07 - Cherenkov and transition radiation detectors

Jaroslav Adam

Czech Technical University in Prague

Version 2

Cherenkov radiation

- Emitted by passage of charged particle in dielectricum at velocity greater than speed of light in respective material
- $\beta > 1/n$ where *n* is refractive index
- Dipole moment of polarized electrons, emission of electromagnetic field

Angle of Cherenkov radiation emission

Light emitted into forward cone of aperture

$$\cos\theta = \frac{1}{\beta n} \tag{1}$$

• Threshold of Cherenkov light emission given by $\beta_{thr} \geq \frac{1}{n}$

Yield of Cherenkov photons

- Yield per unit length of track proportional to λ^{-2}
- Smaller than scintillation light

Threshold Cherenkov detectors

- Separation of particles with different masses at the same momentum
- Set of Cherenkov radiators of different *n*, different threshold for each particle
- Radiators of material of desired *n* or gaseous radiator at a given pressure

Differential Cherenkov detectors

- Tagging of particles in selected range of velocities
- Light reflected by spherical mirror, aperture in front of PM provides velocity window
- Particles parallel to optical axis (fixed-target experiments)

Fitch-type differential Cherenkov detector

- Upper limit on velocity by internal reflection
- Light at higher angle does not escape into the light guide

Ring imaging Cherenkov (RICH) detector

- Particle identification by angle of Cherenkov radiation
- Photons reflected by spherical mirror (SM) and focused onto spherical detector SD
- Measured circle of Cherenkov photons to get particle velocity, together with particle momentum provides the identification

Detection of Cherenkov photons in RICH

- Position sensitive detector of large surface
- MWPC with photosensitive vapor in counter gas
- Quartz entrance window for vapor of low ionization energy, UV transparent crystal otherwise
- More intense rings by fast heavy ions (number of photons proportional to square of particle charge)

Cherenkov ring of relativistic heavy ion in RICH

- Early measurement of heavy ion with RICH
- Center of ring visible due to ionization loss in photon detector
- \bullet Spurious signals by $\delta\text{-rays}$ of heavy ion

Cherenkov rings by monoenergetic beam

- 100 events of collinear monoenergetic beam
- Entrance windows by calcium-fluoride crystals

Solid-state detectors in RICH

- Csl photocathode as photoconverter
- Single or multi-anode conventional photomultiplier or hybrid photomultiplier
- Micropattern gaseous detector with CsI photocathode

Cherenkov angle dependence on particle momentum

• Cherenkov rings detected by system of multichannel photomultipliers

Cherenkov rings in electromagnetic cascades

- Secondary particles in cascade follows direction of initiating electron or photon
- Also relativistic, emit overlapping Cherenkov rings, concentric with equal radii
- Distortion of the ring (elliptic for inclined angle) gives direction of incidence gamma-ray astronomy

Detection of neutrino induced muons and electrons

 Muon produced in interaction of atmospheric neutrino, detected by Cherenkov ring in heavy water

Detection of neutrino induced muons and electrons

• Cherenkov ring of electron from decay of muon which was produced by neutrino interaction

Detector of Internally Reflected Cherenkov light (DIRC)

- Based on internal reflection of Cherenkov radiation in quartz bars of rectangular cross section
- Readout by system of PM tubes

RICH of LHCb experiment

Detectors RICH1 and RICH2

Cherenkov radiators of RICH in LHCb

- Different particle momenta covered by RICH1 (lower) and RICH2 (higher momentum)
- Identification among several particle species

Layout of RICH1 in LHCb

- Cherenkov light emitted by Aerogel and gaseous radiators
- Light reflected by flat and spherical mirrors outside the LHCb acceptance

Layout of RICH1 in LHCb

Reflected Cherenkov light detected by the photon detectors

Layout of RICH2 in LHCb

Second Cherenkov detector with different radiator

Photon detector in RICH of LHCb

- Hybrid photon detector HPD
- Photon conversion at photocathode, photoelectron accelerated and detected by segmented silicon detector
- Image of photocathode de-magnified onto the detector by the electrodes

Transition radiation detectors (TRD)

- Charged particle moving towards boundaty of materials of different dielectric properties
- Time-dependent electromagnetic field of electric dipole of charged particle and it's mirror at boundary
- Emission of electromagnetic radiation

Energy of transition-radiation photons

Average energy of TRD photons vs. electron momentum

Arrangement of transition-radiation detector

- Angle of emission of transition-radiation photons inversely proportional to Lorentz factor of the particle
- System of periodic foils and gaps as radiator
- Photons detected by MWPC filled by Kr or Xe

Energy loss distribution in TRD

- Energy loss by relativistic electrons
- (a) radiator with gaps, (b) radiator without gaps, no transition radiation in this case

TRD of ALICE experiment

• TRD located in the central barrel above TPC, provides electron identification

Detector element of TRD in ALICE experiment

- Radiator for transition radiation, gas drift volume of Xe/CO₂ and MWPC
- X-ray photons of transition radiation converted at the beginning of drift volume

Electron identification by TRD in ALICE

- Discrimination between electrons and pions
- Increased specific energy loss by electrons at the same momentum
- Signal at large drift times for electrons by conversion of transition radiation at the beginning of drift sector

