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Kinematics

For definiteness, all relations will be written for lepton-proton scattering

`(k) + proton(P)→ `′(k ′) + X ; `, `′ = e, µ, νeνµ, (1)

where X denotes any final state allowed by conservation laws and the letters
in brackets stand for four–momenta of the corresponding particles.

A special case of (1) is the elastic lepton-nucleon scattering, when X=proton
and ` = `′.

There are two types of lepton-nucleon scattering processes, called

neutral current processes, when `′ = `. These processes can be
mediated by the exchange of either the photon or the (neutral)
intermediate vector boson Z , but in the kinematical range we shall be
interested in, the latter contribution can be safely neglected.
charged current processes, when the electric charges of the initial and
final leptons `, `′ differ by one unit. These processes are mediated by
the exchange of charged intermediate vector bosons W±.
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Kinematics

The selection of variables describing (1) is a matter of convention, but the
following set is commonly used (see Fig. 1)1

Figure 1: The DIS scattering in laboratory (a) and CMS (b) frames and the
lowest order Feynman diagram describing the scattering on a pointlike proton,
denoted “pp” (c).
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Kinematics

S ≡ (k + P)2 = M2
p + 2kP = Mp(2Elab + Mp), (2)

Q2 ≡ −q2 ≡ −(k − k ′)2 = 2kk ′ = 4EE ′ sin2(ϑ/2), (3)

y ≡ qP

kP
=

Elab − E ′lab
Elab

=
ν

Elab
=

(
s −M2

p

s

)
1− cosϑ∗

2
, (4)

x ≡ Q2

2Pq
=

Q2

2Mpν
=

Q2

Q2 + W 2 −M2
p

, (5)

W 2 ≡ (q + P)2 =
Q2(1− x)

x
+ M2

p . (6)

W is invariant mass of the hadronic system X , produced by the absorption
of the exchanged photon by the target nucleon (missing mass).

N.B. Only k ′, k and P are needed to evaluate x , y and Q2.

The last equality in (3) holds in any reference system.

All five quantities defined above are relativistic invariants.

(1) In the following m will denote generic lepton masses and Mp the proton mass. In most

cases m will be neglected, but the latter kept.
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Kinematics

In the laboratory frame (p is at rest) they can be expressed by means of the
scattering angle ϑlab and the energies Elab,E

′
lab of the primary and scattered

lepton:

E ′lab =
Elab − (W 2 −M2

p )/2Mp

1 + Elab (1− cosϑlab) /Mp
. (7)

The variable S specifies the initial state of the colliding electron and proton,
while x , y , q2, ϑ and E ′lab, describe, for given S and the azimuthal angle φ,
the final state of an electron in (1).

As, however, only two of them are independent, one can thus choose any of
the pairs (x , y), (x , q2), (y , q2), or (E ′lab, ϑlab) to uniquely specify the state
of the scattered electron provided the colliding particles are unpolarized 2.
Unless mentioned otherwise, this will always be assumed.

In modern notation the pairs (x , y) or (x ,Q2) are most often used to write
down the cross–section of (1).

(2) In the case of the scattering of unpolarized particles the trivial dependence on φ is

integrated over..
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Kinematics

For given total CMS energy squared S , these variables are related:

Q2 = xy(2kP) = xy
(
S −M2

p

)
. (8)

In (unpolarized) elastic e+p scattering final state is described, beside
azimuthal angle, by one independent variable only, for which one can take
any of the following Q2, y , ϑ or E ′lab. In the following the scattering angle
ϑlab or y

.
= (1− cosϑ∗)/2 will usually be used for this purpose 3

For elastic scattering we find that x and W 2 are fixed by kinematics, x = 1
and W 2 = M2

p , and the relation (7) implies that ϑ and E ′lab are related

E ′lab =
Elab

1 + Elab (1− cosϑlab) /Mp
. (9)

The term “deep inelastic scattering” means that both invariants Q2 and Pq
are large with respect to Mp Q2 = −q2 � M2

p ; ν � Mp. (10)

The so called Bjorken limit corresponds to the idealized case when
Q2 →∞,Pq →∞ but the ratio x ≡ Q2/2Pq remains finite.

(3) Quantities in the c.m.s. will be labeled by ∗ and the symbol
.

= will denote
approximate equality,neglecting the mass of the proton or target parton. Recall that the
mass of an electron is always neglected.
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Elastic collisions between fast electrons and atoms

If the velocity of the incident electron is large compared with those of the
atomic electrons ⇒ can be treated by means of the Born approximation
(KM2, p156).

f (k→ k′) = −m(2π)2~〈k | V | k′〉 = − m

2π~2

∫
d3re−iq·rV (r), q = k′ − k

(11)

me � mA ⇒ c.m.s. coincides with rest system of the atom. Then k and k′

in formula (11) denote the momenta of the electron before and after the
collision, m the mass of the electron, and the angle θ is the same as the
angle of deviation ϑ of the electron.

In a collision with an atom V(r) corresponds to the potential energy of the
interaction of the electron with the atom, averaged with respect to the wave
function of the latter. It is eφ(r), where φ(r) is the potential of the field at
the point r due to the mean distribution of charges in the atom:

∆φ = −4πρ(r) (12)

where ρ(r) is density of the charge distribution in the atom.
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Elastic collisions between fast electrons and atoms

Solution via Fourier transform is:∫
φe−iq·rd3r =

4π

q2

∫
ρe−iq·rdr (13)

Since ρ(r) consists of the electron charges and the charge on the nucleus:

ρ(r) = −en(r) + Zeδ(r) (14)

(13) can be rewritten as:∫
φe−iq·rd3r =

4π

q2
[Z − F (q)] (15)

where we have introduced atomic form factor F (q)

F (q) =

∫
ne−iq·rd3r (16)

Finally

dσ

dΩ
= |f (k→ k′)|2 =

4m2e4

~4q4
[Z − F (q)]2

, q =
2mv

~
sin
ϑ

2
(17)
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Elastic collisions between fast electrons and atoms

Consider qa0 � 1, where a0 ∼ rA. Small ϑ correspond to small q:
ϑ� v0/v , where v0 ∼ ~/ma0 ∼ vA

e . Expanding F (q) in powers of q the
zero-order term is

∫
ndr = Z , i.e. number of electrons in the atom.

First-order term
∫

rn(r)dr (average value of the dipole moment) is zero and
up to second-order term we have:

Z − F (q) =
q2

6

∫
r 2nd3r ⇒ dσ

dΩ
=
∣∣∣me2

2~2

∫
nr 2d3r

∣∣∣2 (18)

Thus, in the range of small angles, the cross-section is independent of the
scattering angle, and is given by the mean square distance of the atomic
electrons from the nucleus.

In the opposite limit qa0 � 1, ϑ� v0/v exponential e−iq·r becomes rapidly
oscillating function bringing integral (16) close to zero. Consequently, in
expression (15) we can neglect the atomic form factor F(q) in comparison
with Z , so that:

dσ

dΩ
=
( Ze2

2mv 2

)2 1

sin4 ϑ
2

(19)

i.e. Rutherford formula for elastic scattering of electron on the atomic
nucleus.
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Dynamics

The basic quantity describing the general scattering process

1 + 2→ 3 + 4 + · · · n (20)

is dσ =
(2π)4

| ~v1 − ~v2 |
1

2E1

1

2E2
|Mif |2

n∏
i=3

d~pi

(2π)32Ei
δ4(p1+p2−

n∑
i=3

pi ) SF , (21)

where Ei is the energy of particle i with velocity ~vi (in units of c), Mif is
invariant amplitude of (20), corresponding to the normalization of incoming
and outgoing one–particle states | E , ~p〉 of energy E and momentum ~p:

〈E ′, ~p ′ | E , ~p〉 = (2π)32Eδ3(~p − ~p ′) (22)

and the statistical factor
SF ≡

∏
i

1

ni !
(23)

applies to ni identical particles of type i in the final state.

N.B. (21) assumes that the particles 1, 2 collide head on, otherwise more
general expression would replace | ~v1 − ~v2 | 2E12E2, which is invariant with
respect to Lorentz boosts along the direction of these colliding particles.
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Dynamics

Elastic scattering of electrons on pointlike proton

(TP p.172)

Similarly to Rutherford experiment, we have to know elastic lepton-proton
cross section (21) for the case of pointlike proton with momentum p and
mass M.

In the lowest order of pQED we have photon exchange diagram of Fig. 1c:∣∣Mif

∣∣2 =
1

4

∑
spins

∣∣∣∣[u(k ′, s4)γµu(k , s2)] e2−igµν

q2
[u(p′, s3)γνu(p, s1)]

∣∣∣∣2 . (24)

u, u are the usual Dirac bispinors, satisfying the free particle Dirac equations

( 6p −m)u(p) = 0; u(p)( 6p −m) = 0 where 6p ≡ γµpµ (25)

and are normalized as

u(p)u(p) = −v(p)v(p) = 2m; u+(p)u(p) = v +(p)v(p) = 2E (26)

and the photon propagator is taken in the Feynman gauge. In (24) we have
summed over the spins s3, s4 of the final and averaged over the spins s1, s2

of the initial fermions reads
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Elastic scattering of electrons on pointlike proton

(24) can be written as the contraction of two tensors (TP172)∣∣Mif

∣∣2 =
e4

Q4
L(1)µνL(2)

µν , (27)
where

L(1)
µν ≡

1

2
Tr [( 6k ′ + m)γµ( 6k + m)γν ] = 2

[
kµk ′ν + kνk ′µ − gµν(kk ′ −m2)

]
(28)

describes upper, electron vertex of Fig. 1c. Similarly, L
(2)
µν describes lower, proton,

vertex and is given by (28) with k → p, k ′ → p′, m→ M.

Carrying the contraction as indicated in (27) we get

L(1)µνL(2)
µν = 8[(k ′p′)︸ ︷︷ ︸

kp

(kp) + (k ′p) (kp′)︸ ︷︷ ︸
k ′p

−M2 (kk ′)︸ ︷︷ ︸
−q2/2

−m2(pp′) + 2m2M2︸ ︷︷ ︸
neglected

]

= 8(kp)2

[
1 +

(
k ′p

kp

)2

+
M2q2

2(kp)2

]
(29)

= 8(kp)2

[
1 + (1− y)2 − M2y

kp

]
−→

kp→∞
8(kp)2

[
1 + (1− y)2

]
,

where (kp) = (s −M2)/2 specifies the primary energy of the colliding particles
and (k ′p)/(kp) = 1− y describes the final state.
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Elastic scattering of electrons on pointlike proton

For s →∞ (30)takes particularly simple form. In the CMS of the colliding
particles we have

y ≡ qp

kp
=

(
s −M2

s

)
1− cosϑ∗

2
.

=
1− cosϑ∗

2

⇒ dy = −
(

s −M2

2s

)
d cosϑ∗

.
= −d cosϑ∗

2
, (30)

the integral over the phase space elements gives∫ ∫
d3~p ′

2Ep′

d3~k ′

2Ek′
δ4(k + p − k ′ − p′) =

∫ (
s −M2

8s

)
dΩ

.
=

1

8

∫
dΩ (31)

and the flux factor reduces to

1

2Ek

1

2Ep

1

| v1 − v2 |
=

1

2(s −M2)
, (32)

where we have retained the nonzero mass M of the target “pointlike proton”.
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Elastic scattering of electrons on pointlike proton

Substituting the above expressions into (21), integrating over φ and
replacing d cosϑ∗ with dy using (30) we finally get

dσ

dy
=

2πα2(2kp)

Q4

[
1 + (1− y)2 − M2y

kp

]
⇒ dσ

dQ2
=

2πα2

Q4

[
1 + (1− y)2 − M2y

kp

]
,

(33)
where we have used the fact that Q2 = y2kp.

Carrying out the same reduction in the laboratory frame yields

Lµν(1)L
(2)
µν = 16EE ′M2

[
cos2 ϑlab

2
− q2

2M2
sin2 ϑlab

2

]
⇒ (34)

dσ

dΩlab
=

α2 cos2(ϑlab/2)

4E 2 sin4(ϑlab/2)

E ′

E

[
1 +

Q2

2M2
tan2 ϑlab

2

]
−→
M→∞

α2 cos2(ϑlab/2)

4E 2 sin4(ϑlab/2)
= σMott

(35)
where σMott is differential cross–section corresponding to scattering of a spinless
particle off an infinitely heavy proton and the factor E ′/E = 1− Q2/2ME < 1
takes into account the recoil.
N.B. Apart from the presence of cos2(ϑ/2), which is characteristic of spin 1/2 fermion, the

Mott cross section represents relativistic generalization of the Rutherford formula.
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Elastic scattering of electrons on pointlike zero spin boson

Feynman rules lead to the following simple expression for the vertex

boson-γ-boson in the notation as in Fig. 1: –ie(p + p′)µ. The tensor L
(2)
µν is

then trivial and we get

L(1)µνL(2)
µν = 8(kp)2

[
2(1− y)− M2y

kp

]
. (36)

Both of the above results can be written in a single compact form

dσ

dy
=

4πα2(2kp)

Q4

[
(1− y) + ε

y 2

2
− M2y

2kp

]
, (37)

or equivalently

dσ

dQ2
=

4πα2

Q4

[
(1− y) + ε

y 2

2
− M2y

2kp

]
=⇒
s→∞

4πα2

Q4
, (38)

where

ε = 1 for pointlike fermion with spin 1/2,
ε = 0 for pointlike boson with spin 0.

To see a difference between the scattering on fermions and bosons requires
therefore large y, i.e. large angle scattering.
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Elastic scattering of electrons on real proton

(TP p.178)

Strong interactions modify the pointlike coupling u(p′)[ieγµ]u(p) which has
to be replaced with a structure, compatible with gauge and Lorentz
invariance and parity conservation1

u(p′)

[
F1(Q2)γµ + κ

F2(Q2)

2Mp
iσµνqν

]
u(p); σµν ≡ i

2
[γµγν − γνγµ, ] (39)

where F1(Q2),F2(Q2) are the elastic electromagnetic formfactors of the
proton and κ is a number, conveniently introduced in order to allow us to
set F2(0) = 1.

N.B. No such parameter is needed in front of F1 as gauge invariance implies
F1(0) = 1. Moreover, it is an interesting exercise in the nonrelativistic
reduction of the Dirac equation to show that κ gives just the anomalous
magnetic moment of the proton (i.e. 1.79).

(1) See next subsection for the derivation in the case of a more complicated inelastic scattering.
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Elastic scattering of electrons on real proton

The evaluation of the differential cross section using (39) is straightforward
but tedious. The result

dσ

dΩlab
= σMott

E ′

E

{
F 2

1 (Q2) +
Q2

4M2
p

[
2 tan2 ϑlab

2

(
F1(Q2) + κF2(Q2)

)2
+ κ2F 2

2 (Q2)

]}
,

(40)
to be compared to (35), was derived first by Rosenbluth in 1950.

N.B. The pointlike “Dirac proton” corresponding to F1 = 1, κ = 0, includes
the interaction of pointlike magnetic moment equal to µp = 1.

Setting F1(Q2) = F2(Q2) = 1, κ = 1.793 defines the pointlike proton with
anomalous magnetic moment. For the real proton the formfactors Fi are
steeply falling functions of Q2.
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Elastic scattering of electrons on real proton

Instead of F1,F2 it is convenient to introduce the electric and magnetic
formfactors

GE (Q2) ≡ F1(Q2)− Q2

4M2
p

κF2(Q2)⇒ GE (0) = 1, (41)

GM(Q2) ≡ F1(Q2) + κF2(Q2) ⇒ GM(0) = 1 + κ = µp. (42)

In Fig. 6a the ratio GM/µp is plotted as a function of Q2 and fitted to the
dipole formula, which implies that at large Q2, GM ∝ 1/Q4! Similarly for
GE (Q2). In terms of these new formfactors (τ ≡ Q2/4M2

p )

dσ

dΩlab
= σMott

E ′

E

[
G 2
E + τG 2

M

1 + τ
+ 2τG 2

M tan2(ϑlab/2)

]
. (43)
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Deep inelastic scattering of electrons on nucleons

In inelastic scattering of unpolarized electrons on unpolarized protons there
are two independent variables which uniquely specify final state of the
scattered electron.
Basic quantity of interest is then the double differential cross–section
dσ/dydx . For electromagnetic interactions its general form reads, written in
three equivalent ways, which differ by the choice of two independent
variables on which the cross section depends

dσ

dE ′dΩlab
= σMott

1

M

[
W2(x ,Q2) + 2W1(x ,Q2) tan2 ϑ

2

]
. (44)

dσ

dxdy
=

4πα2(2kP)

Q4

[(
1− y −

M2
pxy

S

)
F2(x ,Q2) +

1

2
y 22xF1(x ,Q2)

]
, (45)

dσ

dxdQ2
= 4πα2

Q4

[(
1− y − M2

pxy

S

) F2(x ,Q2)

x
+

1

2
y 22F1(x ,Q2)

]
−→
S→∞

4πα2

Q4

F2(x ,Q2)

x
,

(46)
where S ≡ (k + P)2 is the square of the total CMS energy. Since
Q2 = 2(kP)xy ⇒ the limit in the last expression follows from the fact that for
fixed x and Q2 the limit s →∞ implies y → 0.

Unknown functions Fi (x ,Q2), or equivalently, Wi (x ,Q2), are called inelastic
electromagnetic formfactors or structure functions of the proton.
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Deep inelastic scattering of electrons on nucleons

The form of (45) follows from four fundamental properties of electromagnetic
interactions: Lorentz invariance, unitarity, gauge invariance and parity
conservation. Its derivation proceeds in several steps.

1 tensor L
(2)
µν associated in the case of elastic scattering on a pointlike proton

with the lower vertex in Fig. 1d, will be replaced with the general Lorentz
tensor that can be formed out of the momenta∗ P, q and basic tensors of
rank two, i.e. symmetric metric tensor gµν and totally antisymmetric
Levi–Civita pseudotensor εµναβ :

Wµν(P, q) = −W1gµν + W2
PµPν
M2

p

+ iW3εµναβPαqβ (47)

+ W4qµqν + W5 (Pµqν + Pνqµ) + iW6 (Pµqν − Pνqµ) .

Wi (P, q) are unknown functions of P and q which depend on proton
internal structure. i in front of W3 and W6 assures hermiticity of the tensor
Wµν , i.e. Wµν = W ∗

νµ, i.e. all Wi (P, q) are real functions.

(*) For scattering of unpolarized leptons on unpolarized nucleons there are no other
four-momenta available. In the case of polarized particles the general decomposition of Wµν

includes also structures containing their polarization vectors.
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Deep inelastic scattering of electrons on nucleons

Not all of Wi (P, q) are, however, independent. Parity conservation requires
W3(P, q) = 0 and gauge invariance, expressed as the condition

qµWµν(P, q) =
[
−W1 + W4q2 + W5(Pq)

]︸ ︷︷ ︸
=0

qν +

[
W2

Pq

M2
p

+ W5q2

]
︸ ︷︷ ︸

=0

Pν + iW6

[
(Pq)qν − q2Pν

]︸ ︷︷ ︸
imaginary⇒W6=0

= 0 (48)

leads to three relations: W6 = 0 and

W5(P, q) = −W2(P, q)
Pq

q2M2
p

, (49)

W4(P, q) = W1(P, q)
1

q2
+ W2(P, q)

(Pq)2

q4M2
p

. (50)

Out of the original six functions Wi only two are thus independent.
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Deep inelastic scattering of electrons on nucleons

In terms of W1,W2 eq. (48) reads

Wµν(P, q) = −W1(P, q)

(
gµν −

qµqν
q2

)
+

W2(P, q)

M2
p

(
Pµ −

Pq

q2
qµ

)(
Pν −

Pq

q2
qν

)
.

(51)

Dropping terms to qµ or qν , which vanish after contraction with the leptonic
tensor Lµν(k , k ′), due to its transversality (i.e. qµLµν = 0), we get:

Wµν(P, q) = −W1(P, q)gµν + W2(P, q)
PµPν
M2

p

. (52)

Performing contraction LµνW µν and neglecting m but keeping Mp

Lµν(k, k ′)Wµν(P, q) = 2 (kµk ′ν + kνk ′µ − gµν(kk ′))

(
−W1gµν + W2

PµPν
M2

)
(53)

we find, after some straightforward algebra and using basic kinematics,

LµνWµν =
4(kP)

y

[
ν

Mp
W2

(
1− y −

M2
px2y 2

Q2

)
+ 2xW1

y 2

2

]
. (54)
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Deep inelastic scattering of electrons on nucleons

Instead of W1,W2 it is common to introduce another pair of functions

F1 ≡W1, F2 ≡
ν

M
W2, (55)

in term of which (54) reads

LµνWµν =
4(kP)

y

[
F2(x ,Q2)

(
1− y −

M2
px2y 2

Q2

)
+ 2xF1(x ,Q2)

y 2

2

]
(56)

Inserting (56) into the general expression (21) for the corresponding
cross–section and working out the differential d3k ′ in terms of dxdy we
finally arrive at (45).

N.B. In elastic scattering x = 1 by kinematics ⇒ relations between elastic
and inelastic formfactors:

F inel
2 (x = 1,Q2) = (F el

1 (Q2))2 +
κ2Q2

4M2
p

(
F el

2 (Q2)
)2
, (57)

2F inel
1 (x = 1,Q2) =

(
F el

1 (Q2) + κF el
2 (Q2)

)2
, (58)
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Cross–sections of virtual photons

W1,W2 have interpretation in terms of the total cross–sections σ(γ∗p) of
the “collision” between the virtual photon and the proton in the lower vertex
of Fig. 1d with W =

√
Q2(1− x)/x playing the role of the total cms and

Q2 being the mass squared of incoming photon.

While real photons exist only in 2 spin states (spin parallel or antiparallel to
its momentum), corresponding to two polarization four-vectors εµ, virtual
photons exist altogether in four independent spin states, described by

polarization vectors ε
(i)
µ , i = 1, 2, 3, 4.

Any treatment of photons, real or virtual, requires the selection of a
particular gauge, which leads to additional condition on the polarization
four-vectors εµ. In the so called Lorentz gauge this condition implies
ε(q)q = 0. There are three independent polarization vectors, which satisfy
this gauge fixing condition. Assuming ~q to point in the “third” direction and
denoting q = (q0, q1, q2, q3) they can be chosen as the following real vectors:

ε
(1)
T = (0, 1, 0, 0); ε

(2)
T = (0, 0, 1, 0); εL =

1√
Q2

(q3, 0, 0, q0). (59)
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Cross–sections of virtual photons

Total cross section of a collision of the virtual photon of momentum q and
polarization vector εµ = (ε0,~ε) with the proton at rest (i.e. with
P = (M, 0, 0, 0)) is given as:

σ(γ∗p; S) = CεµWµν(P, q)εν = C
(
−W1ε

2 + ε2
0W2

)
, (60)

where Wµν is the same hadronic tensor as introduced above and C is a
function containing flux and other factors.

Introduce longitudinal and transverse cross–section:

σT(γ∗p) ≡ 1

2

(
σ

(1)
T + σ

(2)
T

)
= σT = CW1, (61)

σL(γ∗p) = C

(
−W1 +

q2
3

Q2
W2

)
= C

(
−W1 +

(
1 +

Q2

4M2
px2

)
W2

)
, (62)

σ(γ∗p) ≡ (σT + σL) = C

(
1 +

Q2

4M2
px2

)
W2, (63)
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Cross–sections of virtual photons

So we have CW1 = σT ⇒ 2xF1 =
2x

C
σT ≡ FT (64)

CW2 = (σT + σL)
4M2

px2

Q2 + 4M2
px2
⇒ F2 =

2x

C

[
Q2

Q2+M2
px

2

]
(σT + σL)

.
= FT + FL,

(65)
Defining the ratio: R(x ,Q2) ≡ σL(x ,Q2)

σT(x ,Q2)
(66)

and since
W2

W1
=

(
1 +

σL
σT

)
Q2

Q2 + ν2
= (1 + R)

Q2

Q2 + ν2
(67)

we get
2xF1

F2
=

1 + 4M2
px2/Q2

1 + R
. (68)

Introduce so called longitudinal structure function

FL(x ,Q2) ≡ F2(x ,Q2)

(
1 +

4M2
px2

Q2

)
− 2xF1(x ,Q2), (69)

in terms of which
R(x ,Q2) =

FL(x ,Q2)

2xF1(x ,Q2)
. (70)
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Cross–sections of virtual photons

Inverting the relations (64)-(65) we get σT, σL in terms of F1,F2:

σT(x ,Q2) = CF1(x ,Q2), (71)

σL(x ,Q2) =
C

2x

[
F2(x ,Q2)

(
1 +

4M2
px2

Q2

)
− 2xF1(x ,Q2)

]
= C

FL(x ,Q2)

2x
.

Similarly inverting (68) we get F1 in terms of F2 and R

2xF1(x ,Q2) = F2(x ,Q2)

[
1 + 4M2

px2/Q2

1 + R(x ,Q2)

]
(72)

and consequently the brackets of (45) can be written in terms of F2 and R as
follows

F2(x ,Q2)

[
1− y +

y 2

2

(
1 + 4M2

px2/Q2

1 + R(x ,Q2)

)
−

M2
px2y 2

Q2

]
. (73)
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Cross–sections of virtual photons

Simultaneous measurement of F1,F2 as functions of x ,Q2 is in fact
impossible in a single experiment at one primary energy. (73)⇒ separating
F1(x ,Q2) from F2(x ,Q2) at fixed x ,Q2 is possible only if y can be varied.
Since Q2 = Sxy , this requires that the measurement is performed at least at
2 primary energies. Moreover, for this separation the double differential
cross–section is usually written as:dσ

dxdQ2
= Γ

(
σT(x ,Q2) + ε(y)σL(x ,Q2)

)
,

ε(y) ≡ 2(1− y)

1 + (1− y)2
, Γ ≡ 4πα2

CQ4

(
1 + (1− y)2

)
. (74)

Note that the function ε(y) can be interpreted as the ratio of flux factors of
longitudinal and transverse virtual photons.

In terms of F2(x ,Q2):

σ(γ∗p; W ,Q2) =
CF2(x ,Q2)

2x

Q2 + 4M2
px2

Q2
=

CF2(W ,Q2)

2x

[(
W 2 −M2

p

)
+ Q2

(
Q2 + 2W 2 + 2M2

p

)(
W 2 −M2

p

)
+ Q2

(
Q2 + 2W 2 − 2M2

p

)] . (75)

Michal Šumbera (NPI ASCR, Prague) Introduction to QCD November 3, 2009 30 / 110



Cross–sections of virtual photons

For real photons with polarization vector ε eq. (21) leads to:

σ(γp; W ε) =
4π2α

EγMp
εµ
(
−W1(W , 0)gµν +

PµPν
M2

W2(W , 0)

)
εν , (76)

for real photon C = 4π2α/EγMp.

Recalling that Eγ∗ = (W 2 −M2 + Q2)/(2M) the direct generalization for γ∗

would be:

C =
8π2α

W 2 −M2
p + Q2

. (77)

However, for virtual photons the standard definition of C is (77), but
without Q2 in its denominator, i.e.

C =
8π2α

W 2 −M2
p

=
8π2αx

Q2(1− x)
(78)

so that F2 and σ(γ∗p) are then related as follows

F2(x ,Q2) = σ(γ∗p; W ,Q2)

[
Q2

Q2 + 4M2
px2

]
Q2(1− x)

4π2α
, (79)

σ(γ∗p; W ,Q2) =
F2(x ,Q2)

Q2

[
Q2 + 4M2x2

Q2

]
4π2α

1− x
. (80)
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Cross–sections of virtual photons

Keeping Q2 in denominator of (77) would mean replacing (1− x) in (79) by
unity. Note that as the virtual photon goes on shell, Q2 → 0, with W kept
fixed, x → 0 and the square bracket in (79)-(80) approaches unity

lim
Q2→0

Q2 + 4M2
px2

Q2
= lim

Q2→0

(
W 2 −M2

p

)
+ Q2

(
Q2 + 2W 2 + 2M2

p

)(
W 2 −M2

p

)
+ Q2

(
Q2 + 2W 2 − 2M2

p

) = 1.

(81)

Consequently F2(W ,Q2) must behave as O(Q2) at small Q2!
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Electrons as tools for investigating nuclear structure

Rutherford used α-particles for his studies, but already in 1914 Franck and
Hertz were first to use the electrons for this purpose.

Electrons – soon recognized as the best probes of hadrons because ⇐
electromagnetic interactions are well-understood.

Since commissioning of Mark III Linac at Stanford University (Ca.) in 1953
e− were systematically used by a group led by Robert Hofstadter to
investigate structure of nuclei and later also of nucleons.

The results confirmed what was expected – nuclei have a finite size, but also
showed that their boundary is not sharp.

For electron energies (125 and 150 MeV) used in these experiments the
momentum transfer Q =

√
Q2 was restricted to rather small values Q ≤ 0.1

GeV, corresponding to distances of about 2 fm. Recall in this context that
in 1911 Marsden and Geiger managed to restrict the size of gold nuclei to
less than about 30 fm.
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Electrons as tools for investigating nuclear structure

Figure 2: Elastic and inelastic e−+4He scattering. Incident electrons had energy
400MeV, secondary electrons were detected at ϑ = 60◦. MESONS refer to π−

produced in the target and emerging with the same momentum as the
corresponding scattered electrons. The free proton peak is shown for comparison.
From R. Hofstadter, Rev.Mod.Phys.28(1956)214.
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Electrons as tools for investigating nuclear structure

From R. Hofstadter, Rev.Mod.Phys.28(1956)214.
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Electrons as tools for investigating nuclear structure

1955 Hofstadter and his group started to study structure of individual
nucleons. Using the detector shown in Fig. 36 and beams of electrons with
energies up to 200 MeV, they performed a series of experiments the results
of which earned Hofstadter the Nobel prize for physics in 1961.

Figure 3: From R. Hofstadter, Rev.Mod.Phys.28(1956)214.
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Electrons as tools for investigating nuclear structure

Hofstadter et al. have shown that proton does not behave as a pointlike
source of the Coulomb field, but rather as a particle with finite r ≈ 1fm.

e− + p differential cross section differs from that of pointlike proton (“Dirac
curve”) as well as from that which includes anomalous part of µp as given
by the formula (40) with F1 = 1,F2 = 1.793 (“anomalous curve”) (see left
part of Fig. 4). The fact that the latter curve is above the data had been
interpreted as evidence that the proton “is not a point”.

Fitting the experimental distribution in the left plot of Fig. 4 to the Mott
cross section multiplied by the form factor (assumed the same for charge
and magnetic moment) lead to the determination of root–mean–square
radius of the proton rch = rmag = 0.7± 0.24fm.

In 1955 Ee was increased to 550 MeV extending measurements into the
region Q2 ≤ 0.5 GeV2. The main result – Q2-dependence of proton
formfactors – is shown on the right plot in Fig. 4.

Investigations were completed in early sixties using 1000 MeV electron beam
from the upgraded Mark III Linac which showed that within the accuracy of
the measurement the charge and magnetic formfactors coincide, as assumed
in the earlier work.
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Electrons as tools for investigating nuclear structure

Figure 4: Left: Comparison of data with theoretical calculations described in the text. The
best fit corresponds to exponential charge distribution with r.m.s. radius equal to 0.74 fm.
Right: Q2 dependence of proton formfactors plotted in units of inverse square fm, which means
that the point 12.5 fm−2 corresponds to Q2 = 0.5 GeV2.

From R. Hofstadter, Rev.Mod.Phys.28(1956)214.
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What e− + p DIS tells us about the structure of nucleons?

The success of 1 GeV Linac at Stanford led to the decision to built a new
electron linear accelerator with energies up to 20 GeV, using the
infrastructure available at the newly created Stanford Linear Accelerator
Center (SLAC).

Aim was to extend elastic scattering experiments and also to investigate
quasi-elastic scattering, i.e. the electroproduction of resonances, like ∆, etc.

Just for completeness the group also wanted to look at the inelastic
continuum, which was inaccessible in previous Hofstadter’s experiments.
However, the planning of the machine was not influenced by any
considerations that possible point-like substructure of the nucleon might be
observed in electron scattering!

The two miles long machine was commissioned in late 1966 and in 1967 the
group of experimentalists from SLAC and MIT started a series of
experiments aiming primarily at the investigation of elastic electron proton
scattering in much wider range of momentum transfer Q2, but making
possible also the first serious study of deep inelastic electron-proton
scattering.
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Setup of SLAC–MIT e− + p DIS experiment

Figure 5: Schematic layout of the spectrometer used in experiments with deep
inelastic scattering of electrons on protons at SLAC.
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What e− + p DIS tells us about the structure of nucleons?

First results obtained in early 1968 concerned elastic and inelastic formfactor
GM ≡ F1 + κF2. Fit to the elastic formfactor by the dipole formula gave
(1/(1 + Q2/0.71))2.

Data on inelastic formfactor at fixed W and also their possible scaling
behavior are shown in Fig.6. SLAC experimentalist concluded “. . . data
might give evidence on the behavior of point-like charged structures in the
nucleon.”

This point of view was not shared by the theorists at that time. There were
few clear ideas about Q2-dependence of inelastic formfactors and in
particular on behavior of structure functions F1(x ,Q2) and F2(x ,Q2) as
functions of Q2 for W 2 outside the resonance region, i.e. for
W 2 = Q2(1− x)/x & 2 GeV2, in the limit Q2 →∞. Will they vanish as
rapidly as the elastic formfactors or could they eventually approach nonzero
functions of x?

Shortly before the first data from SLAC appeared Bjorken had suggested the
latter possibility – now called Bjorken scaling, but his derivation was based
on several questionable assumptions and few other theorists, perhaps
including Bjorken himself, took it seriously.
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First SLAC results on e− + p DIS

Figure 6: Left: Doubly diff. cross-section (in nb/GeV. sr) for scattering of incident 4.9 GeV
electrons on hydrogen at 10◦ versus detected e− energy, E (in GeV). Scale at the top (W) is
invariant mass of the undetected hadronic system.
Middle: Ratio σ/σMOTT (which is directly proportional to the structure functions) versus q2 for
various values of W. This is basically another representation of the kinds of data shown on the
left panel. For comparison the elastic data is shown on the same plot.
Right: Scaling form of the data shown on left and middle panels. Dimensionless combination
νW2 is plotted versus the dimensionless variable ω = 1/x = 2ν/q2 for many values of q2. The
various points seem to lie on a universal curve.
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What e− + p DIS tells us about the structure of nucleons?

Although the quark model had been formulated three years earlier and had
some success in explaining the static properties of nucleons, almost nobody
thought it might be relevant for the dynamics of high energy e+p scattering.

To illustrate the prevalent mood of that time, let’s quote Gell-Mann’s
introductory talk at conference held in Berkeley in Summer 1967, just at the
time the first measurements at SLAC were under way:

We consider three hypothetical and probably fictitious spin 1/2 quarks, . . .
It is possible that real quarks exist, but if so they have high threshold for
copious production, many GeV; if this threshold comes from their rest mass,
they must be very heavy and it is hard to see how deeply bound states of
such heavy real quarks could look like qq, say, rather than a terrible mixture
of qq, qqqq, and so on. Even if there are light real quarks and the threshold
comes from very high barrier, the idea that mesons and baryons are made
primarily of quarks is difficult to believe . . .
The probability that a meson consists of a real quark pair rather than two
mesons or a baryon and antibaryon must be quite small. Thus it seems to
me that whether or not real quarks exist, the q or q we have been talking
about are mathematical entities that arise when we construct
representations of current algebra, which we shall discuss later on. . .
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Bjorken and Callan–Gross sum rules for DIS

The only theoretical framework for the analysis of inelastic electron-proton
scattering at that time was based on the analytic properties of the scattering
matrix. Within this framework, and using rather heavy artillery of the so
called “current algebra”, it was possible to derive several relations involving
measurable quantities.

For instance, Bjorken derived the following restriction on the integrals over
the structure functions F p

2 (x ,Q2) and F n
2 (x ,Q2):

1

M

∫
dν
[
W p

2 (ν,Q2) + W n
2 (ν,Q2)

]
=

∫
dx

x

[
F p

2 (x ,Q2) + F n
2 (x ,Q2)

]
≥ 1

2
.

(82)

Callan and Gross derived the sum rule for similar combination:

Q2

2M2

∫
dν

ν

[
W p

2 (ν,Q2) + W n
2 (ν,Q2)

]
=

∫
dx
[
F p

2 (x ,Q2) + F n
2 (x ,Q2)

]
≤ 1

2
,

(83)
which should hold in the limit Q2 →∞.

In both cases no assumption concerning the structure of the nucleon was
made.
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Yet another DIS sum rule: Gottfried sum rule

Assuming the constituent quark model, Gottfried derived the sum rule for
W p

2 (x ,Q2) itself

1

M

∫
dνW p

2 (ν,Q2) =

∫
dx

x
F p

2 (x ,Q2) = 1− G 2
E (Q2) + (Q2/4M2)G 2

M(Q2)

1 + Q2/4M2

' 1− 1 + 2.2Q2

(1 + 0.29Q2)(1 + 1.4Q2)4
−→

Q2→∞
1, (84)

where the proton elastic formfactors GM and GE were fitted by the common
form (1/(1 + Q2/0.71))2.

James Bjorken, September 1967: But the indication is that there does not
yet seem to be any large cross sections which this model of point-like
constituents suggests. Additional data is necessary and very welcome in
order to completely destroy the picture of elementary constituents.

Kurt Gottfried’s comment following Bjorken’s talk: I think Professor Bjorken
and I constructed sum rules in hope of destroying the quark model.
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What e− + p DIS tells us about the structure of nucleons?

Although Bjorken’s suggestion proved to be wrong if taken literally, it
prepared the ground for the concept of approximate scaling, which was
observed at SLAC and which became the starting point for Feynman’s
parton model to be discussed below. Today we know that within Quantum
Chromodynamics the structure functions Fi (x ,Q2) vanish for any fixed
x > 0 when Q2 →∞. However, and this is the crucial point, they do so
very slowly, much more slowly than the elastic formfactors of nucleons!

In fact, had the theorists in late sixties taken the idea that nucleons are in
some sense composite objects, the slow Q2-dependence of structure
functions describing the deep inelastic electron-proton scattering could be
expected on quite general grounds. Even for very large Q2 it is in principle
possible that the momentum transferred to the nucleon will dissipate among
its constituents in such a way that the nucleon will not break up but will
recoil as whole but this process will be very rare. Hence the Q2-dependence
of GM and GE . GE (Q2) ' GM(Q2) ∝ 1/Q4 for large Q2 t (implying 1/Q8

dependence of elastic cross sections!).

In most cases the nucleon experiencing hard collision with an electron will
break up leading to final states with typically many particles. The probability
of any specific final state will again depend on the mechanism of
recombination of the constituents from the broken nucleon into this final
state and will thus also be strongly Q2 suppressed. However, if we sum over
all hadronic final states by measuring the inclusive inelastic electron-proton
cross section (44), (46) or (45), there is no reason to expect any strong Q2

dependence!
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More SLAC results on e− + p DIS

Figure 7: Left: Visual fits to e− + p scattering at 10◦ for E=4.88–17.65 GeV. Elastic peaks
have been substracted. Middle: Visual fits to e− + p scattering at 1.5◦–18◦ for E=13.5 GeV.
Right: Scaling F1 = 2MW1(ω) vs ω and F2 = νW2(ω) vs ω.

From Henry W. Kendall, Rev.Mod.Phys.63(1991)597.
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What e− + p DIS tells us about the structure of nucleons?

Despite this low expectations, the data on DIS, some of which are
reproduced in Fig. 7, turned out to be both surprising and of far-reaching
consequences. In recognition of their importance for the development of
parton model and eventually the formulation of QCD, R. Taylor, H. Kendall
and J. Friedman were awarded the 1990 Nobel Prize for Physics.

The main features of these results are the following (the notation used in
Fig. 7 is related to that used in this text as follows:
νW2 = F2, ω = 1/x ,W 2 = −Q2 + M2

p + 2Mν = Q2(1− x)/x + M2
p ):

1 Varying energy of the electron beam allowed to determine, for a fixed
pair x ,Q2, separately the two structure functions F p

1 (x ,Q2) and
F p

2 (x ,Q2) . Measured value of the ratio (70) R = 0.18 was then used
in the following considerations.

2 In the resonance region, i.e. for W 2 ' 1− 4 GeV, the F2(W 2,Q2)
rapidly falls off with increasing Q2, similarly as the elastic formfactor
F2(Q2). Three resonances are visible in the upper left plot of Fig. 7,
first corresponding to ∆(1236). Their positions as functions of ν move
with increasing Q2 to the right reflecting the fact that
ν = (W 2 + Q2)/2Mp.
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What e− + p DIS tells us about the structure of nucleons?

3 On the other hand, in the continuum region, i.e. roughly for W & 2 GeV,
F p

2 (x ,Q2) varies with Q2 only very slowly. This is shown in the right part of
Figs. 6 and 7.

4 In this region the data are moreover consistent with the Bjorken scaling
hypothesis. This is suggested by the right plot of Fig. 7 which shows the
approximate constancy of F2(ω,W 2) considered as a function of
W 2 = Q2(ω − 1) + M2

p for fixed ω = 1/x , and in the lower left plot as the

approximate Q2-independence of F2(x = 1/ω,Q2) considered as a function
of ω = 1/x .

5 Integrating over the accessible kinematical region of both x and Q2 gave the
following values for two important sum rules mentioned above.

I p1 =

∫ 1

0.05

dx

x
F p

2 (x ,Q2) = 0.78±0.04, I p2 =

∫ 1

0.05

dxF p
2 (x ,Q2) = 0.172±0.009.

(85)
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Emergence of the parton model

Feynman, during several visits to SLAC in Autumn 1968, using the intuitive
language of parton distribution functions (PDF), developed the basic ideas
of the parton model.

PDF remain the basic theoretical concept also in QCD.

Basic idea of parton model is to represent deeply inelastic (Q2 � M2
p )

electron-nucleon scattering as quasi-free scattering from point-like
constituents within the proton when viewed from a frame in which P →∞.

At high energies e + p c.m.s. is a good approximation of such a infinite
momentum frame (IMF).

Despite the fact that any frame is in principle as good as IMF and we use
manifestly relativistic invariant variables like x , y or Q2 this choice of a
preferred reference frame (or, better, family of frames) is at the heart of the
parton model. For instance, parton model cannot be easily formulated in
proton rest frame.
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Parton model

In IMF pT of proton constituents induced by the internal “Fermi motion”,
characterized by pT . Mp, as well as the masses of nucleons and partons
can be neglected with respect to the longitudinal
⇒ the parton four-momentum is p = ηP.

In e + p DIS these transverse components can be safely neglected also in the
evaluation of the corresponding cross section, which can be written as an
incoherent sum of cross sections from elastic scattering on individual
charged partons.

Momentum conservation at the lower vertex in Fig. 1c,

(p′)2 = (p + q)2 = p2 + q2 + 2pq ⇒ 2pq = −q2 = Q2 (86)

implies that the variable x in (5) coincides within the parton model with
fraction η introduced above.
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Parton model

The above quasi-free electrons-parton scattering model is sufficient for
calculation dσ/dxdQ2 of inclusive electron-proton scattering, which depend
on the kinematical variables describing the scattered electron only.

Comparing (37) for the scattering on pointlike fermion with spin 1/2 with
the general form (45) for the scattering on the proton we see that the last,
mass terms, coincide provided we identify M = xMp, i.e. the rest mass of
interacting quarks should depend on its momentum! ⇒ parton model is
noncontradictory only for the massless protons and partons, i.e. in the IMF.
In practice parton model is relevant any when Q2 � mp,mq.
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Parton model

Feynman had also added the basic mechanism of hadronization i.e. the
conversion of final state partons into observable hadrons which occurs much
later than the scattering of electrons from partons and does not therefore
influence it. The overall picture of the collision is sketched in Fig. 8.

Figure 8: DIS on a real proton in the parton model. The incoming electron scatters on a
single parton, while the remaining diquark flies unperturbed on, until the forces of
confinement, acting between them at distances larger than about 1 fm, cause their
conversion into observable hadrons. For this picture to be consistent the time separation
τhad between these two stages must be significantly larger than the characteristic time τint
of the electron–parton scattering.
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Parton model

Consider now dσ/dxdQ2 as given in (46) at large energies. i.e.

dσ

dxdQ2
−→

kp→∞

4πα2

Q4

F2(x ,Q2)

x
, (87)

where only one structure function appears. In this limit the differential cross
section of elastic scattering of electrons from a pointlike fermion or boson of
electric charge ep, given in (38) for unit electric charge, equals

dσ

dQ2
=

4πα2e2
p

Q4

[
1− y + ε

y 2

2
− Mpy

2kp

]
−→

kp→∞

4πα2e2
p

Q4
(88)

and is thus the same for both types of partons.

Feynman wrote:
F2(x)

x
=
∑
i

e2
i di (x)⇒ F2(x) = x

∑
i

e2
i di (x) (89)

where functions di (x) describe the probability to find inside the proton
parton species i with fraction x of proton momentum and electric charge ei .

N.B. Approximate scaling, i.e. independence of the measured F2(x ,Q2) of
Q2 is clearly indispensable for this expression to make sense.
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Parton distribution function: simple model

Simple parton distribution function (PDF) model:
proton is superposition of states with different, but fixed, number of partons.
The simplest one – in the N-parton configuration, which appears in the
proton with the probability P(N), all partons carry the same momentum
fraction xN = 1/N and thus

F2(x) =
∑
N

P(N)
δ(x − 1/N)

N
〈

N∑
i=1

e2
i 〉

⇒
∫ 1

0

dxF2(x) =
∑
N

P(N)
〈
∑N

i=1 e2
i 〉

N
, (90)

where 〈
∑N

i=1 e2
i 〉/N is the mean square electric charge in the N-parton

configuration. In this model the integral I p2 defined in (85) can thus the
interpreted as mean square charge per parton in the proton. In fact this
interpretation holds in the whole class of models of distribution functions
di (x) in which the N-parton distribution function f (x1, x2, ..., xN) is a
symmetric function of its arguments.
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Parton spin

For
√

S →∞, only F2(x ,Q2) structure function appears. At finite energies
also F1(x ,Q2) contributes ⇒ one may extract both of them from (74),
which requires measurements for fixed x ,Q2 at two energies. This has,
indeed, been done at SLAC with the results R = 0.18, which implies that to
a good approximation the measured structure functions satisfy the so called
Callan-Gross relation F2(x) = 2xF1(x).

This in turn means that charged partons are fermions with spin 1/2! Note
that for scalar partons (37) implies F1(x) = 0, which is clearly ruled out by
data. The same holds for vector, i.e. spin 1, gluons, which provides one of
the experimental facts for ruling out the Hahn-Nambu model of integral
charge colored quarks.

The spin 1/2 nature of charged partons, suggested by data, immediately
raised the question of their relation to the constituent quarks of the
additive quark model.Although these two concepts are not identical it has
become practice to call the original parton model of Feynman in which the
basic charges constituents of nucleons are identified as far as their quantum
numbers are concerned with quarks, the Quark Parton Model and denoted
QPM.
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Parton spin

N.B. The charged, spin 1/2 partons, introduced by Feynman, are usually
called current quarks (of definite flavor) to emphasize this difference.
Compared to the constituent quarks they are light (about 10 MeV for u, d
quarks compared to roughly 300 MeV for the constituent ones) and there is
no fixed number of them inside the proton.

Contradiction: QPM assumes that e− scatter on free quarks, despite the
fact that no quarks have so far been observed in the nature and thus one
would expect them to be tightly bound inside the proton (and other
hadrons). This has originally been the source of suspicion of many
physicists. The reason why the QPM nevertheless works was explained by
the asymptotic freedom of QCD later on.

Experimentally F1,F2 were found in fact not exactly Q2-independent, as
assumed in the QPM, but depend, as indicated already by the original SLAC
measurements, also weakly on Q2. This weak Q2 dependence will be
ignored in this chapter. We shall return to it later when dealing with the
description of these scaling violations.
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Recent data on F2(x ,Q
2)

Figure 9: The Q2 dependence of the proton structure function F ep
2 (x ,Q2) for several fixed

values of x . Old SLAC data are complemented by the recent results from the H1 Collaboration
at DESY. From S. Aid et al., Nucl.Phys.B470(1996)3.
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F2(x ,Q
2): SLAC results

Measured value of I p2 = 0.17± 0.009, representing in the parton model the
mean square charge per parton in the proton, was about half the value
1/3 = (4/9 + 4/9 + 1/9)/3 expected in the simplest form of the parton
model.

Bjorken and Paschos: “the observed cross section is uncomfortably small”
even if the three quarks were supplemented by the sea of quark-antiquark
pairs.

⇒ The data clearly indicated that there must be also electrically neutral
partons in the proton but it took another year, until the invention of QCD in
1973, to realize it.
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Parton distribution functions and their basic properties

From now on the distribution functions di (x) of current quarks inside the
proton will be denoted as q(x), q = u, d , s, c and as q(x) for the
corresponding antiquarks. Pdf of bottom and top quarks does not make
much sense ⇐ they are too heavy for that purpose.

N.B. Isospin symmetry ⇒ the same pdf can be used for also neutron. i.e.
u-quark in the proton is the same as d-quark in the neutron and vice versa.

It took a lot of work to extract from vast amount of experimental data on
F1,F2 pdf of individual current quarks ⇒ F1,F2 are always combinations of
the latter, for instance:

F ep
2 (x) = x

(
4

9
[u(x) + u(x) + c(x) + c(x)] +

1

9
[d(x) + d(x) + s(x) + s(x)]

)
,

(91)

F en
2 (x) = x

(
4

9
[d(x) + d(x) + c(x) + c(x)] +

1

9
[u(x) + u(x) + s(x) + s(x)]

)
.

(92)
N.B. In going from (91) to (92) we exploited the isospin symmetry of quark
distribution functions and furthermore assumed that the s, c , s, c
distributions are the same in protons and neutrons.
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Parton distribution functions and their basic properties

A particularly useful combination is the average F eN
2 ≡ 1

2 (F ep
2 + F en

2 ) =

=
5

18
x
[
u(x) + d(x) + u(x) + d(x) + s(x) + s(x) + c(x) + c(x)

]︸ ︷︷ ︸
Σ(x)

−1

6
xk(x),

(93)

where k(x) ≡ (s(x) + s(x)− c(x)− c(x))� Σ(x). This combination (93)
corresponds to the isoscalar target and is measured in experiments using
nuclear targets.

Figs. 10, 11 and 12 display quark and antiquark distribution functions
multiplied by x at Q2 = 100 GeV2 as extracted by three recent global
analyses, and one older parameterization (denoted HMRSB).
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Parton distribution functions and their basic properties

Figure 10: Parton distribution functions of u-quarks (left), u-quarks (middle) and valence
u-quarks (right) in the proton for Q2 = 100 GeV2 as extracted by four different
parameterizations, taken from the CERN PDFLIB library of distribution functions. The first
three are the recent ones obtained by CTEQ, MRS and GRV groups, the last one (dash-dotted
curves) corresponds to a MRS parametrization more than a decade old.
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Parton distribution functions and their basic properties

Figure 11: Parton distribution functions of of d-quarks (left), d-quarks (middle) and valence
d-quarks (right) in the proton for Q2 = 100 GeV2 as extracted by four different
parameterizations, taken from the CERN PDFLIB library of distribution functions. The first
three are the recent ones obtained by CTEQ, MRS and GRV groups, the last one (dash-dotted
curves) corresponds to a MRS parametrization more than a decade old.

Michal Šumbera (NPI ASCR, Prague) Introduction to QCD November 3, 2009 63 / 110



Parton distribution functions and their basic properties

Figure 12: Parton distribution functions of of s-quarks (left), c-quarks (middle) and gluons
(right) in the proton for Q2 = 100 GeV2 as extracted by four different parameterizations, taken
from the CERN PDFLIB library of distribution functions. The first three are the recent ones
obtained by CTEQ, MRS and GRV groups, the last one (dash-dotted curves) corresponds to a
MRS parametrization more than a decade old.
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Parton distribution functions and their basic properties

In global analyses, which will be described in more detail in Section QCD
improved quark-parton model, one attempts to describe a wide range of
physical process with the same set of parton distribution functions.

The marked improvement in the determination of PDF from experimental
data achieved over the last decade has been the consequence of several
facts: improvement in the precision and scope of experimental data, progress
in perturbative calculations and closer collaboration between
experimentalists and theorists in the extraction procedure.
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Parton distribution functions and their basic properties

There are two important features of quark distribution functions displayed on
Figs. 10, 11 and 12:

1 For x → 0 both q(x) ∼ x−1 and q(x) ∼ x−1 ⇒ integrals∫ 1

0

q(x)dx and

∫ 1

0

q(x)dx diverge (94)

⇒ Number of charged partons in the proton is infinite. However, this does
not presents a serious problem for the QPM.
Consider the so called valence distribution functions:

qval ≡ q(x)− q(x); q = u, d , s, c (95)

The data on uval and dval indicate that these functions are integrable (see
Figs. 10, 11) and the values∫ 1

0

uval(x)dx
.

= 2;

∫ 1

0

dval(x)dx
.

= 1 (96)

are consistent with the prediction of the additive quark model.
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Parton distribution functions and their basic properties

1 (Cont’d) One can test these relations by evaluating the integral:

GS ≡
∫ 1

0

F ep
2 (x)− F en

2 (x)

x
dx =

1

3

∫ 1

0

(uv (x)−dv (x))dx−2

3

∫ 1

0

(d(x)−u(x))dx ,

(97)
which should be equal to 1/3, if u(x) = d(x) (isospin symmetry).
Nevertheless a recent measurement by the NMC Collaboration at CERN
yields GS=0.235±0.026, clearly inconsistent with 1/3. Interpretation of this
discrepancy is the isospin violation in the sea quark distributions.

2 Fraction of the proton momentum carried by the quark q is∫ 1

0

xq(x)dx ; q = u, d , s (98)

⇒ fraction of the proton momentum carried by all u, d , s and c quarks and
antiquarks together is: ∫ 1

0

xΣ(x)dx
.

=
18

5

∫ 1

0

F eN
2 (x)dx , (99)

Experimental value is ≈ 0.5 ⇒ ∃ other, electrically neutral, partons in the
proton, carrying the remaining half of its momentum (gluon, to be discussed
in the section on QCD).
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Parton distribution functions and their basic properties

Present understanding of the origin of antiquarks and gluons inside the
proton is indicated in Fig. 13.

Figure 13: Field theoretic “explanation” of the generation of partons from valence
quarks interacting via the exchange of gluons, carriers of strong force.
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Field theoretic generation of partons from valence quarks

At small resolution (i.e. in the small momentum transfer scattering), proton
behaves as a system of three massive constituent quarks, bound together
by a static potential.

With higher resolution power, provided by the hard scattering processes,
static potential gives rise to gluons which in turn convert to pairs of quarks
and antiquarks, which again radiate gluons and so on and so forth. All the
created quarks and gluons are virtual and thus have to recombine after
some time, but if their virtuality1 is small compared to

√
Q2, where Q2 is

some measure of the “hardness” of the collision, they will “live” long enough
for the probe electron to scatter on them (nearly) as on the real ones.

This intuitive explanation will be corroborated by more quantitative
arguments and calculations in next lecture – Parton model in other
processes.

(1) Measured by the “off–mass shellness” k2 −m2, where k and m are the momentum and mass

of the virtual particle.
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Parton model in neutrino interactions

u(x) and d(x) (in the proton) can be divided into the valence parts, defined
in (95), and the sea parts, which are by definition identical to the antiquark
distribution functions: u(x) = usea(x) = usea(x),

d(x) = d sea(x) = dsea(x).
(100)

s and c-quark pdf of proton have only sea components. Isospin symmetry is
usually assumed for the sea distributions. On the other hand, the strange
sea in the proton is expected to be suppressed with respect to usea, due to
bigger current mass of the s quark.

Weak interactions do distinguish quarks from antiquarks.

⇒ With the advent of intense beams of νµ and νµ at CERN and Fermilab in
the early seventies the ν + N DIS in the charged current (CC)

νµ + N → µ− + anything (101)

as well as neutral current (NC) channels

νµ + N → νµ + anything (102)

has opened new ways of testing the parton model and contributed decisively
to the extraction of distribution functions of individual quark flavors.
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Parton model in neutrino interactions

Figure 14: Lowest order Feynman diagrams describing the weak interaction of
neutrinos with the exchange of W + (a) and Z (b) intermediate vector bosons.
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Parton model in neutrino interactions

In most of the existing applications the exchange of vector bosons W± can
be replaced by the effective four–fermion vertex of the original Fermi
theory1 which takes the form of product

GF√
2

J(`)
µ

(
J(h)µ

)+

+ h.c., (103)

of the leptonic and quark currents J
(`)
µ , J

(h)
µ

J(`)
µ =

∑
`,`′

ul′γµ(1− γ5)ul +
∑
`,`′

v `γµ(1− γ5)v`′ , (104)

J(h)
µ =

∑
q,q′

uq′γµ(1− γ5)Vqq′uq +
∑
q,q′

vqγµ(1− γ5)Vq′qvq′ , (105)

where the sums run over the pairs of leptons `, `′ and quarks q, q′ for which
∆` ≡ e` − e`′ = ∆q ≡ eq − eq′ = +1.

(1) This is a good approximation so long as the momentum transfer at the leptonic vertex

in Fig. 14 is much smaller than its mass, i.e. Q2 � M2
W .
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Parton model in neutrino interactions

The unitary matrix Vqq′ , called Cabbibo matrix, describes the mixing of
quarks (antiquarks) with electric charge −1/3 (1/3). The unitarity of this
matrix implies that for fully inclusive quantities, i.e., so long as we sum over
all final states in (101), Vq,q can be replaced in (105) by a unit matrix.

In (104) and (105) Dirac bispinors u, v describe the in– and outgoing states
of leptons and quarks (u) and their antiparticles (v), participating in the
basic parton level scattering process:

`(k) + q(p)→ `′(k ′) + q′(p′). (106)

Consider first the scattering of a massless neutrino on the quark with mass
M. The spin averaged matrix element squared corresponding to one
particular term of (103) is proportional to the contraction of leptonic and
quarkonic tensors

L(1)
µνLµν(2) =

1

2
Tr [6k ′γµ(1− γ5) 6kγν(1− γ5)]

×1

2
Tr [( 6p′ + M)γµ(1− γ5)( 6p + M)γν(1− γ5)] . (107)
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Parton model in neutrino interactions

Anticommuting the γ5 matrix in the above trace the leptonic tensor is given
as:

Tr [6k ′γµ 6kγν(1− γ5)] = 4
[
k ′µkν + k ′νkµ − gµν(kk ′)− iεµνγδk ′γkδ

]
,
(108)

where εµναβ is fully antisymmetric tensor of rank four.

Although the quark mass M is explicitly present in the expression for the
corresponding quark tensor, it disappears once the trace in the quarkonic
tensor is worked out:

1

2
Tr [(6p′ + M)γµ(1− γ5)(6p + M)γν(1− γ5)] =

Tr [6p′γµ 6pγν(1− γ5)] +
M2

2
Tr [γµγν + γµγ5γ

νγ5]︸ ︷︷ ︸
0

(109)

N.B. Substituting k → p, k ′ → p′ we get exactly one half the result for the
leptonic tensor.
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Parton model in neutrino interactions

Contracting the lepton and parton tensors using the identity

εµνγδε
µν
αβ = 2(gαδgβγ − gαγgβδ) (110)

and employing standard Mandelstam variables for the parton level subprocess

s ≡ (k + p)2, t ≡ (k−k ′)2 = (p−p′)2, u ≡ (k−p′)2 = (k ′−p)2 (111)

we get

L(1)
µνLµν(2) = 32

[
(kp)2 + (k ′p)2 + (kp)2 − (k ′p)2

]
= 64(kp)2 = 16

(
s −M2

)2
,

(112)
where the last two terms came from the contraction (110) and are therefore
due to the presence of the γ5 matrix.

N.B.only this part may differ for particles and antiparticles. Switch to
antiparticles, for both ν and q implies the substitutions k ↔ k ′, p ↔ p′.
⇒ Antisymmetry of term proportional to εµναβ means that it should be
multiplied by −1 for each of these substitutions.
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Parton model in neutrino interactions

This leads to two different situations:

1 Scattering of antineutrinos on antiquarks: As both of the mentioned
substitutions are applied simultaneously we get exactly the same result as for
the neutrino-quark channel.

2 Scattering of antineutrino on quark or neutrino on antiquark: here only one
factor of −1 multiplies the term (kp)2 − (k ′p)2 in (112) and we get

L(1)
µνLµν(2) = 64(k ′p)2 = 16

(
u −M2

)2
= 64(kp)2(1− y)2. (113)

N.B. Relation between (112) i.e.

L
(1)
µνLµν(2) = 32

[
(kp)2 + (k ′p)2 + (kp)2 − (k ′p)2

]
= 64(kp)2 = 16

(
s −M2

)2

and (113) is a particularly simple example of crossing symmetry. This
symmetry relates the scattering amplitudes corresponding to the crossed
channels of the basic 2→ 2 process (106) and holds under very general
conditions even beyond the perturbation theory.
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Parton model in neutrino interactions

The y dependence can therefore be summarized as follows:

dσ(ν + q)

dy
=

dσ(ν + q)

dy
=

G 2
F s

π
, (114)

dσ(ν + q)

dy
=

dσ(ν + q)

dy
=

G 2
F s

π
(1− y)2. (115)

Introducing all numerical factors we end up with the following expressions

dσνp

dxdy
=

G 2
FSx

π

[
(s(x) + d(x)) + (u(x) + c(x))(1− y)2

]
, (116)

dσνp

dxdy
=

G 2
FSx

π

[
(s(x) + d(x)) + (u(x) + c(x))(1− y)2

]
. (117)
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Parton model in neutrino interactions

In weak interactions parity is violated
⇒ there are three independent structure functions in dσ/dxdy on a proton:

dσ(ν/ν)p

dxdy
=

G 2
FS

2π

[
(1− y)F

(ν/ν)p
2 + 2x

y 2

2
F

(ν/ν)p
1 ± y

(
1− y

2

)
xF

(ν/ν)p
3

]
=

G 2
FS

2π

[(
1 + (1− y)2

2

)
F

(ν/ν)p
2 ±

(
1− (1− y)2

2

)
xF

(ν/ν)p
3

]
(118)

In second equality Callan-Gross relation 2xF1 = F2 and was used.

Comparing the above expression with QPM formulae (116) and (117) we
find:

F νp2 = 2x [s(x) + d(x) + u(x) + c(x)], (119)

F νp2 = 2x [u(x) + c(x) + s(x) + d(x)], (120)

xF νp3 = 2x [s(x) + d(x)− u(x)− c(x)], (121)

xF νp3 = 2x [u(x) + c(x)− s(x)− d(x)]. (122)
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Parton model in neutrino interactions

Particularly important are the combinations

1
2

(
F νp2 − F νp2

)
= x [(u − u)− (d − d)], (123)

1
2

(
F νp2 + F νp2

)
= x(u + d + s + c + u + d + s + c)

= xΣ(x)
.

=
1

2
(F νp2 + F νn2 ) ≡ F νN2 , (124)

1
2

(
F νp3 + F νp3

)
= (u + d + s + c − u − d − s − c)

= ∆(x)
.

=
1

2
(F νp3 + F νn3 ) ≡ F νN3 , (125)

where the third equalities in the preceding two expressions are only
approximate, neglecting small differences in sea quark distributions.

For isoscalar targets F2,F3 can be experimentally determined from the
following combinations:

F νN2 ∼ dσνN

dxdy
+

dσνN

dxdy
, F νN3 ∼ dσνN

dxdy
− dσνN

dxdy
. (126)
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Parton model in neutrino interactions

Comparing (124) and (93) and
neglecting in the latter term
proportional to k(x) (numerically
very small) we get:

F νN2
.

=
18

5
F eN

2 , (127)

which expresses the universality of
quark distribution functions in weak
and electromagnetic interactions.

Factor 18
5 is a direct reflection of

quark charges
⇒ experimental confirmation of
this relation, (Fig. 15), provides
another evidence for their fractional
values.

Figure 15: The comparison of FνN
2 (x ,Q2)

and (18/5)F eN
2 (x ,Q2).
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Parton model in neutrino interactions

Fig. 15 also provides another argument against the Hahn-Nambu model of
integral charge colored quarks which predicts F νN2 = 2F eN

2 . Integrating
F νN3 (x ,Q2) over the whole kinematical range x ∈ (0, 1) we get∫ 1

0

F νN3 (x ,Q2)dx =

∫ 1

0

(uv (x) + dv (x))dx , (128)

which, according to the QPM, should be equal to 3, corresponding to the
fact that there are two valence u quarks and one valence d quark in the
proton.

(128) is so called Gross-Llewellyn-Smith sum rule and has been tested
experimentally with the result, 2.50± 0.018(stat)± 0.078(syst), which
deviates somewhat from the parton model prediction, but this deviation can
be explained in QCD.

Together with the sum rule (97) measuring the integral in (128) allows us to
determine separately the integrals over uval(x) and dval(x), which provide a
crucial bridge between the additive quark model and the parton model of
Feynman.
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Polarized nucleon structure functions

Introduce polarized quark distributions functions qi ↑ (x) (qi ↓ (x))
describing probability to find a quark of flavor i with a momentum fraction x
and spin parallel (antiparallel) to the spin of the target nucleon.

We assume Mp = mq = 0 ⇒ spin of p, q and q points along its
momentum. For massless quarks the states with definite spin projections
have also a definite handedness ⇒ we can use (114)-(115) for ν.

Unpolarized pdf are given as:

qi (x) = qi↑(x) + qi↓(x), qi (x) = qi↑(x) + qi↓(x), (129)

while for polarized ones we also need the other combinations:

∆qi (x) ≡ qi↑(x)− qi↓(x) + qi↑(x)− qi↓(x). (130)

The basic quantity is
dσ↑↓
dxdy

− dσ↑↑
dxdy

(131)

corresponding to parallel and antiparallel beam and target spin orientations,
or better the asymmetry

Ap ≡ dσ↑↓ −dσ↑↑
dσ↑↑ +dσ↑↓

. (132)
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Polarized nucleon structure functions

Using (114)-(115) it is straightforward to show that in QPM:

Ap(x) =
(1− (1− y)2)

∑
i e2

i x∆qi (x)

(1 + (1− y)2)
∑

i e2
i x(qi (x) + qi (x))

. (133)

polarized structure function of the proton gp
1 (x) is then given as:

gp
1 (x) ≡ 1

2

∑
i

e2
i ∆qi (x) =

Ap(x)F2(x)

2xD(y)
, D(y) ≡ 1− (1− y)2

1 + (1− y)2
. (134)

Similarly for the neutron. The integrals

Γp
1 ≡

∫ 1

0

dxgp
1 (x) =

1

2

(
4

9
∆(u) +

1

9
∆(d) +

1

9
∆(s)

)
, (135)

Γn
1 ≡

∫ 1

0

dxgn
1 (x) =

1

2

(
4

9
∆(d) +

1

9
∆(u) +

1

9
∆(s)

)
, (136)

where ∆(q) stands for integrals over ∆q(x) and corresponds to ∆p(q), have
been measured in several experiments.
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Polarized nucleon structure functions

Results from SMC experiment at CERN where polarized 190 GeV µ collided
with stationary target made of polarized p or d shown on Fig. 16 imply

Γp
1 = +0.136± 0.011, (137)

Γn
1 = −0.063± 0.024. (138)

10–2 10–1 1
x

0.8

0.4

0

A 1
 (x
)

p

SLAC

EMC

SMC

!

-4

-2

0

2

1
x

Measured Q2

10-110-2

Proton
Deuteron
Neutron

g 1

Figure 16: Left: spin asymmetry Ap(x). From SMC Collab.: Phys. Lett. B329 (1994),
399). Right: Polarized structure functions g1(x) for the proton (full circles), deuteron
(open squares) and neutron (full triangles). From SMC Collab.: Phys.Rev.D56(1997)5330.
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Polarized nucleon structure functions

Increase of Ap(x) as x → 1 is primarily due to the vanishing of F2(x).

Summing (137) and (138) we get

Γp
1 + Γn

1 =
5

18

(
∆(u) + ∆(d) +

2

5
∆(s)

)
= 0.073± 0.03 (139)

and neglecting the strange content of the proton yields

∆(u) + ∆(d) = 0.26± 0.09, (140)

which gives the fraction of the spin of the proton carried by the u and d
quarks and antiquarks.

In a more rigorous treatment, where strange quarks are not neglected, we get

∆(u) = +0.82± 0.04, ∆(d) = −0.44± 0.04, ∆(s) = −0.11± 0.04.
(141)

The total contribution of quarks and antiquarks to the proton spin∑
q

∆(q) ≡ ∆(u) + ∆(d) + ∆(s) = 0.27± 0.11 (142)

is still positive but small and the s quark contribution is significant.
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Polarized nucleon structure functions

The numbers (141) should be compared with the predictions

Pp
u (↑↑) = 5

3 , Pp
u (↑↓) = 1

3 , Pp
d (↑↑) = 1

3 , (143)

Pp
d (↑↓) = 2

3 ⇒ ∆p(u) = 4
3 , ∆p(d) = − 1

3 , (144)

of the nonrelativistic quark model, where spins of the u and d constituent
quarks add up to unity.

In QPM this is not necessary the case and there are other possible carriers of
the proton spin, like gluons and orbital momentum as well as other plausible
explanations of the above results.

Problem of what carries most of the proton spin represents one of the major
puzzles of the present particle physics and remains the subject of intensive
experimental as well as theoretical research.
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Space–time picture of DIS and hadronization

Central QPM assumption – separation of a collision into two distinct stages:

1 The “hard” scattering of leptons on individual quarks.
During this stage the influence of other partons in the nucleon is neglected
and the cross–section of the lepton-parton subprocess calculated as if
partons were as real as leptons. We thus disregard fact that the outgoing
quark and remnant diquark cannot separate to infinity.

2 The “hadronization”, i.e. that stage of the collision in which the outgoing
quark and the proton remnant diquark convert into observable hadrons.
This conversion is caused by the force acting between colored quarks as
described in Section 3.11, which starts to be very strong when they are
about 1 fm apart.

First stage is calculable within QPM. Description of second one is much more
complicated. No real theory of hadronization – merely more or less sophisticated
models.
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Independent fragmentation model

Was invented by Field and Feynman in the middle of seventies.

The basic idea – hadronization of the outgoing quark-diquark system in Fig.
8 as an independent fragmentation of a quark and diquark.

In IMF hadronization box of Fig. 8 is approximated as indicated in Fig. 17.

Figure 17: Hadronization of quark-diquark system, viewed in hadronic center of
mass system. As they fly away, strong force, acting between them at distances
larger than about 1 fm causes them to “radiate” hadrons. The big solid points
represent the fragmentation functions.
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Independent fragmentation model

Fragmentation function (FF): Dh
q (z , pT ), (145)

= probability that a parton q (quark, antiquark, diquark or gluon) produces
(“fragments” into) a hadron h, carrying the fraction z of the original parton
energy and the transverse (with respect to the direction of the fragmenting
parton) momentum pT .

FFs are normalized as:
∑
h

∫ 1

0

∫ ∞
0

Dh
q (z , pT )dzdpT = 〈Nq〉, (146)

〈Nq〉 = average multiplicity of hadrons coming from fragmentation of q.

FFs are used, for instance, in inclusive production of hadrons in DIS,

e− + p→ e− + h + anything (147)

i.e. when we are interested not only in the final state electron, but also of
accompanying hadrons. However FF don’t describe the full configuration of
final state hadrons, as do modern event generators, like HERWIG or
PYTHIA .
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Independent fragmentation model

Diff. cross-section of the process (147) is given as:

dσ(ep→ e′ + h + anything)

dxdydzdpT
=

4πα2S

Q4

(
1 + (1− y)2

2

)∑
i

e2
i xqi (x)Dh

qi (z , pT ),

(148)
where the sum runs over all quarks inside the protons involved in the hard
scattering with electron.

Very often the pT dependence of fragmentation functions is integrated over
and one works with fragmentation functions Dh

q (z) depending on the energy
fraction z only. As the dependence on x and y in (148) factorizes, it is
convenient to normalize it to dσ/dxdy :

1

dσ/dxdy

dσ(ep → e′ + h + anything)

dxdydz
=

∑
i e2

i qi (x)Dh
qi (z)∑

i e2
i qi (x)

, (149)

which is then independent of y.

This quantity is also very suitable from experimental point of view as various
systematical errors tend to cancel in the ratio (149).
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Independent fragmentation model

N.B. In neutrino interactions the x and y dependences do not factorize due
to different y–dependences of quark and antiquark cross–sections and we
thus get slightly more complicated relation:

1

dσ/(dxdy)

dσ(νµp → µ− + h + anything)

dxdydz
=

d(x)Dh
u (z) + u(x)(1− y)2Dh

d
(z)

d(x) + u(x)(1− y)2
.

(150)
where only the light quarks u, d from the first generation and their
antiquarks were taken into account.

Basic feature of FF: the heavier the quark, the bigger the average fraction of
its momentum, carried away by the meson, containing, as its valence quark,
the fragmenting quark.

We expect the following symmetry relations between different FFs:

Dπ+

u = Dπ−

d = Dπ+

d
= Dπ−

u , (151)

Dπ−

u = Dπ+

d = Dπ−

d
= Dπ+

u , (152)

Dπ+

s = Dπ−

s = Dπ+

s = Dπ−

s . (153)
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Parton model in other processes

Both the parton distribution and fragmentation functions have been
introduced to describe data on DIS. Neither of them can be calculated and
must be determined from data.

However, once they are extracted using data from one process1, they can be
used in any other one and thus allow nontrivial predictions to be made.
This property of universality is the main benefit from QPM.

We will now discuss several examples of other processes treated in QPM.

Figure 18: a) Lowest order Feynman diagram for the production of a qq pair in
e+e− annihilation and its subsequent fragmentation in IFM; b) inverse process of dilepton pair
production in hadronic collisions, via qq annihilation into a virtual photon. The big solid blobs
stand in (a) for quark fragmentation functions and in (b) for quark distribution functions.
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Electron-positron annihilations into hadrons

First process to which the parton had been applied after its invention in
early seventies. In the lowest order of QED it proceeds via the one photon
annihilation into a parton-antiparton pair which subsequently converts into
hadrons (hadronizes) e+e− → qq→ hadrons. (154)

Hadronization determines details of the final states in (154) but does not
change the cross section of this process if we integrate over all possible
hadron final states.

Neglecting me but keeping that of the quark (mq), the spin averaged matrix
element squared | Mif |2 is:

| Mif |2=
e4e2

q

s2
L(1)
µν(p1, p2)L(2)µν(p3, p4) = e4e2

q

[
aT (1 + cos2 ϑ) + aL(1− cos2 ϑ)

]
(155)

The leptonic tensor L
(1)
µν is given as in (28)

L(1)
µν(p1, p2) ≡ 1

2
Tr [6p1γµ 6p2γν ] = 2 [p1µp2ν + p1νp2µ − gµν(p1p2)] , (156)

whereas its partonic counterpart L(2)µν depends on its spin.
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Electron-positron annihilations into hadrons

Working out the flux factor and final parton differentials we arrive at the
following general expression for the differential cross section

dσ

d cosϑ∗
=

β

32πs
| Mif |2=

πα2e2
qβ

2s

[
aT (1 + cos2 ϑ∗) + aL(1− cos2 ϑ∗)

]
,

(157)

where β =
√

1− 4m2
q/s. Note that this threshold factor comes exclusively

from kinematical considerations.

Integrating the above expression over the scattering angle we get

σtot =
πα2e2

qβ

2s

[
8

3
aT +

4

3
aL

]
. (158)
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Electron-positron annihilations into hadrons

Taking into account that

partons with s = 1
2 : L(2)

µν(p3, p4) ≡ 2
[
p4µp3ν + p4νp3µ − gµν(p4p3 + M2

q )
]
, (159)

partons with s = 0 : L(2)
µν(p3, p4) ≡ (p3 − p4)µ(p3 − p4)ν , (160)

we find after straightforward contraction of leptonic and partonic tensors

partons with s = 1/2 : aT = 1, aL = 1− β2, (161)

partons with s = 0 : aT = 0, aL = β2. (162)

Summing over Nf quarks with spin 1/2 in the region where s � m2
q we get

σtot(s, e+e− → hadrons) =

Nf∑
i=1

σtot(s, e+e− → qiqi )

=
4πα2

3s

Nf∑
i=1

βie
2
i −→
s�M2

i

4πα2

3s

Nf∑
i=1

e2
i . (163)
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Electron-positron annihilations into hadrons

Normalizing (163) by cross-section for the production of a single µ+µ−

pair4πα2/3s, we obtain dimensionless quantity R(s):

R(s) ≡ σtot(s, e+e− → hadrons)

σtot(s, e+e− → µ+µ−)
−→
S�M2

q

Nf∑
i=1

e2
i . (164)

For scalar quarks R(s) is given by the same expression except for the
additional overall factor 1/2.

The above predictions can be tested in several ways.

1 The simplest and clearest is measurement of (164). It doesn’t need
fragmentation functions and is thus fully calculable. Important
ingredient, however, is color of quarks. In relations (163) or (164) it
means simply multiplying their r.h.s. by a factor of 3.

2 Another possibility is to look for the specific angular dependence (157)
of outgoing quarks in the angular distribution of produced hadrons. As
in the process of quark fragmentation hadrons are produced as jets of
particles, collimated around the direction of the fragmenting quark, the
angle of the latter can be reasonably accurately determined from the
direction of these jets.
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Experimental data on σtot(s, e
+e− → hadrons) and R(s)

Figure 19: Broken green line – QPM, solid red line – pQCD. From PDG.
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e+e− → hadrons: Experimental data on R(s)

Figure 20: R(s) in the light-flavor, charm, and beauty threshold regions. From PDG.
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Tests of QPM in e+e− → qq → hadrons

Comparing (164) to data in Figs. 19 and 20 shows that apart from the
resonance structures, which the QPM clearly cannot reproduce, there would
be also a overall normalization factor problem (about a factor 3.5) if the
factor of 3 due to color of quarks was not used. Remaining discrepancy is
explained as higher order QCD correction.

Note that the Hahn-Nambu version of colored quarks predicts for the same
quartet of quarks the value R = 6, and is thus definitely ruled out by the
data.

Parton fragmentation closely resembles particle showers
in cosmic rays. The angular distribution of outgoing jets
in the process (154) has been measured in a number of
experiments and the expected form (1 + cos2 ϑ∗),
predicted by the QPM for quarks with spin 1/2, found
in excellent agreement with data. This provides yet
another evidence that quarks have spin 1/2. For scalar
quarks the angular distribution would be proportional to
(1− cos2 ϑ∗), which is clearly ruled out by the data.

!
?

!

Figure 21: Parton
to hadron transition
for two jet events.
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Tests of QPM in e+e− → qq → hadrons

Y

XZ

200. cm.

Cent re of screen i s ( 0.0000, 0.0000, 0.0000)
50 GeV20105

Run:event 4093: 1000 Date 930527 Time 20716
Ebeam45.658 Evis 99.9 Emiss -8.6 Vtx ( -0.07, 0.06, -0.80)
Bz=4.350 Thrust=0.9873 Aplan=0.0017 Oblat=0.0248 Spher=0.0073

Ct rk(N= 39 Sump= 73.3) Ecal (N= 25 SumE= 32.6) Hcal (N=22 SumE= 22.6)
Muon(N= 0) Sec Vtx(N= 3) Fdet (N= 0 SumE= 0.0)

Figure 22: Two jet event in e+e− annihilation in OPAL detector at LEP.
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Tests of QPM in e+e− → h + · · ·

One can also study inclusive production of hadrons in the process

e+e− → h + anything (165)

as a function of z ≡ 2E (h)/
√

s. This process is described by the diagram in
Fig. 18a, where FFs are represented by big solid blobs.

Normalizing dσ/dz by σtot(e
+e− → µ+µ−), the parton model predicts

1

σtot(e+e− → µ+µ−)

dσ

dz
=
∑
i

e2
i

(
Dh

i (z) + Dh
i

(z)
)
. (166)

N.B. To make any sense FF should be independent of the process in which
they are used. Experimentally this universality holds, indeed, very well.

Notice the difference in shapes of fragmentation functions of light and heavy
q into mesons containing them as valence quarks (see Fig. 23). The light
quark FF are parameterized as:

Dh
q (z) = Aza(1− z)b(1 + c/z), (167)

where A, a, b, c are free parameters, depending on the hadron h.
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Tests of QPM in e+e− → qq → hadrons

FF of a heavy quark Q into a hadron containing this heavy quark is
parameterized differently:

DQ(z) = A
z(1− z)2

((1− z)2 + εQz)2 , (168)

where the free parameter εQ , equal to 0.05 for the charm quark and 0.006 for
the bottom one, determines the “hardness” of this fragmentation function.

The weighted average over all quark fragmentation functions into pions as
measured in e+e− annihilations by the TASSO Collaboration at DESY for
four different primary energies are shown in Fig. 23a.

The weak dependence of this fragmentation function on the primary energy,
is of the same origin as the Q2 dependence of the nucleon structure
functions and can also be explained in QCD. The distribution of B-hadrons
(i.e. mesons and baryons containing the bottom quark) as measured in e+e−

annihilations at LEP and SLD for
√

s = 91 GeV is plotted in the upper right
part of Fig. 23 in order to demonstrate the difference between the
fragmentation functions of light and heavy quarks.
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Tests of QPM in e+e− → qq → hadrons

Figure 23: Measured fragmentation functions of light as well as heavy quarks into
valence hadrons (hadrons containing the fragmenting quark) together with the
analytical fits to fragmentation functions of heavy quarks c and b.
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Drell-Yan production of heavy dilepton pairs

The production of dilepton pairs in hadronic collisions

h1 + h2 → µ+µ− + anything (169)

proceeds QPM via diagram in Fig. 18b.

]item µ+µ− pair can be characterized by its mass m as well as the
longitudinal and transverse (with respect to the collision axis) momenta p‖
and pT . Assuming h1, h2 collide head–on produced pair has no net
transverse momentum pT with respect to this (z-) axis. Instead of m and p‖
it is convenient to introduce dimensionless variables

xF ≡
2p‖√

S
; τ ≡ 4m2

S
, (170)

where S stands for the square of the total CMS energy of colliding hadrons.

Express xF , τ in terms of the fractions x1, x2, carried by the annihilating
quarks and antiquarks. Neglecting quark masses with respect to

√
S we have

m2 = x1x2S ; xF = x2 − x1 (171)

where we have chosen the positive z-axis in the direction of the hadron h2.
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Drell-Yan production of heavy dilepton pairs

Solving (171) for x1, x2 we find

x1 =
1

2

(
−xF +

√
x2
F + τ

)
, (172)

x2 =
1

2

(
+xF +

√
x2
F + τ

)
. (173)

The differential cross section describing this process can be written as

dσ

dm2dxF
=
∑
i

∫ ∫
dx1dx2qi (x1)qi (x2)δ(x1x2S −m2)δ(x2 − x1 − xF )

[
4πα2e2

i

3m2

]
︸ ︷︷ ︸
σ(m2)

,(174)

where the quark flavor index i in the above sum is understood to run over
both quarks and antiquarks and the result (163) has been used (with the
substitution s → m2) for dσ/dm2.

Michal Šumbera (NPI ASCR, Prague) Introduction to QCD November 3, 2009 105 / 110



Drell-Yan production of heavy dilepton pairs

Integrating (174) over x2 by means of the second δ-function we are left with
the first δ-function in the form

1

S
δ(x2

1 + x1xF − τ/4) =
1

S
√

x2
F + τ

δ(x1 − x1) ⇒ (175)

m3dσ

dmdxF
=

8πα2

3
√

x2
F + τ

[∑
i

e2
i x1qi (x1)x2qi (x2)

]
1

3
, (176)
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Drell-Yan production of heavy dilepton pairs

Figure 24: DY spectra as measured in pp collisions at CERN, (
√
s = 62 GeV) and Fermilab

(
√
s = 40 GeV) displayed as a function of the dilepton mass m (a). In (b) the same spectra, but

multiplied by m3 and expressed as functions of m/
√
s are compared, lending support to the

QPM prediction of scaling (176)
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Drell-Yan production of heavy dilepton pairs

Several aspects of the DY dilepton production are worth mentioning:

The structures on Fig. 24 above the smooth DY continuum, described by
the QPM model, correspond to the cc and bb bound states of the
charmonium and bottomonium families. Experiments with protons,
antiprotons and pions have demonstrated that for masses above roughly 3
GeV the QPM describes this continuum spectrum very well. For smaller
masses the DY mechanism is clearly below the data.

The quantity on the left hand side of (174) was defined in such a way that
the r.h.s. of it depends on dimensionless variables xF , τ only. So
independently of the particular shape of quark distribution functions the
QPM implies a nontrivial prediction by relating dilepton spectra at different
energies, but the same τ . This is an analogue of the scaling phenomena in
deep inelastic scattering of leptons on nucleons. Outside the resonance
regions, the data plotted in Fig. 24b are in reasonable agreement with this
basic prediction.

The dilepton production in hadronic collisions (169), besides providing
additional checks of basic QPM ideas, has also played a decisive role in the
determination of quark distribution functions of pions and kaons, which are
impossible to measure in conventional DIS processes. Their general features
are similar to those of nucleons.

The careful reader must have noticed that the factor 1/3 at the end of (176)
doesn’t follow from (174) but has been added by hand. The reason for its
presence is related to the color of quarks, which has been ignored in the
previous discussion of DIS and thus far also here. The point is that quark
distribution functions, as introduced in Section 5, correspond to definite
flavors, but are averaged over the colors. This is fine as long as we don’t
force a qq pair of definite flavor to annihilate to colorless photon. In that
case we have to take into account that for each, say, u quark from hadron
h1 with a definite color the antiquark u from h2 will have only 1/3 chance to
have the right anticolor needed for the annihilation into the colorless photon.
Hence the factor 1/3.
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Exercises

1 Carry out the contraction (30) in the laboratory frame and derive (34).

2 Perform explicitly the integration over δ-function in (31).

3 Calculate the scattering of electron on a charged scalar pointlike particle with
electromagnetic coupling as defined in the text at the end of section 4.4.

4 Argue why the Mott cross section follows by replacing in the numerator of
the Rutherford formula m→ E and in its denominator p → E .

5 Prove the so called Gordon decomposition

u(p′)γµu(p) = u(p′)

[
(p′ + p)µ

2m
+ i

σµν
2m

(p′ − p)ν
]

u(p)

where σµν is defined in (39) and m is the fermion mass.

6 Derive (39) exploiting gauge and Lorentz invariance and parity conservation.

7 Show that due to gauge invariance the value of elastic formfactor F1 at
q2 = 0 is fixed: F1(0) = 1.
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Exercises

8 Show by nonrelativistic reduction of the Dirac equation that the value of κ
in (39) gives the anomalous magnetic moment of the proton.

9 Derive the general form (45) for deep inelastic scattering using gauge and
Lorentz invariance and parity conservation.

10 Show that for massless fermions the projection operator (1− γ5)/2 projects
out states of particles with negative helicity (spin opposite to the
momentum of the particle) and states of antiparticles with positive helicity
(spin in the direction of momentum.

11 Calculate the angular distribution of scalar partons in e+e− annihilations as
well as the magnitude of the integrated cross-section.

12 Evaluate the differential cross–section for the production of scalar quarks in
e+e− annihilations. Compare the results on the angular dependence of the
produced quarks as well as on the integrated cross–section with those of spin
1/2 quarks.
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Figure 25: Low x data on F ep
2 (x ,Q) as measured at HERA (H1 and ZEUS) and

in fixed target experiments (BCDMS and E665).

In the small x region, roughly defined as x ≤ 10−2, theoretical description
via the Altarelli–Parisi evolution equations encounters problems stemming
from appearance of terms behaving typically as powers of ln(1/x). I shall
not discuss theoretical ideas relevant for quantitative understanding of this
region, but will merely show the latest experimental results from ep
collider HERA at DESY.

Figure 26: Energy dependence of the total cross–section of real and virtual γ∗p
collisions.

In Fig. 25 the latest HERA data (H1 and ZEUS Collaborations) on
F ep

2 (x ,M) are shown together with the older fixed target data from
muon–proton scattering at CERN (BCDMS and NMC) and at FERMILAB
(E665). The rise of F ep

2 (x ,M) at small x for all accessible values of Q2 is
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clearly visible. Taking into account the expression (75) the same data in
small x region are replotted in Fig. 26 as the energy (i.e. W ) dependence
of the total cross–sections σ(γ∗p; W ,Q2) for fixed Q2. The figure includes
also the data on total cross–section of real photon and indicates that the
slope of the W –dependence of σ(γ∗p; W ,Q2) increases with the photon
virtuality Q2. This feature is a source of intensive theoretical debate.
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