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Literature

Our discussion is based on the books
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Newtonian approach to cosmology

It is perfectly possible to discuss cosmology without having already
learned general relativity.

In fact, the most crucial equation, the Friedmann equation which
describes the expansion of the Universe, turns out to be the same
when derived from Newton’s theory of gravity as from the equations
of general relativity.

The Newtonian derivation is not completely rigorous, and general
relativity is required to fully patch it up, a detail that need not
concern us at this stage.
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The Friedmann equation
Observer in a uniform expanding medium, with mass
density ρ. Because the Universe looks the same from
anywhere, we can consider any point to be its centre.

Theorem (Newton): in a spherically-symmetric
distribution of matter, a particle with mass m at
distance r from the observer feels no force at all from
the material at greater radii, and the material at smaller
radii (shown as the colored region) gives exactly the
force which one would get if all the material was
concentrated at the central point. Prove it!

The material has total mass M = 4πρr3/3, and our particle has a
gravitational potential energy

V = −GMm

r
= −4πGρr2m

3
(1)

The equation describing how the separation r changes can be derived from
energy conservation

U =
1

2
mṙ2 − 4π

3
Gρr2m (2)
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Newton theorem

Lemma 1: Gravitation field inside infinitely thin
spherical shell of the constant surface density is
zero.

Proof: dS1 · cosα = r2
1 dΩ, dS2 · cosα = r2

2 dΩ

F1 =
GmρdS1

r2
1

=
GmρdS2

r2
2

= F2

Lemma 2: Gravitation field outside infinitely
thin spherical shell of the constant surface
density is the same as one would get if all the
material was concentrated at the central point.

Proof: δ ≈ CBsinα ⇒ SCNB = 2πRsinαCB = 2πRδ

potential due to CNB ring at point A is −Gρ2πRδ
`

Potential due to whole spherical shell of mass M = ρ4πR2 is thus :

V = −
∑ Gρ2πRδ

`
= −Gρ2πR

∑ δ

`
= −Gρ2πR

r
2R = −GM

r

Q.E.D.

Michal Šumbera Expansion law of the Universe March 13, 2018 6 / 29



The Friedmann equation
Universe is homogeneous ⇒ the above argument applies to any two
particles.
Comoving coordinates: coordinates which are carried along with the
expansion. Let ~r and x be real and comoving distances, respectively.
Expansion is uniform ⇒ ~r = a(t)~x (3)

Homogeneity ⇒ The scale factor of the Universe a(t) depends
only on time. It measures the universal expansion rate. Since the
coordinate distances ~x are by definition fixed it tells us how physical
separations grow with time.

The galaxies remain at fixed
locations in the coordinate
system ~x . The original
coordinate system ~r , which
does not expand, is usually
known as physical
coordinates.
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The Friedmann equation

Substituting (3) into (2): U =
1

2
mȧ2x2 − 4π

3
Gρa2x2m (4)

after some rearrangement: The Friedmann equation( ȧ
a

)2
=

8πG

3
ρ− kc2

a2
(5)

k = −2U/mc2x2 is the time-independent constant (the total energy
U is conserved, c is speed of light, the comoving separation x is
fixed). [k] = length−2.

An expanding Universe has a unique value of k , which it retains
throughout its evolution. Later on we will see that it is related to the
geometry of the Universe (it is often called the curvature).
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On the meaning of expansion

The expansion does not mean that

the Earth’s orbit is going to get further from the Sun
the stars within our galaxy are going to become more widely separated
with time.

It does mean that distant galaxies are getting further apart!!

The distinction is whether or not the motion of objects is governed by
the cumulative gravitational effect of a homogeneous distribution of
matter between them.

The Earth’s motion in its orbit is dominated the Sun (with a minor
contribution from the other planets). Stars are orbiting in the common
gravitational potential well which they themselves create.
The above environments are ones of considerable excess density, very
different from the smooth distribution of matter used to derive the
Friedmann equation.

At large enough scales ∼ 10Mpc, the Universe is homogeneous and
isotropic. It is on these large scales that the expansion of the Universe
is felt, and on which the cosmological principle applies.
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Things that go faster than light

Q: If velocity is proportional to distance, then if we consider galaxies far
enough away can we not make the velocity v > c , in violation of
special relativity?

A: Distant objects can appear to move away faster than the speed of
light. However, it is space itself which is expanding. There is no
violation of causality, because no signal can be sent between such
galaxies.
Special relativity is not violated, because it refers to the relative
speeds of objects passing each other, and cannot be used to compare
the relative speeds of distant objects.

Example: Colony of ants on a balloon
v ant
max = 1cms−1. Two ants in opposite directions ∆v ant

max = 2cms−1.
If the balloon is blown up fast enough ⇒ ants which are far apart can
move apart faster than ∆v ant

max . However, they will never get to tell
each other about it (the balloon is pulling them apart faster than they
can move)
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The fluid equation

Friedmann eq.: ȧ2 = (8πGρa2)/3− kc2 ⇒ ρ ≡ ρ(t)?

First law of thermodynamics applied to an expanding volume V of
unit comoving radius: dE + pdV = TdS (6)

E = mc2 = V ρc2 =
4π

3
a3ρc2 (7)

dE

dt
= 4πa2ρc2 da

dt
+

4π

3
a3 dρ

dt
c2 ,

dV

dt
= 4πa2 da

dt
(8)

For reversible expansion dS = 0 ⇒ dE + pdV = 0 ⇒
3 ȧ
aρ ↔ dilution in the density due to

volume increase.

3 ȧ
a

p
c2 ↔ loss of energy due to the pressure

work. Energy lost from the fluid has gone
into gravitational potential energy.

The fluid equation

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0 (9)

In a homogeneous Universe ρ and p are everywhere the same ⇒ there are no
pressure forces. (Force is supplied through ~∇p 6= 0). So pressure does not
contribute a force helping the expansion along; its effect is solely through
the work done as the Universe expands.
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The equation of state

Now we know what ρ is doing if we know what the pressure p is.
Specifying the pressure we specify what kind of material our model
Universe is filled with.

To describe the evolution of the Universe we need to solve the fluid
and Friedmann equations. To solve them we need to know also the
equation of state p ≡ p(ρ).

The simplest possibility is that there is no pressure at all, and that
particular case is known as (non-relativistic) matter.

Other possibilities are matter or radiation dominated Universe.

We will solve the equations later on.
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The acceleration equation

The third equation, not independent of the first two, of course,
describes the acceleration of the scale factor a. By differentiating
equation (5) with respect to time we obtain:

2
ȧ

a

aä− ȧ2

a2
=

8πG

3
ρ̇+ 2

kc2ȧ

a3
(10)

Substituting in for ρ̇ from equation (9) and cancelling the factor 2ȧ/a
in each term gives

2
ä

a
−
( ȧ
a

)2
= −4πG

(
ρ+

p

c2

)
+

kc2

a2
(11)

Using (5) again, we arrive at

If the material has any pressure, this
increases the gravitational force, and so
further decelerates the expansion.

The acceleration equation

ä

a
= −4πG

3

(
ρ+

3p

c2

)
(12)

N.B. The acceleration equation does not feature the constant k which
appears in the Friedmann equation; it cancelled out in the derivation.
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Elements of relativistic cosmology

Based on famous Einstein equations of General relativity.

Finite velocity of signal propagation (c = 1) brings into existence an
autonomous entity – the field.

Instead of Newton potential we have Gravitational field gµν(x)
describing simultaneously the metric at spacetime point x .

GR resuscitates the notion of Geometrodynamic: eqs. of particle
motion under the influence of the field are equivalent to free motion
eqs. in appropriately curved space time (effect of gravitation is
equivalent to that of a coordinate transformation).

Curved geometry of the space-time leads to new geometrical
concepts: Affine connection, Riemanian curvature etc.

In static non-relativistic limit c →∞ GR reproduces old Newton
theory and its previously derived cosmological consequences.

Most useful approximation to GR metrics is the cosmological principle
leading to Friedman-Lemâıtre-Robertson- Walker metric.
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Special relativity reminder

Covariant vector: Aµ ≡ (A0,Ai ) = (A0,−A) (13)

Contravariant vector: Aµ ≡ (A0,Ai ) = (A0,A) (14)

Scalar product: A · B ≡ AµA
µ = (A0)2 − (A)2 ≡ ηµνAµAν (15)

Metric tensor: ηµν = ηµν = diag(1,−1,−1,−1) (16)

defines distance between two points ds2 = ηµνdx
µdxν = c2dτ2

Properties: Aµ = ηµνA
ν , Aµ = ηµνAν (17)

ηµν = ηνµ , ηµαη
αν = δνµ = ηνµ (18)

Tensors δνµ, ηµν , η
µν are the same in all coordinate systems.

4-velocity uµ = dxµ/ds and 4-acceleration aµ = duµ/ds = d2xµ/ds

Action for relativistic free particle

S = −m
∫ √

ηµνdxµdxν = −m
∫

ds = −m
∫

cdτ ⇒ d2xµ/ds = 0

N.B. The rest mass m has a minus sign as it is part of the potential energy

in non-relativistic physics.
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Equivalence Principle

General Relativity (GR) is based on the Equivalence Principle:
at any space-time point in arbitrary gravitational field ∃ locally
inertial coordinate system where effects of this field are absent.

A. Einstein 1907

For an observer falling freely from the roof of a house, the gravitation field does

not exist (left). Conversely (right), an observer in a closed box – such as elevator

or spaceship – cannot tell whether his weight is due to gravity or acceleration.
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General relativity

Equivalence principle: To cancel out effect of gravity at a given
point one may use locally the flat metric ηµν .

Consider freely falling observer who erects a SR coordinate frame ξµ

in his neighbourhood. The equation of motion for nearby freely falling
particle is: d2ξµ

dτ2
= 0 ; ds2 = c2dτ2 = ηαβdξ

αdξβ (19)

Now suppose that the observer makes a transformation to some other
set of coordinates xµ:

dξµ =
∂ξν

∂xν
dxµ (20)

(20)7→ (19) ⇒ two principal equations of GR:

d2xµ

dτ2
+
∂xµ

∂ξν
∂2ξν

∂xαxβ
dxα

dτ

dxβ

dτ
≡ d2xµ

dτ2
+Γµαβ

dxα

dτ

dxβ

dτ
= 0 (21)

c2dτ2 =
∂ξα

∂xµ
∂ξβ

∂xν
ηαβdx

αdxβ ≡ gαβ(x)dxαdxβ (22)
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Gravitational field in GR

There is a metric tensor gµν(x) and the gravitation force is to be
interpreted as arising from non-zero derivatives of this tensor.

Taking the flat metric globally is not possible in the curved
space-time under the gravitational field.

Space-time is curved ηµν → gµν ≡ gµν(x); gµαg
αν = gνµ = δνµ

Only distance to nearby points makes sense ds2 = gµνdx
µdxν (23)

gµν(x) – real symmetric matrix ⇒ can be, with a suitable choice of
coordinates, (at least locally) made into diagonal matrix
gµν = diag(λ0, λ1, λ2, λ3).

If one of λ’s is positive while other three are negative ⇒ the
space-time is called Riemann space. Then det gµν(x) ≡ gµν(x) < 0.

The invariant volume element is
√
−g(x)d4x
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Equations of motion

Eq. of motion of freely falling particle: d
2xµ

dξ2
+ Γµνκ

dxν

dξ

dxκ

dξ
= 0 (24)

where Γµνκ is Riemann-Christoffel symbol and ξ parametrizes
position along the space-time curve.
For massive particles ξ ∼ τ ( dτ ≡

√
gµνdxµdxν ).

A space-time path xµ = xµ(ξ) satisfying (24) is called geodesics
(i.e. δ

∫ x1

x0
dτ = 0 with end points x0 and x1 fixed).

Particle at rest in these coordinates will stay at rest forever ⇒
comoving coordinates. t – time in the rest frame of comoving clock.
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Parallel transport of tangent vectors: 2-d case

Let ~X (x1, x2) ≡ ~X (x) be a surface embeded in E 3 with 3-component
vectors ~eµ ≡ ∂µ ~X forming the basis vectors for the surface ~X (x).
Vectors defined at two different points, x and x

′
, can be compared

only by moving the vector at x to the point x
′

by parallel transport.

x

x'

b

a
a-b

⇒ Parallel transport of a vector ~eµ(x) living in the tangent plane at
point x on a curved surface to a nearby point x

′
= x + δx leads to

change of basis vectors: ~eµ,ν ≡ ∂ν~eµ = ∂ν∂µ ~X = Γλµν~eλ + Kµν~n (25)
~eµ,ν sticks out of the surface because it has a component along (unit)
normal vector to the surface
~n ≡ (~e1 × ~e2)/|~e1 × ~e2|. This component (dashed line) has to be
projected away.
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Parallel transport of a vector field

Let ~A(x) ≡ Aν(x)~eν(x) be a vector field on some general (curved)
2d-manifold (cylinder, sphere, torus, Möbius plane, Klein bottle, . . . ).
~A lives on the plane tangent to the manifold: ~A · ~n = 0
⇒ is visible only from ambient E 3.

Infinitezimal parallel transport of ~A(x):
∂ν ~A(x) = ∂ν(Aµ(x)~eµ(x)) = ∂νA

µ(x)~eµ(x) + Aµ(x)∂ν~eµ(x)

(25) ⇒ ∂ν ~A(x) = ∂ν(Aµ)~eµ + AλΓµλν~eµ + AµKµν~n (26)

where Γµλν is so called Riemann-Christoffel symbol and Kµν = ~eµ,ν · ~n.

Dropping terms proportional to ~n in (26) defines a covariant
derivative: ∇ν ~A ≡ (∂νA

µ + AλΓµλν)~eµ ≡ (∇νAµ)~eµ (27)

∇ν ~A is nothing but the ordinary derivative ∂ν ~A adjusted for the
change of the reference frame.
It does not describe how ~A(x + δx) differs from ~A(x) but how
~A(x + δx) differs from ~A(x) parallel transported to x + δx .
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Tangent frame, Γµλν, Kµν and metrics on the surface

∂ν ~A(x) = ∂νA
µ~eµ + AλΓµλν~eµ + AµKµν~n

Γµλν tells us how the tangent plane is rotating around ~n.

Kµν tell us about how the surface is curving in the ambient space
(E 3 in our case).

Since d ~X = ∂µ ~Xdxµ, the distance squared between two nearby points
x and x + dx of the manifold is given by:

ds2 = d ~X · d ~X = (∂µ ~X · ∂ν ~X )dxµdxν = (~eµ · ~eν)dxµdxν (28)

Symmetric tensor gµν = ~eµ · ~eν is called metric on the surface ~X .

For 2-d surfaces d ~X = ∂µ ~Xdxµ = ∂1
~Xdx1 = ∂2

~Xdx2 one obtains

ds2 = dθ2 + sin2 θdφ for the sphere
ds2 = r2dφ2 + dz2 for the cylinder
ds2 = (R + r cosφ)2dθ2 + r2dφ2 for torus with tube radius r and
distance from the center of the tube to the center of the torus R
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Covariant derivative

Vectors defined at two different points, x and x
′
, can be compared

only by moving the vector at x to the point x
′

by parallel transport
i.e. the naive derivative of a vector is not a tensor but the covariant
derivative ⇒ ∂µ 7→ ∇µ:

∇µAν ≡ (δλν∂µ − Γλµν)Aλ , ∇µAν ≡ (δνλ∂µ + Γνλν)Aλ (29)

but for the scalar they must coincide: ∂µ(AνAν) = ∇µ(AνAν)

(29) ⇒ Bianchi identity: ∇λ(AµBν) = (∇λ)Bν + Aµ(∇λBν) (30)

(29) ⇒ parallel transport mappings preserve the metric tensor:

∇λgµν = 0 (31)

(31) ⇒ Coefficients Γµνκ – the affine connection (aka Riemann
-Christoffel symbols): Γµνκ = 1

2g
µλ(∂κgλν + ∂νgλκ + ∂λgνκ) (32)

tell us how to define parallelism between neighboring points.
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Einstein equations

Ricci tensor: Rµν ≡
∂Γλλµ
∂xν

−
∂Γλµν
∂xλ

+ ΓλµσΓσνλ − ΓλµνΓσνσ (33)

Scalar curvature: R ≡ Rµµ = gµνRµν (34)

The Einstein field equations

Gµν ≡ Rµν − 1
2gµνR = −8πGTµν (35)

Total energy-momentum tensor of the matter, radiaton and the
vacuum is conserved:∇µTµ

ν = ∇µ(gµλTλν) = 0 (36)

(35) & (36) ⇒ ∇µGµ
ν = ∇µ(gµλGλν) = 0

N.B. this equation also follows from the Bianchi identity (30).

The weak and static gravitational field & NR limit:
g00 ' 1 + φN & T00 ' ρc2

(35)7→ 4φ = 4πGρc2 i.e. Poisson equation for the Newton potential.

Michal Šumbera Expansion law of the Universe March 13, 2018 24 / 29



The Friedman–Lemâıtre–Robertson–Walker metric

General solution of (35) i.e. gµν(x) does not exist (the field equations
are non-linear). For example, there is no known complete solution for
a space-time with two massive bodies in it (binary star).

The cosmological principle ⇒ dramatic simplification: at a given time
the Universe should not have any preferred locations.

⇒ The spatial part of the metric must have a constant curvature
(satisfied e.g. by a flat metric which has zero curvature everywhere).
The most general metric with constant curvature is:

ds2 = c2dt2 − a2(t)
[ dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(37)

gtt = 1, grr = − a2

1−kr2 , gθθ = −a2r2, gφφ = −a2r2sin2θ (38)

where a(t) is the scale factor of the Universe.

N.B. Inserting function of time b2(t) before the dt2 in (37) just redefines

time variable: dt 7→ dt
′

= b(t)dt. GR tells us that we can use any

coordinate system and so this extension is not more general than (37).
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Relativistic perfect fluid

Einstein’s equations (35) tell us how the presence of matter curves
space-time, and one needs to describe this matter. The possible
constituents of the Universe considered in these lectures are all
examples of so-called perfect fluids, meaning that they have no
viscosity or heat flow. ⇒ Tµ

ν = diag(ρc2,−p,−p,−p) (39)

From (36) which expresses fact that the GR automatically encodes
energy conservation: ∇µTµ

ν = ∂µT
µ
ν + ΓµαµT

α
ν − ΓανµT

µ
α = 0 (40)

we obtain for the ν = 0 component relevant Christoffel symbols
(N.B. Tµ

ν is diagonal!): Γ0
00 = 0 ; Γ1

01 = Γ2
02 = Γ3

03 = ȧ
a (41)

Substituting them in (33), (34) and (35), keeping careful track of the
summation over repeated indices, gives

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0 (42)

which is nothing but the fluid equation (9) derived previously in the
Newtonian gravitation limit.
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Elements of general relativistic cosmology

For FLRW metric (38), there are two independent Einstein equations
(35), the time-time and the space-space. The derivation is too
lengthy to reproduce here, but can be found in any good general
relativity textbook. The time-time Einstein equation gives precisely
the Friedmann equation (5): ( ȧ

a

)2
=

8πG

3
ρ− kc2

a2
(43)

N.B. Compared to (5) there is a difference when interpreting k .
In the Newton limit it’s related to the total energy U of the particle
with mass m having comoving coordinate x : k = −U/(mc2x2)
In the GR case it is via (37) and (38) related to 3d the curvature of the
FLRW space-time k = (r2grr − gθθ)/(r4grr )

The space-space equation: 2
ä

a
+
( ȧ
a

)2
+

kc2

a2
= −8πG

p

c2
(44)

and if we subtract the Friedmann equation (43) from it we get
precisely the acceleration equation (12).
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On metrics sign convention in QFT and GR

In particle physics and quantum field theory (QFT) time-dominant
sign convention ηµν = diag(+1,−1,−1,−1) is extensively being used.
The momentum squared p2 = pµp

µ = ηµνp
µpν = (p0)2 − (~p)2 = m2.

This should be compared with space-dominant sign convention
ηµν = diag(−1,+1,+1,+1) giving p2 = −m2 which is used in the
literature on gravity and string theory (GR).

To go from one convention to the other, simply flip the sign of gµν :

gGR
µν = −gQFT

µν (45)

N.B. Flipping the sign of gµν does not change the sign of
Γµνκ = 1

2g
µλ(∂κgλν + ∂νgλκ + ∂λgνκ) ⇒ Rλρµν and also Rµν do not

change a sign but the scalar curvature R ≡ Rµµ = gµνRµν does.

⇒ Gµν ≡ Rµν − 1
2gµνR does not change too.

⇒ The GR convention: the sphere has positive scalar curvature.
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On mass, energy and vanishing factors of c2

From now on we will drop c from all equations moving to so called
natural units c = 1.

The constant k appearing in the Friedmann equation( ȧ
a

)2
=

8πG

3
ρ− k

a2
(46)

will then have dimensionality [k] = time−2[time].

N.B. Since mass density ρ and energy density ε are related via
ε = ρc2 ⇒ in natural units they became the same. For clarity we
must be careful to maintain the distinction. Note that the phrase
mass density is used in Einstein’s sense – it includes the
contributions to the mass from the energy of the various particles, as
well as any rest mass they might have.
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