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School year: 2007/2008



I declare that I worked on my bachelor‘s degree project alone and used source materials
mentioned on the enclosed list only.
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jako plazma. V této práci jsou poč́ıtány výtěžky jaderných reakćı D−D, D−T a D−He3,
které jsou źıskány jako numerické řešeńı systému obyčejných diferenciálńıch rovnic v pro-
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Title: Evaluation of Nuclear Processes in High-parameter Plasmas

Author: Libor Novák
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Chapter 1

Energy sources

1.1 World Energy Situation

Today‘s total amount of energy consumed in the whole world is around 12TWyr [2].
Predictions say that energy consumption should increase and in the next 20-30 years could
reach 16− 20TWyr [2]. There are two main reasons: 1. By 2025 the world population is
predicted to reach 8 billion [1]. 2. Average power consumption per capita will rise from
2.1kW to about 3kW [2].

At present, about 90% of the energy is produced by burning fossil fuels [2], but this
could impose several huge problems in the next years:

• decrease of the fossil fuels may lead to political instabilities in the world

• fossil resources are important for chemical and pharmaceutical industry as base
material

• substances released during the burning can change our environment

It means that human society should restrict using the fossil resources as a fuel, and find
alternative energy sources. Renewable sources such as biogas, biomass, water, solar or
wind power are not available everywhere and have only a limited potential, e.g. 1GW
power plant could be replaced by about 100km2 photovoltaic panels or by 30000km2of
wood [2].

Present nuclear power plants use fission of the uranium or plutonium as the energy
source. This plants produce highly radioactive waste, however there are no problems with
its disposal. Fission energy is the most ecological energy source, which human society can
now use on a large scale. However the world uranium reserves can suffice for only several
hundred years [4] at the present ratio of contribution to primary energy production, which
makes only 6%[2]. Still, it is the best solution of energy problems for the next decades.
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1.2 Fusion Energy

At this time, we know only one energy source, which could fully substitute the fossil
fuels energy for manny years to the future. If we could succeed to create a workable
thermonuclear reactor, we would have an energy source for thousands of years, because
we do not need uranium - as a fuel. For the first generation of these reactors instead,
deuterium and tritium could be used. The former can be obtained from water, the latter
can be created from lithium, which occurs naturally. There are large reserves of this
element, for example in abandoned uranium mines in the Czech republic. This reactor
would require only a small quantity of fuel to work, so considering the water and lithium
reserves on our planet, it would be practically inexhaustible source of energy[3]. Moreover,
it holds the promise of being a safe and clean energy production method.

For the first time on our planet, fusion energy was released by explosion of a bomb as
well as fission energy. More than 40 years after the hydrogen bomb we still do not have
available fusion power plants, while the first fission power plants were developed within
just severel years after the fission bomb. There are many reasons for this, but the main
one is, that it is more complicated to build fusion reactor than the fission one. Fission is
started by slow neutrons, which are electrically neutral, so they can brake the positively
charged heavy nuclei. But fusion is different.

Against the fission reactions there are reactions between positively charged light nuclei,
so in order to fuse, they must overcome the repulsive Coulomb force. We know only one
way, how to do this. We have to heat the fuel to very high temperatures. The reaction
between deuterium and tritium requires over 100 million centigrade degrees (it responds
to the kinetic energy approximately 10keV )! Moreover there are no material vessels to
confine such a matter. Fortunately, the fact that under this conditions particles are
electrically charged (atoms divide into electrons and nuclei) makes it possible to confine
them by electric or magnetic fields.

The research of nuclear fusion is now at a stage, that scientists have a fundamental
understanding of its function. But it will be one of the most difficult technical problems
ever solved, to build economically feasible thermonuclear reactor. Presently, the most
developed experimental fusion facility which would be able to produce electrical energy
calls tokamak, which works on the principle of magnetic confinement. In 2007 began
building of the biggest tokamak in the world, called ITER. It is an international project
and will be built at Cadarache in France. Its purpose is to show, if tokamaks could be used
as power plants. The ITER‘s construction is expected to cost around 5 billion USD[5].
It is a huge amount, but compared to building of other scientific or energy projects as
LHC (2,5 billion USD)[6], ISS (100 billion USD!)[7] or fission power station in Temelin (5
billion USD)[8] it is not so much money.
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Chapter 2

Fusion Reactions

2.1 Binding Energy Release

Nuclear energy can be released in two ways. The binding energy per nucleon of the
different elements has a maximum for iron, as shown in Figure 2.1. It means that we can
obtain energy either by fusion of light elements together or by fission of heavy nuclei. In
both cases the total mass of the final products is smaller than that of the reacting atoms.
The excess mass ∆m is converted according to Einstein‘s equation into kinetic energy of
reaction products and is obtained experimentally.

E = ∆mc2 (2.1)

Figure 2.1: Average binding energy per nucleon
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2.2 Reactions

In this text, we will consider these 4 reactions[13]:

D + T → α(14.1MeV ) + n(3.5MeV ) (2.2)

D + He3 → α(3.6MeV ) + p(14.7MeV ) (2.3)

D + D → He3(0.82MeV ) + n(2.45MeV ) (2.4)

D + D → T (1.01MeV ) + p(3.02MeV ) (2.5)

The reaction (2.2) between hydrogen isotopes deuterium and tritium is most impor-
tant for controlled fusion research, because of its huge cross section, which reaches its
maximum at the relatively modest energy of 64keV (see Fig. 3.3)[12]. Due to Z = 1, this
reaction has a relatively small value of ǫG (see section 3.2) and hence a relatively large
tunnel penetrability. Energy released during this reaction (17.6MeV ) is quite large, e.g.
compared to the D − D reactions. Disadvantage of this reaction are the fast neutrons,
which carry most of the energy released and can not be controlled by electromagnetic
field and the tritium, which is radioactive and almost does not appear in nature. It will
be probably generated during the reaction from lithium.

The reactions (2.4) and (2.5) between 2 deuterium particles are nearly equiprobable[12]
and have much smaller cross section than the D−T reaction. In the 10− 100keV energy
interval, the cross sections for each of them are about 100 times smaller than for DT.
Tritium, which is generated in the reaction (2.5) and helium from the reaction (2.4) can
both react with deuterium. Temporal progress of these situations is discussed in chapter
4.

The reaction (2.3) between deuterium and helium can be partially classified as ad-
vanced fuel reaction, because it produces only charged particles. However we have to
consider also reactions between deuterium particles, which can produce neutrons. For
this reaction isotope He3 is needed, but it does not occur naturaly. Energy yield from
this reaction is comparable to the D−T reaction. Though the cross section is bigger than
for the D − D, it is still much smaller opposite to the D − T (see Fig. 3.3).
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Chapter 3

Reaction Yield

3.1 Distribution Function

Let f(x1, x2, x3, v1, v2, v3, t) = f(~x,~v, t) be the distribution function. It means that number
of particles in a volume V can be found by integrating f over all particles velocities and
the volume[11]:

N(t) =

∞
∫

−∞

d~v
∫

V

d~xf(~x,~v, t) (3.1)

The particle density is an integral of f over all velocities[11]:

n(~x, t) =

∞
∫

−∞

d~vf(~x,~v, t) (3.2)

The average value of any function F (s) is defined as[11]:

< F (s) >=

∫

F (s)f(s) ds
∫

f(s) ds
(3.3)

At equilibrium, particles have a Maxwellian distribution function[11]:

fM(~x,~v, t) = n(~x, t)
(

m

2πkT

)3/2

exp

(

−mv2

2kT

)

(3.4)

A plasma confined by magnetic fields is never in a state of thermodynamic equilibrium[10].
However we can think of the Maxwellian as the first approximation of the real distribution.

3.2 Coulomb Barrier

Nuclear fusion probability is limited by the repulsive Coulomb barrier. The Coulomb
potential which the particles have to overcome in order to fuse is given by[12]:

V (r) =
Z1Z2e

2

r
(3.5)
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where Z1 and Z2 are the atomic numbers, e the electron charge and r the distance between
the nuclei. This relation can be applied at distances greater than:

rn ≈ 1.44 × 10−13(A
1/3

1 + A
1/3

2 )cm (3.6)

where A1 and A2 are the mass numbers of the interacting nuclei. At smaller distances
the Coulomb force is exceeded by the attractive nuclear force. At present, nobody knows
the exact form of the nuclear potential, but experimentally it was discovered, that the
potential well of depth U0 is about 30 − 40MeV .

From equations (3.5) and (3.6) we can evaluate the height of the Coulomb barrier Vc:

Vb ≈ V (rn) =
Z1Z2

A
1/3

1 + A
1/3

2

MeV (3.7)

It means that nuclei would have to gain a huge kinetic energy in order to get over this
barrier. Two particles with relative energy ǫ < Vb can only approach each other up to the
classical turning point:

rtp =
Z1Z2e

2

ǫ
MeV (3.8)

Fortunatelly, the quantum mechanics allows for tunnelling a potential barrier of finite
extension, thus making fusion reactions between nuclei with energy smaller than the
height of the barrier possible.

Figure 3.1: Potential energy as a function of the distance between 2 charged nuclei

A widely used parametrization of fusion reaction cross-section is:
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σ ≈ σgeom × T × R, (3.9)

where σgeom is a geometrical cross-section, T is the barrier transparency, and R is
the probability that nuclei come into contact fuse. The σgeom can be expressed by the
de-Broglie wavelength λ:

σgeom ≈ λ2 =

(

h̄

mrv

)2

∝ 1

ǫ
, (3.10)

where h̄ is the reduced Planck constant, v the relative velocity of the reacting nuclei,
mr their reduced mass and ǫ center-of-mass energy.

v = |~v1 − ~v2| (3.11)

mr =
m1m2

m1 + m2

(3.12)

ǫ =
1

2
mrv

2 (3.13)

The barrier transparency T shall be written as:

T ≈ TG = exp(−√
ǫG/ǫ) (3.14)

TG is known as Gamow factor and ǫG is the Gamow energy.

ǫG = (παfZ1Z2)
22mrc

2 = 986.1Z2

1Z
2

2ArkeV (3.15)

αf = e2/h̄c = 1/137.04 (3.16)

Ar = mr/mp (3.17)

where αf is the fine-structure constant commonly used in quantum mechanics.

Equation (3.14) holds as far as ǫ ≪ ǫG and implies that the chance of tunneling
decreases rapidly with the atomic number and mass, thus providing a first simple expla-
nation for the fact that fusion reactions of interest for energy production on earth only
involve the lightest nuclei.

The cross section is often expressed as:

σ(ǫ) =
S(ǫ)

ǫ
exp(−√

ǫG/ǫ), (3.18)

where the function S(ǫ) is called the astrophysical S factor, which for many important
reactions is a slightly varying function of the energy.
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3.3 Cross Section

Cross section σ is defined to be a proportionality constant between a fractional attenuation
of particle beam in distance ds and target particles per unit area in distance ds. This
definition is symmetric in the two types of particles, since the relative velocity is the
same viewed from either particle. If we would direct a monoenergetic particle beam on
a stationary target, the number of collisions among the particles on a small distance ds
will be proportional to the uncollided beam particles density n1 and to the target particle
density n2[9]:

dn1

ds
= −σn1n2 (3.19)

where the minus sign indicates that the density of uncollided beam particles is decreasing
as a result of collisions. Thence it follows:

σ = −dn1

n1

1

n2ds
(3.20)

Cross section is obtained experimentally. It can be established by a theory, which uses
a tunnel efect to evaluate σ like in[12], but this theory only transfers the problem to the
astrophysical S factor, which for many important reactions is a weakly varying function
of the energy and must be obtained experimentally, too.

For reactions (2.2)-(2.4), the total cross section in barns (1barn = 10−28m2) as a
function of E, the energy in keV of the incident particle, assuming the target ion at rest,
can be fitted by[13]:

σ(E) =
A5 + A2[(A4 − A3E)2 + 1]−1

E[exp(A1E−1/2) − 1]
(3.21)

D − T D − He3 D − D
A1 45.95 89.27 47.88
A2 50200 25900 482
A3 1.368 × 10−2 3.98 × 10−3 3.08 × 10−4

A4 1.076 1.297 1.177
A5 409 647 0

Table 3.1: Coefficients for equation (3.11)

In the last column of Table 3.1 are coefficients for reaction (2.4), but the reaction (2.5)
has nearly the same cross section as (2.4). In Figure 3.2 these three cross sections are
plotted for energies 1 − 1000keV . Because of large differences among these functions, a
logarithmic graph of them is shown in Figure 3.3.
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Figure 3.2: Cross section
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Figure 3.3: Cross section on log scale
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3.4 Reaction Rate

When the target particles are at rest and the beam particles move with a constant velocity,
the reaction rate per unit volume is defined to be[9]:

r(~x, t) = −dn1(~x, t)

dt
= n1(~r, t)n2σ

ds

dt
= n1(~x, t)n2σv (3.22)

If the target particles move with velocity ~v2, we have to replace the speed v by the
magnitude of relative velocity v = |~v1 − ~v2|.

Using the equation (3.2) we can express the reaction rate generally as:

r(~x, t) =
∫

d~v1

∫

d~v2f(~x, ~v1, t)f(~x, ~v2, t)σ(v)v (3.23)

3.4.1 Two Colliding Beams

In case of two colliding beams with constant velocities ~v1 and ~v2 the product σ(v)v is
independent of the integrating variables. Then the reaction rate may be expressed as:

r(~x, t) = n1(~x, t)n2(~x, t)σ(v)v (3.24)

3.4.2 Target with Maxwellian Distribution

When a beam with a constant velocity ~v1 collides with a plasma (particles with different
velocities), the reaction rate must be rearranged as follows:

r(~x, t) = n1(~x, t)
∫

d~v2f(~x, ~v2, t)σ(v)v (3.25)

For target with Maxwellian distribution (3.4), this becomes:

r(~x, t) = n1(~x, t)n2(~x, t)
(

m2

2πkT2

)3/2 ∫

d~v2 exp

(

−m2v
2
2

2kT2

)

σ(v)v (3.26)

If we express the average value of σ(v)v over a Maxwellian distribution using Eq.
(3.2)-(3.4), then we can write:

〈σ(v)v〉 =
(

m2

2πkT2

)3/2 ∫

d~v2 exp

(

−m2v
2
2

2kT2

)

σ(v)v (3.27)

Now we can obtain the reaction rate as:

r(~x, t) = n1(~x, t)n2(~x, t) 〈σ(v)v〉 (3.28)
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3.4.3 Two Maxwellian Distributions

In case of reaction between two species of particles, each having Maxwellian distributions,
charakterized by m1, T1 and m2,T2, Eq. (3.13) becomes:

r(~x, t) = n1(~x, t)n2(~x, t)
(

m1

2πkT1

)3/2 ( m2

2πkT2

)3/2 ∫

d~v1d~v2 exp

(

−m1v
2
1

2kT1

− m2v
2
2

2kT2

)

σ(v)v

(3.29)
Let β1 = m1/2kT1,β2 = m2/2kT2 and ~v = ~v1 − ~v2. Then

exp

(

−m1v
2
1

2kT1

− m2v
2
2

2kT2

)

= exp
[

−β1(~v2 + ~v)2 − β2v
2

2

]

(3.30)

= exp



− β1β2v
2

β1 + β2

− (β1 + β2)

(

~v2 +
β1~v

β1 + β2

)2


 (3.31)

Using equation d~v1 = d~v(holding ~v1 constant during this integration) and Eq.(3.20),
it is possible to convert Eq.(3.19) to the form:

r(~x, t) = n1n2

(

β1β2

π2

)3/2
∫

d~v exp

(

− β1β2v
2

β1 + β2

)

σ(v)v
∫

d~v2 exp



−(β1 + β2)

(

~v2 +
β1~v

β1 + β2

)2




(3.32)
To solve the integral over ~v2 we will use the substitution: ~u = ~v2 + β1~v

β1+β2

. Then

d~v2 = d~u(holding ~v constant during integration). We will denote β ≡ β1β2

β1+β2

. Now we can
write:

r(~x, t) = n1n2

(

β1β2

π2

)3/2
∫

d~v exp(−βv2)σ(v)v
∫

d~u exp
[

−(β1 + β2)u
2
]

(3.33)

= n1n2

(

β1β2

π2

)3/2
∫

d~v exp(−βv2)σ(v)v

(

π

β1 + β2

)3/2

(3.34)

= n1n2

(

β

π

)3/2
∫

d~v exp(−βv2)σ(v)v (3.35)

Similarly as in the section (3.4.2), we can express the average value of σ(v)v over a
Maxwellian distribution charakterized by the parameter β as:

〈σ(v)v〉 =

(

β

π

)3/2
∫

d~v exp(−βv2)σ(v)v (3.36)

The quantity 〈σ(v)v〉 is called the reaction rate parameter.
The reaction rate can be expressed now as:

r(~x, t) = n1(~x, t)n2(~x, t) 〈σ(v)v〉 (3.37)
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3.5 Reaction Rate Parameter

As shown in the previous section, for evaluation of reaction rate we need to know the reac-
tion rate parameter. There are manny publications, which contain values of this parameter
for various reactions and temperatures. However a lot of modern computer simulations
of fusion reaction rates utilize fitting functions based on data that were published almost
thirty years ago.

On this account, for evaluation of reaction rate parameter we will use Bosch and Hale
fusion reactivity model[15], which is based on R-matrix theory in conjunction with more
recent experimental cross section data. Moreover, Bosch and Hale give energies ranges
over which the model is valid (for reaction (2.3) it is 0.5−190keV , for the other reactions
0.2 − 100keV ). Equations (3.28) through (3.31) are the result of the R-matrix fit to the
experimental data. Table 3.2 shows the coefficients used in these equations. Equation
(3.31) determines reaction rate parameter in cm3s−1 as a function of thermal energy in
keV .

BG =
1

137
πZ1Z2

√

2mrc2 (3.38)

θ = E/

[

1 − E(C2 + E(C4 + C6E))

1 + E(C3 + E(C5 + C7E))

]

(3.39)

ζ =

(

B2
G

4θ

)1/3

(3.40)

〈σ(v)v〉 = C1θ exp(−3ζ)
√

ζ/mrc2E3 (3.41)

D − T D − He3 D − DHe3 D − DT

C1 1.17 × 10−9 5.51 × 10−10 5.43 × 10−12 5.66 × 10−12

C2 1.51 × 10−2 6.42 × 10−3 5.86 × 10−3 3.41 × 10−3

C3 7.52 × 10−2 −2.03 × 10−3 7.68 × 10−3 1.99 × 10−3

C4 4.61 × 10−3 −1.91 × 10−5 0 0
C5 1.35 × 10−2 1.36 × 10−4 −2.96 × 10−6 1.05 × 10−5

C6 −1.07 × 10−4 0 0 0
C7 1.37 × 10−5 0 0 0

mrc
2 (keV) 1124656 1124572 937814 937814

Table 3.2: Coefficients for equations (3.27)-(3.30)

BUCKY is a one-dimensional hydrodynamics code developed by the University of
Wisconsin that models high energy density fusion plasma[15]. It was used to generate
reaction rate parameter as a function of plasma thermal energy (3.32). Table 3.3 shows
the coefficients used in this equation. Its advantage is the simplicity, however there are no
ranges, over which this formula is valid. Moreover, there are no coefficients for reactions
(2.4) and (2.5) separately, which we will need for the next evaluations.
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〈σ(v)v〉 = exp(
A1

Er
+ A2 + A3E + A4E

2 + A5E
3 + A6E

4) (3.42)

In [13] there is not mention of any fitting function of the reaction rate parameter as
in the case of cross section. There are only several values written for each reaction.

D − T D − He3 D − D
A1 -21.377692 -27.764468 -15.511891
A2 -25.20405 -31.023898 -35.318711
A3 −7.1013427 × 10−2 2.7889999 × 10−2 1.2904737 × 10−2

A4 1.937545 × 10−4 −5.5321633 × 10−4 2.6797766 × 10−4
A5 4.9246592 × 10−6 3.0293927 × 10−6 −2.9198658 × 10−6

A6 −3.9836572 × 10−8 −2.5233325 × 10−9 1.2748415 × 10−8

r 0.2935 0.3597 0.3735

Table 3.3: Coefficients for the equation (3.31)

In Figures (3.4)-(3.6) are plotted both curves for energy ranges 1 − 100keV . It is
obvious that especially for the D-D reaction the BUCKY model is not correct.

BUCKY Bosch-Hale
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Figure 3.4: Comparison of BUCKY and Bosch-Hale for the D-T reaction
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BUCKY Bosch-Hale
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Figure 3.5: Comparison of BUCKY and Bosch-Hale for the D-D reaction
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Figure 3.6: Comparison of BUCKY and Bosch-Hale for the D-He3 reaction
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Chapter 4

Temporal Progress of Fusion
Reactions

In this part, we will consider Maxwellian distribution of interacting particles as in the
section 3.4.3 and reactions from the section 2.2. We will neglect all the other possible
reactions. Furthermore, all the particles in the reaction will have the same temperature
T . Under these conditions, we can use the data from Bosch-Hale fusion reactivity model.

According to the equation (3.26), for reaction among like particles the reaction rate
can be expressed as:

−d(n/2)

dt
= 〈σv〉 (n/2)2 ⇒ −dn

dt
= 1/2 〈σv〉n2 (4.1)

Now we can make a system of ordinary differential equations, which will describe tem-
poral progress of particles densities of fusion reaction components for ~x = const. We
will assume that in time t = 0 we have plasma compound from D,T and He3 parti-
cles (fuel-equations (4.2)-(4.4)). During the reactions, new particles will be generated
(product-equations (4.5)-(4.7)).

dnD

dt
= −1/2(〈σv〉DD−He + 〈σv〉DD−T )n2

D − 〈σv〉DT nDnT − 〈σv〉DHe3 nDnHe3(4.2)

dnT

dt
= −〈σv〉DT nDnT + 1/2 〈σv〉DD−T n2

D (4.3)

dnHe3

dt
= −〈σv〉DHe3 nDnHe3 + 1/2 〈σv〉DD−He n2

D (4.4)

dnα

dt
= 〈σv〉DT nDnT + 〈σv〉DHe3 nDnHe3 (4.5)

dnp

dt
= 〈σv〉DHe3 nDnHe3 + 1/2 〈σv〉DD−T n2

D (4.6)

dnn

dt
= 〈σv〉DT nDnT + 1/2 〈σv〉DD−He n2

D (4.7)

In Figures (4.1)-(4.8) are plotted solutions of this equations system for 2 energies
(20, 100keV ) and several initial conditions. Values of 〈σv〉 were obtained from Bosch-hale
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model in units 10−17cm3s−1. System was numerically solved in program Maple 11 and all
equations were divided by the initial particle density of deuterium nD(0) = nD0

. It means
that all solutions of the particle densities are normalised to this initial particle density
nD(0) = nD0

.
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Figure 4.1: Fuel particle densities for E = 100keV and ignition conditions nD(0) =
1, nT (0) = nHe3(0) = 0
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Figure 4.2: Product particle densities for E = 100keV and ignition conditions nD(0) =
1, nT (0) = nHe3(0) = 0
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Figure 4.3: Fuel particle densities for E = 100keV and ignition conditions nD(0) =
1, nT (0) = 1, nHe3(0) = 0
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Figure 4.4: Product particle densities for E = 100keV and ignition conditions nD(0) =
1, nT (0) = 1, nHe3(0) = 0
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Figure 4.5: Fuel particle densities for E = 20keV and ignition conditions nD(0) =
1, nT (0) = nHe3(0) = 0
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Figure 4.6: Product particle densities for E = 20keV and ignition conditions nD(0) =
1, nT (0) = nHe3(0) = 0
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Figure 4.7: Fuel particle densities for E = 20keV and ignition conditions nD(0) =
1, nT (0) = 1, nHe3(0) = 0
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Figure 4.8: Product particle densities for E = 20keV and ignition conditions nD(0) =
1, nT (0) = 1, nHe3(0) = 0
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Chapter 5

Advanced Fuels

Mixtures of hydrogen isotopes and light nuclei (Helium, Lithium, Boron) are called in the
context of controlled fusion research the advanced fusion fuels[12]. These ractions produce
only charged particles, whose energy can be converted directly to the electricity. Since
the most-studied fusion reactions release up to 80% of their energy in neutrons, advanced
fuels would remove problems associated with neutron radiation such as ionizing damage,
neutron activation, and requirements for biological shielding, remote handling, and safety
issues.

Advanced fuels come under aneutronic fusion, which is defined as any form of fusion
power where no more than 1% of the total energy released is carried by neutrons[16].
Aneutronic fusion has manny advanteges, but physical conditions required for realizing
these reactions are much harder than for e.g. D − T reaction.

These are aneutronic reactions with the largest cross sections[16]:

D + Li6 → 2α + 22.4MeV (5.1)

p + Li6 → α(1.7MeV ) + He3(2.3MeV ) (5.2)

He3 + Li6 → 2α + p + 16.9MeV (5.3)

He3 + He3 → α + 2p + 12.86MeV (5.4)

p + Li7 → 2α + 17.2MeV (5.5)

p + B11 → 3α + 8.7MeV (5.6)
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Conclusion

This bachelor‘s degree project consist of two parts. Major part (chapters 1,2,3 and 5)
is a backgroud research of a given theme. In chapter 4 are obtained knowledges used to
applied evaluations.

I would like to continue my work on the evaluation of reaction yields of nuclear pro-
cesses in systems with non-maxwellian distributions, which was one of the given topics.
However, I think that it would be suitable theme for a dissertation.
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