01 - Units of radiation measurement and particle sources Jaroslav Adam Czech Technical University in Prague Version 2 # Radiation types according to the interaction mechanism - Charged particles - ► Fast electrons (e⁺, e⁻) - \blacktriangleright Heavy charged particles α , p - Neutral radiation - ightharpoonup Electromagnetic radiation (X-rays, γ) - Neutrons (fast or slow) - Energy, natural and industrial, over eV → MeV ## Law of radioactive decay Activity defined as number of decays per unit of time $$A = -\left. \frac{\mathrm{d}N}{\mathrm{d}t} \right|_{decay} = \lambda N \tag{1}$$ - N is the number of the nuclei and λ is the decay constant - Units of activity: - 1 Ci (curie) = 3.7×10^{10} decays/second, based on 1 gram of 226 Ra - 1 Bq = 2.703×10^{-11} Ci, one decay per second - At the laboratory scale we use kBq or MBq 3 / 12 ## Lifetime of the radioisotope ullet Lifetime au and half-life $T_{1/2}$ related to the decay constant as $$\lambda = \frac{1}{\tau} = \frac{\ln 2}{T_{1/2}} \tag{2}$$ • Solution to 1 with N_0 initial nuclei: $$N(t) = N_0 \exp(-t/\tau) \tag{3}$$ ullet In general, N_0 may depend on time if it is the product of another decay, N of the sample may be reduced by the self-absorption # Specific activity Activity per unit unit mass of the sample specific activity $$\equiv \frac{\text{activity}}{\text{mass}} = \frac{\lambda N}{NM/A_V} = \frac{\lambda A_V}{M}$$ (4) • M = molecular weight, $A_V = \text{Avogadro's number}$ #### Absorbed dose D Absorbed energy per mass unit $$D = \frac{1}{\rho} \frac{\mathrm{d}W}{\mathrm{d}V} \tag{5}$$ - $W = \text{energy}, \ V = \text{volume}, \ \rho = \text{density}$ - Measured in Grays, 1 Gy = 1 $J kg^{-1}$ - Old unit rad, 1 Gy = 100 rad - Important to biological effects 6 / 12 ## Equivalent dose H $$H = w_R \cdot D \tag{6}$$ - Measured in Sievert Sv - w_R is the radiation weighting factor (quality factor), depends on the radiation species and energy #### Fast electron sources - Beta decay - Continues energy spectrum (3-body decay) - Often accompanied by nuclear γ - Internal conversion - Monochromatic electrons keV → MeV, useful for calibration - Energy of nuclear de-excitation transferred to the orbital electron - Auger electrons - Excitation energy from the atom transferred to the outer electron - Also monochromatic, energy lower compared to the internal conversion, few keV #### Conversion electron sources | Parent
Nuclide | Parent
Half-Life | Decay
Mode | Decay
Product | Transition Energy
of Decay Product
(keV) | Conversion
Electron Energy
(keV) | |-------------------|---------------------|---------------|--------------------|--|--| | ¹⁰⁹ Cd | 453 d | EC | ^{109m} Ag | 88 | 62
84 | | ¹¹³ Sn | 115 d | EC | 113m [n | 393 | 365
389 | | 137Cs | 30.2 y | β- | ^{137m} Ba | 662 | 624
656 | | ¹³⁹ Ce | 137 d | EC | ^{139m} La | 166 | 126
159 | | ²⁰⁷ Bi | 38 y | EC | ^{207m} Pb | 570
1064 | 482
554
976
1048 | Figure: Some conversion sources, Knoll, Radiation detection and measurement, p. 6 ## Heavy charged particle sources - Alpha decay - ► Emission of ⁴He, monoenergetic - Energy mostly 4 up to 6 MeV for practical use - ► Highest energy means the shortest half-life of the parent isotope - Spontaneous fission - ightharpoonup Charged particles heavier than α - ► Transuranic isotopes, ²⁵²Cf - ightharpoonup Dominantly α at the same time as fission - Two fragments, back-to-back, light group and heavy group # Sources of electromagnetic radiation - Gamma rays after β decay - Result of nuclear de-excitation, monochromatic - Common isotopes up to 2.8 MeV - Annihilation radiation - After β⁺ decay, e.g. ²²Na - Monochromatic at 511 keV - Gamma rays after nuclear reaction - The reaction may be induced by α source on ⁹Be or ¹³C leaving highly excited isotope and a neutron Energy dispersion about 1% due to the Doppler effect - Bremsstrahlung - Interaction of fast electrons in matter - Continues energy spectrum - Characteristic X-rays - Transition in the orbital electrons - ► Tens of keV, increasing with Z, unique for a particular element - Vacancy may be result of electron capture or internal conversion, or by an external source - Synchrotron radiation - Electrons beam in a circular orbit - Intense and directional source of eV up to tens of MeV #### **Neutron sources** - Spontaneous fission - ▶ For 252 Cf, the neutron yield is 0.116 n/s per Bq and 2.3 \times 10⁶ per μ g of the sample - Radioisotope sources - ightharpoonup Reaction of α from the radionuclide on the target of ${}^9\text{Be}$ - **Background from** γ radiation - Manufactured as an actinide-beryllium alloy - Photoneutron sources - Absorption of gamma-ray photon by a target nucleus while producing the neutron - Monoenergetic neutrons by monoenergetic gamma - ▶ 10⁵ gamma interactions needed for one neutron - Reactions from accelerated charged particles - D-D and D-T reactions 12 / 12