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Introduction

Previous lecture: discussed the problems resulting from singular behavior at
short distances and outlined the remedy to these problems: the
renormalization procedure.

This lecture: analyses problems of gauge theories with massless gauge
particles at long distances.

Associated infinities emerge from theoretical considerations on the level of
partons and reflects experimental restrictions by the finite resolution power.
This naturally leads to the concept of jet.

We address the question concerning relation of partonic jets to
experimentally defined jets of hadrons. This is crucial for many applications
of QCD to hard scattering processes and will be illustrated on the simplest
example of three jet production in e+e− annihilations.
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Mass singularities in perturbation theory

Figure 1: e+e− → qqG

Consider e+e− → qqG, (1)

where gluon G is radiated either from q
or q (Fig. 1).

Spin and color averaged cross section
of (1) depends on two of the three
dimensionless fractions xi

(Ei , i = 1, 2, 3 are the CMS energies of
q, q and G , respectively)

0 ≤ xi ≡
2Ei√

s
≤ 1;

√
s = E1 + E2 + E3 ⇒ x1 + x2 + x3 = 2, (2)

or, equivalently, on three scaled invariant masses yij of of two partons:

y12 ≡
(p1 + p2)2

s
= 1−x3; y13 ≡

(p1 + p3)2

s
= 1−x2; y23 ≡

(p2 + p3)2

s
= 1−x1,

(3)for which the kinematical constraint in (2) implies y12 + y13 + y23 = 1.
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Mass singularities in perturbation theory

For massless quarks and gluons

dσ
dx1dx2

= σ0
αs

2π
CF

x2
1 + x2

2

(1− x1)(1− x2)
⇔ dσ

dy13dy23
= σ0

αs

2π
CF

(1− y23)2 + (1− y13)2

y13y23
,

(4)
where CF = 4/3 and σ0 = 12πα2e2

q/3s is Born cross–section for production
of a qq pair with electric charge eq and three colors.

Singularity at x1 = 1 ( i.e. at y23 = 0) corresponds to G‖q , while that at
x2 = 1 occurs when G‖q. Double singularity at x1 = x2 = 1 (i.e. at x3 = 0)
corresponds to the case when energy of the emitted gluon vanishes.

Using Q2 ≡ mqG = s(1− x1), in the collinear limit x1 → 1, which is
equivalent to Q2/s → 0:

dσ
dQ2dx2

=
1

s

dσ
dx1dx2

= σ0
αs

2π

1

Q2
CF

x2
1 + x2

2

1− x2

−→
x1→1

σ0
αs

2π

1

Q2
CF

1 + x2
2

1− x2
= σ0

αs

2π

1

Q2
P(0)

qq (x2). (5)
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Mass singularities in perturbation theory

N.B. in the collinear limit x1 → 1 the variable x2 represents a fraction of the
momentum of the original q carried by it after the emission of G.

Available kinematical region covers interior of the triangle in Fig. 2a, with
bands defining the regions where one of the yij is small. Fig. 2b shows the
typical configurations corresponding to these three regions.

When the qq pair is close in phase space, the cross–section is not singular.
This is illustrated in Fig. 2c, where a scatterplot corresponding to the
cross–section (4) is displayed.

Figure 2: Kinematics of qqG final state (a), typical configurations corresponding
to qG or qG jets (b) and scatterplot of events generated according to (4).
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Mass singularities in perturbation theory

Introducing β ≡ m2
g/Q2, and assuming β 6= 0 cross-section for (1) reads:

dσ
dx1dx2

= σ0
2αs

3π

1

(1− x1)(1− x2)
×[

x2
1 + x2

2 + β

(
2(x1 + x2)− (1− x1)2 + (1− x2)2

(1− x1)(1− x2)

)
+ 2β2

]
. (6)

The singularities, both infrared and parallel, are screened off.
Kinematical bounds on x1, x2 are now functions of β:

0 ≤ x1 ≤ 1− β; 1− β − x1 ≤ x2 ≤ 1− β

1− x1
. (7)

(6) is symmetric in x1, x2. Integration over one of these fractions yields:
dσ
dx

= σ0
αs

2π

4

3
× (8)

×
[

1 + x2

1− x
ln

x(1− x)

β
− 3

2

1

1− x
+

1

2
(x + 1) + β

2− x

(1− x)2
+

1

2
β2 1

(1− x)3

]
where 0 ≤ x ≤ 1− β and only terms contributing when β → 0 were retained.
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Mass singularities in perturbation theory: virtual gluon

N.B. Contrary to the double differential cross–section (6), which has a
meaning even for β = 0, expression (8) blows to infinity for β → 0.

Instead of radiating a real gluon, the quark can radiate a virtual one (G∗),
which will eventually recombine with an accompanying antiquark (Fig. 3
left) or producing a real qq pair (Fig. 3 right), with the parent quark.

In both cases G∗ can be arbitrarily close to its mass-shell and thus propagate
to arbitrarily large distances.

⇒⇒⇒ Integration over the loops of Fig. 3 leads also to mass singularities.

Figure 3: Virtual gluon emission in e+e− → qq.
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Mass singularities in perturbation theory: virtual gluon

Interference term between the lowest order QPM diagram and loop diagrams
in Fig. 3 is of the same order αs as the square of the diagram in Fig. 1,
describing the real gluon emission

σvirt = σ0
αs

2π

4

3

[
− ln2 β − 3 lnβ +

π2

3
− 7

2

]
+O(α2

s ). (9)

This term contributes obviously only for x = 1 and we can write

dσvirt

dx
= σ0

αs

2π

4

3

[
− ln2 β − 3 lnβ +

π2

3
− 7

2

]
δ(1− x). (10)

⇒⇒⇒ Crucial observation: gluon with zero energy is the same as no gluon at all.
For massless gluons we can add the −∞ from virtual correction to the cross
section σ(e+e− → qq) to +∞ coming from the integral over the real gluon
emission.

N.B. To carry out this cancelation in a mathematically well-defined way, the
regulator β 6= 0 was introduced.
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Mass singularities in perturbation theory

To work out this sum, several rather technical steps have to be carried out:

1 Although the last two terms in (8) are proportional to β and β2, they cannot
be neglected in the limit β → 0. Their limit is 5

4δ(1− x).

2 Realizing that δ(1− x) = δ(1− x − β) + βδ
′
(1− x) (11)

and taking into account that in (10) the dependence on β comes only in
powers of lnβ, we can replace δ(1− x) in (10) with δ(1− x − β).

3 We now recall the definition of the so called “+” distribution

[f (x)]+ ≡ lim
β→0

(
f (x)θ(1− x − β)− δ(1− x − β)

∫ 1−β

0

f (y)dy

)
, (12)

where θ(x) is usual step function. For functions singular at x = 1 the second
term subtracts at x = 1 the whole (possibly divergent) integral over this
interval.
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Mass singularities in perturbation theory

We shall need the following explicit results»
1

1− x

–
+

=
1

1− x
θ(1− x −β) + lnβδ(1− x −β),

»
1 + x2

1− x

–
+

=
1 + x2

[1− x ]+
+

3

2
δ(1− x)

1 + x2

[1− x ]+
=

1 + x2

1− x
θ(1− x − β) + 2 lnβδ(1− x − β), (13)

(1 + x2)

»
ln(1− x)

1− x

–
+

=
(1 + x2) ln(1− x)

1− x
θ(1− x − β) + 2 ln2 βδ(1− x − β)

4 Regroup individual terms in the sum of (8) and (10) in such a way that the
limit β → 0 can be carried out to get:

dσ
dx
≡ dσreal

dx
+

dσvirt

dx
= σ0

αs

2π

4

3

{
ln

1

β

[
1 + x2

1− x

]
+

+ (14)

(1 + x2)

[
ln(1− x)

1− x

]
+

+
1 + x2

1− x
ln x − 3

2

1

[1− x ]+
+

1 + x

2
+

(
π2

3
− 9

4

)
δ(1− x)︸ ︷︷ ︸

constant terms

}
.
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Mass singularities in perturbation theory

5 Finally, integrating (14) over x we get

σtot ≡ σreal + σvirt = σ0
αs

π
. (15)

We could get the last result also by adding the integral of (6), equal to

σreal(Q) = σ0
αs

2π

4

3

[
ln2 β + 3 lnβ − π2

3
+ 5

]
, (16)

to (9) and sending β → 0.

Terms ∝ lnβ come from parallel as well as IR region of gluon momenta,
while the double logarithm ln2 β comes entirely from the IR region.

In both cases the virtuality of q or q emitting G is ∝ m2
g and thus vanishes

with it. Physically it means that virtual q or q propagate to distances of the
order 1/mg before radiating G and going to their mass shell.

Remarkably, if we add the real and virtual gluon emission cross-sections we
get a finite result for the total cross–section (15) and a well–defined
expression for the inclusive spectrum (14).
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Kinoshita–Lee–Nauenberg theorem

Consider the general scattering process A→ B between states A,B of massive
particles. It may happen that the scattering matrix |SAB | has mass singularities
but if we sum the squares of scattering amplitudes∑

D(A),D(B)

∣∣SD(A)D(B)

∣∣2 (17)

over the sets D(A),D(B) of states degenerate with A,B, the sum has no mass
singularities, i.e. is finite even for massless particles.

Here “degenerate” = all states of particles having the same conserving
quantum numbers as well as the same total four–monentum. Degenerate
states thus may have different number and composition of particles.

In QED the states of an electron and an electron accompanied by a photon
with zero energy are degenerate. However, even a 10 GeV electron and a
parallel pair of a 5 GeV electron with a 5 GeV photon would be degenerate
in the limit of vanishing electron mass.

KLN is useful when ∆E or ∆pT resolution δ � me . Setting me = 0 we can
safely invoke KLN theorem to calculate σ for particular process with or
without additional γ with Eγ > δ.
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Application of KLN theorem to DIS

Lowest order QCD corrections to QPM in DIS: one gluon emission from
incoming or outgoing quarks (Fig. 4a). Similarly to e+e− → qqG, soft and
parallel singularities appear when integrating over energies and angles of the
emitted G.

Figure 4: Application of KLN to DIS. t in a) denotes virtuality of intermediate quark.
Double logarithms, coming from the soft gluon emission, cancel in sum of real and
virtual contributions, while single logarithms do not and give the term ln(1/β) in (14).
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Application of KLN theorem to DIS

Regulation of singularities via mg leads again to ∝ lnβ, ln2 β as in (16).

Keeping x ≡ −q2/2pq and y ≡ (qp)/(kp) fixed, but integrating over all
other variables describing the quark level subprocess e + q→ e + q + G, we
find that diagram in Fig. 4a contributes

dσreal

dxdy
=

[
4πα2xs

Q4

1 + (1− y)2

2

]
αs

π

(
4

3

1 + x2

1− x
ln

1

β
+ f (x , β)

)
, (18)

where s = (k + p)2 and x is the fraction of incoming quark momentum,
carried by it after the gluon emission. Function f (x , β) has a finite limit for
β → 0. Singular term proportional to ln 1/β, results, as in (14), from
integration over the angle of the emitted gluon.

Interference between diagrams in Fig. 4b contributes again a negative
divergent term

dσvirt

dxdy
=

[
4πα2xs

Q4

1 + (1− y)2

2

]
4αs

3π

(
− ln2 β − 3 lnβ − 7

2
− 2π2

3

)
δ(1−x) (19)

and δ(1− x) expresses the fact that G∗ emission contributes only for x = 1.
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Application of KLN theorem to DIS

Adding the above two contributions involves the same kind of manipulations
as for the process (1) and leads to the following result

dσreal

dxdy
+

dσvirt

dxdy
=

[
4πα2xs

Q4

1 + (1− y)2

2

](αs

π

4

3

[
1 + x2

1− x

]
+︸ ︷︷ ︸

P(0)
qq (x)

ln
1

β
+ f (x , β)

)
(20)

Figure 5: Branching function Pqq(z).

Shape of P
(0)
qq (z) is sketched in Fig. 5. This

so called Altarelli–Parisi “splitting function”
has the important property∫ 1

0

P(0)
qq (z)dz = 0, (21)

which is a straightforward consequence of
the definition (12). Physical interpretation
of this relation will be later on.
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Introduction into the theory of jets

State with | NG 6= 0,EG = 0〉 ≡ | NG = 0〉,
but state | NG 6= 0,EG ≥ ε > 0〉 6= | NG = 0〉 however small ε might be.

⇒⇒⇒ Theoretically meaningful and experimentally answerable question:
What is σ3parton(y) in the kinematical region outside the singularity, for
instance for yij ≥ y , where the cut–off parameter y > 0 defines this region?

Complementary, question: What’s σqq(y) or σqqG (y) for y > y13 or y > y23?
Integral over this region always contains also the contribution from the
virtual corrections to the qq final state and therefore decreases as y → 0.

In this ways we are naturally led to y–dependent definition of the jet:
At the order αs jet is simply either a single parton or a pair of partons (i , j)
with the scaled invariant mass satisfying yij ≤ y .

Physically measurable two–jet final state: either a qq pair or qqG final
state, in which the gluon is close to either q or q. In the latter case the jet
momentum is defined as the vector sum pjet ≡ pi + pj of the pair (i , j).
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Theory of jets: dimensional regularization

To the order αs and in n = 4− 2ε dimensions, the contribution to 2–jet
cross–section coming from qq final state reads:

σ2jet(qq) =
σ(2)

1− ε

[
1− ε+ CF

αs(µ)

2π

(
4πµ2

Q2

)ε
A1 +O(α2

s )

]
, (22)

where

σ(2) ≡
(

4πµ2

Q2

)ε
Γ(2− ε)

Γ(2− 2ε)
σ0, σ0 ≡

4πα2

3Q2

(
3
∑

f

e2
f

)
, (23)

is the Born cross–section for e+e− annihilation into a qq pair in n
dimension, ζ2 ≡ π2/6 and the contribution from virtual corrections is
determined by the coefficient

A1 =
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

(
− 2

ε2
− 1

ε
+ 6ζ2 − 5 + 3ζ2ε− 8ε

)
. (24)

where ζ2 = π2/3.

Note that ε can be sent to zero everywhere except A1 and that the cut–off
parameter y is absent from (22).
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Theory of jets: dimensional regularization

Integrating the cross–section corresponding to the qqG final state over the
region yij ≤ y we get

σ2jet(qqG ) =
σ(2)

1− ε

[
CF

αs(µ)

2π

(
4πµ2

Q2

)ε
B1 +O(α2

s )

]
, (25)

where

B1 =
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

(
2

ε2
+

1

ε
+ 4− 4ζ2 − 3 ln y − 2 ln2 y

)
. (26)

Comparing (22) and (25) we see that the singular terms 1/ε2 and 1/ε enter
A1 and B1 with opposite signs and thus cancel in the physical 2–jet
cross–section σ2jet, given as their sum:

σ2jet(y) = σ0

[
1 +

αs

2π
CF

(
−2 ln2 y − 3 ln y + 2ζ2 − 1

)
+O(α2

s )
]
. (27)

The O(αs) 3–jet cross–section, resulting from integration of (25) in the
complementary region yij > y equals

σ3jet(y) = σ0

[αs

2π
CF

(
2 ln2 y + 3 ln y − 2ζ2 + 5/2

)
+O(α2

s )
]
. (28)
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Jet rates

Note the different character of the y dependence in (27) compared to (28):
while σ2jet(y) is a decreasing function of y it is vice versa for σ3jet(y)!
Smaller is y more gluon radiation is “resolved” and counted as 3–jet final
state.

Summing σ2jet and σ2jet we get σ
(2)
tot ≡ σ0(1 +αs/π), the total cross–section

of e+e− annihilation to partons at the order O(αs), which by construction
is y–independent.

Jet rates Ri ≡ σijet(y)/σ0(1 + αs/π) for i = 2, 3 are plotted in the left
panel of Fig. 7.

Ri , i = 2, 3, 4 measured by OPAL experiment at LEP are shown in the right
panel of Fig. 7. As y decreases more and more jets pop up, their
cross–section first rapidly increasing, peaking at some y and finally
decreasing to make place for even more jets. Quantitative comparison of
these data with theoretical predictions is, however, more complicated.
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Jet rates

Figure 6: Left: two and three jet rates Ri (y) according to formulae (27) and (28).
Right: experimental data on 2–4 jet rates in e+e− annihilations as measured by
the OPAL Collaboration at LEP.
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Jet algorithms

Definition of jets in e+e− annihilations into 2 or 3 final state partons the is
simple and almost unambiguous. Situation is more complicated if

more partons in final states are taken into account,

other process (like hadron–hadron or electron–proton collisions) are analyzed,

consistency of theoretical definition of jet is to be guaranteed,

jet definition should be applicable to observable hadrons as well.

For multi-parton final states there are two different ways how to define jets.
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Jet algorithms: Clustering

Repeated combining of two massless partons into one, again massless,
parton.

We cannot simply add parton four–momenta (for noncollinear pairs this
would inevitably result in a nonzero mass of the recombined pair).

⇒ Either sum three–momenta and adjust energy (thus violating energy
conservation) or sum energies and adjust longitudinal momentum of the pair
(thus violating its conservation).

Distance of partons is given by yij ≡ 2EiEj(1− cos θij)/Q2.

Recipe: Start with any parton, recombine it with its nearest neighbourgh in
yij ⇔ yij ≤ y and proceed untill all the remaining pairs have yij > y . This
defines the so called JADE algorithm.

A closely related, but theoretically superior, is the so called Durham jet
algorithm, which replaces mij with the “transverse” distance
dij ≡ 2min(E 2

i ,E
2
j )(1− cos θij).
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The cone algorithm

Second approach looks for groups of partons that are within given “distance”
from their “center”. The relevant distance can be defined in various ways.

In Sterman–Weinberg cone jet algorithm angular separation defines this
distance. Jet momentum and energy are then given as sums of momenta
and energies of all particles that lie with a given angle θ from their center.
Ejet therefore has to exceed certain minimal value ε.

For CDF cone jet algorithm the “distance” is defined by the variable

R ≡
√

(∆η)2 + (∆φ)2, η ≡ − ln(tan θ/2), (29)

where φ is the azimuthal angle. ET , η and φ of the jets are given as:

E jet
T ≡

∑
i

E i
T , ηjet ≡

∑
i

E i
T

E jet
T

ηi , φjet ≡
∑

i

E i
T

E jet
T

φi , (30)

sum running over all particles within the jet.

For different processes different algorithms are theoretically preferable. JADE algorithm

was originally developed for e+e− and is still being used there. In `+ h and h + h

collisions CDF cone algorithm is theoretically superior.
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Jets of partons vs jets of hadrons

Hadrons, not partons, are observed in experiment.

Rule of thumb: Higher pT of the jets, smaller is the differences between
properties of partonic and hadronic jets.

For a given value of jet resolution parameter y we can be evaluated
theoretically dσtheor/dpT . Experimentalist can do the same with hadrons
and thus measure dσexp/dpT . Should we compare these two distributions
for the same y , or not? And under which conditions can we do it?

The only way out is to construct some models of hadronization (recall
independent fragmentation model), study this relation within each model
separately and then compare the corresponding results among as many
hadronization models as possible.

An alternative way is to include as much as possible of the theoretical
calculations at the level of partons within the so called event generators,
Monte Carlo programs that mix perturbative QCD calculation of partonic
collisions with models of hadronizations. In this case experimental jets are
compared not with partonic jets but also with hadronic jets, simulated
within these event generators.
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Jets of partons vs jets of hadrons

Figure 7: Jets of (charged) hadron from p+p collisions at
√

s = 200GeV as seen
in by STAR experiment at RHIC.
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Exercises

1 Calculate explicitly (4), (6).

2 Derive the kinematical bounds (7).

3 Prove that for quite general f (z) the definition of “+” distribution as
given in (12) is equivalent to the following one∫ 1

0
[f (z)]+g(z)dz ≡

∫ 1

0
f (z)(g(z)− g(1))dz .

4 Show that from definition ∫ 1

0
[f (z)]+ = 0.
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