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teoretickym pedpowdim pro difizi a nabyva mnohemétSich hodnot.Cast této prace se zabyva teoretickym
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Abstract: Tokamaks are the most advanced devices in theroiseé controlled nuclear fusion. In the year 2007
construction of giant tokamak ITER has begun. I'BEBVbal is to demonstrate the technological feaiibdf
magnetic confinement fusion. One of the crucialtpaf the research is the tokamak plasma refuellfay big
devices like ITER, technology of pellet injectinecessary. Pellets, however, disturb the edgenplaand cause
enhanced ELM activity along with increased partahel energy transport. This transport is calledraalous, as it
does not correspond to theoretical predictiondiffdision and it reaches far higher values. PathiE work is aimed
at explaining the theoretical basis of the anonmliffusion. In the second part, with use of expertal data from
the JET tokamak, a post pellet particle transpwryuantified by diffusion coefficient and pelletestion time
calculation.
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1 Introduction

Ongoing research of possible energetic exploitadiom nuclear fusion reactions of light nuclei is
now before an important milestone. The most adwdneeperimental fusion devices are
tokamaks, toroidally shaped vacuum vessels whesmsn@ is confined by a strong toroidal
magnetic field and weaker poloidal magnetic fiéltie poloidal magnetic field in tokamaks is
produced by an induced plasma current. After sdictdemonstration of physical feasibility of
fusion by large tokamaks like JET, the need ofrgdadevice capable of demonstrating the
technological feasibility of fusion and provide thecessary data to design and operate the first
electricity-producing fusion power plant has arisenthe year 2007, the construction of ITER
(international thermonuclear experimental reactokpmak has begun. ITER is an international
project of seven participants: The European Uni@présented by EURATOM), Japan, The
People's Republic of China, India, the Republiofea, the Russian Federation and the USA.
The construction costs of ITER are estimated a Eillion Euro and another five billion Euros
are estimated for its 20-year long operation, tmaking it one of the most expensive research
projects of our time. Its objectives are to achiaveteady-state burn of deuterium-tritium plasma
producing 500MW of fusion power, achieve the poamplification factor Q = 10 and testing of
the inner components facing high-heat and neutro$. It should start its operation by the end
of the year 2016. [1]

Plasma refuelling is one of the most important Amdlamental parts of the tokamak research. It
is desirable to deliver the fuel particles to tleecplasma and confine them for as long as
possible. With the necessity of increasing the rimdda dimensions and plasma temperature it is
more difficult to deliver the fuel particles deeyid the plasma column. Simple gas puff used for
the smaller tokamaks becomes incapable of that &mskis therefore inefficient. The most
important technology of tokamak plasma fuelling foture devices like ITER would beellet
injection Small (1-6mm diameter) solid fuel pellets areeatg¢d at high speeds of hundreds of
meters per second into the plasma. It penetratgsedento the plasma and is therefore generally
more efficient than gas puffing. The fuel particenfinement improves, because it takes a longer
time for a deeper delivered particles to escapm tite magnetic trap diffusively. In experiments,
energy and particle confinement has been obsemednprove along with enhancement of
thermonuclear reactivity. The pellet injection aldlows us to operate at higher densities and to
better control the shape of the plasma densityilpr¢2]

The question of refuelling is also closely conndatéth the energy and particle confinement and
transport in plasma. Magnetic confinement of theglasma particles in tokamaks is not perfect.
The confinement of the toroidally symmetric tokan@&sma has been calculated for particle
Coulomb collisions. This so calledeoclassical transportioes not, however, agree with the
experiments. In particular the thermal transporel@gtrons can be up to two orders of magnitude
grater than predicted by neoclassical theory. tieiseved that this observeshomalous transport
occurs because of plasma instabilities. To expkid understand the theory of anomalous
transport is one of the major challenges for presskamak physics. [3]

This work is based upon previous bachelor thesjs {2 [2] a post pellet particle diffusion
coefficient is calculated and basics of tokamakgpmrt physics is given. This work's goal was to



attempt to improve the calculation of the postetdlliffusion coefficient, translate the result to a
pellet particle confinement time and provide theits of anomalous particle and heat transport
in tokamaks and relate to situation of pellet fngll In this work, a data from JET tokamak shot
53212 are used.

2 Transport in tokamaks

2.1 Introduction

To achieve thermonuclear conditions in tokamakg itecessary to contain it for a sufficiently
long time. An important parameter describing thaefc@ment is the global energy confinement
time, defined as:

1,3
Te :B_[Ek(-ri +T,)d%x (2.1)

where n is plasma densityj, and T, ion and electron temperatuiethe Boltzmann constant and
P is total power input. The integral is taken acrbg&splasma volume. The plasma confinement is
limited by outward heat and particle transport eatlation.

If we assume cylindrical geometry of the plasmd eonsider Coulomb collisions only, we get
so calledclassical transport This approach is not accurate, as we do not densmportant
toroidal effects. Calculation of the transportandidal geometry, including particle trapping and
various drifts is aneoclassical approacinfortunately, the transport which occurs in toleks
usually does not agree with the calculated neadckdssalues. It reaches far greater values,
especially the electron heat transport, which camup to two orders of magnitude higher. It is
believed that this amplified transport is driven tybulence caused mainly by plasma micro-
instabilities, which allow the particles to escatea higher rate. These turbulence processes are
hihly non-linear, there are multiple turbulencevds and supression mechanisms, which occur on
multiple scales. The complexity of this problem hzde the understanding of tokamak transport
a very difficult task. Understanding the anomaltasisport is one of the most important issues
of present and future fusion reactors. [3],[5]

2.2 Transport equations and transport coefficients

Transport phenomena (transport of particles, moomenenergy...) are caused by the collision
processes in plasma. If the system is deviated ftbe thermodynamical equilibrium,
macroscopic fluxes appear, which tend to recoverdfuilibrium. These fluxes are driven by
gradients of thermodynamic quantities (these grasli@re called thermodynamic forces) and
generally, one thermodynamic force may cause nygestof macroscopical fluxes. In our case,
the particle and heat flux is considered: We defireparticle flux/~ as the number of particles
passing through a magnetic surface per unit of pegaunit of time and the heat fluxas the
flow of energy per unit of area per unit of time. simplified equations for these fluxes in
tokamaks are often used:



M, =-a,Un; —a,UT; (2.2)
Q) = —apUNn; — a7, (2.3)

whereT; is the temperature of the spedgesdn; is the density of the specigdn (2.2), (2.3) itis
assumed that a flux for a specific species dependemperature and density gradients of that
species only and another gradients (like electoiemtial gradient etc.) are not considered. The
relation of the fluxes on the gradients is thencdbed by a matrix of coefficientsxf). The
diagonal elements of the matrix are the ugyalndny;, whereD; is the diffusion coefficient and
X is the thermal diffusion coefficient (thermal caietivity). Note that in anisotropic magnetized
tokamak plasma these diffusion coefficients arsdesthemselves. Sometimes the particle flux
["is expressed in alternative simplified forms:

[, ==DUn; —vn, o I'; ==Dn, (2.4), (2.5)
which says that it has a diffusive part driven bylensity gradient and characterized by the
diffusion coefficientD and a convective part with a velocity The convective part then
represents the contribution of the off-diagonai®iof the matrix in (2.2), (2.3). If the velocky
is positive, then this term describes an inwardcipinn (2.5) both diffusion and convection
process are described by an effective diffusiorffimoent, as it is usually difficult to distinguish
them.

With use of the equation (2.4), the equation oftiomity and the Gauss law it is possible to
derive the diffusion equation [2]:

%:D[ﬂDDn)+D(nv)+S, (2.6)

where S is a source term describing the change of plagewsity due to ionisation or
recombinatiors. [2],[3],[6],[7]

The typical diffusivities measured on tokamaks are:

X Xe~ 1nfst
D ~]/4Xe

whereD is a diffusion coefficient (same for both specsssthe diffusion is ambipolar). The
typical neoclassical values for diffusivities aengrally much lower:

/“’neo -~ 03 rT?S_l
Xeneo™ Dneo - (me/mi)llz/“,neo

Therefore generally

m -~ 1‘10m'neo



Xe™ 102 Xe,neo
D ~ 10-16 Dheo

In experiments, the values DBf x; can approach the neoclassical values in the plasnearegion
or during a high confinement operation (H-modeerinal transport barrier...), byt is almost
always anomalous.[3]

2.3 Anomalous transport

The turbulence-driven anomalous transport is causedluctuations in the plasma. These
fluctuations may be electrostatic or electromagnatid are supposed to be an effect of one or
more microinstabilities of the tokamak plasma. Macopic MHD instabilities like sawteeth,
magnetic islands or ELMs are also an important@s®of the anomalous transport.

For a fluctuating quantitiwe may write:
f=<f>+ &, (2.7)

where < > means averaging over a flux surface. fliHaulent fluctuations result iExB drift
velocity dvperp perpendicular to the flux surface:

d/perp: dEperp/ Br, (2.8)

where JEperp is electric field fluctuation perpendicular to tHex surface andBr is toroidal
magnetic field. This velocity along with densitydtuationson combine to produce a convective
particle flux /=

/_: < d/perpd’] >, (29)

where< > means again averaging over a flux surface. Thécfafflux (2.9) must be then
averaged also in time as the fluctuations aretais®-dependant. The time average must be done
over a time interval higher than all characterisiices in the plasma (electron and ion plasma
frequency, electron and ion cyclotron frequencyTIherefore the time and space correlation
between fluctuations plays an important role. Tégation (2.9) will be nonzero except a
situation of Jvperp, ON being exactly out of phase. For a turbulent h&at the temperature
fluctuationsdT; play a role:

g = 312 n< d/perp 5rj >, (2.10)

wheren; is an equilibrium density and indgxienote the species. In case of magnetic fluctusitio
B associated with a change in magnetic topology,pireurbed velocityd,.e parallel to the
magnetic field along with a perturbed radial magnitld B, give rise to a flux:

7 = (ny/Br)< Opar,j Br>. (2.11)



The fluctuations indn, dTe and the electric potentialpat the edge plasma can be measured by
Langmuir probes and the magnetic fluctuatid® can be measured by Mirnov coils. It is
observed, thatn/n, JTJ/Te andedg@kT, rise quickly towards the plasma edge, where thay c
reach values ~50%. On the other hand the edge alaafue ofdB/B is usually small, typically
~10* The internal density fluctuations can be muchdpfalling to ~1%. The plasma potential
fluctuations in the core follow approximately aatgbnedgkT. ~ dn/n.

It is usual to perform a spatial fourier transfasfrthe fluctuations and observe the wavenumbers
Koerp andkpar perpendicular and parallel to the magnetic figlde spectrun®(kerp) is dominated

by wavelengths (wavelength=2 77k) greater than the ion Larmor radiys. In radial direction
the spectrum is peaked at the longest wavelengtasunagble. In the azimuthal (poloidal)
direction, the spectrum is peaked in the regigmis < 0.3, wheregs is the ion Larmor radius at
the electron temperature. For spectr8(k.a) of wavenumbers parallel to the magnetic field, the
typical values arépa-L ~ 1, wherel is connection length around the torusqR, whereq is the
safety factor an®R major radius). The characteristic frequenciesefftuctuations are 100kHz

[3]
Electrostatic fluctuations
As was mentioned in the previous paragraph, itsisalito perform a Fourier transform of the

fluctuations & (t,X) « &, (60, IZ);

a(1.x)= Y 4,0 (2.12)

K ’

wherek is the wavenumber (wave vector) aad is the angular frequency. If the electrostatic
potential fluctuationdgis present, it causes ExB drift velocidy. For particular componeraig
this velocity may be written as:

&, =i 2%k (2.13)
B
and its component perpendicular to the magnetid Beas:
kxB
Nk,perp =l ?5@ . (214)

If this particle velocity persists for a so calleatrelation timer, it leads to a radial displacement
of a particle oy ~ M perpli.: A random walk estimate for the turbulent diffusidriven by
electrostatic fluctuations is then given as:

k

D:Z(fjkk) ;( perpdﬂJ (2.15)



The correlation time is determined by the processchiv most rapidly limits the radial drift
velocity vk perp The main possible processes determirmiaye:

a) The time variation of the fluctuation determinedday 7 ~ 1/c.

b) The time for a particle to move along a paralleiv@tangth of the fluctuationz ~
1/KoarVpar-

c) The time for magnetic drifts (drifts of magnetiel@l lines) to carry the particle along
a perpendicular wavelength of the fluctuatian- 1/ay.

d) The time for collisions to change the particle brlgi~1/v, wherev is the collision
frequency of particles.

e) The time for a turbulent velocityw to carry the particle along a perpendicular
wavelength:z ~ 1/Q, where = KperpOvi.

Therefore for a low level of fluctuation§ « casK Where akix = max(ak, KoarVpar, i, V), the
equation (2.15) can be rewritten as:

K 2
D:ZL(MJ ’ (2.16)

k weff,k B

and thereforeD O (6p)*. For higher level of fluctuation€k > .« the equation (2.15) can be
rewritten as:

D =Zk‘,% (2.17)

and scD U ¢ [3]
Magnetic fluctuations

Magnetic fluctuationsB affect the structure of the magnetic surfaces @rdproduce ergodic
magnetic fields. The motion of plasma particlesxglthese magnetic field lines may then lead to
their radial transport and losses. A radial magnild perturbationdB; at a rational surface at
radiusrmn,, Where the safety factge=m/n (m,nare identified as poloidal and toroidal mode)dka
to a creation of a magnetic island of width:

Lsrmn ﬁr 2 18
mn m B 1 ( * )

where L, =Rq’/rq' is called the magnetic shear leng®is the major radius andis the minor

radius. With increasing level of the magnetic fuattons, an increasing part of the regions
between resonant surfaces becomes ergodic. Thavioein is quantified by a parameter:



Zwm,n
q="mn (2.19)
Ar

where the sum is over all modes nwith rational surfaces in interval of radir. Whena » 1
many islands overlap and the behaviour of the magfield lines becomes stochastic. In this
case a radial diffusion of the field lines can lesdibed by a magnetic field line diffusion
coefficient Dy. If the radial field perturbation remains in thamee direction over a so called
correlation lengthL., then the field line takes a radial step:

g=%
B

(2.20)

A random walk estimate for the magnetic field l@iBusion coefficient can be made as:

&) (B )
Dy :Z(Lk) :z(?J L. (2.21)

For a weak turbulence the correlation lengsh~ 1/ks~ Rgand Dy, U (cB, )2.

Assuming collisionless plasma, where the meangegk exceeds the correlation lendth L., a
particle can move freely along the radially diffusimagnetic field line with velocityyar for a

collision timet.. So it makes a radial st & =+/Dy A . The diffusion coefficient for particles can
be then estimated as:

D="—"—=——= VparDM . (222)

For a more collisional plasma, whete L. the particle collisionally diffuses along the maga
field lines with a radial stegr ~ (dB,/B)A in a collision timer.. The diffusion coefficient for
particles can be in this case estimated as:

B A 1 B,
D=( - j T—:Dpar( - j , (2.23)

whereDpar = (A1) is the collisional diffusion coefficient paraltel the magnetic field lines. [3]
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3 Experimental results

3.1 Experimental setup

The data evaluated in this work are from the JEGt 88212, which was a part of experiments
undertaken at JET aimed to develop optimized pedletelling scenarios.

The basic parameters of the JET 53212 pulse aen givtheTab.1below:

Plasma currerit, 2.5 MA
Toroidal magnetic fieldB; 24T
Major radiusR 296 m
Minor radius a 0.92 m
Elongationx 1.7
Edge safety factaos 3.2
Plasma volum#/,, 80 n?
Plasma averaged triangulariy> 0.34
Additional plasma heatinB; 17 MW NBI, 1 MW ICRH

Tablel Summary of the basic parameters for JET pulseyeurs3212

The basic parameters of the pellets and the pejtion system:

Pellet size n?, 3107 atoms
Composition deuterium
Repetition rate 3Hz, 6Hz
Injection speed 16ms*
o from HFS along a trajectory tilted by 4 the
Injection path horizontal plane.

Table2 Summary of the basic pellet parameters for JH3epaumber 53212

More detailed information about the discharge cafooind in [2].

3.2 Diffusion coefficient

An important goal of this work was to try to detemmthe post pellet diffusion of particles more
accurately and provide a more profound analysithefprocess, than was done in [2]. In [2] in
order to quantify the particle diffusivity afteretlpellet, the diffusion coefficient was estimatad.
boxcar method was applied, in order to cope witkufficient time resolution of the density
profile measurement of the LIDAR diagnostics on JEdr a numerical calculation of diffusion
coefficient from discrete experimental data, thevdives in the simplified diffusion equation

11



on
—-DAn=0
5 (3.1)

were approximated by differences and the valuéhefdffective diffusion coefficient (covering
both the diffusion and the convection processes) adetermined aBe = 0.8 +0.4 nis™. (from
now on, by the diffusion coefficient we mean itfeefive value).

In this work, a more accurate analysis was dondittiyg the experimental post pellet density
evolution data by a function, which is a mathenatmorrect solution of the diffusion equation.
Still, the data preprocessed by the boxcar anaiygB] were used.

The simplified diffusion equation (3.1) is a parkbgartial differential equation, which is very
important in the mathematical physics. Generallyg@nation of this particular shape is called the
heat equation, as the same equation is used toilskescdistribution of heat in a given region
over time. The general form of the heat equatiomidimensional Euclidean spac& Eis
following:

P v f(x.t), (3.2)

wherea is a constantf(x,t) is the source term amux,t) is the mass density. This equation (3.2)
together with an initial condition:

ng,0)=a(x) (3.3)

is calledthe classical Cauchy problem for the heat equatibrcan be generally solved by
transforming it to @eneralized Cauchy problem for the heat equation:

T -a) o =6()f (xt)+ (t)a(x) (3.4)

where &t) is Heaviside step function of time ad{) is the Dirac delta function of time. Another
step is finding the fundamental solutigg,t)for the heat conduction operatar

0
=_—-alh

ot (3.5)
in a space E'. The general solution of the classical Cauchy lerobfor the heat equation is
then determined by a convolution of the fundameatdiition £¢k,t) and the right side of the
generalized equation (3.4):

%) ( t(7 4 _ff)d y ol _*:‘Zda
X,t) = : M) dEdr + " dE .
oy e IR | = A
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This equality (3.6) is sometimes calléd Poisson formulg8],[9]

In our particular case, the diffusion (heat) equais homogenous, without the source tei(mt)

and the constarat is equal to the diffusion coefficiedt. The initial conditiom(x,0)=a(x) is the
density profile just after the pellet injectionarthe plasma, at the beggining of decay process of
pellet induced perturbation. The form of the gehsodution (3.6) is then reduced to the second
term only (the first integral being zero becaus¢heflack of the source terfn This form of the
solution of our diffusion equation is however stidlther difficult. For the further described
analysis, solutions of the simplified form of theath equation in axial symmetry was used.

According to [10], two ways were used in this wdrk estimate the post pellet diffusion
coefficient.

Gaussian fit analysis
Bessel functions analysis.

The data used were three post pellet density psofih relative times (to the time of pellet
injection), which come out from the boxcar analyisig2]. These profiles along with the pre-
pellet density profile, are given étg.3.1below.

—
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= qpt t=26ms
o
= t=325ms
i
e
i
o 8t
o
€
I
6_
4_
2_
|:| |
15 2 25 3 35 4 45

Major radius B [m)
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Figure3.1:Post pellet density profiles received from boxaaalgsis in [2], which were used for
the diffusion coefficient estimation. Relative tifimsmarks the injection of the pellet (black).

Gaussian fit analysis

It is possible to estimate the diffusion coeffidiéh from the evolution of post pellet density
perturbationon(R,t)

HR,Y =n(R,1) —n(R,0) (3.7)

whereR is the major radius and(R,0)is the density profile before the pellet injectidrhis
method is based on the relationship betwBesnd the width of the density perturbation. If we
assume axial symmetry, the heat equation can litewvin a following form:

@:D a_2n+E@
ot or? ror) (3.8)

1/2

wherer=(x?+y?)"2. One of the particular solutions of (3.8) has a gausshape [11]:

n(r,t):A+TBexr{— - j (3.9)

4Dt

whereA,B are arbitrary constants. Therefore a fit of thetpellet density perturbatiadn(R,t) by
a two-gaussian analytical expression (3.10) wa {ib0|:

ot = At (2580 |+ aost S | o0

whereR is a major radius,

Ai,o = \/ 4Di,ot f (311)

indicesi ando denote the fit of the inward and outward profils,the density is perturbed on
both HFS and LFS, as can be seenFan3.1 The fit (3.10) was done for each of the three
profiles at relative times after the pellet anddfiere A o(t), R o(t) and4 o(t) are constants for the
timet and are determined by the least square two-gaufittiag process. Théi ,(t) then allows

us to compute inner and outer diffusion coefficéefur the timet andR;o(t) inform us about the
position of the two (inner and outer) peaks ofgiketurbation.

14
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Figure3.2:The density perturbation® after the pellet along with their two-gaussiarfdit
relative timed=12.5ms(a), t=25ms(b) andt=32.5ms(c).

The fitting was made with use of MATLAB 6.5 curvigtiing tool. The results are shown in
Tab.3.1below. The coefficients of the fit are given with% confidence bounds.

)5

Time [ms]  A[10®°m?¥ A, [10°nT] R [m] R, [m] 4 [m] Lo [m]
12.5 413+056 4.08+0.72 242+ 0.0856+0.04 0.43+0.07 0.25+0.C
25 3.22+0.47 356+043 256+0.05 3.34+0.@32 +0.07 0.38+0.08
32.5 257+ 0.683.04+£0.73 246+0.21 3.24+0.18 045022 4&x0.17

Table3.1:Results of the two-gaussian fit of the density yyation in timeg$=12.5ms t=25ms
andt=32.5ms.

From these datal'éb.3.) it is possible to calculate the inner and outiffusion coefficientsD;,
(with use of (3.11)), and their averaDe. It is also possible to linearly fR;, versus time and by
a time derivation of this fit to determine approately a convective inward pinch of the

deposited pellet;, (outer and inner again). This was not done, howeasthe linear fit proved
to be too inaccurate.

The results are given ihab.3.2below:

16



Time [ms] D [m“s?] Do [m*s’] Da[m?s’]
125 3.70+ 1.20 1.25+0.50 2.47 +£1.30
25 1.02+ 0.44 1.44 £0.88 1.23£0.99
325 1.56 £1.52 1.49+£1.15 1.52+1.91

Table3.2:Diffusion coefficients at inboard and outboard saahel their average calculated from
the gaussian fit analysis of the post pellet data

The most important results are those immediateabr #fie pellet evaporation, as they describe the
fast post pellet losses. They are therefore higtdid in theTab.3.2by a bold font.

L
m
T
1

rJ

m
T

a

=
1

0.5

05 1 1 1 1 —
0.01 0.015 0.0z 0.025 0.03 0.035

relative time [5]

Figure3.3:The calculated average diffusion coeffici@ntafter the pellet

Bessel functions analysis

The heat equation in axial symmetry (cyllindricalogetry) (7) with a general initial condition
(2) and with boundarieB<r <L has a general solution of a form [11]:

R

n(r,t) = [a(&)G(r.& t)dé (3.12)

0
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whereG(r,é, t) is a Green's functionf a boundary conditiom=0 for r=L is prescribed, than the
Green's functiol& can be written with use of Bessel functions as:

o D3
G(r,f,t)ZE%Jo(ﬂn {j‘]o(tun %jex[{_%ntJ ) (313)

whereJy andJ; are first order Bessel functions, defined as [6]:

Inl)= Zﬁ@ , (3.14)

1

0.3

06

04f-f--

0z

-0.2

04

Figure3.4: The first thredirst order Bessel functiong,J

To justify the use of axial symmetric heat equatibbe post pellet density perturbation profiles
were averaged with respect to the tokamak min@s(ph) axis aR ~ 3m Then these averaged

profiles on(r,t) (for 0 <r < a) were mapped on a 1-dimensiomajrid varying betwee® and1.
on(x,t) in a new variablex were then fitted for each timewith a fourth degree polynomial
dﬁ(X’t) to regularize the profile [10]. Then a"A‘(X,'f) is the initial condition at timg with use of
equations (3.12), (3.13) we may write for a soluti timet+ A&:

N(x,t+x) = Zi%exd— D,ufd)j Jo (2, ) (x, t)xdx_ (3.15)

1 0

18



The terms of the series on the right side of equa(B.15) fall down to smaller and smaller
values with increasing, therefore it is possible to cut off the seriesminimisation is then
applied with respect tb of the term:

2

i(ﬁ(xi L+ &) - A(x t+ &) =[xt + &) - R(x,t+ &) | (3.16)

i=1

where (Xt +@&) is a function oD and is calculated from (3.15) a A(x,t +&) is the fourth
degree polynomial fit of the density perturbatiartimet+ &.

x 10"
A5F
4
35

0 02 04 06 0.8 1

Figure3.5:The density perturbation®(x,t) plotted in times=12.5ms(blue),t=25ms(red) and
t=32.5ms(magenta) in the newcoordinate (+ points) and their appropriate fouktigree
polynomial fits in the same times (solid lines) eTitting was done by using MATLAB 6.5 curve
fittng tool.

The fitted fourth degree polynomidﬁ(x,t) can be written in the following form:
d:i(x’t) = plx4 + p2X3 + p3X2 T Py X+ Ps, (3.17)

with constant coefficients; — ps. The results of the fitting are given in thab.3.3below (values
are given with 95% confidence bounds):
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Time [ms] n [10°] p2 [107) p3[10° p4 [107 ps [107)
12.5 3.57 £3.96 -9.47 £ 7.99 6.90 £5.26 -1.1625 0.17 £0.09
25 8.07 £1.99 -16.19 £ 4.02 940+ 2.64 -1.59630. 0.30+0.04
325 1.89 + 3.80 -3.74 + 7.66 2.05+5.04 -0.46191 0.32+0.08

Table3.3:Results of the fourth degree polynomial fit of thensity perturbatiodn(x,t) in times
t=12.5ms t=25msandt=32.5ms.

density [m'3]

_
—t

IO Ao
— 0 00— I Lo ks

-05 '
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04 06

Figure3.6:The resulteN(X,t+ &) of summation (3.15) for different considered numtbef the
series for time$=12.5msandt+ &=25msand with use of an expected valudsflm?s®. The

fourth degree fit of the density perturbat dﬁ(x,t + d) in timet+ &=25msis given to compare
(blue).

On Fig.3.6 are given the result N(Xt+a&) of summation (3.15) for different considered
numbern of the summed terms for timésl2.5msandt+ &=25msand with use of an expected
value of D=1m?s™. It can be seen, that there is not an observafferehce between functions,
which come up from the series in (3.15) cut offiat 3. For this particular calculation, the series
was cut off for n >10. This can be defended by the fact that for vabfd3 not too near to zero

20



the contribution of the last term in the sum watueed to less than 1% (more precisely the value
of maximum difference between the functions, wiiome up from the series cut off at n=11 and
n=10, was reduced to less than 1% of the averafyee vaf the function for n=10). The
minimisation process was then performed, fox D < 10 nfs’. The results of the Bessel
functions analysis are givenrab.34 below:

Time window D [nfs)]
12.5ms - 25 ms 3.295
25ms-32.5ms 2.872

Table3.4:Diffusion coefficients calculated by the Besseidtions analysis

3.3 Pellet particle confinement

As the pellets are injected into the plasma andireleeper regions of the plasma column before
total evaporation, they greatly affect the plasmiafioement and transport, especially at the edge.
The local density increase can be in order of whpercent (for ITER could be up to 50%,
depending on the penetration) and the plasma is-stadionary, responding to these
perturbations. The main parameters of the pelleichvaffect the post pellet transport, are the
pellet deposition radius,e andpost pellet particle confinement tingeellet retention timeyye:.
These two parameters are very important, becausg determine the particle throughput
provided by the pellet injection system, which ée@ssary to maintain the plasma density:

Doel =NeS (a"bel)/ Ipels (3.18)

wherene is the electron density averaged in time (oveleps) and radiuspe <r < a, Sis the
plasma surface.

The pellet deposition radiuss a radius, where the major part of the pellepevates and is
deposited. It depends on the injection speed, tpsie, pellet injection path and additional
effects like pellet grad drifting and plasma turbulence. The pellet evaponafor JET shot
53212 lasts usually about 10ms. For our case,ahetgeposition radius can be determined from
the post pellet electron density profile.
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Figure3.7 Electron density profile 5ms after the pelletgwmation (blue), electron density
profile before injection is given for comparatidsgck)

From Fig.3.7 it is possible to approximately determine the pgetleposition radius,e. The
interval of radii, where the most particles areaed is about /7 (0.45m, 0.75ph(on the outer
edge of plasmajhereforerye =0.6m

The pellet injection induces a strong perturbatwnthe plasma and affects the confinement
significantly. The development of the edge plasmadport after the pellet is described by the

post pellet particle confinement tinzg.. It can be determined from the post pellet evolutf
plasma density at a fixed radius:

Ne(t,rpe) L7 eXP[-(t-be)/ Tpel (3.19)

wheretye is a time of the total pellet evaporation (deposit From the equation (3.19) it can be
seen, thatpe represents a characteristic time of the pertudsetity evolution. The calculation

can be made by taking a logarithm of the equatBoh9) and doing a linear least sqare fit of the
data.
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Figure3.8 Exponential fit of the post pellet density evadatat pellet deposition radius
Ipe~0.6m
The data used are from [2] (d&g.3.14)

With use of the pre-processed data from [2] (Bee3.14 the exponential fit was done for the
relative time interval0s,0.05s) wheret=0s means the moment of pellet injection. The time
interval was chosen only for the short post-peitéerval in order to compute the immediate
quick losses of the plasma patrticles. The fitteasdg-time dependance is:

(7o) = 12100 exg- 1110t -t ) (3.20)
Therefore the value ate, along with its standard error from the log-lineiaid:

The=90.3 £ 7.7ms

This value corresponds with the typical valuesa@fgh retention time during the JET discharges,
which is about 50 — 100ms.

For a more precise calculation in order to exclddesity changes due to gas puffing and NBI it
would be desirable to modify the left side of equat(3.19) by substracting the density, which
would have occured without the pellet (determingdadinear extrapolation of pre-pellet data).
This was not done in this case due to insufficieoicselevant pre-pellet data, however, from the
pre-pellet density evolution measured by interfezten (see [2Fig.3.2, Fig.3.12 it is possible
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to assume the resulting error as negligible. Anogwussible error of this calculation arises from
the fact, that the density evolution need not haveexponential shape and that thge is not a
constant, but changes in time and is usually shortmediately after the pellet than later on. To
minimize this, only a short time interval of fastrficle losses was chosen for the calculation. The
error may be also enhanced by the insufficient atéhis particular analysis and by the error of
the boxcar method itself [2].

If we carry out a dimensional analysis of the sifrgd diffusion equation (3.1), where D is the
particle diffusion coefficient, and we assume arabteristic time of the density evolution to be
Ipeiand a characteristic length to be pellet penetrad&pth, which igl = a — rpe, We get:

n n
—[]—
Tpe| AZ (3.21)

and we can expregse in the following form:
Tpel= CONSt(A/% / D), (3.22)
or in a form more suitable for scaling purposes:
Tpel= const:a®( (1-ppe)” / D), (3.23)

wheregel = rpefa is the pellet deposition radius normalized torfiaor radius. The constant in
(3.22), (3.23) depends on the exact shape of thsitgeorofile. From the knowledge &f and 7e

it is possible to approximately determine the cansstor our experiment and gain a useful and
simple formulaz,e = (0.6-0.9)(4/ D) (For diffusivity D we used the computed vali2zs 0.8
+0.4 nfs* found in [2] andD = 1.25 +0.5 mis* found in the gaussian fit analysis in chapter 3.2
for the outer edge of plasmaeeTab.3.2.

To be able to predict the pellet retention timg to next step devices such as ITER, the
experimental values are usually normalized to thial tenergy confinement timg;, for which
there exist an energy confinement scaling. Theggneonfinement time is defined as the total
energy content of the plasma divided by the totalqr input. For JET shot 53212 during the
pellet operatiork ~ 5-6MJ,P ~ 18MWand sore: ~ 0.28-0.333 hereforetye/ 7= 0.27 -0.33The
pellet retention time is normalized to the energgfmement time because of an assumption, that
the two processes of particle and energy transp@tbounded and both heat and particle
transport after the pellet is driven by the sambulence. Usually, the diffusion coeficiebtand
heat transport coefficieptfollow a relationD = (0.2-0.6)y.
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Figure3.9:Comparison of the ratig,e/ 72 for JET shot 53212 (black) and for experiments on

MAST tokamak [4]

On Fig.3.9 can be observed, that the ratigy/ 7zfor JET corresponds well with similar
measurement made for the MAST tokamak.

In this chapter | used information from [4].

3.4 Post pellet plasma fluctuations

As can be seen fromiab.3.2, Tab.3.4he post pellet diffusion coefficient is anomalpas it
reaches values ~sT. A simple estimate was therefore made to rougkelgmhine the size of
the plasma turbulent fluctuations, which would @atiss enhanced anomalous transport after the
pellet injection.

The post pellet particle flux can be estimated wkiowledge of the effective diffusion
coefficient Dy from the equation (2.5)De was determined in [2] as ~ 0.8 and in the
gaussian fit analysis in chapter 3.2 as ~ 1.25'n(seeTab.2, both these values being for the
outer edge of plasma (LFS) and describing the gast pellet losses (12.5ms after the pellet
injection and 5ms after the pellet total evaporgtiarhe gradient in (2.5) can be approximated
for the edge plasma by:

grad ~ 1/(pei-a), (3.24)
wherer e is the pellet deposition radiasda is the plasma minor radius (sew.3.4). Therefore
the simplified equation suitable for numerical exsion of the edge plasma particle flux after the

pellet injection takes following form:

/_: Deff n/ (a'rpe|), (3.25)
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wheren is the plasma density, which is taken for radiysand timet=12.5msafter the pellet
(the right peak of the density profile ¢fg.3.7). With the knowledge of,e~ 0.6m anda ~
0.95m, the post pellet particle fluxis evaluated for the outer edge plasma

r=310°ma%!
electrostatic fluctuations
At first we assume this flux to be caused by eledield fluctuation (perpendicular to the

magnetic field) (2.8),(2.9). The typical densitydtuations at the edge plasma anién~0.1 For a
fluctuation of the electric field we may write:

JE = grad Jp, (3.26)
where og is a fluctuation of the plasma electric potential.the equation (3.26) the gradient
operation can be approximated by multiplying by tiygical wavenumber of the fluctuations,
perpendicular to the magnetic fiekgh,,. This wavenumber is related to the ion Larmoruadi;,
as itis usuallfkyeryr'Li ~ 0.4. The equation (2.9) may be rewritten in tH®Wing form:

/_: < d/perp'm> = d/perp'd‘]'coﬂ (3.27)

where on the right side there are the sizes ofltlmuations andd is the angle between those
two fluctuations. Therefore we may write with ug€226), (3.27), (2.8)

_ 2508
n(anj cosd
n

where the constar.5 comes up from the relation betwelgr,, andr;. The ion Larmor radius
r.iis determined by a formula:

r, (3.28)

_ rr\Vperp,i
rL‘ =

j ?, (3.29)

wherevyenp;i is the ion velocity perpendicular to the magnégtd, e is the ion electric charge and
m is the ion massBy assuming the velocity to be thermal and the temperature to be
approximately equal to the electron dne: T, we may write:

KT, 25 KT
er(nj cos4

whereT, is the electron temperature akithe Boltzmann constant. For a numerical calculation
folowing values were usedn=3.3310%'kg is the mass of deuteron (assuming deuterium

v = r (3.30), (3.31)
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plasma) kT. = 1.3keVis the plasma electron temperature for given tifiter ahe pellet and for
radiusrpe, €=1.610"°C is the elementary charge~ 10°°m? is the plasma electron density for
the same time and radius as the temperaid~0.1 and cosf~1/3 The resultant potential
fluctuation dptherefore is:

dp=12V

It is usual to relatedgto kT, asedpis usually a small part of the electron temperaklie For
our case:

edp ~ 0.001 kT
magnetic fluctuations
FromFig.3.1Q Fig.3.11below, which show the interferometer line averagksdma density and

the D, emissionduring the pellet operation [2] it is obvious, tl&dtM's play crucial role and are
the major reason for post pellet fast particledsss

x 10°°

2.4

2.2

2

1.8

1.6

1.4

line averaged density [rﬁz]

1.2

1

og \ . . . , .
57 58 59 60 61 62 63 64
time [s]

Figure3.7:Line averaged plasma density measured by chotaiBglthe pellet operation
(taken from [2] -Fig.3.2)
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Figure3.8 D, emission during the pellet operation (taken fr@jn{Fig.3.4)

ELM's are magnetohydrodynamic (MHD) instabilitied)ich affect the magnetic field. From this
it is possible to deduce that the anomalous tramsiue to magnetic fluctuations and disturbance
of the magnetic field may be more relevant thanahemalous transport driven by electrostatic
fluctuations.

The value of radial magnetic field fluctuati@B,, which would cause the post pellet transport of
particles may be roughly estimated using equat{@rl), (2.22) (note that it can be used only
when assuming collisionless plasma, wherel ). We assumepar = G, Wwherecs is the speed of
sound for ions in plasma [6]:

¢ = MK (3.32)

where ) is the polytropic index for iong is the Boltzmann constari, the ion temperature and
m the ion mass. Equation (2.22) can be then writte¢he following form:

2
p=c|®|L>m =82 (3.33)
B L.c.

With use of estimate. ~ qR ~ 10mT; = T, and using following valuesm=3.3310%'kg,
B=2.4T, y~5/3 kT.~ 1.3keVD = 1nfs’ the radial magnetic field fluctuatiodB,, which would
cause the post pellet particle transport, was riyudgtermined as:

B, =1.3mT
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4 Summary

In this work, the particle confinement of pelleefied plasmas in tokamaks was investigated.
Plasma refuelling is one of the most importantgaftthe tokamak research. The most important
technology of tokamak plasma fuelling for futurevides like ITER would be pellet injection.
The question of refuelling is also closely conndatéth the energy and particle confinement and
transport in plasma. The confinement of the torbrdaymmetric tokamak plasma has been
calculated for particle Coulomb collisions. This salled neoclassical transport does not,
however, agree with the experiments. The real prarign tokamaks, which is higher than the
neoclassical predictions, is called anomaldsexplain and understand the theory of anomalous
transport is one of the major challenges for pregsgtamak physics.

In the teoretical part of this work the basicsrahsport in tokamaks, mainly the anomalous one
are given. The turbulence-driven anomalous trartsgocaused by fluctuations of the plasma.
These fluctuations may be electrostatic or elecagmetic and are supposed to be an effect of one
or more microinstabilities of the tokamak plasmadibscopic MHD instabilities like sawteeth,
magnetic islands or ELMs are also an important@s®of the anomalous transport.

The experimental part of this work is based upa@vious bachelor thesis [2], where a post pellet
particle diffusion coefficient was calculated. Ttiata used in this work are from the JET shot
53212, which was a part of experiments undertakeJEa aimed to develop optimized pellet
refuelling scenarios. The first step was to perf@more profound analysis of the post pellet
transport than in [2]. Two ways of analysing thestppellet data were used to compute the edge
plasma effective diffusion coefficient: gaussiandnalysis and Bessel functions analysis. The
gaussian fit method was based on the relationsbipvdenD and the width of the density
perturbation after the pellet. The density perttidmawas fitted by a two-gaussian analytical
expression and the resulting inner and outer ddfusoefficients were in good agreement with
the expected values. In the Bessel functions asalyse general solution of the diffusion
equation in axial symmetry was used. The resulpast pellet diffusion coefficients are also
reasonable and confirm the previous results. Gépdfee diffusion coefficients for the edge
plasma after the pellet are of the order of dm

In the next chapter the pellet retention time Hrapellet deposition radius were estimated. The
pellet retention time is a characteristic time bé tpost pellet density evolution, the pellet
deposition radius is a radius, where the major platthe pellet evaporates and is deposited. These
two parameters are very important, as they detexrthie particle throughput provided by the
pellet injection system, which is necessary to taé@mthe plasma density. They were determined
astpel = 90.3 £ 7.7ms ang@d=0.6m. The pellet retention time was then norméliag the energy
confinement time and compared with similar resintism the MAST tokamak.

The last task was to estimate the post pellet @aioctuations which drive the anomalous
transport. Assuming the post pellet transport tochased by electrostatic fluctuation it was
possible to roughly determine the plasma poterftiattuations: &p ~ 10°kT.. From the
enhanced RPemission during the pellet operation and its catreh with the quick transport
phases it can be deduced, however, that the anamabmsport driven by the perturbation of the
magnetic field structure by ELM's may be more raldv Radial magnetic field fluctuatiaB,,
which would cause the post pellet particle transpeas roughly determined 8B, = 1.3mT.
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