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List of abbreviations

ARD Automatic relevance Determination
AUC Area Under Curve (in this work used only under DET curve)
ASDEX large tokamak in Garching, Germany
CART Classification and Regression Trees
CPD Conditional Probability Distribution
CV Cross-Validation
DAS Data Acquisition System
DET Detection Error Trade-off curve
EA Early alarms
FA False alarms
FS Feature Selection

ITER International Experimental Thermonuclear Reactor
(built tokamak in Cadarache, France)

JET Joint European Torus (large tokamak in Culham, Great Britain)
JPS JET Prediction System
LogReg Logistic Regression
MA Missed alarms
MAP Maximum A priori solution
MHD Magnetohydrodynamics
ML Maximum Likelihood
NN Neural Networks
Q95 Safety factor (magnetic field helicity) at 95% of normalized distance from SOL
RBF Radial Basis Functions
RFE Recursive Feature Elimination
RV Relevance vectors
RVM Relevance Vector Machine

SOL Scrape of Layer –The outer layer of a magnetically confined plasma,
where the field lines come in contact with a material surface

SV Support Vectors
SVM Support Vector Machines
UFO unidentified flying object
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Abbev. Name
ASD Too little auxiliary power
GWL Greenwald limit
IMC Impurity control problem
IP Too fast a current ramp-up
ITB Too strong internal transport barrier
LON Too low density (and low q)
NC Density control problem
NTM Neo-classical tearing mode
??? Nonclassified
INT Intentional

Table 1: Types of plasma disruptions in used this work

Abbrev. Diagnostics
IPLA Plasma current
BTPD Poloidal beta
LOCK Mode lock amplitude
PIN Total input power
PPOZ Plasma vertical centroid position
DENS Plasma density
WDIA Derivative of stored diamagnetic E
POUT Total radiated power
INDU Plasma internal inductance
NGW Greenwald density
TAU Confinement time
BETN Beta normalized
Q95 Safety factor

Table 2: The complete list of all the downloaded and tested JET database outputs
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Introduction

In plasma physics, particularly in processing data from tokamaks, physicists are dealing
with huge amounts of data to process. The learning algorithms can help in post-processing
to identification of interesting events or classify data according to some criteria.

Learning machines have a wide field of use. They are used in physics, medicine, biology,
economy, etc. Many different algorithms already exist for many common tasks such as
optimization, regression or classification. This will be described in detail in following
chapters.

This work is focused on use of learning machines for plasma physics especially for pre-
dictions of plasma disruptions. The plasma disruption is in a simplified way defined as a
sudden and unexpected end of plasma. But generally, the disruption in tokamak is a dra-
matic event in which the plasma confinement is suddenly destroyed [1]. The disruptions
are in detail described in Section 6.1.

The main topic of this work is investigation of potential issues of application of the
learning machines in the case of a small and incomplete training database of the plasma
disruptions. This will be an important issue for the new international ITER tokamak under
construction in France. The aim was to develop and algorithm with a real-time prediction
possibility, although the real-time prediction itself was out of this work. The real-time
prediction possibility was the main limiting factor for choice of the input variables of the
models because not all important and relevant plasma parameters are accessible with less
than 1ms time response. Other issues, studied in this work, were caused by huge amounts
of data and a sparse information value contained in the database. It was necessary to find
the most appropriate learning machine algorithm and the best preprocessing to maximize
number of disruptions detected 30ms before end of the plasma while the number of false
alarms should be as low as possible. Moreover, influence of different parameters was tested
and the best set of parameters in order to maximize the prediction score was proposed.
Finally, properties of different types of disruptions were investigated because the origin
of the disruption is a major factor determining the possible prediction time.
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Chapter 1

Massive Data Processing in Fusion

The massive data processing and machine learning are becoming important branches in
the fusion science. The massive data processing also called “data mining” is a popular
discipline because it is a cheap way how to obtain new useful data from an already
measured and processed database. Data mining is becoming even more popular with the
growing size of the stored data during each discharge 1.1 and with development of more
sophisticated data processing algorithms. Further, usually more than one algorithm can
used for the data mining in order to improve results and processing time. For example
in the video processing the first algorithm can be used to identify the most important
frames, it ie. the key-frames in the compressed video, and the second slower algorithm is
used for the video processing.

One of the most important tools used for data mining and signal processing are learning
machines. The set of algorithms called learning machines is so wide that it is problematic
to define them. Generally, the learning machines are algorithms able to extract useful
information from the training data. Moreover, the algorithms are usually able to apply
the learned information on new data.

The basic applications of the learning machines can be the classification of the data to
several groups. It can be either automatically without any human inference (clustering,
non-supervised methods) or according to an already (manually) classified dataset – super-
vised learning. Further, some algorithms are able to do the regression in order to either
predict new values in the training range or to smooth the training data and remove noise
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Figure 1.1: Total raw data stored per a shot to the JET tokamak database [2].
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with minimal loose of information. The learning machines are sometimes used even for
the extrapolation however the credibility of the prediction is an issue.

Furthermore, the applications in the nuclear fusion and in the physics can be significantly
different from the general use of the learning machine such as handwriting recognition,
speech recognition or market predictions. In the physical applications, the information
about reliability of the prediction is often requested and also the creditability of the
inputs is usually known, therefore it is possible to use this information (see Section 3.2.2).
However, in many cases the uncertainties in the inputs are neglectable in comparison
with the uncertainties in the physical background ie. hidden variables in the model and
outliers.

Common applications of the learning machines for tokamaks are for example

• LH-transition detections – algorithms for automatic recognition of the exact LH
transition time useful for study of conditions needed for the transition.

• image or video processing – video stabilization, detection of hotspots useful for the
plasma facing components protection, object tracking – tracking of pellets, UFOs
or turbulent structures in plasma

• Disruptions predictions – promising field of research, when the past plasma dis-
ruptions are used for the for real-time disruption prediction in tokamak. Moreover,
some attempts to extrapolate the predictions for other tokamaks exist, however the
results are rather poor.

• Fast radiation and magnetic reconstruction – learning machines can trained to dupli-
cate results from the time demanding algorithms such as tomographic reconstruction
to perform the predictions in real time. However, the learning machines still have
issues with the extrapolation out of the training area.

• Model approximation – it is generally possible to perform different real-time pre-
dictions based on the learning machines trained on some sophisticated but slow
models.

In spite of many advantages of the learning machines, the applications can often reach the
limits of the computation power during the training phase. Therefore, many parallelized
versions of the learning machines algorithms is being developed and also implementations
for the graphical cards based on the CUDA drivers exist. On the other hand, the predictive
phase can be very fast and it is often a great advantage compared to other more complex
methods. Thanks to this property, learning machines are often used for real-time systems,
for example real-time tomography [3], real-time L-H mode transition detection [4, 5],
real-time plasma disruptions detection [6]. The advantage of learning machines is faster
processing compared the regular analysis like tomography. On the other hand, learning
machines are not able to reliably extrapolate the training data and thus if the observed
problem is significantly different from the training data, the prediction can be useless.

Another, promising field of data processing is video processing. Almost 40% of the JET
database consists from video data and 40 high speed cameras is currently installed. The
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learning machines can be used either for an automatic classification of the events in video
or for detection of the most interesting frames suitable for further processing.

The next hot topic that is being investigated are possible estimations if credibility and
confidence intervals of the models. This allows to estimate reliability of the predicted
values and base the decision on a risk threshold. Other use is “active learning” when the
algorithm selects from a database only the points that gives to the model most of the new
information, ie. from regions with the lowest predicted credibility.

And finally, many attempts exists to extrapolate the results from the current tokamak
towards to the ITER or even DEMO. For these predictions, multi machine databases are
usually used in order to include even the geometric properties of tokamaks and find a
credible model over wide range of parameters. Learning machines or even the ordinary
least squares fitting are used for example to estimate the LH transition power [7, 8],
disruptions predictions [9], ELMs mitigations, . . . The best model selection is crucial with
the extrapolation. In the case of the best model for interpolating, many criterion exists
(Akaie Information criterion (AIC), Bayes Information Criterion (BIC), Structural Risk
Minimization (SRM)), however the extrapolation needs more strict criteria that penalize
too flexible models, moreover the plasma physics do not fulfill many of the assumptions for
this basic criteria such as i.i.d. (identically independently distributed) points, known noise
distribution, no hidden parameters. Therefore, so called Model Falsification Criteria are
being developed in order to find a simple models robust to the outliers are with minimal
mathematical assumptions.

The future of the data processing based on learning machines directs towards processing
even more data, therefore parallelization, graphical cards use and huge databases will be
even more necessary. In particular, the applications for the ITER will be most probably
based on hybrid models trained on the slow but complex simulations of the tokamak
operations with some human a priory knowledge and later also with the first real data.
The use of the learning machines allows to apply all the knowledge and simulations in
real-time tokamak control. Moreover, possibility of model credibility estimations allows
to stop the operation in the case that the probability of failure×possible damage cross
some threshold.

Nowadays, the learning machine algorithms can be tested on the current tokamaks and
use the cross-machine learning to find the optimal methods that should work even for
the ITER. Unfortunately, the results of this attitude for disruptions prediction are rather
poor [9] because the necessary precision of the models is in order of percents of the
parameters magnitude and the differences caused by the non included factors such as
tokamak geometry or material of wall are not negligible.
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Chapter 2

Learning Algorithms Background

2.1 Basic Properties of Learning Machines

Before introducing various algorithms, it is necessary to define some of the key differences
among them. The number of different learning machines is huge and only some groups
are used in this work:

• Regression, Classification: If the data labels can take values only from a small set
then the goal of machine learning is to predict which group the data belong to. On
contrary, in the case of continuous labels the aim is to perform regression. However,
two cases are basically very similar and some learning algorithms can do both.

• Supervised, unsupervised, semisupervised: If learning machines are trained on data
labeled by an expert, then it is called supervised learning. If the data are not labeled
then it is called unsupervised learning. The unsupervised learning algorithms can for
example detect separated groups or can be used for detection of outliers if there is
only one group. However, the unsupervised learning is commonly much less reliable
then the supervised. It is possible to use a combination so-called semisupervised
learning, where some data are labeled by an expert and some data are unlabeled.
The unlabeled values are classificated according to the labeled data. Finally, newly
labeled data are used in the following learning. Learning machines, used in this
work, belong to the group of supervised learning, the only exception is One Class
SVM.

• Dense, sparse model: In case that the training data are used for prediction, the
models are divided to two basic groups. If all data points are used for prediction
then the model is cased dense, an widely used example is the Nearest Neighbors
algorithm. The second group. sparse models, are using only limited number of the
training points on order to increase prediction speed or avoid overfitting.

• Online or offline learning: Online learning means that each newly predicted value is
used to improve the model. On the other hand, offline learning means that only one
set of training points is used and once the algorithm is trained then the model is
used only for predictions. Usually, the sparse models are faster for prediction however
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there are usually slow in learning while dense models Nearest neighbors, are fast in
learning and thus can be used for online learning but are slow in prediction. Only
offline learning is used for purposes of this work.

• Generative or discriminative models: Discriminative models are usually better for
data classification, because they focus mainly on the features that distinguish the
groups. On contrary, generative models are focused on the main characteristics of
the datasets and are able to generate new data points with the same properties as
the original set. Generative models are usually easier and thus faster to fit and they
can be trained for each class separately. The advantage of the discriminative models
is the possibility to use different preprocessing of the input vector φ(x) [10] (sec.
2.3).

• Fully observed or partially observed: The training data are partially observed if it
has unknown variables in some dimensions. The training on partially observed data
is much more problematic. Generally, it can be done only for generative models,
where the missing values are replaced by the most probable ones. However, also the
discriminative models were trained on partially observed data [11].

2.2 Probabilistic Learning

This section introduce some basic methods of probabilistic learning that are used in this
work. In this section, the sources [12, 13, 14, 15, 16, 17] have been used.

The input vectors are denoted xi and the observed values are denoted ti .

The regression function that assign ti to xi can be arbitrary but because of computation
reasons a combination of non-linear functions is usually searched

y(x,w) =
M∑
m=1

wmφm(x) = wTφ (2.2.1)

The parameterised function consists of sum of non-linear basis functions φ(x) and the
parameters of model wm are generally called weights. The assumptions of this form gives
enough flexibility and allows to use many optimisation algorithms described in this work.

Learning machines that are based on probability classification usually use a few common
approaches to learn their parameters from data.

The prevalent approach is maximum-likelihood (ML). The goal of the ML is to identify
the most probable parameters. This is also often called the frequentist model. If the
model is defined as conditional probability distribution (CPD) then it can be written
as P (y|Θ) = ∏N

i=1 P (ym|Θ), where ym are the observed values and Θ are computed
parameters. The goal is to maximize the probability of the model

Θ̂ML = arg max
Θ

(P (y|Θ))
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the log-likelihood for the observed data is

Θ̂ML = arg max
Θ

N∑
m=1

logP (ym|Θ) (2.2.2)

ML is widely used because of simple computation and also often an analytical solution
exists. For example, the least squares method is the analytical solution for Gaussian
distribution. The minimised error E for least-squares (ML) solution of regression is

E = 1
2

N∑
n=1

[
tn −

M∑
m=1

wmφm(xn)
]2

(2.2.3)

If Φ is defined as Φmn = φm(xn) then the maximum likelihood wML is

wML = (ΦTΦ)−1ΦT t (2.2.4)

The maximum likelihood has many interesting asymptotic properties for large number of
samples. For example consistency: if the number of samples tends to infinity then the ML
probability converges to the true value.

Disadvantages are problems for low number of samples or high number of free parameters.
In this case, the ML can get overfitted [14]. This can be mitigated by a minor change in
the eq. (2.2.2) to include a prior P (Θ) on the parameters

Θ̂MAP = arg max
Θ

P (y|Θ)P (Θ) = arg max
Θ

(logP (y|Θ) + logP (Θ)) (2.2.5)

This is called maximum a posteriori MAP solution. This assumption can avoid the the
overfitting, on the other hand, it can introduce new problems through the apriori infor-
mation.

Again, for Gaussian distribution and Gaussian prior, the ML has an analytical solution. If
the expected noise is Gaussian with variance σ2 and the prior distribution over parameters
w is

p(w|λ) = N (0, λ−1I) =
M∏
m=1

(
λ

2π

)1/2

exp
(
−λw2

m/2
)

(2.2.6)

then the MAP solution of least squares method is

wMAP = (ΦTΦ + σ2λI)−1ΦT t (2.2.7)

where constant λ is called ridge regression parameter. This parameter must be selected
according to some other knowledge, for example cross-validation, see Section 4.1.

However, MAP is still only a small step toward the full Bayesian probability. If the proba-
bility distribution over parameters and noise in data is Gaussian as in the MAP solution,
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it is theoretically possible to integrate out (marginalize over) the unknown parameters
w, λ, σ and obtain the posterior distribution from the Bayes’ rule

posterior = likelihood× prior
normalization (2.2.8)

Distribution over parameters w is

p(w|t, λ, σ2) = p(t|w, σ2)p(w|λ)∫
p(t|w, σ2)p(w|λ)dw

(2.2.9)

p(w|λ) = N (0, λ−1I) (2.2.10)

then the final analytical solution of the posterior for the Gaussian distribution is [15]

p(w|t, λ, σ2) = N (µ,Σ) (2.2.11)

where the mean µ and covariance matrix Σ denote

µ = (ΦTΦ + λσ2I)−1ΦT t (2.2.12)
Σ = σ2(ΦTΦ + λσ2I)−1 (2.2.13)

It is obvious that the mean value is identical to the MAP solution because the prior over
weights have no bias. The advantage is the knowledge of the whole posterior distribution
over weights w. Moreover, it is possible to apply the Bayesian rule (2.2.8) and the posterior
prediction distribution can be obtained directly. This is important because usually the
new predictions are the expected result

p(t∗n|λ, σ2) =
∫
p(t∗n|w, σ2)p(w|λ)dw (2.2.14)

The prediction (2.2.14) is independent of the training data because the distribution
p(t∗n|w, σ2) already includes the information. Solution of the previous equation can be
again found in closed-form. After marginalization the distribution over the weights w the
final prediction 2.2.14 is independent of the weight vector w and also the probability
distribution of the predicted value.

One problem of the previous derivation is the assumption of the Gaussian distribution of
the values tn around the true function. It is not possible to find an analytical solution for
other distributions. Thus it cannot be used for classification, see Section 3.3, it is only
used for regression.

The previous equation can be used also to predict the distribution over the model param-
eters

p(w, λ, σ|t) = p(t|w, σ)p(w|λ)p(σ2)∫
p(t|w, σ)p(w|λ)p(σ2)dwdλdσ2

but this equation usually cannot be solved analytically even for Gaussian distribution.
However, numerical integration can be used, i.e the Monte-Carlo method [15].
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2.3 Kernel Based Methods

Use of the kernel based learning machines can significantly improve flexibility of the
algorithms. The basic idea is to use training points to improve the model.

Kernel methods are based on so called kernel trick that allows to use the training points
as a part of the learned model and transform the feature space to wide range of nonlinear
spaces without significant increase of computational complexity..

Majority of classification learning machine algorithms search for the best hyperplane sepa-
rating the training/validation data. When the hyperplane is known then the classification
is done by a simple substitution of the inputs x into the formula of the hyperplane

y(x) = wTφ(x) + b (2.3.1)

where y(x) is the distance from the hyperplane, w is the normal vector of the hyperplane,
φ(x) is a non-linear regular feature space mapping. The classification depends on the sign
of y(x).

This is the basic principle of all the methods used in this work: Support vector machines
(SVM), Relevance vector machines (RVM), Logistic sigmoid regression (LogReg). How-
ever, there is a way how to improve this approach, if the training data points, or some
subset of them, are used also in the prediction phase. These data points are called support
or relevance vectors and each of these vectors is a center of kernel functions. This can be
done only if the learning machine model (2.3.1) can be estimated in the dual representation
also called the method of potentials:

k(x,x′) = φ(x)Tφ(x′) (2.3.2)

This kernel is a scalar product of two mapping functions where x is the projected data
point and vectors x′ are the support vectors. The result is so called linear kernel k(x,x′) =
xTx′ for the simplest case of mapping φ(x) = x. The idea of the kernel methods is simple.
If the learning method can be estimated using the scalar product kernel 2.3.2, then the
scalar kernel can be replaced by some different type of kernel. Some basic types of kernels
are in the following table

k(x,x′) = xTx′ Linear kernel (2.3.3)
k(x,x′) = (xTx′ + 1)M Polynomial kernel of M-th degree (2.3.4)
k(x,x′) = exp(‖x− x′‖2/2σ2) Gaussian kernel (RBF) (2.3.5)

The purpose of the kernel is to estimate the similarity of the vectors x,x′.

The linear kernel is a basic example of the kernel method. Suppose that the normal vector
w from eq. (2.3.1) can be expressed as a linear combination of a subset from training points
w = ∑n

i=1 αixTi , then
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y(x) =
n∑
i=1

αixTi x + b

with non-linear mapping φ(x) it can be rewritten

y(x) =
n∑
i=1

αiφ(xi)Tφ(x) + b

and finally after the kernel substitution

y(x) =
n∑
i=1

αik(x,xi) + b

The advantage of the kernels is the possibility to use more general shapes of boundary
between class (fig. 2.1) compared to nonkernel methods without significant increase of
computational complexity [14]. On the other hand, no analytical equation for the bound-
ary exists, except the case of the linear kernel. The knowledge of the normal (weight)
vector w of the linear hyperplane can be used to determine dependence of the model on
different features, assuming that values in different dimensions were properly normalised
(see Section 4.4).

The next challenge is the choice of the kernel suitable for the training data. The selection of
the kernel type and its parameters is often more important than the choice of the learning
machine algorithm itself (see fig. 2.1). Typically, it is recommended to use the linear kernel
first. It usually gives the most stable results and has no kernel parameters to be tuned.
It also gives more stable classification in high dimensional space when the number of
samples is comparable with the number of dimensions. Gaussian and polynomial kernels
are more flexible; on the other hand, the flexibility can lead to overfitting. If the number
of dimensions is low and number of samples is much higher than the dimensions, then
the Gaussian kernel is usually used. But it is necessary to determine the correct kernel
parameter σ that corresponds to the size of the kernel. Usually, cross-validation introduced
in the next section is used.
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Figure 2.1: Examples of the prediction determined using the linear kernel (left) and the
RBF kernel (right). Prediction was done using Support vector machines and both predic-
tions were estimated from the same dataset. Points in circles are the support vectors.
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Chapter 3

Learning Machines

This work is mainly focused on the classification algorithms that allows to estimate the
probability of the result conditioned on the observed data. The knowledge of the proba-
bility can help to determine incorrect values in the database (outliers), see Section 6.9.2
for more details. Moreover, it can be used for improved model selection as is described in
the Section 4.1 or used as feeding data for another advanced methods such as Bayesian
networks that can connect many different prediction sources together and get some new
information from the database.

However, the task of probability prediction can be ill-conditioned, for example outliers
and noise in the training data can significantly influence the probability in the case of a
small or informatively sparse learning dataset.

3.1 Logistic Regression

Logistic regression is a simple classification method based on data labels regression by the
logistic sigmoid. It is basically a transformed ordinary linear regression

y(x,w) = σ

(
M∑
m=1

wmφm(x)
)

(3.1.1)

The only difference is transformation of output by sigmoid function σ(x) = 1/(1+exp(x)).
The reason for the sigmoid shape can be obtained from the Bayesian theorem for the class
C1

p(C1|x) = p(x|C1)p(C1)
p(x|C1)p(C1) + p(x|C2)p(C2)

where C1, C2 are unambiguous classes of data without intersection. After the following
substitution

a = ln p(x|C1)p(C1)
p(x|C2)p(C2)
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the probability can be rewritten

p(C1|x) = 1
1 + exp(a) = σ(a)

for multiclass model, the probability can be written as

p(Ck|x) = p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

= exp(ak)∑
j exp(aj)

where ak = ln(p(x|Ck)p(Ck)). This function is called softmax function.

The logistic regression searches the probability for class C1 of the form

p(C1|x) = y(φ(x)) = σ(wTφ(x))

However, this principle is not used only for transformation of linear regression, it com-
monly serves for transformation of the regression problem to the classification. The same
principle can be applied on i.e. the Neural networks or the Relevance vector machines.
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Figure 3.1: An example of the Logistic regression using the full Bayesian approach. Filled
points are learning data, hollow points are predicted probability with errorbars.

The joint probability of the observed data for the target values t ∈ {0, 1} and the learning
machine outputs yn = σ(wTφ(xn)) is the Bernoulli distribution

p(t|w) =
N∏
n=1

ytnn (1− yn)1−tn

This “regression” problem (fig. 3.1) can be optimized directly via the maximum likelihood
estimation with the iterative reweighed least squares method [14, 17]. The disadvantages
of this direct approach is possible overfitting if the data sets are linearly separable. In this
case, the sigmoid gets infinitely steep in feature space. This can be prevented by adding
some a priori assumption on the weights and finding the MAP solution.

The overfitting can be suppressed under the assumption the a prior Gaussian distribution
over weights w is used:

p(w) = N (0, λ−1I)
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The prior and Bayes formula transform the maximum likelihood method to the standard
optimization Maximum A Priory (MAP) method similar to the ridge regression derived
in eq. (2.2.5).

In case that it is needed to use kernel, it is possible to define output y similarly to SVM
machines (sec. 3.2)

Moreover, the Logistic Regression method can be improved if the kernels are used to
estimate the output y, similarly to SVM machines (sec. 3.2).

y(x) =
N∑
n=1

wnk(x,xn) + b

The output of the Logistic regression is the conditional probability that the observed
data x are in the class Ck : p(x|Ck). Furthermore, it is also possible to obtain precision
of this prediction (fig. 3.1) using the Bayesian rule and the Laplace approximation of the
probability distribution. More details can be found in [14, 17].

3.1.1 Regularization Methods for Logistic Regression

The loss function penalizing different values of model parameters – weights w – is used
in two basic versions, so called L1-regularization and L2-regularization. These regularizes
can be used generally but in this work they are used only for the Logistic regression.

• L2-regularization – ordinary least squares with the assumption that the distribution
over the parameters w is Gaussian N (0, λ−1I). The L2-regularizer was already used
in the introduction Section 2.2

L(w) = 1
N

N∑
i=1

(yi − σ(wTφ(xi)))2 + λ‖w‖2
2

• L1-regularization – L1-norm is used for model parameters w

L(w) = 1
N

N∑
i=1

(yi − σ(wTφ(xi)))2 + λ‖w‖1

This model has an important property: if λ is sufficiently large, some of the param-
eters gets equal to zero. This leads to a sparse model and the predictions are very
similar to the Relevance vector machine called Sparse logistic regression [17].

3.2 Support Vector Machine – SVM

Support Vector Machine is a simple but powerful pattern recognition (classification) kernel
based (see Section 2.3) method introduced by Vapnik [18]. SVM, basically, searches the
best hyperplane that separates two data classes. The SVM is a kernel based method

22



that searches for a hyperplane that separates the data and the data with the highest
distance from the hyperplane (boundary). The use of kernels allows the find a very flexible
boundary between the groups thanks to the non-linear mapping of the hyperplane to the
feature space. The main disadvantage of SVM are non-probabilistic predictions. Although
it is possible to add a guess of the prediction probability [14, 19, 20], the probability
estimations can be poor. This will be discussed later in the Section 3.2.1.

The maximization of the distance from the boundary can be reformulated as the max-
imization of the term 1/‖w‖ which is equivalent to minimizing ‖w‖2. If we denote set
of N target values {ti} ∈ {−1, 1}, i ∈ 1, . . . , N and corresponding input vectors {xi}, it
results to following quadratic optimization

min
w

1
2‖w‖

2 (3.2.1)

with constraints
ti(wTxi + b) ≥ 1 i = 1, ..., N (3.2.2)

It can be improved to allow – with some penalty – data points overlapping the boundary.
This principle is called soft margins. New slack variables ξi are introduced to measure
the overlapping. C is a new constant that controls the trade-off between data overlapping
the boundary penalty and the size of margin. Moreover, the trade-off can be selected
individually for each point if weights w > 0 are used.

min
w

1
2‖w‖

2 + C
N∑
i=1

wiξi (3.2.3)

with constraints
ti(wTxi + b) ≥ 1− ξi i = 1, ..., N, ξi ≥ 0 (3.2.4)

These equations can not be optimized directly if the kernel representation is used. The
equation must be transformed to its dual representation:

L(a) =
N∑
n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmk(xn,xm)

where L is the minimized Lagrangian, an are the searched dual parameters, tn are the
target values normalized to the set {−1; 1} and k(xn,xm) is the value of the kernel. The
Lagrangian L is minimized with respect to the transformed constrains

0 ≤ an ≤ wnC

N∑
n=1

antn = 0

The prediction output of the SVM algorithm is proportional to the distance from the
boundary

y(x) =
N∑
n=1

antnk(xn,x) (3.2.5)
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Only vectors xn with nonzero parameters an are used for the prediction and these vectors
are called support vectors. Support vectors are always points at the boundary or exceeding
the boundary. The rest of the points is ignored after the learning phase, therefore it leads
to a sparse model.

The SVM algorithm is not based on a probabilistic model, therefore the only information
about the uncertainty of the prediction is the distance from the hyperplane. However, the
distance is normalized to one for the support vectors laying on the boundary, hence the
absolute value of the distance from the boundary does not directly corresponds to the
uncertainty of the prediction.

LibSVM algorithm [21] was used in this work because of a good training speed and suffi-
cient flexibility. The algorithm is implemented in C++ and contains many optimization
improvements in order to improve speed and limit the memory usage.

3.2.1 Different Precision of Data Points

The original version of the SVM algorithm presumes that all points and also all classes
have the same weight, precision and classes have similar number of points. However, in
practice it is not often satisfied.

In the case that the training classes are significantly unbalanced, the learning machine
algorithm often completely ignore the smaller group.

The simplest solution is to choose different weights Ci eq. (3.2.3) for each class. The
weights wi can be selected as i.e inverse number of data points in classes. It results to a
worse total classification score but a better score for the smaller group. A disadvantage
can be significantly worse convergence of SVM algorithm (LinearSVM).

Another common problem is the different precisions (errorbars) for each data point. One
solution is to use different weights Ci for each point. The weights can be selected as inverse
points precision.

The main advantage of this solution is the fact that the weighting is fully supported by
the LIBSVM library. The disadvantage is that the algorithm ignores spatial distribution
of the data point with errorbars.

The best solution is to use the original data from which the errorbars were obtained. The
SVM algorithm can process all the data and get more realistic results.

In the case that the original data are not accessible or only the probabilistic distribution
of the points is known, another approach can be used. Each probabilistic distribution
can be approximated by a random set of points. For the Gaussian distribution, the set
of the points corresponds to the position original point and variance is set according to
the errorbars. For high numbers of the artificial points, the properties converge to the
expected behavior (see Fig 3.2, 3.3). As result, the boundary correctly reflects the data
distribution. Disadvantage of this approach is significant increase in the number of the
training points that leads to the increased computational time and memory demands.

Moreover, the spatial distribution is negligible for high number of the training points.
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3.2.2 Confidence Region

One of the problems connected to the probability estimation is determination of the
confidence interval or “novelty regions” around the boundary. These are the regions where
the predictions are not reliable and more values is needed.

In the case of the linear kernel, the exact equation of the boundary hyperplane can be
estimated. However, in the case of the other kernels, the boundary can be estimated only
by appropriate root searching algorithm and the analytical equation is unknown.

The confidence intervals cannot be determined directly from the SVM output. Instead, a
method based on fitting the SVM outputs with the logistic sigmoid was proposed in [19]

p(x|C1) = σ(Ay(x) +B)

where y(x) is the distance from the boundary (the output of the trained SVM algorithm)
and the values of the parameters A,B are found by cross-entropy method. The data used
for the sigmoid fitting should be independent of the data used for learning in order to avoid
severe overfitting. The advantage of the algorithm is good implementation in LIBSVM
[20]. LIBSVM uses 5-fold crossvalidation instead of the new independent data to train the
sigmoid, therefore if the probability prediction is used inside another cross-validation (i.e
for optimal parameters selection), it can significantly delay the training phase. Moreover,
the SVM algorithm is not designed for probability estimation, therefore the results can
be poor [14].

If the probability estimation is known, it is straightforward to identify the uncertain
(novelty) points inside the probability range [threshold; 1-threshold], however the best
threshold value must be selected artificially. Examples of the results for different size of
errorbars are in figures 3.2, 3.3.

3.2.3 One Class SVM

Although the SVM algorithm is essentially two class algorithm, Scholkopf proposed [22] a
modification for one class only. This method is usually used for identification of outliers or
novelty detection. The basic idea of this algorithm is to find a hyperplane that separates
majority of data points from the outliers such that the of a training point getting beyond
boundary is equal to ν. It can be done, if the origin after kernel transformation is threated
as the only member of the second class and than the standard ν-SVM [23] algorithm is
used. The result will be that majority of the points will be inside of the border and only
minority of points will lay outside.

The following quadratic optimization is used to separate the data set from the origin.

minw,ξ,ρ
1
2‖w‖+ 1

νl

∑
i

ξi − ρ

with constrains
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Figure 3.2: An example of the border and probability distribution for the binary classi-
fication. The training data set was generated with class boundary x = 0 and each point
was described by points with the Gaussian distribution with variance σ2 = 1 (errorbars).

Figure 3.3: An example of the border and probability distribution for the binary classifi-
cation. The training data set was generated with class boundary x = 0 and each point was
described by points with the Gaussian distribution with variance σ2 = 0.01 (errorbars).

wxi ≥ ρ− ξi, ξi ≥ 0

this quadratic problem is then transferred to dual problem in the same way as the SVM.
The final decision rule (distance from boundary) is

f(x) =
∑
i

αiK(xi,x)− ρ
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When the parameter ν goes to zero, the boundary should behave as hard margin, therefore
no outliers on training set should be allowed.

The main advantage of this algorithm is possibility to a use only one class for training or
a very limited size of the second class for cross-validation to estimate free parameters of
the model: ν and kernel parameters. However, in case of plasma disruptions the results
depends only weakly for the ν therefore, only the kernel parameter must be estimated
moreover the added threshold mentioned in the last section, is another free parameter.

In this paper, the implementation of One Class SVM from the LibSVM library [21] was
used.
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Figure 3.4: An example of the One Class SVM prediction for two Gaussians. Kernel
parameter γ = 0.1 and ratio of outliers is ν=0.1

3.3 Relevance Vector Machine – RVM

In spite of state-of-the-art results in many tasks, where SVM was used, this algorithm
suffers from several disadvantages.

• The first disadvantage is that the predictions are not probabilistic. Although some
attempts to add an estimation of the prediction probability exist (see Section 3.2.2
or [14, 19, 20]), the results can be often imprecise.

• SVM algorithm uses unnecessarily high number of the support vectors and although
the resulting model is sparse, number of the support vectors can be a significant
fraction of the training set. Moreover, the number of the SV usually grows linearly
with the number of the training points, although some postprocessing method exist
that can decrease number of SV [24].

• No straightforward and universal way exists, how to determine C and kernel param-
eters for a nonlinear kernel.

• The kernel function K(xi,x) must satisfy the Mercer’s condition [25].

Relevance Vector Machine algorithm was introduced by Tipping [12] to obtain some ad-
vantages of the Support Vector Machine (see Section 3.2) algorithm such as the sparse
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model, kernels and to remove the disadvantages such as the native non-probability output
and additional model parameters C or ν. Another advantage is the sparsity because the
number of complexity of the model is not growing linearly with the number of training
points.

The derivation of the RVM can be found in [12] but an introduction to the problem is in
this section. The derivation is based on the probabilistic regression introduced in Section
2.2, but some steps and assumptions are different.

The final equation for the prediction is identical to the SVM (eq. 3.2.5).

y(x,w) =
M∑
i=1

wmK(xi,x) + b (3.3.1)

where w is the vector of weights and b is the intercept.

However, the Bernoulli distribution should be adopted to obtain the probabilistic pre-
diction p(t|x) because only values 0 and 1 are possible. Therefore, the logistic sigmoid
function σ(y) = 1/(1+e−y) must be applied to transform the regression 3.3.1 that is linear
in coefficients to a fully nonlinear probabilistic function. According to the definition of
the Bernoulli distribution, the conditional probability for N points under assumption of
known w can be written as

p(t|w) =
N∏
n=1

σ{y(xn,w)}tn [1− σ{y(xn,w)}]1−tn

for targets t ∈ {0, 1}. Maximum likelihood estimation of weights leads to overfitting. Tip-
ping suggested to introduce prior constrains on the weights w penalizing the complexity
of the model. Following prior distribution in combination with the the Bayes rule was
introduced to avoid overfitting:

p(w|α) =
N∏
i=1

√
αi
2π exp

(
−αiw

2
i

2

)

where α are hyperparameters that controls the distribution of the associated weights w.
This separated hyperparameters for each weight are the most important property of the
RVM algorithm.

Given the prior, new predictions are made using so called predictive distribution:

p(t∗|t) =
∫
p(t∗|w,α)p(w,α|t)dwdα (3.3.2)

However, as for many Bayes methods, this integral cannot be solved analytically. The
posterior p(w,α|t) is not known, instead it can be decomposed as

p(w,α|t) = p(w|t,α)p(α|t)

The posterior over the weights is according to the Bayes rule equal to

p(w|t,α) = p(t|w)p(w|α)∫
p(t|w)p(w|α)dw

(3.3.3)
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the integral in the denominator of the previous equation has no analytical solution for the
Bernoulli distribution, therefore the Laplace approximation should be applied.

The second term in eq.(3.3.2) p(α|t) is approximated by the most probable point esti-
mated values. The distribution p(α|t) is therefore approximated by δ(αMP ). The hyper-
parameters αi are obtained from the type II maximum likelihood method as is shown in
[15].

During the optimization, most of the αi gets large and the corresponding weights w are
almost infinitely peaked around zero and because the corresponding kernel are pruned,
the models becomes to be sparse. This is called ARD prior – Automatic Relevance De-
termination. The remaining vectors are called Relevance vectors and ,on the contrary to
SVM, these vectors are the most representative points of both groups. The optimization
continues till the change in α is below certain threshold or maximum number of iteration
is reached.

Despite the described advantages of RVM, this algorithm suffers from several disadvan-
tages. Firstly, the RVM optimization can often reach a local maximum on contrary to the
SVM optimization where the global optimum is always guaranteed because the optimized
function is convex. This can lead to a significantly worse model, however it is possible to
detect these corrupted models and remove them. Other disadvantage is the computational
complexity and high memory demands. The memory limitation restricts the training set
to less than 10000 points for large kernel sizes. The LibSVM algorithm can be effectively
computed using more than 60000 points thanks to implemented heuristic algorithms and
caching [21].

In this work, the implementation of RVM for MatLab was used – SparseBayes 2.0 [16]
with a few speed and memory usage improvements based on the sparse matrices.
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3.4 Testing

The algorithms described in the previous section are compared in the following figures.
Note that all the predictions are very similar. It is not so obvious, because the principle
of all algorithms is quite different:

• LogReg–Bayes, LogReg–L2 – dense models

• LogReg-Bayes, RVM use full Bayesian probability

• SVM sparse and maximize margin between the classes

Moreover, the optimal kernel sizes for different algorithms oscillates from 0.05 to 1.3. And
even quite a small change in the parameters significantly changes the resulting probability
although the classification rate stays almost the same.

Testing data were loaded from http://research.microsoft.com/~cmbishop/PRML/webdatasets/
datasets.htm. Data were generated from a mixture of 3 Gaussians. Points in circles are
support/relevance vectors. The corresponding Gaussian mixture model had the parame-
ters:

mix.priors = [0.5 0.25 0.25];
mix.centres = [0 -0.1; 1 1; 1 -1];
mix.covars(:,:,1) = [0.625 -0.2165; -0.2165 0.875];
mix.covars(:,:,2) = [0.2241 -0.1368; -0.1368 0.9759];
mix.covars(:,:,3) = [0.2375 0.1516; 0.1516 0.4125];
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Examples of predictions (left) and CV outputs (right) using different learning machines
Note that the resulting probability predictions (left) are very similar for all methods
although the principles of used methods are different
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Chapter 4

Model Selection

The direct approach to the model selection is a choice of the model that gives the best
classification score on the training data according to some loss function. Unfortunately,
this approach does not work, the most complex model is always chosen, for example a
polynomial of the highest degree in regression. This selected model has low predictive
value it is so called overfitting. Two basic ways, how to avoid this problem, exist: the
Bayesian and the non-Bayesian.

4.1 Cross-Validation – CV

The crossvalidation (CV) is a non-Bayesian (frequentist) statistical method how to avoid
the overfitting caused by the choice of model parameters [26]. The aim of the crossvalida-
tion is to generalize the estimated results for an independent data set. Bayesian methods
should be able to choose the parameters automatically [12]. However, it is often possi-
ble only for some special cases such as the regression (see Section 2.2). So even for the
Bayesian methods the kernel parameters must be determined by the CV. Also the choice
of the correct kernel is either based on some a priori knowledge or the kernel with the
best results in the CV is used.

CV is basically similar to the concept of training and validation on separated data set,
however it can use more information from the data.

The standard way to perform crossvalidation is following: training data are randomly
separated to N–folds, usually to 5–folds [17], N−1 folds are used for training and the last
one is used for testing, however many other types of CV exists. The training process is
repeated N-times for different combinations of learning/testing folds. The result of the CV
is mean classification score for the given parameters. Moreover, it is possible to estimate
the variance of the CV and use so called “S1-rule” [17]in the case of the flat bottom (fig
4.1) of the loss function. According to the S1-rule, the most optimal parameters have the
score higher than the best score minus the standard deviation. Futher, there is used some
a priori knowledge to selected the best one. For example, the least complex model can be
preferred.

A common way to find optimal solution is to use a grid search in the Np-dimensional
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space, where Np is the number of the free parameters and estimate the parameters that
give the best prediction. An optimization algorithm can be used instead of the grid search.
However, there are issues with the local minimums and also the grid search can be easily
parallelized to increase the computational speed.

The problem of the CV is that it is a non-probabilistic (non Bayesian) method and all
the introduced learning machines compute the output probability under the assumption
that the used kernel parameter is correct. Therefore, the probability prediction can be
significantly different for different kernels and their parameters (see Fig 4.3).

In this work, the apriori knowledge used for the S1-rule is that the larger Gaussian kernel
size σ or the lower number of the support vectors usually means a less complex model.
This knowledge generally leads to more reliable predictions.

The second issue of the CV is connected to the way how the CV score is computed.
So called loss functions are used to success rate of the models, usually “zero-one” loss
function is used. It returns the mean number of the misfitted points

L = 1
N

∑
yi 6=ỹi

1

where ỹi is the predicted value and yi is the expected value. If the sizes of the classified
groups are not similar, the loss function should be normalized in order to prefer the smaller
group

L =
∑
i∈Y

N∑
j=1

yij 6= ỹij
Ni

The disadvantage of this loss function is that it gives no importance to the probability
only to the class selection. Therefore, the resulting model can prefer all the predictions
close to 50% (see the binary classification in the Fig. 4.3). Better results can be obtained
using function that penalizes predictions regard to the probability:

L =
∑
yi 6=ỹi

P (xi|C1) +
∑
yi=ỹi

(1− P (xi|C1)) (4.1.1)

where P (xi|C1) is the conditional probability that the data point xi belongs to the first
group for binary classification. This loss function results in a less flat shape of the CV curve
compared to the standard zero-one loss function (Fig. 4.1). Moreover, this probabilistic
loss function uses more information from the system compared to ordinary zero-one loss
function. The main difference is expected for small datasets as was already tested for a
similar loss function in [27].

4.2 Bayesian Model Selection

The cross-validation has several major drawbacks. The first and the most obvious is the
necessity to repeat the model training several times to find the best parameters. Moreover,
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Figure 4.1: An example of the CV tuning of the kernel size for the Relevance vector
machine. The “S1-rule” was used for selection of the optimal value. The blue points
correspond to the ordinary zero-one loss function, the red points to the probability loss
function. (4.1.1).
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Figure 4.3: Examples of the different predictions for the optimal parameters selected
according to the zero-one loss function (left) and the probability loss function (right). L2
Logistic regression was used for the prediction. Note that the boundary is similar but the
probability values are significantly different

the grid size grows exponentially with the number of parameters. The use of the grid also
implies that the searched parameters are distributed to a finite number of values, although
the logarithmic scale is usually used. Another issue of the CV is the estimation of the
uncertainty for the selected parameters. It means that the probability estimations given
by the learning machines are based on the assumption that the parameters learned by the
CV are the only correct values.

A better approach is to use the Bayesian rule (2.2.8) and integrate out the model param-
eters Θ as it is shown in Section 2.2. The total probability p(y|y0, Ck) that the vector x
is in the class Ck and y0 denotes labels the training data, is generally

p(y|y0, Ck) =
∫
p(y|Θ)p(Θ|y0, Ck)dΘ

The term p(y|y0, Ck) is the marginal likelihood or sometimes also called evidence for the
class Ck.

The probability over the searched parameters can be estimated directly from the Bayes
rule

p(Θ|y0, Ck) = p(y|Θ)p(Θ|y0, Ck)∫
p(y|Θ)p(Θ|y0, Ck)dΘ

It is also possible to optimize the likelihood p(Θ|y0, Ck) numerically.

In the case that the distribution p(Θ|y0, Ck) can be solved analytically over some set of
parameters Θi while for other parameters, for example kernel size σ, cannot be directly
solved, then it is possible to approximate the kernel parameters by its maximum likelihood
value and use only the distribution over the rest of the parameters. This approach is called
type-II maximum likelihood approximation and is used for the RVM regression [15] (see
Section 3.3).

The great advantage of the Bayesian method is the possibility to integrate out the model
parameters and thus automatically avoid overfitting. It follows the principle of the Oc-
cam’s razor.
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4.3 Dimension Reduction

The dimensionality reduction is an important step for the machine learning. It is important
to note that even a lot of the data does not guarantee that the overfitting will be avoided.
The amount of the data must be measured relatively to the number of free parameters
in the model and also the amount of the information contained in the data. The number
of the free parameters grows with the dimensionality of the problem and also with the
choice of the kernel. The Gaussian kernel (RBF) is very flexible therefore it provides a
huge almost unlimited degree of freedom. The linear kernel is less flexible but still, in
the case of high dimensionality or insufficiency/sparsity of the training data: It can lead
to the overfitting. Another advantage of the dimensionality reduction is possibly better
understanding to the physical context if only the most important variables are selected.

It is possible to perform “variables pruning” from a priori knowledge or via learning
machines. Many different algorithms were developed to provide some feature ranking and
elimination [28].

A basic way is to use a single variable classifier and thus to classify the individual predictive
power of each dimension separately and choose dimensions with the best score. This
method is called univariate feature selection. It statistically rank differences in distribution
using ANOVA filter1 and identifies the most relevant dimensions; the results are similar
to the linear separation [29, 30]. The advantage of this attitude is a good theoretical
background, on the other hand, it works only for special cases when the data are easily
separable and number of points are low, on the other hand, this method is very quick.

Another more advanced method is to separate the data with a linear hyperplane. In the
case that the data are correctly normalized then the dimensions with the lower absolute
weight w are less relevant for the linear separation. This can be used to remove the
least successful dimensions. The disadvantage is the expectation of linear separability.
The advantage is quite fast feature selection compared to i.e. wrappers described in the
following text.

Some learning methods can be improved to automatically remove the irrelevant dimen-
sions. For example, if the l0-norm or l1-norm for the weights w is used in the MAP solution
without the kernels use. The l0-norm prefers low number of non-zero weights. The num-
ber of the variables (Np = ‖w‖0) can be added as the next regularization term to the
optimized error size. But it needs radical changes in the learning machine algorithm. In
work [31] a simple method was proposed to solve l0-norm approximately for the SVM
algorithm. The process is the following:

1. Train linear SVM

2. Rescale the input data with their weights w

3. Repeat until convergence

This procedure prunes the variables approximately similarly to the l0-norm.
1Basic statistical analysis of variance
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Another way was proposed in [27] where the SVM with Gaussian kernel was tested and
each dimension used different kernel size. The optimal kernel sizes were identified iter-
atively using CV with non-grid optimization. Finally, the dimensions with the smallest
kernel size are the most important.

4.3.1 Wrappers

Wrappers denote a class of powerful methods for features elimination regardless the used
learning algorithm. Wrappers are algorithms searching the optimal set of variables in fea-
ture space and propose different combinations of variables according to some loss function.
This loss functions is usually some learning machine algorithm trained on the data pro-
posed by the wrapper and returns a number corresponding to the mean loss of the testing
phase. The learning algorithm serves as a black box and thus it is easy to implement such
a wrapper for many different learning machine algorithms. Moreover, the wrappers use
the predictive performance of the learning machines or other ranking algorithms such as
ANOVA filter [28] and only need to know how to interpret the results and how to search in
space of all possible subsets of variables. The problem is that checking all subsets combi-
nations is NP-hard2. This cannot be solved for larger datasets using a brute-force method
and thus many strategies were developed [29].

However, the most often the forward feature selection (FS) and the recursive feature
elimination (RFE) algorithms are used. The basic principle of the forward selection is
selection of the features according to their predictive power. Only the most important
features are added to the training subset. On the contrary, the backward elimination
algorithm starts with all features and removes dimensions with the smallest additional
information. Advantage of the backward elimination is better resistance to the variable
correlation, on the other hand this algorithm is more computationally demanding.

These algorithms can search in possible subsets of variables, but it is also possible to rank
each dimension (variable) separately according their influence to the total classification
score, i.e use linear weights, and remove only the least significant variable.

Great advantage of the wrappers is their universality and also, compared to the previous
methods, possibility to deal with non-linear feature dependencies if they are supported by
the used learning machine. Moreover, it is possible to handle multi-class problems easily.
The disadvantage are generally higher computational demands..

4.3.2 Embedded Methods

Some methods have built-in selection of the most relevant features. One example is deci-
sion trees algorithm – CART (Classification And Regression Tree). Tree methods need to
decide which feature split the data best and sort layers in the tree according to this. The
main disadvantage of the CART method is that it rank the classification performance
separately for each dimension.

2the complexity is higher than polynomial
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Figure 4.4: An example of a relevance histogram determination using the random permu-
tations of the labels. The maximum of the histogram denotes the median p-value, 1/N
line denotes random guess (for 3 classes), and Classification Score line denotes p-value for
our selection

4.3.3 Model Validation

The last step of the variable elimination is checking if the number of the selected di-
mensions is optimal or more dimensions should be removed. If the pruning leads to better
predictive results (classification score) then the algorithm should continue. But even if the
pruning decrease predictive accuracy it still can improve generalization of the predictions
and remove overfitting.

One way is to repeatedly randomly permute labels of the data and perform classification.
The statistical p-value of the original classification is equal to percentage of random
permutations that have higher classification score then the score of the original data. The
final p-value should be almost zero (fig. 4.4) This approach can give only the upper limit
for the number of dimensions and also it can be used only for smaller data sets because
of high demand on computing performance.

The classification success also must be compared relatively to random selection. It means
that classification score 60% for binary classification is worse than 60% for ten classes
classification.

The next problem that must be considered is the correlation between dimensions. It is
possible that two dimensions has low predictive power itself, but together the score can
be significantly better. It is possible the the forward feature selection would not select
these dimensions.

One solution is use of the correlation analysis to detect these redundant dimensions. The
second way is to use another elimination algorithm for example the recursive feature
elimination that should completely ignore this problem.

Another interesting method of the model validation uses artificial “fake” dimensions with
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random Gaussian noise. These dimensions in the training data set are used as a probe.
If weight of some “real” variable is lower or similar to weights of the probes then this
dimension can be removed. This method can be further improved if a random permutation
of a real variable is used as the fake variable instead of the Gaussian noise. On the other
hand, the probles significantly deteriorate the convergence of the algorithm.

4.4 Scaling

Kernel learning algorithms are not generally independent of scaling and translation. Some
kernels are invariant to the translation, i.e. k(x, x′) = c(x−x′), some kernels depend only
on the magnitude (e.g. radial basis functions – RBF). The linear kernel parameters are not
invariant to the translation or scaling, but the prediction stays the same, if all dimensions
are scaled or shifted with the same number. RBF kernel is invariant to the translation and
scaling in the case that the kernel parameter σ is scaled too as it is denoted in following
equation:

k(ax + b, ax′ + b) = exp(−a2‖x− x′‖2/σ2)

The size of the kernel is the only element that depends directly on the scale of inputs x,
the rest of the SVM algorithm is independent. However, this is valid only if the scaling
constant a is the same for all dimensions.

It is commonly recommended [14] to rescale the data to be more similar in the training
dimensions. However, it is important to normalize the training and the testing data in the
same way. Either normalization in form (xi−max(x))/(max(x)−min(x)) or normalization
to reach zero mean and standard deviation equal one is usually used. Latter normalization
is slightly more robust to the outliers. In order to avoid problems with outliers, it is possible
to use a robust statistics such as the median instead of the mean and the median absolute
deviation instead of the standard deviation. The final normalization would be

X̃k = Xk −mediani(Xi)
mediani(‖Xi −medianj(Xj)‖)

(4.4.1)

If the data have heavy tails, it is also possible to renormalize the quantiles of the data as
was proposed in Chapter 6.

The purpose of the scaling for the linear kernel is mainly to reach the same importance for
all dimensions. On the contrary, for the RBF kernel the aim is to achieve similar distance
between patterns in the data points for each dimensions.

4.5 Data Preprocessing

Creation of a good data representation is the art of the learning machines. All learning
machines algorithms described in this work expects data properties as the amplitude,
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therefore all the important features must be converted to the magnitude. It is also possible
to include an a priori knowledge to the feature extraction, i.e. extract frequency via the
Wavelets or Fourier transformation, size of derivation, variation of data or many others
features. Also removing of the outliers from data and performing data smoothing in the
case of time dependence data can improve the prediction.

It is also possible to use some generic feature extraction methods such as clustering or
singular value decomposition to increase the orthogonality of the data features.

4.6 Toolboxes

Many algorithms described in the previous sections are already implemented in open-
source toolboxes. Five toolboxes were used in this work: PMTK3, scikits.learn, Sparse-
Bayes, pMatlab and standard statistic toolbox from MatLab.

PMTK3 is an open-source toolbox developed by K.P.Murphy and it is available for Mat-
Lab and Octave. PMTK3 implements many learning machine algorithms and also in-
cludes other toolboxes as plugins. The number of supported algorithms is impressive.
The most important are: Logistic regression L1, L2 type and implementation of Logis-
tic regression with Bayesian probability, Linear regression, K-th nearest neighbor, Neural
networks, naive Bayes. But the most important are Support vector machine implemented
in LIBSVM, LinearSVM and other SVM implementations, the second important plugin
is Relevance vector machine algorithm based on the SparseBayes toolbox implemented by
Tipping [12].

Futher, the scikits.learn package is an open-source toolbox in Python. Among others it im-
plements support vector machines (LIBSVM). The advantage, compared to the PMTK3
toolbox, are implementations of many feature selection algorithms and also a better sup-
port of the multiprocessing.

Finally, due to high computation demands of learning machine algorithms, pMatlab tool-
box [32] was used to parallelize the computations over more processors and computers.
Also LIBSVM was used with OpenML library that allows parallelization but only for one
computer.
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Chapter 5

Breakdown prediction on tokamak
GOLEM

The learning machines and other algorithms described in the previous sections were ap-
plied on data set based on database of shots from tokamak Golem ?? but some algorithms
for the feature elimination were used only for the SVM algorithm.

The main aim of this section is to test methods introduced in the previous sections on
a relatively small data set with simply comparable results and quite with well known
physical background. This simple model shows problems described in previous sections
such as many unimportant dimensions, hidden (unknown) dimensions such as amount of
plasma impurities and outliers – machine failure.

Moreover, the learning machines could be applied directly without any problems with
evaluation of score that will be in the next Chapter 6 about prediction of disruptions in
tokamaks.

The Golem database was used to determine probability of the plasma breakdown based
on parameters that were set up before the shot. These available parameters are

Shortcut Description Range
H2 Enabled H2 filling 0,1
Ub charge of capacitors of magnetic field 0-800 V
Ucd charge of capacitors of current drive 0-1200 V
Ubd charge of capacitors of breakdown field 0-500 V
Ust charge of capacitors of vertical stabilisation field 0-500 V
P pressure of H2 0-250mPa
Tcd delay of current drive trigger to main trigger 0-10ms
Tbd delay of breakdown trigger to main trigger 0-10ms
Tst delay of stabilisation field trigger to main trigger 0-10ms
PreIonisation Preionisation electrode 0,1
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5.1 Preprocessing

The raw data had to be slightly preprocessed in order to improve prediction and add a
priori knowledge. The first problem is a high number of the dimensions and their corre-
lations. It is important to remove less important dimensions to avoid overfitting. Here, it
could be done from a priori knowledge. The first property H2 filling is necessary condition
to make breakdown thus it can be removed and also all shots when there was reached
breakdown without the filling gas, because it is only a minor unimportant group – outliers.

The next step was to join some dimensions to ensure the independence of variables. In
this case Ub plus Tcd or Ub plus Tbd gives magnetic field in time of maximal current drive
or breakdown field. Furthermore, instead of absolute values of Tcd and Tbd only their time
shift is important, thus only the difference should be used.

Finally, the gas pressure was transformed using the logarithmic substitution in order to
allow faster changes near to the “vacuum” pressure – ≈ 5mPa.

The results of the SVM algorithm with RBF kernel before this feature elimination using
a priori knowledge are:

Group Precision Recall F1-score CV score NSV NVEC
0 0.834 0.627 0.648 0.338 265 367
1 0.885 0.990 0.467 0.786 230 1064

Total: 0.858
Total SV: 34.591%

Best parameters: C=1000 G=0.005

and after the these changes were the results

Group Precision Recall F1-score NSV

0 0.93 0.67 0.78 302
1 0.91 0.99 0.95 1034

avg / total 0.92 0.91 0.91 1336

It is important to notice two things: firstly, the dimensions cut-off can lead to worse re-
sults in the total precision. This was expected and it even quite successful result when
the dimensionality of the problem was decreased by 40% and the prediction success rests
almost the same. The second issue is a common property of the described learning algo-
rithms: they usually give worse results to the smaller class. In this case, it was group 0
(no breakdown), because breakdowns were usually requested by operators. The number
of shots with breakdown is 1034 and shots without breakdown is only 302. This dispro-
portion should be compensated. It is possible to use two ways: change threshold (bias) or
change weight of the classes. The methods were described in the section 3.2.1. Moreover,
a weighted probability loss function was used (see eq. 4.1.1).

Results for the same dataset using the linear kernel and SVM method are much worse.
The total precision decreased to mere 80% but it is important to note that value 50% is
only a random guess and value 77% if all thee points would be predicted as breakdown.
This problem is caused by linear non-separability of the data, as is shown in Fig. 5.1.
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Univariate Feature Selection
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Figure 5.1: Results of univariate feature elimination with ANOVA method applied on data
from GOLEM tokamak.

5.2 Random probes

The method of random probes introduced in Section 4.3.3 was used. Three probes were
created: the first probe test_1 was random permutation of numbers from 1 to number
of samples, the second test_2 was random permutation of Ub and the last test_3 was
random permutation of Ucd. These probes should have the weight much lower than the
rest of the valid variables.

5.3 Univariate feature elimination

The first tested method was univariate feature elimination based on statistical ANOVA
test (see Section 4.3). The ANOVA filter returns weight corresponding to statistical dif-
ference between groups for given variable. The great advantage is almost immediate speed
of the filtering. Disadvantage is quite poor performance compared to other methods. The
resulting weights are in fig. 5.1. According to the ANOVA, the random probes are one
of the most important variables and, on the other hand, the pressure – theoretically the
crucial variable – is negligible. This is significantly different from the expected results.
It is caused because the classes in database are not linearly separable variable in each
dimension. For example, the breakdown fails for too high pressure and also for too low
pressure.

The unexpected weights of the random probes could be caused by violation of of the
ANOVA model assumptions, i.e. independence of cases, normality of the residuals, homo-
geneity – variance of the groups should be the same.
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Linear SVM Classifier - Weights
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Figure 5.2: Weights for input dimension used in the GOLEM tokamak when the recur-
sive feature elimination with linear SVM was applied. The black bars are weights for all
variables. The red bars are weights for seven the most important variables.

5.4 Recursive feature elimination with linear SVM

The next tested method is based on the Recursive Feature Elimination (RFE) with linear
SVM, but the results are similar for all the described methods with the linear kernel. The
solving speed was slower than the ANOVA filter but still it took only a few minutes. The
weights are normalized absolute values of the normal vector of the SVM linear hyperplane.
It is possible to make prediction for all variables and use only n of the most important
or iteratively remove only the least important dimension and perform the training and
prediction/pruning again. The first way is faster but the second way gives result that
should be less affected by random variable that were removed in previous steps.

The results are shown in Fig. 5.2. The results are significantly different from the ANOVA
weights, the linear weighting successfully ignored random probes. Also it is important to
note that the weight stayed very similar during elimination, the only exception is ∆T
variable.

Basic statistical characteristics of the fitted model are shown in the following table. Recall
for the class 0 is very low; it means that linear model almost ignored the smaller class.
However, it was expected since the model is not linearly separable.

Group Precision Recall F1-score CV-score
0 0.77 0.29 0.21 0.39
1 0.80 0.97 0.44 0.78

Total: 0.80

The next step is to use the weights from linear hyperplane estimate the influence of each
dimension.
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keys: Bfield PreIon P ∆T Tbd Tcd Ubd Ucd
weights: 0.34 0.34 0.33 0.12 0.08 -0.13 -0.20 0.53

Almost all variables increased breakdown probability with increasing variable size, the
only interesting exception is voltage in breakdown coils – Ubd. However, the breakdown
field should always improve the chance to reach breakdown. This was probably a non-
physical effect caused by the fact that the highest fields were tested in the cas of machine
failure.

5.5 Recursive feature elimination with RBF kernel
and SVM

This method was described in the Section 4.3.1. The weights correspond to increase of loss
function when the belonging variable was removed. Full cross-validation was performed in
order to find the best parameters for each variable combination – each parameters com-
bination was solved 5 times. The results from the cross-validation were used to estimate
errorbars of the weights.

The advantage of the method is that it is fully nonlinear method and thus the weights are
not biased by assumption of linear separability, the disadvantage are high computational
demands.

The results are shown in Fig. 5.3. The results fit very well to the expected behavior.
Weights of the random probes are not zero, but within the errorbars they are correct.
Also, on the contrary to the other method, pressure was determined as a very important
variable together with the magnetic field and current drive. It is also quite interesting that
∆T , delay between breakdown and current drive, have no importance although linear SVM
and ANOVA filter predicted quite high importance to this variable.

In Fig. 5.4 is plotted the order of the eliminated variables. The variables eliminated at
the beginning have very similar weights, so the order is not reliable. Interesting is that
probe variable test_3 stayed quite long.

Finally, the evolution of the predictive probability for each step of the RFE algorithm
is in Fig. 5.5. During the first four steps, the prediction is almost constant then the
classification rate is decreased although the test_3 variable was still in training set, so it
was still overfitting.

The optimal number of variables is 5-6.
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RFE with nonlinear SVM predictor
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Figure 5.3: Recursive Feature Elimination (RFE) using the nonlinear SVM predictor.
Errorbars are estimated from the cross-validation
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Figure 5.4: Elimination order of variables using the Recursive Feature Elimination (RFE)
and nonlinear SVM. The lower number, the less important variable.
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Classification rate - nonlinear RFE
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Figure 5.5: The classification score for a different number of inputs selected by the non-
linear RFE

Results for different learning machines when only four dimensions were used are in follow-
ing table. The differences between the misclassification are not significant for the different
algorithms because random changes between each run can produce different results. One
important property is sparsity of the model. The sparsest and thus usually the less com-
plex model is the RVM. Interesting is that the linear SVM have less sparse model but it
is caused by linear non-separability of the model and thus by high misclassification rate
and the plane can be still described by 5 parameters.

Machine Total Missfit Main vectors
RBF kernel - 4 dimensions

SVM 0.941 34%
LogReg L1 0.926 100%
LogReg L2 0.959 100%

RVM 0.912 5%
linear kernel - all dimensions

SVM 0.67 46%
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Table 5.1: Cuts through the predicted probability of breakdown. The probability pre-
diction is the output of the SVM algorithm LibSVM. Black points are shots without
breakdown and white points are with breakdown. Contour lines denote 30% and 80%
decision boundary. It should be noted that the boundary shape is very similar to the
Paschen’s curve [33].
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Chapter 6

Disruption Prediction on Tokamak
JET

The aim of this work is to use machine learning tools to understand the physics of dis-
ruptions in the perspective of predicting them.

The work is particularly focused on three problems: the possibility of extrapolation of
predictors from low current disruptions to high current disruptions, the performance of
predictors trained using intentional1 disruptions for unintentional disruptions (and vice
versa) and the prospects of training predictors using non dimensional parameters. These
issues must be studied if learning machines are to be used for the future thermonuclear
machines. Moreover, many minor issues were studied.

6.1 Introduction to Disruption Prediction

The disruption is defined as sudden loss of the plasma confinement that results in the
abrupt termination of the plasma discharge. Disruptions are potentially serious threats to
the integrity of the ITER2 tokamak [34] chamber integrity. Disruptions usually consist of
several phases [1]: the first phase of the disruption is called thermal quench. During this
phase huge amounts of heat are released to the plasma facing components. This phase
is followed by a current quench. A fast current quench with high internal inductance
can cause high negative loop voltages and it can lead to production of the relativistic
“runaway electrons” with energy up to 100MeV. These relativistic electrons can cause
severe damage of the plasma facing components and also damage the tokamak first wall.
Almost 70% of the initial plasma current (10MA) can be converted to the runaways
during a disruption or a fast current quench in the ITER [35]. It is also possible that
the vertical control system loses control of the plasma position and this can result into
a VDE (vertical displacement event) and, at high currents, VDEs can cause high forces
and damage the vessel. They can also induce large halo currents and again cause damage
to the vessel or other components.

1disruptions cased by a human intention under controlled conditions
2ITER is the largest tokamak that is being currently build in Cadarache, France
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The main problem with the disruptions is that a minor damage in the present tokamaks
can cause major integrity issues in the future thermonuclear devices. The magnetic energy
will be increased from 11MJ in JET to 400MJ in ITER, plasma current will be increased
from 5MA in JET to 15MA in ITER [35]. Because disruptions seems to be unavoidable
in tokamaks, although the disruption rate on JET in recent campaigns was limited to
3.4% [36] , in ITER the expected disruptivity is 5-10% [34]. It follows that it is necessary
to predict and then mitigate or suppress the disruptions in ITER. The success rate of the
disruption prediction should be >95% [37] to prevent too fast erosion of the divertor.

The idea of using learning machines to predict the disruptions is quite old and examples
of the real-time prediction applications based on Neural Networks already exists [38].
With newer computers and better learning machines algorithms, it should be possible to
reach better results. However, most of the current articles in the literature, and also this
work, are focused only on the proof of concept and not on the real-time deployment of
the predictors in actual devices.

In many experiments, the prediction was based on monitoring one or two diagnostics
i.e [39] locked modes or global plasma energy equlibrium (see the next Section) and the
trigger was started with some appropriate threshold. The problem of these methods is
limited ability to detect disruptions in different plasma configurations and at the same
time achieve low false alarm rate. Another possibility is to use Neural Networks (NN) with
multiple diagnostics as inputs. The neural network output can be trained to predict the
time to the disruption [6] or a number proportional to the probability of the disruption.
Usually, an appropriate threshold is also selected to launch an alarm. The disadvantage
is the necessity to choose the network topology artificially, the main advantage is the
high speed of the predictions, although it is not a critical issue for disruption prediction,
nowadays. An example is the real-time application of the NN that is able to predict the
density limit disruptions for the ASDEX Upgrade [38]. 13 diagnostics were used as input
and the alarm must be triggered 50ms before disruption. The used training database
contained 99 disruptive and 386 nondisruptive shots. They reached 15% missed rate on
65 disruptions and 1% false alarm rate for 500 non-disruptive shots.

Another example is NN with 9 inputs that was used for the JT-60 [40]. The NN was
trained with merely 12 disruptive and 6 nondisruptive shots that were manually selected
and manually classified to determine different stability levels (“precursor time”). Two
iterations were used in the training. The second iteration used the predictions of the first
step to identify the “precursor time” and also some additional synthetic artificial points
were added to improve the prediction. The synthetic data were placed on positions that
were not covered by measurements, however the disruptive character of that part of the
operational space was known from a priory knowledge. The results were 97% success rate
10ms in advance for 300 disruptive shots with 2.1% false alarm rate for 1008 nondisruptive
shots.

Also for the JET tokamak, several NN based algorithms were developed. An example is
published in in [6], authors reached a success rate of 80-90% with zero false alarms because
the effort was to minimize the false alarms.

Next interesting topic is the cross-machine prediction. The NN predictor trained for AS-
DEX reached 69% success on JET and a predictor trained for JET reached 67% on
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ASDEX data [9]. The article reports that the portability of the learning machines is an
challenging issue and other approaches need to be developed.

Furthermore, other machine learning tools have been already used. In [41], three SVM
machines solved in parallel were used with a second linear SVM layer that was used
instead of the threshold. With 13 classical disruptive input variables resampled at 1 kHz,
the success rate >90% was obtained.

A direct compare of the results from different articles is difficult since each author measures
success rate in a different way, moreover as it is shown in this chapter, success rate depends
more on the data – disruption types – than on the used learning machine.

The following notation for the score is used in this work: % FA (false alarms) is the
percentage of triggered alarms on the nondisruptive shots, %MA is percentage of non
triggered disruptive shots at least 30ms, %EA (early alarm) is percentage of alarms
triggered more than 1 s before the disruption. 3 It should be noted that it is always
possible to minimize FA or MA separately by an appropriate threshold but the sum stays
usually almost constant near to the optimum.

6.2 Operational Limits

The operational space of the tokamak is restricted by several limits. The most known are
current limit, density limit and pressure limit but more empirical limits exist [1]

Current limit – limit on the safety factorQ95 4. The value is limited toQ95 ≥2 otherwise
it results in a low-q disruptions. When the Q95 is near to 2, the tearing/kink instability
starts to grow, get locked with the wall and results into a disruption.

Density limit – the plasma density should not significantly exceed the empirical Green-
wald density limit nGW [10 · 20m−3 ] = I[MA]/(πa2 [m2]) for circular plasma of diameter
a. If this limit is exceeded the impurity radiation at the plasma edge is increased and
this can lead to the radiative disruptions. The radiation is mainly caused by not fully
stripped impurities or by intense hydrogen gas fueling. The edge plasma cooling contracts
the plasma current profile and if the Q95 is not high enough, the current contraction
leads to the low-q disruption. This limit is only a soft limit and it can be improved by de-
creasing impurity content and increasing additional heating [42]. It follows that the edge
parameters of the plasma are important: electron and impurity densities, the edge plasma
temperature. The limits for the disruptions can be estimated by Murakami parameter [43]
nR/Bfi · 1019 and the inverse safety factor 1/Q95. The final diagram is called the Hugill
diagram [44] and it was verified on many tokamaks i.e for JET [45].

3 The expected minimal mitigation time for JET is 30ms because the later mitigations are not enough
effective. Therefore, the learning machine algorithms should predict the disruption at least 30ms before
a major disruption otherwise the shot is treated as a missed alarm. The thermal and current quench or
vertical instability are detected usually too late and they cannot be used for the prediction and therefore
other quantities must be used. The minimal mitigation time will be longer in the case of the ITER because
of its size.

4measurement of magnetic field helicity
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Q95 Safety factor
Ip Plasma current
nGW Greenwald density
ne Electron density
B Toroidal magnetic field
Bp Beta poloidal
LOCK Locked modes amplitude
li Plasma internal induction

Table 6.1: The list of the important disruptive parameters regards to the operational
limits

Pressure limit – the normalized toroidal beta BN = 〈Bp〉 /I[MA]/(a[m]B[T]) should be
lower than the Troyon limit ≈3.5. For high Q95 > 3 the beta limit is only a soft limit
but for Q95 < 3 is problematic to cross the boundary (rollover) [34]. The BN limit is
often observed for peaked pressure profiles [40]. The evolution of the beta-limit involves
the development of NTMs (neoclassical tearing modes) and ballooning modes. According
to the numerical models [35], convections cells develop between the hot plasma core and
the edge plasma, therefore the heat conduction across the magnetic lines is increased and
the plasma confinement is decreased. The simulations indicate that the energy loss is
caused by ballooning modes. In the next step an internal minor disruption appears and
it is usually followed by the major disruption. The Beta limit disruptions are not simple
to detect because the first precursors appear a few ms before the disruption [40].

Locked modes – the tearing modes or islands do not rotate with the plasma fluid. The
main causes are error fields or eddy currents caused by big islands near to the plasma
surface. The rotating modes are slowed down and locked; therefore the modes start to
grow rapidly and cause a disruption. The amplitude of the 2/1 mode is often used as a
disruption precursor.

Too fast plasma current ramp up – destabilizing MHD (magneto-hydrodynamic)
instabilities can be produced in plasmas quite often if a rational value of safety factor is
near to the plasma surface [1]. It can be aided by a hollow density profile. It results in
the locked modes and disruptions.

Plasma energy equlibrium – plasma output power should not significantly increase
the inout power for a longer period.

Plasma current ramp down with high li – a disruption can often appears if the plasma
current profile is strongly peaked during the ramp down phase. The peaking of the current
profile can be estimated from increase in the plasma internal inductance. Precursors for
this type of disruption are usually not clearly observable [40] but the disruption depends
on crossing a boundary in qeff (effective safety factor) vs li plot. It is called Cheng’s li− q
diagram [46].

In the table 6.1 the important parameters for the prediction of disruptions induced by
operating too close to the operations limits are summarized:

These diagnostics are quite similar to the inputs that we have finally selected (see Tab
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JET Disruption Classes %
Impurity (control problems) NC 18.7
Density control problems IMC 15.6
Auxiliary power shut-down (H-L) ASD 0.04-0.8s 10.0
Fast emergency shut-down FSD 0.1->2s 9.6
Neo-classical tearing mode NTM 0.1->2s 8.2
Shape control problems SC 6.0
Current ramp-up IPR 5.9
(Low density) Error field mode EFM 0.1-1s 5.6
Strong internal transport barrier ITB 0.01-0.05s 5.1
Vertical stability control problem VSC 0.02-0.1s 4.6
Greenwald limit GWL 0.05-0.8s 2.4
No clear classification 8.2

Table 6.2: Ratio of different type of disruptions in the JET tokamak [36]

6.6). However, it is important to minimize the number of the input parameters to the
learning machines, therefore it can be expected that the magnetic field is usually similar
for all the shots and can be neglected. Moreover, if the plasma center position is added
to the parameters set, the Q95 (or plasma current) can be removed because it depends
approximately only on plasma current (Q95) and plasma surface.

The input set in the Tab 6.1 contains some important disruptive parameters. In addition
to the table 6.1, it contains the radiated power, the input power and the derivative of the
stored diamagnetic energy. The derivative of the stored diamagnetic energy is claimed to
be an important precursor [34].

The main disadvantage of our choice of inputs is that none of the parameters is non
dimensional and therefore the results are not applicable to other tokamaks. On the other
hand, a study about cross machine training [9] proved that the cross machines results are
very weak even the with non dimensional parameters.

The problem is even more complicated because the parameter importance depends on
the number of disruptions in each type (Tab 6.2). Therefore, the best set of the signals is
selected to maximize the score on a general training dataset (see Section 6.10)

6.3 Shot Database

The total processed database contained 2309 disruptive shots and 1654 of the disruptions
were unintentional. We have also used a database that contains 1187 shots with disruptions
of known physical cause. The list of disruptions types is in Tab 6.3.

The database contains shots from campaigns C15-C27 but we have not used all campaigns
because major changes of some tokamak diagnostics have been implemented before the
campaign C19. Therefore, the training dataset contains campaigns: C19, C20, C21, C22
and the testing database contains shots from the campaigns C23, C24, C27b.
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Figure 6.1: Disruption rate during JET lifetime. source [45]

Type
Too little auxiliary power ASD
Greenwald limit GWL
Impurity control problem IMC
Too fast a current ramp-up IP
Too strong internal transport barrier ITB
Too low density (and low q) LON
Density control problem NC
Neo-classical tearing mode NTM

Table 6.3: Types of disruptions in the used database, campaigns C15-C27

Name Date Pulse Range
C15a 18 April - 10 May 2006 65985 - 66355
C15b 12 May - 25 May 2006 66361 - 66572
C16 5 July - 7 July 2006 66954 - 66976
C16-C17 25 September - 15 December 2006 67641 - 69148
C18 8 January - 12 February 2007 69227 - 69795
C19 12 February - 4 April 2007 69806 - 70750
C20 11 April 2008 - 6 June 2008 72150 - 73854
C21 9 June 2008 - 18 July 2008 73130 - 73854
C22 21 July 2008 - 29 Aug 2008 73855 - 74463
C23 1 Sept 2008 - 3 Oct 2008 74464 - 75115
C24 6 Oct 2008 - 6 Nov 2008 75116 - 75599
C25 10 Nov 2008 - 16 Dec 2008 75600 - 76329
C26 12 Jan 2009 - 7 Apr 2009 76395 - 78157
C27a 15 Jul 2009 - 14 Aug 2009 78296 - 78884
C27b 7 Sep 2009 - 23 Oct 2009 78995 - 79853

Table 6.4: Date and pulse range for each used campaign
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Training data Testing data
Type All High Current Intentional All High Current Intentional
Unknown 95 20 58 71 18 36
ASD 12 3 0 5 4 0
GWL 4 0 0 3 3 0
IMC 22 1 0 9 3 0
ITB 4 0 0 2 2 0
LON 0 0 0 10 1 8
NC 26 4 0 15 6 0
NTM 14 7 0 4 0 0

Table 6.5: List of disruption types used for training and testing. Names of the disruption
types are listed in Tab. 6.3

178 disruptive shots were used for training and internal validation. However, 42% of these
shots were intentional disruptions and therefore they were removed from the database
except the Section 6.12.2. The reason is explained in the next Section. From the rest of
the 120 disruptive shots only 35 shots were at high current >2MA at the time of the
disruption.

The disruption types used for the training and testing are reported in the following table:

The available diagnostics were another limiting factor for the number of used shots because
all the shots with some missing input diagnostics were removed. The used diagnostics were
selected to minimize the number of missing data and also we preferred to include only the
signals that should be available in real-time. Therefore, a compromise between the number
of shots and the number of used diagnostics had to be found. The input diagnostics used
in this work are in Tab 6.6 and histogram of each input is in Fig 6.2.

6.4 Intentional Disruptions

Intentional disruptions are caused by human intention under controlled conditions. Usu-
ally us used a gas injection in combination with a low safety factor. These disruptions are
quite often in the used JET disruptions database and represent more than 42% of disrup-
tions in the campaigns C19-C23. However, these disruptions behave very differently from
the non intentional. The output of the Grand Tour algorithm [47] – a multidimensional
projection from the space of all inputs and their preprocessing (derivations, variations) to
a 2D image – is shown in Fig 6.3. The data are in the time range [-60ms, 0ms] before the
disruption. Each dimension was normalized to the 95% quantile. In the Fig 6.3, it is visi-
ble that the intentional and unintentional disruptions are clearly separated.Moreover, the
intentional disruptions are usually very similar and the precursor behavior is very short
and this causes problems during the learning and the testing using these disruptions.
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Abbrev. Diagnostics PMDS address dt [s] dtfinal [s]
IPLA Plasma current jpf/da/c2-ipla 2e-4 – 1.5e-2 1.5e-2
BTPD Poloidal beta jpf/gs/bl-bpdiam<s 1e-2
LOCK Mode lock amplitude jpf/da/c2-loca 2e-4 – 1.5e-2 1.5e-2
PIN Total input power jpf/gs/bl-ptot<s 1e-2
PPOZ Plasma vertical position jpf/gs/bl-zcc<s 1e-2
DENS Plasma density jpf/df/g1r-lid:003 1e-3 1e-2
WDIA Derivative of diamagnetic E jpf/gs/bl-fdwdt<s 1e-2
POUT Total radiated power jpf/db/b5r-ptot>out 1e-4 1e-2
NGW Greenwald density jpf/gs/bl-gwdens<s 2.5e-3
TAU Confinement time SCAL/TAU 1.5e-2
BETN Beta normalized SCAL/BETN 1.5e-2
Q95 Safety factor EFIT/Q95 1.5e-2
INDU Plasma internal inductance jpf/gs/bl-li<s 1e-2

Table 6.6: The complete list of all the downloaded and tested JET database outputs.
These variables were used to compute the final set of parameters. Time resolution of
some dimensions was reduced on order to limit the data size and remove problem with
incorrect preprocessing (see Section 6.6)

6.5 Data Preprocessing

The first step of the implementation was the processing of the original data. The aim
was to compress the information and minimize the loss of the important information.
The data for disruptions are in form of time sequences of several signals (Tab 6.6). The
data are already down-sampled in the JET database to limit the database size. The time
resolutions of different diagnostics are not the same and also the time resolution can be
different when some important action happens i.e. before the disruption. Several ways,
how to process the differently sampled data, exist. The linear interpolation of the signals
to 1ms was used in articles [6, 41]. This approach has several disadvantages. The most of
the diagnostics are saved in >10ms resolution; therefore it increases the amount of data
that need to be processed. And the second issue appears when the time resolution of the
diagnostics is not constant during the discharge. This problem is discussed in the Section
6.6.

In this work, the following preprocessings were proposed:

mean Mean value in each window
diff Mean value smoothed derivative (“derivation”)
var Standard deviation of the derivative (“variation”)

Table 6.7: List of different preprocessing used in this work

These preprocessings detect absolute value, increase and fluctuations of the inputs. It
is theoretically possible to use even higher order derivatives but the signals are usually
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Figure 6.2: The histograms of the input variables. The inputs were rescaled to the same
range, histogram values are plotted with the logarithmic scaling, green bars are the nondis-
ruptive and blue are the disruptive values (tdisr + [−150;−30]ms). Histograms on the left
shows the set of the ordinary parameters, histogram on the right side are predominantly
dimensionless parameters with some important ordinary parameters.

very noisy and even the first derivative is very noise with no smoothing. However, in [40]
the second derivative was used to detect the start and the end of the plasma current
rump-up/down from the reference plasma current.

Also the variance sensitive preprocessings (std(fft), std(diff)) have very similar results as
the ordinary absolute value of the mean time derivative (see the next Section).

The length of the windows was chosen 30ms because the data were usually saved to the
database with sampling >10ms and therefore usually the each window contained only
four values (two real and two interpolated on boundaries). We have used overlapping
windows shifted by 10ms to increase the number of the disruptive points.

It should be noted that only the density and the radiated power are saved at high time
resolution in all shots and the plasma current and the locked modes are saved at higher
time resolution only when some more important events happen (i.e disruption).
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Figure 6.3: The Grand Tour projection of the input data. Only the data from the time
interval -100-30ms are shown. Dimensions are rescaled so that the 5–95% quantile would
be equal 1, and each group contains the same number of the points.

The next issue were inputs failures that led to unphysical results such as zero input
power after NBI shutdown, negative density, negative radiated power, negative Greenwald
density etc. Some of these failures were possible to remove with the median filter, another
were removed by a priori knowledge i.e minimal input power ≈ 500 kW.
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Figure 6.4: Examples of signal density of IPLA when is used the wrong downsampling.
The time vector of all signals were shifted such that the disruption is in time 0. Results
for LOCK are very similar.
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Figure 6.5: An example of plasma current for a disruptive shots.Disruption is in time
64.41 s. Blue curve are data interpolated at 1ms, red curve are data interpolated at 15ms.
The incorrect downsampling cause artificial change of signal 400ms before the disruption,
because the IPLA is saved in JET database with different time resolution.

6.6 Problems of Preprocessing

One major problem was found during the data processing. The IPLA and LOCK diag-
nostics are saved in the JET database with a different time resolution in some shots and
≈ 300ms before each disruption the sampling rate is increased from 15ms to 0.2ms. If
the linear interpolation (interp1) is used for the IPLA and LOCK diagnostics to interpo-
late/downsample at 1ms the result is shown in Fig 6.5 (blue curve) and if an appropriate
preprocessing is used i.e std(fft) the frequency transition is very clear The only correct fix
is performing the same downsampling as the JET Data Acquisition System (DAS). The
data must be downsampled at the lowest frequency in each diagnostics separately. The
original JET DAS undersampling used the nearest neighbor without any smoothing. It is
necessary to use this pessimistic way and perform a possible information loss otherwise
all preprocessings sensitive to the data variation as std(fft), std(diff) are able detect the
sampling frequency change and the used learning machine is able to use the information
for the prediction. The sensitivity of the variation preprocessing (6.7) is plotted in the
Fig. 6.4 and the corrected version is in the Fig. 6.6.

The smoothing is performed only before the derivative preprocessing. The inputs were
smoothed using the Parzen window filter with a semi (unsymmetrical) Gaussian weight
(to prevent the information shift) with the kernel size of 80ms.

6.7 Data Smoothing

Although we have used 30ms windows for data processing, the noise in the data is still
significant when derivatives are used. Therefore, each signal should be smoothed before
derivation. The problem is that incorrect smoothing can shift in time the information
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Figure 6.6: Examples of proper downsampling - graph of lines density for time before
disruption for IPLA. There is no significant change is the signal 400ms before disruption.
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Figure 6.7: Examples of the different processing of the plasma current input. The mean
and derivative is smoothed over 30ms windows and the last two are examples of variations
of the signal. The shown signals are from disruptive shots from training campaigns and
the time vector was shifted so that time 0 is time of disruption.
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about disruptions information and unrealistically improve the score of the prediction. In
[40] a low pass filter were used without any specification. No filter/smoothing was used in
the articles [6, 41]. We have used asymmetric Gaussian filter to prevent information shift
with smoothing σ equal 80ms.

The only exception is the total radiated power. This diagnostic suffers from unphysical
peaks caused probably by wrong deconvolution of the signal from the bolometers (i.e.
shot #66053). The median filter over 30ms was used for the correction.

6.8 Data Postprocessing

In the next step, the data must be preprocessed for the learning machine algorithms, a
correct rescaling of the inputs is especially important. This step is essential for the kernel
based learning machine algorithms because the normalization gives information about the
size of the patterns in each dimension. In the literature it is usually recommended to rescale
minimum/maximum of the data to the [0,1] range. However, many outliers are present
in the processed data and the outliers can be several orders of magnitude higher than
normal data. The same problem remains if the data are rescaled to unit variance or unit
norm. Therefore, some robust method must be used. One possibility is to use α-quantile,
i.e rescale data from q(0.01) to q(0.99). The best approach would be to set the scaling
of each dimension as a free parameter and find the best ratios using cross-validation as
it was tested [27] but it would increase the number of free parameters in the system and
significantly increase the learning time, because the time of the cross-validation increases
exponentially with the number of parameters.

It is also possible to manually introduce a priori knowledge by scaling i.e. by increasing
the size (magnitudes) of the more significant dimensions and therefore allow sharper tran-
sitions between groups. The outliers could be rescaled by an appropriate transformation
i.e. atan(x) or removed as in [40] but this is not recommended for disruptions prediction
because the outliers are usually the most important disruptive signals.

An example of the processed diagnostics (plasma current) is in Fig 6.7.

6.9 Learning Machines

Three machine learning tools were used in this work: Support Vector Machine (SVM) –
one and two class – and Relevance Vector Machine (RVM). These algorithms are presented
in Chapters 3. All the machine learning tools are sparse and the two class SVM and RVM
are able return estimates of the probability that the the data points is disruptive. However,
this probability is a very poor estimate because the algorithm is not able to directly use
the knowledge from the data time-sequence and because of the outliers.
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6.9.1 Total error

In this work, the total error is defined as (%FA+%MA+%PA*disruptivity), however it is
only our choice, generally any error in form A·%FA+B·%MA+C·%EA5, where A,B,C
are appropriate positive constants can be selected in order to penalize each type with
different weight. The score is then defined as 1−total error. The constants A, B, C were
selected in many different ways in other articles, i.e the constants were selected A =
1, B = 1, C = 0 in [38, 40] , A = 1, B = 1, C = 1 in [41, 48], A � 1, B = 1, C = 0 in [6]
and A = 1, B = 1, C = disruptivity ≈ 0.1 was selected in this work.

The early alarms are less important than the false/missed alarms and often some %EA
can be unavoidable if strong precursors appear too early before the disruptions. On the
other hand, the early alarms can be triggered in rare but important shots i.e high current
discharges and avoid operation continuity. Our selected constant C = disruptivity ≈ 0.1
gives to the %EA the same importance as to the %FA.

6.9.2 Training

Several problems need be solved before the training phase. The first is the number of
the data points. Four campaigns (C19-C23) were chosen for training. It means 2300 non-
disruptive shots and 125 disruptive shots that contain more than 107 learning points.
However, with the available PC, the support vector machines are unusable for more than
105 points and the relevance vector machine is limited by 104 points.

The SVM algorithm is able to use heuristics algorithms and caching [21] to speed-up the
learning. These options significantly increase the learning speed but not enough.

This issue can connected to the problem of the sparse information in the data. It can
be solved if the unimportant points are removed from the training data set. In the first
step, the data must be removed artificially. We have removed majority of data points
that were in 0.1-99.9% quantile range in all dimensions. This step reduced the dataset to
<0.5% of the original size. When the learning machine was trained on this reduced set, the
estimated probability can be used to remove the unimportant data even more precisely
in the next iteration. The training time improvement is shown in Fig 6.8. One important
question is the effect of this pruning on the final score, Fig 6.9. shows that there is no
significant influence. The training is done on a limited number of the nondisruptive shots.

This allowed us to use all the non-disruptive shots for the learning and with all shots
(1246 shots, originally 6108417 learning points, after removing 30619) is the training time
on a modern computer < 10 minutes for the two class SVM. The speed could be further
improved if more data are removed but the prediction time on the validation/testing data
set will not be further neglectable and the overall time improvement is not so significant.

5%MA – percents missed alarms, %FA – percents false alarms, %EA – percents early alarms, see 6.1
for more details
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Figure 6.8: The total score as a dependence
on the removed data percentage. The score
has no significant decline although the num-
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decreased. The method of removing unim-
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text.
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Figure 6.9: Dependence of the training time
on the removed data. The training time is
significantly decreased when less points were
used for the training.

The learning machines have to deal with two issues: the “zero-one” loss function do not
corresponds to the score and the data classes are significantly unbalanced – the disruptive
points are less than 0.01% of the nondisruptive points. Although the previous step signif-
icantly decreases the imbalance, still the nondisruptive outliers can cause that many dis-
ruptive data is missed. Both issues were solved by a selection of an appropriate threshold
(bias) on the learning machine output (the distance from boundary or the “probability“)
and we have selected the best threshold that correctly minimize the total error rate. An
example of the total error dependence on the threshold is in Fig 6.10. The threshold was
searched in a outer cycle and the selection was very fast, it was not used as an additional
cross-validation parameter.

Furthermore, the SVM, RVM and LogReg algorithms allow setting of a different weight for
each point/class and therefore it should be logical to increase the weight of the disruptive
group. The weighting for SVM was performed by choice of different Ci for each group
so that Ci = C · wi, where wi is the weight. However, our tests show, that there is no
significant affect of the weighting on the score when the custom optimal threshold is used.

6.9.3 Loss Function

The most important step is the correct evaluation of the learning machine performance
during the learning and the testing phase. The used learning machine tools assess each
point separately (independent) but this is not valid in the case of time sequences because
one misclassified nondisruptive point means one lost shot but one missed disruptive point
can be ignored. Also, if the shot is already a false alarm, more misclassified windows do not
change the total error. Therefore, the best boundary determined by a learning machine is
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not the same as the best boundary that maximizes the number of correctly predicted shots.
The same arguments are the reason why the ordinary zero-one loss function (ypred 6=ytest)
do not minimize the total disruption prediction error.

Furthermore, the training and validation set for internal cross-validation must be se-
lected from different shots because the sequential data are strongly correlated and the
test/validation data from the same shot leads to the over-fitting. Note that it is necessary
to classify all the nondisruptive data points in the selected shots to get the correct false
error.

However, the best total error can be an imprecise indicator if a low number of the dis-
ruptive shots is used. Therefore, more constrains and penalization functions should be
added. We added the area under Detection error trade-off curve (DET), see Fig 6.11 that
shows how well are the training groups separated. The score, however, still depends on the
number of the disruptions in the validation set, therefore the ”optimal threshold“ is not
selected as to minimize the score but as a mean threshold in the range of the minimal error
within the bounds equal to the inverse number of the disruptions (min(Error)+1/Ndist.
Within this bound, the optimal threshold is selected as the center.

It is also possible to add some condition on maximal FA because as it is shown in Fig
6.10 the optimal value can include wide range of MA/FA. We do not recommend to add
condition on the maximal MA due to low correlation as is explained in Section 6.15 in
detail.

A similar principle to the threshold selection was used in [41] in the second layer. The
standard “threshold searching” was done indirectly via SVM with linear kernel and the op-
timization of number missed/premature shots was done iteratively. However, this solution
has no advantages compared to the direct optimization.

Moreover, the threshold optimization is used even during the cross-validation in this work.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold

E
rr

or
 r

at
e

 

 
False rate
Missed rate
Score

Figure 6.10: An example of the score depen-
dence on the threshold. In this case, the opti-
mal threshold that minimise error is between
0.2 to 0.9. The best threshold was selected in
middle equal to 0.55.
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Figure 6.11: An example of the Detection Er-
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under 5% leads FA >20% for this particular
model.
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Figure 6.12: An example of the cut through the input space with plotted disruptive (white)
and nondisruptive (gray) points and the probability of non-disruptivity. The scaling was
selected to show 95% of the disruptive points. Values in all hidden dimension are equal
to the median value. The optimal border for disruption recognition is rescaled to be 0.5

6.9.4 Artificial Data

One problem of the kernel based learning machines is that the support vectors are selected
from the training data. However, the training data can be very sparse in the interesting
area, in our case of the disruptions, and in the multidimensional space big gaps with
no data can be present in the disruptive area. It can be solved if artificial points are
added to clearly disruptive areas, usually so disruptive that no data were measured in
these regions. It can be for example very strong locked modes or very fast decrease of the
plasma current. These artificial points can be used by the SVM or RVM algorithms as
the support/relevance vectors to get more realistic shape of the probability regions. The
best results were obtained when a limited number of these points were used (hundreds)
but their weight is increased (> 105) otherwise the SVM algorithm uses all these points
as the SV and number of the SV can be significantly increased.

6.9.5 Identification of Disruptive Data

Another interesting issue in the disruption prediction is the selection of the disruptive
data. The problem is that it is simple to identify nondisruptive data i.e. nondisruptive
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shots or data more distant from disruption then 1 s. But there is no simple way to select
the disruptive/precursor data points. In [6] data were selected from the range [-440ms;
-40ms] as disruptive. In [41] 3 windows in ranges [-120,-90],[-90, -60],[-60,-30] . In [40] the
training shots were classified manually by the operator in order to select the precursor
points.

The first possibility is to use the principle described in the previous section and remove
some percentile of the “disruptive points”. Usually, more than 60% of the “disruptive”
points can be removed because there is clearly no precursor. This solution has a big
advantage, because all missed vectors are used as support vectors in SVM, therefore the
number of support vectors of the disruptive group can be significantly decreased.

The second possibility is an iterative way: use importance weighting with the probability
estimated by a learning machine. Therefore, the weight of the “disruptive points” that are
predicted to be in the nondisruptive area with high precision is decreased. The weights
were used to change SVM penalty Ci = C · wi separately for each point. The main
advantage of this method is the smooth transition between clearly disruptive and clearly
nondisruptive. Disadvantage is the higher number of the support vectors for the disruptive
class. However, it is also possible to combine it with the previous method.

It is also possible to increase the weights of the important points instead of the penalization
as was suggested in Section 6.9.4. One way of the possible implementation is performing
the first training without weighting to get an estimation of probability (or distance from
the boundary) and in the second step increase the weight to the most disruptive (according
to probability) data points before -30ms in each disruptive shot. It would be also possible
to increase the weight of the last window before the disruption or use some weighting
depending on the time of the disruption but not always the time window in -30ms must
include the strongest precursor behavior.

6.10 Dimension Selection

The most important issue of the disruption prediction using learning machines is the low
a priory knowledge about the importance of dimensions. This problem is even more sig-
nificant if several preprocessing are to be used (see Section 6.5) and the number of the
possible inputs can be hundreds. It should be logical to select the parameters correspond-
ing to the disruptions limits such as Q95, nGW , βN , . . . However, these parameters do not
have to be optimal because the tokamak operators usually try to avoid the disruptions
limits.

Several approaches were used in other articles. In [6] sizes of NN output derivation for each
variable were used as significance of importance. Therefore, the authors removed all time
derivatives because they were not significant according to this method. Classification And
Regression Trees (CART) were used to identify the most significant dimension in [49].
And finally in [48] the authors used genetic algorithms to find the best set of parameters.

We have used a simple Forward Feature Selection principle described in Section 4.3.1.
Also other presented method (Section 4.3) were also tested, however issues such as a huge
amount of data, nonlinear separability and significant unbalance in the data prevented us
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to get reasonable results. The previously discussed diagnostics (Tab 6.6) were used as the
original set of parameters with three preprocessings listed in the table 6.7.

The locked modes diagnostics was used as the default input because this variable alone is
able to get the success rate more than 60%. Then a signal that the most improves the score
was searched. Because no clear rule for the maximal number of the variables exists, we
have used the “testing probe” from pseudo random variables introduced in Section 4.3.3.
These variables were created from the normal inputs but they have a randomly permuted
time vector) and thus the time before the disruption was random. If no dimension is more
important than the probes then clearly this is the top limit for the the number of inputs.
The top limit estimation is around 10 variables, but it is very imprecise and the limit is
rather overestimated.

An example of the FS output is in the Fig 6.13. The white fields are the already selected
variables; the color of fields is the score that is reached if the variable is added to the inputs
and the left axes is number of the step (number of variables in the model).It should be
noted that some variables significantly decrease the results i.e TAU or POUT/PIN, but
with more variables in the model, the differences are vanishing. Higher number of inputs
usually do not decrease the score. Moreover, if more than 7 variables are chosen, the score
remains almost the same for the further additional variables.

Moreover, the dimension selection order shows the physical background. According to the
FS the physical limits such as BETN, NGW, Q95 are not relevant for the prediction.
The most important are the variables determined from magnetics: LOCK, PPOZ, INDU,
IPLA other variables are significantly less important.

6.11 Filtering of Results

The final output from the learning machine algorithm is a time evolution of the disruption
probability or other output proportional to the probability. Therefore, it is possible to
apply different smoothing on the output to remove outliers. The filters must be applied
so that it cannot transfer the information in time and therefore improve the results. The
filters are basically similar to the method applied in [41] where the linear SVM behaves
as simple weighted moving average over three windows.

Our algorithm was tested with several filters: weighted mean, median. The results are in
the following figures 6.15, 6.16. The results implies that the filters decrease number of
the false alarms but also increase number of the missed alarms. The explanation is that
the filter removes the rapid increase of the disruption probability short time before the
disruption itself. Therefore, the disruptions with a short precursor cannot be triggered
early enough.
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Figure 6.13: The output of the Forward Feature Selection. The selected variables have
white background, the color of each cell corresponds to the score for the given combination
of the parameters, each combination of the parameters was solved 10× and the final score
in this figure is the mean score.
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6.12 Results of Disruption Prediction System

6.12.1 Unintentional Disruptions

The unintentional disruptions are naturally arising disruptions caused either by technical
issues or physical limits. Therefore, this type of the disruptions is the most important for
the prediction. The training and validations sets are described in detail in the Section
6.3. 178 disruptive and 1246 nondisruptive shots were used for the training and internal
validation. The number of the training points is >6000000, however only approximately
30000 points were extracted from this set as was explained in the Section 6.9.2.

Totally, 20 different models were trained, each with a different combination of the train-
ing/validation shots that were selected from the previously mentioned training set. The
trained models had from 500 to 1500 support vectors. Therefore, the number of SV is
equal to 3-5% of the used training points. The computer time needed for one time-slice
prediction was ≈ 10µs.

The optimal threshold was selected to maximize the score on the training dataset with
the boundary condition FA≤5% and the optimal threshold was selected individually for
each of the models.

The results were analyzed over 1252 non-disruptive shots and 75 disruptive shots from 3
campaigns that were similar to the training set - C24, C25, C27b. The final score6 was
88±2% and the detailed results are in the following table.

27% JPS missed
6±2% Missed alarms
2.0±0.8% False alarms
11±3% Early alarms

Table 6.8: The overall results for the unintentional disruptions. Training campaigns: C19–
C22, Testing campaigns: C24,C25,C27b

The SVM predictor score (92±2) was significantly more successful than the JPS (JET
Protection System) score (<73%). The number of the missed alarms and false alarms are
connected: their sum is often near around 10%.

It should be noted that the premature alarms occurs relatively more often than the false
alarms. It can be explained either by long precursor phase, especially locked modes can
appear long time before the disruption, or the shot evolution gets near to the disruptive
limits but the disruptions itself appears later.

The confusion matrix in the following table shows how many points were misfitted in each
of the testing classes. It is only an example for the first model. Non-disruptive data are
the class 1 and the class 2 is disruptive. The matrix rows are normalized on number of
the member in each of the classes:

6 Score = (FA+PA)/N_shots*100+ %MA
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1 2
1 99.97% 0.03%
2 36.37% 63.63%

Note that from the previous table it follows that the MA score of 6% (Tab 6.8) was
achieved although 36% of the disruptive points were not recognized and the FA 2.0%
corresponds to 0.03% of the incorrectly recognized non-disruptive data. It was expected
that the final score is not proportional to the “zero-one” error.

Important information is visible from the Detection error tradeoff (DET) dependence in
Fig 6.17. The right choice of the threshold can improve the results but some disruptions
are almost impossible to identify and the false rate must be higher than 95% to recognize
all the disruptions (for current input data set).

In Fig 6.18 the evolution of the recognized disruptions by the SVM (red) and by the JET
protection system (black) is shown. The SVM classifier outperforms the JPS from time
-0.7 s before the disruption and also the number of premature alarm is very low. It should
be noted that some patterns in the curve are similar and therefore the classifiers observe
similar phenomena in the plasma.

And finally, the most important graph is the evolution of the score over all campaigns
that is shown in Fig 6.19. The score is usually above 85% and missed are below 5%.
The campaigns C19–C22 were used for the training. The enormous number of the false
alarms in the campaign C23 could be caused by the error field coils that were used in this
campaign more often.
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Figure 6.18: The time evolution of the
detected unintentional disruptions for SVM
and JPS (JET prediction system) from the
campaigns C24,C25,C27b
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Figure 6.19: The total score over all campaigns only for the unintentional disruptions.
Campaigns C19–C22 were used for training. Length of line corresponds to the number of
shots in each campaign.
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6.12.2 Intentional Disruption

Intentional disruptions are artificially caused by operators at the end of some shots. The
plasma is destabilized by a gas puff and it causes disruption. The possibility of the training
based on the intentional disruptions only is in particular important because it is expected
that the ITER should withstand several hundreds of this disruptions [35].

The intentional disruptions are always caused under conditions that are artificially se-
lected. Therefore no high current intentional disruptions are in JET database in cam-
paigns C15-C27. Problem of the intentional disruptions is that the disruption precursors
appear very shortly before the disruptions. It is the reason why the disruptive points set is
very limited in spite of a high number of the intentional disruptions that were produced.
Another issue can be similarity of the intentional disruptions that causes over-fitting if
the intentional disruptions are used for the training. Finally, the disruptive region of the
intentional and unintentional disruptions are not the same as was shown in the Fig 6.3.

We have tested two options, how to train the learning machines with the unintentional
and intentional learning set.

1. Training with unintentional, testing with intentional

2. Training with intentional, testing with unintentional

In the first step the learning machine was trained with the unintentional disruptions
and tested with intentional disruptions. Therefore, the trained models from the previous
section were used for prediction of the intentional disruptions. The intentional disruptions
for testing were used from campaigns C19–C22, C24, C25, C27b. The results are in the
following table:

94% JPS missed
45±3% Missed alarms
2±1% False alarms
0.1±0.1% Early alarms

Table 6.9: The final score for the intentional disruptions from the campaigns C19–C22,
C24, C25, C27b. Note that the percentage of the missed alarms is significantly higher
than for the MA for the unintentional disruptions (Tab. 6.8)

The SVM results are good compared to the JPS that missed 94% disruptions. It implies
that the intentional disruptions cause less locked modes than the unintentional and the
precursor phase is very short as can be seen in the Fig. 6.20 that shows the detection time
evolution. The MA of the SVM rate is also very high but it is mainly caused by the short
precursor time. This claim is confirmed in the Section 6.16.

It is interesting that some intentional disruptions were detected more than 100ms before
disruption although the precursor phase is shorter. This could be caused because of the
detection of changes in the plasma current and Q95 leading to disruption, i.e the Q95 was
decreased very near to 2 just before some of the intentional disruptions.
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Figure 6.20: The time evolution of the triggered disruptions for the intentional testing set.
Majority of the disruptions were detected around 50ms before the disruption.

In the second step, all unintentional disruptions were removed from the training and
validation set and only the intentional disruptions were used for learning from campaign
C19–C22, C24-C25, C27b. Nondisruptive shots were selected only from the campaigns
C19–C22. The main problem is that the intentional disruptions are usually quite similar
to each other and therefore the SVM can reach severe over-fitting although the training
and validation set belongs to different campaigns. The score for the validation set can be
more than 90% although prediction capability for the unintentional disruptions is very
low.

Unintentional disruptions from campaigns C19–C22,C24,C25,C27b were used for testing.
The results are in Tab 6.10.

27% JPS missed
26±16% Missed alarms
4.6±0.5% False alarms
10±5% Early alarms

Table 6.10: The table of the results for the unintentional disruptions if the algo-
rithm is trained on the intentional disruptions from all similar campaigns (C19–C22,
C24,C25,C27b)

The number of the missed alarms is very high, hence the final score is very low (70±20%).
The final score is on average comparable with the results of the cross-tokamak learning
[9] where they reached score 68%. The Fig. 6.21 shows that the mean prediction time
is much worse compared to the previous section, in particular the growth rate is slower
compared to the Fig. 6.18.

The Fig 6.21 shows that some model could reach good results but the models are not
reliable and without unintentional disruptions it is not possible to determine the best
model. The final score is on average similar to the JPS.
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Figure 6.21: Time evolution of triggered disruptions for unintentional testing set and
intentional training set. The prediction time and score are worse compared to the unin-
tentional training set (see Fig. 6.18). Moreover, the reliability of the prediction is very
low.

6.12.3 High-Low Current

The next topic in this work is prediction of the high current disruptions (above 2MA)
based on the low current shots. This task is especially important for ITER where the high
current disruptions could cause severe damage of plasma facing components or even of
the tokamak vessel. Moreover, the ITER disruption database will be significantly limited
at the beginning and it will contain only the low current shots and disruptions. The
threshold for low/high current disruptions on JET was selected at 2 MA at the time
of the disruption. The training set contained only the low current shots (disruptive and
nondisruptive) and the testing dataset contained only the high current disruptions and
all non-disruptive shots.

Training data Testing data
Low current disr. High current disr.

Unknown 23 24
ASD 9 5
GWL 4 1
IMC 21 1
ITB 5 2
NC 24 7
NTM 7 7
Total 93 47

Table 6.11: Types of the high current disruptions used for the training

The final score is quite low (80±4%) mainly because of the high number of the missed
alarms that reached 16%. The JPS missed alarms score was only 14%. However, the early
alarms of JPS are 27% and therefore it rather triggers all the high current shots.

On the contrary, the score for the HC shots that were trained with all disruptions (Tab.
6.13 and the score for all types of shots and disruptions (Tab 6.8 are within errors similar.
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14% JPS missed
29% JPS early
16±4% Missed alarms
4.1±0.4% False alarms
9±2% Early alarms

Table 6.12: Final results for low-current (LC) disruptive / nondisruptive shots used for
training, and high current (HC) disruptive and all nondisruptive shots used for testing

8±2% Missed alarms
3.7±0.7% False alarms
6±2% Early alarms

Table 6.13: Score for all disruptive shots used for train, HC disruptions for test

The evolution of the detected ratio for SVM trained with all disruptions and only the
unintentional disruptions are in the Fig 6.22.
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Figure 6.22: The time evolution of the triggered alarms for the SVM trained with all type
of the shots (SVM All) and for the SVM trained only with the low current shots (SVM
LC). The testing set contained only the HC disruptions and all types of the nondisruptive
shots.

The SVM detection is only slightly better than the JPS (JET prediction system). However
the JPS has still much more early alarms and possibly also false alarms.

6.13 One Class SVM

In the previous sections possible ways how to predict disruptions on limited datasets were
investigated. Another interesting possibility is to remove all the disruptive data from the
training set and use only the non-disruptive and One Class SVM [22] for learning. An
introduction to the One Class SVM is in the Section 3.2.3. Basically, it is a modified
version of the ν-SVM algorithm and it can be used to detect outliers and therefore the
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26.0% JPS system missed
7.0% JPS system early
12±4% Early alarms
6±2% Missed alarms
4.3±0.5% False alarms

Table 6.14: Total score of One Class SVM applied on testing campaigns C24,C25,C27b

disruptive data. However, there is still need to identify three learning constants: kernel
size, ratio of outliers (ν) and threshold. The kernel size can be a priory selected σ=1
because of the right normalization as it is shown in Fig 6.23. and the dependence on ν is
also weak. The optimal value is ν = 0.1 but value near to the optimal is from 10−3 to 0.5.
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Figure 6.23: An example of the cross-
validation error for the One Class SVM, the
error is equal to MA+FA+AUC
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Figure 6.24: The time evolution of the score
for the One Class SVM algorithm tested on
campaigns C24,C25,C27b.

The only problem is the selection of the best threshold. There are two possibilities: use
some disruptive data for testing or define the maximal acceptable False Rate and select
the threshold to satisfy this condition. DET (Detection Error Tradeoff) curve for the One
Class SVM is shown in the Fig 6.24 and if the maximal acceptable false rate would be
chosen 5% then the missed rate would be 6%.

The results are very good. The final score is 89±2%. This is even slightly better than the
results of the two class SVM 12±2% presented in the Section 6.12.1. On the other hand,
the main disadvantage was a huge number of the support vectors that was from 10000
to 20000 whereas the two class SVM usually has around 1000. Therefore, the prediction
time for the one time slice was approximately 0.1ms.

78



C15aC15bC16 C1617 C18 C19 C20 C21 C22 C23C24 C25 C26 C27a C27b
0

10

20

30

40

50

60

70

80

90

100

Campaign

E
rr

or
 [

%
]

 

 

Score
Missed
False
JPS missed

Figure 6.25: Total score over all used campaigns of One Class SVM. Campaigns C19–
C22 were used for training. Length of line corresponds to the number of shots in each
campaign.
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Figure 6.26: An example of the cut through
the plasma parameters feature space with the
two class SVM prediction on background.
The background color corresponds to the
probability estiamtion.
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Figure 6.27: An example of the cut through
the plasma parameters feature space with
one-class SVM prediction on the background.
LibSVM is not capable of finding probabil-
ity estimation, therefore the output was only
rescaled similarly to the two class example.

The total final score over the testing and training dimensions is reported in Fig 6.25.
However, the score over all the campaigns is very similar to the two class SVM, see Fig.
6.19. It can be said that the score do not significantly dependents on the learning machine
type and the main dependence is on the testing data and disruptions types that are in
each campaign.

Moreover, the One class SVM can be used for novelty detection. If the model from the
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26.0% JPS system missed
7.0% JPS system early
4±1% Early alarms
7±1% Missed alarms
3±1% False alarms

Table 6.15: Total score of RVM applied on testing campaigns C24,C25,C27b

training campaigns is used for prediction the number of missed alarms should correspond
to the similarity of campaigns. The second possibility is estimation similarity between
campaigns from the values of threshold.

6.14 Relevance Vector Machine (RVM)

Furthermore, we have tested a Bayesian classification algorithm relevance vector machine
introduced in Section 3.3. The main advantage of the RVM model compared to the SVM
is lower number of support (relevance) vectors and ARD (automatic relevance determi-
nation). The RVM models are much less complex, therefore the models should avoid
overfitting. Moreover, the prediction is significantly faster compared to the SVM because
number of vectors used for prediction is 100–1000 times lower.

The success rate reached 90±2%. This is a very good results, although the number of
relevance vectors was less than 50 compared to the SVM models with more than 1000
support vectors. The next reason, why it is an unexpected results, is that the relevance
vector machine prefers to fit a majority of points and ignores the points on the border
on contrary to SVM that uses mainly the information from the points around boundary.
On the other hand, the training of the RVM is much more demanding on computational
resources mainly the memory use and without significant improvements of the SparseBayes
[16] algorithm it would be impossible to generate these results.

6.15 Learning on Small Dataset

In particular, a relevant problem for ITER is a small training database of the disruptive
shots at the beginning. Therefore, it necessary to study the behavior of the prediction
on small datasets to estimate the usability of the learning machines. For this study, the
algorithm was learned on datasets containing from 10 to 100 disruptive shots and 20×
more nondisruptive shots because the requested disruptivity should be under 5% for ITER.
The shots were randomly selected from the training campaigns C19–C22 and tested on
similar campaigns C24,C25,C27b. The results are shown in Fig 6.28.
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Figure 6.29: False alarms from all the tested
models on the training and testing datasets.
The correlation is very high Corr=0.9
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Figure 6.30: Missed alarms from all the
tested models on the training and testing
datasets. Size of the points correspond to
number of models with the score. The cor-
relation is very low Corr=0.2

There are several important things to note. Firstly, the total error is decreasing very
slowly and the lower limit of the score stays almost constant, moreover the false alarms
rate is declining also very slowly. Finally, the main effect of the increase number of points
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is decreased deviation.

From the results follows that it is possible to find a good model even with a low number
of shots but only under assumption that the shots were randomly selected from the full
database. If the shots and disruptions in the training database would be very similar (data
would be more correlated) the prediction capability of the models should be expected to
be lower.

Nevertheless, some ways how to slightly improve the score exist:

• add artificial data as was proposed in section 6.9.4.

• use iterative solution to remove outliers

An associated problem to the learning on small datasets is the ability to predict to estimate
the score on a new campaigns from the training dataset. It is interesting to study the
correlation between results on the training campaigns and on the testing campaigns. This
study was performed using 400 models generated on testing campaigns C19–C22 and
tested on campaigns C24,C25,C27b. Each model was generated as the most optimal for
a random subset of shots from the training campaigns that contained approximately 500
shots nondisruptive and all disruptive shots. Consequently, the model was tested on all
shots from the training and all shots from the testing campaigns. The results are shown
in Fig. 6.29, 6.30.

The correlation between the false alarms is 0.9 (Fig. 6.29), therefore the results on the
training and testing campaigns correspond very well if the campaigns are similar. On the
contrary, correlation between the missed alarms (Fig. 6.30) is low only 0.2. It implies that
the extrapolation of the MA score from the testing campaigns to new campaigns is not
reliable. Nevertheless, this was not unexpected result because the missed alarms score
depends mainly on the types of the disruptions (see Section 6.16) in each campaigns and
the false alarms depends on the precise and complete description of the nondisruptive
feature space.

6.16 Properties of Disruptions

The shots in the used disruption database were manually classified into several groups
[45]. This allowed as to study the properties of each disruption type separately. All the
classified types of the disruptions and their representation are in the Tab. 6.16.

Firstly, we have focused on the detection time evolution and the missed/falsed alarm
score for each of the disruption type. All unintentional disruptions from campaigns C15
to C27b were used in order to achieve sufficient statistical reliability, however some types
are still very rare. The number of the used disruptions are in the Tab 6.16. 32% percent
of the unintentional disruptions were not classified. These non-classified disruptions are
on average detected later and missed more often.

The evolution of the disruptions that were recognized by our SVM algorithm trained
on the unintentional dataset are in Fig 6.31 and the same for the JPS is plotted in
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Type #
Too little auxiliary power ASD 51
Greenwald limit GWL 10
Impurity control problem IMC 77
Too fast a current ramp-up IP 15
Too strong internal transport barrier ITB 13
Too low density (and low q) LON 21
Density control problem NC 74
Neo-classical tearing mode NTM 35
Nonclassified ??? 142
Intentional INT 234

Table 6.16: Types of disruptions in used database, campaigns C15-C27

the Fig 6.32. The simplest detectable types are LON (Too low density and low q) and
NC (Density control problem). These disruption were often detected long time before
the disruption and often these disruptions were triggered as an early alarm. On the other
hand, the worst predictable types are intentional disruptions and ITB (Too strong internal
transport barrier) although this type is rare in the used campaigns C15-C27. It should be
noted that that the time evolution of both types is very similar for both systems SVM
and JPS.
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Figure 6.31: The time evolution of the detected disruptions for each of the classified dis-
ruptive type using SVM. The legend also shows number of correctly predicted disruption
from all disruptions with given type.

The score of the SVM is almost in all cases better than the JPS (JET prediction system).
It is even more visible in Fig 6.33, where the curves from Fig 6.31, 6.32 are subtracted.
The only type that was detected by JPS significantly better are NTMs. However, it not
clear advantage because it probably caused many false alarms. On the other hand, SVM
was significanly better in prediction of IMC (Impurity control problem) that was detected
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Figure 6.32: Time evolution of the detected disruptions for each of the classified disruptive
type using JPS. The legend also shows number of correctly predicted disruption from all
disruptions with given type.

long time before disruption.

Further, the SVM detection ratio grow faster, compared to the JPS from the time 50ms
before the disruption. It seems that the JPS rate exceeds the SVM in last 20ms, however
it probably caused by missing signals from some of the used inputs short time before the
disruption. This prevented the SVM algorithm performing the prediction, Moreover, note
that the time resolution of majority inputs saved in the JET database is usually lower
than 10ms (see 6.6).
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Figure 6.33: JPS subtracted from SVM detection rate evolution. Positive result mean that
the SVM model is better.

The next investigated property was time dependence of each disruptive type on the di-
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agnostic inputs. We have trained the models with all inputs and than one dimension was
replaced by its median to remove the influence. It would be also possible to retrain the
models with one dimension missing, however it can introduce unexpected effects to the
models.

Examples of the resulting probability evolution after the subtraction of the most impor-
tant dimensions are shown in the Figs 6.34, 6.35. It is visible that the locked modes are
very important as an early precursor almost for all disruption types (Fig 6.34), the only
exception are the intentional disruptions that were not affected. On the other hand, the
density control problem (NC) disruptions significantly depends on the locked modes.

The second example (Fig 6.35) are variations in vertical position. Compared to the locked
modes, the intentional disruptions are very sensitive and also the unclassified disrup-
tions (???). Other examples and also the less frequent disruptions type are not shown
because the results were less credible. Moreover, the locked modes and plasma position
are “trigger” inputs. Other dimension serves mainly as a variables determining sensitivity
(threshold) of these “triggers” but without the triggers are the dimensions useless.
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Figure 6.34: The prediction ratio evolution
when the influence of locked modes was sub-
tracted.
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Figure 6.35: The prediction ratio evolution
when the when the influence of variation of
the plasma position was subtracted.
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Summary

The main aim of this work was selection of a suitable model for plasma disruption pre-
diction in order to prevent possible damage of plasma facing components in tokamaks.
This will be mainly an issue for the future tokamak where a disruption can cause sever
damage. However, if the disruption is predicted early enough, it is possible to use different
methods to avoid the fail or at least mitigate the damage. The ideal goal is prediction of
95% disruptions mitigate the heat load on 1/10 of the original value.

This work was focused on disruption prediction on the currently largest tokamak JET.
Discharges from this tokamak over three years of operation were used for training and
testing of the models. Although, the models were not directly developed for the real-
time prediction, only the learning machines algorithms with a possibility of the real-time
prediction and also the real-time accessible plasma parameters were used. The following
kernel based classification algorithms were tested: Support vector machine (one/two class),
Relevance vector machine. Other widely used kernel based classification algorithms such
as the Logistic regression are not suitable for the real-time prediction because of slow
prediction. The real-time accessible plasma parameters were preferred. Furthermore, some
dimensionless plasma parameters (see Section 6.1) were added in order to investigate a
possibility of the cross-tokamak learning, although the cross-tokamak learning itself was
out of this work.

Many possible problems caused by the data preprocessing and results post-processing
were investigated and possible solutions were proposed.

Firstly, in Section 6.10 we have proved that a careful feature selection reduces the com-
plexity of the models and can improve the results. The most important variables are
locked modes, plasma position derivative, internal inductance, plasma current derivative.
Moreover, in the Section 6.10 it is also shown that the parameters connected with the
disruptive limits (Section 6.2) are not the essential for the disruption prediction. This
feature selection used the largest training/testing datasets ever used and several differ-
ent preprocessings. However, in the next step it is neccessary to test even more different
inputs as a possible precursors.

Furthermore, different choices of the input dataset were tested in order to simulate com-
plications that can appear during building a sufficient training database for the ITER
tokamak. Firstly, a database of unintended disruptions (not caused by human intention)
were used for training and testing. The total success rate is 92±2% where the total error
is defined as 100 - missed alarm [%] + false alarms [%] + early alarm [%] ×disruptivity
(see Section 6.9.1). The score was obtained for testing campaigns C24,C25,C27b.
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In the next step, models trained only with the intentional disruptions were tested. The
intentional disruptions are caused by an intended human action at the end of some dis-
charges. The possibility of the training on the intentional disruptions is in particular
important because it is expected that the ITER should withstand several hundreds of
this disruptions compared to only several tens of unintentional. Unfortunately, our re-
sults indicate that the intentional disruptions are very different from the unintentional
disruptions (Section 6.12.2). Therefore, results of the models trained on the intentional
disruptions and tested in the unintentional disruptions are quite poor. The resulting suc-
cess rate is only 70±20% and the stability of the prediction is very low.

An extrapolation from the low current shots and disruptions to the high plasma current
was investigated. Again, the ITER discharges will be only operations with low-current at
the beginning of operation. This option is more optimistic compared to the previous one.
The score in case of the low current shots used to train and the high current to test is
80±4%. However, this result is still far from the optimal results using the full dataset of
the unintentional disruptions.

Besides testing different types of shots/disruptions, learning on a database with a vari-
able number of discharges was investigated (see Section 6.15). The conclusion is that the
drawback of the small database is the creation of a good model but the main issue is
the selection between many similar and indistinguishable (with a small testing database)
models. Moreover, we have shown that the correlation between missed alarm on training
and testing dataset is very low and the reliability of the success rate prediction for new
campaigns from the score of the previous ones. This is a serious issue that has never been
investigated before.

The results indicate that the effect of the the learning machine selection is only minor
compared to the influence of the different disruption types in the new campaigns. In other
words, it is not possible to compare success rates of different learning algorithms tested
on different campaigns or even different tokamaks. In this work, we have shown that the
input data are the main factor determining the score and not the used learning algorithm.
A better selection of variables and model can improve the success rate, however limits on
the minimal number of the missed alarms exist because some disruptions has no or too
short precursor phase. This limits cannot be exceeded without a significant increase of
the false alarms or without new input diagnostics.

Finally, it is important not to use the learning machine as a black box but carefully inves-
tigate every aspect of the training process in order to try to understand plasma properties
that allow the disruption prediction. A score obtained without a careful evaluation of data,
estimation of variation of the results and other possible issues can be unreliable as shown
in Sections 6.6, 6.12.2 and 6.15. Moreover, the variation (precision) of the estimated score
of disruption prediction is always limited by a low number of the tested disruptions as
it is shown in Section 6.9.3, although the number of tested points is huge. Furthermore,
our estimation of the uncertainty of the score can include only variation caused by the
training set and not the bias caused by the testing set. This is the reason why score for
all shots over the three years of JET operation is shown for the important cases (see
Figs 6.19, 6.25). On the other hand, many campaigns were significantly different from the
training ones and major changes in diagnostics were made over the period [41].
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In my opinion, any significant improvement of the tested results cannot be reached without
introduction of some new important diagnostics that are not currently real-time accessible
such as plasma pressure profile, ion temperature (profile), plasma rotation profile, plasma
emissivity profile, impurity content, . . . Unfortunately, it was not possible to test these
“non-real-time” inputs, because these inputs are not accessible for many shots/disruptions
at the JET tokamak. Therefore, inclusion of these parameters to the used database would
significantly limit the number of the accessible shots/disruptions.

On the other hand, many real-time algorithms for plasma equilibrium reconstruction are
being developed [50, 51] and plasma emissivity profile [52] that should allow to obtain the
pressure profile and a more precise plasma current profile with <1ms delay. Furthermore,
an improved NBI (neutral beam injection) was recently installed at ASDEX tokamak
that allows to measure ion temperature profile, safety factor profile7 and plasma rotation
in real-time. It will be necessary to wait a few years until a sufficient database of shots
with the new diagnostics will be created, however the first results can be expected in
2012-2013. Finally, the newest results from the JET tokamak shows that installation of a
new Beryllium wall slowed the evolution of disruptions although no comprehensive study
that would show effect on the “difficult disruptions” has been published yet and the tested
database was rather small.

In future, the development should focus on the new diagnostics and mainly on study of
the “difficult disruptions”. Hopefully, in near future the JET database will be able to save
the important variables in more than 10ms time resolution for all shots/disruptions, not
only on request. This could allow to use more advanced preprocessing such as wavelets
optimized for disruptions prediction. Furthermore, it is necessary to study the cross-
tokamak prediction in order to estimate the best models for the future tokamaks (ITER,
DEMO) and perform computer simulations of the conditions in tokamak to allow the
necessary adjustments of the prediction models before the tokamak ITER is finished.
Virtual diagnostics simulators are already being developed [53, 54] however the disruptions
are “outliers” compared to the ordinary shots and it will be a great challenge to simulate
their signals.

In summary, nearly 94% disruptions in tokamak JET can be now predicted early enough
in order to mitigate the damage. It is very near to the value 95% that was requested for
the ITER tokamak [37]. However, the expected results for the ITER are worse, therefore
disruptions need further research to achieve the prediction rate close to 95% with a very
small training database.

7measurement of magnetic field helicity
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