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Introduction

Not a selfcontained introduction to Quantum Chromodynamics (QCD).
Rather collection of remarks on points I consider important for
understanding how perturbative QCD (pQCD) works and in particular how it
accommodates QPM.

First we concentrate on general principles of gauge theories, to which QCD,
as well as the more familiar Quantum Electrodynamics (QED) belong.

In most considerations we will stay within classical physics, avoiding the
formal aspects of quantization of gauge theories.

Basic features of the resulting Feynman rules will be shown to follow from
the classical Lagrangian. The Feynman rules will then be used to evaluate
matrix elements of some important parton level processes.

Though most of presented material will cover pQCD we may try later on to
discuss also few non{perturbative aspects of this theory: color con�nement,
hadron masses and wave functions and structure of the QCD vacuum.
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Maxwell equations in the covariant form

In classical physics the free electromagnetic �eld in the vacuum can be
described by the electric and magnetic �eld strengths ~E (t;~x) and ~H(t;~x),
which satisfy Maxwell equations:

rot~H =
@~E

@t
; div~E = 0; (1)

rot~E = �
@~H

@t
; div~H = 0 (2)

and appear in the expression for the force with which this �eld acts on a test
particle with electric charge e and velocity v

~F = e
h
~E + ~v � ~H

i
: (3)

The second pair of Maxwell equations (2) allows us to express ~E (x ; t) and
~H(x ; t) in terms of the scalar and vector potentials �(x ; t) and ~A(x ; t):

~E = �grad��
@~A

@t
; ~H = rot~A; x� = (t;~x); x� = (t;�~x) (4)

because (4) automatically implies (2).
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Maxwell equations in the covariant form

Arranging A0 � � and ~A as components of the four-potential

A� � (A0; ~A); A0 = A0; A� � (A0;�~A) (5)

and introducing the antisymmetric tensor

F��(x) �
@A�(x)

@x�
�
@A�(x)

@x�
) F 0i (x) = �Ei (x); F ij(x) = ��ijkHk(x); (6)

allows us to rewrite (1) in a manifestly covariant form

@�F
��(x) = 0: (7)

Within the framework of Lagrangian �eld theory (still at the classical level!)
the above equations are just the Euler equations resulting from the
Lagrangian

LMaxwell
free = �

1

4
F��(x)F��(x): (8)

In classical physics introduction of A�(x) is nothing but convenient way how
to reduce 8 equations (1-2) for 6 components Ei and Hi to only 4 in (7).

On the other hand, we may in principle dispense with the A� as the

expression for the Lorentz force (3) contains only ~E and ~H.
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Electromagnetic four-potential in quantum physics

As we shall see below, in quantum �eld theory the four-potential A�(x) is
indispensable for proper formulation of interacting electromagnetic �eld.

Moreover as shown by Aharonov and Bohm in 1959 contrary to classical
physics in quantum physics the gauge potential matters!

Schr�odinger equation for particle with electric charge e in potential (�; ~A)
reads:

�
1

2m
(r� ie~A)2	 = (

@

@t
+ ie�)	 (9)

Taking ~A = const:(t) and putting V = e� we try solution of (9) in the
following form:

	(~r ; t) = 	0(~r ; t)e i(~r) where (~r) = e

Z
P

~A � d~r (10)

Here 	 can be regarded as a w.f. of a particle that goes from one place to
another along a certain route P where a �eld A is present while 	0 is the
wave function for the same particle along the same route but with ~A = 0.

Thus (10) is a solution of (9) when ~A(~r) 6= 0 if 	0 satis�es

�
1

2m
(r2 + V )	0 = i

@	0

@t
(11)
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Aharonov-Bohm experiment

Consider a magnetic �eld B con�ned to a region 
 (see Fig. 1). Charged

particle traveling along some path P in a region with zero magnetic �eld ~B,
but non zero ~A (by ~B = 0 = r� ~A), thus according to (10) acquires a
phase shift 

Figure 1: Aharonov-Bohm experiment.

Two charged particles with the same start and end points, but traveling
along two di�erent routes will acquire a phase di�erence � determined by
the magnetic ux � through the area between the paths 1 and 2. Stokes'
theorem and r� ~A = ~B gives:

� = e

I
C

~A(~r) � d` = e

Z
S

~B � d~� = e�: (12)
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Aharonov-Bohm experiment

� can be observed by placing a solenoid between the slits of a double-slit
experiment (Fig. 2).

Figure 2: Schematic of double{slit experiment in which Aharonov{Bohm
e�ect can be observed: electrons pass through two slits, interfering at an
observation screen, with the interference pattern shifted when a magnetic
�eld B is turned on in the cylindrical solenoid.

In the interference region, the wave function is 	 = 	1 +	2 so that

j	j
2
= j	0

1j
2 + j	0

2j
2 + 2j	0

1jj	
0
2j cos(1(~r)� 2(~r)) (13)
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Concepts of gauge theories

Basic object of QED is the local fermion �eld 	(x) describing one type of
charged particle with spin 1/2 (lepton or quark). On the classical level it is
just the solution of the corresponding Dirac equation. In QFT 	(x)
becomes a local operator satisfying certain anticommutation relations.

Skipping the formalism of quantized �elds (see KTP 81-150), we outline
how the requirement of local gauge invariance, combined with Lorentz
invariance determines the basic properties of electromagnetic interactions of
charged fermions and photons in QED.

Heuristic \derivation" of QED Lagrangian goes as follows:

1 Start with the classical Lagrangian of a noninteracting fermion �eld
	(x) of mass m

Lfermionfree = 	(x)(i 6@ �m)	(x); (14)

which generates, via the Euler{Lagrange equations of motion, the
Dirac equation for a free fermion with spin 1=2

(i 6@ �m)	(x) = 0: (15)
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Derivation of QED Lagrangian

2 De�ne the global gauge transformations of this �eld as phase rotations:

	0 � exp(i�)	(x); (16)

where � is a real number. The set of such transformations forms a U(1)
group. The free fermion Lagrangian (14) is invariant under this simple
transformation.

3 Impose the requirement of local gauge invariance, i.e. invariance with
respect to transformations (16) but for � depending on x . In that case the
Lagrangian (14) is no longer invariant due to the term:

�	(x)�
@�(x)

@x�
	(x); (17)

which comes from the partial derivative in (14) and vanishes only for
constant �.
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Derivation of QED Lagrangian

4 To recover local gauge invariance of one has to introduce another �eld,
which compensates the noninvariance of (14). This is achieved by gauge

�eld A�(x) { a vector �eld describing a particle with spin 1 and mass M.
Its Lagrangian, including the possible mass term, is a simple generalization
of (8)

Lgaugefree = �
1

4
F��(x)F��(x) +

1

2
M2A�(x)A

�(x); (18)

where F��(x) is given in (6). The corresponding equations of motion (so far
on classical level) read

@�F
��(x) = �M2A�(x): (19)

To cancel the noninvariant term (17) this gauge �eld is assumed to interact
with 	(x) via the interaction term

Lint = e	(x)�	(x)A�(x) � J�A� (20)

and transform simultaneously with (16) as

A0

�(x) = A�(x) +
1

e

@�(x)

@x�
; (21)

where e, an arbitrary real number, determining the strength of the
interaction (20), will be interpreted as the electric charge of the fermion
�eld 	(x).
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Derivation of QED Lagrangian

4 (cont'd) Casualty of this compensation mechanism is the mass M of the
gauge �eld. As the mass term M2A�A

� violates the invariance under the
combined fermion and gauge �eld transformation only massless gauge �eld
A� is compatible with local gauge invariance.
This completes construction of the full QED Lagrangian of interacting Dirac
and Maxwell �elds:

LQED = �
1

4
F��(x)F��(x) + 	(x)(i 6@ �m)	(x) + e	(x)�	(x)A�(x); (22)

The coupled equations of motion satis�ed by these �elds read:

[i� (@
� � ieA�(x))�m] 	(x) = 0; @�F

��(x) = e	(x)�	(x): (23)

Note that the Lagrangian (22) can be obtained from the sum of free
lagrangians (14) and (18) by the replacement, called minimal substitution,
of the partial derivative @� by the covariant derivative D� � @� � ieA�(x).
The name comes from the fact that D� (x) transforms in the same way
(16) as fermion �eld itself

D 0

� 
0(x) = exp(i�(x))D� (x) ) D 0

� = exp(i�(x))D� exp(�i�(x)) (24)
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QED Lagrangian: Alternatives

Quantization brings in some important conceptual changes, but doesn't
modify the essence of the above \derivation". Moreover the form of the
interaction term (20) suggests that the factor at the basic QED vertex
e{{e will be proportional to e�.

N.B. The local gauge invariance alone is not su�cient to determine the
QED Lagrangian uniquely.

For instance we could add to (22) any power of the photon kinetic term
F��F�� , which by itself is locally gauge invariant and thus obtain
sel�nteraction of electromagnetic �eld!

Similarly we could couple the �eld tensor F�� directly to the fermion tensor
 ��� , which also represents locally gauge invariant interaction. In this
case we would dispense with the gauge potential A�(x) and fermions would
interact with photons via their magnetic moments, but this interaction
would be of �nite range.

In both alternatives the kind of interaction we get at the classical level is
signi�cantly di�erent from the coulomb forces observed in the nature.
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QED Lagrangian: Alternatives

The fact that the photon is massless corresponds to our experience that
electromagnetic interactions are of long (actually in�nite) range, but in
classical theory none of the mentioned alternatives can be rejected merely on
theoretical grounds.

In QFT there is a powerful theoretical principle, which actually rules out
both of the mentioned alternatives and which, combined with the
requirement of local gauge invariance, determines the QED Lagrangian
essentially uniquely: the renormalizability of the theory.

On the other hand there is no a priori reason, why only locally gauge
invariant �eld theories should exist in nature. For instance, it is possible to
formulate a renormalizable theory of massive photons, interacting locally
with fermions but such an interaction is again of �nite range and thus
doesn't describe the real world.

The principle of local gauge invariance is probably the most fundamental
principle of the current QFT. On the other hand it leads to complications in
the description of the very simplest quantity concerning the photons:
propagator of the free photon.

Michal �Sumbera (NPI ASCR, Prague) Introduction to QCD November 11, 2009 15 / 52



QED Lagrangian: Photon complications

Consider the de�nition of a free photon propagator D��(x ; y), which follows
from the Maxwell equations for the gauge �eld A�(x)

@�F
��(x) =

�
@2g�� � @�@�

�
A�(x) = 0 (25)

and reads �
@�@� � @2g��

�
D��(x � y) = i����(x � y): (26)

The Fourier transform of D��(x � y), denoted D��(k), satis�es, as a
consequence of (26), the following matrix equation

�
k�k� � k2g��

�
D��(k) = �ig�� = �i��� : (27)

However, as the matrix (k�k� � k2g��) is singular the equation (27) has no
solution!1

(1) For massive photons k2 should be replaced in (27) by k2 �m2, which renders
it regular and we �nd without problems d�� = �g�� + k�k�=m

2.
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QED Lagrangian: Photon complications

The reason: with each A
(0)
� (x) satisfying the equation of motion (25), all the

�elds A�(x), gauge equivalent
1 to A

(0)
� (x), do so as well.

One way how to avoid this problem is to select from each class of gauge
equivalent �elds A�(x) merely those satisfying some additional gauge �xing

condition,
f (A�(x)) = 0: (28)

and solve the equation (27) merely on the subset of functions satisfying (28).

Alternatively we may give (26) a good meaning by adding to (22) the so
called gauge �xing term of the form

�
1

2�G

(f (A�(x)))
2
; (29)

where �G is an arbitrary real number called gauge parameter.

(1) Gauge �elds related by the gauge transformation (21) are called gauge

equivalent.
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QED Lagrangian: Gauge �xing

There are various classes of such gauge �xing terms, let us mention two of them,
which are most often used in perturbation theory:

The class of covariant gauges, where f (A�) � @�A
�(x): (30)

In this case the addition of (29) modi�es the equations of motion (25) to

@�F
��(x) +

1

�G

@� (@�A
�) =

�
@2g�� � (1� 1=�G )@

�@�
�
A�(x) = 0 (31)

and the de�nition equation for the propagator in this gauge�
(1� 1=�G )k

�k� � k2g��
�
D��(k) = �ig�� (32)

has a well{de�ned solution. Writing D��(k) as

D��(k) � i
d��

k2
) d�� = �g�� + (1� �G )

k�k�

k2
: (33)

Clearly any nonzero �G is good for this purpose, but �G = 1, de�ning the so
called Feynman gauge, makes the propagator particularly simple for
calculations. Absence of the gauge �xing term, corresponding formally to
the case �G =1, makes (33) obviously ill-de�ned.
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QED Lagrangian: Gauge �xing

Class of axial gauges with the gauge �xing term given as

f (A�(x)) � c�A
�(x); (34)

where c� is an arbitrary, but �xed four{vector with the dimension of mass.

In this case the modi�ed equations of motion read

@�F
��(x)�

1

�G

c� (c�A
�) =

�
@2g�� � @�@� �

1

�G

c�c�
�
A�(x) = 0 (35)

and the corresponding equation for the propagator�
k�k� +

1

�G

c�c� � k2g��
�
D��(k) = ig�� (36)

has again a well{de�ned solution with

d�� = �g�� +
k�k�

�
�Gk

2 � c2
�

(kc)2
+

k�c� + k�c�

kc
: (37)
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QED Lagrangian: Gauge �xing

For c2 = 0 we talk about lightlike gauges. Setting in addition �G = 0 we get

d�� = �g�� +
k�c� + k�c�

kc
: (38)

which is particularly suitable for perturbative calculations.

In other words, in classical physics the addition of the gauge �xing term (29)
to the Lagrangian (22) is not equivalent to selecting only those �elds A�(x)
satisfying the condition (28). It is inconsistent with gauge invariance and
thus illegal.

Situation is quite di�erent in QFT. In QED the addition to the Lagrangian
(22) of the gauge �xing term (29) is consistent with the gauge invariance of
the quantized theory, but the proof that the results for physical quantities
are independent of

the choice of the function f (A�) and
the value of gauge parameter �G

is by no means trivial and is an integral part of the whole quantization
procedure!
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QED perturbation theory

Physical quantities are expressed as expansions in powers of the electric
charge e2, appearing in the Lagrangian (22). Individual terms of these power
expansions are graphically represented by the Feynman diagrams,
containing three basic elements:

External legs, describing the in and outgoing real particles.
Propagators, corresponding to virtual intermediate states.
Interaction vertices, describing the local interaction of quantized �elds.

Although \virtual" particles are just intermediate states in quantum
evolution, they behave nearly as real particles if observed for su�ciently
short time interval. This happens in the hard scattering processes (like those
discussed in QPM) via the interaction with some \testing" particle, (e.g.
lepton). The measure of the virtuality is basically particle o�{mass shellness
m2
virt � k2 �m2, but what really determines whether this virtual particle

behaves nearly like real is actually the ratio mvirt=Q, where \Q" denotes the
\hardness" of the collision.1 So even states far o� mass-shell may behave
nearly like real particles when observed for short enough time.

(1) In DIS \Q2" is just the four-momentum transfer squared Q2.
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The rise and fall of quantum �eld theory

Soon after the formulation of Quantum Electrodynamics by Dirac in 1928,
theorists like Bethe, Heitler, Oppenheimer, Weisskopf and others have
attempted to calculate quantum corrections (loop corrections) to lowest
order perturbative results for several physical quantities.

It took about two decades to develop a systematic procedure how to handle
and remove in�nities coming from contributions of very small distances { so
called ultraviolet (UV) divergencies.

For their decisive contributions towards the formulation of this procedure,
called renormalization, Feynman, Schwinger and Tomonaga were awarded
the 1965 Nobel Prize for physics.

Although this procedure provided the framework for systematic removal of
UV in�nities to all orders of perturbation theory, it lacked clear physical
interpretation and appeared mathematically rather arbitrary.

As will be discussed later in more detail some of the nonabelian gauge
theories have the property called \asymptotic freedom", which allows us to
construct quantum �eld theories that are free of genuine UV in�nities.
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The rise and fall of QFT: Renormalization

For Dirac and his contemporaries the electric charge appearing in the QED
lagrangian was considered to have a given value, which might have been
screened by quantum e�ects, but had nevertheless some de�nite value, and
once this value was given the theory was fully de�ned.

Modern view due to Kenneth Wilson and others says that we should express
physical quantities not in terms of "�ctitious" theoretical quantities but in
terms of physically measurable quantities.

In Wilson's approach construction of QFT starts with discretized space-time
and involves, as a nontrivial step, the limiting procedure in which the lattice
spacing goes to zero. A crucial feature of this limiting procedure concerns
the fact that in order to get �nite results for physical quantities, the
parameters appearing in the original lagrangian must be nontrivial functions
of the lattice spacing!

N.B. � which parameterizes our ignorance of the next energy domain is
roughly the inverse of the lattice spacing.
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The rise and fall of QFT: Renormalization

Replacing the lattice spacing with the radius of electron, the construction of
lattice �eld theory follows closely the strategy employed by Landau,
Pomeranchuk and their collaborators in the early �fties in their attempts to
give a physical content and mathematical sense to the procedure of
renormalization in QED.

L& P put a �nite electric charge e0, usually called \bare" charge, on the
sphere of radius r0 placed in the QED vacuum, calculated how it appears to
a test particle at a �nite distance r > r0 and investigated what happens
when we sent r0 ! 0, as we indeed, must if we want to have Lorentz
invariant theory.

If we do the same in classical physics, the answer is trivial. The force at a
distance r induced by the bare charge can be characterized by the e�ective
electric charge ee�(r) which equals e(r0) = e0 for r � r0 and vanishes for
r < r0. Consequently, if we shrink the electron radius to zero keeping
e0 = e(r0) �xed, the e�ective electron charge ee�(r) = e0 for all distances r !

In QFT vacuum is not \empty" but bustling with activity usually described
as \virtual pair creation and annihilation".
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The rise and fall of QFT: Renormalization

Placing the bare electric charge of a �nite radius into QED vacuum is similar
to response of a dielectric medium to analogous action. Inserted bare charge
polarizes elementary electric dipoles so that is charge is screened, i.e. its
magnitude decreases with increasing distance r .

Problem with this analogy is that the evaluation of the relation between
e0 = e(r0) (or, more conveniently, the combination �0 � e20=4�, called
\couplant") and the e�ective couplant �(r) at the distance r > r0, using
standard QED perturbation theory, gives

�(r) =
�(r0)

1� �0�(r0) ln(r0=r)
; ) �(r0) =

�(r)

1� �(r)�0 ln(r=r0)
: (39)

where �0 = 2=3�.

The above expression holds for r � �e
:
= 400 fm, whereas below this value

�(r) becomes essentially constant, approaching the classical value 1=137.

For r0 ! 0 and �0 = �(r0) �xed, the �rst equation in (39) implies �(r)! 0
8r > 0! Shrinking the electron radius while keeping its charge �xed results
in free, non-interacting theory!

Michal �Sumbera (NPI ASCR, Prague) Introduction to QCD November 11, 2009 25 / 52



The rise and fall of QFT: Renormalization

For �(r) to be �nite at all distances r , the electric charge placed on the
sphere must grow with its decreasing radius r0. From second equation in
(39) we see that it rises and diverges at a �nite distance
rL ' �e exp(�137=�0).

Shrinking r below rL makes �(r) given by (39) negative, making the theory
meaningless. Appearance of this so called Landau singularity had marred
the attempts of Landau, Pomeranchuk and their school to formulate QED in
a physically motivated and mathematically well-de�ned way. This, in turn
had led to a temporary loss of interest in the lagrangian formalism of the
local QFT.

Since rL is unimaginably small we can for all practical purposes forget about
it. The failure to formulate the renormalization procedure in a fully
consistent manner had not prevented the application of QED to evaluation
of quantum corrections to various physical processes.

Though the QFT fell into disrepute as the basic theoretical tool for the
treatment of strong interaction, QED was widely used to describe, and with
great success, the electromagnetic interactions.
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The rise and fall of QFT: Renormalization

Disregarding Landau singularity there were other reasons for disregard of
QFT.

1 Perturbation theory seemed inapplicable for large values of the coupling
between hadrons within the framework of Yukawa theory or the
Eightfold Way.

2 QFT appeared entirely unsuitable to describe interactions between
quarks within the quark model.

Rejection of QFT as the basic theoretical tool for the description of strong
interaction was accompanied by the formulation and development of the
analytic S-matrix theory, which dispenses with the concept of local �elds and
works primarily with matrix elements describing transitions between various
initial and �nal states of observable hadrons.

This approach had dominated strong interaction theory since middle �fties
until the arrival of QCD in 1973.
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And its remarkable resurrection

By the early 1973 the data had moreover provided compelling evidence for
identi�cation of charged partons with quarks and indirect one for the
presence of neutral partons in the nucleon as well.

By 1973 all the important ingredients of what we now call Quantum
chromodynamics (QCD) were thus available. What remained to be done
was to show that this quark-parton model with approximate scaling on one
side and the color con�nement on the other follows from some �eld theory.

These seemingly contradictory requirements can be accommodated in a �eld
theory that di�ers from QED in just one \minor" point: the sign of the
coe�cient �0 appearing in (39).

For �0 < 0 situation changes dramatically: in order to keep corresponding
e�ective couplant (denoted as �s(r)) �nite as r0 ! 0, the bare couplant
�s(r0) does not have to diverge at some �nite distance as in QED, but must
vanish instead!

This property of (non-abelian gauge) QFT is called asymptotic freedom.
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Asymptotic freedom of non-abelian gauge theories

This has three important consequences:

1 Renormalization ala Landau can be pursued to arbitrarily small
distances allowing construction of Lorentz invariant �eld theory.

2 There are in fact not genuine ultraviolet in�nities.
3 �s(r) depends on r in opposite manner that �(r) in QED: it decreases

at small and grows at large distances, the latter behavior suggesting
the quark con�nement.

In the other words, in theories with �0 < 0 the e�ects of quantum
uctuations in the vacuum lead to antiscreening of the appropriate charge!

It should be emphasized that the rise in such theories of the e�ective
couplant at large distances must be taken as mere indication, not a real
proof of the quark con�nement.

As in the cases of strangeness, Eightfold Way, the Quark model, also the
discovery of asymptotic freedom was achieved simultaneously by two groups.
Beside the duo Gross-Wilczek, the same result was obtained simultaneously
and independently by Politzer. Both calculations were published in the same
issue of PRL, heralding the dawn of a new age in physics.
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QCD Lagrangian

The chain of steps leading to its Lagrangian is similar but there is a
fundamental di�erence due to the nonabelian character of the
corresponding group of gauge transformations. This, in turn, is due to the
fact that basic mathematical quantity describing a quark of a particular
avor (like u; d ; s, etc.) is the matrix in the color space

	(x) �

0
@ 	1(x)

	2(x)
	3(x)

1
A (40)

and its local gauge transformations are multiplications by the 3� 3 unitary,
unimodulary matrices of the color SU(3) group:

	0(x) = exp(i�a(x)Ta)| {z }
2 SU(3)

	(x) = S	(x); (41)

where the sum in the exponent runs over the 8 generators Ta of SU(3) and
�a(x); a = 1; � � � 8 are functions of x .
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QCD Lagrangian

Postulating the above form of gauge transformations of quark �elds, the
existence of 3 quark colors requires then introduction of 8 gauge �elds Aa

�,
describing 8 colored gluons and conveniently represented by a column
matrix

~A�(x) �

0
B@

A1
�(x)
...

A8
�(x)

1
CA : (42)

There is an alternative representation of the gluon octet by the 3� 3 matrix
de�ned as

A�(x) � Aa
�(x)T

a; (43)

For each color index a we can de�ne the tensor of �eld strength

F��
a (x) �

@A�a (x)

@x�
�
@A�a (x)

@x�
: (44)
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QCD Lagrangian

Taking into account these technical complications and following step by step
the chain of considerations sketched above for QED, we write down the
QCD Lagrangian in the form1:

LQCD = �
1

4
~F��~F

�� +	(i 6@ �mq)	 + g	�~T	~A�; (45)

where the scalar product of vectors is a shorthand for the sum over the color
index a of the gluon �elds Aa and the generators Ta.

N.B. Scalar product in the third term of (45) is invariant under the
simultaneous global (i.e. with �a independent of x) gauge transformations
(41) of the quark �eld and corresponding global rotations of gluon �elds
under the adjoint representation of SU(3):

~A0

� = exp (i�aFa) ~A�; (Fa)bc �
1

i
fabc : (46)

(1) As the gluons are \avor blind", including arbitrary number of quark avors is

simple: the full Lagrangian is a sum of the second and third terms of (45), each

corresponding to one particular avor, to which one gluon kinetic term is added.
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QCD Lagrangian

Contrary to QED, the Lagrangian (45) is, however, not the end of the story.
For the in�nitesimal local gauge transformations of nonabelian gluon �elds,
de�ned in analogy with QED as

�
Aa
�

�
0

� Aa
� + �bfbacA

c
� +

1

g

@�a(x)

@x�
) A0

� = SA�S
�1 +

i

g
S@�S

�1 (47)

the last term cancels in the de�nition of the tensors F a
�� as in QED, but

noncomutativity of color rotations make the gluonic kinetic energy term
F a
��F

��
a SUc(3) noninvariant!

The remedy simple: add to the r.h.s. of (44) the term which compensates

this noninvariance, i.e. introduce

G��
a �

@A�a (x)

@x�
�
@A�a (x)

@x�
+ gfabcA

�
bA

�
c (48)

and use G a
�� instead of F a

�� in (45).
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QCD Lagrangian

Writing G a
��G

a�� in terms of Aa
� besides the expected kinetic term ~F��~F

�� ,
there are also two additional terms, which represent the sel�nteraction of

three and four gluons

gfabc

��
@Aa

�

@x�
�
@Aa

�

@x�

�
A
�
bA

�
c +

�
@Aa�

@x�
�
@Aa�

@x�

�
Ab�Ac�

�
+g2fabc fadeA

�
bA

�
cAd�Ae� :

(49)

This feature has profound consequences, to be discussed later.

Compared to QED, quantization of full QCD Lagrangian brings another
complication { appearance of so called Faddeev{Popov ghosts which must

be introduced in certain gauges to guarantee the unitarity of the theory.
From the point of view of Feynman diagram calculations, ghosts behave as
scalar particles, coupling to gauge bosons, but appearing only in propagators.

Ghosts are absent in axial gauges, but do appear in covariant gauges )
axial gauges are particularly suitable for the construction and probabilistic
interpretation of the ladder diagrams, used in the derivation of evolution
equations for parton distribution functions, discussed later.

Michal �Sumbera (NPI ASCR, Prague) Introduction to QCD November 11, 2009 34 / 52



QCD Lagrangian: Conserved current

Recall general method { N�oether's theorem. Suppose we have a set of �elds
�A(x) and corresponding Lagrangian L(�A; @��A).

Consider in�nitesinal gauge transformation:
�A(x)! �A(x) + i�a(x) (Ta)

B

A �B (50)

where Ta are matrices corresponding to the non-Abelian gauge group and
the representation to which the �elds �A(x) belong. Variation of L gives:

�L =
X
�

@L

@�A
��A +

X
�

@L

@(@��A)
�(@��A) (51)

Using the Euler-Lagrange equations:

@L

@�A
� @�

�
@L

@(@��A)

�
= 0 (52)

and the fact that �(@��A) = @�(��A) we have:

�L =
X
�

�
@�

�
@L

@(@��A)

�
��A +

@L

@(@��A)
�(@��A)

�
=
X
�

�
@�

�
@L

@(@��A)

�
��A

�

(53)
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QCD Lagrangian: Conserved current

Using (50) so that ��A = i�a (Ta)
B

A �B we get:

�L =
X
�

@�

�
@L

@(@��A)
i�a (Ta)

B

A �B

�
(54)

If we take � independent of x then we can rewrite it as:

�L = @�
X
�

i

�
@L

@(@��A)
(Ta)

B

A �B

�
�a � @�J

�
a �a; (55)

where

J�a = i
X
�

�
@L

@(@��A)

�
(Ta)

B

A �B (56)

Hence we have the N�oether's theorem. If the Lagrangian is invariant under
the gauge transformation (50) with constant �, i.e. �L = 0, then the

current given in (56) is conserved: @�~J
� = 0. There is one conserved

current for every generator @�J
�
a = 0; a = 1; : : : 8.
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QCD Lagrangian: Conserved current

Let us apply this to the QCD Lagrangian (45). Here � correspond to ~A� and
	.

For the gauge vector bosons which belong to the adjoint representation of
SUc(3), we have i(Ta)

c
b = �fbac and for the quarks which belong to the

triplet representation of SUc(3), Ta =
1
2�a

Using (48) in (45) gives:

J�a = 1
2	

��a	+ fabcG
��
b A�c (57)

In full analogy with (20) this current ~J� is universally coupled to the gauge

�elds ~A� with universal coupling g :

Lint = ~J� ~A� = 	�
�a
2
	Aa� + fabcG

��
b A�cAa� (58)

where the second term is nothing but the self-gluon interaction part of the
Lagragian given by (49)

Michal �Sumbera (NPI ASCR, Prague) Introduction to QCD November 11, 2009 37 / 52



Feynman diagram rules in QCD

Feynman diagram rules for QCD in the class of covariant gauges are listed. Ghost
vertices and propagators appear in loops only. The letters i ; j ; k; l denote quark
(triplet) color, a; b; c ; d gluon (octet) color and Greek letters space{time
coordinates. Small letters p; q; r denote momenta of corresponding lines.

Rules for external particles:

u(p; s) for each incoming fermion with momentum p and spin
s,
v(p; s) for each incoming antifermion with momentum and
spin s,
u(p; s) for each outgoing fermion with momentum p and spin
s,
v(p; s) for each outgoing antifermion with momentum p and
spin s.

Statistical factors in loops:

{1 for each closed fermion loop.
1/2! for each gluon loop with two internal gluons.
1/3! for each gluon loop with three internal gluons.
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Feynman diagram rules in QCD: Propagators
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Feynman diagram rules in QCD: Vertices
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Elementary calculations: Quark-quark scattering

Consider the elastic scattering of two quarks with momenta, avors and
colors as indicated in Fig. 3 (with Greek and Latin letters labeling avors
and colors respectively), averaged over the spins and colors of quarks.

Figure 3: Lowest order Feynman diagrams for quark-quark elastic scattering.

Working in the Feynman gauge we �nd for the spin (�) and color (c)
averaged square of the corresponding matrix element

hjMif j
2
i =

1

9

1

4

X
�;c

�
jMt j

2
+ jMuj

2
+ 2M�

t Mu

�
; (59)

where the sum runs over spins � and colors c of all the four quarks and the
Mandelstam variables s; t; u are de�ned as

s � (p1 + p2)
2; t � (p1 � p4)

2; u � (p1 � p3)
2: (60)
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Elementary calculations: Quark-quark scattering

Amplitudes Mt and Mu, corresponding to Fig. 3a and Fig. 3b, are:

Mt =
ig2

t

�
T a
jiT

a
lk

�
[u�(p4)

�u�(p1)] [u�(p3)�u�(p2)] ; (61)

Mu =
ig2

u

�
T a
liT

a
jk

�
[u�(p3)

�u�(p1)] [u�(p4)�u�(p2)] : (62)

Considering �rst the square of Mt we �nd (no sum over t below)

1

9

1

4

g4

t2
AtBt ; (63)

where the fractions 1=9 and 1=4 come from the color and spin averaging in
the initial state. Final form of At , containing all the color factors, reads

At � T a
jiT

a
lk T

b�
ji|{z}
T b
ij

T b�
lk|{z}
T b
kl

= T a
jiT

b
ij| {z }

Tr(TaTb)

T a
lkT

b
kl| {z }

Tr(TaTb)

=
1

4
(�ab)

2 = 2; (64)

while working out bispinor traces is standard:

Bt � Tr ( 6p4� 6p1�)Tr (6p3
� 6p2

�) = 32 ((p1p2)(p3p4) + (p1p3)(p2p4)) = 8(u2+s2):
(65)
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Elementary calculations: Quark-quark scattering

Putting all the relevant factors together yields

hjMt j
2
i =

2

9
g4 2(u

2 + s2)

t2
; (66)

where the factor 2=9 comes from color factors.

Proceeding similarly for the other two terms in (59) we get

hjMj
2
i =

�
2

9

�
c

g4

�
2(u2 + s2)

t2
+ ���

2(t2 + s2)

u2
� ���

�
�
1

3

�
c

4s2

tu

�
;

(67)
where the subscript \c" denotes factors coming from color traces.

E�ect of color is twofold: it changes the overall magnitude of the
quark-quark interaction, but also suppresses the relative contribution of the
interference term.
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Elementary calculations: Quark-gluon scattering

Figure 4: Lowest order Feynman diagrams for quark-gluon elastic scattering.

This is the simplest process where the gluon sel�nteraction vertex does
appear. The appropriate Feynman diagrams are shown in Fig. 4 and the
corresponding invariant amplitudes, given as

Ms =
�ig2

s

�
T a
liT

b
jl

� �
uj(p2) 6�2(6p1+ 6q1) 6�1u

i (p1)
�
; (68)

Mu =
�ig2

u

�
T a
jkT

b
ki

� �
uj(p2) 6�1( 6p1� 6q2) 6�2u

i (p1)
�
; (69)

where the polarization vectors �1; �2 describe the initial and �nal state gluons
and all the colors and momenta upon which the amplitudes Ms ;Mu depend
were suppressed.
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Quark-gluon scattering

Compared to QED new in this channel is the contribution of the diagram in
Fig. 4c, which contains the 3-gluon vertex

Mt =
g2

t

h
fabc (T

c)ij

i
C���(q1 � q2;�q1; q2)�1��2�

�
uj(p2)�u

i (p1)
�
: (70)

Inserting into (70) the explicit form of C��� i.e.
C��� = g��(p � q)� + g��(q � r)� + g��(r � p)� , we get

Mt =
g2

t

h
fabc (T

c )ji

i
� (71)

�f[u(p2) 6�1u(p1)] (2q1 � q2)�2 � [u(p2)(6q1+ 6q2)u(p1)] (�1�2) + [u(p2) 6�2u(p1)] (2q2 � q1)�1g :

Evaluation of traces of � is the same as in QED ) omitted. New with
respect to QED are the factors due to color matrices. As an example
consider the color trace in the spin and color average of jMs j

2

1

3

1

8
T a
liT

b
jl T

b�
jk T a�

ki =
1

24
Tr(T a T bT b| {z }

(4=3)

T a) =
2

9
(72)

and similarly for Mu.
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Quark-gluon scattering

Factors 1
3 and 1

8 result from averaging over three colors of initial quark and
eight of initial gluon. Analogous color factor in the case of Mt involves
another kind of color traces:

1

3

1

8
fabc (T

c)ji fabd
�
T d

��
ji
=

1

24

3�cdz }| {
fabc fabd Tr

�
T cT d

�
| {z }
(1=2)�cd

=
1

2
: (73)

Full result for spin and color averaged jMt j
2
is listed in the Table 2 of

subsection 4. Two aspects of this calculation merit a comment:

Summing over polarizations of initial and �nal gluons we needed expression:X
�

��(�; q)�
�

�(�; q); (74)

where the sum runs over all polarizations of the gluon with momentum q.
This sum depends on the gauge we work in and so do the results of the
individual contributions of squares and interference terms of Ms ;Mu;Mt .
The full results is, however, independent of this choice. Within the Feynman
gauge, i.e. summing over all four gluon polarizations, the result for (74) is
just �g�� .
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Quark-gluon scattering

Recall that when summing over the physical, transverse polarizations of the
gluon, we �nd: X

�

��(�; q)�
�

�(�; q) = �g�� +
q�p� + q�p�

qp
; (75)

where the fourvector p is de�ned as p � (q0;�~q).

The division of the full invariant amplitude Mif into three Ms ;Mt ;Mu,
corresponding to three diagrams in Fig. 4, is not gauge invariant and
therefore has no physical meaning!

Consider sum Ms +Mu of the contributions corresponding to the diagrams in
Fig. 4a and 4b, i.e. those which don't contain the 3{gluon vertex and which
have their close analogies in QED. The decoupling of unphysical, longitudinal
gluons implies that the full result for the q + g scattering amplitude must
vanish if either the incoming or outgoing gluon is longitudinal.
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Quark-gluon scattering

Assuming the second possibility, setting �2 = �q2 and denoting the
appropriate amplitudes Mi (�); i = s; t; u we �nd that the sum

Ms(�)+Mu(�) = ig2�
�
T a;T b

�
ji| {z }

6= 0

[u(p2) 6�1u(p1)] = �g2�fabc (Tc)ji [u(p2) 6�1u(p1)]

(76)
does not vanish, due to nonabelian character of QCD!

It is easy to check that for the same longitudinal polarization �2 = �q2 the
t{channel amplitude

Mt(�) = ��g2fabcT
c
ji

�
uj(p2) 6�1u(p1)

�
(77)

compensates (76) provided �
T a;T b

�
= ifabcT

c ; (78)

which, indeed, the matrices T a satisfy!
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Gluon-gluon scattering

In QED the scattering of light on light is possible only in higher orders of
perturbation theory via the box diagram in Fig. 5d and thus only thanks to
the coupling of photons to charged particles.

Figure 5: Lowest order Feynman diagrams for gluon{gluon elastic scattering
in QCD (a-c), and for  �  scattering in QED, (d). Neither momenta nor
direction of the particles are shown. In the box diagram d), any charged
particle can circulate around the loop.

In QCD gluons can interact directly, even in absence of quarks, via the
three and four gluon couplings (which means already at order g2 in
amplitude compared to order e4 of the box diagram in Fig. 5d). Thus
contrary to QED, there is a nontrivial theory called gluodynamics, which
describes only the gluons and their sel�nteractions.
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Comparison of di�erent parton subprocesses

Process
hj M j2i

g4

q�q� ! q�q�
2
9

�
2(s2 + u2)

t2
+

�
2(t2 + s2)

u2
� 1

3
4s2
ut

�
���

�

q�q� ! q�q�
2
9

�
2(s2 + u2)

t2
+

�
2(t2 + u2)

s2
� 1

3
4u2
st

�
���

�

qg ! qg
h�
1� us

t2

�
� 4

9

� s
u + u

s
�
� 1

i

gg ! qq 1
6

h
u
t + t

u

i
� 3

4

h
1� ut

s2

i
+ 3

8

qq ! gg 64
9 M(gg ! qq)

gg ! gg 8
9

h
�33

4 � 4
�
us
t2

+ ut
s2

+ st
u2

�i
� 9

16

�
45�

�
s2

ut +
t2
us + u2

ts

��

Results are for the spin and color averaged invariant amplitudes normalized as:
d�

dt
=

1

16�s2
hjMj

2
i: (79)
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Comparison of di�erent parton subprocesses

Figure 6: a): hj M j2i=g4 plotted for di�erent 2 body processes as given in the
Table below. The curves correspond, in decreasing order of their values for
cos# = 0:5, to gg ! gg , qg ! qg ,qq ! qq, qq ! qq, qq ! gg ,gg ! qq ;b):
Individual contributions of Ms (dash-dotted line),Mu (dashed line) and Mt

(dotted line) to the full qg ! qg cross-section (solid line)
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Comparison of di�erent parton subprocesses

N.B. In the CMS of incoming particles (which are assumed massless) the
Mandelstam variables s; t; u are related to the scattering angle #� as follows:

t = �2E�2(1� cos#�)) dt = 2E�2d cos#�: (80)

Numerical comparison of these cross-sections for �xed s as functions of
cos#� shown in Fig. 6 gives:

In all processes with t-channel gluon exchange contribution of
corresponding Feynman diagram dominates in the forward direction.
g + g channel gives by far the biggest cross-section in the whole
angular range. This, however, doesn't imply that it gives also the
biggest contribution to the cross{sections of hard collisions of hadrons!
Processes with t-channel gluon exchange are very steep at small angles
(i.e. for cos#� ! 1) where the diagram corresponding to this exchange
dominates the full cross-section. An example is given in Fig. 6b, where
the three contributions to the quark-gluon cross-section are displayed
separately, together with their sum. Note the marked di�erence
between the behavior at small and large angles #�, where the exchange
of quarks in the u-channel also leads to divergence, which, however, is
weaker than that at small angles.
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1 Show that longitudinal photon carries zero energy and is thus
equivalent to nothing.

2 Construct interaction term between the Dirac fermion �eld 	 and
electromagnetic �eld which doesn't use the potential A�(x) but
couples it directly the gauge invariant, observable tensor F�� . Discuss
physical interpretation of such an interaction.

3 Carry out explicitly the Fourier transformation of the equation (26).

4 Show that the expressions (33) and (37) are solutions of (32) and
(36) respectively.

5 Show that the term G
a
��
G

��

a with G a
��

given in (48) is locally gauge
invariant.

6 Use (49) to derive in a heuristic way the Feynman rules for 3 and 4
gluon vertex.

7 Carry out in detail the evaluation of the quark-gluon elastic
cross-section.

8 Show in detail (76) and (77).
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