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Literature

Our discussion is based on the book
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Hubble’s law

The Friedmann equation allows to explain Hubble’s discovery of the
relation ~v = H · ~r between recession velocity ~v = d~r/dt and the
distance ~r .

Since ~v‖~r and ~r = a~x (the comoving position ~x is a constant by
definition):

~v =
|~̇r |
|~r |
~r =

ȧ

a
~r = H~r , H =

ȧ

a
(1)

The term Hubble’s constant is a bit misleading. It is constant in
space due to the cosmological principle, but there is no reason for it
to be constant in time. Friedmann equation can be written as an
evolution equation for H(t):

H2(t) = 8πG
3 ρ(t)− k

a2(t)
(2)

⇒ Best to use for H(t) the term Hubble parameter, reserving Hubble
constant for its present value H0 ≡ H(t0).

Measured value H0 > 0 ⇒ the Universe is expanding.
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Expansion and redshift

The redshift of spectral lines used to justify expansion of Universe can
be related to the scale factor a.

Light is passed between two objects which are ’very close’ (dr).
Hubble’s law ⇒ their relative velocity is:

dv = H · dr =
ȧ

a
dr (3)

(3) & Doppler law ⇒ the change in wavelength between emission and
observation, dλ ≡ λobs − λem is: dλ

λem
= dv

c = ȧ
a
dr
c = ȧ

adt = da
a (4)

where we have used the NR approximation for the redshift:

z ≡ λobs−λem

λem
=
√

1+v/c
1−v/c − 1 ≈ v

c (5)

N.B. The wavelength is increased ⇒ dλ > 0

Integrating (4) ⇒ lnλ = ln a + const., i.e. λ(t) ∝ a(t) (6)

where λ(t) is the instantaneous wavelength measured at time t.

(6) ⇒ 1 + z =
λobs
λem

=
a(tobs)

a(tem)
(7)
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Expansion and redshift - a more rigorous derivation

For light ds = 0. Plugging it into FLRW equation

ds2 = c2dt2 − a2(t)
[ dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(8)

and assuming that the light ray propagates only radially from r = 0 to
r = r0 (i.e. dθ = dφ = 0) : cdt

a(t)
=

dr√
1− kr2

(9)

(N.B. the spatial coordinates in the metric are comoving, so galaxies remain at

fixed coordinates; the expansion is entirely taken care of by the scale factor a(t)).

Total time the light ray takes to get from r = 0 to r = r0:∫ tobs

tem

cdt

a(t)
=

∫ r0

0

dr√
1− kr2

=

∫ tobs+dtobs

tem+dtem

cdt

a(t)
(10)

Third term corresponds to the ray emmitted dtem later and observed
at time tobs + dtobs (the galaxies are still at the same coordinates).
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Expansion and redshift - a more rigorous derivation

In a differential form (10) says:
cdtobs
a(tobs)

=
cdtem
a(tem)

(11)

In an expanding Universe a(tobs) > a(tem) ⇒ dtobs > dtem.
The time interval between the two rays increases as the Universe
expands.

Now imagine that, instead of being two separate rays, they
correspond to successive maxima of a single wave.
As the wavelength is proportional to the time between the peaks
λ ∝ dt ∝ a(t) and so:

λobs
λem

=
a(tobs)

a(tem)
(12)
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Solving the equations (Friedmann, fluid)

To study the evolution specify the relationship between the mass
density ρ and the pressure p, i.e. the equation of state p(ρ) (EoS).

Let’s first consider two possibilities:

Matter Shorthand for non-relativistic matter. Any type of material exerting
negligible pressure, p = 0. It is the simplest assumption.
Good approximation to use for the atoms in the Universe once it has
cooled down, as they are quite well separated and seldom interact.
Also a good description of a collection of galaxies in the Universe, as
they have no interactions other than gravitational ones.
Occasionally the term dust is also used instead of matter.

Radiation Kinetic energy of massless particles leads to a pressure force.
The radiation pressure is p = 1

3ρc
2.

More generally, any particles moving with ultra-relativistic speeds
v ∼= c have this EoS, neutrinos being an obvious example.

Here we will concentrate on the case when in the Friedmann equation
k = 0. This corresponding to a flat geometry.
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Matter: Solving the fluid equation

Start by solving the fluid equation ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0 (13)

for p = 0: ρ̇+ 3
ȧ

a
ρ =

1

a3

d

dt

(
ρa3
)

=
d

dt

(
ρa3
)

= 0 (14)

⇒ density falls with volume of the Universe: ρ ∼ a−3 (15)

The equations we are solving (k = 0) have one very useful symmetry;
their form is unchanged if we multiply the scale factor a by a
constant, since only the combination ȧ

a appears.
We are free to rescale a(t) as we choose.
The normal convention is a(t0) = 1 at the present time.
~r = a(t0)~x = ~x , at present physical and comoving coordinate systems
coincide.

N.B.from now on the subscript ’0’ indicates the present value of
quantities. Denoting the present density by ρ0 fixes the
proportionality constant: ρ =

ρ0

a3
(16)
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Matter: Solving the Friedmann equation

The Friedmann equation:
( ȧ
a

)2
=

8πG

3
ρ− kc2

a2
(17)

For ρ = ρ0a
−3 and k = 0: ȧ2 =

8πGρ0

3

1

a
(18)

(18) is separable ⇒ directly solvable. Try instead educated guess
a = tq which in the cosmology is preferred one. The l.h.s. of (18) has
dependence t2q−2, the r.h.s. has t−q ⇒ q = 2

3 . Since a(t0) = 1 we
have:

a(t) =
( t

t0

)2/3
; ρ(t) =

ρ0

a3
=
ρ0t

2
0

t2
(19)

In this solution the expansion rate H(t) decreases with time:

H(t) ≡ ȧ

a
=
ρ0

a3
=

2

3t
(20)

becoming infinitely slow for t →∞.

Despite the pull of gravity, the material in the Universe does not
recollapse but rather expands forever. This is one of the classic
cosmological solutions, and will be much used later on.
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Radiation

The fluid equation (13) with p = 1
3ρc

2 gives: ρ̇+ 4
ȧ

a
ρ = 0 (21)

Using the same trick as before, with the a3 replaced by a4 in equation
(14), gives ρ ∝ a−4 (22)

bringing in the second classic cosmological solution:

a(t) =
( t

t0

)1/2
; ρ(t) =

ρ0

a4
=
ρ0t

2
0

t2
(23)

The Universe expands more slowly if it is radiation dominated than if
it is matter dominated. ⇐ ä

a = −4πG
3

(
ρ+ 3p

c2

)
(24)

However, in each case the density of material falls off as ρ ∼ t−2.

The extra a−1 in the fall off of the radiation density with volume
(compared to the matter density) is due to its non-zero pressure and
hence to its work pdV done during expansion.
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Mixtures

A more general situation: mixture of both matter and radiation. There are
two separate fluid equations, one for each fluid:

ρmat ∝ a−3 ; ρrad ∝ a−4 (25)

but only a single Friedmann equation for ρ = ρmat + ρrad .
General situation quite messy. Consider instead the case where one of the
densities is by far the larger. ⇒ Friedmann equation is solved by inclusion of
the dominant component only.

? For ρrad � ρmat :

a(t) ∝ t1/2; ρrad ∝ t−2; ρmat ∝ a−3 ∝ t−3/2 (26)

unstable situation ⇐ ρmat falls slower than ρrad .
Even originally very small matter component
will eventually come to dominate!!

? For ρmat � ρrad :

a(t) ∝ t2/3; ρmat ∝ t−2; ρrad ∝ a−4 ∝ t−8/3 (27)

Matter domination is a stable situation.

small

In both cases eventually the matter comes to dominate, and as it does so
the expansion rate speeds up from a(t) ∝ t1/2 to the a(t) ∝ t2/3 law.
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Particle number densities

The number density n is useful ⇐ in most circumstances particle number is
conserved.

Even at high interaction rates the Universe is in a state of thermal
equilibrium ⇔ (for a particular type of particle) any n–changing interaction,
must proceed at the same rate in both forward and backward directions.

The only thing that changes n is the volume: n ∝ a−3 (28)

The energy Emat of NR particles is dominated by their rest mass-energy
which is constant, so

ρmat ∝ εmat = nmat × Emat ∝ a−3 × const. ∝ a−3 (29)

Photons lose energy as the Universe expands and their wavelength is
stretched, so their energy is Erad ∝ a−1 as we have already seen.

ρrad ∝ εrad = nrad × Erad ∝ a−3 × a−1 ∝ a−4 (30)

Although εmat and εrad evolve differently, nmat and nrad evolve in the same
way. So, apart from epochs during which the assumption of thermal
equilibrium fails, the relative number densities of the different particles
(e.g. electrons and photons) do not change as the Universe expands.
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Evolution including curvature: k < 0

Return back to the general case of k 6= 0 corresponding to spherical
k > 0 or hyperbolic k < 0 geometry.

Assume: Universe is always dominated by NR matter.
For k = 0 ⇒ a ∝ t2/3.

Q: Is it possible for the expansion to stop (i.e. to have H ≡ ȧ
a = 0)?

Friedmann equation:
(
ȧ
a

)2
= 8πG

3 ρ− kc2

a2 ⇒ For k < 0 Universe
expands forever!

ρmat ∝ a−3 ⇒ kc2a−2 will finally dominate:
(
ȧ
a

)2
= −kc2

a2 (31)

⇒ a ∼ t. So when kc2a−2 term comes to dominate, the expansion of
the Universe becomes yet faster.

For k < 0 velocity becomes non-zero constant. This is sometimes
known as free expansion.
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Evolution including curvature: k > 0

For k > 0 ∃H = 0 ⇔ the two terms on the r.h.s. of Friedmann eq.
cancel each other. ⇒ Expansion ends at finite t. As gravitational
attraction persists, the recollapse of the Universe becomes inevitable.

Consider Universe containing only matter (p = 0) so that ρ = ρ0a
−3.

Friedmann equation reads: a(ȧ2 + kc2) = 8πGρ0
3 (32)

⇒ a(θ) = 8πGρ0
3k (1− cosθ); t(θ) = 8πGρ0

3k3/2 (θ − cosθ) (33)

The solution is time reversible ⇒
at t <∞ the Universe will come to an end in a Big Crunch.

Precise analogy with escape velocity from the Earth.

U > 0 – particle can escape to infinity, with a final
kinetic energy U.

U = 0 – particle can just escape but with v = 0.

U < 0 – particle cannot escape the gravitation
attraction and recollapses inwards.
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Observational Parameters: H0

Hubble constant H0 ≡ present value of Hubble parameter H(t0):

Hubble’s initial value was H0 = 500kms−1Mpc−1

The expansion velocity can only be accurately distinguished from the
peculiar velocity (motions of galaxies relative to one another) at large
distances. While peculiar velocity is independent of distance the
Hubble velocity is proportional to distance.

Most recent value (2018) from the Hubble Space Telecope
H0 = v/r = 100h kms−1Mpc−1 ; h = 73.45± 1.66.

The precision of h introduces uncertainties throughout cosmology.
The actual distances to faraway objects are only known up to an
uncertainty of the factor h, because recession velocities are the only
way to estimate their distance. For this reason it is common to see
distances specified in the form, for example. 100h−1Mpc where the
number 100 is accurately known but h−1is not.
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Observational Parameters: Ω0

For which value of H2 = 8
3πGρ− ka−2 the Universe is flat?

Flat ⇔ k = 0 ⇒ ρc(t) = (3H2)/(8πG ) (34)

G = 6.67× 10−11m3kg−1s−2 ⇒
ρc(t0) = 1.88h2 × 10−26kgm−3 = 2.78h−1 × 1011M�/(h−1Mpc)3

Tiny density of matter is sufficient to halt and reverse the expansion
of the Universe.

(1011 − 1012)M� ' Mgalaxy , Rgalaxy
∼= Mpc

⇒ the Universe cannot be far away from the critical density
(within an order of magnitude or so).

The Universe needs not be flat ⇒ ρc is not necessarily the true
density of the Universe, but it sets a natural scale for the density:

Ω(t) ≡ ρ/ρc (35)

where Ω(t) is (time-dependent) density parameter and Ω0 ≡ Ω(t0) is
its present value.

Michal Šumbera Simple Cosmological Models March 7, 2018 17 / 25



Observational Parameters: Ω0

In the new variables the Friedman equation reads:

H2 =
8πGρcΩ

3
− k

a

2

= H2Ω− k

a

2

(36)

and so: Ω− 1 =
k

a2H2
(37)

the case Ω = 1 is very special, because in that case k = 0 and since k
is a fixed constant the equation Ω = 1 is true for all time.

That’s true independently of the type of matter in the Universe, and
is often called a critical-density Universe.
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Observational Parameters: q0

Consider a Taylor expansion of the scale factor around t0:

a(t) = a(t0) + ˙a(t0) [t − t0] + 1
2

¨a(t0) [t − t0]2 + . . . (38)
a(t)

a(t0)
= 1 + H0 [t − t0] +

q0

2
H2

0 [t − t0]2 + . . . (39)

Deceleration parameter q0 ≡ −
¨a(t0)

a(t0)

1

H2
0

= −a(t0) ¨a(t0)

˙a(t0)
2

(40)

Consider matter dominated Universe (p = 0). Then from the
acceleration equation (24) and the definition ρc we have:

q0 =
4πG

3
ρ

3

8πGρc
=

Ω0

2
(41)

N.B. q0 is not independent of Ω0 and H0. However, we don’t know
everything about the material in the Universe, so q0 can provide a new
way of looking at the Universe. It can be measured directly observing
very large distance objects, such as the numbers of distant galaxies.

Recent measurements obtained q0 < 0 ⇒ big surprise!!!!
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The Cosmological Constant: Introducing Λ

Multiplying Einstein equations by metrical tensor

gµν
[
Rµν − 1

2gµνR
]

= R − 2R = −gµν8πGTµν = −8πGTµ
µ (42)

we obtain equivalent form: Rµν = −8πG (Tµν − 1
2gµνT

λ
λ ) (43)

In vacuum energy-momentum tensor Tµν vanishes ⇒ Einstein field
equations in empty space reduce to Rµν = 0.

where
Rµν ≡ ∂νΓλλµ − ∂λΓλµν + ΓλµσΓσνλ − ΓλµνΓσνσ (44)

and
Γµνκ = 1

2g
µλ(∂κgλν + ∂νgλκ + ∂λgνκ) (45)

In a space-time of N = 2 or 3 dimensions this would imply the
vanishing of the full curvature tensor Rλµνκ and the consequent
absence of a gravitational field.

For N ≥ 4 true gravitational fields can exist in empty space.
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The Cosmological Constant: Introducing Λ

What about adding new terms to Gµν ≡ Rµν − 1
2gµνR ?

From gµν and its first derivatives no new tensor can be constructed ⇐
at any point we can find a coordinate system in which the first
derivatives of gµν vanish, so in this coordinate system the desired
tensor must be equal to one of those that can be constructed out of
the metric tensor alone, (e.g., gµν or gµν or εµνλη . . . , and so on), and
since this is an equality between tensors it must be true in all
coordinate systems.
The only possibility is: Rµν − 1

2gµνR−Λgµν= −8πGTµν (46)

In the Friedmann equation Λ appears as an extra term, giving:

H2 =
8πG

3
ρ− k

a2
+

Λ

3
(47)

Einstein’s original idea: use Λ and ρ to balance curvature k ⇒
H(t) = 0 and hence a static Universe.
N.B. Such a balance proves to be unstable to small perturbations . . . .
Nowadays Λ is mostly discussed in the context of Universes with the
flat Euclidean geometry k = 0.
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The Cosmological Constant: Introducing Λ

Λ in acceleration equation: : ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λ

3
(48)

Λ > 0 gives a positive contribution to ä
⇒ acts effectively as a repulsive force.

For Λ sufficiently large, it can overcome the gravitational attraction
represented by the first term in (48) ⇒ accelerating Universe.

Define new density parameter: ΩΛ ≡ Λ
3H2 (49)

Repeating the steps used to write the Friedmann equation in the form
of (37), we find: Ω + ΩΛ − 1 = ka−2H−2 (50)

The flat Universe condition k = 0, generalizes to Ω + ΩΛ = 1

Open Universe: 0 < Ω + ΩΛ < 1

Flat Universe: Ω + ΩΛ = 1

Closed Universe: Ω + ΩΛ > 1
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Fluid description of Λ

Consider Λ as if it were a fluid with energy density ρΛ and pressure pΛ.
Defining ρΛ ≡ Λ/(8πG ) brings the Friedmann equation into the form

H2 =
8πG

3
(ρ+ ρΛ)− k

a2
(51)

which automatically ensures that ΩΛ ≡ ρΛ/ρc

Consider the fluid equation for Λ: ρ̇Λ + 3
ȧ

a

(
ρΛ +

pΛ

c2

)
= 0 (52)

ρΛ = const. by definition ⇒ pΛ = −ρΛc
2 (53)

Λ has a negative effective pressure.
As the Universe expands, work is done on the cosmological constant
fluid.
Its energy density remains constant even though the volume of the
Universe is increasing.

Physical interpretation of Λ

In quantum physics: ’zero-point energy’, which remains even if no
particles are present. Unfortunately particle physics theories predict Λ
10124× larger than observations allow . . .
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Cosmological models with Λ

Λ 6= 0 greatly increases range of possible behaviors of the Universe.

Closed Universe (k > 0) does not need to recollapse, nor an open
Universe needs to expand forever.
For Λ big enough there’s even no need for a Big Bang: Universe begins
in a collapsing phase followed by a bounce at finite size under the
influence of the Λ. (Such models are now ruled out by observations).

Focus on Ω(t0) and Λ ⇐ H(t) provides
only an overall scaling factor.
Assume p = 0 matter.
Pressureless Universe with Λ 6= 0 has:

q0 = 1
2 Ω0 − ΩΛ

Assuming additionally Ω0 + ΩΛ = 1
(i.e. k = 0) this simplifies to q0 = 3

2 Ω0− 1
and acceleration occurs for ΩΛ > 1/3.
For Ω0 ≤ 1 the recollapse depends on
Λ ≷ 0, but for Ω0 > 1 the gravitational
attraction of matter can overcome a small
positive Λ and cause recollapse.
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Cosmological models with Λ: Recent measurements

M. Kowalski et al., Improved Cosmological Constraints from New,
Old and Combined Supernova Datasets, arXiv:0804.4142v1 [astro-ph]
Astrophysics Journal 686:749-778,2008.

N.B. Ωm ≡ Ω0 , pΛ = − wρΛc
2
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