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Birth of a star

Begins with gravitational collapse and
subsequent fragmentation of a giant molecular
cloud (2R ≈ 100`y ,M ≈ 6× 106M�).

In each of these fragments, the collapsing gas
releases gravitational potential energy as heat.

As its temperature and pressure increases, a
fragment condenses into a rotating sphere of
superhot gas known as a protostar.

Protostar continues to grow by accretion
(accumulation) of gas and dust from the
molecular cloud. Its further development is
determined by its mass M.

Protostars with M ≤ 0.08M�, known as brown
dwarfs, never reach temperatures high enough
for nuclear fusion of hydrogen to begin.
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Hertzsprung–Russell diagram: luminosty vs. temperature

https : //en.wikipedia.org/wiki/Luminosity
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Nuclear burning stages in stars

For a more-massive protostar, the core temperature will eventually
reach T ≈ 106K ∗, allowing hydrogen to fuse, first to deuterium and
then to helium (PPI chain):
p + p → d + e+ + νe , d + p →3

2 He + γ, 3
2He +3

2 He →4
2 He + 2p

In stars with M? & M�, the CNO cycle (Bethe 1938) contributes a
large portion of the energy generation:
12
6 C + p →13

7 N + γ, 13
7 N →13

6 C + e+ + νe ,
13
6 C + p →14

7 N + γ
14
7 N + p →15

8 O + γ, 15
8 O →15

7 N + e+ + νe ,
15
7 N + p →12

6 C +4
2 He

The onset of nuclear fusion leads relatively quickly to a hydrostatic
equilibrium: energy released by the core maintains a high gas
pressure, balancing the weight of the star’s matter and preventing
further gravitational collapse.

The star thus evolves rapidly to a stable state, beginning the
main-sequence phase of its evolution.

*) 1K = 8.621738× 10−5eV , 1eV = 11600K
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Nuclear burning stages in massive stars
After the core of a main sequence star is transformed to 4

2He, it
contracts until (T > 6×T�) enough for the triple alpha process.
4
2He+4

2He →8
4 Be, (−92keV ); 8

4Be+4
2He →12

6 C +2γ, (+7.36MeV ).

Carbon fusion starts in the cores of stars with M?>M� at birth.
12
6 C+12

6 C →20
10Ne+4

2He, . . .→23
11Na +1

1 H, . . .→23
12 Mg+n.

At even higher temperatures and densities neon fusion starts.
20
10Ne + γ →16

8 O +4
2 He,

20
10Ne +4

2 He →24
12 Mg + γ.

As the neon-burning process ends, the core of the star contracts and
heats until it reaches the ignition temperature for oxygen burning.
16
8 O+16

8 O →20
10Ne+4

2He, . . .→31
15 P+1

1H, . . .→31
16 S + n, . . .

Silicon burning @M? > 8−10×M� – adding more alphas:
28
14Si +4

2 He →32
16 S , 32

16S +4
2 He →36

18 Ar , . . . . . . ,48
24 Cr +4

2 He →52
26 Fe,

52
26Fe +4

2 He →56
28 Ni ,.
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Latest stages of stellar evolution

A = 56 has the lowest MA/mN

⇒ the silicon-burning sequence (lasting 1 day)
stops the nuclear fusion process.

Then 56
28Ni →56

27 Co →56
26 Fe decays occur.

The star has run out of nuclear fuel and within
minutes its core begins to contract.

The inert core will then accumulate mass from
the outside layers until it reaches the limit mass
MCh ≈ 1.4M�.

At this point, it will start to implode since no
thermal pressure can balance the gravitation.
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Star in hydrostatic equilibrium

Gravitational force working for collapse is balanced by a pressure
gradient:

dP

dr
+

GM(r)ρ(r)

r2
= 0, M(r) =

∫ r

0
ρ(r

′
)4πr

′2dr
′

(1)

Downward forces come from gravity
and from P(r + dr).
Upward force comes only from P(r).

The pressure gradient dP/dr , through the EoS P(T , ρ), generates the
gradients dρ/dr and dT/dr .

Later can be determined by considering radiation transport through
the star i.e. from measurement of its luminosity L and its gradient
dL/dr , respectively.

In particular, dL/dr = 4πr2ε(r), is determined by the total energy
release of binding energy in fusion reactions per unit volume ε(r) .
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Star’s energy budget

Etot =
∑

particles

(mc2 + p2

2m ) + Egrav + Eγ

For a spherical star with density ρ0 = const. and radius Rgrav Eq.(1)
gives M(r) = (4π/3)r3ρ0 = (r/Rgrav )M:

Egrav = −
∫ Rgrav

0

GM(r)ρ0

r2
4πr2dr = −3

5

GM2

Rgrav
(2)

N.B. ρ(r)=ρ0 ⇒ R ≥ Rgrav . In particular, Rgrav� = 0.37R�.

Multiplying (1) by 4πr3 and integrating by parts:

3P̄V = −Egrav = (3/5)(GM2)/Rgrav (3)

Assuming Pγ ≈ 0 and ideal gas EoS PV = NkT :

kT̄ = (1/5)
Nb

Npart

GNbm
2
p

Rgrav
≈ (1/10)

GNbm
2
p

Rgrav
(4)

where Npart is the total number of free massive particles in the star
and Nb ≈ M/mp is the number of baryons (nucleons) in the star.
Example: Nb� ∝ 1057 ⇒ kT̄ = 500eV ≈ 6× 106K .

Michal Šumbera Stellar evolution November 2, 2020 10 / 38



Star’s thermodynamics

Eq. (4) tells us that star has a negative specific heat T̄ ∼ 1/Rgrav .
As star loses its energy and contracts, its temperature increases.
Crucial for its ability to maintain a stable nuclear-burning regime.

Using virial theorem 2Ēkin = −Ū we obtain

Ēkin =
∑

particles

3

2
kT̄ =

∑
particles

p2

2m
= −1

2
Ū = −1

2
Egrav (5)

For photons we have:

Eγ =

∫ R

0
ργ4πr2dr =

∫ R

0

2π2

30

kT 3

~c3
4πr2dr , nγ =

Eγ
V

=
2.5

π2

(
kT

~c

)3

≈ ργ
3kT

(6)

Using (4) and αG≡(Gm2
p)/(~c)=6.7×10−39 total number of photons

in the star is:
Nγ = nγT̄4πR3

grav/3 = α3
GN

3
b

1

1000

4× 2.4

3π
(7)

⇒ Nγ/Nb ≈ 10−3α3
GN

2
b , for the sun Nγ�/Nb� ≈ 10−3

but for star with M = 30M� we have Nγ/Nb ≈ 302 × 10−3 → 1 .
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Reminder: On metrics sign convention in QFT and GR

In QFT time-dominant sign convention ηµν = diag(+1,−1,−1,−1)
is used. The momentum squared p2 = pµp

µ = ηµνp
µpν = m2.

From now on we will use the GR space-dominant sign
convention ηµν = diag(−1,+1,+1,+1) giving p2 = −m2.

To go from one convention to the other, simply flip the sign of gµν :

gGR
µν = −gQFT

µν (8)

N.B. Flipping the sign of gµν does not change the sign of
Γµνκ = 1

2g
µλ(∂κgλν + ∂νgλκ + ∂λgνκ)

⇒ Rλρµν and also Rµν do not change a sign but the scalar curvature
R ≡ Rµµ = gµνRµν does.

⇒ Gµν ≡ Rµν − 1
2gµνR does not change too.

⇒ The GR convention: the sphere has positive scalar curvature.
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Schwarzschild solution of the Einstein equations

Static and isotropic solution in the vacuum (outside the mass M):

Gµν ≡ Rµν − 1
2gµνR = 0⇔ 8πGTµν = 0 (9)

gtt = f (r), grr = 1/f (r), gθθ = r2, gφφ = r2sin2θ (10)

where f (r) ≡ (1− rs
r ) and rs ≡ 2GM, (Schwarzschild 1915)

Represent first and and untill now the most important exact solution
of Einstein equations of GR.

ds2 = −f (r)dt2 +
1

f (r)
dr2 + r2dΩ2 (11)

At r = rs (Schwarzschild radius horizon) the coefficient on radial
coordinate →∞ while that for time coordidate → 0.

f (r < rs) < 0 ⇒ t and r exchange their roles!!!!
⇒ For ds2 not to change its sign grr must change fast enough to
offset the change of gtt .

No stationary observer exists for r < rs . Moving forward in time
requires also moving to smaller radius.
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The black hole solution (1/2)

No stationary observer exists for r < rs . Moving forward in time
requires also moving to smaller radius.

Q: Is it real or artefact due to the wrong choice of the coordinates?

A: The second possibility was believed to be true until 1960’s.

Let’s look for a better set of coordinates (t, r)→ (t̃, r):

dt̃ ≡ dt + rs
r−rs dr , ds

2 = −f (r)(dt̃ + dr)(dt̃ − r+rs
r−rs dr)+r2dΩ2 (12)

The radial dΩ = 0 light rays ds2 = 0 follow:

dt̃ + dr = 0, incoming, since dr < 0 for dt̃ > 0
or

dt̃ = r+rs
r−rs

dr , outgoing for r > rs , since dr > 0 for dt̃ > 0.
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The black hole solution (2/2)

The incoming rays always
move at 45◦.

The outgoing ray angle
with the r -axis varies.
Starting at 45◦ for r � rs ,
slowly increasing with
decreasing r until it reaches
90◦ at the horizon r = rs .

For r < rs , we no longer have any outgoing light rays!!!

⇒ Material particles cannot escape, since their worldlines have to lie
inside the light cone.
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Galaxy inside the horizon example

The Schwarzschild radius rs for a spherical mass M of uniform density
ρ(r) = ρ̄ and radius R is given by rs ≡ r̃ = 2GM = 8π

3 G ρ̄R3. For the
Sun we would have

r̃�/R� ≈ 3
7 × 10−5. (13)

Example (Rindler): Consider (a quite unrealistic!) spherical and
non-rotating galaxy containing ∼ 1011 suns equally spaced
throughout and initially at rest:

r̃Galaxy ≈ 1011r̃� ≈
3

7
× 106R� (14)

The ratio of the volume inside galaxy Schwarzschild radius r̃Galaxy to
the volume of the sun is given by (r̃Galaxy/R�)3 ≈ 1017.

The galaxy where individual suns would be 100 stellar diameters apart
would still fit into the galactic horizon 1003 × 1011 = 1017.

⇒ If that galaxy were to collapse to a volume where the individual
stars were 100 stellar diameters apart, it would be inside its horizon.

Michal Šumbera Stellar evolution November 2, 2020 16 / 38



The BH solution in Eddington-Finkelstein coordinates

Another set of coordinates: Eddington-Finkelstein coordinates
v = t + r + rs log( |r−rs |rs

) with f (r) ≡ (1− rs/r):

ds2 = −(1− rs/r)dv2 + 2dvdr + r2dΩ2 (15)

Radial light rays ds2 = 0 follow the path (r − rs)dv2 = 2rdvdr .

Light rays along dv = 0 are always ingoing.
Light rays along (r − rs)dv = 2rdr are outgoing for r > rs and ingoing
for r < rs .

If we put v ≡ R + T and r ≡ R − T then at the horizon r = rs the
metric reads ds2 = 2dvdr = 2(dT 2 − dR2).
⇒ The Schwarzschild singularity is thus a mere coordinate singularity
which can be transformed away.

gµν of (15), its first and second derivatives are continuous at r = rs .
By continuity, the field equations must be satisfied there also.
⇒ The entire spacetime described by the Schwarzschild metric is
regular down to r = 0, where the curvature R →∞.
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Generality of Schwarzschild solution

Theorem (Birkhoff 1923): any spherically symmetric solution of the
vacuum field equations must be static and asymptotically flat.
⇒ The Schwarzschild spacetime geometry is the unique spherically
symmetric solution of Gµν = 0.

Example 1: Pulsating star. A spherically symmetric pulsating star
of fixed mass. BT⇒ the exterior geometry must be static. The only
effect of the star’s pulsation is to change the location of the stellar
surface but without emission of gravitational waves.

Corollary: Imploding, spherical star cannot produce any gravitational
waves; such waves would break the spherical symmetry.

By contrast, a star that implodes non-spherically or merger of two
neutron stars (first detected by LIGO+Virgo 17.8.2017) or of two
black holes (first detected by LIGO 14.9.2015) can produce a strong
burst of gravitational waves.
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The BH solution in Gullstrand–Painlevé coordinates

(t, r)→ (tr , r), ψ(r) ≡ t − tr for which the spacial part of gµν is
simply the flat metric dr2 + r2dΩ2. Metrics with f (r)≡ r−rs

r reads:

ds2 = −f (r)dt2
r + 2f (r)ψ

′
dtrdr +

[
1

f (r)
− f (r)ψ

′2
]
dr2 + r2dΩ2 (16)

where ψ
′ ≡ dψ

dr . The condition [. . .] = 1 ⇒ ψ
′
(r) = r

r−rs

√
rs/r and

ds2 = − r − rs
r

dt2
r + 2

√
rs
r
dtrdr + dr2 + r2dΩ2 (17)

Particle falling radially toward a black hole from rest at infinity:

dr

dt
=

r − rs
r

√
rs
r

(18)

appears (to a distant observer) slowing down as it gets nearer the
event horizon and halts at rs .

In GP coordinates: dr

dtr
=

√
rs
r

=

√
2GM

r
(19)

equals the Newtonian escape velocity.
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The BH solution in Gullstrand–Painlevé coordinates

Inside the event horizon r < rs , dr/dtr increases becoming infinite at
the singularity. As shown below it is always less than that of light.

Assume radial motion. The light ray geodetics is:

ds2 = 0 =

[
dr +

(
1 +

√
rs
r

)
dtr

][
dr +

(
1−

√
rs
r

)
dtr

]
(20)

and so for the light we have: dr/dtr = 1±
√

rs/r (21)

At r →∞ dr/dtr = ±1 it coincides with that in SR.

At r = rs outward shining light gets stuck: dr/dtr = 0.

Inside the event horizon r < rs the external observer measures that
the light moves toward the center with speed greater than 2.

(dr/dtr )particle/(dr/dtr )light =
√

rs/r/(1 +
√
rs/r) < 1. QED.
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Falling into BH: Gullstrand–Painlevé coordinates

Using (19) compute the travel time for the particle from horizon to
the BH center.

Tr =

∫ Tr

0
dtr =

∫ rs

0

√
r

rs
dr =

2

3
rs =

4

3
GM (22)

Using (21) the time of travel for light shining inward from event
horizon to the BH center is

Tr =

∫ Tr

0
dtr =

∫ rs

0

(
1 +

√
r

rs

)−1

dr = rs(2 ln 2− 1) = 1.54GM

(23)
For M = 3M�, Tr = 11µs.
For supermassive BH with mass M = 3.7× 106M� residing at the
centre of the Milky Way, Tr = 14s.
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Interior of star as a static perfect fluid

Energy-momentum tensor of a perfect fluid flowing with local
4-velocity uµ in a flat spacetime: Tµν = (ρ+ P)uµuν + pηµν .

Using the equivalence principle ηµν → gµν it can be cast into form
valid in curved space-time: Tµν = (ρ+ P)uµuν + pgµν (24)

N.B. Independenty of the metric we have T ≡ Tλ
λ = ρ− 3P.

Plugging (24) into Einstein equations (using GR sign convention!!):

Rµν = +κ(Tµν − 1
2gµνT ), κ ≡ 8πG (25)

we obtain: Rµν = κ[(ρ+ p)uµuν + 1
2 (ρ− P)gµν ] (26)

Assume a static spherically symmetric interior described by the metric:

ds2 = −A(r)dt2 + B(r)dr2 + r2dΩ2 (27)

Static ⇒ ui = 0. Normalization gµνu
µuν = −1 ⇒ u0 = A−1/2.
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Solving for the spacetime inside the star

The field eqation (25) implies:

Rtt = 1
2κ(ρ+ 3P)A, Rrr = 1

2κ(ρ− P)B, Rθθ = 1
2κ(ρ− P)r2 (28)

Inspired by the Schwarzschild solution (10) let’s assume:

B−1 = (1− 2GM(r)

r
) (29)

which after insertion to (27) yields:

dM(r)

dr
= 4πr2ρ(r), M(r) = 4π

∫ r

0
dr

′
r
′2ρ(r

′
) (30)

Condition for hydrostatic exquilibrium reads:

dP(r)/dr

ρ+ P
= −dA(r)/dr

2A
(31)
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Tolman-Oppenheimer-Volkoff equation

After some algebra:

dP

dr
= −GM(r)ρ(r)

r2

[
1 +

P(r)

ρ(r)

][
1 +

4πr3P(r)

M(r)

][
1− 2GM(r)

r

]−1

(32)

(Tolman, Oppenheimer-Volkoff, 1939).

P(r) steadily decreases until P(R)=0, defining the star radius.

Star mass is M =M(R).

For some simple EoS P = P(ρ), analytic solutions may be found.

In general, numerical integration of (32) is needed starting outward
from r = 0 with the boundary condition M(r = 0) = 0 and some
chosen value P(r = 0) = P0.
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Incompressible fluid

r1 ≤ r2 ⇒ ρ(r2) ≤ ρ(r1) ≤ ρ(r = 0) ≡ ρ0. ⇒ Incompressible fluid
with ρ(r) = ρ0 provides an upper limit on P and M.

M(r) = (4π/3)r3ρ0 = (r/R)M and analytical integration of TOV
Eq. (32) yields:

P(r) = ρ0

[
1− rs

R ( r
R )2
]1/2 −

[
1− rs

R

]1/2

3
[
1− rs

R

]1/2 −
[
1− rs

R ( r
R )2
]1/2

(33)

Demanding P(r = 0) > 0⇒ 3
[
1− rs

R

]1/2
> 1:

R > 9
8 rs = 9

4GM (34)

Theorem (Buchdahl 1959): The inequality (34) is true for any
reasonable EoS.⇒ For R≤9

8 rs= 9
4GM star becomes the black hole.

rs/R⊕ = 10−9, rs/R� = 10−6, rs/Rwd = 10−4, rs/Rns = 10−1.
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Incompressible fluid in NR limit

dP

dr
= −GM(r)ρ(r)

r2

[
1 +

P(r)

ρ(r)c2

][
1 +

4πr3P(r)

M(r)c2

][
1− 2GM(r)

rc2

]−1

(35)

In NR limit c →∞ in (35) [. . . ]→ 1:

dP

dr
= −GM(r)ρ(r)

r2
(36)

the outward force due to pressure on an infinitesimal volume of stellar
material balances the inward force due to gravity.

Integrating (36) for the case of constant density ρ0:

P(r) = −
∫ R

r

GM(r)ρ0

r2
dr = −

∫ R

r

4

3
πGρ2

0rdr =
2

3
πGρ2

0(R2 − r2) (37)

we obtain an expression for the pressure at the centre of star:

Pc ≡ P(r = 0) = 2
3πGρ

2
0R

2 (38)
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Compact stars

Once the nucleosynthesis arrives at 56Fe, its continuation becomes
endoergic.

When star does not burn nuclear fuel it can not support itself against
gravitational collapse by generating thermal pressure.

Survival strategy: The only way how to prevent the collapse is to
use the pressure of degenerate Fermi gas.

White dwarfs use degenerate electron gas pressure.

Neutron stars use degenerate neutron gas pressure.

Object M R ρ/ρ� GM/R

Sun M� R� 1 10−6

White dwarf . M� ∼ 10−2R� . 107 ∼ 10−4

Neutron star ∼ 1− 3M� ∼ 10−5R� . 1015 ∼ 101

M� ≈ 2× 1030kg R� ≈ 7× 108m
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Degenerate fermion gas at T=0K

NR fermions in a box Lx = Ly = Lz = L at T = 0K .

λi =
2L

Ni
; pi =

hNi

2L
; i = x , y , z (39)

p2

2m
=

h2

8mL2
(N2

x + N2
y + N2

z ) =
h2N2

8mL2
; N2 ≡ N2

x + N2
y + N2

z (40)

Total number of the fermions inside the spehere of radius N
occupying octant Nx > 0,Ny > 0,Nz > 0 is:

Nf = (2s + 1)

(
1

8

)(
4

3
πN3

)
; N =

(
3Nf

π

)1/3

(41)

The maximum fermion energy εF per unit volume is

εF =
~2

2m
(3π2n)2/3, n = Nf /L

3 (42)

and average momentum squared and energy per fermion is:

p̄2
F =

∫ pF
0 p2 p2dp∫ pF

0 p2dp
=

3

5
pF ; ε̄F =

p̄2
F

2m
=

3

5
εF (43)

Michal Šumbera Stellar evolution November 2, 2020 28 / 38



Degenerate fermion gas at T > 0K

For white dwarf (DW) the assumption of complete degeneracy is OK
even at T > 0K . For fully ionized atoms:

ne =

(
#electrons

nucleon

)(
#nucleons

volume

)
=

(
Z

A

)
ρ

mH
(44)

Demanding that an average electron lives inside the Fermi spehere ⇒

εF =
~2

2me

[
3π2

(
Z

A

)
ρ

mH

]2/3

>
3

2
kT (45)

or

T

ρ2/3
<

~2

3mek

[
3π2

mH

(
Z

A

)]2/3

= 1261km2kg−2/3 ≡ D (46)

For � at the center Tc/ρ
2/3
c ≈4D, for Sirius B: Tc/ρ

2/3
c ≈0.03D�D.
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Electron degeneracy pressure

Separation between neighboring electrons in completely degenerate

electron gas of uniform density ne is n
−1/3
e .

To satisfy Pauli principle also ∆x ≈ n
−1/3
e and so electron momentum

is p = px ≈ ~/∆x ≈ ~n1/3
e .

Total momentum p =
√
p2
x + p2

y + p2
z =
√

3px . Using (44) we have:

p ≈
√

3~n1/3
e (47)

For NR electrons with (unrealistic) p = const. P = 1
3nepv ⇒

P ≈ ~2

me
n

5/3
e ≈ 5

(3π2)2/3
Pexact ≈

1

2
Pexact (48)

Pexact =
(3π2)2/3

5

~2

me
n

5/3
e (49)
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White dwarfs: mass - volume relation
WDs lack brightness because its H-supply, main energy source of
stars, has been already used up. They consist mainly of He, CO or Fe
and radiate their released gravitational energy through slow
contraction.

≈ Equilibrium⇔ the pressure of degenerate electron gas at the WD
centre (49) more less cancels the pressure due to gravity (38):

(3π2)2/3

5

~2

me
n

5/3
e =

(3π2)2/3

5

~2

me

[(
Z

A

)
ρ0

mH

]5/3

≈ 2
3πGρ

2
0R

2
wd (50)

For compact star Mwd . 4π
3 R3

wdρ0 ⇒

Rwd ≈
(18π)2/3

10

~2

GmeM
1/3
wd

[(
Z

A

)
1

mH

]5/3

(51)

Surprising implication: MwdR
3
wd ∼ MwdVwd = const.!

Does it mean that there is no limit on Mwd? No, there’s a limit!
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White dwarfs: Chandrasekhar limit
We have assumed NR electrons. However, for small enough Rwd the
Fermi energy ε ∼ me .

Let us look at the equilibrium obtained assuming relativistic electrons.

Typical electron energy is Ee ∼ pe ∼ ~n1/3
e .

Total electron degeneracy energy Edeg of WD consisting of Ne

electrons has to be comparable to its gravitational energy Eg :

Edeg ∼ NeEe ∼ Ne~n
1/3
e ∼ ~

Rwd

(
ZMwd

AmH

)4/3

∼
GM2

wd

Rwd
(52)

⇒
Mch ∼

(
Z

AmH

)2( ~
G

)3/2

= 1.8

(
Z

A

)2

M� (53)

More precisse derivation gives for Z/A = 0.5 famous
Chandrasekhar limit MCh = 1.44M�.

Once WD becomes compact enough for the electrons to be
relativistic, there is a solution with only one mass, irrespective of the
radius.
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Fate of the White dwarfs: alone or in environment

WD left alone is stable once formed and will continue to cool almost
indefinitely, eventually to become a black dwarf. The time required to
reach this state is calculated to be longer than the current age of the
universe . . . They are are thought to be the final evolutionary state of
stars whose mass is not high enough to become a neutron star.

Q: How may become Mwd > MCh?

A: Either via stable accretion of material from a companion or the
collision of two WDs. In this way it raises its core temperature
enough to ignite carbon fusion, at which point it undergoes runaway
nuclear fusion, completely disrupting it.

There can be also iron WD sitting at the centre of giant
Mwd > 20M�. Mixture of Fe nuclei and degenerate electrons.
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The core collapse in very massive stars

Implosion: Once Mwd > MCh the star starts to implode.

Nucleation: As its temperature rises the nuclei will start to
evaporate to 4He and then to nucleons.

Neutronization: At the same time, the Fermi level of the electrons
becomes sufficiently high to reach mn −mp −me = 0.78MeV which
is needed for electron capture p + e− → n + νe .
This will lead to a smaller electron degeneracy pressure⇒
WD will be unable to support its weight against the force of gravity.

Lucky coincidence: Since me ≈ Ebinding ≈ mp−mn ≈ O(MeV )⇒
collapse, nuclear evaporation and neutronization all occur at roughly
the same moment!!!

Once the protons are converted to neutrons electron degeneracy
pressure (49) is unable to support its weight against the force of
gravity. ⇒ The core will undergo sudden, catastrophic collapse to
form a neutron star or, if it exceeds the TOV limit (34), i.e. 15M� it
becomes a black hole.
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Supernovae

The core collapse produces a massive flux of ν which might fragment
some nuclei.

e− capture in very dense parts of the infalling matter produces
additional neutrons.

Shock wave by rebound of some of the infalling material is started.
The explosion sends a shock wave of the star’s former surface
zooming out at a speed of 10,000 km s−1, and heating it so it shines
brilliantly for about a week. Outer layers rich in intermediate mass
(A=4–56) nuclei are blown off into the interstellar medium.

The rebounding matter is bombarded by the neutrons and so some of
its nuclei might transform into a spectrum of heavier-than-iron nuclei
including the radioactive elements up to (and likely beyond) uranium.

N.B. Rebound is driven by the bulk modulus K = −V ∂P
∂V and hence

by the EoS of highly compressed and heated nuclear matter.
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Supernova core-collapse simulation

T. Fischer et al., The state of matter in simulations of core-collapse supernovae – Reflections and recent developments,
Publ. Astron. Soc. Austral. 34, 67 (2017)

Michal Šumbera Stellar evolution November 2, 2020 36 / 38



Energy and light from Supernova

Energy change ∆E of the star with M = 1.5M� and core of 1.4M�
collapsing from R=1000km→ R=10km is ∆E ≈ 3

5
GM2

R ≈ 3× 1046J

∆E is almost entirely evacuated in the form of thermally produced
neutrinos and antineutrinos γγ ↔ e+e− ↔ ν̄ν and not in the form of
those from an electron capture e−(A,Z )→ νe(A,Z − 1).

Luminosity is mostly dominated by subsequent radioactive heating of
the rapidly expanding ejecta. Decay 56Ni →56Co →56Fe produces
photons, primarily of Eγ = 847keV and 1238keV.

SN1987
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Neutron stars

Neutron star: small densely packed objects held by gravity and
supported by neutron degeneracy pressure. 1.4M� ≤ Mns <3M�

Assuming Mns ≈ Mch = 1.4M� neutron star is a huge nucleus with
A = Mns/mn ≈ 1057 neutrons moving with NR velocity, see (47):

v =
p

mn
=

~
mn

n1/3 =
~
mn

( ρ
mn

)1/3
= 0.2c (54)

Replacing me → mn and Z/A→ 1 in (51) we have for neutron star:

Rns ≈
(18π)2/3

10

~2

GmnM
1/3
ns

(
1

mH

)5/3

(55)

which for Mns = 1.4M� gives Rns = 4400m.

Average density ρ = Mns/( 4
3πR

3
ns) = 6.7× 1017kgm−3 ≈ 3× ρN .

⇒ Neutrons in NS are more packed then in the normal nucleus.
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