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Inflation = solution to the Hot Big Bang scenario problems

Despite all its successes, there remain some unsatisfactory aspects to
the Hot Big Bang theory.

Cosmological inflation – invented in 1981 by Alan Guth in a model of
grand unification (“old inflation”). Scalar fields could get caught in a
local minimum of the potential. The energy of the empty space would
then have remained constant for a while as the Universe expanded ⇒
a(t) ∝ exp at.

Later substantially improved by Andrei Linde, Andreas Albrecht and
Paul Steinhardt (“new inflation”).

Remains a hot research topic till nowadays.

Not a replacement for the Hot Big Bang theory, but rather an extra
add-on idea which is supposed to apply during some very early stage
of the Universe’s expansion.
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Let us recall - Observational Parameters: Ω0

For which value of H2 = 8
3πGρ− ka−2 the Universe is flat?

Flat ⇔ k = 0 ⇒ ρc (t) = (3H2)/(8πG ) (1)

G = 6.67× 10−11m3kg−1s−2 ⇒
ρc (t0) = 1.88h2 × 10−26kgm−3 = 2.78h−1 × 1011M�/(h−1Mpc)3

Tiny density of matter is sufficient to halt and reverse the expansion
of the Universe.

(1011 − 1012)M� ' Mgalaxy , Rgalaxy
∼= Mpc

⇒ the Universe cannot be far away from the critical density
(within an order of magnitude or so).

The Universe needs not be flat ⇒ ρc is not necessarily the true
density of the Universe, but it sets a natural scale for the density:

Ω(t) ≡ ρ/ρc (2)

where Ω(t) is (time-dependent) density parameter and Ω0 ≡ Ω(t0) its
present value.
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Let us recall - Observational Parameters: Ω0

In the new variables the Friedman equation reads:

H2 =
8πGρc Ω

3
− k

a

2

= H2Ω− k

a

2

(3)

and so: Ω− 1 =
k

a2H2
(4)

the case Ω = 1 is very special, because in that case k = 0 and since k
is a fixed constant the equation Ω = 1 is true for all time.

That’s true independently of the type of matter in the Universe, and
is often called a critical-density Universe.
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Let us recall - The Cosmological Constant: Introducing Λ

Multiplying Einstein equations by metrical tensor

gµν
[
Rµν − 1

2gµνR
]

= R − 2R = −gµν8πGTµν = −8πGTµ
µ (5)

we obtain equivalent form: Rµν = −8πG (Tµν − 1
2gµνT

λ
λ ) (6)

In the vacuum energy-momentum tensor Tµν vanishes
⇒ Einstein field equations in empty space reduce to Rµν = 0,
where

Rµν ≡ ∂νΓλλµ − ∂λΓλµν + ΓλµσΓσνλ − ΓλµνΓσνσ (7)

and

Γµνκ = 1
2g

µλ(∂κgλν + ∂νgλκ + ∂λgνκ) (8)

In a space-time of N = 2 or 3 dimensions this would imply the
vanishing of the full curvature tensor Rλµνκ and the consequent
absence of a gravitational field.

For N ≥ 4 true gravitational fields can exist in empty space.
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Let us recall - The Cosmological Constant: Introducing Λ

What about adding new terms to Gµν ≡ Rµν − 1
2gµνR?

From gµν and its first derivatives no new tensor can be constructed ⇐
at any point we can find a coordinate system in which the first
derivatives of gµν vanish, so in this coordinate system the desired
tensor must be equal to one of those that can be constructed out of
the metric tensor alone, (e.g., gµν or gµν or εµνλη . . . , and so on), and
since this is an equality between tensors it must be true in all
coordinate systems.
The only possibility is: Rµν − 1

2gµνR−Λgµν= −8πGTµν (9)

In the Friedmann equation Λ appears as an extra term, giving:

H2 =
8πG

3
ρ− k

a2
+

Λ

3
(10)

Einstein’s original idea: use Λ and ρ to balance curvature k ⇒
H(t) = 0 and hence a static Universe. N.B. Such a balance proves
to be unstable to small perturbations . . . .
Nowadays Λ is mostly discussed in the context of Universes with the
flat Euclidean geometry k = 0.
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Let us recall - The Cosmological Constant: Introducing Λ

From the acceleration equation the effect of Λ can be seen more
directly : ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λ

3
(11)

A positive cosmological constant gives a positive contribution to ä,
and so acts effectively as a repulsive force.

For Λ sufficiently large, it can overcome the gravitational attraction
represented by the first term in (11) ⇒ accelerating Universe.

Define new density parameter: ΩΛ ≡ Λ
3H2 (12)

Repeating the steps used to write the Friedmann equation in the form
of (4), we find: Ω + ΩΛ − 1 = ka−2H−2 (13)

The flat Universe condition k = 0, generalizes to Ω + ΩΛ = 1

Open Universe: 0 < Ω + ΩΛ < 1

Flat Universe: Ω + ΩΛ = 1

Closed Universe: Ω + ΩΛ > 1
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Let us recall - Fluid description of Λ

Consider Λ as if it were a fluid with energy density ρΛ and pressure pΛ.
Defining ρΛ ≡ Λ/(8πG ) brings the Friedmann equation into the form

H2 =
8πG

3
(ρ+ ρΛ)− k

a2
(14)

which automatically ensures that ΩΛ ≡ ρΛ/ρc

Consider the fluid equation for Λ: ρ̇Λ + 3
ȧ

a

(
ρΛ +

pΛ

c2

)
= 0 (15)

ρΛ = const. by definition ⇒ pΛ = −ρΛc
2 (16)

Λ has a negative effective pressure.
As the Universe expands, work is done on the cosmological constant
fluid.
Its energy density remains constant even though the volume of the
Universe is increasing.

Physical interpretation of Λ

In quantum physics: ’zero-point energy’, which remains even if no
particles are present. Unfortunately particle physics theories predict Λ
10124× larger than observations allow.
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Let us recall - Cosmological models with Λ

Λ 6= 0 greatly increases range of possible behaviors of the Universe.

Closed Universe (k > 0) does not need to recollapse, nor an open
Universe needs to expand forever.
For Λ big enough there’s even no need for a Big Bang: Universe begins
in a collapsing phase followed by a bounce at finite size under the
influence of the Λ. (Such models are now ruled out by observations).

Focus on Ω(t0) and Λ ⇐ H(t) provides
only an overall scaling factor.
Assume p = 0 matter.
Pressureless Universe with Λ 6= 0 has:

q0 = 1
2 Ω0 − ΩΛ

Assuming additionally Ω0 + ΩΛ = 1
(i.e. k = 0) this simplifies to q0 = 3

2 Ω0− 1
and acceleration occurs for ΩΛ > 1/3.
For Ω0 ≤ 1 the recollapse depends on
Λ ≷ 0, but for Ω0 > 1 the gravitational
attraction of matter can overcome a small
positive Λ and cause recollapse.
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Let us recall - Recent measurements

M. Kowalski et al., Improved Cosmological Constraints from New,
Old and Combined Supernova Datasets, arXiv:0804.4142v1 [astro-ph]
Astrophysics Journal 686:749-778,2008.

N.B. Ωm ≡ Ω0 , pΛ = − wρΛc
2
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The flatness problem

Total density of material in the Universe (including dark energy)
Ωtot = Ω0 + ΩΛ is close to the critical density: 0.5 < Ωtot ≤ 1.5.
⇒ The Universe is quite close to the flat (Euclidean) geometry.

The Friedman equation can be rewritten as:

|Ωtot(t)− 1| =
|k |

a2H2
(17)

⇒ If Ωtot is precisely equal to one, then it remains so for all times.
But what if it is not?

Neglecting curvature we have for
matter dominated Universe:

a(t) =
( t

t0

)2/3

; ρ(t) =
ρ0

a3
=
ρ0t

2
0

t2
⇒ a2H2 ∝ t−2/3 (18)

radiation dominated Universe:

a(t) =
( t

t0

)1/2

; ρ(t) =
ρ0

a4
=
ρ0t

2
0

t2
⇒ a2H2 ∝ t−1 (19)
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The flatness problem

Matter dominanted: |Ωtot(t)− 1| ∝ t2/3 (20)

Radiation dominated: |Ωtot(t)− 1| ∝ t (21)

Ωtot − 1 increases with time. ⇒ The flat geometry is an unstable:
if there is any deviation from flat geometry then the Universe will very
quickly become more and more curved.

For the Universe to be so close to flat geometry even at its large
present age this means that at very early times it must have been
extremely close to the flat geometry.

N.B. The equations for Ωtot − 1 stop being valid once the curvature
or cosmological constant terms are no longer negligible, since we used
the a(t) solutions for the flat geometry to derive them. But they are
fine to give us an approximate idea of what the problem is.
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The flatness problem

For simplicity assume Universe filled with radiation only. How close to
one the density parameter Ωtot(t) must have been at various early
times t, based on the todays constraint (i.e. at t0 ' 4× 1017 sec)?

At decoupling t ' 1013sec we need |Ωtot(t)− 1| ≤ 10−5.

At matter–radiation equality t ' 1012sec, |Ωtot(t)− 1| ≤ 10−6.

At nucleosynthesis t ' 1 sec, |Ωtot(t)− 1| ≤ 10−18 .

At the scale of EW symmetry breaking, which is the earliest known
physics t ' 10−30 sec wee need |Ωtot(t)− 1| ≤ 10−30 !!!!!!

The easiest solution:
Suppose that the Universe must have precisely the critical density.
No reason to prefer this choice over any other.
One needs an explanation of such a value.
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The horizon problem: CMB isotropy and fluctuations

The Universe has a finite age. ⇒ The distance which light could have
travelled during the lifetime of the Universe gives rise to a region
known as observable universe.

CMB is very nearly isotropic, i.e. light from all parts of the sky has
the same temperture of T = 2.725K . ⇒ Different regions of the sky
have been able to interact and move towards thermal equilibrium.

Observed light from the opposite sides of the sky was in contact at
the time tdecoup ∼ 3× 105 y � 1.4× 1010 y and since it just reached
us it can’t have made it all the way across the opposite side of the sky.

CMB waves have travelled to us since decoupling uninterrupted. ⇒
Regions must have been interacting and thermalizing at t < tdecoup.

CMB exhibits small fluctuations which are the ’seeds’ from which the
structures in the Universe start to grow.
⇒ For the same reasons that one can not thermalize separate regions
one can not also create irregularities.
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The horizon problem: CMB isotropy

We detect CMB radiation from points A and B on opposite sides of
the sky. These points are well separated and would not have been able
to interact at all since the Big Bang. Dotted lines indicate the extent
of regions able to influence points A and B by the present – far less
manage to interact by the time the microwave radiation was released.

In the Hot Big Bang model it is impossible to explain why they have
the same temperature to such accuracy.
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The horizon problem: CMB fluctuations

The present homogeneous, isotropic domain of the Universe is at least
as large as the present horizon scale,
c · t0 = 3× 1010cm · s−1 × 1.4× 1010 × π × 107 s ∼ 1028 cm.

Primordial radiation dominates at ti ∼ tP`: TP` ≡
√

~c5

Gk5
B
∼ 1032 K.

For adiabatic expansion (aT ∼ const.) the size of this domain was
initially smaller by the ratio of the corresponding scale factors,
ai/a0 ∼ T0/TP` ∼ 10−32.

Assuming that inhomogeneity cannot be dissolved by expansion
⇒ the size of the homogeneous, isotropic region from which our
universe originated at t = ti was larger than `i ∼ ct0ai/a0.

Which should be compared to the size of a causal region `c ∼ cti :

`i

`c
∼ t0

ti

ai

a0
∼ 1017

10−43
10−32 ∼ 1028 ⇒ Vi

Vc
∼
( `i

`c

)3
∼ 1084

⇒ In 1084 causally disconnected regions the energy density was smoothly
distributed with a fractional variation not exceeding δε/ε ∼ 10−4 !!!!!
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Relic particle abundances

The radiation density reduces with expansion as a−4.
⇒ Even if the Universe starts with just a very small amount of NR
matter then its slower reduction in density ∼ a−3 will rapidly bring it
to prominence. This is true notwhistanding the fact that the Universe
remained radiation dominated till t ∼ 1000 years.

Original motivation for inflation were magnetic monopoles. Such
particles are an inevitable consequence of models of unification of
fundamental forces, the so-called Grand Unified Theories. It is
predicted that they were produced with a high abundance at a very
early stage in the Universe.

They are extraordinarily massive M ∼ 1016 GeV. Such particles would
be NR for almost all the Universe’s history, giving them plenty of time
to come to dominate over radiation.

But todays Universe is not dominated by magnetic monopoles.
⇒ Theories predicting them are incompatible with the standard Hot
Big Bang model!

Michal Šumbera Inflation April 30, 2018 20 / 44



Solution: Inflationary expansion

Inflation: a period in the evolution of the Universe during which the
scale factor a was accelerating.

What is needed for ä > 0 ? The acceleration equation
ä

a
= −4πG

3

(
ρ+

3p

c2

)
> 0. (22)

ρ > 0 ⇒ p < −1
3ρc

2. (23)

Classic example of inflationary expansion – Universe with a
cosmological constant Λ. The full Friedman equation, including other
matter terms and curvature is:

H2 =
8πG

3
ρ− k

a2
+

Λ

3
(24)

N.B. The expansion rapidly reduces the first two terms while the last
one remains constant.
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Inflationary expansion

So after a while H2 = Λ
3 . Since H ≡ ȧ

a ⇒ ȧ =
√

Λ
3 a

Because Λ is constant we arive at:

a(t) = exp

(√
Λ

3
t

)
(25)

After some time, inflation must end, with the energy in the
cosmological constant being converted into conventional matter.

One way to think of this is to view it as a decay of the particles acting
as the cosmological constant into normal particles.

Provided all this happens when the Universe was extremely young the
Big Bang can then proceed just as before and none of the successes
of the Hot Big Bang model are lost.

In typical models the Universe is extremely young when inflation is
supposed to occur, t ∼ 10−34s i.e. about the time of the Grand
Unification occuring at energy density ∼ 1016 GeV.
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Solving the Big Bang problems – The flatness problem

Inflation reverses the flatness problem:

ä > 0 ⇒ 0 <
d

dt
(ȧ) =

d

dt

(
a
ȧ

a

)
=

d

dt
(aH) (26)

Inflation drives Ωtot(t)→ 1 rather than away from it!

In the special case of perfect exponential expansion, the approach is
particularly dramatic

|Ωtot(t)− 1| ∝ exp

(
−
√

4Λ

3
t

)
(27)
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Solving the Big Bang problems – The flatness problem

Analogy: balloon is very rapidly blown up to the size of the Sun; its
surface would then look flat to us.

The size of the portion of the Universe you can observe, given roughly
by the Huble length cH−1 – (H−1 is roughly the age of the Universe
and c the maximum speed) does not change while this happens. So
very quickly you are unable to notice the curvature of the surface.

By contrast, in the Big Bang scenario the distance you can see
increases more quickly than the balloon expands, so you can see more
of the curvature as time goes by.

Inflation predicts a Universe extremely close to spatial flatness.
Allowing for Λ 6= 0 in the present Universe, then a flatness requires

Ω0 + ΩΛ(t) = 1 (28)

which is confirmed by the current observations.
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Solving the Big Bang problems – The horizon problem

Inflation greatly increases the size of a region of the Universe, while
keeping its characteristic scale cH−1 fixed.

⇒ A small enough (to achieve thermalization before inflation) part of
the Universe, can expand
to be much larger than
the size of our presently
observable Universe.

CMB microwaves coming from opposite sides of the sky really are at
the same temperature because they were once in equilibrium.

In a nutshell: due to inflation light can travel a much greater distance
between the Big Bang and the time of decoupling than it can travel
between decoupling and the present.
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Solving the Big Bang problems – Relic particle abundances

The dramatic expansion of the inflationary era dilutes away any
unfortunate relic particles (magnetic monopoles etc.). Their density is
reduced by the expansion more quickly than the cosmological
constant.

Provided enough expansion occurs, this dilution can easily make sure
that the particles are not observable today; in fact, rather less
expansion is needed than to solve the other problems.

N.B. The decay of the cosmological constant which ends inflation
must not regenerate the troublesome (i.e. extremely heavy) particles
again ⇒ the temperature of the Universe after inflation must not be
too high, in order to make sure there is no new thermal production.
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How much inflation?

Consider simplified model where

Inflation ends at 10−34 sec.

Expansion is strictly exponential.

The Universe is perfectly radiation dominated all the way from the
end of inflation to the present.

The value of Ωtot near the start of inflation is not hugely different
from one.
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How much inflation?

The present age of the Universe is H−1 = 4× 1017sec. During
radiation domination |Ωtot(t)− 1| ∝ t. So

|Ωtot(t)− 1| ≤ 0.1⇒ |Ωtot(10−34sec)− 1| ≤ 0.13× 10−53 (29)

During inflation H = const. ⇒ |Ωtot(t0)− 1| ∝ a−2

⇔ during inflation a is increased by a factor of at least 1027!!

Incredibly, by the standards of what comes out of inflation model
building this isn’t much at all. Expansion by factors like 10108

are not
uncommon!

Consider, for example, characteristic expansion time, H−1 = 10−36

sec. Then between 1036 sec and 1034 sec, the expansion factor is

afinal

ainitial
w exp [H(tfinal − tinitial )] w e99 w 1043 (30)
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Inflation and particle physics

Not to spoil nucleosynthesis the inflation must have happened before
1 sec. ⇒ at T ≥ 1017 K.

To describe such extreme physical conditions, when violent particle
collisions are the norm, fundamental particle physics is required, and
in particular theories of the fundamental interactions. Inflation is
assumed to be driven by a new, as-yet-undiscovered, form of matter
required by such theories.

Key idea – phase transitions which are controlled by an unusual form
of matter known as a scalar field ϕ. Depending on the precise nature
of the transition scalar fields can behave with a negative pressure, and
can satisfy the inflationary condition ρc2 + 3p < 0. That is, they
behave like an effective cosmological constant.

Once the phase transition comes to an end, the scalar field decays
away and the inflationary expansion terminates, hopefully having
achieved the necessary expansion by a factor of 1027 or more.
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Inflation from particle physics

Consider the simplest theory of a one-component real scalar field ϕ
with the mass m and coupling constant λ . The Lagrangian is:

L =
1

2
(∂µϕ)2 − m2

2
ϕ2 − λ

4
ϕ4 (31)

Assume λ� 1. For ϕ small we can neglect the last term in (31) and
the field satisfies usuall Klein–Gordon equation:

(�+ m2)ϕ ≡ ϕ̈−∆ϕ+ m2 ϕ = 0 (32)

whose general solution corresponds to the propagation of free
(non–interacting) particles of mass m and momentum k:

ϕ(x) = (2π)−3/2

∫
d3k√

2k0
[e i k x a+(k) + e−i k x a−(k)] (33)

The field ϕ(x) oscillates around ϕ = 0 which is also a minimum of
the so-called Effective potential:

V(ϕ) =
1

2
(∇ϕ)2 +

m2

2
ϕ2 +

λ

4
ϕ4 (34)
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Inflation from spontaneous symmetry breaking

Consider now the same Lagrangian but with m2 = −µ2:

L =
1

2
(∂µϕ)2 +

µ2

2
ϕ2 − λ

4
ϕ4 (35)

The solution instead of oscillating around ϕ = 0 has modes that grow
exponentially near ϕ = 0 when k2 < m2:

δϕ(k) ∼ exp
(
±
√
µ2 − k2 t

)
· exp(±i k x) (36)

The minimum of the effective potential:

V(ϕ) =
1

2
(∇ϕ)2 − µ2

2
ϕ2 +

λ

4
ϕ4 (37)

now occurs at ϕc = ±µ/
√
λ 6= 0.

Thus, even if the field is initially zero, it soon undergoes a transition
(after t ∼ µ−1) to a stable state ϕc = ±µ/

√
λ a phenomenon

known as spontaneous symmetry breaking (SSB)∗.

*) Yochiro Nambu, Nobel prize 2008.
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Inflation and particle physics

Effective potential V(ϕ) in the simplest theories of the scalar field ϕ.
V(ϕ) in the theory (31). V(ϕ) in the theory (35).
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Inflation from spontaneous symmetry breaking

After SSB, excitations of the field ϕ near ϕ0 = ±µ/
√
λ can also be

described by a solution which is a superposition of plane waves. In
order to see that, let’s make the change of variables

ϕ→ ϕ+ ϕ0 (38)

The Lagrangian (35) then takes the form:

L(ϕ+ ϕ0) =
1

2
(∂µ(ϕ+ ϕ0))2 +

µ2

2
(ϕ+ ϕ0)2 − λ

4
(ϕ+ ϕ0)4

=
1

2
(∂µϕ)2 − 3λϕ2

0 − µ2

2
ϕ2 − λϕ0 ϕ

3 − λ

4
ϕ4

+
µ2

2
ϕ2

0 −
λ

4
ϕ4

0 − ϕ (λϕ2
0 − µ2)ϕ0 (39)

N.B. for ϕ0 6= 0, the effective mass squared of the field ϕ is not equal
to −µ2, but rather m2 = 3λϕ2

0 − µ2 , (40)
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Inflation from spontaneous symmetry breaking

The minimum of V(ϕ) =
1

2
(∇ϕ)2 − µ2

2
ϕ2 +

λ

4
ϕ4 (41)

now occurs at ϕ0 = ±µ/
√
λ ⇒ m2 = 3λ

µ2

λ
− µ2 = 2µ2 > 0 ; (42)

i.e. the mass squared of the field ϕ has now the correct sign.

Reverting to the original variables, we can write the solution for ϕ as:

ϕ(x) = ϕ0 + (2π)−3/2

∫
d3k√

2k0
[e i k x a+(k) + e−i k x a−(k)] . (43)

corresponding to particles of the field ϕ with mass given by (42),
propagating against the background of the constant classical field ϕ0.

The field ϕ0 is constant over all space and there is no any preferred
reference frame associated with it ⇒ it is a classical field.

The constant therm in (39) µ2

2 ϕ2
0 − λ

4 ϕ
4
0 − ϕ (λϕ2

0 − µ2)ϕ0

can now be rewritten as µ4

2λ −
µ4

4λ = µ4

4λ thus represents an additive
constant to the Lagrangian which is usually ignored.
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Inflation and particle physics

Introduction of a constant homogeneous scalar field ϕ0 represents a
restructuring of the vacuum. Space filled with a constant scalar field
ϕ0 remains“empty” — the constant scalar field does not carry a
preferred reference frame with it, it does not disturb the motion of
objects passing through the space that it fills, and so forth.

In general relativity, however, the constant field affects the properties
of space-time:

Rµν −
1

2
gµν R = 8πGTµν = 8πG [T̃µν + gµν V(ϕ)], (44)

where T̃µν is energy-momentum tensor of particles and gµν V(ϕ)] is
the energy-momentum tensor of the vacuum.

N.B. The “pressure” exerted by the vacuum and its energy density
have opposite signs, p = −ρ = −V(ϕ).
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Estimate of the vacuum energy: QFT

Uncertainty principle: any coordinate localization in (t, x) has a
spread in (E , p) value ⇒ vacuum has an energy.

⇒ The cosmological constant Λ, as the energy density of the vacuum,
naturally has a non-zero value (Zeldovich 1968).

The simplest estimate: boson field. Normal modes are simply a set of
harmonic oscillators. The vacuum energy (zero–point energy) is:

EΛ =
∑

i

1

2
~ωi , (45)

where
∑

i =
∫
d3xd3p(2π~)−3 is understood.

Energy density of the vacuum ρΛ = EΛ/V , where
∫
d3x = V is

position–independent (i.e. it is constant over the space).
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Estimate of the vacuum energy: Bosonic QFT

Momentum integration:

ρΛ =
EΛ

V
=

∫ pP`

0

4πp2dp

(2π~)3

(1

2

√
p2c2 + m2c4

)
(46)

where the upper limit is given by the Planck momentum:

pP` =
EP`
c

=

√
~c3

G
w 1019GeV /c . (47)

The integration yields:
ρΛ w

1

16π2

E 4
P`

~c3
w

(3× 1027eV )4

~c3
(48)

Normalizing this to the value of critical density

ρc (t) = (3H2)/(8πG ) w
(2.5× 10−3eV )4

~c3
(49)

one obtains for ΩΛ ≡ ρΛ/ρc :

(ΩΛ)QFT = 10120 vs. (ΩΛ)obs = 0.75 !!!!!!
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Estimate of the vacuum energy: Supersymmetric QFT

For fermion field the normal modes are also a set of harmonic
oscillators.

EΛ =
∑

i

(−1

2
+ ni )~ωi , ni = 0, 1 (50)

The vacuum energy for fermion field is negative!
⇒ ∃ mechanism for cancelation between the bosonic and fermionic
vacuum energy contributions.

Supersymmetry (SUSY) – extension of the Standard Model predicts
equality between bosonic and fermionic d.o.f. ⇒ Vacuum energy of
the system with exact supersymmetry must vanish!

SUSY predicts mb = mf . In reality the supersymmetry is badly broken
∆m2 ≡ m2

f −m2
b & (102GeV /c2)2. The first–order contribution from

broken SUSY is still 80–90 orders short of the required O(10−120) :

(ρΛ)SUSY =
1

16π2

E 4
P`

~c3

(∆m2

E 2
P`

)
=

1

16π2

E 4
P`

~c3
× 10−36 (51)
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Schwarzschild solution of Einstein eqs. and black holes

In 1915 Schwarzschild solving Gµν ≡ Rµν − 1
2gµνR = −8πGTµν

where Rµν ≡
∂Γλ

λµ

∂xν −
∂Γλ

µν

∂xλ + ΓλµσΓσνλ − ΓλµνΓσνσ, R ≡ Rµµ

and Γµνκ = 1
2g

µλ(∂κgλν + ∂νgλκ + ∂λgνκ)

for a spherical distribution of mass M and radius R found:

gtt = f (r), grr = 1/f (r), gθθ = r2, gφφ = r2sin2θ (52)

where f (r) = (1− Rs
r ) and Rs = 2GM is Schwarzschild radius

ds2 = f (r)dt2 − 1

f (r)
dr2 − r2dΩ2 (53)

or in Eddington-Finkelstein coordinates p = t + r + Rs log( |r−Rs |
Rs

):

ds2 = f (r)dp2 − 2dpdr − r2dΩ2 (54)

Radial light rays follow paths determined by solving f (r)dp2 = 2dpdr .
Light rays along dp = 0 are always ingoing. Light rays along f (r)dp = 2dr
are are outgoing for r > Rs and ingoing for r < Rs .
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Temperature, acceleration and the black holes

Combining Gravitation (G ), Thermodynamics (T ) and quantum
mechanics (~) Stephen Hawking calculated the temperature of
non–rotating black hole with mass M as∗:

TBH =
~c3

8πkBGM
=

~c
4πGRs

=
1

4πGRs
(55)

where Rs = 2GM/c 2 is the Schwarzschild radius.

Unruh effect: Vacuum seen by the uniformly accelerated observer with
acceleration a looks to him like as a heath bath of temperature∗∗:

T =
~a

2πckB
=

a

2π
. (56)

*) For derivation of (55) see e.g. A. Zee: Einstein gravity in a nutshell.
From dimensional analysis one gets TBH ∼ 1/(GM).

**) For derivation of (58) see e.g. A. Zee: Einstein gravity in a nutshell or
Wikipedia.

Michal Šumbera Inflation April 30, 2018 40 / 44



Black Hole Entropy - Bekenstein 1972

Leonard Susskind: The Black Hole War

What is an increase in energy (mass) of the black hole when we add a
single bit of information carried by a single photon?

Photon in order to carry a single bit of information must have its
location as uncertain as possible, provided only that it gets into the
black hole. i.e. its wavelenght should be close to BH diameter
λ = 2Rs and so its energy must be Eγ = 2π~c/(2Rs) = π~c/(Rs).

Corresponding change of the BH mass is ∆M = π~/Rsc and the
change in its radius equals ∆Rs = 2G∆M/c2 = 2π~G/(Rsc

3).

Change in the BH entropy is given by the first law of thermodynamics
∆E = ∆(Mc2) = TBH∆S = ~c3∆S/8πGM
⇒ S = 4πGM2/(~c) = 4πR2

s c
3/(4~G ) = A/(4`2

P`).

Adding one bit of information will increase the area of the horizon
(and so also the entropy) of any black hole by one square Planck unit.
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Non-dark energy scenario: Entropic accelerating universe

In (Damien A. Easson, Paul H. Frampton, George F. Smoot;
Phys.Lett. B696 (2011) 273) an alternative interpretation of
accelerating Universe was proposed based on the entropy and
temperature intrinsic to the horizon of the universe.

The acceleration is due to an entropic force∗ naturally arising from
the information storage on the horizon surface screen.

Entropy = the information holographically stored to the horizon
(t’Hooft, Susskind).

The assumption is that cosmological horizon has both a temperature
and entropy associated with it as was first shown by Gary Gibbons
and Stephen Hawking.

*) Entropic force comes from to the entire system’s thermodynamical
tendency to increase its entropy and not from particular underlying
microscopic force. For example pressure of an ideal gas has an
entropic origin.
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Non-dark energy scenario: Entropic accelerating universe

Let’s take now instead of Black Hole Schwarzschild radius take the
apparent horizon of the universe (Hubble radius) RH = c/H.
The associated temperature, THorizon ≡ TH can be estimated as:

TH =
~
kB

H

2π
∼ 3× 10−30K (57)

The temperature of the horizon is associated with the acceleration:

aH =
2πckBTH

~
= cH ∼ 10−9ms−2 (58)

⇒ The ambiguous dark energy component is non-existent.
Instead there is an entropic force contribution acting at the horizon
and pulling outward towards the horizon to create the appearance of a
dark energy component.
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Non-dark energy scenario: Entropic accelerating universe

The entropy on the Hubble Horizon, e.g. the Hubble radius
RH = H−1, is

SH = π`2
P`R

2
HkB ∼ (2.6± 0.3)× 10122kB (59)

Increasing the radius RH , by ∆r , increases the entropy by ∆SH

according to ∆SH = 2π`2
P`RH∆r (60)

The entropic force is simply

Fr = −dE

dr
= −T dS

dr
= −TH

dSH

dr
=

H

2πG

2π

H
= − 1

G
(61)

the minus sign indicates pointing in the direction of increasing
entropy, which in this case is the horizon.

The pressure from entropic force exerted is

p =
Fr

A
= − 1

4πR2
H

TH
dSH

dr
= −H2

4π

1

G
= −2

3
ρc (62)

This is close to the value of the currently measured dark
energy/cosmological constant negative pressure!!!
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