. It does not
mean the same as for proton, it is used to differentiate ordinary hadrons from
shorter-lived hadrons (which we merely do not consider as a particle, we rather
call it resonance for it’s short lifetime ∼ 10−23s). Stable hadrons usually decay
via weak and electromagnetic force. The very short-lived hadrons decay via the
strong force, but this force is so strong that it allows the particle to live only for
about the time it takes light to cross the particle. We can observe them only
as a resonance phenomenon during the decay(that is the reason for the name
resonances).
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CHAPTER 1. INTRODUCTION 4

Hadrons, whether stable or resonant, fall into two classes:baryons and mesons.
Originally the names referred to the relative masses of the two groups of parti-
cles. The baryons (from the Greek word for ”heavy”) included the proton and
heavier particles; the mesons (from the Greek word for ”between”) were parti-
cles with masses between that of electron and the proton. Now, however, the
name baryon refers to any particle built from three quarks(with baryon number
1) and meson refers to any particle built from quark and antiquark(with baryon
number 0). These are the only two combinations of quarks and antiquarks, that
the strong binding force apparently allows. Figure 1.1[5] lists the stable baryons
and mesons and indicates their spins, masses and mean lifetimes, as well as some
of the principal ways in which they ultimately decay.

Figure 1.1: Table of most important hadrons



Chapter 2

Discoveries of first hadrons

2.1 Ernest Rutherford

Figure 2.1: Lord Sir Ernest Rutherford, baron of Nelson, of Cambridge[19]

Lord Sir Ernest Rutherford, baron of Nelson, of Cambridge
was born 30th of August 1871 at Brightwater near Nelson in New Zealand[16].
He studied at Nelson College in New Zealand, lately at Canterbury College in
Christchurch, where he studied properties of iron in high-frequency alternat-
ing magnetic fields. In 1895 he came to Cavendish Laboratory at Cambridge
University, where he began to work under J. J. Thompson on the detection of
Hertzian waves. In December 1895, when Röntgen discovered X rays, Thomson
asked Rutherford to join him in a study of the effects of passing a beam of X
rays through the gas. In 1896 the French physicist Henry Becquerel discovered
that uranium emitted rays which could fog a photographic plate as did X rays.
Rutherford soon showed that they also ionized air but they were different from
X rays, consisting of two distinct types of radiation. He named them alpha and
beta rays. In 1898 Rutherford was appointed to the chair of physics at McGill
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CHAPTER 2. DISCOVERIES OF FIRST HADRONS 6

University in Montreal. The Royal Society awarded him the Rumford medal
in 1904. In 1903 he showed that alpha rays could be deflected by electric and
magnetic fields. Rutherford wrote 80 scientific papers during his seven years
at McGill, made many public appearances, among them the Silliman Memorial
Lectures at Yale University in 1905. In 1907 he returned to England to accept
a chair at the University of Manchester, where he continued his research on
the alpha particle. With Hans Geiger they counted the particles as they were
emitted one by one from a known amount of radium. With his student Thomas
D. Royds he proved in 1908 that the alpha particle really is a helium atom.
Almost immediately, in 1908, came the Nobel Prize - but for chemistry, for his
investigations concerning the disintegration of elements[19]. In 1911 Ruther-
ford made his greatest contribution to science with his nuclear theory of the
atom. A knighthood conferred in 1914 further marked the public recognition of
Rutherford’s services to science. He produced the first artificial disintegration
of an element in 1919, when he found that through collisions with alpha particle
the atom of nitrogen was converted into the atom of oxygen and the atom of
hydrogen. In the second Bakerian lecture he gave to the Royal Society in 1920,
he speculated upon the existence of the neutron and of isotopes of hydrogen and
helium; three of them were eventually discovered by workers in the Cavendish
Laboratory. In 1931 he was made a peer. Recalling is origins, he chose the title
of ”Baron of Nelson” and in the crest of his coat of arms he included a kiwi
bird. The blazoning reads, ”On a Wreath of the Colours upon a rock a Kiwi
proper.”[1] He died on 19th of October 1937 in Cambridge following a short
illness and was buried in Westminster Abbey.

2.2 The Proton discovery process and proper-
ties

In Montreal Rutherford observed that fast-moving alpha particles on passing
through thin plates of mica produced diffuse images on photographic plates,
whereas a sharp image was produced when there was no obstruction to the pas-
sage of the rays. He considered that the particles must be deflected through
small angles as they passed close to atoms of the mica. But calculation showed
that an electric field of 108 volts per centimeter was necessary to deflect such
particles traveling at 2

3c, a most astonishing conclusion[1]. This phenomenon of
scattering was found in the counting experiments with Geiger; Rutherford sug-
gested to Geiger and a student, Ernest Marsden, that it would be of interest to
examine whether any particles were scattered backward–i.e., deflected through
an angle of more than 90 degrees. To their astonishment, a few particles in
every 10000 were indeed so scattered. Rutherford came to the conclusion that
the intense electric field required to cause such a large deflection could occur
only if all the positive charge in the atom, and therefore almost all the mass,
were concentrated on a very small central nucleus some 10000 times smaller
in diameter than that of the entire atom. The positive charge on the nucleus
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Figure 2.2: Rutherford’s nuclear disintegration chamber[1]

would therefore be balanced by an equal charge on all the electrons distributed
somehow around the nucleus. This theory of atomic structure is known as the
Rutherford atomic model. It was not until 1913 that Niels Bohr, a Danish
physicist, postulated that electrons do indeed move in orbits about a central
nucleus, thus upholding the convictions of Rutherford[5]. After that, he ad-
verted to the study of nucleus. For this, he had to break nucleus somehow and
try to detect, what comes from it. Rutherford had noted earlier that a metal
source coated with the alpha emitter radium C always gives rise to particles that
produce scintillations on a zinc sulfide screen at a distance beyond the range of
alpha particles in air. Studying this phenomenon in magnetic field, Rutherford
concluded that the particles responsible for the scintillations were the nuclei of
hydrogen. However, he did not know whether these nuclei were just recoiling
nuclei from hydrogen atoms, that happened to be present on the metal source
and were stuck by alpha particles, or whether they were actually knocked out of
elements heavier than hydrogen. To study the phenomenon, he put a radium C
source in an evacuated metal box with a hole covered by a very thin silver plate.
The plate would allow the alpha particles to get out and strike a zinc sulfide
screen, and yet would keep air out of box. Rutherford observed the change in
the number of oscillations when various metal foils were placed between the sil-
ver plate and the zinc sulfide screen, or when various gases were admitted into
the box. For the most part, the rate of scintillations decreased in proportion to
the stopping power of the foils or gases. However, when dry air was admitted
into the box, the scintillation rate went up. By repeating this experiment with
all the constituents of air - oxygen, nitrogen,. . . - Rutherford learned (1917) that
the effect was due to the collisions of alpha particles from radium C source with
the nuclei of nitrogen in the air. The process Rutherford discovered was the dis-
integration of the nitrogen nucleus, in which an alpha particle penetrates into
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the nucleus and knocks out a ”hydrogen nucleus”. The reason that this had
not been seen long before is that the electric repulsion between the positively
charged alpha particles and a heavy nucleus like that of gold was just too strong
to allow the alpha particle to get close to the nucleus. Nitrogen, on the other
hand, has a nuclear charge of only seven units, so the exceptionally energetic
alpha particles emitted by the radium C could at least get close to the nucleus,
and could occasionally hit an outlying ”hydrogen nucleus”. In the report of this
result in a 1919 paper, Rutherford concludes[1] the following:

”From the results so far obtained it is difficult to avoid the conclusion that
the long-range atoms resulting from collisions of alpha particles with nitrogen
atoms are not nitrogen atoms but probably atoms of hydrogen, or atoms of mass
2. If this is the case, we must conclude that the nitrogen atom is disintegrated
under the intense forces developed in close collision with a swift alpha particle,
and that the hydrogen atom, which is liberated formed a constituent part of the
nitrogen nucleus. . . ”

In a famous talk in 1920, his second Bakerian lecture[16] before the Royal Soci-
ety, Rutherford accepted the hydrogen nucleus as an elementary particle naming
it proton, from Greek word ”protos,” which means ”the first”. He also specu-
lated about new kinds of atomic nuclei, but he pictured them all as consisting of
protons and electrons. One of the hypothetical nuclei about which Rutherford
speculated was a ”neutron”(he named it so), with atomic weight 1 and electric
charge 0, but this was still pictured as a composite of a proton and an electron.
It was entirely unclear to anyone why some of the electrons in an atom should
be bound in the nucleus while the others revolved in much larger orbits outside
the nucleus, but no one had any idea anyway of what sort of force might be
operating at an extremely short distances separating particles within a nucleus.
Present status of proton properties says that the proton is stable subatomic par-
ticle with unitary positive charge 1, 602.10−19C and a mass of 1.67262.10−27kg
(938, 2720MeV ), which is 1836 times the mass of electron. Magnetic moment is
µ = 2, 7928µN [7]. It belongs to the baryon family, that means it consists of three
quarks uud and it has a baryon number 1. Antiprotons were first identified[7] in
1955 by Emilio Segré and Owen CHamberlain by bombarding a copper target
with high energy protons at the University of California at Berkeley.

2.3 James CHadwick

Sir James Chadwick
was born in Cheshire, England, on 20th October, 1891[9]. He attended Manch-
ester High School and Manchester University in 1908 and after graduation he
spent the next two years under Professor Rutherford in the Physical Laboratory
in Manchester, where he worked on various radioactivity problems. In 1913 he
proceeded to Berlin under Professor H. Geiger. After the war, in 1919, he re-
turned to England to Gonville and Caius College, Cambridge, and to resume
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Figure 2.3: Sir James Chadwick[19]

work under Rutherford. In Cambridge, Chadwick joined Rutherford in accom-
plishing the transmutation of other light elements by bombardment with alpha
particles, and in making studies of the properties and structure of atomic nuclei.
In 1927 he was elected a Fellow of the Royal Society. In 1932, Chadwick made a
fundamental discovery in the domain of nuclear science: he proved the existence
of neutrons. For this epoch-making discovery he was awarded the Hughes Medal
of the Royal Society in 1932, and subsequently the Nobel Prize for Physics in
1935[19]. He remained at Cambridge until 1935 when he was elected to the
Lyon Jones Chair of Physics in the University of Liverpool. From 1943 to 1946
he worked in the United States as Head of the British Mission attached to the
Manhattan Project for the development of the atomic bomb. He returned to
England and, in 1948, retired from active physics. Sir James was knighted in
1945. He received several medals and he was a honorary member of about 15
universities and academies around the world. Sir James Chadwick died on July
24, 1974.

2.4 The Neutron discovery process and proper-
ties

For twenty years after discovery of the atomic nucleus, physicists generally
thought that the nuclei of all elements consisted of hydrogen nuclei (later called
proton) and electrons. Helium has atomic weight 4 and atomic number 2, so its
nucleus was supposed to consist of four protons and two electrons, to give it a
nuclear charge of 4− 2 = 2 electron units. To find out what the nucleus really
consist of, it was necessary to break it up and see what came out. In 1930 two
German physicists, Walther Bothe and Herbert Becker, had reported[9] that
by bombarding beryllium nuclei with alpha particles from a polonium source
they had registered the emission of a powerful neutral radiation, much more
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Figure 2.4: Chadwick’s nuclear disintegration chamber[1]

penetrating than the protons emitted in nuclear disintegrations like those stud-
ied earlier by Rutherford. The rays were at first thought to be electromagnetic
radiation. Later, Iréne and Frédéric Joliot-Curie reproduced the phenomenon
and proved that the mysterious radiation could knock protons out of a hydrogen
rich material, such as paraffin wax[1]. This might not have been surprising, but
the protons were found to have a remarkably high speed. The Joliot-Curies
calculated that if the rays emitted from beryllium were really electromagnetic
radiation, the beryllium nucleus must be releasing ten times more energy than
was carried by the alpha particle that produced the rays in the first place. The
Joliot-Curies were even led to question whether the law of conservation of energy
was being violated in these processes. When their ”Note aux comptes rendus de
l’Academie des Sciences”, where they presented their results, arrived in Rome
on 28th of January 1932, according to what Gian-Carlo Wick, who was present,
said[9], Ettore Majorana exclaimed: ”Stronzi(idiots), they have not understood
that it is neutron!” Soon after Chadwick began to study the ”beryllium rays”,
directing them into various other materials besides paraffin. He soon found that
nuclei other than hydrogen would also recoil when stuck with these rays, but
that they moved with a velocity much less than for hydrogen. The pattern of
decreasing recoil velocities with increasing atomic weight of the recoiling nucleus
was just what would be expected if the ”beryllium ray” was not electromagnetic
radiation but a particle with a mass close to that of proton. One other property
of the ”beryllium ray” particles was clear from the start: their great penetrating
power meant that they must be electrically neutral. It seemed from its atomic
weight and its neutrality, that the particle produced by alpha rays in beryllium
was just the electrically neutral composite of a proton and an electron about
which Rutherford had speculated in his Bakerian lecture[1] in 1920. Chadwick
reported this result to the Kapitza Club, an informal circle of physicists that
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had been brought together at the Cavendish laboratory by the Russian physicist
Peter Leonidovich Kapitza. A few days later Chadwick published the discovery
in Nature(February 27, 1932) and a little later in the Proceedings of the Royal
Society, where he officially called it neutron.
For Chadwick as for Rutherford, the neutron was merely a composite of a pro-
ton and an electron, not an elementary particle in its own right. He also did not
speculated about the role of the neutron in the structure of nucleus. This prob-
lem was taken up by Werner Heisenberg. In a series of 1932 papers Heisenberg
proposed[1] that nuclei consist of protons and neutrons and are held together by
the exchange of electron between them. That is, a neutron gives up its electron
and becomes a proton, and the electron is then picked up by a proton which
becomes a neutron. Energy, momentum as well as charge are exchanged here,
giving rise to what is called an ”exchange force”. However the neutron was
still thought of by Heisenberg as a composite of a proton and an electron. The
contradiction of this view of nucleus came from Walter Heitler and Gerhard
Herzberg. They had pointed out that the spectra of diatomic molecules depend
critically on whether their atomic nuclei contained an odd or an even number
of elementary particles, then though protons and electrons. In a molecule with
two identical nuclei, each containing an even number of elementary particles,
half of the molecular energy levels that would normally be present in a pair of
nonidentical nuclei are absent.. If each contains an odd number of particles,
then the other half of the energy levels are absent. For example oxygen results
were correct, but for nitrogen, which may contain odd number of particles in
nucleus, it did not match obtained spectrum. The solution was to suppose that
the neutron is an elementary particle, like the proton and the electron. Chad-
wick knew about this line of reasoning, but he does not seem to have taken it
seriously. Near the end of 1932 he remarked[1]:

”It is, of course, possible to suppose that the neutron is an elementary par-
ticle. This view has little to recommend it at present, except the possibility of
explaining the statistics of such nuclei as N14.”

There seems to have been a disinclination to introduce new elementary par-
ticles - a disinclination so powerful that physicists would rather consider giving
up well-established physical principles, such as molecular spectra or even energy
conservation than contemplate a new particle. It is therefore difficult to point
the moment at which the neutron became accepted as a fully accredited ele-
mentary particle. But after analyzing forces between proton and neutrons and
between two protons. It showed, that they are equal and so neutron cannot con-
tain proton. This also denied Heisenberg theory of exchanging electron. When
all properties of proton and neutron were discovered, it started to be obvious
that both particles can be considered as an exhibition of one particle, which
has two possible projections. It is similar to separation of two electrons with
spin. Therefore that property was called isospin. This defines the new degree of
freedom. This distribution can be described by SU(2) symmetry, where proton
and neutron fits into doublet structure.



Chapter 3

The prediction and
discovery of π meson

3.1 Hideki Yukawa

Figure 3.1: Hideki Yukawa[19]

born 23th of January 1907 in Tokyo Japan[8]. He graduated at Kyoto Im-
perial University in 1929; in 1933 he moved to Osaka Imperial University where
he earned doctorate in 1938. After that he rejoined Kyoto Imperial University
as a professor of theoretical physics. Later he worked at the Institute for Ad-
vanced Study in Princeton and at Columbia University. During 1935− 1970 he
was a director of the Research Institute for Fundamental Physics in Kyoto. In
1935 while a lecturer at Osaka Imperial University, he proposed a new theory
of nuclear forces where he predicted the existence of mesons. The discovery of
muon (originally considered to be Yukawa’s meson) among cosmic rays in 1937

12



CHAPTER 3. THE PREDICTION AND DISCOVERY OF π MESON 13

established Yukawa’s fame as the founder of meson theory. After devoting him-
self to it’s development, he started to work in 1947 on a more comprehensive
theory of elementary particles based on his idea of the so-called nonlocal fields.
He was awarded with the Nobel prize for Physics in 1949[19]. Yukawa died at
8th of September 1981 in Kyoto.

3.2 Strong nuclear force theory

After declining Heisenberg’s theory of nuclear force there was a great need for
any acceptable theory. Then, in 1935, a Japanese theorist Hideki Yukawa pro-
posed a new approach[18]. The binding force must be short ranged, keeping
protons and neutrons within a range of about 10−15m in consequence of the size
of a nucleus. According to the uncertainty principle, exchanging a particle with
a mass sets a limit on the time allowed for the exchange and therefore restricts
the range of the resulting force. He proposed that the mass of exchanging par-
ticle is inversely proportional to the interaction range. Yukawa had the courage
to propose a new kind of charged particle with a mass two hundred times larger
than that of electron, whose exchange produces a nuclear force with a range of
the order of the observed nuclear size 10−15m. Because the predicted mass of
the new particle was between those of the electron and the proton, the particle
was named mesotron (from the Greek word meso=middle,between), later short-
ened to meson. Yukawa’s work was little known outside Japan until 1937, when
Carl P. Anderson, Seth H. Neddermeyer, C. E. Stevenson and J. C. Street[1]
announced the discovery of a new particle in cosmic rays with the mass exactly
equal 200 electron masses. It was widely assumed at that time that it was
the meson predicted by Yukawa (it was thanks to J. Robert Oppenheimer and
Robert Serber[18] who made Yukawa’s work more widely known in the west).
In the following years, it became clear that there were difficulties in reconciling
the properties expected for Yukawa’s intermediary particle with those of the
new cosmic ray particle. In 1945 an experiment by M. Conversi, E. Pancini and
O. Piccioni[1] demonstrated the fact that the cosmic ray particles penetrate
matter far too easily and therefore interact weakly with neutrons and protons.
To resolve this paradox, theorists from Japan - S. Sakata and T. Inoue and in-
dependently Hans A. Bethe and R. E. Marshak[1] from United States proposed
the existence of two mesons. It suggests that heavier Yukawa’s nuclear meson
decays into the penetrating meson from cosmic rays. The former was called π
meson or pion, the latter one was called µ meson or muon. In 1947 C.M.G. Lat-
tes, C.P.S. Occhialini and C.F. Powell[1] at Bristol University in England found
the first experimental evidence of two mesons in cosmic rays high on the Pic du
Midi in France. They registered the presented decay on a special photographic
emulsion. By our definition of hadrons, muon does not belong to this group
of elementary particles and so it is of no interest to us. Unfortunately in the
pion theory there were some shortcomings. It was proposed that it acts only
between proton and neutron[2]. In 1938 Nicholas Kemmer in England proposed
that the nuclear force is charge invariant, which required existence of a neutral



CHAPTER 3. THE PREDICTION AND DISCOVERY OF π MESON 14

exchange particle similar to Yukawa’s pion. It also established the concept of
isospin invariance. Since the neutral variant is not electrically charged, the neu-
tral pion is more difficult to observe than the charged pions. Its existence was
inferred from its decay products in cosmic rays, a so-called ”soft component”
of electrons and photons. The π0 was identified at the Berkeley cyclotron in
1950 by its decay into two photons. Pions come in three varieties: positive and
negative charged 273, 1232 times heavier than the electron and a neutral variant
with a mass of 264, 1129 times that of electron. They form an isotriplet much
like the nucleon isodublet. All pions are unstable. Charged variant decays into
muon and antineutrino with a lifetime of 2, 603.10−8s. The neutral pion decays
into two photons in about 0, 8.10−16s.



Chapter 4

Strange particles

4.1 Discoverers

It is difficult to state one person as a leading discoverer of this stage. There
were three persons mainly involved in fundamental progress in this field. First
we have to present Kazuhiko Nishijima[2], a Japan physicist, who was the first
to present the idea of existence of some charge in strange particle physics. Than
there was a Dutch physicist Abraham Pais, who created the proper theory of
strange particles. At last we have Murray Gell-Mann, who formed some great
ideas in this theory. In this times there becomes difficult to present isolated
person as discoverer of some theory.

4.2 Strange discoveries

In the same year when the pion was discovered (1947) Clifford Butler and George
Rochester[5] from Great Britain, while studying cosmic rays, discovered the
first examples of another type of new particle. It was heavier than pion but
lighter than proton with a mass 800 times the electron mass. Yet it probably
wasn’t the first time the strange particle was observed, it was the first time
it was properly interpreted. In 1943, four years before Butler and Rochester,
Leprince-Ringuet observed[2] a particle 1000 times heavier than electron mass.
Although it was published, no interpretation was presented. Because it was
an isolated event, no one paid attention to it. Within the next few years after
1947 others strange particles were found, some of them heavier than proton.
Although they were produced in strong interaction, they lived for a long time.
It was expected, that they will decay into proton and pion via strong interaction.
But experiments showed, that they decays via weak interaction, with no obvious
reason. For they were called ”strange” by Gell-Mann. By 1953 at least four
different kinds of strange particles had been observed. First attempt to classify
them and to explain strange decay behavior was done by Nishijima Kazuhiko[5]
in Japan. He suggested a new conservation law. The same was done later

15



CHAPTER 4. STRANGE PARTICLES 16

by Murray Gell-Mann, who foretold that two of new particles form an isospin
doublet and other two belongs to isospin triplet. They argued that the strange
particles must possess some new property, named ”ν-charge” by Nishijima[2] and
”strangeness” by Gell-Mann, that is conserved in the strong nuclear decays but
is not conserved in weak decays. Each particle is assigned a strangeness quantum
number S. Great contribution was done by Dutch physicist Abraham Pais who
(as Nishijima) in 1952 formulated the phenomenon of associated production[5].
Because of conservation of strangeness, the strong nuclear force can produce
strange particles only in pairs with total strangeness equal zero.



Chapter 5

Quark model

5.1 Murray Gell-Mann

Figure 5.1: Murray Gell-Mann[19]

He was born 15th of September 1929 in New York USA[12]. Gell-Mann
entered Yale university at the age of 15. In 1948 he moved to MIT. In 1952
he joined the Institute for Nuclear Studies at the University of Chicago, where
he introduced the concept of ”strangeness”. In 1961 Gell-Mann and Yuval
Ne’eman proposed a scheme for classifying hadrons. He called it Eightfold
way with analogy to Buddha’s eightfold path to enlightment and bliss[11]. He
speculated the existence of fundamental particles which form hadrons. He called
them quarks using that term from James Joyce’s novel Finnegan Wake. In 1955
Gell-Mann joined the faculty of CALTECH in Pasadena. He was appointed
Millikan professor of theoretical physics in 1967. In 1969[19] he was awarded
with Nobel prize. It is commonly accepted that he is the major inventor of
the quark model, although his contribution is objectionable. Nishijima, Pais,

17



CHAPTER 5. QUARK MODEL 18

Sakata, Zweig[2] and others had equal contribution to the formulation of this
theory. But Gell-Mann enforced the quark model with his authority, even he
wasn’t sure about it’s validity. Without him, the quark hypothesis could be
only a weird theory in thesis work of some Ph.D. student in CERN(Zweig).
Such persons are well known and well needed. We can compare him to the
contribution of Carlo Rubbia for the discovery of intermediate bosons or even
Albert Einstein in the beginning of the nuclear bomb research.

5.2 Searching for symmetry

In 1962 Murray Gell-Mann and Yuval Ne’eman[13], an Israeli scientist, indepen-
dently showed that all known hadrons can be grouped into sets which describes
certain symmetry. When we want to classify such group of particles, it is cru-
cial to choose properties by which it will be grouped into categories. If we
make a figure of such categories in the I-S plane, we obtain figures which are
exact copy of SU(3) multiplets. For all hadrons have not been discovered in
that times, these hadrons multiplets were not all completed. Great success of
this approach was the fact that it could be guessed what properties will new
particles have. This is the way how Gell-Mann and Ne’eman found the analogy
between SU(3) multiplets and hadrons. They were even able to foretold the
discovery of particle Ω−, which was observed in Brookhaven. As we know from
the group theory (see appendix) if we can describe something with group the-
ory it suggests some kind of internal symmetry. The beauty of SU(3) symmetry
does not, however, explain, why it holds true. In 1964 Gell-Mann and George
Zweig[13] independently decided that this symmetry has to lie in the funda-
mental nature of hadrons. The simplest nontrivial representation of SU(3) has
three elements, from which we can construct all multiplets of SU(3) by means
of the decomposition of tensor product. That says all states which represent
hadrons can be composed of three fundamental states. This nontrivial repre-
sentation is crucial for SU(3). They both made suggestion that the hadrons
were not simple structures, but were instead built from three basic particles,
which corresponds to that nontrivial representation. Zweig called them ”aces”
and Gell-Mann ”quarks”[2]. We will stick to the name quark. For this to be
possible,quarks had to have some unusual properties. That was the reason ev-
eryone, except Zweig, talked about them as a useful mathematical fiction. But
through years there were some indirect proves for the existence of quarks. So
in 1964 Gell-Mann and Zweig required only three quarks to build all known
particles. These were called by Gell-Mann up, down and strange. This model
provided a simple picture in which all mesons are consisting of a quark and an
antiquark and all baryons as composed of three quarks. That corresponds to
the tensor product of 3 and 3. Meson states can be achieved by decomposing
tensor product into the sum of irreducible representations. In symbolic notation

3⊗ 3 = 8⊕ 1

So each meson is described as a state of octet or singlet. Baryon states can
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be achieved by decomposing

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1

So each baryon is described as a state of a decuplet, octet or singlet. The up
quark has the charge of 2

3 and down and strange quark has the charge of − 1
3 .

Each has baryon number 1
3 and spin 1

2 (see 8.3 and 7.6).



Chapter 6

Parton model

6.1 Electron-proton scattering - the chase for
quarks

In 1955 Robert Hofstadter[2] and his group at Stanford University turned atten-
tion to the investigation of the structure of individual nucleons. He used 200MeV
electrons in elastic electron-proton scattering. The results showed that the pro-
ton does not behave as a point-like source of the Coulomb field. Furthermore,
the root-mean-square radius of proton rch = rmag = 0, 7± 0, 24 fm was deter-
mined from the results of that experiment. Later in 1955 the electron energy
was increased to 550MeV so it could reach the momentum transferred squared
up to 0, 5GeV 2 and improve the precision of measurement of the Coulomb field
distribution in proton. These investigations were completed in early sixties us-
ing 1000MeV electron beam from the Mark III Linac. Success of this 1GeV
Linac lead to the decision to build a new electron linear accelerator with ener-
gies up to 20GeV at Stanford Linear Accelerator Center (SLAC). Primary aim
of that research was the extension of elastic scattering experiments as well as
the quasi-elastic scattering (electro-production of resonances) and just for com-
pleteness the inelastic continuum. The two miles long machine was built in late
1966 and in 1967 the group of experimentalists from SLAC and MIT started a
series of deep inelastic electron-proton scattering experiments, but only as an
extension to elastic experiments. The first results on electron-proton were ob-
tained in early 1968 and were reported[2] at the IV. International Conference on
High Energy Physics in July of the same year. Previous effects were approved
up to Q2 ∼ 30GeV 2, furthermore from inelastic part the first possibility that
nucleon is composed of point-like charged structures came. But still no-one had
any ideas how the inelastic formfactors(structure functions F1(x,Q2), F2(x,Q2))
depend on Q2. Although quark model has been already formulated, it hadn’t
been considered to have any dynamic effects. It was just static model. Theoret-
ical framework describing this phenomena was created mostly by James Bjorken
and Kurt Gottfried[2]. This was the first step to dynamic model of hadrons.

20
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6.2 Dynamic solution of quark model

The first MIT-SLAC results on deep inelastic scattering presented in summer of
1968 had attracted the attention of most theorists, mainly Richard P. Feynman
and Bjorken. Feynman had developed the basic ideas of the parton model dur-
ing several visits to SLAC in autumn 1968. He is considered to be the author of
that model although he hadn’t published it as first[2]. The first published paper
on parton model and his application to the analysis of deep inelastic scatter-
ing of leptons on nucleons was written by Bjorken and Paschos in April 1969.
The basic idea of Feynman model is to present the inelastic electron-proton
scattering as quasi-free scattering from point-like constituents within the pro-
ton. Crucial for the interpretation of this proces is its description in the system
of infinite proton momentum and the presumption of deep inelastic scattering.
Model also contained the mechanism of hadronisation i.e. the conversion of
final state partons into observable hadrons. The spin 1

2 nature of charged par-
tons immediately raised the question of their relation to the constituent quarks.
Although there is a close relation between them, these two concepts are not
identical. It has become generally accepted practice[2] to call Feynman’s parton
model the Quark Parton Model (the charged, spin 1

2 partons, are usually called
current quarks to emphasize the difference from constituent quarks). The mass
of current ones is about 10MeV in contrast to static constituent ones, which are
predicted to be about 300MeV (for u,d). Furthermore, there is no fixed number
of current quarks inside proton.

6.3 Genesis of Quantum chromodynamics

In 1969 we were in situation when Feynman and Bjorken formulated the parton
model as the result of experimental data from SLAC. In that model nucleon
behaved in hard collisions as a beam of almost non-interacting point-like con-
stituents. By the early 1973 the data had provided the evidence for identification
of charged partons with quarks and indirect evidence for the presence of neu-
tral partons in nucleon as well[2]. The candidates for neutral partons were the
gluons introduced by Nambu in his model of interquark forces mediated by the
exchange of octet of ”colored” vector bosons. By 1973 most important parts of
complete strong interaction theory were invented. The last step was to show
that the quark-parton model follows from some local field theory. The main
influence on the final formulation had David Gross and Frank Wilczek on 24th
of April and independently David Politzer on 3rd of May[2]. The crucial step
was the formulation of the property of asymptotic freedom. The full formulation
of Quantum chromodynamics was published in Physical Review at the end of
July 1973. Major results of this theory can be summarized as following. Quarks
in hadrons are bound together by exchanging gauge bosons called gluons. The
quarks carry a property called color that is analogous to electric charge. So
every colored particles ”feel” strong interaction and exchange gluons. This also
applies to gluons themselves. Gluons are massless and have the spin of 1. There
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are three types of color charge called blue,green and red followed by anticolors.
Quarks each carry a single color charge, while gluons carry both a color and an-
ticolor charge. The strong force acts in such a way that quarks of different color
are attracted to one another but those of the same color repel each other. The
quarks can combine only in ways that give a net color charge of zero. The color
of quark and the anticolor of antiquark cancels each other. The main property
of color theory is that no color charged particles can be seen in unbound state.
Therefore we cannot see free quarks or gluons.



Chapter 7

More quarks on scene

7.1 Charm quark,SU(4)

In late 1960s after the GWS theory was formulated, there became a problem with
combining it with Gell-Mann’s model of three quarks[6]. From the beginning
of GWS model it was obvious that an application of local gauge symmetry
SU(2) × U(1) to weak and electromagnetic interactions between quarks u,d,s
yields to direct interaction of quarks d,s and neutral boson Z0. So there is a
soft neutral current in which the strangeness does change. Major influence of
this conclusion can be seen on K− decay because

K− → π− e+ e−

K− → π0 e− ν

shall be of the same frequency. This is in conflict with experimental data. In
1970 Sheldon Glashow, John Iliopoulos and Luciano Maiani[6] proposed a four
quark model which was electroweak local symmetry compatible. The prediction
also contained properties of new quark - charge 2

3 and new quantum number
called ”charm” which is conserved in strong interaction but not in weak interac-
tion. This quark was called ”charmed” by Bjorken and Glashow and denoted c.
The rest mass was predicted to be 1, 5GeV. But that still was only theoretical
scheme. In autumn of 1974 there was an interesting discovery. As usual it was
made by two groups independently. At SLAC in Stanford under Burton Richter
a resonance was observed at 3, 1GeV with surprisingly small width(keV) in col-
liding beams of electrons and positrons. They called this particle ψ[23]. At
Brookhaven under Samuel Ting a resonant structure at 3, 1GeV was identified
in proton-Beryllium interactions. They called it J[25]. The resonance was found
in the electron-positron decay channel. They informed themselves in 11.11.1974
and published results in Physical Review Letters calling the new meson J/ψ.
Ten days after the first discovery Richter’s group identified[24] another reso-
nance called ψ′ at 3, 7GeV. It was obvious, that both are bound states of cc.

23
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After this discovery, quarks were widely accepted as physical entities. It has to
be said that J/ψ and ψ′ are called ”hidden charm” particles because both are
cc and therefore they possess the charm 0. The next step was to find ”overt
charm” particles. That was done at Stanford in 1976. The new mesons were D+

and D0, which consists of cd(cu). Richter and Ting obtained Nobel prize[19] for
their discoveries in 1976. With the discovery of fourth quark the SU(3) flavor
symmetry was extended into SU(4) one. Multiplets of SU(4) were constructed
in three dimensions Y −T3−C space where C denotes charm quantum number
(see figs7.5,7.6). There are three Casimir operators so the rank is equal 3.

4⊗ 4⊗ 4 = 20⊕ 20⊕ 20⊕ 4
4⊗ 4 = 15⊕ 1

Gell-Mann Nishijima equation has the form of

Q = T3 +
Y + C

2

7.2 Bottom quark,SU(5)

Although it seemed that the symmetry in lepton and quark families were re-
stored, in 1975 there became a problem again by discovering τ lepton. There
is a serious reason for the symmetry between the number of quarks and lep-
tons. It is the inner consistence of perturbative expansion in GWS theory (and
also the ability to renormalize Feynmann diagrams in high orders of perturba-
tive expansion)[6]. So until 1977 there was an intensive search for other two
quarks. In 1977 at FNAL(Fermilab) the team led by Leon Lederman[2] found
fifth quark. They were studying the production of lepton pairs in hadronic col-
lisions and found two resonance peaks in spectrum of µ+µ− pairs produced in
collisions of 400GeV protons with nuclei. Invariant masses were 9, 5GeV and
10GeV and new particles were signed Υ and Υ′(upsilon)[26]. It was again ob-
vious that they form a bounded state of a new quark denoted b(bottom). The
bottom quark has the mass of 4, 5GeV and charge − 1

3 and presents new quan-
tum number ”beauty”. It also extended quark model which is now described
by SU(5).

7.3 Top quark

The existence of the sixth quark (which would complete the third generation of
quarks) was widely expected after the discovery of the bottom quark. It can
be noted that many theorists tried to derive its mass from existing theories but
all failed[2] before the LEP results. From precise measurement of Z0 and W±

bosons properties followed that the mass of top quark is in the range of 170 −
180GeV. Top quark was first discovered in two experiments D0[27] and CDF[28]
at FNAL on Tevatron in proton antiproton collisions with energy 1, 8TeV and
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it was confirmed next year. The rest mass was determined as 174± 5GeV and
therefore it is the heaviest elementary particle known. The mean lifetime of t
quark was determined as 10−25s and so we can ask whether it is an elementary
particle because it decays faster than it can form any bound state. This is the
reason, why the hadron spectrum cannot be described by SU(6) multiplets. Top
quark holds a new quantum number ”true”. Therefore the final quark model
symmetry is described by SU(6). Generalized Gell-Mann Nishijima equation is

Q = T3 +
Y + C +B + T

2
.

Multiplets of SU(6) are five dimensional objects in Y −T3−C−B−T space.

6⊗ 6⊗ 6 = 56⊕ 70⊕ 70⊕ 20
6⊗ 6 = 35⊕ 1

7.4 Quark properties

The properties of all quarks are summarized in the following table

Figure 7.1: Summary table of quark properties

7.5 Pentaquarks

In the formulation of quark model there was postulated that baryons consist of
three quarks and mesons of quark antiquark pair. This is the simplest way to
satisfy all hadron properties. But soon there arose questions whether there can
exist ”exotic” hadrons. Mainly exotic baryons composed of four quarks and an
antiquark qqqqq called pentaquarks and exotic mesons composed of two quarks
and two antiquarks qqqq called tetraquarks. No theory forbids such compound,
even QCD doesn’t. Physicists have searched for a five-quark state for more
than 35 years. In 1997 Dmitri Diakonov, Victor Petrov and Maxim Polyakov
predicted from the chiral soliton model an exotic isoscalar antidecuplet of five-
quark resonances.



CHAPTER 7. MORE QUARKS ON SCENE 26

Figure 7.2: Pentaquark decuplet, three of particles with exotic-flavour quantum
numbers [34]

In recent years four laboratories (LEPS in Osaka Japan, Jefferson Lab in
Ohio US,ITEP in Moscow Russia and ELSA in Bonn Germany.)[29][33] pre-
sented a discovery of a baryon bound state with antiquark s. Therefore such
baryon has to be pentaquark with predicted composition uudds called Θ+ with
a mass of 1540MeV. Next indirect proof is the Θ+ strong decay into neutron
and K+. Several groups of theorists formed theories describing such quark mul-
tiplets. Some of them presented a model of Θ+ composed of (ud)(ud)s, where
(ud) are correlated doublequarks, or model with ”molecular” bound state of me-
son and baryon. But in spite of that all this phenomena remain objectionable,
because some physicists and also laboratories which presented the discovery
started to annulate that discovery[32],[31],[30].

7.6 Final conclusion - present state

After we have reviewed history of hadron discoveries, let’s associate particles
with algebraic structure of group theory. In the chapter 8.3 the connection be-
tween particle multiplets and multiplets of SU(N) is presented. Each particle
multiplet can be described by its maximum weight states (T3)max and (Y )max

and SU(N) multiplet can be uniquely characterized by two numbers p,q. But
two particle multiplets can have the same shape, although they contain different
set of particles. So this correspondence is not unique. It suggests the demand
of some degrees of freedom to differ such multiplets. We can use total angular
momentum J and parity of particle P . So each particle multiplet is uniquely
characterized by two maximum weight states and two ”inner” degrees of free-
dom JP . Although from the view of group theory, two particle multiplets with
the same maximum weight states are identical. As an example of two different
particle multiplets described by the same SU(N) multiplet are octets of pseu-
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doscalar 0− and vector 1− mesons. Some SU(3) and SU(4) particle multiplets
for mesons and baryons are shown in figs7.3,7.4,7.5,7.6.

Figure 7.3: Pseudoscalar meson octet
and singlet Figure 7.4: Baryon octet and decuplet

Figure 7.5: SU(4) meson states Figure 7.6: SU(4) baryon states

In the present state of knowledge we distinguish about 240[7] mesons and
their excited states and about 135[7] baryons and their excited states. The
hadronic spectrum is described by multiplets of SU(5) symmetry group.
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Mesons
light unflavoured(S=C=B=0) 121

strange(S=±1,C=B=0) 51
charmed(C=±1) 18

charmed,strange(S=C=±1) 12
bottom(B=±1) 7

bottom,strange(B=S=±1) 3
bottom,charmed(B=C=±1) 1

hidden charmed(C=±0) 14
hidden bottom(B=±0) 13

Baryons
N baryons(S=0,I= 1

2 ) 15
∆ baryons(S=0,I=3

2 ) 40
exotic baryons 1

Λ baryons(S=-1,I=0) 14
Σ baryons(S=-1,I=1) 30
Ξ baryons(S=-2,I= 1

2 ) 12
Ω baryons(S=-3,I=0) 2

charmed baryons(C=+1) 20
bottom baryons(B=-1) 1



Chapter 8

Mathematical framework of
Lie groups

8.1 General introduction into group theory

Let’s review some of well-known facts about groups.

Definition 1 Some non-empty set G,which has a binary operation ? : G×G→
G (a, b)→ a ? b defined and which meets requirements:

(1) ∀a, b, c ∈ G a ? (b ? c) = (a ? b) ? c

(2) ∃0 ∈ G (neutral element) ∀a ∈ G (0 ? a = a)

(3) ∀a ∈ G ∃b ∈ G (inverse element) (a ? b = 0)

is called group. If the binary operation is addition(multiplication), we call such
group additive(multiplicative). If the group fulfills the commutative law, it is
called Abelian.

Definition 2 The group G,on which is defined a binary operation [, ] : G×G→
G and which meets requirements:

(1) ∀a, b ∈ G [a, b] = −[b, a]

(2) ∀a, b, c ∈ G [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0

is called algebra.

Definition 3 We will call a group continuous, if its elements are functions of
one or more continuous variables

G = {a(t), b(t), . . .}

where t is of continuous set.

29
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Definition 4 We will call a group continuously connected, if a continuous vari-
ation of the group parameters leads from any arbitrary element of the group to
any other.

Definition 5 Let’s have two groups G and G’ and a transformation between
elements f : G→ G′.
(1) f is called homomorphism ⇔ ∀g1, g2 ∈ G(f(g1?g2) = f(g1) ?

′ f(g2)). The two
groups are called homomorphic.
(2) f is called isomorphism⇔ f is bijective homomorphism and hence f−1 exists.
The two groups are called isomorphic.

Let’s have two algebras A and A’, which are vector spaces on the number
field K with an inner product [, ]A ([, ]A′) and a transformation between elements
f : A→ A′.
(1) f is called homomorphism ⇔ ∀a1, a2 ∈ A∀α1, α2(f(α1a1+α2a2) = αf(a1) +
α2f(a2)) and f([a1,a2]A) = [fa1 , fa2 ]A′ The two algebras are called homomorphic.
(2) f is called isomorphism⇔ f is bijective homomorphism and hence f−1 exists.
The two algebras are called isomorphic.

Definition 6 If a group G is isomorphic to the space of linear operators on
Hilbert space LH, than the value domain of the transformation is called representation
of G. Especially if we write operators as their matrixes in arbitrary but fixed
basis, they form a group and it is called matrix representation of G

Definition 7 A subset P ⊆ G,which is closed under the binary operation of
group G and under unitary operation inverse is called subgroup of group G.

Definition 8 The subgroup P is called normal(invariant) subgroup if ∀p ∈ G
g.P.g−1 = {g.p.g−1|p ∈ P} = P holds.

Definition 9 The group G is called semisimple, if it does not posses any in-
variant Abelian subgroup. The group is called simple, if it does not posses any
invariant subgroup.

Definition 10 Continuous group, whose elements are given by operators Û(α1,α2,...,αn,r),
which depend on n real parameters, are called Lie group.

We demand differentiability of Û with respect to αi ∀i ∈ n̂. The symbol n̂
means a set {1, 2, . . . , n} from now. The argument r stands symbolically for a
possible coordinate dependence. It is advantageous to choose the parameters
such that Û(~0) = 1 holds.

Theorem 11 One can represent the operators of the group in the form

Û(α1,α2,...,αn,r) = e−i
Pn

µ=1 αµL̂µ ,

where

L̂µ = i
∂Û(~α)

∂αµ
|~α=~0

are operator functions called generators of the group.
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Proof 1 For infinitesimal transformation in the neighbourhood of the identity

Û(δαµ) = Û(0) +
∂Û(~α)

∂αµ
|~α=~0.δαµ = 1− iLµδαµ

If we perform finite transformation αµ composed of N infinitesimal transfor-
mations, we obtain

Û(αµ) = lim
N→+∞

[Û(δαµ)]N = lim
N→+∞

[1−iLµδαµ]N = lim
N→+∞

[1−iLµ
αµ

N
]N = e−iLµαµ

We have made use of a group property, that we can construct a finite group
element from the product of infinitesimal elements. For more variables we obtain

Û(δ~α) = Û(~0) +
n∑

µ=1

∂Û(~α)

∂αµ
|~α=~0.δαµ = 1− i

n∑
µ=1

Lµδαµ

Û(~α) = lim
N→+∞

[Û(δ~α)]N = lim
N→+∞

[1− i
n∑

µ=1

Lµδαµ]N =

lim
N→+∞

[1− i
n∑

µ=1

Lµ
αµ

N
]N = e−i

Pn
µ=1 Lµαµ . . .Q.E.D

Theorem 12 {L̂µ} has to be linearly independent (that says
∑n

i=1 L̂iδαµ =
0⇔ δαi = 0∀i ∈ n̂)

Theorem 13 If Û(αµ) is unitary (Û†(αµ) = Û−1
(αµ)), than the generators has to

be hermitian.

Proof 2 From further analysis of operator properties comes, that Û−1
(δαµ) =

Û(−δαµ)

Û†(δαµ) = 1 + i
∑

µ

δαµL̂
†
µ

We have chosen real parameters δαµ in definition of group.

Û−1
(δαµ) = 1 + i

∑
µ

δαµL̂µ

⇒
∑

µ

δαµ(L̂†µ − L̂µ) = 0

and δαµ are linearly independent ⇒ L̂†µ = L̂µ ∀µ ∈ n̂
Last implication comes from general law of variational analysis. Q.E.D
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Theorem 14 Group generators have to satisfy commutation relations [L̂k, L̂m] =
ckmjL̂j and therefore form a closed commutator algebra. Constant numbers ckmj

are called structure constants.

Theorem 15 Structure constants cijk are antisymetric in the first two indices
(cijk = −cjik).

Theorem 16 This relation holds for structure constants

cijmcmkn + cikmcmin + ckimcmjn = 0

.

Relations [L̂k, L̂m] = ckmjL̂j and cijmcmkn + cikmcmin + ckimcmjn = 0 form
the fundamental relations of the Lie algebra, which is characteristic of the group.
The structure constants contain all of the information concerning the group.

8.1.1 Interpretation of commutators

The commutation relations can be viewed as a direct generalization of the vec-
torial cross product

L̂i × L̂j = cijkL̂k

This is generalized relation ei × ej = ek in the three-dimensional vector space.
Note that it says, we can obtain ”basis vector” as a cross product of other ”basis
vectors.” Our course of derivation started from Lie group. Then we determined
its generators and then calculated the commutators. In this way we were led to
the Lie algebra. Although, it can be done in reversed order, which is described
by Lie’s theorem.

Theorem 17 (Lie’s theorem) If a set of N hermitian operators L̂i is given,
which is closed under commutation, than these operators L̂i specify a Lie group,
whose generators they are.

An essential characteristic of a Lie group is its rank.

Definition 18 The largest number of generators commuting with each other is
called rank.

For example the translation group (Abelian) has three generators p̂ν =
−i ∂

∂xν , which all commute with each other, and hence the rank is 3. Rota-
tion group SO(3) has rank 1 and SU(3) has rank 2.

Definition 19 Lie group is called simple, if it does not posses continuous in-
variant subgroup. Lie group is called semisimple, if it does not posses a continuous
Abelian invariant subgroup(still it can have non abelian one). For Lie group
holds, that it can contain discrete invariant subgroup and still be simple or
semisimple.
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Let’s look at semisimple group:

âj = ĝν âiĝ
−1
ν /â−1

i ←

âl := âj â
−1
i = ĝν âiĝ

−1
ν â−1

i

Since G and A are Lie groups, we call Ĝk the operators belonging to G and Âj

generators belonging to A. So

ĝν = 1− iδαiĜi − 1
2δαiδαjĜiĜj

âi = 1− iδβkÂk − 1
2δβkδβlÂkÂl

âl = ĝν âiĝ
−1
ν â−1

i = . . . = 1− δαiδβk[Ĝi, Âk]

âl = 1− iδγmÂm

⇒ iδγmÂm = δαiδβk[Ĝi, Âk]

Let’s have iδγm = aikmδαiδβk, so

[Ĝi, Âk] = aiklÂl ∀Ĝi

Therefore, if one can linearly combine M generators Âl (M < N) out of N
generators Ĝi of a Lie group, so that [Ĝi, Âk] = aiklÂl holds, than the Lie group
possesses an invariant subgroup. The M generators {Â1 . . . ÂM} of the invariant
subgroup form a subalgebra of the original Lie algebra. Such subalgebra is called
the ideal.

Theorem 20 Lie algebra is simple if it does not posses an ideal apart from the
null ideal {0}. Lie algebra is semisimple if it does not posses an abelian ideal.

8.1.2 Cartan’s criterion for semisimplicity

We define the symmetric tensor

gσλ = gλσ = CσρτCλτρ

which is called a metric tensor(Killing form). The Cijk are structure constants
of a group. It can be defined for any Lie group and its associated Lie algebra.
The metric can be defined as ρ(L̂i, L̂j) = tr(L̂i, L̂j), where L̂i are generators.
We can take regular representation of Lie group in which the matrix elements
of L̂i are (L̂i)αβ = Ciαβ .

ρ(L̂i, L̂j) = tr(L̂i, L̂j) =
∑
αβ

(L̂i)αβ(L̂j)βα = CiαβCiβα = gij

ρ(L̂i, L̂j) also fulfills all properties of a metric, although, it is not positive defi-
nite.
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Theorem 21 (Cartan’s criterion) Lie algebra is semisimple⇔ det(gσλ) 6= 0

Definition 22 Lie group is called compact if its parametrization consists of a
finite number of topologically bounded parameter domains. Otherwise it is called
non compact. The same applies for related Lie algebra.

Theorem 23 Compact Lie group is semisimple.

8.1.3 Casimir operators

Definition 24 Operator Ĵ is called Casimir operator (invariant operator) of
the group if it commutes with all generators (therefore with all group operators).

Theorem 25 (Racah’s theorem) For any semisimple Lie group of rank l,
there exists a set of l Casimir operators. These are functions of the generators
L̂i (Ĉλ(L̂1 . . . L̂n)) and commute with every operator of the group and therefore
also amongst themselves. The eigenvalues of the Ĉλ uniquely characterize the
multiplets of the group.

Definition 26 Let’s have an subspace of the total Hilbert space. We call it
invariant if it is closed under application of group operators. That is a set of
states which reproduce themselves by application of some operator of the group.
The operators of the group transform the states of the invariant subspace among
themselves.

That also says that matrix elements of the group operators between states
of the invariant subspace and states outside of it vanish

Definition 27 A multiplet is an irreducible invariant subspace of a group(subspace
which does not contain a further invariant subspace).

In terms of the group theory, a set of degenerate states is called a multi-
plet. The multiplet depend on symmetry group. Each group has a well-defined,
unique and partly characteristic set of multiplets. Although these multiplets
are determined by the structure of the group, there exists no general method to
find them for arbitrary continuous groups. Only for semisimple Lie group, we
can use the Racah theorem.

8.1.4 Invariance under symmetry group

Let Û(~α) be arbitrary operator of a symmetry group. The invariance of the
system under the group U means that both the initial state ψ and the state
ψ′ = Û(~α)ψ generated by the symmetry operation fulfill the same Schrödinger
equation with the same Hamiltonian
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i
∂

∂t
ψ = Ĥψ /→ ∗ Û(~α) 6∼ t!!!

i
∂

∂t
ψ′ = Ĥψ′

i
∂

∂t
Û(~α)ψ = Û(~α)ĤÛ

−1
(~α)Û(~α)ψ

⇒ Û(~α)ĤÛ
−1
(~α) ⇔ [Û(~α), Ĥ] = 0

The invariance of the system under the group U necessarily means that Ĥ
commutes with all group operators Û(~α), and, therefore that it also commutes
with all generators of the group

[L̂i, Ĥ] = 0 ⇒ Ĥ is Casimir operator for symetry group

Whenever a system is in eigenstate of Hamiltonian

Ĥψ0 = E0ψ0

then

Û(~α)Ĥψ0 = Û(~α)E0ψ0 ∧ ĤÛ(~α) = Û(~α)Ĥ ⇒ Ĥ(Û(~α)ψ0) = E0(Û(~α)ψ0)

So all other states Û(~α)ψ0 of the multiplet are eigenstates of Hamiltonian
with the same eigenvalue E0 (Hamiltonian is degenerate on each multiplet of
symmetry group). This also holds for other Casimir operators. In other words,
for a given multiplet the operators Ĉλ possess a common set of eigenvalues
C1 . . . Cl. Thus the Racah theorem guarantees that each multiplet is related
uniquely to a set of eigenvalues C1 . . . Cl.

8.1.5 Construction of Casimir operators

There is no general way to construct Casimir operators for arbitrary group. We
have to analyze each group separately.

Theorem 28 For SU(n), the Casimir operators have to be simple homogenous
polynomials in the generators

Ĉλ =
∑
ij

aλ
ij . . . L̂iL̂j . . .

where aλ
ij are functions of the structure constants.

Theorem 29 Casimir operators are not unique. If Ĉ ′, Ĉ are Casimir oper-
ators, than Ĉ ± Ĉ ′ are Casimir operators. Also Ĉα and ĈαĈ ′β are Casimir
operators.
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Theorem 30 If the group operators are unitary and hence the generators L̂i

are hermitian, than one can always construct the Casimir operators of a unitary
semisimple Lie group as hermitian operators.

Proof 3 Ĉ is invariant operator ⇒

ĈÛ(~α) = Û(~α)Ĉ ∧ Ĉ†Û†(~α) = Û†(~α)Ĉ
†

From unitarity of Û(~α) comes Û†(~α) = Û−1
(~α).

So Ĉ† commutes with Û−1
(~α), which is by definition also a group element. That

means Ĉ† commutes with all group operators. Obviously operator Ĉ ′ = Ĉ + Ĉ†

is hermitian and therefore for all Casimir operators we can pass to new set of
Casimir operators, which are hermitian.

Q.E.D

Theorem 31 One of the Casimir operators is always given by

Ĉ1 = gρσL̂ρL̂σ

where gρσ is inverse metric tensor (for semisimple group always exists)

Theorem 32 For Abelian Lie group it’s rank is equal to it’s number of gen-
erators L̂i. These are invariant operators themselves and therefore Casimir
operators.(So Racah theorem can be extended to all Abelian Lie groups)

Although the l Casimir operators are not uniquely determined, they form a
complete set:

Theorem 33 (Completeness relation) Each operator Â which commutes with
all operators of a Lie group is necessarily a function of the Casimir operators
Ĉλ of the group

Â = Â(Ĉλ)

(So Casimir operators are the largest set of independent operators, which com-
mute with the group operators)

So if a system has certain symmetry, than the corresponding Hamiltonian
must commute with the generators and therefore with Casimir operators. Al-
though, it means that Ĥ itself has to be built up from invariant operators of
symmetry group.

8.1.6 The connection between coordinate and function trans-
formations

A the beginning of this chapter, we had stated, that every operator of group
can be written in the form

Û = e−i
P

αµL̂µ .
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Now we will try to prove it more exactly.
Let’s have a Lie group consisting of transformation s of coordinates xi → x′i

~x′ = ~f(~x,~a)

where ~x and ~x′ are n-dimensional space vectors and ~a represents the r group
parameters. The parameters are chosen such that ~a = ~0 yields to identity

~x = ~f(~x,~0)

If we perform an infinitesimal transformation d~a from ~x to ~x′ = ~x+d~x, than

~x+ d~x = ~f(~x,d~a) ~x = ~f(~x,~0)

⇒ d~x =
∂

∂~a
~f(~x,~a)|~a=~0d~a

Let’s put ~t(~x) = [ ∂
∂~af(~x,~a)]|~a=~0, so d~x = ~t(~x)d~a

We can write it in components:

dxi = [
∂

∂aµ
fi(~x,~a)]|~a=~0da

µ = tiµda
µ i ∈ n̂, µ ∈ r̂

Now we will discuss the change of function F(~x) under the transformation
d~a.

dF =
∂F(~x)

∂~x
d~x =

∑
i

∂F(~x)

∂xi
dxi =

∑
i,µ

∂F(~x)

∂xi
tiµ(~x)da

µ =

=
∑
i,µ

daµ{tiµ(~x)
∂

∂xi
}F(~x) = −i

∑
µ

daµL̂µ(~x)F(~x)

Where the r quantities L̂µ = i
∑

i tiµ(~x)
∂

∂xi
are generators of the group.

That’s because the transformed quantity F(~x,~a) has to be obtained by successive
transformations from F(~x). So daµ = aµ

N and

F(~x,~a) = lim
N→+∞

(F(~x,~0) + dF )N = lim
N→+∞

(F(~x,~0) − i
∑

µ

daµL̂µ(~x)F(~x))N =

= lim
N→+∞

F(~x,~0)(1− i
∑

µ

daµL̂µ(~x))N = lim
N→+∞

F(~x,~0)(1− i
∑

µ

aµ

N
L̂µ(~x))N =

= e−i
P

µ L̂µaµ

F(~x,~0) = Û(~x,~a)F(~x,~0)

So Û(~x,~a) = e−i
P

µ L̂µaµ

are group operators and L̂µ are generators.
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8.2 Special unitary group SU(N) and it’s repre-
sentation

A unitary operator represented by unitary matrix n× n can be written as

Û = eiĤ

where Ĥ is hermitian operator represented by matrix n × n. All such op-
erators form a group under matrix multiplication called U(N). Because Ĥ is
hermitian, the diagonal matrix elements are real

Ĥ† = Ĥ ⇒ Ĥ∗
ii = Ĥii ∀i ∈ n̂

It is obvious that Û depends on n2 real independent parameters. The group
U(N) is continuously connected and represents a compact Lie group. For the
unitary matrix holds that |detÛ | = 1.

Theorem 34 If Û ∈ U(N) than detÛ = eiTrĤ

Proof 4 Ĥ is hermitian, so all diagonal elements are real and therefore the
exponential on the right side is good defined. Matrix Û is unitary and so we can
diagonalize it. Let S be the matrix which describes the diagonalization so that
Û ′ = ŜÛ Ŝ−1 and Û ′ is diagonal.

detÛ ′ = det

 U ′11 0
. . .

0 U ′nn

 = detŜÛ Ŝ−1 = detŜdetŜ−1detÛ = detÛ

If Û ′ is diagonal than Ĥ has to be diagonal too.

detÛ = detÛ ′ = det eiĤ′
= det e

i

0BBBB@
H ′

11 0
. . .

0 H ′
nn

1CCCCA

= det

 eiH′
11 0

. . .
0 eiH′

nn

 =
n∏

i=1

eiHii = ei
Pn

i=1 Hii

= eiTrH′
= eiTrH

because TrĤ ′ = TrŜĤŜ−1 = TrĤŜŜ−1 = TrĤ where we have used the equa-
tion TrÂB̂ = TrB̂Â

Q.E.D
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If we put another condition on group members

detÛ = +1

there will be n2− 1 independent parameters. Such operators form a continuous
compact Lie group denoted by SU(N). Obviously SU(N) is subgroup of U(N).
If we take Û ∈ U(N) and Û0 ∈ SU(N) the relation between these groups is
manifested by relation

Û = Û0(ei α
n 1) Ĥ = Ĥ0 +

α

n
1 ∧ α = TrĤ

From this follows that every element of U(N) can be decomposed to an SU(N)

element multiplied by U(1) element. Generators: The group U(N) has n2 gener-
ators λj . From infinitesimal transformation

Û(δΦj) = eiĤ(δΦj) = 1− iĤ(δΦj) = 1− i
n2∑
i=1

δΦj λ̂j

From hermicity of Ĥ we choose n2 linearly independent hermitian matrixes
as generators and consequent relation holds

[λ̂i, λ̂j ] = icijkλ̂k

The generators of SU(N), in analogy to those of SU(N) can be chosen as
n2 − 1 linearly independent hermitian matrixes with trace equal to zero! The
same commutation relations holds for SU(N).

8.2.1 Special unitary group SU(2)

The SU(2) consists of two-dimensional unitary unimodular matrixes, which con-
tains three parameters. As generators we need three linearly independent trace-
less matrixes. We choose

σ̂1 =
(

0 1
1 0

)
σ̂2 =

(
0 −i
i 0

)
σ̂3 =

(
1 0
0 −1

)
referred as Pauli matrixes. The commutation relations read [σ̂i, σ̂j ] = 2iεijkσ̂k

We can simplify it by introducing Ŝj = 1
2 σ̂j , which holds [Ŝi, Ŝj ] = iεijkŜk.

Operators of SU(2) can be expressed as

Û = e−i
P3

j=1 Φj Ŝj

Maximum number of commutating generators is 1, so is the rank and from
Racah theorem we have 1 Casimir operator

Ŝ2 = Ŝ2
1 + Ŝ2

2 + Ŝ2
3

So the SU(2) multiplets are characterized with eigenvalue of only one oper-
ator.
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8.2.2 Special unitary group SU(3)

The group SU(3) has 8 generators denoted as λ̂1, λ̂2, . . . , λ̂8. Because SU(2) is
subgroup of SU(3), we can construct λ̂1, λ̂2, λ̂3 from σ̂1, σ̂2, σ̂3 by extending them
to three dimensions

λ̂1 =

 0 1 0
1 0 0
0 0 0

 λ̂2 =

 0 −i 0
i 0 0
0 0 0

 λ̂3 =

 1 0 0
0 −1 0
0 0 0


Others can be constructed from λ̂1 and λ̂2 by shifting non-zero elements

λ̂1 =

 0 1 0
1 0 0
0 0 0

 → λ̂4 =

 0 0 1
0 0 0
1 0 0

 → λ̂6 =

 0 0 0
0 0 1
0 1 0



λ̂2 =

 0 −i 0
i 0 0
0 0 0

 → λ̂5 =

 0 0 −i
0 0 0
i 0 0

 → λ̂7 =

 0 0 0
0 0 −i
0 i 0


Finally λ̂8 is determined as

λ̂8 =
1√
3

 1 0 0
0 1 0
0 0 −2


The factor 1√

3
was chosen in order to Trλ̂iλ̂j = 2δij ∀i, j ∈ 8̂ hold. All λ̂′s

are hermitian and traceless and [λ̂i, λ̂j ] = 2ifijkλ̂k from a closed Lie algebra.
The λ̂3 and λ̂8 are already diagonal. That implies rank of the group is 2 and
there are 2 Casimir operators. So each multiplet will be characterized with
eigenvalues of two Casimir operators. It is useful to redefine the generators as
F̂j = 1

2 λ̂j so that

[F̂i, F̂j ] = ifijkF̂k

holds. Now we will show the spherical representation of the F̂ operators:

T̂± := F̂1 ± iF̂2

Û± := F̂6 ± iF̂7

V̂± := F̂4 ± iF̂5

T̂3 := F̂3

Ŷ :=
2√
3
F̂8

(8.1)
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It is simply just a transition from one group of generators to another. And
commutation relations for this representation are

[T̂3, T̂±] = ±T̂± , [T̂+, T̂−] = 2T̂3

[T̂3, Û±] = ∓ 1
2 Û± , [Û+, Û−] =

3
2
Ŷ − T̂3 =: 2Û3

[T̂3, V̂±] = ± 1
2 V̂± , [V̂+, V̂−] =

3
2
Ŷ + T̂3 =: 2V̂3

[Ŷ , T̂±] = 0 , [T̂3, Ŷ ] = 0
[Ŷ , Û±] = ±Û± , [Ŷ , V̂±] = ±V̂±

[T̂+, V̂+] = [T̂+, Û−] = 0
[Û+, V̂+] = 0 , [T̂+, V̂−] = −Û−

[T̂+, Û+] = V̂+ , [Û+, V̂−] = T̂−

Furthermore T̂+ = T̂ †− Û+ = Û†− V̂+ = V̂ †− and we can write Casimir
operators as

Ĉ1 =
∑

F̂ 2
i

Ĉ2 =
∑

dijkF̂iF̂jF̂k = Ĉ1(2Ĉ1 −
11
6

)

8.2.3 Subalgebras of SU(3);shifting operators

In order to become familiar with SU(3) algebra, we study some of its subalgebras.
Operators T̂3, T̂+, T̂− form a closed subalgebra

[T̂+, T̂−] = 2T̂3 , [T̂3, T̂±] = ±T̂±
The same holds for {Û3, Û−, Û+} and {V̂3, V̂−, V̂+}. We denote it T,V,U-spin

algebras for all three of them are subalgebras of SU(3) and they are isomorphic
to SU(2) the spin algebra. The operators T̂±, Û±, V̂± are also shift operators.
From equation [Ŷ , T̂3] = 0 comes that operators Ŷ , T̂3 may be simultaneously
diagonalized so we will show effect of these operators on an eigenstate |Y, T3 >.
Operators V̂± transform a state with quantum numbers T3 and Y into a state
T3 ± 1

2 and Y ± 1. Operators Û± transform a state with quantum numbers T3

and Y into a state T3 ∓ 1
2 and Y ± 1. Operators T̂± transform a state with

quantum numbers T3 and Y into a state T3 ∓ 1 and Y.
Let’s review some facts about T,U,V spin algebras and their coupling:

1. SU(3) algebra has T,U,V subalgebras;each isomorphic t o SU(2) Therefore
SU(3) multiplets can be constructed by means of coupled T,U,V multiplets.

2. The operators T̂3, Ŷ and also Û3 = 1
2 ( 3

2 Ŷ − T̂3) and V̂3 = 1
2 ( 3

2 Ŷ + T̂3) can
be simultaneously diagonalized with eigenvalues
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Figure 8.1: The effect of shift operators in Y - T3 plane

T3 , Y ,
1
2
(
3
2
Y − T3) ,

1
2
(
3
2
Y + T3)

3. The shift operators act on the states of SU(3) multiplet according to figure
( ten nad tim ). The end points of these operators are situated on a regular
hexagon.

4. SU(3) multiplet is constructed from a T multiplet, V multiplet, U multi-
plet. These submultiplets must be coupled because of commutation rela-
tions.

5. From the equivalence of T,U,V the representations of SU(3) multiplets
within the Y − T3 plane have to be regular (not necessarily equilateral)
hexagons or triangles.

6. From the same equivalence comes that a figure representing an SU(3) mul-
tiplet has to be symmetric with respect to the axis T3 = 0, U3 = 0, V3 = 0

Figure 8.2: The axes orientation in Y - T3 plane

7. The origin Y = 0, T3 = 0 is the center of each multiplet.

Let’s look at quantitative analysis of multiplets. Consider the state which
belongs to the largest T3 value in the mutiplet(”the maximum weight state”)

ψmax = |T3maxψ >
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and T̂+ψmax = V̂+ψmax = Û−ψmax = 0 otherwise it would raise the T3

value. The boundary of multiplet can be constructed by repeated application
of V̂− on ψmax. Let’s assume it can be done p times and then

V̂ p+1
− ψmax = 0

As soon as V̂ p
−ψmax is reached we may follow the boundary of the multiplet

by a repeated action of T̂− on a state. Let’s say it can be done q times till

T̂ q+1
− V̂ p+1

− ψmax = 0

Figure 8.3: The boundary in the SU(3) multiplet

The numbers p and q define a multiplet of the group SU(3). We have done
this because it can be proven that the boundary of the multiplet always has to
be convex. The mesh points of the boundary of an SU(3) multiplet are occupied
by only one state. On the next layer of weight diagram each mesh point is
occupied by two states. The following shell has triple occupancy and so on
till the hexagon changes into the triangle (let’s say after r steps). Now every
shell point carries r+1 states. From now on each point has has the same r+1
multiplicity. It is described in figure 8.4.

Figure 8.4: The multiplicity of states in the shell

Or it can be said that T̂− increases the number of states each time it jumps
from one shell to another till it comes through zero.
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8.3 Physical connection to multiplets

We have already shown that SU(3) symmetry yields to multiplet structure.
Question remains how to interpret it in the reality. In searching for physi-
cal interpretation of SU(3)the crucial step is to understand consequences of the
SU(3) representation and its quantum numbers T3 and Y. The T,U,V spin ful-
fill the angular momentum algebra and forms subalgebras of SU(3). That will
enable us to classify elementary particles within SU(3) multiplets if we interpret
Y as hypercharge and T as isospin. We know that isospin multiplets in a given
SU(3) multiplet are given by parallels to the T3 axis. In the first step we define
charge operator by

Q̂ =
1
2
Ŷ + T̂3

We denote the SU(3) states by |T3Y α >, where α abbreviates additional
quantum numbers given by two Casimir operators which classify the multiplets
uniquely. In other words α specifies which multiplet we take and T3Y defines
the position in multiplet. The eigenvalue equations

Ŷ |T3Y α > = Y |T3Y α >

T̂3|T3Y α > = T3|T3Y α >

gives for charge operator

Q̂|T3Y α >=
Y

2
+ T3|T3Y α >

Let us now look at the smallest non trivial representation of SU(3). As we
know, the isospin doublet with T = 1

2 is the smallest nontrivial representation
of isospin SU(2). This implies that we can construct all higher multiplets from
this representation. Technically it is achieved by Clebsch-Gordan coupling of
isospins T = 1

2 to arbitrary isospin. This cannot be performed with the lowest
SU(2) multiplet T = 0. In that sense the T = 0 multiplet of SU(2) is trivial. Be-
cause the SU(3) F-spin algebra contains the isospin as a subalgebra, the smallest
SU(3) representation we are looking for must contain at least one T = 1

2 charge
doublet. Obviously T-spin, U-spin and V-spin algebras are fully symmetric in
F-spin algebra. Consequently, the SU(3) multiplet must contain T,U,V dou-
blets. So we are led to two equilateral triangles in Y − T3 plane. As required
by symmetries, they are centered around the origin. We denote them [3] and
[3̄] because they contain 3 states. See figure 8.5

If [3] stands for particles, then [3̄] represents the corresponding antiparticles
since the state ψ̄ν ; ν ∈ 3̂ has opposite hypercharge and T3 and thus the charge
compared to ψν .

Q̂ψν = Qνψν Q̂ψ̄ν = −Qνψ̄ν
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Figure 8.5: The smallest nontrivial representations SU(3)

Each of these two representations [3] and [3̄] contains an isodoublet T = 1
2

and isosinglet T = 0.

ψ1 = |1
2
Y > ψ2 = | − 1

2
Y > ψ3 = |0Y >

Now we can determine the hypercharge of each state because we know isospin
of each state

T̂3ψ1 =
1
2
ψ1 T̂3ψ2 = −1

2
ψ2 T̂3ψ3 = 0ψ3.

We can see from figure 8.5 that ψ1 is U-spin singlet. Therefore

Û3ψ1 = 0

From definitions of F-spin algebra we can write

Û3 =
3Ŷ − 2T3

4
and therefore

Ŷ ψ1 = 1
3ψ1 Ŷ ψ̄1 = −1

3
ψ̄1

Ŷ ψ2 = 1
3ψ2 Ŷ ψ̄2 = −1

3
ψ̄2

Ŷ ψ3 = − 2
3ψ3 Ŷ ψ̄3 =

2
3
ψ̄3
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This leads to charge eigenvalues

Q̂ψ1 = 2
3ψ1 Q̂ψ̄1 = −2

3
ψ̄1

Q̂ψ2 = − 1
3ψ2 Q̂ψ̄2 =

1
3
ψ̄2

Q̂ψ3 = − 1
3ψ3 Q̂ψ̄3 =

1
3
ψ̄3

This has far-reaching consequences because it presents the state with frac-
tional charge. We can identify states ψν with quarks qν and ψ̄ν with antiquarks
q̄ν . Many physicists have searched for free quarks (L.W.Jones, C.B.A McCusher,
I. Cairus, W.M. Fairbank) but it seems there is a physical law which forbids
the unbound existence of quarks. By applying F-spin operators to quark states
we can prove that transformation properties lead to unitary operators with
detÛ = 1. Furthermore

|qν >′= Û(~Θ)|qν >=
∑

ν

|qµ > Uµν(~Θ)

Uµν(~Θ) =< qµ|U(~Θ)|qν > U(~Θ) = e−i
P

α ΘαF̂α

Generators λα of SU(3) in the [3] representation are equal to Gell-Mann
matrixes. Transformation properties of [3̄] representation are the same as for
[3] when we introduce

ˆ̄~F = − ~̂F ∗

and

U ′
(~Θ)

= U∗
(~Θ)

= e−i~Θ
ˆ̄~F

Note that −F̂ ∗i → ˆ̄F i has nothing to do with hermitian conjugation. In
fact there does not exist any unitary transformation connecting Û and Û ′ and
therefore [3] and [3̄] are independent representations. If the representation were
to be equivalent, their generators would only differ by a unitary transformation
Ŝ

ŜF̂αŜ
−1 = ˆ̄Fα ⇔ Ŝλ̂αŜ

−1 = ˆ̄λα

If λ is the eigenvalue of λ̂α then

Ŝλ̂α|qi >= Ŝλ|qi >= ŜλŜ−1Ŝ|qi >

Now we abbreviate Ŝ|qi >=: |qi >′ and therefore also −λ̂∗α|qi >′= λ|qi >′
and both λ̂α and −λ̂∗α has the same eigenvalue. The λ̂α are hermitian, so
λ̂α = λ̂†α = (λ̂∗α)T and
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det(λ̂α − λ1̂) = det(λ̂∗α − λ1̂) = 0

If we calculate this equation for all α we will come to contradiction for
det(λ̂8). Therefore both representations are independent. Now we have to
satisfy that all SU(3) multiplets can be composed from [3] and [3̄]. This is done
by means of representation coupling. In principal the construction requires only
one of two fundamental representations [3] or [3̄], because one of them can be
derived via Kronecker product

[3]⊗ [3] = [6]⊕ [3̄]

[3̄]⊗ [3̄] = [6̄]⊕ [3]

However for physical reasons we need both of them because quarks and
antiquarks differ by their baryon number and charge. The general Kronecker
product of SU(3) representation contains p triplets and q antitriplets.

[3]⊗ [3]⊗ [3]⊗ [3]⊗ . . .⊗ [3̄]⊗ [3̄]⊗ [3̄]⊗ . . .

The (p,q) state of maximum weight is that one which consists of p quarks
of maximal weight and q quarks of maximal weight (quark states | 12 ,

1
3 > and

antiquark states | 12 ,−
1
3 >). This state is characterized by

(T3)max =
p+ q

2
(Y )max =

p− q
3

From this state we can generate the whole multiplet by means of the shift
operators. We can derive that largest multiplet of p quark q antiquark configu-
ration represents the D(p,q) multiplet. This is the most important connection
between group theory and quark hypothesis.

Here we present simplest multiplets of SU(3). Obviously the most interesting
ones are D(3,0) for baryons and D(1,1) for mesons. At the end lets say some
rules for the decomposition of Kronecker product

N ⊗N =
N − 1

2
⊕ N + 1

2
N ⊗ N̄ = 1⊕N2 − 1
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Figure 8.6: The simplest multiplets of SU(3)



Chapter 9

References

[1] Steven Weinberg, The discovery of subatomic particles-revised edition, Cam-
bridge university press Cambridge,UK, 2003, pages 94-145,151-156

[2] http://www-hep.fzu.cz/ chyla/lectures/text.pdf, pages 16-102

[3] ”proton.” Encyclopaedia Britannica from Encyclopaedia Britannica 2003
Ultimate Reference Suite CD-ROM. Copyright 1994-2003 Encyclopaedia
Britannica, Inc. December 2, 2005.

[4] ”neutron.” Encyclopaedia Britannica from Encyclopaedia Britannica 2003
Ultimate Reference Suite CD-ROM. Copyright 1994-2003 Encyclopaedia
Britannica, Inc. December 2, 2005.

[5] ”subatomic particle.” Encyclopaedia Britannica from Encyclopaedia Britan-
nica 2003 Ultimate Reference Suite CD-ROM. Copyright 1994-2003 Ency-
clopaedia Britannica, Inc. December 2, 2005.

[6] ”hadron.” Encyclopaedia Britannica from Encyclopaedia Britannica 2003
Ultimate Reference Suite CD-ROM. Copyright 1994-2003 Encyclopaedia
Britannica, Inc. December 2, 2005.

[7] ”antiproton.” Encyclopaedia Britannica from Encyclopaedia Britannica
2003 Ultimate Reference Suite CD-ROM. Copyright 1994-2003 Encyclopae-
dia Britannica, Inc. December 2, 2005.

[8] ”Yukawa Hideki.” Encyclopaedia Britannica from Encyclopaedia Britannica
2003 Ultimate Reference Suite CD-ROM. Copyright 1994-2003 Encyclopae-
dia Britannica, Inc. December 2, 2005.

[9] ”Chadwick, Sir James.” Encyclopaedia Britannica from Encyclopaedia Bri-
tannica 2003 Ultimate Reference Suite CD-ROM. Copyright 1994-2003 En-
cyclopaedia Britannica, Inc. December 2, 2005.

49

http://www-hep.fzu.cz/~chyla/lectures/text.pdf


CHAPTER 9. REFERENCES 50

[10] ”meson.” Encyclopaedia Britannica from Encyclopaedia Britannica 2003
Ultimate Reference Suite CD-ROM. Copyright 1994-2003 Encyclopaedia
Britannica, Inc. December 2, 2005.

[11] ”Eightfold Way.” Encyclopaedia Britannica from Encyclopaedia Britannica
2003 Ultimate Reference Suite CD-ROM. Copyright 1994-2003 Encyclopae-
dia Britannica, Inc. December 2, 2005.

[12] ”Gell-Mann, Murray.” Encyclopaedia Britannica from Encyclopaedia Bri-
tannica 2003 Ultimate Reference Suite CD-ROM. Copyright 1994-2003 En-
cyclopaedia Britannica, Inc. December 2, 2005.

[13] ”quark.” Encyclopaedia Britannica from Encyclopaedia Britannica 2003
Ultimate Reference Suite CD-ROM. Copyright 1994-2003 Encyclopaedia
Britannica, Inc. December 2, 2005.

[14] ”J/psi particle.” Encyclopaedia Britannica from Encyclopaedia Britannica
2003 Ultimate Reference Suite CD-ROM. Copyright 1994-2003 Encyclopae-
dia Britannica, Inc. December 2, 2005.

[15] ”baryon.” Encyclopaedia Britannica from Encyclopaedia Britannica 2003
Ultimate Reference Suite CD-ROM. Copyright 1994-2003 Encyclopaedia
Britannica, Inc. December 2, 2005.

[16] ”Rutherford, Ernest, Baron Rutherford of Nelson, of Cambridge.” Ency-
clopaedia Britannica from Encyclopaedia Britannica 2003 Ultimate Refer-
ence Suite CD-ROM. Copyright 1994-2003 Encyclopaedia Britannica, Inc.
December 2, 2005.

[17] ”antiproton.” Encyclopaedia Britannica from Encyclopaedia Britannica
2003 Ultimate Reference Suite CD-ROM. Copyright 1994-2003 Encyclopae-
dia Britannica, Inc. December 2, 2005.

[18] ”strong nuclear force.” Encyclopaedia Britannica from Encyclopaedia Bri-
tannica 2003 Ultimate Reference Suite CD-ROM. Copyright 1994-2003 En-
cyclopaedia Britannica, Inc. December 2, 2005.

[19] www.nobelprizes.org

[20] http://nc25.troja.mff.cuni.cz/dolejsi/historie m4.doc

[21] S. Eidelman et al.,Rewiev of particle physics, Physics Letters B 592, Issues
1-4, 2004

[22] http://cerncourier.com/main/article/39/1/18

[23] J.E.Augustin et al., Phys. Rev. Lett.,35,23,1406(1974)

[24] J.E.Augustin et al., Phys. Rev. Lett.,33,24,1453(1974)

[25] J.J.Aubert et al., Phys. Rev. Lett.,33,23,1404(1974)

http://www.nobelprizes.org
http://nc25.troja.mff.cuni.cz/dolejsi/historie_m4.doc
http://cerncourier.com/main/article/39/1/18


CHAPTER 9. REFERENCES 51

[26] S.W.Herb et al., Phys. Rev. Lett.,39,5,252(1977)

[27] S.Abachi et al., Phys. Rev. Lett.,74,14,2632(1995)

[28] F.Abe et al., Phys. Rev. Lett.,74,14,2626(1995)

[29] Cern Courier,43,7,article 1(2003)

[30] Cern Courier,46,1,article 31(2006)

[31] Cern Courier,45,7,article 16(2005)

[32] Cern Courier,45,5,article 5(2005)

[33] Cern Courier,44,3,article 18(2004)

[34] Cern Courier,43,10,article 1f(2003)

9.1 Bibliography

[1] Francis Halzen & Alan D. Martin, Quarks and leptons:An introductory
course in modern particle physics, John Wiley & Sons Inc. New York,USA,
1984, pages 33-67

[2] W.Greiner, B.Muller, Symmetries, Springer Berlin 2000

[3] Marián Fecko, Diferenciálna geometria a Lieove grupy pre fyzikov, IRIS
publishing Bratislava,Slovakia, 2004, pages 217-226,258-303

[4] http://www-hep.fzu.cz/ chyla/lectures/text.pdf, pages 16-102

[5] http://www.kolej.mff.cuni.cz/ lmotl275/skripta/mzahrad/node17.html

[6] http://nc25.troja.mff.cuni.cz/dolejsi/historie m4.doc

[7] S. Eidelman et al.,Rewiev of particle physics, Physics Letters B 592, Issues
1-4, 2004
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