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výstavba obřího tokamaku ITER, který má za úkol prokázat technologickou proveditelnost fúze s magnetickým 
udržením. Jedním z klíčových témat výzkumu je doplňování paliva do tokamaků. Pro velká zařízení jako ITER 
je nezbytná technologie vstřelování pelet. Pelety ovšem velmi narušují prostředí okraje plazmatu a jsou zdrojem 
zvýšené aktivity tzv. ELMů a zvýšeného transportu částic a energie. Tento transport se nazývá anomální, neboť 
neodpovídá teoretickým předpovědím pro difúzi a nabývá mnohem větších hodnot. Část této práce se zabývá 
teoretickým základem anomální difúze. V experimentální části je z dat z tokamaku JET kvantifikován transport 
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Abstract: Tokamaks are the most advanced devices in the research of controlled nuclear fusion. In the year 2007 
construction of giant tokamak ITER has begun. ITER's goal is to demonstrate the technological feasibility of 
magnetic confinement fusion. One of the crucial parts of the research is the tokamak plasma refuelling. For big 
devices like ITER, technology of pellet injection is necessary. Pellets, however, disturb the edge plasma and 
cause enhanced ELM activity along with increased particle and energy transport. This transport is called 
anomalous, as it does not correspond to theoretical  predictions of diffusion and it reaches far higher values. Part 
of this work is aimed at explaining the theoretical basis of the anomalous diffusion. The experimental part with 
use of data the JET tokamak data quantifies the post pellet particle transport by calculation of diffusion 
coefficient and pellet retention time.    
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1 Introduction 
 
This thesis is based upon previous bachelor thesis [1] and research project [2], from which 
parts of the text were retaken. 
 
There are several types of experimental devices for confining hot plasma necessary for the 
fusion reaction to occur at a sufficient rate. The most advanced one is the tokamak concept 
and in present time a large tokamak ITER is being built, which is estimated to produce 
500MW of fusion power. Tokamak plasma refuelling is one of the most important and 
fundamental parts of the tokamak research. With the necessity of increasing the tokamak 
dimensions it is more difficult to deliver the fuel particles deep into the plasma column. 
Simple gas puff used for the smaller tokamaks becomes incapable of that task and the most 
important technology of tokamak plasma fuelling for future devices like ITER would be pellet 
injection. Small solid fuel pellets are injected at high speeds into the plasma. The question of 
refuelling is closely connected with the energy and particle confinement and transport in 
plasma. The confinement properties of the toroidally symmetric tokamak plasma have been 
calculated for particle Coulomb collisions. This so called neoclassical transport does not, 
however, agree with the experiments. The observed transport is called anomalous and occurs 
because of plasma instabilities. To explain and understand the theory of anomalous transport 
is one of the major challenges for present tokamak physics. This work's goal was to attempt to 
quantify the edge plasma diffusion during the pellet fuelling to be able to estimate the 
requirements for the ITER pellet injection system. 
 
The theoretical part of this work consists of four chapters. In the chapter 2, the idea of nuclear 
fusion and magnetic confinement of hot plasma is outlined. In chapter 3, the tokamak plasma 
equilibrium and the concept of magnetic surfaces is presented, as it is important for the choice 
of coordinates in the experimental part of the thesis. In the chapter 4, the basics of transport in 
tokamaks, mainly the anomalous one are given. The fifth chapter is about principles of pellet 
fuelling, the physics of pellet ablation and shielding, pellet injection technological issues and 
design of JET and proposed design of ITER pellet injection system. 
  
The original part of this work is contained in chapters 6 - 8. There the data were downloaded 
from the JET tokamak database for shot #53212, which was a part of experiments undertaken 
at JET aimed to develop optimized pellet refuelling scenarios. The basic parameters of the 
shot #53212 and parameters of the injected pellets, along with description of the downloaded 
data and the observed plasma response to the pellet operation are outlined in chapter 6. The 
most important data for the analysis in this work was the LIDAR measured electron density 
profile. Due to insufficient temporal resolution of these profiles compared to fast post-pellet 
particle losses, the data were pre-processed by a boxcar analysis, which is described in 
chapter 7. An average post-pellet density profile evolution was thus gained. Chapter 8 is the 
main chapter of this thesis and it contains all the calculations made.  
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2 Controlled thermonuclear fusion on Earth 

 

2.1 Nuclear fusion 
 
The development of human society has always been closely connected to searching new 
energy sources. In present time, the main ways of gaining energy are burning the fossil fuels 
like coal and oil, nuclear fission of heavy atoms like uranium-235 and also the exploitation of 
renewable sources like wind, water or sun. However, none of these energy sources is perfect. 
The fossil fuels cause massive pollution of Earth’s atmosphere by CO2 and therefore 
contribute to the greenhouse effect and also their reserves are limited. The exploitation of the 
renewable sources is limited by local geographic and weather conditions. Presently the most 
promising nuclear fission faces problems with storing of the radioactive waste. These 
disadvantages along with quick population growth (world population is expected to reach 
almost 8.1 billion in 2030) and also growth of the global primary energy demand (projected to 
increase by 52% from 2003 to 2030) are the main arguments pointing at the necessity of 
finding a new, efficient energy source available for all nations and harmless to the 
environment. Apart from the fourth generation nuclear fission reactors, this role could be 
played by nuclear fusion (either in fusion-fission hybrid reactors or in purely fusion devices). 
 
The fusion reaction is a nuclear reaction between two light atomic nuclei (with atomic mass 
number A<56), which releases energy. The new nuclear arrangement is more stable, its total 
mass is reduced, and therefore corresponding amount of energy is released. This energy is in 
form of kinetic energy of the products. The amount of released energy is far greater than by 
nuclear fission of heavy atoms as you can see on Fig 2.1. [3][4][5] 
 

 
Figure 2.1: Energy released by nuclear reactions [5] 

 
There are several reactions, which are considered to be used for controlled nuclear fusion on 
Earth [6]: 
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D + T → 4He (3.52 MeV) + n (14.06 MeV)    (2.1) 

D + D → T (1.01 MeV) + p (3.03 MeV)    (2.2) 

D + D → 3He (0.82 MeV) + n (2.45 MeV)    (2.3) 

D + 3He → 4He (3.67 MeV) + p (14.67 MeV)   (2.4) 
 

The first of these reactions (2.1) is supposed to be used in the first generation thermonuclear 
reactors, as it is the easiest to achieve. It is a reaction between two isotopes of hydrogen, 
deuterium and tritium (so called DT reaction). For lower energies, the cross section of DT 
fusion reaction is much higher than the cross sections of other mentioned reactions. [3] 

 
 

Figure 2.2: Nuclear fusion reactions’ cross sections, the two D-D reactions have similar cross 
sections, the graph shows their sum [4] 

 
Tritium is radioactive with a half-life of 12.3 years and so its natural reserves are negligible. 
Therefore it has to be manufactured. It is projected that tritium will be produced in the future 
fusion power plants by reaction of lithium with neutrons released by the fusion reaction: 
 

6Li + n → 4He + T + 4.8 MeV              (2.5)          
7Li + n → 4He + T + n - 2.5 MeV                                                   (2.6) 

Deuterium can be gained easily from the sea water. In average, there is one deuterium atom 
per 7000 normal hydrogen atoms. The Earth’s reserves of lithium are estimated in millions of 
tons and will last for at least thousand years. The reserves of deuterium are practically 
inexhaustible.  
 
As we can see, the nuclear fusion could be an ideal future energy source. The fuel is abundant 
and its reserves are widely distributed on Earth. The reaction by-product, helium, is a 
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harmless inert gas, therefore there will be no radioactive waste and no pollution of the 
atmosphere.  
 

 
Figure 2.3: Annual inputs and outputs of a 1000MW power plant depending on a type of fuel 

(taken from [7]) 

2.2 Plasma 
 
For fusion reaction to occur, it is necessary to bring the two nuclei very close together. It is 
therefore necessary to overcome their strong electrostatic repulsive force. The method which 
seems to be the most effective to increase the probability for the two nuclei of getting close 
enough to react is to warm their gas mixture. To ensure fusion in sufficient rate, temperatures 
of hundreds of millions Kelvins are needed. In these extreme temperatures, the gas is fully 
ionized and we refer to it as plasma or “the fourth state of matter“. 
 
“Plasma is a quasi-neutral gas of charged and neutral particles, which shows a collective 
behaviour“[6]. 
 
Plasmas are quasi-neutral, which means that local charge concentrations or external potentials 
are shielded out on distances short enough in comparison with the plasma dimensions. 
Parameter which describes the rate of shielding in plasma is called the Debye length λD: 
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where α denotes the type of particles (electrons, ions etc.), 243112
0 1085.8 Asmkg −−−⋅=ε  is 

the permittivity of vacuum, 122231038.1 −−− ⋅⋅= KskgmkB  is the Boltzmann constant, Tα is 

the  particles‘ temperature and nα is the particles‘ density. Therefore the total positive charge 
contained in plasma is approximately equal to the absolute value of the total negative charge. 
  
Collective behaviour of the plasma particles means that the particles movement and 
trajectories are influenced not only by local conditions, but also by conditions in other places 
of the plasma. Plasma is a gas ionized in such extent, that its properties and particle 
movement are determined mainly by the electromagnetic forces and only marginally by 
collisions with neutral atoms. More information about plasma and its properties can be found 
in [4],[6] and especially in [8]. 
 

2.3 Ignition 
 
One of the most important questions is what conditions need to be ensured to gain positive 
power balance from the thermonuclear fusion. The released fusion power must be greater than 
power needed to heat and confine the plasma. The first man to formulate these conditions 
mathematically was British physicist John Lawson. His famous Lawson criterion pointed out 
that product of plasma density and energy confinement time must exceed certain value. 
Plasma density n is a number of ions per cubic metre and the energy confinement time τE 
describes the rate of plasma energy losses and is defined as a ratio of total energy W contained 
in plasma and total power of losses Ploss : 
 

loss
E P

W=τ       (2.8) 

 
For a DT fusion, the reaction products are helium nuclei (called alpha particles) and neutrons. 
In case of magnetic confinement of the plasma, the alpha particles, being charged, are trapped 
within the magnetic field. They pass their energy in collisions to the plasma particles thus 
heating the plasma. With the rise of temperature the rate of fusion reactions increases and 
therefore also alpha particles heating is greater. Ignition is a desired state, when the alpha 
particles deliver all the heating power needed and the reaction is self-sustaining. The criterion 
for ignition in magnetically confined plasmas is similar to the Lawson criterion: 
 

ασ
τ

Ε
⋅>⋅ T

v
n E

12
    [m-3.s],                                (2.9) 

 
where n is the plasma ion density, τE the energy confinement time, <σv> describes the 
averaged reactivity (the probability of reaction per unit time per unit density, computed as a 
velocity averaged product of reaction cross section and relative velocity of ions [19]). T is the 
plasma temperature and Eα energy of one alpha particle (3.5MeV). The right side of the 
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equation (2.9) is function of temperature only and this dependence has its minimum near 
30keV. 

 
Figure 2.4: The condition for ignition - dependence of the needed product of density and 

energy confinement time on temperature (for DT fusion) [39] 
 
However, because plasma averaged cross section <σv> and also the energy confinement time 
τE are functions of temperature, the ideal temperature to achieve ignition is lower. In the 
temperature range of 10-20keV, the ignition criterion for DT fusion can be written as: 
 

skeVmTn ⋅⋅⋅>⋅⋅ −321103τ                            (2.10) 

 
The left side of equation (2.10) is sometimes referred as fusion triple product. [3][4][9] 
 

2.4 Plasma confinement 
 
There are generally two principles of confining hot plasmas with ambition of achieving the 
required conditions mentioned above. These are magnetic and inertial confinement. 
  
Magnetic confinement: 
Hot plasma contains charged particles, therefore can be confined by a strong magnetic field. 
Charged particles circle around the magnetic field lines with a specific radius called Larmor 
radius:  
 

L
m v

r
q B

⊥⋅
=

⋅ ,                                                     (2.11) 

 
where m is the particle mass, ⊥v  is the particle velocity perpendicular to the magnetic field, q 
is the charge of the particle and B is the magnetic field. 
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Plasma is kept in a closed volume and its typical parameters are τE ~ 10-3 - 100s and n ~ 1019 - 
1021m-3 (lower densities and very high energy confinement times). 
 
Inertial confinement:  
Very energetic laser pulses or particle beams symmetrically heat a target sphere of DT. The 
target implodes and in its centre the conditions for a fusion reaction are obtained. This 
approach features high densities of n ~ 1031m-3 and very short energy confinement of typically 
τE ~ 10-11s. 
 
In linear magnetic field devices the end losses of particles and energy are too high, so it is 
necessary to enclose the magnetic field lines. Toroidally shaped devices satisfy this condition. 
However, in a system with toroidal magnetic field only, the magnetic field curvature and 
gradient result in an opposite vertical drift movement of ions and electrons and occurrence of 
electric current. Resulting electric field causes BE

rr
×  drift in outward direction: 

 

2B

BE
vE

rr
r ×=                                                     (2.12) 

 
To avoid the particles quickly drift away, it is necessary to twist the magnetic field lines, so 
that the resulting magnetic field is helical. There are two main types of magnetic devices 
solving this problem: stellarators and tokamaks. 
Stellarator uses external coils wound around the plasma torus to twist the magnetic field. 
Tokamak uses induced plasma current in toroidal direction to create poloidal magnetic field 
and therefore to twist the magnetic field.  

 
Figure 2.5: Scheme of a classical stellarator. It consists of the toroidal field coils (red), 

independent helical coils (green) and the vacuum vessel (blue). [9] 
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2.5 Tokamak 

 
Tokamak (toroidalnaja kamera s magnitnymi katuškami) is the most advanced device 
confining hot plasma in the present fusion research. It was projected in the fifth decade of 
20th century in Moscow, USSR. It is generally a toroidal shaped vacuum vessel with strong 
toroidal field and weaker poloidal field. Toroidal field is produced by coils surrounding the 
vacuum vessel. Plasma in tokamak acts as secondary single-turn winding of a transformer. 
Strong induced current heats the plasma and creates the poloidal magnetic field, thus twisting 
the toroidal field lines. Resultant helically shaped magnetic field lines cause that each particle 
spends similar time both in the high and low toroidal field regions. Therefore the drifts 
responsible for charge separation last only for a short time before being reversed and in time 
average their effect is cancelled. Additional outer poloidal field coils help to shape and 
position plasma.  
 

 
Figure 2.6: Scheme of a tokamak [10] 

 
The vacuum vessel has two symmetry axes, major and minor. These axes characterize two 
basic directions: toroidal and poloidal. Basic tokamak geometrical parameters are major 
radius R and minor radius a. Major radius is a distance between major and minor axis and 
minor radius is a shortest distance between minor axis and edge of the vessel (see Fig 2.7). 
The helicity of magnetic field in a tokamak is described by a parameter called safety factor q. 
It is a number of toroidal turns of the magnetic field line needed to encircle one poloidal turn. 



15 
 

 
Figure 2.7: Tokamak geometry [11] 

 
In a tokamak, continuous heat source must exist to initially heat the plasma to the needed 
temperatures and then to maintain these temperatures and balance the energy losses of 
plasma. There are several ways of heating the plasma in tokamak. Initial ohmic heating is 
caused by induced toroidal current Ip. However, as the plasma temperature rises, efficiency of 
this method of heating quickly decreases. This is caused by increasing plasma conductivity. 
Therefore additional heating methods must be used.  
 
Neutral beam injection (NBI): Tangential injection of energetic neutral particles into the 
plasma column. Ions are accelerated and then neutralized, so they are not affected by the 
tokamak magnetic field and are able to access deeper parts of the plasma. There the neutral 
atoms are ionized, caught by the magnetic field and they pass their energy to the plasma 
particles via collisions. 
 
Ion cyclotron resonance heating (ICRH): Emitted electromagnetic waves of certain frequency 
(tens of MHz) resonate with the cyclotron motion of the plasma ions. This method of heating 
has the advantage of being localised at a particular location. 
 
Self-heating of plasma: As was already mentioned, alpha particles produced by the fusion 
reaction help to heat the plasma by collisions with plasma particles. The moment when all 
heating needed is delivered only by the alpha particles is called ignition. 
 
Current research of the tokamak plasmas faces many problems. Plasmas are the source of 
numerous instabilities which lead to a deterioration of the energy and particle confinement. 
Also suitable materials of the components of a tokamak must be developed, to withstand 
extreme neutron and particle fluxes and magnetic fields and not to be source of impurities 
released into the plasma. 
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2.6 JET, ITER and future 
 
JET (Joint European Torus) is the largest operating nuclear fusion facility in the world. It is 
located in Culham, United Kingdom. JET tokamak started to operate in 1983 and was the first 
fusion device to achieve a significant production of a fusion power. It holds several 
experimental records in fusion research, including 16MW of peak fusion power. 
The typical parameters of the JET tokamak are shown in the Tab. 2.1 below: 
 

Plasma major radius 2.96m 

Plasma minor radius 
2.10m (vertical) 

1.00m (horizontal) 
Toroidal magnetic field 

(on plasma axis) 
≤ 3.45T 

Plasma current ≤ 4.8MA  
Additional heating power ≤ 25MW 

Table 2.1: Main JET tokamak parameters 
 

Experimental results on tokamaks showed, that conditions needed for ignition could be 
achieved by increasing the plasma dimensions (which especially leads to greater energy 
confinement time). After successful demonstration of physical feasibility of fusion by large 
tokamaks like JET, the need of a larger device capable of demonstrating the technological 
feasibility of fusion and provide the necessary data to design and operate the first electricity-
producing fusion power plant has arisen. The international fusion community has designed a 
next step device, called ITER, to fulfil this task. In June 2005, it was decided to construct 
ITER in Cadarache, France and on 21st November 2006 a Joint Implementation agreement 
was signed, thus establishing the ITER organization. In the year 2007, the construction of 
ITER (international thermonuclear experimental reactor) tokamak has begun. ITER is an 
international project of seven participants: The European Union (represented by EURATOM), 
Japan, The People's Republic of China, India, the Republic of Korea, the Russian Federation 
and the USA. The construction costs of ITER are estimated as five billion Euro and another 
five billion Euros are estimated for its 20-year long operation, thus making it one of the most 
expensive research projects of our time. Its objectives are to achieve a steady-state burn of 
deuterium-tritium plasma producing 500MW of fusion power, achieve the power 
amplification factor Q = 10 (ratio of fusion power to the heating power) and to test the inner 
components facing high-heat and neutron fluxes. It should start its operation by the end of the 
year 2016. The possible success of ITER would lead to construction of DEMO, a fully 
functional prototype of a fusion power plant producing electricity and then to first commercial 
devices. [3] 
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3 Plasma equilibrium 
 

3.1 From statistics to continuum 
 
Plasma is a system consisting of several types of particles (electrons, ions, neutral atoms). Let 
us denote them by a subscript α. The probability density of occurrence of particle α is: 
 

( )ααα vxtff
rr

,,= ,     (3.1) 

 
where x

r
 and v

r
 are phase space coordinates (vectors of position and velocity). The density 

probability function fα is normalized to the number of particles α in the system: 
 

( ) ( )
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where nα is the particle density and Nα the number of particles α in the system. The density 
probability function fα changes in time due to collisions of like and unlike particles: 
 

 ( ) ∑=
β

αβαα Svxtf
dt

d rr
,, ,     (3.3) 

 
where the right side terms are called the Boltzmann collision integrals describing the particle 
collisions, α and β subscripts denoting the particle types. The total time derivation in (3.3) can 
be transcribed and the resulting equation in operator form written as: 
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r
 are gradients in positions and 

velocities, αF
r

 are the forces affecting the particles and αm  are the particle masses. The 

equation (3.4) is called the Boltzmann equation and it is the basic equation in statistics of 
disequilibrium processes. According to possible ways of expressing the collision integral, the 
altered Boltzmann equation can be called the Fokker-Planck equation (only binary Coulomb 
collisions), Vlasov equation (collisions neglected) etc.  
 
Usually, the probability function information about the whole phase space is not needed and it 
is sufficient to know the development of dynamical variables in position and time only. 
Therefore it is possible to average the Boltzmann equation over velocities. The loss of 
information about the variable αv

r
 then leads from statistics to the equations of continuum. Let 

us multiply the Boltzmann equation (3.4) by a function of velocity ( )ααφ v
r

 and integrate over 

velocities. For electromagnetic interaction the force αF
r

 is the Lorentz force: 
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( )BvEQF
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×+⋅= ααα ,     (3.5) 

 

where αQ  is the particle charge, E
r

 the electric field and B
r

 the magnetic field. The result of 

integration is then: 
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where ∫= αα vdf
v

r3 . The equation (3.6) is called the Moment equation and it has a form of 

a continuity equation. The first term is a time derivative of density of an additive variable, the 
second term is a divergence of the flow of the variable, the third term describes the source 
terms from force fields and the right side of the equation describes the source terms due to 
collisions. Substituting ( )ααφ v

r
 in (3.6) by powers of velocity results in gaining the so called 

moments of the Boltzmann equation. The zero moment ( ( ) 1;; ααααφ Qmv =r
) is the 

conservation of mass, charge and number of particles. The first moment ( ( ) ααααφ vmv
rr = ) is 

the momentum conservation law. The second moment (( ) 2

2

1
ααααφ vmv =r

) is the energy 

conservation law. Higher moments are not usually considered. [8] 
 

3.2 Magnetohydrodynamics 
 
Magnetohydrodynamics (MHD) is an approach to plasma within the frame of the continuum 
mechanics. The basic MHD equations are the moments of the Boltzmann equation mentioned 
above along with Maxwell equations for electromagnetic field. In MHD, the plasma is 
considered a conducting fluid (one or more), whose behaviour is affected dominantly by the 
magnetic field. There are more possible options of defining the initial presumptions of the 
MHD theory; in this text the following are given: 
 

− Plasma can be regarded as a continuum: The collisions in plasma are dominant, 
the mean free paths of particles are much shorter than the dimensions of plasma 
and the mean collision time of particles is much shorter than the period in which 
the plasma is observed. 

− Plasma is quasi-neutral: In every macroscopic plasma volume, there is the same 
number of positive and negative charge. 

− One fluid model: Plasma can be regarded as a one fluid. If the lighter electrons 
escape from the system, they drag along the heavier ions by an electric field 
(ambipolar diffusion). The average velocities of the electron and ion parts of the 

plasma are almost equalized ( ie uu
rr ≈ ) and they are both approximately equal to 

the centre-of-mass velocity: 

∑
∑=

α

αα

m

um
u

r
r
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The small difference in eu
r

 and iu
r

 leads to a current density flowing in the plasma: 

 

∑= ααα unQj
rr

     (3.8) 

 
− Non-relativistic plasma: All kinds of particles have non-relativistic velocities 
− Low-frequency plasma: The plasma phenomena are low-frequency and the 

displacement current in the Maxwell equations can be neglected. 
 
The complete set of MHD equations then can be written: 
 

( )BurotB
t

B rrr
r

×+∆=
∂
∂

0

1

σµ
,     (3.9) 

0=+
∂
∂

udiv
t

rρρ
,     (3.10) 

( ) ( ) ( ) Bjudivupuu
t

u
x

rrrrrrrrr
r

×+∇++∆+∇−=∇⋅+
∂
∂

3/ηςηρρ ,  (3.11) 

( )ρpp = .      (3.12) 
 

The equation (3.9) is an equation for the magnetic field, (3.10) the equation of continuity, 
(3.11) the equation of motion for a viscous magnetized fluid (the famous Navier-Stokes 
equation) and (3.12) is some algebraic relation for pressure, which completes the set of 
equations. In these equations, σ is the plasma conductivity, 227

0 104 −−− ⋅⋅⋅= Asmkgπµ  is the 

permeability of vacuum, ρ is the plasma mass density, p is the plasma pressure, η is the first 
viscosity and ζ is the second viscosity. [8] 
 

3.3 The Grad-Shafranov equation 
 
On short timescales the tokamak plasma shows a variety of oscillations and turbulent 
phenomena. On sufficiently long timescales the plasma behaviour is governed by gradual 
changes in the magnetic configuration, changes of the plasma heating, the diffusive losses etc. 
Let us consider situations, where there exists an intermediate timescale on which the tokamak 
plasma is in equilibrium. In equilibrium, the plasma pressure and the forces due to magnetic 
field must be equalized. When we start from the MHD equation of motion (3.11) and consider 
the equilibrium situation, in which the temporal derivatives are equal to zero, and if we 
additionally consider zero plasma flow ( 0=u

r
), then the equation (3.11) can be rewritten as: 

 

Bjp
rrr

×=∇ ,      (3.13)   
  

which exactly expresses the equalization of the plasma tendency to extend due to its kinetic 
pressure and the Lorentz force binding the particles to the magnetic field lines. The ratio of 
the kinetic plasma pressure, averaged over the plasma volume, to magnetic pressure: 
 

( )0
2 2// µβ Bp= ,     (3.14) 

 
called the beta parameter, is an important characteristics of the plasma confinement.  



20 
 

 
For an axisymmetric system like tokamak (independence in the toroidal direction) it is 
convenient to rewrite the equilibrium equation (3.13). Before it is done, there are several ideas 
which should be noted: 

− A scalar product of equation (3.13) with current density j
r

 or magnetic field B
r

 yields:  

 

0

0

=∇⋅

=∇⋅

pB

pj
rr

rr

,     (3.15) 

 
which tells us, that both the current density and magnetic field are perpendicular to the 
plasma pressure gradient. This implies that electric currents in equilibrium flow on 
surfaces of constant pressure and the magnetic field lines also lie on that surface. It can 
be shown that in axisymmetric case these surfaces are tori. 

− The flux integrals SdjSdB
rrrr

∫∫ ⋅⋅ ,  ( Sd
r

 is a vector element of the surface, with a 

direction normal to the surface) have a constant value on these p=const. surfaces, as 
they lie on them and thus any part of the integral on the surface vanishes. These 
surfaces are therefore called flux surfaces or magnetic surfaces and can be labelled by 
the scalar fluxes. Moreover, p is also a function of fluxes only. 

− The constraint 0=Bdiv
r

 (the Gauss’s law for magnetism) implies that the magnetic 
field lines cannot cross each other. Therefore if one follows a magnetic field line 
around the torus, the ratio between the numbers of toroidal and poloidal revolutions of 
the field line converges to a constant q. The constant q is called the safety factor 
because of its importance in stability of a wide range of MHD modes. It is related to 
the average twist of the helical field on a magnetic surface. 

 
On a magnetic surface, there are two topologically different types of curves: winding around 
the torus-shaped surface in poloidal or toroidal direction. If we chose a curve winding around 
the magnetic surface in the toroidal direction and integrate the poloidal component of the 
magnetic field Bp over the surface S enclosed by the curve, we get the poloidal magnetic flux 
ψ : 

∫ ⋅=
S

p SdB
rr

ψ .      (3.16) 

 
Similarly, if we integrate the poloidal current density flowing through that surface, we get the 
total poloidal current flowing through the surface: 
 

∫ ⋅=
S

pp SdjI
rr

.     (3.17) 

 
Both these functions are constant on the magnetic surface. In order to describe axisymmetric 
MHD equilibria, the cylindrical coordinates (R,φ,z) are used, where φ is the angle of 
symmetry (toroidal angle), R measures the distance to the axis of symmetry (the major radius) 
and z the height over the axis of symmetry (see Fig. 3.1). In cylindrical coordinates, the 

Gauss’s law for magnetism 0=Bdiv
r

 has the following form: 
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 ( ) 0
11 =

∂
∂+

∂
∂

+
∂
∂

z

BB

R
RB

RR
z

R φ
φ .    (3.18) 

 
As the poloidal magnetic flux ψ is constant on the magnetic surfaces, it must satisfy equation: 
 

0=∇⋅ ψ
rr

B .      (3.19) 
 

Considering the equations (3.18) and (3.19), the magnetic field can be written in cylindrical 
coordinates as: 

RR
B

zR
B

R

I
B

z

R

p

∂
∂=

∂
∂−=

=

ψ
π

ψ
π

π
µ

φ

2

1
2

1
2

0

.     (3.20) 

 
The poloidal flux function ψ is arbitrary to an additive constant, which may be chosen for 
convenience. 

 
Figure 3.1: Coordinates used for the Grad-Shafranov equation and the magnetic surfaces 

topology. [9] 
 

Using these equations (3.20), the force balance equation (3.13) may be rewritten as: 
 

( ) ( ) ( ) ( )''2 2
0

2
0

* ψψµψπµψ pp IIpR +=∆− ,   (3.21) 

 
where the operator *∆  is called the Grad-Shafranov operator and defined as: 
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∂

∂
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zRRR
R

ψψ
     (3.22) 

 

and the prime denotes the derivatives 
ψ∂
∂

. The equation (3.21) is called the Grad-Shafranov 

equation and it is an elliptic second order nonlinear differential equation for ψ. To solve it, 
one has to specify ( )ψp , ( )ψpI  and then compute the ( )zR,ψ . Usually, one will specify 

boundary conditions. If the plasma is surrounded by a perfectly conducting vacuum vessel, 
the vessel is a flux surface .const=ψ . The tokamak experiments throughout the world use 
mainly the so called EFIT code to obtain a solution of the equation (3.21) in the tokamak 
plasma consistent with experimental measurements.  
 

 
Figure 3.2: Typical poloidal cross section of a tokamak using divertor configuration. The 

contours show the poloidal flux function ψ. [9] 
 

From the Fig 3.2, it can be observed that the flux surfaces are not centred to one axis, but they 
are slightly shifted in the outward direction. This shift is called the Shafranov shift and it is 
caused due to forces trying to expand the torus radially outward (the kinetic plasma pressure 

and the expansion force of a current loop due to the Bj
rr

×  force). The last closed flux surface 
is called separatrix Plasma particles accessing the separatrix flow along the magnetic field 
lines onto the material plates at the bottom of the vessel. This configuration is called a 
magnetic divertor. [4][9][21] 
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3.4 Flux coordinates 
 
In equilibrium calculations, but also in the modelling of plasma transport and in stability 
analyses, the so called flux coordinates (r,θ,φ) are of great importance. Here φ is the usual 
toroidal angle, ( )ψrr =  labels the flux surfaces and θ is used for the poloidal angle. ( )ψr  can 

be the poloidal magnetic flux ψ itself or it can be chosen to closely resemble the minor radius 

(usually ψ ). It is usually normalized to be zero in the plasma centre and 1 on the separatrix. 

The differences between its definitions are not too important. The various definitions of θ, 
however, are each convenient in very specific applications:  
 

− A proper geometrical angle. 

− Coordinates, in which the field lines appear straight (the safety factor  ( )
θ
φψ

d

d
q =  is 

constant on every flux surface). 

− An orthogonal coordinate system (thus 0=∇⋅∇ θ
rr

r ). 
 

 
Figure 3.3: Flux coordinate systems (left: proper poloidal angle, centre: straight field lines, 

right: orthogonal coordinates). [21] 
 
Most important application of the poloidal flux is that it can be used as a generalisation of the 
minor radius coordinate. Here the flux is first normalised so that on magnetic axis it is equal 
to 0 and on separatrix equal to 1:   
 

( ) ( )axissep

axis
N ψψ

ψψψ
−

−= )(
.     (3.23)  

 

Then the normalised minor radius is defined as Nψρ = . For plasma with circular cross 

section and large aspect ratio ar /→ρ  (where a is the tokamak minor radius). Such 
definition is used in our analysis (chapter 7).  
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4 Transport in tokamaks 
 

4.1 Transport equations 
 
For a single particle in tokamak the confinement would be perfect. However, in reality 
collisions, drifts, MHD instabilities and turbulence lead to a radial transport of particles and 
energy across the magnetic field lines. This radial transport determines the particle and energy 
confinement times τp and τE and therefore it is one of the most important plasma parameters.  
 

We define the particle flux αΓ
r

 as the number of particles α (electrons, ions or neutral atoms) 

passing through a magnetic surface per unit area and time. For αΓ
r

 the following presumption 

(the Fick’s law) is made: 
 

ααααα vnnD
rrr

⋅−∇−=Γ ,                                         (4.1) 

which says that it has a diffusive part driven by a gradient of particle density αn  and 

characterized by the diffusion coefficient Dα and a convective part due to directed motion αv
r

. 

If the velocity αv
r

 is positive, then this term describes an inward pinch. 

 
The equation of continuity says that a change of density in any part of the system is due to 
inflow and outflow of material into and out of that part of the system, no material is created or 
destroyed. Mathematically expressed: 
 

∫ Γ−=
S

Sd
dt

dN rr

α
α

,                                              (4.2) 

where Nα is a number of particles α contained in the system and S is an enclosed surface 
encircling the system. We are able to further modify this equation by using the Gauss’s law: 
 
 

∫ ⋅=
V

dVnN αα        ( )∫ ∫ Γ=Γ
S V

dVdivSd αα

rrr

,              (4.3) (4.4) 

 

where V is a volume enclosed by the surface S. Therefore we can write the resulting equation 
in a differential form: 

α
α Γ−=

∂
∂ r

div
t

n
                                                    (4.5) 

 

In reality, this equation contains an additional term, which describes the change of plasma 
density due to ionisation or recombination Sα: 
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αα
α Sdiv
t

n +Γ−=
∂

∂ r

                             (4.6) 

If we put the equations (4.1) and (4.6) together, we gain the final diffusion equation: 
 

( ) ( ) ααααα
α SvndivnDdiv
t

n +⋅+∇=
∂

∂ rr

                       (4.7) 

 
Heat flux αq

r
 is defined as the flow of particle kinetic energy per unit of area per unit of time. 

It is driven by the temperature gradient and it can be expressed by the following form (the 
Fourier’s law): 
 

ααα χ Tq ∇−=
rr

,     (4.8) 

 
where αχ  is the thermal diffusion coefficient (thermal conductivity) and αT  temperature of 

the species α. Similarly to the previous considerations about the particle diffusion, a heat 
equation can be derived: 
 

)( αα
α χ Tdiv
t

T
∇=

∂
∂ r

,     (4.9) 

 
for a case with no internal heat generation in the plasma. 
 
It must, however, be mentioned that the equations derived above are but a simplification of 
the real phenomena. In reality, both the particle and the heat flux are driven by gradients of 
more than one thermodynamic quantity (for example particle flux may appear due to thermal 
or electric potential gradient etc.). The flux of a specific particle type α is also dependent on 
the gradients of thermodynamic quantities of other particles. Also note that in anisotropic 
magnetized tokamak plasma these diffusion coefficients are tensors themselves. [4][8][9] 
 

4.2 Classical diffusion 
 
In a magnetized plasma we distinguish between transport coefficients parallel and 
perpendicular to the magnetic field. Diffusion parallel to the magnetic field lines is unaffected 
by the magnetic field and is generally much bigger than the perpendicular diffusion. The 
magnetic confinement properties, however, are determined by the perpendicular diffusion 
coefficient.  
 
The simplest way of computing the diffusion coefficient comes from the random-walk 
assumption. We assume that due to Coulomb collisions with other particles, the particle 
makes a step ∆x perpendicular to the magnetic field after a time ∆t. The step can be made in 
both directions with equal probability and the diffusion coefficient of this process is 
following: 

α

α
α t

x
D

∆
∆≈

2

                                                       (4.10) 
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To get the diffusion coefficient, it is necessary to evaluate αx∆  and αt∆ . αx∆ , being the 

characteristic step size in the random walk, is the particle mean free path mfpl . αt∆  is an 

average time which it takes for a particle to change its direction due to collisions by 90°. It is 
the inverse value of the particle collision frequency ν and it differs for electron-electron (ee), 
ion-electron (ie), electron-ion (ei) and ion-ion collisions (ii) (there the first index denotes the 
incident, scattered particle and the second index the target, stationary particle). The difference 
between these frequencies comes from the large value of ion and electron mass ratio. 
Assuming approximately the same electron and ion temperatures, 90° scattering made up by 
many small angle scatterings and purely hydrogen plasma, the rates of the collision 
frequencies can be estimated as follows: 
 

( ) ( )ieieieiieiee mmmm /:/:1:1::: 2/1=νννν .  (4.11) 

2/3

4

ee

eiee
Tm

ne∝≈νν .     (4.12) 

 
In the so-called classical approach, we take αx∆  to be the Larmor radius α,Lr  (2.11). 

 

The location αR
r

 of the guiding centre of the gyro-orbit is following: 

2Bq

Bp
R

α

α
α

rr
r ×= ,                                                (4.13) 

where αp
r

 is the particle momentum, B
r

 is the magnetic field and αq  is the charge of the 

particle. In a collision, momentum balance requires equality of βα pp
rr ∆−=∆ . Therefore for 

collisions of like particles (ions-ions, electrons-electrons) βα RR
rr

∆−=∆  and these collisions 

do not contribute to particle transport (only to a heat transport, as a hot particle may change 
place with a cold one). The situation changes for electron-ion collisions, where ei qq −=  (for 

a purely hydrogen plasma), ei pp
rr ∆−=∆  and so ei RR

rr
∆=∆ . The diffusion is ambipolar, 

because in a collision the electrons and ions make a step of equal magnitude and direction: 
 

ei
eeB

classiiLieeLeiclasse Be

mTk
DrrD ννν 22

,
,

2
,

2
,,

⊥≈=⋅=⋅= ,  (4.14) 

where 122231038.1 −−− ⋅⋅= KskgmkB  is the Boltzmann constant and ⊥,eT  electron 

temperature perpendicular to the magnetic field. 
Similar arguments can be applied for the thermal conductivities αχ  to derive a relation: 

 

( ) classeeeiclassi mm ,
2/1

, 40/ χχχ ≈= .    (4.15) 

 
However, experimentally determined diffusion coefficients are larger by a factor of 
approximately 105. Also, the electron heat conductivity is found to be comparable to that of 
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ions. Therefore the classical diffusivity cannot be the dominant transport process in the 
tokamak plasma. [4][8][9][20] 
 

4.3 Neoclassical diffusion 
 
In a neoclassical approach to transport, the effects of toroidal geometry are considered. There 
are two main differences to classical transport theory: 
 

− B  is not constant along a magnetic field line. Plasma particle which does not have a 

sufficient ratio of v⊥/v�, where v⊥ and v� denote the particle velocity components 
perpendicular and parallel to the magnetic field, will be reflected back. Therefore we 
distinguish between two types of particles: trapped and passing. The electrical 
conductivity of plasma is lowered in a neoclassical theory, because the trapped 
particles do not contribute to the toroidal current 

− B∇  and curvature drift cause that a trapped particle deviates from the magnetic 
surface and its orbit projected into a poloidal plane has a banana shape. These orbits 
are therefore called banana orbits (see Fig 4.1).  

 

The fraction of the trapped particles on a flux surface is ε2/ =NNt , where Rr /=ε  is the 

inverse aspect ratio of the flux surface (r and R are the minor radius and major radius). 

The width of the banana orbit is given by 
ε
qr

r L
B = , where q is the safety factor. For trapped 

particles, an effective collision frequency is introduced 
ε

νν
2

≈eff , where ν  is any of the 

collision frequencies from (4.12). An important parameter is the ratio teff ννν /* = , where tν  

is the inverse of time, which it takes for a particle to transit the banana. Therefore *ν  tells us 
whether the trapped particle is able to complete the banana orbit between two consequent 
collisions. 
 
 
 

 
Figure 4.1: Banana orbits in toroidal devices [9]. 



28 
 

 
According to the parameter *ν , the neoclassical transport can be divided into three regimes: 
 

− Pfirsch-Schlüter regime: 1* >ν , the trapped particles are scattered before they can 
complete the banana orbit. The diffusion coefficient is then determined as: 
 

classLPS DqrqD 222 == ν .    (4.16) 

 
As the safety factor q value ranges usually from 2 to 5, the diffusion is increased. 
 

− Banana regime: 2/3
* εν < , the trapped particles are able to follow their banana orbit 

several times before they are scattered. Thus for a fraction ε2  of particles, the 
characteristic step is Br  and collision frequency is effν : 

 

class
L

effBB D
qqr

rD
2/3

2

2/3

22
22

ε
ν

ε
νε =≈≈ .   (4.17) 

 
For example for values 3/1=ε  and 5=q  this yields classB DD 130= . 

 
− Plateau regime: 1*

2/3 <<νε , the diffusion coefficient in this region is independent on 
the collision frequency ν . The diffusion coefficient is between the two regimes above. 

 

 
Figure 4.2: Neoclassical diffusion coefficients [4]. 

 
These neoclassical effects can increase the diffusion coefficient by a factor of 102. But it still 
cannot explain the experimental results. The real transport is called anomalous and it is the 
result of turbulences in plasma [4][9]. 
 

4.4 Transport coefficients 
 
The typical diffusivities measured on tokamaks are: 
 

• χχχχi , χχχχe ~ 1 m2s-1 
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• D ~ ¼ χχχχe 

    
where D is a diffusion coefficient (same for both species as the diffusion is ambipolar). The 
typical neoclassical values for diffusivities are generally much lower: 
 

• χχχχi,neo ~ 0.3 m2s-1 

• χχχχe,neo ~ Dneo ~ (me/mi)
1/2χχχχi,neo 

 
Therefore generally  
 

• χχχχi ~ 1-10 χχχχi,neo 

• χχχχe ~ 102 χχχχe,neo 

• D ~ 10-102 Dneo 

 
In experiments, the values of D, χi can approach the neoclassical values in the plasma core 
region or during a high confinement operation (H-mode, internal transport barrier...), but χe is 
almost always anomalous. [4] 
 

4.5 Anomalous transport 
 
The turbulence-driven anomalous transport is caused by fluctuations in the plasma. These 
fluctuations may be electrostatic or electromagnetic and are supposed to be an effect of one or 
more microinstabilities of the tokamak plasma. Macroscopic MHD instabilities like sawteeth, 
magnetic islands or ELMs are also an important source of the anomalous transport.  
 
In the following text, to simplify the equations and avoid confusion, the subscripts denoting 
the different species are omitted if not necessary. 
 
For a fluctuating quantity f we may write: 
 

fff δ+= ,      (4.18) 

 

where  means averaging over a flux surface. The turbulent fluctuations result in BE
rr

× drift 

velocity ⊥vδ  perpendicular to the flux surface: 

 
TBEv /⊥⊥ = δδ ,     (4.19) 

 
where ⊥Eδ  is the electric field fluctuation perpendicular to the flux surface and BT is the 
toroidal magnetic field. This velocity combines with density fluctuations nδ  to produce a 
convective particle flux Γ : 
 

ndv δ⊥=Γ ,      (4.20) 

 
where  means again averaging over a flux surface. The particle flux (4.20) must be then 

averaged also in time as the fluctuations are also time-dependant. The time average must be 
done over a time interval higher than all characteristic times in the plasma (electron and ion 
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plasma frequency, electron and ion cyclotron frequency...). Therefore the time and space 
correlation between fluctuations plays an important role. For a turbulent heat flux the 
temperature fluctuations Tδ  play a role: 

 
Tvnkq B δδ ⊥= 2/3 ,     (4.21) 

 
where n is the equilibrium density on the flux surface. In case of magnetic fluctuations Bδ  
associated with a change in magnetic topology, the perturbed velocity //vδ parallel to the 

magnetic field and the perturbed radial component of the magnetic field rBδ  give rise to a 
particle flux: 
 

r
T

Bv
B

n δδ //=Γ .     (4.22)  

 
The fluctuations nδ , eTδ  and the electric potential fluctuation δφ  at the edge of plasma can 

be measured by Langmuir probes and the magnetic fluctuation Bδ  can be measured by the 
Mirnov coils. In experiments is observed that nn /δ , ee TT /δ  and eBTke /δφ  rise quickly 

towards the plasma edge, where they can reach values ~50%. On the other hand, the edge 
plasma value of BB /δ  is usually small, typically ~10-4. The internal density fluctuations can 
be much lower falling to ~1%. The plasma potential fluctuations in the core follow 
approximately a relation nnTke eB // δδφ ≈ . 

 
It is usual to perform a spatial Fourier transform of the fluctuations and observe their wave 
numbers ⊥k  and //k  perpendicular and parallel to the magnetic field. The spectrum ( )⊥kS  is 

dominated by wavelengths ( k/2πλ = ) greater than the ion Larmor radius iLr , . In the 

azimuthal (poloidal) direction, the spectrum is peaked in the region 3.0≤⋅⊥ sk ρ , where ρs is 

the ion Larmor radius at the electron temperature. For spectrum ( )//kS  of wave numbers 

parallel to the magnetic field, the typical values are 1// ≈⋅ Lk , where L is the connection 

length around the torus ( qRL = , where q is the safety factor and R the major radius). The 
characteristic frequencies of the fluctuations are ~ 100kHz. [4] 
 
 
Transport due to electrostatic fluctuations 
 
As was mentioned in the previous paragraph, it is usual to perform a Fourier transform of the 

fluctuations ( ) ( )kfxtf k

rr
,, ωδδ ↔ : 

( ) ( )∑ −=
k

txki
kefxtf ωδδ

rrr
, ,    (4.23) 

 

where k
r

 is the wave number (wave vector) and ω is the angular frequency. If the electrostatic 

potential fluctuation δφ  is present, it causes BE
rr

×  drift velocity vδ . For a particular 

component kδφ  this velocity may be written as: 
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k
B

iv k
k

rr δφδ −=       (4.24) 

 
and its component perpendicular to the magnetic field B

r
 as: 

 

kk
B

Bk
iv δφδ

2,

rr
r ×−=⊥ .     (4.25) 

 
If this particle velocity persists for a so called correlation time τk, it leads to a radial 
displacement of the particle kkk vr τδδ ⊥≈ , . A random walk estimate for the turbulent diffusion 

driven by electrostatic fluctuations is then given as: 
 

 
( )

k
k

k

k k

k

B

kr
D τδφ

τ
δ 22

∑∑ 






== ⊥ .    (4.26) 

 
The correlation time is determined by the process which most rapidly limits the radial drift 
velocity ⊥,kvδ . The main possible processes determining τk are: 

 
− The time variation of the fluctuation determined by ωk: τk ~ 1/ωk. 
− The time for a particle to move along a parallel wavelength of the fluctuation: τk ~ 

/////1 vk . 

− The time for magnetic drifts (drifts of magnetic field lines) to carry the particle along a 
perpendicular wavelength of the fluctuation: τk ~ 1/ωd. 

− The time for collisions to change the particle orbit: τk ~1/ν, where ν is the collision 
frequency of particles. 

− The time for a turbulent velocity kvδ  to carry the particle along a perpendicular 

wavelength: τk ~ 1/Ωk, where kk vk δ//=Ω . 

  
Therefore for a low level fluctuations keffk ,ω<<Ω , where ( )νωωω ,,,max ////, dkkeff vk= , the 

equation (4.26) can be rewritten as: 
 

∑ 






= ⊥

k

k

keff B

k
D

2

,

1 δφ
ω

     (4.27) 

 

and ( )2δφ∝D . For higher level of fluctuations keffk ,ω≥Ω  the equation (4.26) can be 

rewritten as: 

∑=
k

k

B
D

δφ
      (4.28) 

 
and δφ∝D .[4] 
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Transport due to magnetic fluctuations 
 

Magnetic fluctuations B
r

δ  affect the structure of the magnetic surfaces and can produce 
ergodic magnetic fields. The motion of plasma particles along these magnetic field lines may 
then lead to their radial transport and losses. A radial magnetic field perturbation rBδ  at a 

rational surface at radius mnr , where the safety factor nmq /=  (m, n are identified as poloidal 

and toroidal mode), leads to a creation of a magnetic island of width: 
 

B

B

m

rL
w rmns

mn

δ
= ,     (4.29) 

 

where  

dr

dq
r

Rq
Ls

2

=  is called the magnetic shear length, R is the major radius and r is the minor 

radius. With increasing level of the magnetic fluctuations, an increasing part of the regions 
between resonant surfaces becomes ergodic. This behaviour is quantified by a parameter α : 
 

r

w
nm

nm

∆
=
∑

,
,

α ,      (4.30) 

 
where the sum is over all modes m, n with rational surfaces in interval of radii ∆r. When 
α » 1, many islands overlap and the behaviour of the magnetic field lines becomes stochastic. 
In this case a radial diffusion of the field lines can be described by a magnetic field line 
diffusion coefficient DM. If the radial field perturbation remains in the same direction over a 
so called correlation length cL , then the field line takes a radial step: 

 

c
r L

B

B
r

δδ ≈ .      (4.31) 

 
A random walk estimate for the magnetic field line diffusion coefficient can be made: 
 

( )
ck
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M L
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D
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==
δδ

.    (4.32) 

 

For a weak turbulence the correlation length ckL ~ ///1 k ~Rq and ( )2
rM BD δ∝ .  

 
Assuming collisionless plasma, where the mean free path mfpl  exceeds the correlation length 

cmfp Ll > , a particle can move freely along the radially diffusing magnetic field line with 

velocity //v  for a collision time τc. So it makes a radial step mfpM lDr =δ . The diffusion 

coefficient for particles can then be estimated as: 
 

( )
M

c

mfpM

c

Dv
lDr

D //

2

===
ττ

δ
.    (4.33) 
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For a more collisional plasma, where cmfp Ll < , the particle collisionally diffuses along the 

magnetic field lines with a radial step rδ ~( ) mfpr lBB /δ  in a collision time τc. The diffusion 

coefficient for particles can in this case be estimated as: 
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where ( )cmfplD τ/2

// =  is the collisional diffusion coefficient parallel to the magnetic field 

lines. [4] 
 
In this chapter, information mainly from [4] and [9] were used. Especially [4] contains a very 
profound information about the transport in tokamaks. 
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5 Pellet fuelling 
 

5.1 Introduction  

 
The magnetic confinement of plasma in tokamaks is not perfect, as the particles are lost 
continuously and the plasma particle content would decrease on a characteristic timescale 
called the particle confinement time τp, if the fuel is not replaced. The most common and 
simplest method of plasma refueling is external gas puffing. It is a way of edge plasma 
fuelling. The neutral gas of deuterium and/or tritium is simply pumped into the vacuum 
vessel. This leads, however, to particle source profiles concentrated around the plasma 
boundary. In this region, there is a strong outward diffusion and consequently low particle 
confinement time and therefore fuelling efficiency attained by gas puffing is quite low. In 
larger devices and hotter and denser plasmas, only a small fraction of neutral gas particles will 
be able to penetrate across the separatrix and it will not be possible to use gas puffing as a 
primary fuelling method. Neutral beam injection used for heating tokamak plasmas delivers 
very energetic neutral particles into the plasma column. These particles are usually deuterium 
atoms, therefore this heating method provides also deep plasma refueling. However, 
attempting to refuel the plasma by NBI injection is very energy inefficient. The power 
required for sufficient refueling rate is enormous. Therefore for present day and future 
devices, so called pellet injection has become a leading technique for plasma fuelling. Pellet 
injection will also be crucial for ITER performance. 
Solid pellets of frozen deuterium and tritium with diameters of 1-6mm are used to refuel the 
plasma. Pellets are injected at high speeds (hundreds of meters per second) into the plasma 
column and they deposit fuel preferentially in the hotter, denser central plasma regions, where 
is the highest evaporation rate of the hydrogen ice. The deep deposition of particles is 
beneficial and brings several advantages. Generally, it takes a longer time for a deeper 
delivered particle to escape from the toroidal trap by a diffusive way, simply because of the 
longer distance it has to go, and therefore particle confinement time increases. In pellet 
experiments undertaken at several toroidal devices, energy and particle confinement 
improvement has been observed associated also with greater thermonuclear reactivity. The 
pellet injection also allows us to operate at higher densities, both in L and H-mode regimes, 
and to better control the shape of the plasma density profile. [12][13] 

5.2 Pellet shielding and ablation 
 
When a pellet is injected into the tokamak plasma, it is exposed to energy fluxes carried by 
plasma electrons and ions and it erodes or ablates. The ablation rate is defined by the balance 
between the energy flux available and the flux needed to remove the particles from the pellet 
surface, to dissociate, ionize and accelerate them. These particles create a large cloud of cold 
and dense neutral gas surrounding the pellet, which can be up to 100 times larger than the 
pellet itself. The outer edge of the cloud interacts directly with plasma, is heated and ionized. 
This cloud effectively protects the pellet from direct interaction with plasma particles and thus 
prolongs its lifetime and increases the pellet penetration depth. There are three main 
mechanisms of shielding provided by the neutral and ionized gas around the pellet.  
 

1) Magnetic shielding: Plasma at the outer edge of the gas cloud distorts local magnetic 
field, causes its partial expulsion from the cloud interior and thus reduces the incident 
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heat flux. The rate of shielding by this phenomenon is almost negligible in present 
experiments. 

2) Electrostatic shielding: Owing to the difference in the thermal velocities of electrons 
and ions, the pellet surface first gains a negative excess charge. Therefore it reduces 
the incident electron flux and increases the ion flux, until they are equalized. During 
the shielding period, the net energy flux may be reduced approximately by a factor of 
2. 

3) Neutral gas and/or plasma dynamic shielding: The dense neutral gas and plasma from 
the cloud of ablated particles shield the surface of the pellet from direct interaction 
with flux of energetic plasma particles via collisions with these particles. For hydrogen 
pellets, this process is by far the most important. On this shielding phenomenon, the 
most widely used neutral gas shielding (NGS) ablation model is based. 

 
The magnitude of these shielding effects then determines what fraction of the energy flux, 
carried by the tokamak plasma particles reaches the surface of the pellet and consequently the 
pellet ablation rate, pellet penetration depth and pellet lifetime.  
As the cloud of ablated particles evolves around the pellet on a timescale of the order of 1µs 
or less, it is elongated and expands because of its high pressure (about 10 times higher than 
the surrounding plasma). The ionized part of the cloud forms a cigar shaped plasmoid, which 
expands along the magnetic field lines by ion acoustic velocity in plasma. It also conducts a 
drift motion due to inhomogeneous magnetic field. The electrons and ions are separated due 
to combined effect of B∇  drift and magnetic field curvature drift and thus local electric field 
is created, which causes BE

rr
×  drift motion in the outward direction (in the direction opposite 

to magnetic field gradient, towards the so called low field side, LFS, of the vessel). This drift 
motion lasts for approximately 20µs until the short circuiting of charge separation by electron 
current along the magnetic surfaces. The ionized gas is then confined to local magnetic flux 
surfaces. When the pellet exits from its old magnetically confined cloud, a new cloud 
develops around it and the process is repeated. [12][13] 
 

5.3 Fuelling efficiency 
 
The expected enhancement of particle fuelling efficiency was the first motivation for injecting 
pellets into the tokamak plasma. The fuelling efficiency is defined as the proportion of the 
deposited material that remains effectively in the discharge or in the case of pellet injection as 
the step increase of the plasma particle content due to pellet injection divided by the number 
of particles in the injected pellet. The injection of a solid pellet enables placement of the fuel 
particles deeper into the plasma, and so from this geometrical effect alone one would expect a 
significant improvement in fuelling efficiency. This is indeed proven in experiments, where 
the fuelling efficiency of the pellet injection is relatively high. It can be in a range of 50-
100%, which is much more than maximally a few percent efficiency of the gas puffing. It has 
been observed, that the main parameters, which influence the pellet penetration depth and 
consequently also the fuelling efficiency, are the pellet size, injection velocity and also the 
trajectory. Performed experiments confirmed, that injection of the pellets from the magnetic 
high field side (HFS) leads to a more efficient fuelling and lower confinement degradation 
with additional power, despite a limited pellet velocity. This is due to BE

rr
×  drift of the 

ablated material. The cloud of ionized ablated material is displaced against the magnetic field 
gradient, as was described before. This leads to deeper penetration of particles for pellets 
injected from the HFS compared to the pellet fuelling from the LFS.[12][13][14]  
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Even a pellet acceleration towards the LFS was observed, in a range of (1-5)·105m·s-2, which 
can be explained also as the effect of BE

rr
×  drift. Due to the BE

rr
×  drift, a part of the 

shielding cloud drifts towards LFS and thus causes reduced pellet shielding at HFS compared 
to its LFS. Increased ablation at the HFS of pellet causes pellet rocket acceleration.[15]  
 
The experiments have revealed that, as a result of deep pellet fuelling, not only does the 
efficiency increase, but on timescales long compared with the pellet ablation itself also the 
plasma performance improves. This improvement is thought to be caused by unusually 
peaked electron density profiles, which imply improved particle transport properties in pellet 
fuelled plasmas. The improved transport has the advantage of reduced energy loss by 
convection and conduction and reduced particle loss. On the other hand, a problem may occur 
with impurity accumulation accompanied with strong radiation cooling. Improved particle 
transport could also potentially create a problem with removal of the helium ash in burning 
plasmas. However, in reactor-grade plasmas even HFS pellets will penetrate only ~15-20% of 
the minor radius, due to high plasma temperatures at the plasma edge. This motivates 
development of superfast pellets (10km/s) but this is far from practical application yet. 
 
Apart from the energy and particle confinement improvement on longer timescales, rapid 
transport and enhanced energy and particle losses are sometimes observed on the timescale of 
the pellet ablation itself. This could be possibly attributed to markedly enhanced electron 
pressure and density gradients and to modified post-pellet magnetohydrodynamic (MHD) 
activity of the plasma, especially to so called edge localized modes (ELMs). Along with pellet 
mass losses during the pellet acceleration and delivery, these prompt post-pellet particle losses 
are the most significant factor reducing the fuelling efficiency and so they influence also the 
design and parameters of the pellet injection system itself (namely the particle throughput 
which must be provided by the pellet injector to maintain the plasma density). Therefore the 
aim of this work was to try to quantify this increased post-pellet transport.[12][13] 
  

5.4 Pellet production, acceleration, injection 
 
Pellet injection concepts share common technological problems associated with the properties 
of solid hydrogen. The hydrogen isotopes (H2, D2 and T2) freeze in the temperature range of 
14-20K, which leads to a necessity to use liquid helium cooled components for the pellet 
production. Also high vacuum and low heat loss techniques must be applied and suitable 
materials strong enough in these low temperature conditions must be used. Moreover, the 
physical properties of solid hydrogen play an important role with respect to its acceleration to 
high velocities. The densities of the solid hydrogen are low (0.20-0.31g/cm3 for D2 and T2) 
and so the necessary acceleration forces are not very high. For example, a 6mm deuterium 
pellet with a mass of 35mg can be accelerated to speeds about 1.5km/s  in acceleration path 
less than a metre long with a light gas gun injector operating at propellant gas pressure of 
60bar. On the other hand, the yield strength of the solid hydrogen is also low (ranging from 
≈2bar for H2 at 8K to ≈10bar for T2) and places a low limit on possible acceleration forces.  
 
Solid hydrogen pellets may be produced generally by two methods: 
 

1) Hydrogen gas condenses and solidifies in a small part of narrow tube and then is 
ejected by  high pressure gas (MAST) 
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2) Hydrogen gas is liquefied and pushed through the extruder, where it solidifies, and 
then is cut mechanically. (JET). 

    
For pellet acceleration, a variety of ways have been considered. The most important ones are 
given below: 
 

1) Centrifuge accelerators: Pellets are constrained to move in a track on a high speed 
rotating disc. The radius of the accelerator is varying between tens of centimeters and 
the order of a metre. The performance of the centrifuge is limited by the speeds 
achievable by the accelerator and the ability of the pellet to withstand the forces 
during the acceleration process. A centrifuge injector is capable of operating at high 
repetition rates. The pellet velocity achievable by this way is limited by the arm and 
pellet strength to velocities less than 5km/s. This is for example the way of 
accelerating the pellets on JET. 

2) Light gas guns: A pellet is put into a tube and subjected to an applied pressure 
imbalance and is therefore accelerated. In a simple single stage light gas gun, the 
driving force is provided by a high pressure gas (typically < 100bar) admitted behind 
the pellet by fast electromagnetic valves. Single stage gas guns operate usually with 
hydrogen or helium propellants at a room (or little higher) temperature. These devices, 
show, however, saturation in velocity at about 2km/s due to the fact that the pellet 
surpasses the local sound speed. To overcome this problem, a two stage guns are 
developed. It is also difficult for these guns to attain high repetition rates.  

3) Electromagnetic: Electromagnetic accelerators have been proposed to accelerate a 
carrier holding the pellet. The pellet will then enter the plasma and the carrier will be 
caught. 

4) Ablation: A laser or electron beam incident on one side of the pellet would ablate 
away a part of its surface and thus accelerate the pellet by a rocket effect. This 
acceleration must be done gradually to avoid fracturing the pellet by shock waves.  

 
The accelerated pellet then travels through a guide tube and is injected into the plasma. In 
order to access the vacuum vessel from the HFS, the guide tube needs to be curved. The 
curvature radius then determines the maximal possible pellet velocity (because of the stress 
experienced by the pellet in the curved sections). This is an issue also for ITER.[12][13] 
 

5.5 Pellet fuelling at JET 
 
Two pellet injectors are currently available at the JET tokamak. The older JET centrifuge 
injector, operational from 1995 and new HFPI (High frequency pellet injector) installed in 
2008.  
 
The centrifuge injector is capable of producing 4mm3 cubic pellets (containing ~ 3.8⋅1021 D 
atoms) and delivering them into plasma at speeds 150-300m⋅s-1. Maximal repetition rate of the 
system is 10Hz. Pellet size, velocity and repetition rate are fixed within one plasma discharge. 
However, repetition rate can be reduced in the discharge by omitting single pellets.  
 
The HFPI is based upon a screw extruder technology with great pellet production rate (up to 
1500mm3/s and light gas gun acceleration (short pulse of Helium propellant gas ~20bar). It is 
capable of producing small pellets injected at very high repetition rate for ELM pace making 
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and mitigation and larger pellets at still high repetition rate for deep plasma fuelling. Its 
operational parameters are in the Tab 5.1 below: 
 
 
Pellet volume 

− Vol.1 
− Vol.2 

 
Adjustable 1-2mm3 
Adjustable 35-70mm3 

Injection frequency 10-60Hz for Vol.1 
< 15Hz for Vol.2 

Pellet material Hydrogen, deuterium 
Pellet velocity Adjustable 50-200m⋅s-1 for Vol.1 

Adjustable 100-500m⋅s-1 for Vol.2 
Table 5.1: JET HFPI parameters [23] 

 
There are three injection paths on JET tokamak, each injector being equipped with a fast 
selector allowing to select the flight tube, by which the pellet will be injected into plasma. 
These are the low field side (LFS), vertical high field side (HFS) and high field side (HFS) 
flight tubes. LFS injection is horizontal, HFS 44° with respect to midplane and VHFS 74° 
with respect to midplane (see Fig. 5.2). [23][24] 
 
 
 
 

 
Figure 5.1: Photograph of a pellet in flight.[10] 
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Figure 5.2: Poloidal cross section of JET with depicted pellet injection tracks for a typical 

JET plasma discharge (separatrix is shown). [24] 
 
 
 

5.6 Pellet fuelling at ITER 
 
Pellet fuelling from the HFS will be the primary core plasma fuelling technique on ITER. The 
provided core plasma fuelling is necessary for achieving high fusion gain. The proposed ITER 
fuelling system consists of two pellet injectors with multiple inner wall guide tubes and one 
guide tube for outer wall injection. The inner wall guide tubes will provide high throughput 
fuelling, while the outer wall guide tube is meant to trigger frequent smaller ELMs. As an 
edge fuelling method, set of 4 manifolds near the top of the vessel and three gas injection 
tubes in the area of divertor will provide gas fuelling. The gas fuelling rate will be up to 
240Pa⋅m3⋅s-1, the pellet fuelling rate will be maximally 100Pa⋅m3⋅s-1 and the NBI system will 
provide less than 1Pa⋅m3⋅s-1. The ITER pellet injection system must be able to supply 0.23g⋅s-

1 (≈1.0cm3⋅s-1 solid DT) to the plasma (if the production and acceleration losses are not 
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considered), which is significantly more than the present devices are capable to supply. In the 
present time, a light gas gun with continuous extruder is considered for the pellet acceleration. 
The technology to achieve the needed high throughput pellet fuelling is still under 
development, but is expected to be available within the needed ITER time scale.   
 
The ITER pellet injection system will be limited by a guide tube curvature to a velocity of 
300m·s-1 for injection from the HFS. Despite this limitation, the injection from HFS will still 
lead to a deeper pellet penetration due to a rapid mass drift in the major radius direction, as 
was discussed before. The modelling of pellet scenarios shows that injected pellets will have 
the capability to fuel the plasma well inside the separatrix, providing a significant level of 
fuelling beyond the expected ELM affected edge region. The fuelling efficiency is predicted 
to be nearly 100%. It seems however, that it will not be possible to generate strongly peaked 
density profiles on ITER by this pellet scenario. The limited pellet velocity will lead to a 
pellet penetration of about 15-20% of the minor radius. If the strong density peaking is 
needed, then technologies providing deeper pellet penetration will need to be developed.[16] 
 

 
Figure 5.3: ITER cross section showing the locations of pellet and gas injectors. The dashed 

pellet trajectory shows proposed LFS pellet injectors intended for ELM triggering [16]. 
 

5.7 Other pellet functions 
 
There are also other functions which may be performed by the injection of pellets. Recently 
the pellets are studied for their capability of ELM mitigation. Edge localized modes (ELMs) 
are MHD instabilities in the pedestal region typical for H-mode scenarios. They provide 
outbursts of energy and particles from the plasma in a quasi-periodic way. They are followed 
by a phase of pedestal pressure rebuilding. Pellets tend to trigger ELMs automatically. These 
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pellet induced ELMs are responsible for a significant loss of the deposited material, however, 
it can be used to our benefit. It has been shown, that increasing the ELM frequency by 
external pace making using pellet injection results in a reduced ELM energy, which is 
essential for the target lifetime of ITER and a future fusion reactor. For example on ITER, 
small pellets with a 20-40Hz frequency injected from the LFS are supposed to be sufficient to 
lock the ELM frequency to pellets, thus keeping the size of ELMs much lower than they 
would be at a natural frequency [16][17]. 
Another function, which may be performed by the pellet injection system in future fusion 
reactors, is fast plasma termination. This function will be required in future fusion reactors, 
because in a case of loss of control of the plasma equilibrium at high performance, the 
damage caused to first wall materials could be too high. One of the possible ways for 
mitigation of the plasma disruption is injection of a ‘killer’ – pellet of medium Z impurity. 
The pellet radiation would then decrease the plasma thermal energy and thus limit the heat 
flux onto the divertor plates. 
 
The injection of a pellet or a series of pellets is also a technique for triggering of an Internal 
Transport Barrier (ITB). ITB is a region of steep pressure gradient inside the plasma. Plasmas 
with ITB belong to so called “advanced tokamak” scenarios, which are desirable for high 
performance operation because they exhibit higher confinement compared to the usual H-
mode [13][18]. 
 

 
 

Figure 5.4: Plasma pressure profile for L-mode, H-mode and regime with ITB [18] 
 

For this chapter I used information mainly from the two review papers available concerning 
pellets [12][13]. More information about the ITER pellet system can be found in [16].  
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6 Experimental settings and data 
 

6.1 Experimental settings 
 
In this work, data from JET pulse #53212 have been evaluated. The basic parameters of this 
discharge are summarized in Tab. 6.1: 
 
Plasma current Ip 2.5MA 
Toroidal magnetic field BT (on magnetic axis) 2.4T 
Major radius R 3m 
Minor radius  a 1m 
Elongation κ 1.7 
Edge safety factor q95 3.2 
Plasma volume Vp 80m3 

Additional plasma heating Pi 17MW NBI, 1MW ICRH 
Table 6.1: Summary of the basic plasma parameters of JET pulse #53212 

 
This pulse was a part of experiments undertaken at JET aimed to develop optimized pellet 
refuelling scenarios (in 2001). Pellet injection sequences were optimized for long pulse 
fuelling to high densities, while maintaining the H-mode and good energy confinement and 
keeping the impurity level low. These experiments also tried to combine positive effects of 
deep pellet refuelling and high plasma triangularity. The pellets were injected by the JET 
centrifuge injector and their parameters are in the Tab. 6.2 below. 
 
Pellet size 4mm3,  3·1021 atoms 

Composition deuterium 

Repetition rate 3Hz, 6Hz 

Injection speed 160m·s-1 

Injection path 
from HFS along a trajectory tilted by 44° to the 

horizontal plane. (see Fig. 4.2) 
Table 6.2: Summary of the basic pellet parameters for JET pulse #53212. 

 
For this pulse, there were three sequences of pellets injected into the plasma column: 
sequence of five, six and seven pellets. The first sequence starts at time t = 57.87s, pellets 
injected at a preset repetition rate of approximately 6Hz. Then two single pellets are omitted 
and the next sequence of six pellets is injected at time t = 58.98s at halved repetition rate of 
approximately 3Hz. Then three single pellets are omitted before the last pellet injection 
sequence starts at t = 61.22s also with reduced repetition rate of approximately 3Hz.  
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6.2 Plasma diagnostics 
 
The following data for JET shot #53212 were downloaded from the JET database and 
considered in this work: 
 

− Temporal evolution of line averaged electron density measured by interferometers 
along 8 different lines (see figure 6.1). 
 

− Temporal evolution of electron density profile measured by LIDAR (see Fig. 6.1). 
 

− Temporal evolution of electron temperature profile measured by LIDAR. 
 

− Temporal evolution of Dα emission measured by visible spectroscopy. 
 

− Temporal evolution of total plasma energy content totW  measured by two diamagnetic 

coils. 
 
 

 
Figure 6.1: JET tokamak poloidal cross section with shown trajectories of LIDAR (red) and 8 

chords of interferometer (green). Blue lines show the magnetic surfaces for the considered 
shot #53212. 
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LIDAR (LIght Detection And Ranging) 
 
LIDAR diagnostics measures plasma electron temperature and density. It uses a laser pulse 
projected into the plasma. The laser light is scattered via Thomson scattering process, which 
is an elastic scattering of electromagnetic radiation by a charged particle. The incident wave 
accelerates the charged particle due to its electric field component. The particle moves in the 
direction of the oscillating electric field of the wave and emits electromagnetic dipole 
radiation. The monochromatic laser light is scattered and Doppler shifted by the fast moving 
plasma electrons (for ions, the scattering is usually neglected due to large ion mass), 
producing a broad spectrum of scattered light. By measuring the width of this scattered 
spectrum the velocity distribution and hence the electron temperature Te can be determined 
and by measuring the total intensity of the scattered light the density of the electrons ne can be 
deduced. In order to get the spatial resolution of these quantities, a very short laser pulse is 
sent into plasma (0.3ns which is ~10cm long) and a fast detection and recording system is 
used to observe the time evolution of the back-scattered spectrum. From this time dependence 
and the LIDAR principle the local values of electron temperature and density can be deduced. 
A 1J ruby laser (wavelength 694nm) is used at JET as the light source, with a frequency of 
4Hz. The trajectory of the pulse can be seen at Fig. 6.1.[10][29] 
 
Interferometry 
 
The idea of this diagnostics is to superpose two or more waves travelling along a different 
path and observe their phase shift. Typically a single incoming beam of laser light is split into 
two identical beams by a partial mirror. One of the beams passes through the plasma. These 
two beams are then made to interfere. The path difference and the change of refractive index 
in the path of the beam crossing the plasma create a phase difference between them and an 
integrated electron density along the path of the beam can be deduced. 8 different paths are 
used at JET (see Fig. 6.1). 
 
The Dα emission measured is the light of a wavelength 656nm emitted by a deuterium atom 
during an electron transition from the third to the second energy level. When the plasma gets 
in contact with the walls, neutral hydrogen particles (previously deposited on the wall) are 
knocked out. They interact with the edge plasma, are excited and emit line radiation. One of 
the lines is Dα.  

 

6.3 Plasma response to the pellet 
 
The main intention of the series of pellet experiments at JET including pulse #53212 was to 

access densities in the vicinity of Greenwald density 
Gw
en  (Greenwald density is an 

experimentally determined limit of plasma density), while keeping the confined energy high. 
During these experiments several critical issues appeared: 
 

• Excessive increase of the plasma edge density 
• Trigger of central MHD activity 
• ELM bursts following pellet injection  

 
Each of these effects connected with pellet injection can cause severe energy losses and 
therefore attempts were made to minimize them.  
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The excessive increase of the edge density could be limited by lowering the maximum pellet 
injection rate to 6Hz. The pellet induced increase of neutral gas pressure then did not reach 
such high values to be able to deteriorate the confinement. The MHD activity, namely so-
called neoclassical tearing mode (NTM), triggered by temperature reduction due to pellet, 
could be avoided by increasing the external plasma heating. Confinement losses caused by 
enhanced ELM activity were reduced by adapting the pellet injection cycle. Omitting single 
pellets leads to reduction of ELM activity and consequently to recovery of the plasma energy 
content. 
 
As you can see on Fig. 6.2, the averaged electron density strongly increases for a short time 
after each pellet injection, reaches its maximum and then drops down again, until the next 
pellet is injected. The first short phase of strong density increase describes the pellet 
evaporation. The outer atoms of the pellet ablate in the hot plasma and are ionized. The 
moment of total pellet evaporation can be seen on Fig. 6.2 as the time of local maximum of 
electron density. The prompt post pellet particle losses can be explained by transiently 
increased plasma radial diffusivity because of increased density gradient. Also pellet induced 
ELMs may carry out immediately a very large fraction of the pellet delivered particles.  

 
The frozen pellets injected into the plasma column accordingly decrease the plasma 
temperature. This decrease is proportional to density increase and product of plasma density 
and temperature (plasma pressure) remains approximately the same during the pellet 
injection. Injection of each pellet also results in quick energy loss, mainly due to a triggered 
ELM. However, in phases between the injected pellets and especially in longer periods 
between two pellet sequences, the energy manages to recover. 
 
Evolutions of essential plasma parameters for the described JET pulse are shown on Fig. 6.2. 
We can clearly observe that initial quick 6Hz pellet sequence caused significant energy drop 
due to enhanced ELM activity (which can be identified from increased intensity of 
Dα emission). To allow the energy to recover, two pellets were omitted before the onset of 
second pellet injection. The first pellet sequence including the following pause transformed 
plasma to a higher density state and was able to maintain the energy content still high. The 
second pellet sequence at halved repetition rate of 3Hz was able to achieve even better 
refuelling performance. This could be caused by the fact, that colder and denser plasmas are 
more suitable for deep particle deposition. The low injection rate also enabled the energy, 
which transiently dropped after each injected pellet, to be almost fully recovered before 
injection of the next pellet. Therefore the plasma density was able to surpass the Greenwald 
level with about 6.1MJ energy content. Finally, this high performance phase was terminated 
by a growing NTM. The next pellet sequence then starts from a low density level with low 
confined energy and is not able to achieve the previous high confinement level. [25] 
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Figure 6.2: Time evolution of line averaged electron density (chord 3 (blue) and chord 

8(red)), total plasma energy and Dα emission intensity during the pellet injection.  
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7 Data processing 
 

7.1 Boxcar method  
 
The plasma diffusivity can be estimated from the evolution of the density profile after the 
pellet injection. For this purpose, the downloaded data from LIDAR (electron density 
profiles) were used. The aim of this work was to try to quantify the transiently increased 
outward diffusion at the edge of plasma after the injection of a pellet. As can be seen from 
Fig. 6.2, the length of the pellet evaporation process is about 10ms and the consequent phase 
of increased particle losses is also of the order of tens of milliseconds. Unfortunately, LIDAR 
diagnostics measures the density profiles with a frequency of 4Hz, which means it is not 
capable to record fast changes in the electron density profile due to pellet injection. There are 
one or maximally two LIDAR measurements during the evaporation of the pellet and the 
consequent fast particle losses, which is not sufficient for calculations of the diffusion 
coefficient. Interferometers, on the other hand, measure electron density with a relatively high 
repetition rate of approximately 133Hz. However, these densities are line averaged and thus 
does not provide the needed information about the density profile. One way how to get a more 
detailed picture of the time evolution of electron density profile after injection of a pellet is to 
make a boxcar analysis of the LIDAR data. The idea of the boxcar analysis is following: 
 

− In this method, every injected pellet is assumed to be the same and its injection is 
assumed to have always the same impact on electron density profile evolution.  

− The LIDAR measurement comes for every post-pellet density evolution in a different 
time. For each LIDAR measurement, its relative time to the moment of injection of the 
last pellet is calculated.  

− These measurements with assigned relative times are then put together and an 
“average post-pellet electron density profile evolution” is gained. 
 

For the calculations performed in this thesis, the boxcar analysis of the first and third pellet 
sequence from the JET pulse #53212 (starting at times t = 57.87s and t = 61.22s) was done. 
The post-pellet line averaged electron density evolution is approximately equally shaped for 
these sequences and the pellets are injected in approximately equally dense plasma (see Fig. 
6.2). The procedure of assigning the relative times to the LIDAR measurements can be seen 
on the following Fig. 7.1 and 7.2. On these figures the top red graph shows the density 
evolution measured by LIDAR for R = 3.6m (major radius), the bottom graphs show line 
averaged electron density measured by 8 chords of interferometer. The point of intersection of 
the black vertical lines (in the times of LIDAR measurement) with the interferometer data 
shows us, in which part of the pellet-induced density evolution the LIDAR measurement is 
located. From the downloaded interferometer data it is possible to determine the pellet 
injection times (which correspond to the places with sudden strong increase of density) and 
with the aid of Fig. 7.1 and 7.2 it is then possible to assign relative times to each LIDAR 
density profile measurement. Therefore the “average” post-pellet temporal evolution of 
electron density profile is gained. 
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Figure 7.1: The boxcar analysis of the first sequence of pellets starting at t = 57.87s 
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Figure 7.2: The boxcar analysis of the third sequence of pellets starting at t = 61.22s 
 

From the analysis, only 4 most reliable post-pellet electron density profiles were chosen 
(profiles after pellets 1, 2 and 4 from the first sequence and one profile after pellet 3 from the 
third sequence) along with three pre-pellet profiles before the first sequence of pellets. Graph 
containing these profiles and a graph of the gained average post-pellet density evolution at 
two different outer edge plasma radii are shown below for illustration (Fig. 7.3 and 7.4).  
 

 
Figure 7.3: Electron density profiles from the boxcar analysis with a legend of their relative 

times. 
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Figure 7.4: Dependence of the post-pellet electron density on relative time to the injection of 

pellet (gained from the boxcar analysis) for two values of major radius 3.6m and 3.7m.  
 
However, the boxcar method is an approximate method facing many problems and there are 
more possible error sources. The pellets’ mass and shape can slightly differ after the 
production. Also during the injection and pellet flight through the guide tube, the pellet mass 
losses occur, which are different for each pellet. These losses may be up to about 10% of the 
total pellet mass. The major error may arise from the fact that electron density profiles in 
different injection times differ. For the boxcar analysis performed in this thesis, the error in 
electron density caused by this effect may be roughly estimated from the interferometer data 
as ~10%. The computations based on the data processed by the boxcar analysis thus provide 
rather qualitative than exact quantitative estimates of plasma parameters. Nonetheless, with 
respect to the mentioned error estimates, these computations can still be meaningful and 
provide useful information. 
 
The problem with insufficiently time-resolved information about the electron density profile 
can be solved also by inverse integral transform of the interferometry data. The problem of 
deducing spatial resolution of some function, when data about its integrated values along 
different trajectories are given, is in fact an issue of tomography. At the JET tokamak, these 
methods are applied to combine the LIDAR spatial and interferometer temporal information 
about the plasma electron density [30]. This is, however, beyond the scope of this work. 
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8 Calculations 
 

8.1 Bessel functions analysis 
 
In the following text, the subscript denoting the particle species is omitted because all the 
computations are performed for plasma electrons. The computed edge plasma diffusion 
coefficient is, however, valid both for electrons and ions as the diffusion is expected 
ambipolar. 
 
For the calculation of the diffusion coefficient itself, a simplified version of diffusion equation 
(4.7) can be used. In real experiments, it is very difficult to distinguish between particle 
diffusion and convection. Therefore so-called effective diffusion coefficient, which describes 
both these phenomena, can be introduced and it is defined as: 
 

nDeff ∇⋅−=Γ
rr

,                                   (8.1) 

and the equation (4.7) can be written as: 
 

( ) SnDdiv
t

n
eff +∇=

∂
∂ r

                                           (8.2) 

In the following text, D will always denote the effective diffusion coefficient effD . 

Calculation of S is also very difficult. It can be expressed as: 
 

ionisationdivS Γ=
r

,                                                (8.3) 

where ionisationΓ
r

 is the particle flux caused by the source S of particles due to ionisation or 

recombination. The equation (8.2) can then be written as: 
 

( )ionisationnDdiv
t

n Γ+∇=
∂
∂ rr

                                (8.4) 

According to [28], 15.0 −⋅≈
Γ

sm
n

ionisation  for r/a = 0.8. This value is approximately ten times 

lower than 
n

n
D

∇⋅  and as a result we can neglect the contribution of S compared to the 

diffusion and convection terms. The resulting simplified equation can be written as: 
 

0=∆−
∂
∂

nD
t

n
.     (8.5) 

 
The simplified diffusion equation (8.5) is a parabolic partial differential equation, which is 
very important in the mathematical physics. Generally, an equation of this particular shape is 
called the heat equation, as the same equation is used to describe a distribution of heat in a 
given region over time. The general form of the heat equation in n-dimensional Euclidean 
space En+1 is following: 
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∂
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∑
=

,    (8.6) 

 
where a is a constant,  ( )txf ,

r
 is the source term and ( )txn ,

r
 is the mass density. This equation 

(8.6) together with an initial condition: 
 

( ) ( )xxn
rr α=0,       (8.7) 

 
is called the classical Cauchy problem for the heat equation. It can be generally solved by 
transforming it to a generalized Cauchy problem for the heat equation: 
 

( ) ( ) ( ) )(,
1

2

2

xttxft
x

n
a

t

n n

k k

vv αδθ +=
∂
∂−

∂
∂

∑
=

,   (8.8) 

 
where ( )tΘ  is the Heaviside step function of time and ( )tδ  is the Dirac delta function of time. 

Another step is finding the fundamental solution ( )tx,
rε  for the heat conduction operator L: 

 

∆⋅−
∂
∂= a
t

L       (8.9) 

 
in a space  En+1. The general solution of the classical Cauchy problem for the heat equation is 
then determined by a convolution of the fundamental solution ( )tx,

rε  and the right side of the 
generalized equation (8.8): 
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This equality (8.10) is sometimes called the Poisson formula.[31][32] 
 
In our particular case, the diffusion equation is homogenous, without the source term ( )txf ,

r
, 

and the constant a is equal to the diffusion coefficient D. The initial condition (8.7) is the 
density profile just after the pellet injection into the plasma, at the beginning of the decay 
process of pellet induced perturbation. The form of the general solution (8.10) is then reduced 
to the second term only (the first integral being zero because of the lack of the source term f). 
This form of the solution of our diffusion equation is however still rather difficult. For the 
further described analysis, solution of the simplified form of the diffusion equation in axial 
symmetry was used.   
 
According to [33], a Bessel functions analysis was used in this work to estimate the post pellet 
diffusion coefficient. If we assume only a radial dependence of plasma electron density 

( )trnn ,= , the simplified diffusion equation (8.5) in cylindrical geometry can be written as: 
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This equation, along with a general initial condition (8.7) and with boundaries 0 ≤ r ≤ L has a 
general solution of a form [34]: 

( ) ( ) ( )∫=
L

dtrGtrn
0

,,, ξξξα ,     (8.12)  

 
where ( )trG ,,ξ  is the Green's function. If a boundary condition 0=n  for Lr =  is prescribed, 
then the Green's function G can be written with use of Bessel functions as: 
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where J0 and J1 are the first order Bessel functions, defined as [8]: 
 

( ) ( )
( )∑
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+
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1

k

mkk

m

x

mkk
xJ ,    (8.14) 

 
and nµ  is the n-th positive zero of the Bessel function J0 (which means ( ) 00 =nJ µ ). 

 

 
Figure 8.1:  The first three first order Bessel functions Jm. 

 
The data used for calculation were the three post pellet density profiles in relative times (to 
the time of pellet injection), which come out from the boxcar analysis in previous chapter (see 
Fig. 7.3). It is possible to estimate the diffusion coefficient D from the evolution of post pellet 
density perturbation ( )tRn ,δ : 
 

( ) ( ) ( )0,,, RntRntRn −=δ ,     (8.15) 
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where R is the major radius and ( )0,Rn  is the density profile before the pellet injection. For 

( )0,Rn , the electron density profile at relative time -0.2375s from the boxcar analysis is used 
(see Fig. 7.3).  
 
To justify the use of axial symmetric diffusion equation, the three post pellet density 
perturbation profiles were averaged with respect to the tokamak minor (plasma) axis at R ≈ 
3m. Then these averaged profiles ( )trn ,δ  (for 0 ≤ r ≤ a) were mapped on a 1-dimensional x 

grid varying between 0 and 1. ( )txn ,δ  in a new variable x was then fitted for each time t with 

a fourth degree polynomial ( )txn ,ˆδ  to regularize the profile [33]. Then if ( )txn ,ˆδ  is the initial 

condition at time t, with use of equations (8.12), (8.13) a solution at time t+δt may be written 
as: 

( )
( ) ( ) ( ) ( )xdxtxnxJtD

J

xJ
ttxn

n
nn

n

n ,ˆexp2),(~
1

1

0

0
2

2
1

0∑ ∫
∞

=
−=+ δµδµ

µ
µδδ .  (8.16) 

 
The terms of the series on the right side of equation (8.16) fall down to smaller and smaller 
values with increasing n, therefore it is possible to cut off the series. A minimization is then 
applied with respect to D of the term: 
 

( ) ( )( ) ( ) ( )
2

1

2 ,ˆ,~,ˆ,~∑
=

+−+=+−+
N

i
ii ttxnttxnttxnttxn δδδδδδδδ ,  (8.17) 

 
where ),(~ ttxn δδ +  is a function of D and is calculated from (8.16) and ( )ttxn δδ +,ˆ  is the 

fourth degree polynomial fit of the density perturbation in time t+δt. The fitting was done by 
using MATLAB 6.5 curve fitting tool. 
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Figure 8.2: The density perturbations ( )txn ,δ  plotted in times t=12.5ms (blue), t=25ms (red) 
and t=32.5ms (magenta) in the new x coordinate (+ points) and their appropriate fourth 

degree polynomial fits in the same times (solid lines).  
 

The fitted fourth degree polynomial ( )txn ,ˆδ  can be written in the following form: 
 

( ) 54
2

3
3

2
4

1,ˆ pxpxpxpxptxn ++++=δ ,   (8.18) 
 
with constant coefficients p1 – p5. The results of the fitting are given in the Tab. 8.1 below 
(fitted values are given with 95% confidence bounds): 
 

Time [ms] p1 [1020] p2 [1020] p3 [1020] p4 [1020] p5 [1020] 

12.5 3.57 ± 3.96 -9.47 ± 7.99 6.90 ± 5.26 -1.15 ± 1.25 0.17 ± 0.09 

25 8.07 ± 1.99 -16.19 ± 4.02 9.40 ± 2.64 -1.59 ± 0.63 0.30 ± 0.04 

32.5 1.89 ± 3.80 -3.74 ± 7.66 2.05 ± 5.04 -0.46 ± 1.19 0.32 ± 0.08 

Table 8.1: Results of the fourth degree polynomial fit of the density perturbation ( )txn ,δ  in 
times t=12.5ms, t=25ms and t=32.5ms.  

 

Figure 8.3: The results ),(~ ttxn δδ +  of summation (7.16) for different considered number n of 

the series for times t=12.5ms and t+δt=25ms and with use of an expected value of D=1m2s-1.  
The fourth degree fit of the density perturbation ( )ttxn δδ +,ˆ  in time t+δt=25ms is given to 

compare (blue). 
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On Fig. 8.3 are given the results ),(~ ttxn δδ +  of summation (8.16) for different considered 

number n of the summed terms for times t=12.5ms and t+δt=25ms and with use of an 
expected value of D=1m2s-1. It can be seen, that there is not an observable difference between 
functions, which come up from the series in (8.16) cut off at n ≥ 3. For this particular 
calculation, the series was cut off for n > 10. This can be defended by the fact that for values 
of D not too near to zero the contribution of the last term in the sum was reduced to less than 
1% (more precisely the value of maximum difference between the functions, which come up 
from the series cut off at n=11 and n=10, was reduced to less than 1% of the average value of 
the function for n=10). The minimization process was then performed, for 0 < D ≤ 10 m2s-1. 
The results of the Bessel functions analysis are given in Tab. 8.2 below: 
 

Time window D [m2s-1] 

12.5 ms - 25 ms 3.295 

25 ms – 32.5 ms  2.872 
Table 8.2: Diffusion coefficients calculated by the Bessel functions analysis 

 
The computed post-pellet diffusion coefficients in Tab. 8.2 seem rather big compared to 
calculations in the previous bachelor thesis [1] and similar studies on the MAST tokamak 
[27][33]. This may be caused by several reasons. The major problem of the analysis is the use 
of cylindrical coordinates and therefore the assumption of circular plasma shape. This is not 
true, as can be seen from Fig. 6.1 with depicted magnetic surfaces. The plasma centre is 
shifted in the major radius direction and the plasma has an elongated triangular D shape.  
 

8.2 Mapping of LIDAR data to magnetic surfaces 
 
The total plasma pressure including the energy of plasma rotation is constant on magnetic 
surfaces. It can be deduced from the Grad-Shafranov equation (3.21) valid in MHD 
equilibrium. Due to the large parallel thermal conductivities along the magnetic field lines, the 
electron and ion temperatures are also constant along the magnetic surfaces. The plasma 
pressure can be calculated as:  
 

( )ieBeiBieBe TTknTknTknp +≈+= ,                       (8.19) 

 
where eT  and iT  is the electron and ion temperature and Bk  the Boltzmann constant. This 

means that also the electron density is approximately constant on magnetic surfaces ( )ψnn = . 

Therefore it is convenient to introduce the flux coordinates ( )φθρ ,, , where ρ  is the square 
root of the normalized poloidal flux, defined by (4.23). θ  and φ  coordinates are the poloidal 

and toroidal angles. Their closer definition is not necessary, as the plasma density ( )ρnn =  is 
assumed to be the function of the magnetic flux coordinate only. 
 
With use of the EFIT code mentioned in chapter 3, the matrix of ( )tzR ,,ψ  values for a grid 

65x65 in spatial ( )zR,  coordinates (R is major radius, z height over the midplane, see Fig. 3.1) 
and for 130 time slices for the JET shot #53212 was downloaded. The LIDAR electron 

density was then mapped on the magnetic surfaces ψρ = . This was done via 2D spatial 
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spline interpolation of ( )tzR ,,ρ  in the points of LIDAR measurement ( )tzR LIDARLIDAR ,,ρ ; 
interpolation in the times of LIDAR measurement was performed consequently. Thus values 

( )tn ,ρ  of the electron density on magnetic surfaces ρ were obtained. With use of the boxcar 

analysis, post-pellet electron density profile evolution ( )reltn ,ρ  was obtained. The smoothing 

spline function was then used to smooth the ( )reltn ,ρ  function in ρ . Two ( )ρn  profiles (with 

relative times -0.2375s and 0.0125s) before and after spline smoothing are shown on Fig. 8.4. 
 

 
Figure 8.4: Electron density profiles at relative times  st rel 2375.0−=  (blue) and 

st rel 0125.0=  (red) (before and after the first pellet injection at time t=57.87s). The ‘+’ 

points denote the profiles before smoothing and solid lines show the smoothed dependence. 
 

In order to be able to calculate the temporal derivative of ( )reltn ,ρ , its spline interpolation in 

time was conducted. All of the interpolation and smoothing techniques were conducted with 
use of MATLAB 6.5 spline toolbox 3.1.1. More about these techniques is provided in 
Appendix A. 
 
The resulting ( )reltn ,ρ  function is shown on Fig. 8.5. 
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Figure 8.5: 2D contour plot showing the electron density evolution ( )reltn ,ρ  due to pellet. The 

colorbar on the right side shows the relation between colour and density (in m-3). 
 

On Fig. 8.5, it is possible to clearly observe the sudden increase of plasma electron density 
after the relative time t=0s indicating the pellet injection and also a great density peak at the 
pellet penetration radius around 8.0=ρ . 
 
This smoothed and interpolated function ( )reltn ,ρ  is computed in 200 magnetic surfaces ρ  

and 150 relative times. Using numerical techniques, for each relative time relt  and magnetic 

surface ρ  the number of electrons contained inside the surface ( )reltN ,ρ , the surface volume 

( )reltV ,ρ  and the surface area ( )reltS ,ρ  was computed. On the following Fig. 8.6, the time 

evolution of the number of electron particles contained in plasma ( ( )reltN ,ρ  for separatrix 

1=ρ ) can be seen.  
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Figure 8.6: Time evolution of the total electron particle content in plasma during the average 

post-pellet electron density evolution. 
 

From the increase of the number of particles after the pellet injection at mst rel 0=  till its peak 

at about mst rel 13=  (denoting the total pellet evaporation) shown on Fig. 8.6 it can be clearly 

deduced that the number of deuterium atoms contained in the pellet is 21104.2 ⋅≈N . This 
numbered roughly corresponds to the expected value of 3·1021 deuterium atoms quoted in the 
paper [25]. The difference between this calculated pellet size and the expected value is quite 
good. The difference can be easily attributed to: 
 

1. the imperfection of measurement of the pellet size  
2. losses in guide tube between the measurement point and the plasma  

 
From the equation (4.2) it can be deduced, that the temporal derivative of the number of 
plasma electrons contained inside a magnetic surface ρ  is proportional to the electron particle 
flux flowing inside through the area of the magnetic surface ρ : 
 

),(),(
),(

relrel
rel tSt

t

tN ρρρ ⋅Γ−=
∂

∂
.   (8.20) 

 
The time derivative in (8.20) can be replaced by a forward difference: 
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where relt∆  is the difference between two times of the discrete ( )reltN ,ρ  data. The particle 

flux ( )relt,ρΓ  is then computed as: 
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−=Γ   (8.22) 

 
and it is shown on Fig. 8.7 for ρ = 0.8; 0.9 and 1.0 (for the region impacted by the pellet 
ablation and evaporation at the edge of plasma). 
 

 
Figure 8.7: The temporal evolution of electron particle flux through magnetic surfaces 

ρ = 0.8, 0.9 and 1.0. The negative value means inward direction of the flux. 
 

Fig. 8.7 allows us to clearly observe negative electron particle flux during the pellet 
evaporation. This is attributed to the particle source omitted in the equation (8.20). Focus of 
our study is however the time interval after pellet is evaporated, when the particle source can 
be neglected. This part corresponds to the interval mst rel 13> . In this time interval the 

direction of the flux is positive due to particle losses. 
 
Using equation (8.1) along with the knowledge of ( )relt,ρΓ  it is possible to compute the 

effective diffusion coefficient. It is however necessary to evaluate the density gradient n∇
r

. 
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As was mentioned in chapter 3.4, the ρ  coordinate for large aspect ratio tokamaks satisfies 
approximately the relation ar /≈ρ  (where a is the tokamak minor radius). The linear relation 
between minor radius and ρ  can be clearly observed on Fig. 8.8 (left plot) for z=0. For every 

relative time relt  the minor radius ( )ρrr =  for z=0 is computed as ( ) ( ) 0RRr −= ρρ , where 

R is the major radius and R0 is the major radius of the plasma centre (which can be deduced 
from the minimum of ( )0, =zRρ ). The dependence ( )ρr  is then fitted by a line qkr +⋅= ρ  
(Fig. 8.8, right plot).  
 

 
Figure 8.8: Dependence ( )Rρρ =  for midplane 0=z  (left); fitted dependence qkr +⋅= ρ  

for  midplane 0=z  (right). The fitting was done by using MATLAB 6.5 curve fitting tool. 
 

For all relative times, k was in a range 1.05-1.16, which well corresponds to the plasma minor 
radius ma 1≈ . The value of q ranged from -0.28 to -0.18. 
 
The gradient in general orthogonal coordinates ( )321 ,, qqq  can be computed as: 
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,   (8.23) 

 
where iq̂ , i=1,2,3 are unit vectors of the base of these coordinates and coefficients ih , i=1,2,3 

are the so called scale factors [36]: 
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where ijg  is the metric tensor and ix , i=1,2,3 are the Cartesian coordinates. In our case, the 

coordinates are modified cylindrical coordinates ( )z,,ϕρ , where ϕ  is the poloidal angle and z 
measures the distance in toroidal direction: 
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The scale factors can therefore be calculated (with use of (8.24, 8.25)) as: 
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And the gradient in ( )z,,ϕρ  is: 
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If we assume that the electron density is a function of magnetic surfaces (and time) only, 

( )reltnn ,ρ= , the size of its gradient in new coordinates using ρ  has a very simple form of: 

 

ρ∂
∂=∇ n

k
n

1
      (8.28) 

 
and using the forward difference to replace the partial derivative again: 
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The diffusion coefficient can thus be calculated us: 
 

( ) ( ) ( ) ( ) ( )ρρρ
ρρρ

nn
ttktD relrelrel −∆+

∆⋅Γ⋅−= ,, .   (8.30) 

 
The temporal evolution of the computed diffusion coefficient ( )reltD ,ρ  for ρ =0.8, 0.85, 0.9, 

0.95 and 1.0 is shown on Fig. 8.9 below. 
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¨ 
Figure 8.9: Temporal evolution of the computed diffusion coefficient ( )reltD ,ρ  for ρ =0.8, 

0.85, 0.9, 0.95 and 1.0. 
 

Interpretation 
 
The diffusion can be derived from the Fig. 8.9. The relevant part of the plasma is 

0.18.0/ −=ar , i.e. the region between the maximum of pellet deposition and plasma edge 
(see Fig. 8.4). It is the particle diffusion in this region which determines the post-pellet losses 
and then consequently the requirements on pellet fuelling system.    
The relevant time interval is trel = 0.016 - 0.022s. This selection of time interval is dictated by 
two considerations:  
 

(1) It is well after the initial rise of the plasma density during trel = 0.-0.15s due to the 
pellet injection (the particle source is large, see Fig. 8.6) 

(2) It is before the time trel ~ 0.03s, when the total particle content temporarily increases, 
which gives negative flux (Fig. 8.7). The likely reason for this increase is that it is the 
artifact of boxcar analysis, as we assumed that all pellets and their post-pellet transport 
are identical, which is clearly not the case.    

In conclusion, from the Fig. 8.9 the effective diffusion coefficient is:  
  

− Deff ~ 0.25-1.35 m2/s.  (r/a~0.8-1) 
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This value is consistent with the previous analysis in [1], where a value ~ 0.8m2s-1 was found. 
 

8.3 Pellet particle confinement 
 
In parallel with the local transport analysis presented we can perform global particle 
confinement analysis. 

 
As the pellets are injected into the plasma and reach deeper regions of the plasma column 
before total evaporation, they greatly affect the plasma confinement and transport, especially 
at the edge. The local density increase can be in order of tens of percent (for ITER it can be up 
to 50%, depending on the penetration) and the plasma is non-stationary, responding to these 
perturbations. The main parameters of the pellet, which affect the post pellet transport, are the 
pellet deposition radius pelr  (or its value normalized to the minor radius arpelpel /=ρ ) and 

the post pellet particle confinement time (pellet retention time) pelτ . These two parameters are 

very important, because they determine the particle throughput provided by the pellet 
injection system, which is necessary to maintain the plasma density [35]: 
 

( ) pelpelepel aSn τρ /1−⋅⋅⋅≈Φ ,    (8.31) 

 
where ne is the electron density averaged in time (over pellets) and in normalized radius 

1≤≤ ρρ pel , S is the plasma surface.  

 
The pellet deposition radius is a radius, where the major part of the pellet is deposited. It 
depends on the injection speed, pellet size, pellet injection path and additional effects like 
pellet B∇  drifting and plasma turbulence. The pellet evaporation for JET shot #53212 lasts 
usually about 10ms. For our case, the normalized pellet deposition radius can be determined 
from the post pellet electron density profile at Fig. 8.4, as it was assumed that the magnetic 

surface coordinate ar /≈= ρψ . Therefore:  

 
− ρρρρpel ≈≈≈≈ 0.80.  

 
The pellet injection induces a strong perturbation of the plasma and affects the confinement 
significantly. The development of the edge plasma transport after the pellet is described by the 
post pellet particle confinement time τpel. It can be determined from the post pellet evolution 
of plasma density at a fixed radius (the pellet deposition radius was chosen in our case): 
 

ne(t,ρpel) ∝ exp[-(t-tpel)/τpel],     (8.32) 
 
where tpel is the time of total pellet evaporation (deposition). From the equation (8.32) it can 
be seen, that τpel represents a characteristic time of the perturbed density evolution. The 
calculation can be made by taking a logarithm of the equation (8.32) and doing a linear least 
square fit of the data.  
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Figure 8.10: Exponential fit of the post-pellet density evolution at the normalized pellet 
deposition radius ρpel=0.80. The data used are ( )reltn ,ρ  from the numerical analysis in 

chapter 7.2. The fitting was done by using MATLAB 6.5 curve fitting tool. 
 

With use of the pre-processed data ( )reltn ,ρ  from the previous chapter 8.2, the exponential fit 

was done for the relative time interval 16ms-22ms, which was considered most relevant in 
order to compute the immediate quick losses of the plasma particles and with mst pel 13=  as 

the time of the pellet total evaporation (estimated as the time of maximal plasma particle 
content on Fig. 8.6). The fitted density-time dependence is: 
 

n(trel,ρpel) = 1.03⋅1020 exp[-10.17⋅(trel-tpel)] ,   (8.33) 
 
Therefore the value of τpel, along with its error (95% confidence bound) from the log-linear fit 
is: 
 

− ττττpel = 98.3±5.3ms 
 
This value corresponds with the typical values of pellet retention time during the JET 
discharges, which is about 50–100ms. 
 
A possible error of this calculation arises from the fact, that the density evolution need not 
have an exponential shape and that the τpel is not a constant, but changes in time and is usually 
shorter immediately after the pellet than later on. To minimize this, only a short time interval 
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of fast particle losses was chosen for the calculation. The error may be also enhanced by the 
error of the boxcar method itself.  
 
If we carry out a dimensional analysis of the simplified diffusion equation (8.5), where D is 
the particle diffusion coefficient, and we assume a characteristic time of the density evolution 
to be τpel and a characteristic length to be pellet penetration depth, which is ∆r = a – rpel, we 
get: 
 

2
rpel

nn

∆
∝

τ       (8.34) 

 
and we can express τpel in the following form: 
 

τpel = const.·(∆r
2 / D),     (8.35) 

 
or in a form more suitable for scaling purposes: 
 

τpel = const.·a2
·( (1-ρpel)

2 / D),   (8.36) 
 
where ρpel = rpel/a is the pellet deposition radius normalized to the minor radius. The constant 
in (8.35), (8.36) depends on the exact shape of the density profile. From the knowledge of D 
and τpel it is possible to approximately determine the constant for our experiment and gain a 
useful and simple formula:  
 

− ττττpel ≈ (0.61-3.07)·(∆∆∆∆r
2    / D)  

    
(the computed value D=0.25 – 1.35m2s-1 found in the previous chapter 8.2 was used). 
 
To be able to predict the pellet retention time τpel to next step devices such as ITER, the 
experimental values are usually normalized to the total energy confinement time τE, for which 
there exists an energy confinement scaling. The energy confinement time is defined as the 
total energy content of the plasma divided by the total power input. For JET shot #53212 
during the pellet operation E≈5-6MJ, P≈18MW and so τE≈0.28-0.33s. Therefore  
 

− ττττpel / τ/ τ/ τ/ τΕ Ε Ε Ε ≈0.30 -0.35.  
 
The pellet retention time is normalized to the energy confinement time because of an 
assumption, that the two processes of particle and energy transport are bounded and both heat 
and particle transport after the pellet is driven by the same turbulence. Moreover, the diffusion 
coefficient D and the thermal diffusion coefficient χ usually follow a relation D ≈ (0.2-0.6) χ. 
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Figure 8.11: Comparison of the ratio τpel/ τΕ   for JET shot #53212 (green) and for pellet 

experiments on MAST tokamak [35] 
 

On Fig. 8.11 can be seen, that the estimated ratio τpel/ τΕ  for the JET shot #53212 corresponds 
well to similar measurements made for the MAST tokamak.  
 
In this chapter 8.3 information from [35] were used to perform a similar analysis as on MAST 
tokamak.  
 
 

8.4 Fuelling requirements for ITER 
 
The expected parameters of a nominal ITER discharge are following: minor radius ma 0.2= , 
electron density is 32010 −= mne , plasma surface 2683mS =  and the energy confinement time 

sE 7.3=τ . The pellet deposition radius expected on ITER is 85.08.0/ −≈arpel . With use of 

the previously found relation of pellet retention time and energy confinement time 
35.030.0/ −=Epel ττ  it is possible to estimate pelτ  for ITER as spel 30.111.1 −≈τ . The 

particle throughput provided by the ITER pellet injection system, which is necessary to 
maintain the plasma density can then be computed from (8.31) as approximately: 
 

− Φpel ≈ (160-250)⋅1020s-1 or in more usual units ΦΦΦΦpel ≈ 30 – 50Pa⋅⋅⋅⋅m3s-1. 
 
The value 50Pa⋅m3s-1 is about 50% of the present ITER design value for steady-state 
operation. To supply particles at this rate using the largest fuelling pellets ( mmd pel 5= , 

21102.6 ⋅  atoms) implies the pellet frequency of Hzf pel 4= . This would mean that the time 

interval between pellets, sf pel 25.0/1 =  would be 4-5 times shorter than the pellet retention 

time pelτ . Such situations are rare in present pellet-fuelled plasmas and the values of pelτ  in 

such conditions are not known. Another uncertainty arises from the fact that the proposed 
ELM mitigation techniques enhance the edge particle transport and could result in shorter 
pellet retention time, which would in turn increase the needed pellet throughput (8.31). The 
assumed pellet penetration depth in ITER, 85.08.0/ −≈arpel , is also uncertain as it relies 
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fully on the existence of drift of the ablated pellet particles. Without the drift, the ablation 
models predict the penetration just up to the pedestal and thus the pellet retention time would 
be negligible due to the ELMs. Therefore to be able to predict the plasma density on ITER 
and the needed throughput (8.31), a better scaling for both fuelling parameters: pellet 
deposition radius and pellet retention time is needed. [35] 
 
 

8.5 Post pellet plasma fluctuations estimate 
 
The post pellet diffusion coefficient is anomalous, as it reaches values ~1m2s-1. A simple 
estimate was therefore made to roughly determine the size of the plasma turbulent 
fluctuations, which would cause this enhanced anomalous transport after the pellet injection. 
 
The effective diffusion coefficient effD from the equation (8.1) was determined as ~0.25-

1.35m2s-1 in Chapter 8.2 for the edge of plasma and describing the fast post pellet losses. 
From Fig. 8.7, the edge plasma particle flux during the fast post-pellet losses reaches values 
 

− Γ Γ Γ Γ ≈ 0.3–7.8⋅⋅⋅⋅1020m-2s-1 

 
Electrostatic fluctuations 
 
At first let us assume this flux to be caused by electric field fluctuation (perpendicular to the 
magnetic field) (4.19),(4.20). The typical density fluctuations at the edge plasma are δn/n~0.1. 
For the fluctuation of the electric field we may write: 
 

δE = grad δφ ,     (8.37) 
 
where δφ is a fluctuation of the plasma electric potential. In the equation (8.37) the gradient 
operation can be approximated by multiplying by the typical wave number of the fluctuations, 
perpendicular to the magnetic field ⊥k . This wave number is related to the ion Larmor radius 

rL,i, as it is usually ⊥k ·rL,i ~ 0.4. The equation (8.20) may be rewritten in the following form: 
 

θδδδδ cos⋅==Γ ⊥⊥ nvnv ,    (8.38) 

 
where the right side shows the sizes of the fluctuations and θ  is the phase shift between those 
two fluctuations. Assuming 5.0cos ≈θ  we may write with use of (8.37), (8.38), (4.19): 
 

Γ








⋅=

n

n
n

Br TiL

δ
δφ ,5 .     (8.39) 

    
The ion Larmor radius rL,i is determined by a formula: 
 

T

ii
iL eB

vm
r ,

,
⊥= ,      (8.40) 
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where iv ,⊥  is the ion velocity perpendicular to the magnetic field, e is the ion electric charge 

and mi is the ion mass. By assuming the velocity to be thermal and the ion temperature to be 
approximately equal to the electron one Ti ≈ Te we may write:  
 

i

eB
i m

Tk
v ≈  and Γ









=

n

n
en

Tkm eBi

δ
δφ 5 ,   (8.41) (8.42) 

 
where Te is the electron temperature and Bk  is the Boltzmann constant. For a numerical 
calculation, following values were used: mi=3.33·10-27kg is the mass of deuteron (assuming 
deuterium plasma), kBTe ≈ 1.3keV is the plasma electron temperature for time st 88.57=  just 
after the first pellet and for radius pelρ , e=1.6·10-19C is the elementary charge, n ≈ 1020m-3 is 

the plasma electron density for the same time and radius as the temperature, δn/n~0.1. The 
resultant potential fluctuation δφ causing the maximum flux 1220108.7 −⋅≈Γ sm  therefore is: 
 

− δφ  δφ  δφ  δφ  ≈ 2.0 V  
 
It is usual to relate eδφ to kBTe, as eδφ is usually a small part of the electron temperature kBTe,. 
For our case: 
 

− eδφδφδφδφ  ≈  1.5⋅⋅⋅⋅10-3 kBTe 

 
Magnetic fluctuations 
 
From Fig. 6.2 which shows the interferometer line averaged plasma density and the 
Dα emission during the pellet operation it is obvious, that ELMs play crucial role and are the 
major reason for post pellet fast particle losses. ELM's are magnetohydrodynamic (MHD) 
instabilities, which affect the magnetic field. From this it is possible to deduce that the 
anomalous transport due to magnetic fluctuations and disturbance of the magnetic field may 
be more relevant than the anomalous transport driven by electrostatic fluctuations.  
 
The value of radial magnetic field fluctuation δBr, which would cause the post pellet transport 
of particles may be roughly estimated using equations (4.32), (4.33) (note that it can be used 
only when assuming collisionless plasma, where lmfp > Lc). We assume scv =// , where cs is 

the speed of sound for ions in plasma [8]: 
 

i

iBi
s m

Tk
c

γ
= ,     (8.43) 

 
where γi is the polytrophic index for ions. Equation (4.33) can be then written in the following 
form: 
 

sc
rc

r
s cL

D
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B
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= δδ 2

.   (8.44) 
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With use of estimates Lc ~ qR ~ 10m, Ti ≈ Te and using following values: mi=3.33·10-27kg, 
B=2.4T, γi ≈ 5/3,  kBTe ≈ 1.3keV, D ≈ 0.25-1.35m2s-1, the radial magnetic field fluctuation δBr, 
which would cause the post pellet particle transport, was roughly determined as: 
 

− δδδδBr ≈ 0.7-1.3mT 
 
Relatively small values of fluctuating electrostatic potential and fluctuating magnetic field  
required to explain the post pellet particle losses indicate, that both processes can be at work.  
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9 Summary and conclusions 
 
Plasma refuelling is one of the most important parts of the tokamak research. The most 
important technology of tokamak plasma fuelling for future devices like ITER would be the 
pellet injection. High speed injection of frozen fuel pellets provides efficient refuelling by 
deeper particle deposition. The efficiency of pellet fuelling determines how much of fuel has 
to be injected into the plasma in order to keep the plasma density at the level necessary for 
given fusion power. The question of refuelling is closely connected with the particle 
confinement and transport in plasma, which is the subject of this thesis.  
 
The results of this work can be summarised as follows: 
 

1) The post-pellet effective diffusion coefficient at the edge plasma was calculated using 
simplified solution of the diffusion equation in axial symmetry. The diffusion 
coefficient was estimated as 12295.3 −= smD  for a time interval 12.5-25ms after the 
pellet injection and 12872.2 −= smD  for a time interval 25-32.525ms after the pellet 
injection. This value is rather large compared to similar studies on the MAST tokamak 
[27],[33] and in the bachelor thesis [1]. The error is supposed to be caused by the 
wrong assumption of circular-shaped plasma. In the next part of the chapter 7 a more 
profound analysis was made using the magnetic surface coordinates. The LIDAR data 
were mapped on the magnetic surfaces, where the density is assumed constant. 
Spatially and time resolved effective diffusion coefficient was then computed. For the 
edge plasma ( )0.1,8.0∈ρ  and the post-pellet time interval 16-22ms it was 

1235.125.0 −⋅−≈ smD . This range of values is consistent with previous calculations 
in [1], where the diffusion coefficient was estimated as 124.08.0 −±= smD  and also 
with pellet experiments on the MAST tokamak, where typically 128.17.0 −−= smD . 
 

2)  The pellet size was estimated from the growth of plasma particle content due to the 
pellet as 21104.2 ⋅≈DN  deuterium atoms. This is consistent with pellet size measured 
at pellet injector.  
 

3) The pellet retention time and the pellet deposition radius were estimated. The pellet 
retention time is a characteristic time of the post pellet density evolution, the pellet 
deposition radius is a radius, where the major part of the pellet evaporates and is 
deposited. These two parameters are very important, as they determine the particle 
throughput provided by the pellet injection system, which is necessary to maintain the 
plasma density. They were determined as τpel = 98.3 ± 5.3ms and ρpel=0.8. The pellet 
retention time was then normalized to the energy confinement time and found to be in 
good agreement with similar results from the MAST tokamak.  
 

4) The particle throughput provided by the ITER pellet injection system necessary to 
maintain the plasma density was estimated to be 1350 −⋅≤Φ smPapel . This value is 

about 50% of the present ITER design value for steady-state operation, however, the 
estimate is far from reliable and better scaling for pellet deposition radius and pellet 
retention time is needed. 
 

5) The last task was to estimate the post pellet plasma fluctuations which drive the 
anomalous transport. Assuming the post pellet transport to be caused by electrostatic 
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fluctuations it was possible to roughly determine the plasma potential fluctuations as 

eBTke 3105.1 −⋅≈δφ . Assuming that the particle transport is topology driven by the 

perturbation of the magnetic field topology (due to ELMs), radial magnetic field 
fluctuation δBr was roughly determined as mTBr 3.17.0 −≈δ . 
 

Measurements and understanding of post pellet particle confinement in present tokamaks is 
far from complete. Further improvements are clearly necessary in order to design the fuelling 
systems for future fusion reactors.      
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A Appendix 
 

A.1 Cubic spline interpolation 
 
In the numerical analysis, interpolation is a method of constructing new data points within the 
range of a discrete set of known data points. The spline function interpolation uses piecewise 
polynomial function of a degree m called spline as interpolant. This function is generally 
continuous on its domain along with its derivatives to the order m-1 and its m-th order 
derivative is square integrable. In technical applications, the most useful spline functions are 
piecewise third degree (cubic) polynomials.  
 
In the following text, the explanation of the method will be constrained to real functions of 
one variable only for simplification and better understanding of the sense of the method.  
 
On interval ba,  of a real axis x is given a grid bxxxa n =<<<= ...10  and in its knots are 

given values { }n

kkf 0=  of a function ( )xf  defined on ba, . Let us formulate the problem of 

piecewise cubic interpolation. On interval ba,  we are looking for a function ( )xg , which is 

in agreement with the following requirements: 
 

(1) ( )xg  belongs to the group of functions ( )baC ,2  continuous with derivatives to the 
second order.  
 

(2)  On every interval kk xx ,1− , ( )xg  is a cubic polynomial of a shape: 

 

( ) ( ) ( ) ( )∑
=

−=≡
3

0l

l
k

k
lk xxaxgxg , nk ,...,1= .    (A.1)  

(3) In the knots of the grid { }n

kkx 0=  the following equalities are accomplished: 

 
( ) kk fxg = , nk ,...,1,0= .      (A.2) 

 
(4) ( )xg ′′  fulfils the boundary conditions: 
 

( ) ( ) 0=′′=′′ bgag .      (A.3) 
 

It can be shown that the outlined problem of finding the interpolation piecewise cubic 
function ( )xg  has only one solution. Let us outline its calculation. 
 
Because the second order derivative ( )xg ′′  is continuous (1) and linear (2) on every 

interval ii xx ,1− , ni ,...,1=  of the grid, we can write for ii xxx ≤≤−1 : 

 

( )
i

i
i

i

i
i h

xx
m

h
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mxg 1

1
−

−
−

+
−

=′′ ,    (A.4) 
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where 1−−= iii xxh , ( )kk xgm ′′= . After double integration of (A.4) over x: 
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1 66
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+
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= ,   (A.5) 

 
where iA  and iB  are integration constants. They can be calculated from conditions 

( ) 11 −− = ii fxg , ( ) ii fxg =  (3). By applying ixx =  and 1−= ixx  on (A.5) we get: 
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Therefore (A.5) can be rewritten as: 
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−=′ .  (A.7) 

 
With use of the presumption (1) about the continuity of functions ( )xg′  and ( )xg ′′  on 

ba,  and with use of (A.3) it is possible to gain a set of linear algebraic equations for the 

unknowns nmmm ,...,, 21 . The matrix of this set of equations is regular and therefore there 

is only one solution of ( )xg  given by (A.6).  
 
The high effectiveness of the cubic spline function interpolation is caused by its following 
characteristics: Let us assume a group of functions ( )baW ,2

2  on the interval ba, , which 

have square integrable second order derivative. Let us search an interpolation function: 
 

( )baWu ,2
2∈ , ( ) kk fxu = , nk ,...,1,0= ,    (A.8) 

 
which minimizes a functional  
 

( ) ( )( )∫ ′′=Φ
b

a

dxxuu 2      (A.9) 

 
It can be shown that it is exactly the cubic spline function ( )xg . Therefore an alternative 

definition of the piecewise cubic spline function is that it is such function from ( )baW ,2
2 , 

which has the prescribed values in the knots of the grid and it minimizes the functional 
(A.9). This characteristic can be physically interpreted: Since the total energy of an elastic 
strip is proportional to its curvature, the spline is the configuration of minimal energy of 
an elastic strip constrained to n points.  
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A.2 Piecewise cubic smoothing spline function 
 
Let us solve the same problem of searching a smooth approximation of a function defined by 
values on a grid bxxxa n =<<<= ...10  as before. This time the functional values kf  are not 

accurate and contain an error. In this case it is pointless to construct an interpolation function, 
which has the same values as kf  in the knots of the grid. It is necessary to construct a 

function, which will be near these values, but smoother than the interpolant. These functions 
are not called interpolation functions, but smoothing. Let us demand, that the smoothing 
function xg  is from ( )baW ,2

2  and minimizes the following functional: 

 

( ) ( ) ( )( )∑∫
=

−+′′=Φ
n

k
kkk

b

a

fxupdxuu
0

22
1 ,   (A.10) 

 
where kp  are certain positive numbers. In this functional (A.10), the interpolation conditions 

that the function passes near the knot values and the condition of minimal “undulation” of the 
function are connected. The greater are the weight coefficients kp , the stronger are the 

interpolation conditions and the nearer would the smoothing function be to the knot values. It 
can be shown that the solution of (A.10) is a cubic spline function, i.e. function which agrees 
to the conditions (1), (2) and (4) in the previous chapter A.1. The solution of this problem can 
be found for example in [37], along with other numerical problems concerning the spline 
functions. The text in this chapter was written with use of [37] and [38].  
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