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Michal Šumbera

Nuclear Physics Institute ASCR, Prague

October 9, 2009
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Group and its representation

Group: a set G with binary operation “•” satisfying:

1 ∀x , y ∈ G : x • y ∈ G

2 ∃e ∈ G : ∀x ∈ G, e • x = x • e = x (∃ unit element e)

3 ∀x ∈ G ∃x−1 ∈ G : x • x−1 = x−1 • x = e (∃ inverse element)

4 ∀x , y , z ∈ G : x • (y • z) = (x • y) • z (associativity of •)
Groups enter physics basically because they correspond to various symmetries.
The concept crucial for the description of transformations of physical quantities
under these symmetry transformations is that of the

Group representation: the mapping D: G 7→ LH of the group G onto the
space LH of linear operators on Hilbert space H, which preserves the property of
group multiplication “•”: ∀x , y , z ∈ G : x • y = z 7→ D(x) · D(y) = D(z) (1)

Multiplication · is defined in the space LH.
N.B. The representations will in general be denoted by boldface capital D with
possible subscripts or superscripts, or as is common for SU(3) group, by a pair of
nonnegative integers (i,j), specifying the so called highest weight of the
representation (see Section 2.6). The image of a group element g ∈ G in such a
representation will be denoted simply as D(g).
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Group and its representation: Examples

Examples:

G=R, the set of real numbers with conventional addition as the group
binary operation •, D(x) = exp(iαx) where α is a fixed real number. This
representation plays a crucial role in the construction of abelian gauge
theories, like QED.

P3, permutation group of three objects. Define (1,2) as permutation of 1,2
etc., (1,2,3) as simultaneous transpositions: 1→2, 2→3, 3→1 and e as a
unit element. One of its representations is given by the following six
matrices, with normal matrix multiplication defining the product of linear
operators:

D(12) =

 0 1 0
1 0 0
0 0 1

 , D(13) =

 0 0 1
0 1 0
1 0 0

 , D(23) =

 1 0 0
0 0 1
0 1 0



D(123) =

 0 0 1
1 0 0
0 1 0

 , D(321) =

 0 1 0
0 0 1
1 0 0

 , D(e) =

 1 0 0
0 1 0
0 0 1

 ,
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Realization of operators by matrices

Realization of operators by matrices:

any linear operator Ô acting on vectors | j〉 from a given normalized basis of H
can be represented by means of the matrix Oij :

Oji ≡ 〈j | Ô | i〉 ⇒ Ô | i〉 = Oji | j〉, (2)

(the summation over the repeating indices is understood as usual).
N.B. In all the following applications, when talking about the group
representation, we will always have in mind the above matrix representation.

Equivalence of representations:
the matrices Oij depend on the chosen basis of H.
⇒ representations D1 and D2 are equivalent if ∃ unitary operator S ∈ LH such
that

∀x ∈ G, D1(x) = SD2(x)S−1 = SD2(x)S−1SS+ = SD2(x)S+. (3)

The transformation of D(x) can be interpreted as resulting from the change of

the basis of H induced by S .
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Direct sum and product of representations

Direct sum of representations: D = D1 ⊕D2

Di act on corresponding Hilbert space Hi of dimension ni , i = 1, 2,

H = H1 ⊕H2, dim(H) = n1 + n2 with basis

| e1
1 〉, | e1

2 〉, · · · , | e1
n1
〉︸ ︷︷ ︸

basis of H1

, | e2
1 〉, | e2

2 〉, · · · , | e2
n2
〉︸ ︷︷ ︸

basis of H2

. (4)

D = D1⊕D2 is made up from (n1 + n2)× (n1 + n2) block diagonal matrices(
D1 0
0 D2

)
. (5)

Direct product of representations: D = D1 ⊗D2

the basis of the direct product H = H1 ⊗H2 is formed by n1 × n2 pairs of
vectors of the form | e1

i 〉 | e2
j 〉 where | e j

i 〉 ∈ Hj , j = 1, 2.

D = D1 ⊗D2 is formed by the matrices

D1 ⊗ D2(g)︸ ︷︷ ︸
∈D1 ⊗D2

| e1
i 〉 | e2

j 〉 = (D1(g)︸ ︷︷ ︸
∈D1

| e1
i 〉)(D2(g)︸ ︷︷ ︸

∈D2

| e2
j 〉). (6)

The (n1 × n2)× (n1 × n2) dimensional matrices can be written as
[(D1 ⊗ D2)(g)]ij,i ′j′ = [D1(g)]ii ′ [D2(g)]jj′ . (7)
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Reducibility of a representation

Possibility to transform all elements of a given representation D, acting on
the Hilbert space H, by means of a unitary operator S to block–diagonal
form:

∃S ∈ LH : ∀x ∈ G,SD(x)S−1 =

(
D1(x) 0

0 D2(x)

)
, (8)

where the matrices D1(x),D2(x) act on Hilbert spaces H1 and H2

respectively and H = H1 ⊕H2.

If such a unitary operator S does exist the representation D is called
reducible and can be written as a direct sum D = D1 ⊕D2. If not D is said
to be irreducible.
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Reducibility example from QM2: Orbital momentum

[Ji , Jj ] = iεijkJk ,
[
J2, Ji

]
= 0, J2 ≡ JiJi

J2 | λm〉 = λ | λm〉, J3 | λm〉 = m | λm〉

J± ≡ J1 ± iJ2, J1 = 1
2 (J+ + J−), J2 = 1

2i (J+ − J−)

J± | jm〉 = C±(j ,m) | jm ± 1〉

C+(j ,m) =
√

(j −m)(j + m + 1) =
√

j(j + 1)−m(m + 1)

C−(j ,m) =
√

(j + m)(j −m + 1) =
√

j(j + 1)−m(m − 1)

〈j ′m′ | J2 | jm〉 = δj′jδm′mj(j + 1), 〈j ′m′ | J3 | jm〉 = δj′jδm′mm

〈j ′m′ | J1 | jm〉 =
δj′ j
2 {δm′,m+1C+(j ,m) + δm′,m−1C−(j ,m)}

〈j ′m′ | J2 | jm〉 =
−iδj′ j

2 {δm′,m+1C+(j ,m)− δm′,m−1C−(j ,m)}

N.B. Ji and J2 are block diagonal but only J3 and J2 are really diagonal.

So explicitly for j = 0, 1
2 , 1, . . . :
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Reducibility example: J3

~J2 →

j’m’\jm (0,0) ( 1
2
, 1

2
) ( 1

2
,− 1

2
) (0,0) (1,0) (1,-1)

(0,0) 0

( 1
2
, 1

2
) 3

4

( 1
2
,− 1

2
) 3

4
(0,0) 2
(1,0) 2
(1,-1) 2

J3 →



0
1
2
− 1

2
∅

1
0

-1

. . .

∅
. . .

. . .

. . .


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Reducibility example: J1

~J2 →

j’m’\jm (0,0) ( 1
2
, 1

2
) ( 1

2
,− 1

2
) (0,0) (1,0) (1,-1)

(0,0) 0

( 1
2
, 1

2
) 3

4

( 1
2
,− 1

2
) 3

4
(0,0) 2
(1,0) 2
(1,-1) 2

J1 →



0
0 1

2
1
2

0 ∅
0 1√

2
0

1√
2

0 1√
2

0 1√
2

0

. . .

∅
. . .

. . .

. . .


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Reducibility example: J2

~J2 →

j’m’\jm (0,0) ( 1
2
, 1

2
) ( 1

2
,− 1

2
) (0,0) (1,0) (1,-1)

(0,0) 0

( 1
2
, 1

2
) 3

4

( 1
2
,− 1

2
) 3

4
(0,0) 2
(1,0) 2
(1,-1) 2

J2 →



0

0 −i
2

i
2

0 ∅
0 −i√

2
0

−i√
2

0 −i√
2

0 −i√
2

0

. . .

∅
. . .

. . .

. . .


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Groups: Further important concepts

Abelian group: the group multiplication • is commutative.

Finite and infinite groups: according to the number of independent
elements.

Compact and noncompact groups: Compact ≡ closed and
bounded. Compact groups have finite “volume” as measured by some
measure on the group space, while the noncompact have infinite volume.
Example: the group of phase factors introduced above is compact, as the
unit circle in complex plane is the finite.
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Lie groups and algebras

Lie groups:

Group elements are labeled by a set of continuous parameters – coordinates
in a subset of Rn.

“labeled by a set of continuous parameters” ≈ ∃ a local one-to-one mapping
between the group elements and points in some subset of Rn which is
continuous in both ways and which allows us to translate all the operations
and questions from the group space to analogous operations and questions
in Rn where we know what to do.

Continuous group = Lie group ⇔ the group multiplication x • y must be a
continuous function of both x and y and the operation of taking the inverse x−1

must be continuous function of x .

In these lectures the group elements will always be matrices, parameterized by a

few real numbers and for the vector space of matrices the topology is easily

defined via the norm of a matrix.
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Lie groups and algebras: propositions

For Lie groups, and in particular their matrix representations there is also intuitive
understanding of the group “volume” and thus of the difference between the
compact and noncompact groups. I shall now present, without proofs, several
propositions that will be useful in further considerations.

Proposition

Any element of a compact Lie group can be written in the form

∀g ∈ G, g = g(αa) = exp(iαaXa),

where the operators Xa, called generators of the Lie group G, form the basis of a
vector space X (over the field of complex mumbers) of dimension m with the
operation of “adding”, denoted as “+”.

The classification and properties of representations are simplest for the class of
compact Lie groups, where all those needed in formulating the Standard Model
do belong.
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Lie groups and algebras: propositions

Proposition

All irreducible representations of compact Lie groups are finite dimensional.

Proposition

Finite dimensional representations of a compact Lie group G are equivalent to
representations by unitary operators, i.e. the generators Xa are hermitian
operators.

In the case of matrix groups, or representations, both the elements g of the group

G and the generators Xa are again matrices. As a result, also the generators of

any irreducible representation of a compact Lie group can be represented by finite

dimensional hermitian matrices. Note that the generators of a given Lie group are

not determined by this group uniquely, as any change of the basis vectors of the

associated Hilbert space implies the change of these generators.
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Algebra

Algebra: we shall restrict our discussion to algebras over the field C of complex
numbers.
The C-algebra is a vector space A over the field of complex numbers equipped
with a bilinear binary operation (here denoted as simple multiplication)
A×A → A, which means that ∀x , y , z ∈ A, a, b ∈ C

(x+y)z=xz+yz

x(y+z)=xy+xz

(ax)(by)=(ab)(xy)

In the special case of Lie algebra, the binary operation, called “commutator”, is
antisymmetric and satisfies the Jacobi identity (12).
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Algebra: Further important concepts

Abelian algebra: Algebra with the property that all its elements
commute with each other.

Invariant subalgebra S of algebra A: ∀a ∈ S,∀x ∈ A : [a, x ] ∈ S.

Simple algebra: algebra which contains no nontrivial invariant
subalgebra.

Semi-simple algebra: algebra which contains no abelian invariant
subalgebra. This type of groups has great physical relevance in theories
unifying various kinds of interactions, like the electroweak theory within the
SM.

Rank of the algebra: the maximal number of mutually commuting
generators. Crucial characteristics of nonabelian algebras. Rank determines
the number of independent quantum numbers, which uniquely characterize
each state within a given irreducible representation, or, as is common to say,
multiplet.
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Structure constants

Structure constants: Due to the fact that the product of elements of a Lie
group G like

exp(iλXa) exp(iλXb) exp(−iλXa) exp(−iλXb)

is also an element of this group, it must be expressible as exp(iβcXc). Using the
Taylor expansion on both sides we find

[Xa,Xb] ≡ XaXb − XbXa = ifabcXc ; βc = −λ2fabc , (9)

where fabc are real numbers, called the structure constants of the Lie group G.
They are by definition antisymmetric in first two indices. Similarly to generators
they are, however, not unique and do depend on the choice of the basis in X.
They can be used to express the product of two elements of the group as follows:

exp(iαaXa) exp(iβbXb) = exp(iγcXc)⇒ γc = αc + βc −
1

2
fabcαaβb + · · · (10)
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Structure constants

Proposition

The structure constants fabc satisfy the following Jacobi identity:

fade fbcd + fcde fabd + fbde fcad = 0. (11)

Proof: (11) is a simple consequence of the following relation between the
commutators of generators:

[Xa, [Xb,Xc ]] + [Xc , [Xa,Xb]] + [Xb, [Xc ,Xa]] = 0, (12)

which is straightforward to verify. In this case the vector space is that of the

generators Xa and the “commutator” is defined by the conventional commutator

of matrices, representing the generators. Note that the elements of an algebra

spanned on the generators of a compact Lie group contain also operators that are

not hermitian!
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Structure constants

Analogously as in the case of groups we can define representation of an algebra as
a mapping of its elements to the operators on some Hilbert space, which conserves
the commutator (on a Hilbert space of operators commutator of its elements A,B
is simply AB − BA) and introduce the concepts of reducibility, irreducibility etc..
Generators of the direct product D1 ⊗D2 of n1 dimensional representation D1

and n2 dimensional representation D2 are (n1 × n2)× (n1 × n2) dimensional
matrices of the form(

X D1⊗D2
)
ij,i ′j′

=
(
X D1

)
ii ′︸ ︷︷ ︸

acts on H1 only

δjj′ + δii ′
(
X D2

)
jj′︸ ︷︷ ︸

acts on H2 only

. (13)
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Adjoint representation

The n × n matrices, where n = dim(X): (Ta)bc ≡ −ifabc (14)

satisfy the same commutation relations as Xa themselves:

[Ta,Tb] = ifabcTc (15)

and therefore also form a representation of G.

This is called adjoint representation and will be important in the description
of particle multiplets in quark model and of gluons in QCD.

Although we can choose any basis in X, particularly suitable is defined via
normalization conditions: Tr (XaXb) = λδab, λ = const. (16)

For compact Lie groups Tr(XaXb) is real symmetric tensor, it can always be
diagonalized ⇒ λ > 0.

In this normalization we have

fabc = − i

λ
Tr ([Xa,Xb] Xc) = − i

λ
Tr ([Xc ,Xa] Xb) = − i

λ
Tr ([Xb,Xc ] Xa) , (17)

⇒ in this normalization fabc is fully antisymmetric tensor.
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Hilbert space of adjoint representation

The Hilbert space associated to the adjoint representation can be
constructed from the vector space X spanned on the generators of G by
defining the binary operation of a “scalar” product of any two vectors | Xa〉,
| Xb〉, associated to the generators Xa,Xb, in the following way:

〈Xb | Xa〉 ≡
1

λ
Tr
(
X +
b Xa

)
, (18)

where “+” denotes the hermitian conjugation of the operator and 〈a |, | a〉
are the usual Dirac “bra” and “ket” vectors (see QM2).

For the adjoint representation we have the following chain of equalities

Ta | Tb〉 = (Ta)cb | Tc〉 = −ifacb | Tc〉 =| ifabcTc〉 =| [Ta,Tb]〉, (19)

where the first equality is a consequence of the definition of action of the
matrix Ta on the ket vector | Tb〉, the second uses just the definition (14),
the third is trivial and the last one returns to (15). In other words the action
of the operator (for us matrix) Ta on the ket vector | Tb〉 produces the
vector, associated to the commutator of the matrices Ta,Tb!

Michal Šumbera (NPI ASCR, Prague) Introduction to QCD October 9, 2009 23 / 84



SU(2) group and algebra

The simplest of nonabelian Lie groups, with plenty of applications in particle
physics is the SU(2) group. Moreover, most of the techniques useful for the more
complicated case of SU(3) and other groups can be generalized from the
technically simpler case of SU(2).

Definition

SU(2) is formed by unitary 2× 2 matrices with unit determinant. The associated
Lie algebra is made out of traceless hermitian matrices 2× 2.

There are 3 independent generators J1, J2, J3 of SU(2), which form the basis of
SU(2) albegra and which satisfy the well-known commutation relations

[Ji , Jj ] = iεijkJk . (20)

Remark

In fact this algebra is equivalent to that of SO(3) group, indicating that the
relation between the group and the associated algebra is not unique. This has to
do with the fact that algebras express only the local properties of the groups, but
don’t describe the global ones.
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Adjoint representations of SU(2)

Generators of SU(2) can be written by means of Pauli matrices as Ji = 1
2σi ,

where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 –i
i 0

)
, σ3 =

(
1 0
0 –1

)
. (21)

(N.B. only σ3 is diagonal!)

Adjoint representation is formed by 3× 3 matrices (JA
i )jk = −iεijk

JA
1 =

 0 0 0
0 0 -i
0 i 0

 , JA
2 =

 0 0 i
0 0 0
-i 0 0

 , JA
3 =

 0 -i 0
i 0 0
0 0 0

 (22)

This is the spin 1 representation of the Lie algebra of the rotation group.

x
′

i = Oijxj = (e−iα·J
A

)ijxj , i , j = 1, 2, 3; OTO = 1, OεSO(3) (23)

Michal Šumbera (NPI ASCR, Prague) Introduction to QCD October 9, 2009 25 / 84



Adjoint representations of SU(2)

Let xε R and define 2× 2 matrix

X ≡ x1σ1 + x2σ2 + x3σ3 = x · σ =

(
x3 x1 − ix2

x1 + ix2 −x3

)
(24)

i.e. xi = 1
2 Tr(σiX )

Since DetX = −x2 = −(x2
1 + x2

2 + x2
3 ) the transformation

X
′

= AXA−1, AεSU(2)⇔ A+ = A−1,DetA = 1 (25)

leaves DetX = DetX
′

invariant

But x
′

i = 1
2 Tr(σiX

′
) = 1

2 Tr(σiAXA−1) = 1
2 Tr(σiAσjA

−1)xj = Oijxj

⇒ Oij(A) = 1
2 Tr(σiAσjA

−1) (26)

⇒ O(A) = O(−A) i.e. one element of SO(3) corresponds to two
elements of SU(2).
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Aside: SL(2,C)

Define 2× 2 matrix

X ≡ xµσµ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
, µ = 0, 1, 2, 3, σ0 =

(
1 0
0 1

)
(27)

Since xµxµ = DetX the transformation

X
′

= AXA+ (28)

where the matrices AεSL(2,C ): |DetA| = 1 leaves xµxµ invariant

But x
′µ = Λµνxν = 1

2 Tr(σiX
′
) = 1

2 Tr(σiAXA−1) = − 1
2 Tr(σiAσjA

−1)xν

⇒ Λ(A) = 1
2 Tr(σiAσjA

−1) (29)

⇒ Λ(A) = Λ(−A)) i.e. one element of SO(3,1) corresponds to two
elements of SL(2,C).

SL(2,C) is covering group of the Lorentz group SO(3,1) similarly as SU(2) is
covering group of SO(3) group.
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Representations of SU(2)

Construction:(using the highest weight method)

1 SU(2) is of rank 1, i.e. there is only one operator fully characterizing the
state within a given multiplet. Let us choose J3 and denote the state with
the highest weight j as | j〉:

J3 | j〉 = j | j〉; 〈i | j〉 = δij . (30)

2 Define the lowering and rising operators

J± ≡ J1 ± iJ2√
2

⇒ [J3, J
±] = ±J±, [J+, J−] = J3. (31)

3 So if J3 | m〉 = m | m〉 from eq.(31) ⇒

J3(J± | m〉) = (m ± 1)J± | m〉, (32)

⇒ in any multiplet ∃ j such that J+ | j〉 = 0, (called the highest weight).
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Representations of SU(2): Construction

4 Starting from the state of the highest weight (or from the state with lowest
weight) we can construct all states of any multiplet.

5 Acting by J− on the state with highest weight yields J− | j〉 = Nj | j − 1〉
where the normalization factor Nj is:

N∗j Nj 〈j − 1 | j − 1〉︸ ︷︷ ︸
1

= 〈j | J+J−︸ ︷︷ ︸
J−J+ + J3

| j〉 = j 〈j | j〉︸ ︷︷ ︸
1

, (33)

We have used J+ | j〉 = 0. As a result we find, using particular sign
convention, Nj =

√
j .

6 In fact we can start with any state | j − k〉 for which we define the
normalization factor as follows :

J− | j − k〉 ≡ Nj−k | j − k − 1〉 ⇒ J+ | j − k − 1〉 = Nj−k | j − k〉. (34)
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Representations of SU(2): Construction

Repeating the above procedure of application of J+J− to | j − k〉 yields

N2
j−k = 〈j − k | J+J−︸ ︷︷ ︸

[J+, J−] + J−J+

| j − k〉 =

〈j − k | J3 | j − k〉︸ ︷︷ ︸
j − k

+ 〈j − k | J− J+ | j − k〉︸ ︷︷ ︸
Nj−k+1 | j − k + 1〉︸ ︷︷ ︸
N2

j−k+1

, (35)

⇒ the recurrence relation between the normalization coefficients:

N2
j−k − N2

j−k+1 = j − k . (36)
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Representations of SU(2): Construction

Writing the full sequence of such recurrence relations

N2
j − N2

j+1 = j
N2

j−1 − N2
j = j − 1

...
...

N2
j−k − N2

j−k+1 = j − k
...

...
N2
−j − N2

−j+1 = −j

(37)

Summing the first k + 1 lines on both sides of these relations (taking into
account that Nj+1 = 0):

N2
j−k =

k∑
i=0

(j − i) = (k + 1)

[
j − k

2

]
= (k + 1)

[
j − k +

k

2

]
. (38)

N.B. Summing all the lines in (37) we get trivial identity 0 = 0.
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Representations of SU(2): Construction

N2
j−k =

k∑
i=0

(j − i) = (k + 1)

[
j − k

2

]
= (k + 1)

[
j − k +

k

2

]

For k = 2j we get ⇔ m = −j ⇒ N−j = 0
⇒ the multiplet with highest weight j has 2j + 1 states

j has to be of the form 2j = l with l integer.

Remark
A general state within the multiplet with highest weight j, characterized by the
eigenvalue m of J3, will be denoted as | j ,m〉. In terms of the numbers j ,m the
normalization factor (38) can be rewritten as

N2
j,m =

1

2
(j −m + 1)(j + m). (39)
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Fundamental representation of SU(2)

Exploiting the concepts of the direct sum and product of multiplets this
representation can be used to construct all other multiplets of SU(2).

Any multiplet of SU(2) can be constructed from the direct product of basic
SU(2) doublets D(1/2) ⊗D(1/2) · · · ⊗D(1/2)︸ ︷︷ ︸

n times


i1,i2,··· ,in;j1,j2··· ,jn

, (40)

the matrices of which are given as

D
(1/2)
i1,j1

D
(1/2)
i2,j2

· · ·D(1/2)
in,jn

, (41)

The above direct product of multiplets is reducible and obviously symmetric
under the permutations of the indices 1, 2, · · · , n. Individual irreducible
components of this reducible representation are then characterized by
particular type of symmetry of states on which they act.

Starting from the symmetric state given as the direct product of n one
particle states | 1/2, 1/2〉 and applying the lowering operator J− we get all
states of the multiplet corresponding to the highest weight j = n/2.
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Fundamental representation of SU(2)

Thus subspace of fully symmetric states of n basic doublets corresponds to
the multiplet with j = n/2.

Physically, all these states describe the system of n identical noninteracting
particles, each of them corresponding to the fundamental representation
D(1/2).

For instance the direct products of two and three SU(2) doublets
decomposes as:

2⊗ 2 = 3s ⊕ 1, 2⊗ 2⊗ 2 = 4s ⊕ 2m,s ⊕ 2m,a (42)

where the subscript “s” denotes representation symmetric under the
permutations of the product representations whereas “ms” (mixed
symmetric) and “ma” (mixed antisymmetric) denote two equivalent doublet
representations, which differ in their symmetry properties under permutation
of the first two doublets. The adjective “mixed” reflects the fact that as far
as other permutations are concerned these representation possess no definite
symmetry.
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Application of SU(2) group: the isospin

Consider a system of finite number of protons and neutrons, neglecting all
effects of electromagnetic and weak interactions (like mp −mn etc.).

Starting from late forties, experiments had shown quite convincingly that
under these assumptions strong interactions between protons and neutrons
are charge invariant.

There is a very close group theory analogy between the isospin symmetry of
strong interactions and rotational symmetry of a two-particle spin-spin
interaction Hamiltonian Hint ∝ ~s1~s2.

A particularly suitable way how to describe such a system is based on the
use of creation and annihilation operators (P+

α , Pα for protons and
N+
α ,Nα for neutrons in state α), which allow us to build all multiparticle

states via their action on the vacuum state of the Hamiltonian, denoted as
| 0〉 and excited states, denoted generically | s〉:

P+
α | s〉 = | s + proton in state α〉 , Pα | s〉 = | s − proton in state α〉

Pα | 0〉 = 0 , 〈0 | P+
α = 0.

(43)
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Application of SU(2) group: the isospin

The commutation relations of creation and annihilation operators are
assumed to be the following:

{P+
α ,Pβ} ≡ P+

αPβ + PβP+
α = δα,β , (44)

{P+
α ,P

+
β } = {Pα,Pβ} = 0, (45)[

P+
α ,N

+
β

]
= [Pα,Nβ] =

[
P+
α ,Nβ

]
=
[
Pα,N

+
β

]
= 0. (46)

The first two of the above three equations enforce, when restricted to the
case α = β, the Pauli exclusion principle, which stipulates that there cannot
be two identical fermions in any given state. For α 6= β they guarantee the
antisymmetry of wave functions of systems of protons or neutrons.

The third set of equalities tells us that protons are different from neutrons
and so we can interchange the order of application of respective operators,
be it creation or annihilation, with impunity.
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Application of SU(2) group: the isospin

These operators may be used to describe, for instance, the repulsion
between two protons, with interaction Hamiltonian given as

Hint =
∑
α,β

P+
αPαVαβ(r)P+

β Pβ , (47)

Out of P+
α ,Pα,N

+
α ,Nα we can construct the operators J±, J3 introduced

earlier (denote them as T±,T3):

T + ≡ 1√
2

∑
α

P+
αNα; T− ≡ 1√

2

∑
α

N+
αPα, (48)

T3 ≡
1

2

∑
α

(
P+
αPα − N+

αNα
)
. (49)

Starting from the anticommutation relations for P+
α etc.,[

T3,T
±] = ±T±;

[
T +,T−

]
= T3 (50)

as required for the generators of SU(2) group.
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Application of SU(2) group: the isospin

The group we have just constructed is called the isospin group.

The invariance of strong interactions with respect to it implies that the
appropriate Hamiltonian Hs commutes with all these generators:[

Hs ,T
±] = [Hs ,T3] = 0. (51)

Writing the state vector of the nucleon in a two-component column form

| ψ〉 =

(
ψ1

ψ2

)
= ψ1 | p〉+ ψ2 | n〉 (52)

as a superposition of pure proton and neutron states | p〉 | n〉, the
interpretation of the transition operators T± becomes clear: they transform
neutron to proton and vice versa.

The relation between the third component T3 of the isospin and the electric
charge Q reads

Q = T3 +
B

2
, (53)

where B is the baryon number of the system (B = 1,−1, 0 for the nucleon,
antinucleon and pion respectively).
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Application of SU(2) group: the isospin

The power of this formalism as a way to describe charge invariance of strong
interactions becomes highly nontrivial when it is extended to cover the
interactions of nucleons with pions and other hadrons like, for instance,

p + p→ p + n + π+

Extend the above construction to pions: introduce aπ+ , aπ− , aπ0 for the
annihilation operators and similarly for the creation ones.

The commutation relations are the same as for the nucleons, with one very
important change: the anticommutator in (45) etc. is replaced with the
commutator!

It is nontrivial, but easy to verify that in both cases one gets the same
commutation relations for the generators of the SU(2) group.
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Application of SU(2) group: the isospin

The expressions for the generators describing a system of both nucleons and pions
then read

T + ≡ 1√
2

∑
α

P+
αNα + 1

∑
α

(
a+
π+ (α)aπ0 (α) + a+

π0 (α)aπ−(α)
)
, (54)

T− ≡ 1√
2

∑
α

N+
αPα + 1

∑
α

(
a+
π−(α)aπ0 (α) + a+

π0 (α)aπ+ (α)
)
, (55)

T3 ≡ 1

2

∑
α

(
P+
αPα − N+

αNα
)

+ 1
∑
α

(
a+
π+ (α)aπ+ (α)− a+

π−(α)aπ−(α)
)
,(56)

“1” in front of the second contributions expresses the fact that pions carry one
unit of isospin.
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Isospin conservation example

Example: the scattering of pions on nucleons. From the point of view of the
isospin symmetry the system of one pion and one nucleon is described by means
of the direct product of a doublet and a triplet of SU(2). The states of definite
charge combinations can be written as follows

| π+p〉 =| 1, 1〉 | 1
2
, 1
2
〉 = | 3

2
, 3

2
〉, 〈π+p | S | π+p〉 = a3/2,

| π+n〉 =| 1, 1〉 | 1
2
,− 1

2
〉 =

√
1
3
| 3

2
, 1

2
〉+

√
2
3
| 1

2
, 1

2
〉, 〈π+n | S | π+n〉 = 1

3
a3/2 + 2

3
a1/2,

| π−p〉 =| 1,−1〉 | 1
2
, 1
2
〉 =

√
1
3
| 3

2
,− 1

2
〉 −

√
2
3
| 1

2
,− 1

2
〉, 〈π−p | S | π−p〉 = 1

3
a3/2 + 2

3
a1/2,

| π−n〉 =| 1,−1〉 | 1
2
,− 1

2
〉 = | 3

2
,− 3

2
〉, 〈π−n | S | π−n〉 = a3/2,

| π0p〉 =| 1, 0〉 | 1
2
, 1
2
〉 =

√
2
3
| 3

2
, 1

2
〉 −

√
1
3
| 1

2
, 1

2
〉, 〈π0p | S | π0p〉 = 2

3
a3/2 + 1

3
a1/2,

| π0n〉 =| 1, 0〉 | 1
2
,− 1

2
〉 =

√
2
3
| 3

2
,− 1

2
〉+

√
1
3
| 1

2
,− 1

2
〉, 〈π0n | S | π0n〉 = 2

3
a3/2 + 1

3
a1/2.

(57)

Remark
The coefficients in front of the states with definite total isospin, called
Clebsh-Gordan coefficients, can be obtained directly by application of the above
described technique of highest weight.
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Isospin conservation example

The S-matrix elements of various channels are thus related as there are only
two independent amplitudes, corresponding to full isospin equal to 1/2 and
3/2.

These can also be used to write down the amplitudes of other processes like

〈π0p | S | π+n〉 =

√
2

3

(
a3/2 − a1/2

)
= 〈π−p | S | π0n〉. (58)

A simple manifestation of these relations is the ratio of the cross-sections to
produce the ∆ resonance in various pion-nucleon channels like, for instance,

r ≡
σ(π+p→ ∆++)

σ(π−p→ ∆0)
=

σ(π+p→ ∆++ → π+p)

σ(π−p→ ∆0 → π−p) + σ(π−p→ ∆0 → π0n)
=

1
1
9

+ 2
9

= 3.

(59)
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Reality of SU(2) representations

(a) Let’s show that SU(2) representations are equivalent to their complex
conjugate representations.

1 First we’ll show that ∀U (U is 2× 2 matrix, UU+ = 1, DetU = 1 )
∃S connecting U with U∗ via similarity transformation:

S−1US = U∗ (60)

2 U = e iH where H = H+,Tr(H) = 0:

⇒ S−1US = S−1e iHS = U∗ = e−iH
∗

(61)

3 Due to hermiticity of H we can expand it in terms of Pauli matrices
with real coefficients: H = a1σ1 + a2σ2 + a3σ3.

4 Since Im(σ1) = Im(σ3) = 0 but Im(σ2) 6= 0 the complex conjugate
matrix is:

H∗ = a1σ1 − a2σ2 + a3σ3 (62)

5 (61) ⇒ S−1HS = −H∗ so:

S−1σ1S = −σ1, S−1σ2S = σ2, S−1σ3S = −σ3 (63)

and so (60) can be satisfied provided S = const.σ2. Q.E.D.

Michal Šumbera (NPI ASCR, Prague) Introduction to QCD October 9, 2009 43 / 84



Reality of SU(2) representations

(b) Next we’ll show that if ψ1 and ψ2 are the basis vectors of D(1/2)

representation of SU(2) such that: J3ψ1 = 1
2ψ1 J3ψ2 = − 1

2ψ2 (64)

then J3ψ
∗
1 = − 1

2ψ
∗
1 J3ψ

∗
2 = 1

2ψ
∗
2 (65)

1 Denoting ψ ≡| ψ〉 we have ψ
′

= Uψ and so for its complex conjugate:

ψ
′∗ = U∗ψ∗ = (S−1US)ψ∗or(Sψ

′∗) = U(Sψ∗) (66)

i.e. Sψ∗ has the same transformation properties as ψ.
2 Writing it explicitly with S = iσ2:

Sψ∗ =

(
0 1
-1 0

)(
ψ∗1
ψ∗2

)
=

(
ψ∗2
−ψ∗1

)
(67)

3 To say that ψ∗ has the same transformation properties as ψ means for
example that

J3

(
ψ∗2
−ψ∗1

)
=

(
1/2 0

0 -1/2

)(
ψ∗2
−ψ∗1

)
(68)

i.e. (65) is true. Q.E.D.
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Reality of SU(2) representations

This shows that the D(1/2) representation is equivalent to its complex
conjugate representation. We say that it is a real representation.

This property can be extended to all other representations of the SU(2)
group, because all other representations can be obtained from the D(1/2)

representation by tensor product.

Part (b) shows that the matrix S transforms any real diagonal matrix, e.g.
σ3, into the negative of itself. In other words, S will transform any
eigenvalue to its negative.

Thus the existence of such a matrix S requires that the eigenvalues of the
hermitean-generating matrix occur in pairs of the form ±α1,±α2 . . . (or are
zero).

It is then clear that for SU(N) groups with N > 3, such a matrix S cannot
exist as eigenvalues of higher–rank special unitary groups do not have such a
special pairwise structure.
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Combining two fundamental isospin representations

Let us write isospin doublet and its hermitean conjugate as

| ψ〉 =

(
ψ1

ψ2

)
=

(
u
d

)
and 〈ψ |= (ψ∗1ψ

∗
2 ) = (u+d+) (69)

Let’s find isospin of the product ψ∗i ψj where i , j = 1, 2.

Defining ψi ≡ ψ∗i and U j
i ≡ Uij (where UU+ = 1) we can write:

ψ
′

i = Uijψj = U j
i ψj and ψ

′∗
i = U∗ijψ

∗
j = ψ∗j (U i

j )
∗ = ψjU j

i (70)

The combination ψiψi is SU(2) invariant (i.e. isoscalar I = 0):

ψi ′ψ
′

i = ψjU i
j U

k
i ψk = ψjU

∗
ij Uikψk = ψjδijψk = ψjψj (71)

and can be removed. Remaining isovector:

T i
j = ψiψj − 1

2δ
i
j (ψ

kψk) (72)

transforms as I = 1 triplet and is traceless T i
i = 0.
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Combining two fundamental isospin representations

The T i
j components can be now written explicitly:

T 1
2 = ψ1ψ2 = u+d ∼ π− and T 2

1 = ψ2ψ1 ∼ d+u ∼ π+ (73)

T 1
1 = ψ1ψ1− 1

2 (ψ1ψ1+ψ2ψ2) = 1
2 (ψ1ψ1−ψ2ψ2) = 1

2 (u+u−d+d) ∼ 1√
2
π0 (74)

The full matrix reads: T̂ =
1√
2

(
π0

√
2π+

√
2π− −π0

)
(75)

Summarizing: 2⊗ 2 = 1⊕ 3. The triplet is called the adjoint representation
of SU(2).
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Highest weight technique for general compact Lie groups

Divide the basis vectors of the associated vector space of a given compact Lie
algebra A into:

1 Hi , i = 1, · · ·m such that
[Hi ,Hj ] = 0,∀i , j (76)

where m, called the rank of the group, is the maximal number of mutually
commuting elements of A, forming the Cartan subalgebra. They can be
chosen hermitian and thus interpreted as generators.

2 n −m remaining elements Eα (n being the number of generators) such that

[Hi ,Eα] = αiEα, (77)

where the m dimensional, nonzero vectors α are called the roots of the Lie
algebra.

Adopt the following normalization of Hi ,Eα (λ is defined in (16))

〈Eα | Eβ〉 = λ−1Tr(E +
α Eβ) = δαβ

〈Hi | Hj〉 = λ−1Tr(HiHj) = δij .
(78)
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Weights and roots of compact Lie algebras

The Cartan subalgebra contains generators which are analogies of J3 of
SU(2), where there was just one of them.

Eα are generalizations of the lowering and rising operators J±.

We can diagonalize all Hi simultaneously (⇐ [Hi ,Hj ] = 0,∀i , j), defining
real vectors µ = (µ1, · · · , µm) of weights of a given multiplet D

Hi | µ,D〉 = µi | µ,D〉. (79)

Their number is limited by the dimension of D.

There are several simple consequences of the above definitions:

1 Roots α are actually weights of the adjoint representation as in this
representation: Hi | Eα〉 =| [Hi ,Eα]〉 = αi | Eα〉. (80)

Consequently αi are vectors of real numbers.

2 Taking the hermitian conjugate of (77) we find

[Hi ,Eα]+ = −[Hi ,E
+
α ] = αiE

+
α ⇒ E +

α = E−α, (81)

i.e. Eα are not hermitian.
Michal Šumbera (NPI ASCR, Prague) Introduction to QCD October 9, 2009 49 / 84



Weights and roots of compact Lie algebras

3 Using the commutation relations we easily get

Hi (E±α | µ,D〉) = (µ± α)iE±α | µ,D〉 ⇒
E±α | µ,D〉 = N±α,µ | µ± α,D〉, N−α,µ = N∗α,µ−α (82)

and analogously to the case of the SU(2) algebra, the normalization factors
Nα,µ can be chosen real.

4 As
Hi (Eα | E−α〉) = Eα Hi | E−α〉︸ ︷︷ ︸

−αi |E−α〉

+ [Hi ,Eα]︸ ︷︷ ︸
αiEα

| E−α〉 = 0 (83)

the state Eα | E−α〉 has zero weight and can therefore be expressed as linear
combination of the vectors | Hi 〉. Using the normalization (16) one moreover
finds (exercise 2.2)

Eα | E−α〉 =| [Eα,E−α]〉 =
∑
j

αj | Hj〉 ⇔ [Eα,E−α] = αjHj . (84)
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Construction of multiplets

For general compact Lie group it follows closely that of the SU(2) group.

Start with an arbitrary state | µ,D〉 of D and apply to it powers of the
operators E±α. dim(D) <∞⇒ ∃ p ≥ 0, q ≥ 0 such that

E p+1
α | µ,D〉 = E q+1

−α | µ,D〉 = 0. (85)

Proceeding similarly as in the case of SU(2)

〈µ,D | [Eα,E−α]︸ ︷︷ ︸
αjHj

| µ,D〉

︸ ︷︷ ︸
αµ | µ,D〉︸ ︷︷ ︸
αµ

= 〈µ,D | Eα E−α | µ,D〉︸ ︷︷ ︸
N−α,µ | µ− α,D〉︸ ︷︷ ︸
| N−α,µ |2

−〈µ,D | E−α Eα | µ,D〉︸ ︷︷ ︸
Nα,µ | µ+ α,D〉︸ ︷︷ ︸
| Nα,µ |2

(86)
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Construction of multiplets

we get the following set of equations

| Nα,µ+α(p−1) |2 −

0︷ ︸︸ ︷
| Nα,µ+αp |2 = α · (µ+ pα)

...
...

| Nα,µ |2 − | Nα,µ+α |2 = α · (µ+ α)
| Nα,µ−α |2 − | Nα,µ |2 = α · µ
| Nα,µ−2α |2 − | Nα,µ−α |2 = α · (µ− α)

...
...

| Nα,µ−(q+1)α |2︸ ︷︷ ︸
0

− | Nα,µ−qα |2 = α · (µ− qα).

(87)

Summing the first p + 1 of the above equations we get the explicit expression

N2
α,µ+α(p−1) − N2

α,µ = (p + 1)
[
α · µ− p

2
α2
]
, (88)

which reduces to (38) for the SU(2) group when we set k = p, µ = j − k and
α = ±1.
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Construction of multiplets

Summing all equations in (87) we get relation between the roots of the group and
weights of its representations

0 = (p + q + 1)(α · µ) + α2

(
p(p + 1)

2
− q(q + 1)

2

)
⇒ 2α · µ

α2
= q − p. (89)

Consider the adjoint representation (here weights equal to the roots themselves).
We get the following condition for any pair of roots:

2α · β
α2

= q−p = m;
2β · α
β2

= q′−p′ = m′ ⇒ (α · β)2

α2β2
≡ cos2 ϑ =

mm′

4
, (90)

where m,m′ are integers, determining the angle between the roots considered as
vectors in m-dimensional space. The integers p, q describe the shifting of the
weight µ = β by means of the operator Eα, while in the case of p′, q′ the roles of
α and β are reversed. The above formula implies that only those values of m,m′

are allowed for which mm′ = 0, 1, 2, 3, 4. For SU(2) we have m = m′ = 0,±2 as
the roots corresponding to J± are one-dimensional and equal ±1.

Michal Šumbera (NPI ASCR, Prague) Introduction to QCD October 9, 2009 53 / 84



Composition of roots

Using the Jacobi identity:

[Hi , [Eα,Eβ]] = −[Eβ , [Hi ,Eα]︸ ︷︷ ︸
αiEα

]− [Eα, [Eβ ,Hi ]︸ ︷︷ ︸
−βiEβ

] = (α + β)i [Eα,Eβ], (91)

we conclude that

[Eα,Eβ] ∝ Eα+β if the root α + β does exist,

[Eα,Eβ] = 0 if α + β is not a root, but α 6= −β,

[Eα,E−α] = αjHj according to (84).
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Example: SU(3)

Group of unitary matrices 3× 3 with unit determinant.

Its algebra is formed by 8 traceless hermitian matrices. 8 generators Ta:

Ta ≡
1

2
λa ⇒ Tr(TaTb) =

1

2
δab. (92)

can be chosen in many different ways, the simplest is Gell-Mann matrices:

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 -i 0
i 0 0
0 0 0

 ,λ3 =

 1 0 0
0 -1 0
0 0 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

 ,

λ5 =

 0 0 -i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 -i
0 i 0

 ,λ8 = 1√
3

 1 0 0
0 1 0
0 0 -2

 .

(93)

Two commuting generators, H1 ≡ T3,H2 ≡ T8 with common eigenvectors

e1 =

 1
0
0

 ; e2 =

 0
1
0

 ; e3 =

 0
0
1

 (94)

The eigenvalues (h1, h2) of H1,H2, corresponding to these states equal to
( 1

2 ,
1

2
√

3
), (− 1

2 ,
1

2
√

3
),(0,− 1√

3
).
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Example: SU(3)

[
H1,

1
√

2
(T1 ± iT2)

]
= ±1

[
1
√

2
(T1 ± iT2)

]
,

[
H2,

1
√

2
(T1 ± iT2)

]
= 0 (95)[

H1,
1
√

2
(T4 ± iT5)

]
= ±

1

2

[
1
√

2
(T4 ± iT5)

]
,

[
H2,

1
√

2
(T4 ± iT5)

]
= ±
√

3

2

[
1
√

2
(T4 ± iT5)

]
(96)[

H1,
1
√

2
(T6 ± iT7)

]
= ∓

1

2

[
1
√

2
(T6 ± iT7)

]
,

[
H2,

1
√

2
(T6 ± iT7)

]
= ±
√

3

2

[
1
√

2
(T6 ± iT7)

]
(97)

⇒
E±1,0 =

1
√

2
(T1± iT2); E±1/2,±

√
3/2 =

1
√

2
(T4± iT5); E∓1/2,±

√
3/2 =

1
√

2
(T6± iT7). (98)

SUI (2) ⊂ SU(3) ⇒ operators E±1,0 can be identified with operators J±.

E±1/2,±
√

3/2 and E∓1/2,±
√

3/2 correspond to the other two SU(2) subgroups

of SU(3), usually called U-spin and V -spin.

SUI (2) subgroup is singled out by the particular choice (93) of the SU(3)
generators by selecting as one of the diagonal matrices λ3, corresponding to
the projection of the isospin.
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Example: SU(3)

The basic triplet, represented by their weights, together with the roots is
displayed in Fig. 1. According to (90) we find mm′ = 1, i.e. the angles
between roots of SU(3) algebra are multiples of 60◦ degrees.

Figure: Roots and weights of the fundamental representations of SU(3).
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Simple roots of simple Lie algebras

One doesn’t need all the transition operators Eα in order to sweep through a
whole given multiplet. For SU(2) we had J+ and J−, but actually only one
of them was really necessary (the other one working in opposite direction).

The same occurs for general compact Lie groups.

Define some ordering of operators, which will allow us to tell what
“lowering” and “rising” means and thus distinguish between “positive” and
“negative” roots. As the eigenvalues of operators from Cartan subalgebra
form m–dimensional vectors µ = (µ1, µ2, · · · , µm) we define

Definition

The m-dimensional vector µ = (µ1, µ2, · · · , µm) is called positive if its first
nonzero element is positive. Similarly for negative vectors.

Corollary

The ordering of weights and roots is then defined via the relation

µ1 > µ2 ⇔ µ1 − µ2 > 0,

where the superscript labels different vectors.

Michal Šumbera (NPI ASCR, Prague) Introduction to QCD October 9, 2009 58 / 84



Simple roots of simple Lie algebras

It is obvious that for any finite dimensional representation D (N.B. for
compact Lie groups all irreducible representations are finite dimensional)
there exists a weight which may be called highest in the above defined
sense. Similarly, all the roots can be divided into positive and negative ones
the former called “rising” and the latter “lowering”.

Definition
A positive root which cannot be expressed as a sum of two other positive roots is
called a simple root.

Corollary

∀α, β of simple roots the difference α− β is not a root. ⇒

E−α | Eβ〉 =| [E−α,Eβ︸ ︷︷ ︸
0

]〉 = 0⇒ q = 0 ⇒ cosϑ = −
√

pp′

2
< 0 (99)

⇒ ϑ ∈ (π/2, π).

For SU(3), which has 3 positive (and 3 negative) roots, two, α1 = (1/2,
√

3/2)
and α2 = (1/2,−

√
3/2), are simple, spanning the angle 120◦.
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Properties of simple roots

Proposition

1. Simple roots are linearly independent.

Proposition

2. Each positive root Φ can be written as a sum

Φ =
∑
α

kαα

of simple roots α with non-negative coefficients kα.

Proposition

3. The number k of simple roots of a simple Lie algebra is equal to its rank m.

The first two are obvious and their proofs therefore left as an exercise.
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Proof of 3rd proposition

Roots are m-dimensional vectors ⇒k ≤ m.

Assume that k < m. In a suitable basis all simple roots will then have the
first component equal to zero. This, however, means that the first
component of every root Φ vanishes and we have

[H1,EΦ] = Φ1EΦ = 0.

Consequently the generator H1 commutes with all elements of the algebra
and thus forms an invariant subalgebra by itself. This, however, is impossible
in a simple algebra.

N.B. The general classification of compact Lie groups is based on systematic
exploitation of the formula (99) which is conveniently expressed in the form of
Dynkin diagrams. These diagrams describe the number and mutual orientation of
all simple roots and are discussed in detail in LIE ALGEBRAS in PARTICLE
PHYSICS by Howard Georgi.
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Fundamental weights and fundamental representations

Concepts which generalize the basic doublet representation D(1/2) of SU(2)
and its highest weight 1/2.

Consider the highest weight µ of a representation D and form (90) for all
simple roots: 2αiµ

(αi )2
= qi − pi︸︷︷︸

0

= qi i = 1, · · · ,m, (100)

where the set qi , i = 1, · · · ,m of nonnegative integers fully characterizes the
highest weight of a representation D and thereby also the whole
representation.

Define a special class of highest weights µj by the condition
2αiµj

(αi )2
= δij ; i , j = 1, · · · ,m (101)

A general highest weight µ can be expressed in terms of the weights µj as
follows:

µ =
m∑
i=1

qiµi ; µi = (µi
1, µ

i
2, · · · , µi

m). (102)
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Fundamental weights and fundamental representations

Definition

The highest weights µj are called the fundamental weights and the corresponding
multiplets D(i) fundamental representations.

Denote the multiplets in either of the three equivalent ways:

By means of its highest weight µ as D(µ),

using the vector q ≡ (q1, q2, · · · , qm),

or by its dimensionality, like 8.

The sum µ =
∑m

i=1 qiµi ; µi = (µi
1, µ

i
2, · · · , µi

m) (eq.(102)) corresponds to the
fact that any irreducible representation D, with highest weight µ, can be obtained
as a multiple direct product of fundamental representations D(i) of the form

D = D(1) ⊗ · · · ⊗D(1)︸ ︷︷ ︸
q1 times

⊗D(2) ⊗ · · · ⊗D(2)︸ ︷︷ ︸
q2 times

· · ·D(m) ⊗ · · · ⊗D(m)︸ ︷︷ ︸
qm times

. (103)
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Example: SU(3)

For SU(3) there are two fundamental weights, ⇐ there are two simple roots
α1, α2:

α1 = ( 1
2 ,
√

3
2 ) ⇒ µ1 = ( 1

2 ,
1

2
√

3
),

α2 = ( 1
2 ,−

√
3

2 ) ⇒ µ2 = ( 1
2 ,−

1
2
√

3
).

(104)

1 The first corresponds to the basic representation Ta = 1
2λa given in

(92), which acts on H spanned by the triplet of states e1, e2, e3 (94).
2 The second one corresponds to another fundamental representation,

which from the point of view of group theory is equally “fundamental”
as the first one.

In view of its application to quark model let’s call the first multiplet quark
triplet and denote it as 3 ≡ (1, 0).

It will turn out that the second triplet (0, 1) can be identified with
antiquarks and so let’s call it antitriplet and denote 3 ≡ (0, 1).

Both of these triplets are displayed in Fig. 2b.
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Example: SU(3) - Explicit construction of 3 ≡ (0, 1)

Starting from the state of highest weight, i.e. the point with coordinates
(h1, h2) = µ2 = (1/2,−1/2

√
3) and taking into account that for this weight

q1 = 0, only the application of E−α2 leads to non-vanishing result, i.e. the
point (0, 1/

√
3).

Further application of E−α2 leads to zero as q2 = 1 and we are thus forced
to apply E−α1 which brings us to the leftmost point (−1/2,−1/2

√
3), where

the procedure finally stops. One could attempt to apply Eα1 in the second
stage instead of E−α1 , but this leads to zero due the fact that

Eα1 E−α2 | µ2〉 = E−α2 Eα1 | µ2〉︸ ︷︷ ︸
0

+ [Eα1 ,E−α2 ]︸ ︷︷ ︸
0

| µ2〉 = 0 (105)

where the first zero is obvious and the second one uses the basic property of
simple roots as given in Corollary 2.2.
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General strategy for constructing any multiplet
from its highest weight µ

1 Apply to | µ,D〉 all possible combinations of lowering operators
corresponding to simple roots αi : k∏

i=1

E−αi | µ,D〉.

2 At each step check if application of E−αi on the reached state | ν〉 is
“legal”, i.e. whether αi and ν satisfy the condition

2αiν

(αi )2
= qi − pi .

3 For weights, which can be reached via different paths determine whether
they correspond to different states or not.

To solve this last problem the following lemma can be useful

Proposition

Let | A〉, | B〉 ∈ H be two states from a Hilbert space H. They are linearly
dependent if 〈A | B〉〈B | A〉

〈A | A〉〈B | B〉
= 1. (106)
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Weyl group of symmetries of multiplets

Another useful tool for the construction of multiplets.

This group exploits the existence in a compact Lie algebra of the SU(2)
subalgebras spanned by the generators

αiHi

α2
,

E±α√
α2
, (107)

associated with any root α (not necessarily simple).

Taking one of these subgroups and applying powers of E±α successively to
any weight µ leads in final effect to the “reflected” state, characterized by
the weight

µr = µ− 2(α · µ)√
α2

α√
α2
, (108)

which reduces to trivial symmetry operation −k = k − 2k for SU(2) group.
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Weyl group of symmetries of multiplets

Figure: a) Weyl symmetry of weights, b) fundamental representations of SU(3)

The existence of the second fundamental representation of SU(3) 3 and the
relation of its weights to those of the defining triplet 3

µ2 = −(µ1 − α1 − α2)
(µ2 − α2) = −(µ1 − α1)
µ2 − α2 − α1 = −µ1

(109)

is an example of complex representation.
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Weyl group of symmetries of multiplets

Complex representations: if the matrices Ta of a representation D satisfy
[Ta,Tb] = ifabcTc (see eq.(9)) so do also the matrices

− (Ta)∗ ,

which form the so called complex conjugate representation D. This relation is
reflexive as we have:

−
(
− (Ta)∗

)∗
= Ta.

Definition
The representation of a Lie algebra given by matrices Ta is said to be real if it is
equivalent to the complex conjugate representation of matrices −T ∗a .

Corollary

As the elements of Cartan subalgebra are hermitian, their eigenvalues are the

same for D and D and the weights related simply as µD = −µD.
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Weyl group of symmetries: Examples

SU(2): As we saw already in (60) there is just one fundamental
representation, which is real, as the Pauli matrices σi are equivalent
to the negative of their complex conjugates.

SU(3): The two fundamental representations are not equivalent, the
fact that has important consequences in the quark model.

There are several other multiplets of SU(3) which had played
important role in the formulation and development of unitary
symmetry and the quark model. We will discuss three of them in
some detail and briefly mention several other.
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Further SU(3) multiplets

Figure: Further SU(3) multiplets; a) decuplet; b) sextet; c) octet.
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Sextet

The next simplest multiplet 6 ≡ (2, 0) has the highest weight
2µ1 = (1, 1/

√
3). All of its 6 states depicted in Fig. 3b are unique.

This fact is not trivial, as there are two states, namely those with weights
(−1/2,−1/2

√
3) and (−1, 1/

√
3), which can be reached via two different

paths, as indicated in the figure. It is, however, easy to show, using the
commutation relations between the lowering operators E−α1 and E−α2 that

E−α2 E−α1 E−α1 | 2µ1〉 = 2E−α1 E−α2 E−α1 | 2µ1〉, (110)

i.e. that the resulting states are the same.

The same conclusion can be reached by means of (106). As the highest
weight of this sextet is symmetric under the permutation of the two
u-quarks which make it up, the whole multiplet consists of symmetrical
combinations of the u, d , s quarks. There are 6 such symmetric
combinations, the remaining three being antisymmetric.
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Sextet

Follow the action of the lowering operators on such quark combinations:

| uu〉
↓ E−α1

N−α1,µ1 | us + su〉 E−α2−→ N−α1,µ1 N−α2,µ1−α1 | ud + du〉
E−α1 ↓ E−α1

↓ (N−α1,µ1 )2N−α2,µ1−α1 | sd + ds〉
2(N−α1,µ1 )2 | ss〉 E−α2−→ 2(N−α1,µ1 )2N−α2,µ1−α1 | sd + ds〉.

(111)

The same can be done for 3 antisymmetric combinations. Starting from
| us − su〉 we find that:

E−α1 E−α2 | us − su〉 = E−α1 N−α2,µ1−α1 | ud − du〉 = N−α2,µ1−α1 N−α1,µ1 | sd − ds〉
(112)with further application of either of Eα yielding zero.

The above explicit construction shows that:

3⊗ 3 = 6⊕ 3; 3⊗ 3 = 6⊕ 3. (113)

N.B. the weights corresponding to these combinations coincide with those of
the antitriplet of antiquarks. ⇒ The antisymmetric diquark combinations
behave, from the point of view of SU(3)transformations (but not as far as
the flavour quantum numbers are concern), as antiquarks.
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Octet

Denoted as 8 ≡ (1, 1) is displayed in Fig. 3c.

It had played the very central role in the discovery of SU(3) symmetry of
hadrons and the subsequent formulation of the quark model.

Also here are the states which can be reached from this µ in more then one
way. Out of them only the one in the center of the octet is not unique. One
can proceed exactly as in the previous case to show that the states with the
weight (0, 0) arrived at by two different paths from that with highest weight
µ = µ1 + µ2 are different. The same can be proven also by means of the
lemma (106) by showing that for the states:

| A〉 ≡ E−α1 E−α2 | µ〉; | B〉 ≡ E−α2 E−α1 | µ〉

one finds that:
〈A | A〉〈B | B〉
〈A | B〉〈B | A〉

= 4 ⇒| A〉 6=| B〉. (114)
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Octet

In the following we shall frequently need the fact that octet 8=(1, 1)
appears in the decomposition of the direct product of the fundamental
triplet and antitriplet as well as of three triplets

3⊗ 3 = 8⊕ 1, (115)

3⊗ 3⊗ 3 = 10s ⊕ 8ms ⊕ 8ma ⊕ 1a, (116)

where the subscripts “ms” (mixed symmetric) and “ma” (mixed
antisymmetric) denote similarly as in the case of SU(2) in (42), two
equivalent octet representations, which differ in their symmetry properties
under permutation of the three triplets. Analogously for the product of
antitriplets 3.
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Decuplet

The last of multiplets which played important role in the formulation of the quark
model is the decuplet 10 ≡ (3, 0) with the highest weight µ = 3µ1, shown in Fig.
3a, which corresponds to fully symmetric combinations of three quarks in the
decomposition (116). One can again ask about the uniqueness of its states and
the answer is the same as for the sextet: all are unique.
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Other products and multiplets

Other multiplets that had played role in the discovery of unitary symmetry of
hadrons and formulation of the quark model are those obtained in the
reduction of the following direct products of two multiplets

3⊗ 6 = 10⊕ 8, 3⊗ 8 = 15⊕ 6⊕ 3, 3⊗ 6 = 15⊕ 3, (117)

and three triplets and/or antitriplets

3⊗ 3⊗ 3 = 3⊗ (8⊕ 1) = (3⊗ 8)⊕ 3 = 15⊕ 6⊕ 3⊕ 3 (118)

The above, as well as any other, direct products of the SU(3) multiplets can
be reduced using the method of the highest weight.
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Other products and multiplets

Figure: The 15-plet. Three inner three weights correspond to two different states.
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Other products and multiplets

The resulting decompositions may be quite complicated, but there is a
method based on the so called Young tableaux, which allows fast
determination of the results. It is a diagram associated with a given
multiplet D = (p, q) describing its symmetry properties under the
permutations of the fundamental SU(3) triplets and anti-triplets.

The 15-plet, shown in Figure 4 and resulting from the decomposition (118)
of the direct product of two triplets and one antitriplet, was used in the
Sakata model, a predecessor of the so called Eightfold way (see the next
Section for discussion of both schemes). Part of this multiplet has weights
that coincide with those of the decuplet. The inner three weights correspond
to two states.

One of the most important characteristics of any SU(3) multiplet D = (p, q)
is its dimension D(p, q). This can also be read off the corresponding Young
tableau with the result

D(p, q) =
1

2
(p + 1)(q + 1)(p + q + 2). (119)
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Combining three fundamental isospin representations

Let

| ψ〉 =

 ψ1

ψ2

ψ3

 =

 u
d
s

 (120)

be SU(3) triplet.

Let ψ∗i ≡ ψi and write SU(3) invariant trace:

ψiψi = u+u + d+d + s+s (121)

is an SU(3) invariant trace. The remaining 8 components transform as the
octet representatiojn of SU(3):

3⊗ 3 = 1⊕ 8 (122)

Following the same procedure as for SU(2) we can write the adjoint
representation of SU(3) as:

Ai
j = ψiψj − 1

3δ
i
j (ψ

kψk) (123)
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Combining two fundamental isospin representations

The Ai
j components can be now written explicitly:

A1
2 = u+d ∼ π−, A2

1 = d+u ∼ π+ (124)

A1
3 = u+s ∼ K−, A3

1 = s+u ∼ K + (125)

A3
2 = s+d ∼ K 0, A2

3 = d+s ∼ K̄ + (126)

and for the diagonal elements:

A1
1 = u+u − 1

3 (u+u + d+d + s+s) ∼ π0
√

2
+ η0
√

6
(127)

where
π0 = 1√

2
(u+u − d+d), η0 = 1√

6
(u+u − d+d − 2s+s) (128)

Similarly

A2
3 ∼ − π0

√
2

+ η0
√

6
and A3

3 ∼ −
2η0
√

6
(129)
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Combining two fundamental isospin representations

These components can be put into traceless hermitian matrix:
Â = A1

1 A2
1 A3

1

A1
2 A2

2 A3
2

A1
3 A2

3 A3
3

 =


π0
√

2
+ η0
√

6
π+ K +

π− − π0
√

2
+ η0
√

6
K 0

K− K̄ + − 2η0
√

6

 (130)

Since fundamental (defining) representation transforms as:

ψi → ψ
′

i = U j
i ψj , ψi → ψi ′ = ψjU

i
j (131)

the adjoint representation transform as:

Ai
j → A

′i
j U i

kU i
j A

k
j = (Uik)∗Ak

i (U)ij), (132)

or, in terms of matrix multiplication:

Â→ Â′ = Û+ÂÛ (133)

N.B. The matrix U is the defining representation of the SU(3) group.
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Exercises

1 Evaluate Clebsh-Gordan coefficients of the direct product of SU(2)
multiplets 1⊗ 1/2.

2 Prove (84).

3 Find the matrices λ3, which correspond to the third projection of the U and
V -spins. How do the matrices α8 look like in these two cases?

4 Argue why only the simple roots are needed to reach from the state with the
highest weight all the states of a given multiplet.

5 Prove the lemma (106).

6 Show that the fundamental representation of SU(2) is real.

7 Prove (114).
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Exercises

8 Show that if we associate the basic doublet of SU(2) with
(

u
d

)
the pair of antiquarks which transforms according to identical representation
is (

d
−u

)
.

9 Prove that the elements of the Cartan subalgebra can be chosen as
hermitian operators and the roots as real vectors.

10 Show that the three operators defined in (107) do, indeed, satisfy the SU(2)
commutation relations (31).

11 Prove the uniqueness of all states in the sextet 6=(2,0) representation of
SU(3).

12 Show that the two states in the center of the octet of SU(3) are different.

13 Derive (116).

Michal Šumbera (NPI ASCR, Prague) Introduction to QCD October 9, 2009 84 / 84


	Definitions and basic facts
	Lie groups and algebras
	SU(2) group and algebra
	Application of SU(2) group: the isospin
	Weights and roots of compact Lie algebras
	Simple roots of simple Lie algebras
	Sextet
	Octet
	Decuplet
	Other products and multiplets

	Exercises

