01 - Units of radiation measurement and particle sources

Jaroslav Adam

Czech Technical University in Prague

Version 2

Radiation types according to the interaction mechanism

- Charged particles
 - ► Fast electrons (e⁺, e⁻)
 - \blacktriangleright Heavy charged particles α , p
- Neutral radiation
 - ightharpoonup Electromagnetic radiation (X-rays, γ)
 - Neutrons (fast or slow)
- Energy, natural and industrial, over eV → MeV

Law of radioactive decay

Activity defined as number of decays per unit of time

$$A = -\left. \frac{\mathrm{d}N}{\mathrm{d}t} \right|_{decay} = \lambda N \tag{1}$$

- N is the number of the nuclei and λ is the decay constant
- Units of activity:
- 1 Ci (curie) = 3.7×10^{10} decays/second, based on 1 gram of 226 Ra
- 1 Bq = 2.703×10^{-11} Ci, one decay per second
- At the laboratory scale we use kBq or MBq

3 / 12

Lifetime of the radioisotope

ullet Lifetime au and half-life $T_{1/2}$ related to the decay constant as

$$\lambda = \frac{1}{\tau} = \frac{\ln 2}{T_{1/2}} \tag{2}$$

• Solution to 1 with N_0 initial nuclei:

$$N(t) = N_0 \exp(-t/\tau) \tag{3}$$

ullet In general, N_0 may depend on time if it is the product of another decay, N of the sample may be reduced by the self-absorption

Specific activity

Activity per unit unit mass of the sample

specific activity
$$\equiv \frac{\text{activity}}{\text{mass}} = \frac{\lambda N}{NM/A_V} = \frac{\lambda A_V}{M}$$
 (4)

• M = molecular weight, $A_V = \text{Avogadro's number}$

Absorbed dose D

Absorbed energy per mass unit

$$D = \frac{1}{\rho} \frac{\mathrm{d}W}{\mathrm{d}V} \tag{5}$$

- $W = \text{energy}, \ V = \text{volume}, \ \rho = \text{density}$
- Measured in Grays, 1 Gy = 1 $J kg^{-1}$
- Old unit rad, 1 Gy = 100 rad
- Important to biological effects

6 / 12

Equivalent dose H

$$H = w_R \cdot D \tag{6}$$

- Measured in Sievert Sv
- w_R is the radiation weighting factor (quality factor), depends on the radiation species and energy

Fast electron sources

- Beta decay
 - Continues energy spectrum (3-body decay)
 - Often accompanied by nuclear γ
- Internal conversion
 - Monochromatic electrons keV → MeV, useful for calibration
 - Energy of nuclear de-excitation transferred to the orbital electron
- Auger electrons
 - Excitation energy from the atom transferred to the outer electron
 - Also monochromatic, energy lower compared to the internal conversion, few keV

Conversion electron sources

Parent Nuclide	Parent Half-Life	Decay Mode	Decay Product	Transition Energy of Decay Product (keV)	Conversion Electron Energy (keV)
¹⁰⁹ Cd	453 d	EC	^{109m} Ag	88	62 84
¹¹³ Sn	115 d	EC	113m [n	393	365 389
137Cs	30.2 y	β-	^{137m} Ba	662	624 656
¹³⁹ Ce	137 d	EC	^{139m} La	166	126 159
²⁰⁷ Bi	38 y	EC	^{207m} Pb	570 1064	482 554 976 1048

Figure: Some conversion sources, Knoll, Radiation detection and measurement, p. 6

Heavy charged particle sources

- Alpha decay
 - ► Emission of ⁴He, monoenergetic
 - Energy mostly 4 up to 6 MeV for practical use
 - ► Highest energy means the shortest half-life of the parent isotope
- Spontaneous fission
 - ightharpoonup Charged particles heavier than α
 - ► Transuranic isotopes, ²⁵²Cf
 - ightharpoonup Dominantly α at the same time as fission
 - Two fragments, back-to-back, light group and heavy group

Sources of electromagnetic radiation

- Gamma rays after β decay
 - Result of nuclear de-excitation, monochromatic
 - Common isotopes up to 2.8 MeV
- Annihilation radiation
 - After β⁺ decay, e.g. ²²Na
 - Monochromatic at 511 keV
- Gamma rays after nuclear reaction
 - The reaction may be induced by α source on ⁹Be or ¹³C leaving highly excited isotope and a neutron
 Energy dispersion about 1% due to the Doppler effect
- Bremsstrahlung
 - Interaction of fast electrons in matter
 - Continues energy spectrum
- Characteristic X-rays
 - Transition in the orbital electrons
 - ► Tens of keV, increasing with Z, unique for a particular element
 - Vacancy may be result of electron capture or internal conversion, or by an external source
- Synchrotron radiation
 - Electrons beam in a circular orbit
 - Intense and directional source of eV up to tens of MeV

Neutron sources

- Spontaneous fission
 - ▶ For 252 Cf, the neutron yield is 0.116 n/s per Bq and 2.3 \times 10⁶ per μ g of the sample
- Radioisotope sources
 - ightharpoonup Reaction of α from the radionuclide on the target of ${}^9\text{Be}$
 - **Background from** γ radiation
 - Manufactured as an actinide-beryllium alloy
- Photoneutron sources
 - Absorption of gamma-ray photon by a target nucleus while producing the neutron
 - Monoenergetic neutrons by monoenergetic gamma
 - ▶ 10⁵ gamma interactions needed for one neutron
- Reactions from accelerated charged particles
 - D-D and D-T reactions

12 / 12