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Modes of operation of the detectors

Pulse counting (and) pulse height spectra

Current mode
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Pulse height spectra
Differential spectrum as a number of pulses with amplitude between H1 and H2 dN/dH

Integral spectrum as a number of pulses above height H
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Counting plateau by varying the gain
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Resolution of the measured quantity

Expectation value when z = zmeas − z0, where zmeas is measured value and z0 is true value,
D(z) is probability density function

〈z〉 =

∫
dz · zD(z)

/∫
dz · D(z) (1)

Variance of the measured quantity

σ2
z =

∫
dz (z − 〈z〉)2 D(z)

/∫
dz · D(z) (2)
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Example: multi-wire proportional chamber (MWPC)

Position along the z-coordinate with wire spacing δz

Figure : MWPC, variance of the rectangular distribution

〈z〉 =

∫ +δz/2

−δz/2
dz · z · 1

/∫ +δz/2

−δz/2
dz = 0 (3)

σ2
z =

∫ +δz/2

−δz/2
dz · (z − 0)2 · 1

/
δz =

(δz)2

12
(4)
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Energy resolution

Radiation spectroscopy = measurement of the energy distribution of the incident radiation

Response of the detector to the monoenergetic radiation

Figure : Response function of the detector

The width rises with the fluctuations in the detected pulses
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Full width at half maximum, FWHM

Figure : Definition of detector resolution

Derived from Gaussian function, FWHM = 2.35σ

G(H) =
A

σ
√

2π
exp

(
−

(H − H0)2

2σ2

)
(5)

The energy resolution measured as FWHM, expressed in %

Semiconductor diodes for alpha spectroscopy have typically <1%, scintillation detectors for
gamma-rays have 5-10%
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Limiting resolution R due to statistical fluctuations

A counting experiment follows the Poisson statistics with variance
√

N for N detected counts

Amplitude of the response function proportional to the number of counts N by factor K :
H0 = KN

The Gaussian standard deviation is then σ = K
√

N

Limiting resolution from 5 is

R|Poisson limit ≡
FWHM

H0
=

2.35
√

N
(6)

Number of successfully registered pulses by the detector should be >55 000 for resolution
better than 1%

Semiconductor detectors have high resolution for high efficiency in collecting the deposition
(a lot of carriers generated per unit of deposited energy)
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Correction to Poisson statistics

Processes leading to generation of the charge carriers are correlated, preventing the use of
Poisson statistics

Limiting resolution lower than expectation from 6

The Fano factor is the correction to the Poisson distribution

F ≡
observed variance in N

Poisson predicted variance = N
(7)

R|Statistical limit =
2.35K

√
N
√

F
KN

= 2.35
F
N

(8)

F � 1 for semiconductors and proportional counters, F ≈ 1 for scintillators
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Detection efficiency, definition

Probability p to detect the incident radiation

An experiment with two possible outcomes (detected / not detected) follows the binomial
statistics

With r successes in n trials and p = r/n and q = 1− p, the binomial distribution is

f (n, r , p) =
n!

r !(n − r)!
pr qn−r (9)

〈r〉 = n · p

σ2 = n · p · q
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Detection efficiency, absolute, intrinsic and peak

εabs =
# of recorded
# of emitted

(10)

εint =
# of recorded
# of incident

(11)

The absolute efficiency depends on the detector geometry

Intrinsic efficiency depends on the detector material and construction and interaction
properties

Peak efficiency: accepted only interactions with full energy deposition

Figure : Full-energy peak in differential spectrum
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Efficiency measurement

Two detectors 1 and 2 with efficiencies ε1,2 in coincidence with the detector of unknown
efficiency ε

Figure : Efficiency by the coincidence measurement

Coincidence measurement carried with n true events in the detectors

Twofold coincidence rate R2 = ε1ε2n

Threefold coincidence rate R3 = ε1ε2εn

The efficiency is then

ε =
R3

R2
(12)
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Measurement of the absolute activity

Needed to know intrinsic peak efficiency of the detector εip

The number of radioactive decays in the source S is given by N recorded events in the solid
angle Ω covered by the detector

S = N
4π
εipΩ

(13)

In the geometry of point-size isotropic source, Ω is

Ω = 2π

(
1−

d√
d2 + a2

)
(14)

Figure : Solid angle covered by a cylindrical detector
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Calibration of the detector

Relation between the measured value 〈z〉 and the true value z0

In the case of the linear response, there are constants c and d

〈z〉 = c · z0 + d (15)

The non-linear case requires the response function

〈z〉 = c(z0) · z0 + d (16)

The calibration may correct for some systematical shift in the measured values

And/or provide the relation from the electronics output like analog-digital converter to physics
quantities like time or energy
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Dead time

Minimum amount of time required to distinguish two separate pulses

Can be 1 ns for Cherencov counters up to 1 ms in Geiger-Muller tubes

When a time τ is needed to follow each true event (live period), there can be paralyzable and
nonparalyzable response:

Figure : Dead time

Nonparalyzable: 4 events recorded out of 6 physical

Paralyzable: dead time extended by τ after each physical event, only 3 counts out of 6
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Correction of dead time

The true interaction rate n is obtained from recorded count rate m and dead time τ

In nonparalyzable detector the rate is corrected by the total dead state m · τ

n =
m

1−m · τ
(17)

With paralyzable detector the distribution of intervals between events is needed

P1(T )dT = ne−nT dT (18)

P2(τ) =

∫ ∞
τ

dTP1(T ) = e−n·τ (19)

Recorded (observed rate m) is correction to the true rate n:

m = ne−n·τ (20)
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Observed rate vs. true rate
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Dead time measurement by two-source method

Rate from two sources 1 and 2 measured individually and together

Assuming negligible background and nonparalyzable model, dead time is given by the
observed rates

τ =
m1m2 − [m1m2(m12 −m1)(m12 −m2)]1/2

m1m2m12
(21)
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Dead time measurement by the decaying source method

Count rate from a short-lived radioisotope

Observation of departure from the known exponential decay

Measurement of the counting rate m as a function of time t

λt + ln m = −n0τe−λτ + ln n0 (22)

Provides value of the dead time and also tests the validity of the model

If m(t) does not follow equation 22, the nonparalyzable model is not applicable
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Dead time losses from pulsed sources

Interactions from the pulsed beam at frequency f with pulse length T

Figure : Pulsed source

Interest of average number of true events per source pulse n/f

In the case of dead time longer than T but shorter than the pulse spacing, T < τ < (1/f −T ),
probability of recording rate per source pulse m/f is given by Poisson statistics

m
f

= P(> 0) = 1− e−n/f (23)

The true rate n is then

n = f ln
(

f
f −m

)
(24)

Jaroslav Adam (CTU, Prague) DPD_02, Characteristic properties Version 1.0 21 / 22



Other characteristic times

Recovery time: period following the dead time when pulses are recorded but with reduced
amplitude

Figure : Recovery time for GM detector

Sensitive time: time window after the trigger signal

Readout time: period needed to register the event (electronics of film)
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