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Vacuum as a dielectric

In QED: any charged particle is surrounded by a dense cloud of e−e+ virtual
pairs that tend to screen the charge of a particle.

At large distances – effective coupling constant is reduced by presence
of this screening charge.
At smaller distances – a probe can penetrate through this virtual cloud,
and hence the QED coupling constant gets larger as we increase the
energy of the probe.
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Vacuum as a dielectric

Classically, we can think of this in terms of the dielectric constant of the
vacuum. Place a charge into a dielectric. ⇒ Electric field of the dielectric
will cause the dipoles within the dielectric medium to line up around the
charge and decrease its value. ⇒ the medium will acquire dielectric constant
greater than one.

QCD: we have color charges and color coupling constants. Each gluon carries
both a color charge and an anti-color magnetic moment. The net effect of
polarization of virtual gluons in the vacuum is not to screen the field, but to
increase it and affect its color. This is sometimes called antiscreening.

In QCD:

At large distances (low energy) – presence of the cloud of virtual
particles creates an antiscreening effect and the net coupling constant
gets larger.
At smaller distances – a probe that comes near a colored particle feels
the coupling constant decrease at high energies. Thus, the dielectric
constant of the vacuum is less than one for an asymptotically free
theory.
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Infinities in perturbative calculations

Transition from a finite number of degrees of freedom in QM to an infinite
number in QFT ⇒ we must continually sum over an infinite number of
internal modes in loop integrations, leading to divergences.
Divergent nature of QFT reflects the fact that the UV region is sensitive to
the infinite number of degrees of freedom of the theory.

We’ll discus UV renormalization of perturbative φ4, QED and QCD.

Renormalization procedure is not merely a technique of removing unpleasant
UV infinities, but first of all an effective description of quantum phenomena.

Essence of UV renormalization is common to QED and QCD ⇒ we start
with QED. Here the basic quantity governing the strength of interactions of
charged particles are their electric charges. It is common to use fine
structure constant α ≡ e2/4π = 1/137 (classically).

LQED leads to the pQFT, in which physical quantities are expressed as
power expansions in α. It turns out that at higher orders the coefficients of
these expansions, calculated according to the standard Feynman rules, come
out formally infinite.
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Divergences in integration over the loop momenta

A: Ultraviolet divergences (UV), coming from integration over the large
values of the loop momenta.

B: Mass divergences, coming from integration over the region of small
virtualities. These small virtualities appear in two different situations:

For vanishingly small energy and momentum of the virtual particles.
These so called infrared (IR) singularities occur for the massless
photon, independently of the electron mass.
When two of the three particles in the QED vertex e-γ-e are parallel to
each other. This can happen only if me = mγ = 0. ⇒ parallel
singularities are thus absent in QED. Trace of them shows up
potentially large logarithms like αk lnk(Q/me) (where Q is some
external momentum) at k–th order of perturbation theory.

Both types of mass singularities can be regularized by introduction of a
fictitious mass of the photon.

Here we shall analyze UV divergences which lead to the important concept
of the renormalized electric charge. The mass singularities are dealt with
in a completely different way and are discussed in the text of J. Chýla.
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UV example: φ4 theory

Consider second order diagrams in φ4. In addition to standard tree diagram
(Fig.1, left) there is also so called loop diagram (Fig.1, right).

Compare their propagators associated with internal line(s):

(−iλ)2 i

q2 −m2 + iε
= (−iλ)2 i

(k4 + k5 + k6)2 −m2 + iε
(1)

1

2
(−iλ)2

∫
d4k

(2π)4

i

k2 −m2 + iε

i

(k1 + k2 − k)2 −m2 + iε
∼
∫

d4k

k4
→∞ (2)

Figure 1: Feynman diagrams occuring in order g 2 in perturbation theory.
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Regularization: φ4 theory

Tree diagram (Fig.1, left): internal line is associated with a virtual particle
with q2 = (k4 + k5 + k6)2 ≥ m2. The farther the momentum of the virtual
particle is from the mass shell the smaller is the amplitude.
⇒ Virtual particle is penalized for not being real!

Loop diagram integrand is large only if one or the other or both of the
virtual particles associated with the two internal lines are close to being real.
Once again, there is a penalty for not being real. However for very large
virtualities (k →∞) the integral in (2) diverges logarithmically!

Thus, in evaluating
∫

d4k/(2π)4 in (2) we should integrate only up to Λ,
known as a cutoff. The integral is said to have been ”regularized”.

Result is 2iC ln Λ2

K 2 where K ≡ k1 + k2 and C is some numerical constant.

Modern view of divergences problem: given model should be regarded as an
effective low energy theory, valid up to some energy scale Λ. Going to higher
and higher momentum scales may eventually bring us to completely new
physics region where our simple φ4 model is not anymore true!
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Renormalization and dimensional analysis

Since ~ = c = 1 ⇒ S =
∫

d4xL is dimensionless: [S ] = 0 ⇒ [L] = 4∗.
In this notation [x ] = −1 and [∂] = 1.

In scalar φ4 theory L = 1
2

[
(∂φ)2 −m2φ2

]
− λφ4. For term (∂φ)2 to have

the same dimension as L i.e.
[
(∂φ)2

]
= 4 we must have [φ] = 1 implying

that [λ] = 0, i.e. coupling is dimensionless.

For fermion field ψ we find its dimension from the free field lagrangian
L = ψiγµ∂µψ + . . . to be [ψ] = 3

2 .

Looking at coupling f φψψ ⇒ Yukawa coupling f is also dimensionless.

From the Maxwell Lagrangian L = FµνFµν we see that [Fµν ] = [Fµν ] = 2
⇒ [Aµ] = 1 i.e. dimensions of [Aµ] and [∂µ] are the same.

Consider QED interaction term eAµψγ
µψ: [Aµψγ

µψ] = 4 ⇒ [e] = 0.
N.B. The same conclusion can be also deduce from Coulomb’s law written
in natural units V (r) = α/r , with the fine structure constant α = e2/4π.

(*) From now on [A] denotes dimension of A in mass units.
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Fermi theory of the weak interaction: Mif blows up

In contrast 4-fermion interaction Lagrangian L = Gψψψψ has [G ] = −2.

Recall dσ =
(2π)4

| ~v1 − ~v2 |
1

2E1

1

2E2
|Mif |2

n∏
i=3

d~pi

(2π)32Ei
δ4(p1 + p2 −

n∑
i=3

pi ) SF

[σ] = −2, [v ] = 0, [E ] = 1 ⇒ [Mif ] = 0.

Calculate ν + ν → ν + ν scattering at
√

s � Λ. Since all
masses and energies are by definition small compared to
the cutoff Λ, we can simply set them equal to zero.

In the lowest order: Mif ∝ G and is finite.

In the next order: Mif ∝ G + G 2Λ2 ⇐ [Mif ] = 0 or by
looking directly at the Feynman diagram (left) which

goes as G 2
∫ Λ

d4p(1/p)(1/p) ∝ G 2Λ2.

For Λ→∞ the theory is sick: |Mif |2 →∞.
Infinity is predicted value for a physical quantity!

Fermi theory and all other non-renormalizable theories
have the ability to announce its own eventual failure and
hence their domains of validity.
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Renormalization

UV renormalization procedure consists of two distinct steps:

1) Regularization: Formally divergent integrals are regularized, i.e. basically
cut off at high values of the loop momenta.
There are numerous regularization techniques, for instance:

Simple cut-off.
Analytical regularization.
Pauli–Villars and its modifications: gives a clear physical interpretation
of the renormalized electric charge while maintaining gauge invariance.
In multiloop calculations this technique is, however, rather
cumbersome.
Dimensional regularization: is much simpler and in nonabelian gauge
theories, like QCD, it preserves gauge invariance. The renormalization
scale, on which the renormalized electric charge does depend, enters in
a rather artificial way and its physical interpretation is therefore rather
obscure.

2) Renormalization: Divergent terms are absorbed in the newly defined
renormalized quantities (couplant, mass and wave functions).
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Example: Potential of infinite charged line

Consider infinitely long wire carrying constant charge density ρ.
Potential at at point P at distance R from the wire:

V (R) =

∫
ρ(r)

r
dx = ρ

∫ +∞

−∞

dx√
R2 + x2

(3)

is logarithmically divergent ⇒ potential is ill defined.

Contrary to this electric field:

~E = −~∇V = V ′(R) ∝ ρ
∫ +∞

−∞

dx

(R2 + x2)3/2
<∞. (4)

Regularizing (3) we obtain:

VΛ(R) = ρ

∫ +Λ

−Λ

dx√
R2 + x2

= ρ ln

[√
Λ2 + R2 + Λ√
Λ2 + R2 − Λ

]
(5)

leading to slight redefinition of electric field as:

~E = lim
Λ→∞

[
−~∇VΛ(R)

]
= lim

Λ→∞
R̂

2ρ

R

Λ√
Λ2 + R2

→ 2ρ

R
R̂ (6)
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Example: Potential of infinite charged line

We had to introduce new variable Λ with dimension of length i.e. [Λ] = −1.

Notice that the difference: ∆ = lim
Λ→∞

[VΛ(r2)− VΛ(r1)] = ρ ln
r 2
1

r 2
2

(7)

is well defined. So we can use it to renormalize potential by subtracting
V (R) at some fixed value of R = R0 and taking the limit Λ→∞:

V (R)→ V (R)− V (R0) = ρ ln
R2

0

R2
(8)

Introduction of dimensionful parameter R0 has caused non-physical infinities
present in V (R) and V (R0) to cancel each other, leaving a finite result with
a non-trivial R-dependence. The cutoff Λ has disappeared!

This example suggest a strategy for dealing with divergencies:

1 Identify an appropriate way to regularize infinite integrals.
2 Absorb the divergent terms into a redefinition of fields or parameters

e.g. via substractions. This step is usually called renormalization.
3 Make sure the procedure is consistent, by checking that the physical

results do not depend on the regularization prescription.
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Renormalization of φ4 theory

Divergent structure of any graph can be analyzed in terms of:
E = number of external legs
I = number of internal lines
V = number of vertices
L = number of loops

Degree of its divergence D comes from power counting: each internal
propagator contributes 1/p2, each loop contributes d4p ⇒ D = 4L− 2I .

Vertex has 4 lines connecting to it. Each of these lines, in turn, either ends
on an external leg, or on one end of an internal leg, which has 2 ends.
⇒ 4E = 2I + E .

Expression for the loop number L = I − V + 1 can be obtained as follows:

# of independent momenta = # of internal lines I - the constraints
coming from momentum conservation.
There are V such momentum constraints, minus the overall
momentum conservation from the entire graph.
# of independent momenta in a Feynman graph is also equal to the #
of loop momenta.
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Renormalization of φ4 theory

Inserting these graphical rules into our expression for D we have: D = 4−E .
⇒ Degree of divergence of any graph in 4 dimensions depends only on the
number of external lines, which is a necessary condition for renormalizability.
D is thus independent on number of internal loops in the graph1.

N.B. Situation in QED where D = 4− 3
2 Eψ − EA and Eψ,A is the number of

external electron and photon legs, respectively, is very similar.

In φ4 theory only two-point and four-point graphs are divergent.
⇒ We need to renormalize only two physical quantities: the mass and the
coupling constant.

Thus, by using only power counting arguments, in principle we can
renormalize the entire theory with only two redefinitions corresponding to
two physical parameters.

(1) In d dimensions D = d + (1− d/2)E + (d − 4)V . Because D increases with # of

internal vertices, there are problems with renormalizing the theory in higher dimensions.
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Renormalization in a nuttshell: What is actually measured

Introduce cutt-off Λ into integral (2) and assume m2 � (k1 + k2)2 (so that
we can neglect m2 in the integrand). The scattering amplitude up to the
second order in λ reads:

Mif = −iλ+ iCλ2L(s, t, u) +O(λ3) (9)

where L(s, t, u) ≡
[

ln

(
Λ2

s

)
+ ln

(
Λ2

t

)
+ ln

(
Λ2

u

)]
(10)

and s ≡ K 2 = (k1 + k2)2, t ≡ (k1 − k3)2 and u ≡ (k1 − k4)2.

Mif is supposed to be an actual (physical) scattering amplitude.
⇒Mif should not depend on Λ. ⇒ Any change of Λ must be always
compensated by the shift of λ in such a way so that Mif does not change.

Define physical coupling as: −iλP = −iλ+ iCλ2L(s0, t0, u0) +O(λ3) (11)

and solve it for λ:

−iλ = −iλP−iCλ2L(s0, t0, u0)+O(λ3) = −iλP−iCλ2
PL(s0, t0, u0)+O(λ3

P) (12)

where the second equality is allowed to the order of approximation indicated.
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Renormalization in a nuttshell: What is actually measured

Now plug this into (9):
Mif = −iλ+ iCλ2L(s, t, u) +O(λ3) =

= −iλP − iCλ2
PL(s0, t0, u0) + iCλ2

PL(s, t, u) +O(λ3
P) (13)

where, once again, all manipulations are legitimate up to the order of
approximation indicated.

Now in the scattering amplitude Mif we have the combination
L(s, t, u)− L(s0, t0, u0) = [ln(s0/s) + ln(t0/t) + ln(u0/u)] and so the
scattering amplitude comes out as:

Mif = −iλP + iCλ2
P

[
ln
( s0

s

)
+ ln

( t0

t

)
+ ln

(u0

u

)]
+O(λ3

P) (14)

i.e. likewise (8) Mif is now expressed in terms of measurable quantity
– in case of (14) it is the physical coupling constant λP .
The unmeasurable cutoff Λ has completely disappeared!

The lesson: express physical quantities not in terms of fictitious theoretical
quantities such as λ, but in terms of measurable quantities such as λP .
Later is in the literature often denoted by λR and for historical reasons called
the renormalized coupling constant.
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Elements of dimensional regularization

Consider again φ4 theory in n=4 dimensional Minkowski space–time.

Lφ ≡
1

2
(∂µφ(x))2 −m2φ2 − λ

4!
φ4(x), λ > 0. (15)

Simplest one–loop diagram – Fig. 2b – describes order λ2 correction to the
leading order diagram, depicted in Fig. 2a. Since basic four–particle vertex
is associated with −iλ the amplitude corresponding to digram in Fig. 2b is:

I (p, n = 4) ≡ λ2

2

∫
d4k

(2π)4

1

[k2 −m2 + iε]
1

[(k − p)2 −m2 + iε]
, (16)

where p ≡ p1 + p2. (16) is the same as (2) but in the other variables.

Figure 2: Lowest order Feynman diagrams for the elastic scattering of two scalar
particles with mass m.
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Dimensional regularization of φ4 theory

Basic idea of DR: in n dimensions the integral in (16) dnk ∝ kn−1. While in
4d it is logarithmically divergent, it converges in n = 1, 2, 3 dimensions.

In n = 1, 2, 3 dimensions and in the rest frame of p = (M, 0, 0, 0) (16) equals

I (p, n) =
λ2

2(2π)4

∫
dk0

∫
dn−1k

1[
k2

0 − ~k2 −m2 + iε
] 1[

(k0 −M)2 − ~k2 −m2 + iε
] .

(17)

The integrand depends now merely on |~k | of (n − 1)–dimensional vector ~k.
⇒ Integral over dn−1k can therefore be performed in polar coordinates:

dnk = rn−1dr sinn−2 θn−1 sinn−3 θn−2 · · · sin θ2dθ2 · · · dθ1, (18)

where r ≡
√

k2 and 0 ≤ θ1 ≤ 2π is the “azimuthal” angle, all other angles
θi ∈ (0, π) are generalizations of well known polar angles in 3 dimensions.
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Dimensional regularization of φ4 theory: n < 4

Applying (18) to (17) and denoting ω ≡
√
~k2 we get: I (p, n) =

λ2

2(2π)4

∫
dk0

∫ ∞
0

dωωn−2 1

[k2
0 − ω2 −m2 + iε]

1

[(k0 −M)2 − ω2 −m2 + iε]
W (n),

(19)
where W (n) contains the integral over the angular coordinates

W (n) ≡
∫ 2π

0

dθ1

∫ π

0

dθ2 sin θ2

∫ π

0

dθ3 sin2 θ3 · · ·
∫ π

0

dθn−2 sinn−3 θn−2. (20)

Angular part of
∫

f (x) depending only on r =
√

x2 of the n–dimensional
vector x , can be carried out using the standard formulae∫ π

0

dθ sinm θ =

√
πΓ
(

m+1
2

)
Γ
(

m+2
2

) ⇒
∫

dnxf (r) =
2πn/2

Γ( n
2 )

∫
drrn−1f (r) (21)

with the result: I (p, n) =

λ2

2(2π)4

2π(n−1)/2

Γ( n−1
2 )

∫
dk0

∫ ∞
0

dωωn−2 1

[k2
0 − ω2 −m2 + iε]

1

[(k0 −M)2 − ω2 −m2 + iε]
.

(22)
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Dimensional regularization of φ4 theory: n < 4

For n = 4 (22) reduces to (16), but it has also a well–defined meaning for
all real n ∈ (1, 4)!

With I (p, n) defined on an open interval we can continue it analytically to
the whole complex n plane. The singularity at n = 4 is a simple pole!

To continue I (p, n) below n = 1 we rewrite (22) using ` times a simple per
partes integration and taking into account that ∂/∂ω = 2ω∂/∂ω2

I (p, n) =
λ2

2(2π)4

2π(n−1)/2

Γ( n−1
2 + `)

×

∫
dk0

∫ ∞
0

dωωn−2+2`

(
− ∂

∂ω2

)`
1

[k2
0 − ω2 −m2 + iε]

1

[(k0 −M)2 − ω2 −m2 + iε]
,

(23)which converges for all integer 1− 2` < n < 4.

Rewrite I (p, n) so that it coincides with original form (22) in the region
n ∈ (1, 4) but has also a well–defined meaning in a larger interval. Per
partes integration does not change the behaviour of the integrand at large
ω, but improves the convergence property at the origin ω = 0, thereby
extending the convergence of (23) to lower values of n.
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Dimensional regularization of φ4 theory: n > 4

To continue analytically above n = 4 we insert into (22) the identity

1 =
1

2

(
dk0

dk0
+

dω
dω

)
. (24)

Performing the integrals over k0 and ω again using per partes we arrive at:

I (p, n) =
1

2
(−n + 6)I (p, n) + I ′(p, n) ⇒ I (p, n) =

2

n − 4
I ′(p, n), (25)

where
I ′(p, n) =

λ2

2(2π)4

2π(n−1)/2

Γ( n−1
2 )

∫
dk0

∫
dωωn−2u(k0, ω,M), (26)

u(k0, ω,M) ≡ 2m2

(k2
0 −m2 − ω2 + iε)2

[(k0 −M)2 − ω2 −m2 + iε]
+

2(k0 −M)M + 2m2

(k2
0 −m2 − ω2 + iε) [(k0 −M)2 − ω2 −m2 + iε]2 . (27)

N.B. I ′(p, n) exists for all 1 < n < 5 ⇒ I (p, n) in (25), as a function of
complex n, has a simple pole at n = 4!
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Dimensional regularization of φ4 theory

Consider the diagram in Fig. 2c, where the bubble appears in the t–channel.
First we combine the two propagators in (16) into one, using the identity

1

ab
=

∫ 1

0

dx
1

[ax + b(1− x)]2
, (28)

which is a special case of Feynman parametrization. For (16) it gives

I (p, n) =
λ2

2

∫
dnk

(2π)n

∫ 1

0

dx

[(k2 −m2)x + ((k − p)2 −m2)(1− x)]2

=
λ2

2

∫ 1

0

dx

∫
dnl

(2π)n

1

[l2 − a2(x)− iε]2 , (29)

where we have changed the order of integrations and subsituted

l ≡ k − p(1− x), a2(x) ≡ m2 − p2x(1− x), p2 ≡ (p1 − p3)2
. (30)

The inner integral in (29) yields:

I (p, n) =
λ2

4

i
(4π)2

(4π)εΓ(ε)

∫ 1

0

dx
[
a2(x)

]−ε
, ε ≡ 2− n

2
. (31)
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Dimensional regularization of φ4 theory: mass parameter µ

In n dimensions the coupling λ is no longer dimensionless, as in 4d, but has
dimension [λ] = 4− n = 2ε. The same dimension has also I (p, n).

For n close to the physical value n = 4 in (31) we can use:

Γ(ε) =
1

ε
Γ(1 + ε) =

1

ε
− γE +

∞∑
n=2

(−ε)n−1

n!
ζ(n), (32)

(4π)ε = 1 + ε ln 4π + · · · , (33)

where ζ(n) is the Riemann zeta function and γE = 0.5772 · · ·
We cannot, however, expand in a similar way directly a−2ε because [a] = 2.
Physically well–defined expansion requires introducing some mass
parameter µ that provides a scale for the expansion of the logarithm(

a2(x)

µ2

)−ε
= 1− ε ln

a2(x)

µ2
+ · · · . (34)

Inserting identity 1 = µ2εµ−2ε into (31) we get

I (p, n) = i
λ2

2

1

(4π)2
µ−2ε

[
1

ε
− γE + ln 4π −

∫ 1

0

dx ln
a2(x)

µ2
+O(ε)

]
. (35)
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Coupling renormalization in φ4 theory: λB and λR

New parameter µ is an integral part of DR. I (p, n) does not depend on it,
provided we keep all the terms in expansion (34).

A truncated version of (31), like the first two terms in the Laurent series in
(35), which is the only part of (34) that survives in the limit ε→ 0, still
contains µ despite the absence of the factor µ−2ε to cancel this dependence.

This apparent inconsistency disappears in the process of defining the
µ-dependent renormalized coupling.

Summing the contributions of diagrams in Fig. 2a,b we get∗:

−iλB

[
1− λB

2

µ−2ε

(4π)2

(
1

ε
− γE + ln 4π −

∫ 1

0

dx ln
a2(x)

µ2

)]
, (36)

which to the order considered can be rewritten as

−iλB

[
1− λB

2

µ−2ε

(4π)2

(
1

ε
− γE + ln 4π

)]
︸ ︷︷ ︸

≡ µ2ελR(µ)

[
1 +

λB

2

µ−2ε

(4π)2

∫ 1

0

dx ln
a2(x)

µ2

]
︸ ︷︷ ︸

finite terms

(37)

(*) From now on λB ≡ λ to indicate its later interpretation as bare coupling.
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Coupling renormalization in φ4 theory: λB and λR

Renormalized coupling λR(µ) is defined in terms of the bare coupling λB :

λR(µ) ≡ µ−2ελB

[
1− λB

µ−2ε

32π2

(
1

ε
− γE + ln 4π

)]
. (38)

While [λB ] = 2ε and is held fixed when µ is varied, [λR(µ)] = 0 and
absorbs the singular term 1/ε, eventually plus some finite terms, like
−γE + ln 4π in (38).

The convention defined in (38) is called MS, that corresponding to
vanishing finite terms is called MS (minimal subtraction).

Evaluating derivative of λR(µ) we find a finite result as ε→ 0:

dλR(µ)

d lnµ
= µ

dλR(µ)

dµ
= −2ελBµ

−2ε +
1

8π2
λ2

Bµ
−4ε +O(λ3

B) (39)

= −2ελR +
1

16π2
λ2

R +O(λ3
R) ≡ βφ(λR , ε)

N.B. In the limit ε→ 0 term proportional to λB vanishes but must be kept
if the renormalization procedure is carried out in terms of renormalized
quantities and so called counterterms.
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Coupling renormalization in φ4 theory

The second, finite, term comes from the product

−λ2
B

1

32π2

1

ε

dµ−4ε

d lnµ
= −λ2

B

1

32π2

1

ε
(−4ε)µ−4ε =

1

8π2
λ2

Bµ
−4ε =

λ2
R

8π2
. (40)

where replacement λ2
B → λ2

R in (40) is legal as these two expressions start
to differ first at order λ3

B .

(40) determines implicit dependence of λR(µ) on µ, which cancels explicit
dependence on µ of the finite terms in (37). This cancellation holds,
however, only for physical quantities, like the cross–sections and only if
perturbation theory is summed to all orders.

Leading order β–function coefficient 1/16π2, obtained within DR in (40), is
actually independent of the regularization method used in its derivation! For
instance, in the conventional Pauli–Villars type of regularization we have
instead of (38)

λR(µ) ≡ λB

[
1− λB

1

32π2

(
ln

M2

µ2
+ finite terms

)]
(41)

where M is large cut–off to be sent to infinity. In this case 1/16π2 comes
from derivative with respect to lnµ of logarithmic term ln(M/µ).
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Electric charge renormalization in QED

e + µ scattering: in the lowest order process is described by diagram in Fig.
3a, while the order O(α2) corrections correspond to diagrams in Figs. 3b-e.

While diagrams on Fig. 3a,e give finite results the other are UV divergent.

We’ll work in the Feynman covariant gauge, i.e. set αG = 1 in
dµν = −gµν + (1− αG )

kµkν

k2 .

Quantity standing in each vertex on Fig. 3: eB ≡ bare electric charge .

Figure 3: Feynman diagrams for electron–muon scattering in a leading (a) and
next–to–leading order (b-d). The loop in c) can equally well be on any other of
the four fermion legs while that in d) can circumvent the lower vertex as well.
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Renormalization in QED – Electric charge renormalization

Leading order (LO) diagram Fig. 3a gives a contribution to the invariant
amplitude Mif (see Fig. 3 for notation)

[u(p′)(−iγµ)u(p)] [u(k ′)(−iγν)u(k)]︸ ︷︷ ︸
Wµν(k , p, q)

(
− igµν

q2

)
︸ ︷︷ ︸

Dµν(q)

e2
B , (42)

where we have separated out the square of the bare electric charge and Dµν .

Contribution of Fig. 3b has a similar structure:

Wµν(k , p, q)

(
−i
q2

)
Iµν(q,mB)

(
−i
q2

)
e2
B , (43)

where the tensor:

Iµν(q,mB) ≡ (−1)

∫
d4k

(2π)4
Tr
[

(−ieBγµ)
i

6k −mB + iε
(−ieBγν)

i
6k− 6q −mB + iε

]
(44)

and factor (−1) comes from Pauli principle in the closed electron loop.
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Renormalization in QED – Electric charge renormalization

mB ≡ bare electron mass, will be throughout this subsection treated as a
fixed number, although it also must be renormalized.

Structure of Iµν is dictated by the gauge invariance:

Iµν(q,mB) = (−gµνq2 + qµqν)I (q2,mB) (45)

with I (q2,mB) containing the divergent integral.

Naive counting of the powers of k in the integrand of (44) suggests
quadratic divergence of the integral, but because of (45) the integrand does
not behave like 1/k2, where k is the loop momentum, but rather like q2/k4,
thereby causing only the logarithmic divergence of I (q2,mB).

N.B. In the following we shall drop the term in (45) proportional to qµqν as
it vanishes after contraction with the tensor Wµν in (43).
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Renormalization in QED – Electric charge renormalization

Regularization of diagram in Fig. 3b uses 4 technical ingredients:

1 Schwinger parameterization

i
6k −m + iε

=
i( 6k + m)

k2 −m2 + iε
= (6k + m)

∫ ∞
0

dzeiz(k2−m2+iε) (46)

for both fermion propagators forming the closed loop adds two more
integration variables z1, z2.

2 Changing the original loop variable k to

` ≡ k − qz2

z1 + z2
= k − q +

qz1

z1 + z2
(47)

and using the following identities to perform integrals over d4`∫
d4`

(2π)4
[1, `µ, `µ`ν ] ei`2(z1+z2+iε) =

1

16π2i(z1 + z2)2

[
1, 0,

igµν
2(z1 + z2)

]
. (48)
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Renormalization in QED – Electric charge renormalization

3 Using the identity 1 =

∫ ∞
0

dt

t
δ

(
1− z1 + z2

t

)
(49)

to trade one of the integrations over z1 or z2 for that over t.

4 The identity
∫ ∞

0

dx

x

(
eiax − eibx

)
= ln

b

a
. (50)

Performing the first two steps we get:

Iµν(q) =
−ie2

b

4π2

∫ ∞
0

dz1

∫ ∞
0

dz2

(z1+z2)2 exp
[
i
(

q2 z1z2

z1+z2
− (m2

b − iε)(z1 + z2)
)]

Jµν(q),

(51)
where the tensor Jµν has two terms:

Jµν(q) ≡ 2(gµνq2−qµqν)
z1z2

(z1 + z2)2
+ gµν

[
−i

z1 + z2
− q2z1z2

(z1 + z2)2
+ m2

B

]
(52)

First term satisfies the transversality condition qµIµν(q,mB) = 0 that
follows from gauge invariance, while the second term does not. Closer
examination of the integral standing by gµν shows that it actually vanishes!
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QED Electric charge renormalization: Pauli–Villars

Using in the transverse term of (52), the identity (49) and carrying out the
integral over z1 or z2, we get the following (still UV divergent!) expression:

I (q2,mB) =
ie2

B

2π2

∫ 1

0

dz z(1−z)

∫ ∞
0

dt

t
exp

[
it
(
q2z(1− z)−m2

B + iε
)]
, (53)

where the original logarithmic singularity of the integral over d4k has been
transformed into the same type of logarithmic singularity over the variable t.

Pauli–Villars technique for regularization of integrals (53) consists in
replacement

I (q2,mB)→ I (q2,mB ,M) ≡ I (q2,mB)− I (q2,M), (54)

where the subtraction is understood to be carried using the identity (50).
i.e. first subtracting the integrands and then performing the integration.

Mass M acts as the UV regulator and at the end of the renormalization
procedure should be sent to infinity.

Usage of fermion mass M in the subtracted term I (q2,M) guarantees that
this regularization technique preserves gauge invariance, which is of crucial
importance for the proof of the full renormalizability of the theory.
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Electric charge renormalization: Pauli–Villars

Using (50) the regularized expression (54) equals

I (q2,mB ,M) =
ie2

B

2π2

∫ 1

0

dzz(1− z) ln

(
M2

m2
B − q2z(1− z)

)
. (55)

Isolating the logarithmically divergent term this can be rewritten as

−iI (q2,mB ,M) =
e2
B

12π2
ln

M2

µ2
− e2

B

2π2

∫ 1

0

dzz(1−z) ln

(
m2

B − q2z(1− z)

µ2

)
. (56)

N.B. Integral over dimensionless parameter z is the trace of the original
integration over the loop momentum k . Note that for any nonzero q2

expression (55) is regular for mB → 0 and can thus be used even for
massless fermions.

In (56) new dimensional scale µ was introduced, which scales the cut–off
parameter M in the singular term ln(M2/µ2), but obviously I (q2,mB ,M) is
in fact independent of µ!
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Renormalization in QED – Electric charge renormalization

Once the regularization method has been chosen we can add contributions
of diagrams in Fig. 3a,b obtaining (dropping the tensor Wµν)

− igµν
q2

e2
B

[
1− e2

B

12π2
ln

M2

µ2
+

e2
B

2π2

∫ 1

0

dz z(1− z) ln

(
m2

B − q2z(1− z)

µ2

)]
(57)

Rewrite now (57) as a product of two terms

− igµν
q2

e2
B

Z−1
3 (A, e2

B ,M, µ)︷ ︸︸ ︷[
1− e2

B

12π2
ln

M2

µ2

]
︸ ︷︷ ︸

≡ e2
R(A, µ)

×
[

1+
e2
B

2π2

∫ 1

0

dzz(1− z) ln

(
m2

B − q2z(1− z)

µ2

)
︸ ︷︷ ︸

C (A, q2, µ,mB)

]
,

(58)
where UV divergence was absorbed into into newly defined
renormalized electric charge e2

R(A, µ)∗ with the rest of the original O(e2
B)

term left in the finite contribution C (A, q2, µ,mB).

(*) Label “A” etc. is used to distinguish between different definitions of eR .
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Renormalization in QED – Electric charge renormalization

In terms of this new parameter (58) can be written as

− igµν
q2

e2
R(A, µ)

[
1 +

e2
B

2π2
C (A, q2, µ,mB)

]
−→

−→ − igµν
q2

e2
R(A, µ)

[
1 +

eR(A, µ)

2π2
C (A, q2, µ,mB)

]
, (59)

where the second expression, differing from the the first one by replacement
e2
B → e2

R in the brackets, results if the renormalization procedure is carried
out to order O(e6

B).

In two regions the integral over z in (58) can be performed analytically.

For large Q2 ≡ −q2, i.e. for −q2/m2
B � 1 we find:

− igµν
q2

e2
R(A, µ)

[
1 +

e2
R(A, µ)

12π2

(
ln
−q2

µ2
+

5

3

)]
, (60)

while for −q2/m2
B � 1 we have:

− igµν
q2

e2
R(A, µ)

[
1 +

e2
R(A, µ)

12π2
ln

m2
B

µ2
+

e2
R(A, µ)

60π2

−q2

m2
B

]
. (61)
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Renormalization in QED – Electric charge renormalization

In (58) singularity of the loop integral in the term proportional to ln(M2/µ2)
was isolated and included in definition of renormalized electric charge e2

R(µ).

This procedure is not unique – we can include in e2
R(µ) arbitrary finite terms

as well – e.g. we can separate integral over z in (57) into two parts

e2
B

2π2

∫ 1

0

dzz(1− z) ln
M2

m2
B + µ2z(1− z)︸ ︷︷ ︸

1− Z−1
3 (B, e2

B ,M,mB , µ)

+
e2
B

2π2

∫ 1

0

dzz(1− z) ln
m2

B + µ2z(1− z)

m2
B + (−q2)z(1− z)︸ ︷︷ ︸

C (B, q2, µ,mB)
(62)and include in e2

R(µ) ≡ e2
BZ−1

3 (denoted e2
R(B, µ)) the whole first term.

This term can be written as:

1−Z−1
3 (B, e2

B ,M,mB , µ) =
e2
B

12π2
ln

M2

µ2
− e2

B

2π2

∫ 1

0

dzz(1−z) ln

(
m2

B

µ2
+ z(1− z)

)
.

(63)
Definition e2

R(µ) ≡ e2
BZ−1

3 is motivated by the requirement that at
µ2 = −q2 finite correction C (B, q2 = −µ2, µ) = 0 , i.e. for µ2 = −q2 all the
effects of the electron loop correction are included in e2

R(B, µ).
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Renormalization in QED – Electric charge renormalization

For large µ, i.e. when µ2 � m2
B , we find

1− Z−1
3 (B)→ e2

B

12π2

(
ln

M2

µ2
+

5

3

)
, (64)

which differs from previous case only by presence of additional constant 5/3
in definition of e2

R(B, µ), while in region µ� mB we find a very different
behavior:

1− Z−1
3 (B)→ e2

B

12π2
ln

M2

m2
B

− e2
B

60π2
.
µ2

m2
B

. (65)

For µ→ 0, e2
R(B, µ) approaches a finite value e2

R(B, 0)

e2
R(B, µ,mB) = e2

B

(
1− e2

B

12π2
ln

M2

m2
B

+
e2
B

60π2

µ2

m2
B

)
−→

−→ e2
B

(
1− e2

B

12π2
ln

M2

m2
B

)
≡ e2

R(B, 0). (66)
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Electric charge renormalization: eR(A, µ)

Basic difference between definitions A and B of eR(µ) is how the effects of
electron mass are taken into account. For me = 0 they obviously coincide.

For this case all the dependence on mB resides in (finite) correction
C (A, q2, µ,mB). Note in particular the presence in (61) of the term
proportional to ln(m2

B/µ
2), which would be arbitrarily large and therefore

dangerous for µ→ 0.

e2
R(A, µ) contains no information on mB and therefore behaves exactly in

the same way as for the massless electron. We shall therefore refer to
e2
R(A, µ) as mass independent definition of renormalized charge.

Setting µ2 = −q2 and approaching the limit q2 → 0 the expansion
parameter e2

R(A,−q2)→ 0∗, but due to the presence of the term
ln(−q2/mB) the coefficient function C (A, q2, µ2 = −q2,mB)→∞ and so
do in fact all higher order coefficients as well.

(*) For small µ e2
R(A, µ) as defined in (58) turns negative and eventually blows up

to −∞ as µ→ 0. However, taking into account higher order terms makes the

couplant e2
R(A, µ) indeed vanish at µ = 0.
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Electric charge renormalization: eR(B , µ)

Situation is different as e2
R(B, µ,mB) absorbs part of the dependence on mB

and is therefore called mass dependent renormalized charge.

For µ� mB (apart from 5/3 in (64)) e2
R(B, µ,mB) behaves as in the case

A, but below mB µ–dependence changes dramatically, leading to the
constant limit e2

R(B, 0).

Usual practice: all the mass effects are included in e2
R(B, µ2 = −q2), which

has a finite limit for q2 → 0 and so has the coefficient function
C (B, q2, µ2 = −q2,mB)!

Nevertheless in principle both of these definitions of eR(µ) are equally legal.

µ can thus be interpreted as the lower bound of the logarithmically divergent
integral of the type ∫ M

µ

dk

k
= ln

M

µ
. (67)

Heisenberg uncertainty relations ⇒ eR(µ) ≈ charge (original plus the
induced one) inside a sphere of the radius r = 1/µ around the center of an
electron.
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Scale independence and Renormalization group

Arbitrary scale parameter µ appearing in both e2
R(µ) and C (q2, µ,mB) is an

unphysical parameter ⇒ results for physical quantities cannot depend on µ.

If we change µ, other parameters, like masses and coupling constants, must
also change in order to compensate for this effect. To keep physics invariant,
changing the subtraction point µ must be offset by changes in the
renormalized physical parameters as a function of the energy.

This natural requirement is the essence of the renormalization group (RG),
introduced in the early fifties by Gell-Mann, Low, Bogoljubov and others.
RG expresses nothing else but internal consistency of renormalized pQFT.

Let R1 represent some (unspecified) renormalization scheme. If ΓB is
unrenormalized quantity and ΓR1 is same quantity renormalized by the
scheme R1, then: ΓR1 = Z (R1)ΓB (68)

where Z (R1) is renormalization constant under renormalization scheme R.

Let us now choose a different renormalization scheme R2. Since the
unrenormalized quantity ΓB is independent of the renormalization scheme,
then: ΓR2 = Z (R2)ΓB (69)
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The renormalization group

Relationship between these two renormalized quantities is given by:

ΓR2 = Z (R2,R1)ΓB where Z (R2,R1) = Z (R1)/Z (R2) (70)

Trivially, this satisfies a group multiplication law:

Z (R3,R2)Z (R2,R1) = Z (R3,R1) (71)

where identity element is Z (R,R) = 1

For example, in φ4 theory, we have the following relationship between
unrenormalized and renormalized quantities:

Γ
(n)
B (pi , gB ,mB) = Z

−n/2
φ Γ

(n)
R (pi , g ,m, µ) (72)

Since unrenormalized bare quantity is independent of µ, the derivative
acting on the unrenormalized quantity must, by construction, be zero:

0 = µ
∂

∂µ
Γ

(n)
B =

(
µ
∂

∂µ
Z
−n/2
φ

)
Γ

(n)
R + Z

−n/2
φ

(
µ
∂

∂µ
Γ

(n)
R

)
(73)
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The renormalization group

Using the chain rule for independent variables µ, g and m:

d

dµ
=

∂

∂µ
+
∂g

∂µ

∂

∂g
+
∂m

∂µ

∂

∂m
(74)

we can rewrite (74) as:(
µ
∂

∂µ
+ β(g)

∂

∂g
− nγ(g) + mγm(g)

∂

∂m

)
Γ(n)(pi , g ,m, µ) = 0 (75)

where

β(g) ≡ µ∂g

∂µ
γ(g) ≡ µ ∂

∂µ
ln
√

Zφ mγm(g) ≡ µ∂m

∂µ
(76)

These are the RG equations which express how renormalized vertex functions
change when we make a change in scale µ.

We can formally solve the expression (76) for the β function.

d

dµ
=

dg

β(g)
⇒ ln

µ

µ0
=

∫ g(µ)

g(µ0)

dg

β(g)
(77)

where µ0 is some arbitrary reference point.
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Scale independence and Renormalization group

Cancelation mechanism of µ–dependence in expansion parameter e2
R(µ) and

finite coefficient function C (q2, µ,mB) works in such a way that although
the full sum of perturbation expansion is µ-independent, its approximation

to order e4
R(µ) (in fact, to any finite one) is not!

This observation is the first signal of the inevitable ambiguities which appear
when renormalized QED and QCD are considered to finite orders.
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Electric charge renormalization – Additional comments

In any practical calculation we therefore have to choose some value of µ!
If the finite correction term, containing in both definitions the logarithm
ln(−q2/µ2) is to be reasonably “small” we should choose µ2 ∝ −q2.

Proof that renormalization procedure can be carried out systematically to all
orders of perturbation theory, so that infinities at all orders can be absorbed
in the redefined renormalized couplant, masses and wave functions, is rather
nontrivial . . .

Although the intermediate steps in the renormalization procedure depend on
regularization technique used, the structure of the final results does not!
There will always be some free scale parameter denoted µ, on which the
redefined couplant as well as the new expansion coefficients will depend

Once the renormalized perturbation expansions are expressed in terms of
these free parameters and the mentioned invariants, they carry no trace of
the regularization technique used.
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Electric charge renormalization – Additional comments

In this way the divergent term, containing the logarithm ln(M2/µ2), is
absorbed into definition of renormalized couplants e2

R(A, µ) or e2
R(B, µ)

e2
R(A, µ) ≡ e2

B

[
1− e2

B

12π2
ln

M2

µ2

]
(78)

and analogously for e2
R(B, µ).

In the final step M →∞ should be taken in (78). For fixed bare charge e2
B

this is, however, impossible. However, since e2
B appears always in

combination with the divergent logarithm ln(M/µ) we can forget about their
separate existence and consider the renormalized electric charge eR as the
basic QED parameter.

This well–defined algorithm for evaluation of finite coefficients of
perturbative expansions is clearly unsatisfactory on physical grounds. Many
theorists, prominent among them Landau and his school, had addressed this
problem asking following question:
Can one define such a dependence e2

B(M) of the bare charge on the cut-off
M, which would compensate in (78) the term proportional to ln M, coming
from the divergent integral, and allow the construction of the finite limit for
the renormalized charge e2

R(µ) when M →∞?

N.B. Since 1/M provides cut-off in coordinate space we could think of
e2
R(M) as charge inside a sphere of r = 1/M and M →∞ corresponds to

limit of fields due to spatially extended charges, shrinking to a point.

Although this approach was basically sound, the answer they found in QED
was negative and thus discouraging.
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Electric charge renormalization – Higher orders

Let us now improve a little bit the approximation we have so far worked in.
Instead of a single loop in Fig. 3b consider the sum of terms corresponding
to the subset of all Feynman diagrams shown in Fig. 4.

Figure 4: Subset of
Feynman diagrams
giving rise to a
geometric series

Bubbles are connected via single photon lines and each
separately yields exactly the same result as the bubble in
Fig. 3b.
⇒ Summing this subset of Feynman diagrams leads to a
geometric series, the leading term of which is just (78).

This series is easily summed with the result:

αR(µ) = αB(M)
[
1 + αB(M)

(
β0 ln µ

M + δ(x)
)

+ · · ·
]

=
αB(M)

1− αB(M) (β0 ln(µ/M) + δ(x))
, (79)

where β0 = 2/3π and δ(x) is:

δ(A, x) = 0, δ(B, x) =
2

π

∫ 1

0

dzz(1−z) ln

(
1

x2
+ z(1− z)

)
, x ≡ µ

mB
. (80)
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Electric charge renormalization – Higher orders

For finite µ and mB → 0, i.e. for x →∞, δ(B, x)→ −5/3 and thus

e2
R(B, µ) ≡ e2

BZ−1
3 (B) = e2

B

[
1 + β0αB

(
ln
µ2

M2
− 5

3

)]
(81)

reflecting fact that massless fermions contribute to the renormalized e2
R(µ)

at all scales µ with the same strength.

For fixed µ and mB →∞ (80) diverges like ln mB/µ.

This looks strange and unphysical as one would expect that infinitely
heavy electrons should not have any influence on the theory at finite
energy scales µ.

However, resuming all the bubbles in Fig. 4a the resulting
αR(B, µ,mB) has the property we wish it to have:
In the limit mB →∞ a heavy electron decouples from it.
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Electric charge renormalization – The infrared limit

A closely related feature of (79) i.e. of

αR(µ) =
αB(M)

1− αB(M) [β0 ln(µ/M) + δ(x)]

concerns its behavior as µ→ 0.

A For the mass–independent definition of the renormalized couplant (79)
implies αR(A, µ)→ 0.

B For the mass–dependent definition the situation is differrent. Keeping the
UV cut–off parameter M fixed we find

β0 ln
µ

M
+ δ(B, x)→ β0 ln

mB

M
, (82)

⇒ for mB 6= 0 the infrared limit of αR(B, µ) is determined by the mass mB

and coincides with that of massless electron at the scale µ = mB !

This is a manifestation of the fact that in QED (and in general in theories
without confinement of elementary fermions) the IR limit of the gauge
coupling is determined essentially by the fermion masses.
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Dimensional transmutation

Inverting (79) we have:

αB(M) =
αR(µ)

1− αR(µ) [β0 ln(M/µ) + δ(x)]
. (83)

Thus for any finite αR the bare couplant αB(M) blows up to infinity at some
finite value of M, corresponding to the pole of this expression.

Note that even if we forget about αB(M) and work directly with αR(µ) (79)
implies that for any dependence of αB(M) on M which has a finite limit as
M →∞ the renormalized couplant αR(µ) vanishes!

Inconsistency: a dimensionless quantity α(µ) is expressed as a function of a
dimensional one (µ or M).

Solution: µ enters in the ratio with some other dimensional parameter,
which will be denoted Λ.

We should thus write more correctly

αR = αR(µ/Λ), αB = αB(M/Λ). (84)

Michal Šumbera (NPI ASCR, Prague) Introduction to QCD November 26, 2009 51 / 78



Dimensional transmutation

Λ has nothing to do with the cut-off and represents a fundamental scale
parameter, which appears in the theory entirely due to the renormalization
procedure.

This phenomenon is called dimensional transmutation and is typical
quantum phenomenon valid for theories with dimensionless couplants.

It is caused by the logarithmic divergences in one-loop diagrams which imply
that this constant actually depends on the typical energy scale of the
processes under considerations. The running is determined by the β-function
and renormalization group.

Appearance of Λ is an inevitable consequence of the renormalization
procedure but its numerical value is not fixed by these considerations and
must be determined from experimental data.

Consequently, the strength of the interaction may be described by a
dimensionful parameter – the energy scale where the interaction strength
reaches the value 1. In the case of QCD, this energy scale is called the QCD
scale and its value 150 MeV replaces the original dimensionless coupling
constant.
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Dimensional transmutation

The standard way to define Λ unambiguously is to write down and solve the
differential equations which follow from (79) and (83).

A we have simply

dαR(A, µ/Λ)

d lnµ
= β0α

2
R(A, µ/Λ)⇒ αR(A, µ/Λ) =

1

β0 ln(Λ/µ)
, (85)

dαB(M/Λ)

d ln M
= β0α

2
B(M/Λ)⇒ αB(M/Λ) =

1

β0 ln(Λ/M)
, (86)

B the equation for αR(B, µ) is more complicated

dαR(B, µ/Λ)

d lnµ
=

(
β0 +

dδ(B, x)

d lnµ

)
α2

R = β0α
2
R(B, µ/Λ)

∫ 1

0

dz
6x2z2(1− z)2

1 + x2z(1− z)︸ ︷︷ ︸
h(x)

.

(87)
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Dimensional transmutation

Figure 5: Shape of the function h(x)
together with its “step”
approximation (dashed line) and the
analytical approximation x2/(5 + x2)
(dotted curve)

Function h(x) in 87 is:

h(x) = 1− 6

x2
+

12

x3
√

4 + x2
ln

√
4 + x2 + x√
4 + x2 − x

.
=

x2

5 + x2

This is illustrated in Fig. 5. We see that
h(x) approaches unity for x � 1 but
vanishes
like x2 as x → 0.

Consequently the solutions of (87) are
essentially same in A and B in first region,
but differ substantially in the second,
where αR(A, µ/Λ)→ 0 while αR(B, µ/Λ)
flattens to a constant value, (see Fig. 6).
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Dimensional transmutation

Figure 6: Sketch of dependence of
αR(µ) on µ for both A and B definitions.

In both cases Λ labels the elements
of an infinite set of solutions of
these equations.

Note that after taking the
derivative of (79) with respect to
lnµ the cut–off M has completely
disappeared from the resulting
expression (85) and (87)!

Taking (85) or (87) as definitions
of the renormalized couplant
αR(µ/Λ) is the crucial step of the
renormalization procedure.
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Effective charge

Since αR ≥ 0 it makes sense only for µ < Λ and should be trusted only for
µ� Λ.

So even if we start from (85) i.e. αR(A, µ/Λ) = [β0 ln(Λ/µ)]−1 we
encounter severe problems when we approach short distances .

The renormalized couplant diverges at µ = Λ and we can, knowing αR at
some µ, evaluate Λ from the any of two expressions

Λ = µ exp

[
1

β0αR(A, µ/Λ)

]
= M exp

[
1

β0αB(M/Λ)

]
. (88)

For case B same relations hold for x � 1, while for x � 1 (88) are replaced
by more complicated formulae.

Thus we can alternatively determine Λ from the knowledge of the bare
couplant α at some cut–off M.

Dependence of αR(µ/Λ) on µ has also a very simple and intuitive physical
interpretation: e2

R(µ/Λ) is the charge contained inside the sphere of the
radius r = 1/µ around the “core” of an electron. It can be viewed as the
effective charge at a distance defined by the scale µ.
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Large distance behavior of QED: q2 → 0

Use of αR(B, µ) as an expansion parameter is appropriate even in this region
as it gives a finite value for the contribution of the sum of diagrams in Fig.
3a,b, equal simply to e2

R(B, 0).

Including the (finite) contribution of the sum of other three diagrams in this
figure leads to the final result proportional to e2

R(B, 0)(1 + r1e2
R(B, 0)),

where r1 is some number. Recalling the way eR(B, µ) was introduced, it is
obvious that we could add to the quantity B and simultaneously subtract
from C (B, q2, µ,mB) in (62) such finite term that the resulting r1 actually
vanishes!

Denoting the corresponding renormalized charge eR(C , µ), the q2 → 0 limit
of the electron–muon scattering amplitude, evaluated using this definition of
renormalized electric charge, would be proportional to e2

R(C , 0), with no
higher order corrections.

Repeating this procedure for the case of Compton scattering on an electron
leads to another renormalized charge: e2

R(D, µ = 0). According to the
conventional definition of electric charge, this quantity coincides with the

fine structure constant αcl ≡
[
e2
R(D, 0)

]2
/4π = 1

137 .
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Technique of counterterms

In QED at one loop all UV divergencies can be absorbed in the definition of
the renormalized

electron charge e2
R(µ),

electron mass mR(µ),
electron and photon fields AµR(x , µ) and ψR(x , µ),

which replace their “bare” analogues appearing in the original QED
lagrangian. In terms of these quantities all physical observables become
finite.

At one loop this claim follows if we add the contributions from diagrams in
Fig. 3a-d, with the lower vertex amputated. In terms of the renormalization
factors Z1,Z2F ,Z3,Zm, and writing out only the singular parts of the
respective contributions we had from

Fig. 3a: −ieBγµ,
Fig. 3b: −ieBγµ(Z3 − 1),
Fig. 3c: −ieBγµ

(
1− Z−1

2F

)
,

Fig. 3d: −ieBγµ
(
Z−1

1 − 1
)
.
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Technique of counterterms

In summing the above expressions we have to keep in mind that in
perturbation theory each renormalization factor Zi has the form
Zi = 1 +O(e2

B) so that to the leading order in e2
B the sum of divergent

factors should be written as[
1 + (Z3 − 1) + 2

(
1− Z−1

2F

)
+
(
Z−1

1 − 1
)]

=

[
1 +

(
Z−1

1 − 1
)]

[1 + (Z3 − 1)][
1 +

(
Z−1

2F − 1
)]2 =

Z3Z 2
2F

Z1
,

(89)
where the factor 2 in front of (1− Z−1

2F − 1) reflects the fact that the loop in
Fig. 3c can be on the outgoing electron leg as well.

Multiplying this sum with 1/
√

Z3 for each external (from the point of view
of the upper vertices in Fig. 3) photon and with 1/

√
Z2F for each external

electron line we end up with

−ieBγµ
√

Z3Z2F Z−1
1 = −ieBγµ

√
Z3 = −ieRγµ, (90)

where we have now used the identity Z1 = Z2F . The diagram in Fig. 3c
contributes also to the renormalization (redefition) of the electron mass, but
this divergence can be ignored if we write electron propagators everywhere in
Fig. 3 with the renormalized mass instead of the bare one.
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Technique of counterterms

Systematic way to deal with UV divergencies at all orders of pQFT proceeds as:

Bare quantities are expressed in terms of renormalized ones, by introducing
for all of them appropriate renormalization factors

ψB ≡
√

Z2FψR , AµB ≡
√

Z3AµR , mB ≡ ZmmR , αB ≡ ZααR . (91)

Each Zi can be expanded in terms of renormalized coupling αR as

Zi (M/µ) = 1 + αR ((singular terms) + finite terms) +O(α2
R). (92)

In DR structure of the counterterms reads:

Zi (M/µ) = 1 + αR

(
γ

(1)
1

ε
+ γ1

0

)
+ α2

R

(
γ

(2)
2

ε2
+
γ

(2)
1

ε
+ γ2

0

)
+ · · · , (93)

where all γ
(i)
j are finite (calculable) numbers. Except for γ

(i)
0 which can be

chosen completely arbitrarily, all those standing by the inverse powers of ε,
are uniquely defined by requiring that they cancel the UV singularities in
loops. In this approach we thus work from the very beginning exclusively
with renormalized quantities and introduce the counterterms to cancel all
the UV infinities coming from loops.
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Technique of counterterms

These counterterms formally appear when the original bare lagrangian is
rewritten in terms of the renormalized quantities

LQED = −1

4
Z3FµνR F R

µν + Z2F ΨR(i 6∂ − ZmmR)ΨR +
√

Zα
√

Z3Z2F eRΨRγµΨRAµR
(94)

and then reorganized in the following equivalent way

LQED = −1

4
FµνR F R

µν + ΨR(i 6∂ −mR)ΨR + eRΨRγµΨRAµR + Lcount, (95)

where

Lcount ≡ −1

4
(Z3 − 1)FµνR F R

µν + (Z2F − 1)ΨR i 6∂ΨR − (Z2F Zm − 1)mRΨRΨR +(√
Zα
√

Z3Z2F − 1
)

eRΨRγµΨRAµR . (96)

Each of the so called counterterms in (96) is then treated as additional
interaction term.
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Feynman parametrization

Formula (28) is simplest case of a general expression for the combination of
arbitrary number of scalar propagators of the same type

1

a1a2 · · · an
= (n− 1)!

∫ 1

0

dx1 · · ·
∫ 1

0

dxnδ

(
n∑

i=1

xi − 1

)
1

[x1a1 + · · ·+ xnan]n
.

(97)
For combination of 2,3 and 4 propagators with general powers:

1

aαbβ
=

Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

dx
xα−1(1− x)β−1

[xa + (1− x)b]α+β
, (98)

1

aαbβcγ
=

Γ(α + β + γ)

Γ(α)Γ(β)Γ(γ)

∫ 1

0

dxx

∫ 1

0

dy
uα−1

1 uβ−1
2 uγ−1

3

[u1a + u2b + u3c]α+β+γ
, (99)

where
u1 = xy , u2 = x(1− y), u3 = 1− x ,

1

aαbβcγdδ
= Γ(α+β+γ+δ)

Γ(α)Γ(β)Γ(γ)Γ(δ)

∫ 1

0

dxx2

∫ 1

0

dyy

∫ 1

0

dz
uα−1

1 uβ−1
2 uγ−1

3 uδ−1
4

[u1a + u2b + u3c + u4d ]α+β+γ+δ
,

(100)
and u1 = 1− x , u2 = xyz , u3 = x(1− y), u4 = xy(1− z).
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Feynman parametrization

Another function encountered in evaluation of loop diagrams is∫ 1

0

dxxα(1− x)β = B(α, β) =
Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
. (101)

In all the above formulae we have used the standard definition of the
Γ-function

Γ(z) ≡
∫ ∞

0

tz−1e−tdt, (102)

which is related to another widely used ψ-function

ψ(z) ≡ Γ′(z)

Γ(z)
, ψ(1) = −γE . (103)
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Momentum integrals and related formulae

Formulae needed for evaluation of one loop diagrams are (a is real number ):

I (m, r) ≡
∫

dnk

(2π)n

(k2)r

[k2 − a2 + iε]m
=

i
(4π)n/2

(−1)r−m
(
a2
)r−m+n/2 Γ(r+ n

2 )Γ(m−r− n
2 )

Γ( n
2 )Γ(m)

(104)∫
dnk

(2π)n

kµkν
[k2 − a2 + iε]m

=
1

n
gµν

∫
dnk

(2π)n

k2

[k2 − a2 + iε]m
,

∫
dnk

1

k2 + iε
= 0.

(105)
These formulae can be derived

using the so called Wick rotation write I (m, r) as an integral over the
momentum in Euclidean space (where k2

E =
∑n

i=1 k2
i )

I (m, r) = i(−1)r−m

∫
dnkE

(
k2
E

)r
[k2

E + a2 − iε]
m , (106)

working out the angular integral according to (21) and
evaluate the remaining one–dimensional integral by means of per partes
for integer n:∫ ∞

0

dx
xn−1+2r

[x2 + a2]m
=

1

2

(
a2
)r−m+n/2 Γ(r + n

2 )Γ(m − r − n
2 )

Γ(m)
. (107)
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Dimensional regularization in QED and QCD

Similarly to λφ4 theory the way basic fields enter the QED lagrangian
determines their dimensions, as well as that of the gauge couplant, in
n–dimensional space. They are listed in the Table 1 and are the same in
QED and QCD.

quantity dimension
fermions (n − 1)/2 = 3/2− ε
gauge bosons (n − 2)/2 = 1− ε
gauge coupling (4− n)/2 = ε

Table 1: Dimensions of the fields and the couplant in QED and QCD.
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Clifford algebra in n-dimesions

In QED and QCD there is additional complication related to the extension of
γ matrices into n–dimensional space–time. To generalize the Clifford
algebra, defined by the anticommutation relations,

{γµ, γν} = 2gµν , gµν = 0 for µ 6= ν, g00 = 1, gii = −1 for i = 1, 2, · · · n − 1
(108)

to n dimension it is useful to start with integer n, where (108) makes sense
mathematically and ask whether there is a realization of this Clifford
algebra by some mathematical objects.

The answer is not trivial even for integer n and has two parts:

even n = 2k : there are n matrices of the dimension 2k satisfying (108)
and the analogue of γ5 in 4 dimensions is defined as

γ∗ ≡ iγ0γ1 · · · γn−1, (109)

odd n = 2k + 1: one starts with even number of dimensions
n = 2k + 2 and takes n − 1 = 2k + 1 of the associated γ matrices,
which obviously satisfy (108).
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Clifford algebra in n-dimesions

For integer n Clifford algebra can thus be realized by matrices of the
dimension 2[(n+1)/2] ([x ] is whole part of a real number x) , with following
properties:

Tr 1 = 2[(n+1)/2],

Tr γµγν = 2[(n+1)/2]gµν ,

Tr γµγνγαγβ = 2[(n+1)/2] (gµνgαβ − gµαgνβ + gµβgνα) ,

γµγ
µ = n, (110)

γµγ
αγµ = (2− n)γα,

γµγ
αγβγµ = 4gαβ + (n − 4)γαγβ ,

γµγ
αγβγδγµ = −2γδγβγα + (4− n)γαγβγδ.

Trace of an odd number of γ matrices vanishes in n dimensions as well. In
the above relations n must obviously be an integer, but after the trace
reductions and momentum integrations are done the resulting expressions
will make sense for arbitrary real n. This is the essence of dimensional
regularization.
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Dimensional regularization in QED

In QED the contribution of the basic vacuum polarization loop in Fig. 3b
has in n dimensions the form similar to that of (16):

Iµν(q, n) = −e2
B

∫
dkn

(2π)n

Lµν(q, k, n)

[k2 −m2] [(k − q)2 −m2]
. (111)

Note that contrary to the analogous quantity I (p, n) in λφ4 theory (111) is
dimensionless.

The numerators in (111) are easily recombined using the Feynman
parametrization exactly as in (29)-(30) while the numerator equals

Lµν(k , q, n) = 4
[
2kµkν − (kµqν + kνqµ)− (k2 − kq −m2)gµν

]
= 8x(1− x)

[
q2gµν − qµqν

]
+ 4gµν

[(
2

n
− 1

)
l2 + (m2 − q2x(1− x))

]
.

(112)
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Dimensional regularization in QED

Using (104) it is straightforward to show that the second term in (112)
vanishes, similarly as in the Pauli–Villars regularization technique, after
integration over the momentum l , yielding

Iµν(q, n) = −e2
B

[
q2gµν − qµqν

] ∫ 1

0

dx8x(1− x)

∫
dln

(2π)n

1

[l2 − a2 + iε]2 , (113)

where a2(x , q2) = m2 − q2x(1− x).

Performing momentum integrals: Iµν(q, n) =
[
q2gµν − qµqν

]
I (q2) (114)

where the scalar function I (q2) is given as

I (q2, ε) ≡ −iµ−2ε e2
B

2π2
(2π)εΓ(ε)

∫ 1

0

dxx(1− x) (a(x , q))−ε . (115)

Introducing the scale µ etc. as in λφ4 theory by we get, keeping only terms
that do not vanish in the limit ε→ 0

I (q, ε) = −iµ−2ε e2
B

12π2

[
1

ε
− γE + ln 4π − 6

∫ 1

0

dxx(1− x) ln

(
m2 − q2x(1− x)

)
µ2

]
.

(116)
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Dimensional regularization in QED

The sum of the diagrams in Fig. 3a,b thus equals (without the fermion
bispinors and omitting the term qµqν which vanishes after sandwiching
between them) (

− i
q2

)
e2
B

[
1 + q2gµν I (k , q, ε)

(
− i

q2

)]
=

(
− i

q2

)
e2
B

(
1− e2

Bµ
−2ε

12π2

[
1

ε
− γE + ln 4π − 6

∫ 1

0

dxx(1− x) ln
m2 − q2x(1− x)

µ2

])
.

(117)

(117) has similar structure as (36) and leads to introduction of
renormalized electric charge

e2
R(A, µ) ≡ e2

Bµ
−2ε

(
1− e2

Bµ
−2ε

12π2

[
1

ε
− γE + ln 4π

])
. (118)

Michal Šumbera (NPI ASCR, Prague) Introduction to QCD November 26, 2009 70 / 78



Dimensional regularization in QED

Taking derivative of (118) w.r.t. lnµ we get for ε→ 0 analogously to (40):

dαR(A, µ)

d lnµ
≡ βQED(αR , ε) = −2εαR(A, µ) + β0α

2
R(A, µ), α ≡ e2

4π
, β0 =

2

3π
,

(119)
where, as in the case of φ4 theory, the term, proportional to ε, has to be
retained.

In λφ4 theory, QED as well as QCD (actually quite in general) we can
therefore write β–functions in n = 4− 2ε dimensions as

βε(x , ε) = −2εx + β(x), (120)

where β(x) are β–functions in 4 dimensions.

Moreover, the equation for the renormalized coupling is exactly the same as
that obtained using the Pauli–Villars regularization. So long as the
regularization technique is consistent with the basic requirements of
relativistic and gauge invariance, the properties of physical renormalized
quantities should not depend on its choice.
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Renormalization in QCD

Apart of color d.o.f. complications, basic novel features are related to gluon
selfinteraction. The crucial one concerns the sign of the derivative of the
renormalized color couplant αs ≡ g 2/4π with respect to the scale µ.

To illustrate this difference let us return to the physical quantity:

R(Q) ≡ σ(Q, e+e− → hadrons)

σ(Q, e+e− → µ+µ−)
=

QPM︷ ︸︸ ︷(
3
∑

i

e2
i

)
[1 + r(Q)] , (121)

In QCD the simple QPM formula is just the leading order term, while QCD
provides corrections, given by diagrams like those in Fig. 7b,c,d and
contained in the quantity r(Q).

Figure 7: Examples of Feynman diagrams describing the e+e− annihilation
to hadrons in the QPM (a) and the lowest order of perturbative QCD (b-d).
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Renormalization in QCD: Beyond the QPM

r(Q) can be expressed as a power expansion in a(µ) ≡ αs/π:

r(Q) = a(µ/Λ)
[
r0 + r1(µ/Q)a(µ/Λ) + r2(µ/Q)a2(µ/Λ) + · · ·

]
; r0 = 1 (122)

Equation determining the µ–dependence of a(µ/ΛQCD) reads:

da(µ, ci )

d lnµ
= −ba2(µ, ci )

[
1 + ca(µ, ci ) + c2a2(µ, ci ) + · · ·

]
, (123)

where for brevity of this (and the following) formulae the QCD parameter Λ
is always understood to scale µ and the subscript “R” standing for
“renormalized” is dropped.

The r.h.s. of (123), considered as a function of a, is called the β–function
of QCD. For mq = 0 and fixed αG (appearing in the gauge fixing term

− 1
2αG

(f (Aµ(x)))2) all the coefficients b, c , ci ; i ≥ 2 are pure numbers.

Coefficients b and c are uniquely determined by numbers of quark flavors
(nf ) and colors (Nc):

b =
11Nc − 2nf

6
; c =

51Nc − 19nf

22Nc − 4nf
. (124)
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Asymptotic freedom of QCD

In realistic QCD, Nc = 3 and nf ≤ 6 and consequently the coefficient b on
the r.h.s. of (123) is positive! Herein lies the basic difference from QED,
where, on the contrary, b < 0.

The fact that b > 0 and thus the leading term on the r.h.s. of (123) is
negative implies that a(µ/Λ)→ 0 as µ→∞.

This phenomenon, called asymptotic freedom is a fundamental feature of
QCD and can be traced back to the selfinteraction of gluons. As a result the
behavior of a(µ) changes dramatically compared to the situation in QED
(Fig. 8b).

QED Problems in defining the theory at short distances but it smoothly joins the
classical electrodynamics.

QCD No difficulties at short distances, where perturbation theory can be safely
applied, but perturbation theory becomes inadequate at large ones.

This becomes clear if we take LO solution of (123):

a(µ/Λ) =
1

b ln(µ/Λ)
. (125)
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Asymptotic freedom of QCD

We conclude that in QCD Λ provides the lower and not, as in QED, the
upper bound on the meaningful values of µ! Graphically the situation is
sketched in Fig. 8b, which could be obtained from Fig. 4b by transformation
µ→ 1/µ.

Figure 8: The shape of QCD β–function for three different cases of c2 (a),
and the behavior of the corresponding couplants as functions of the scale µ.
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Asymptotic freedom of QCD
Several further aspects of the relations (122) and (123) merit a comment:

Except for the first two coefficients b, c in (123) all the higher order ones
ci ; i ≥ 2 are arbitrary real numbers. The relation (123) should thus be
considered as a definition of the couplant a(µ).

The arbitrariness in ci ; i ≥ 2 doesn’t, however, mean that the full QCD
results depend on their choice. Besides a(µ, ci ) also the expansion
coefficients rk depend on ci , i ≤ k and these dependences cancel each other,
provided we calculate (122) to all orders.

Taking into account the next-to-leading order (NLO) term in (123) the
equation for a(µ) can no longer be solved analytically, but the implicit
equation

b ln
µ

Λ
=

1

a
+ c ln

ca

1 + ca
(126)

can easily be solved numerically. It is quite common to use first two terms

a(µ/Λ) =
1

b ln(µ/Λ)
− c

b2

ln((b/c) ln(µ/Λ))

ln2(µ/Λ)
+ · · · (127)

in the expansion of the exact solution of (126) in powers of the inverse
logarithm 1/ ln(µ/Λ).
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Choice of the scale parameter in QCD

Basically the dependence on the scale µ is a measure of our ignorance of
uncalculated higher order terms. The more sensitive are the results to the
variation of µ, the more important these higher order terms probably are.

The conventional wisdom, based on years of experience with perturbative
calculations: choose µ = typical physical scale of the analyzed process.

In the case of (122) we could take for such a typical scale the square
√

s, in

DIS either
√

Q2 or
√

W 2 and for the Drell-Yan dilepton pair production M``.

Question how far down with µ (i.e. to how large distances) we can go before
running into troubles with perturbation expansions is difficult to answer
quantitatively. However, we expect the behavior of the couplant in the
infrared region to be related to the phenomenon of color confinement.

The same effect which leads to the asymptotic freedom also causes the
couplant to increase at large distances! Although we cannot believe
perturbation theory in this region it is certainly an indication that QCD has
at least a chance to describe both the success of QPM in hard scattering
processes and the color confinement!
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Further comments

1 Show that the second term in (52) does, indeed, vanish.

2 Taking into account that for µ of the order of electron mass
αR(µ/Λ) = 1/137, estimate the value of Λ in QED as given in (88).

3 Discuss the behavior of the exact solution to the NLO equation (126)
in the limit µ→ Λ. Where does it blow up? How does it differ from
the behavior of the LO solution?

4 Show that the simultaneous changes of a(µ) and r1 with µ cancel to
the order a2 in (122).

5 Extract the value of Λ corresponding to the RS where r1 = 1.411,
using the NLO approximation to (122) and the fact that for Q = 35
GeV its experimental value equals 0.05.

6 Express the IR fixed point a∗(c2) as a function of c2 taking into
account the first three terms in the expansion of β(a).
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