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A necessary1 condition for passing the oral exam in Waves and Optics is the knowledge of the
following facts.

1. Euler’s identity eiφ = cosφ+ i sinφ and its consequence Re eiφ = cosφ.

2. The solution to the LHO equation, ẍ+ ω2x = 0, can be written in equivalent forms:

x(t) = A cos(ωt+ φ) = A sin(ωt+ ϕ) = a cosωt+ b sinωt = c1e
iωt + c̄1e

−iωt.

3. Average values

⟨cosωt⟩ = ⟨sinωt⟩ = 0, ⟨cos2 ωt⟩ = ⟨sin2 ωt⟩ = 1

2
.

4. 1D wave equation
∂2ψ

∂t2
= v2

∂2ψ

∂z2
,

where v represents the phase velocity—the speed of propagation—of travelling waves and
ψ(z, t) : R2 → R.

5. Boundary conditions at a fixed and free end at z = z0:

ψ(z0, t) = 0 (fixed),
∂ψ

∂z
(z0, t) = 0 (free).

6. Initial conditions for a medium on z ∈ ⟨0, L⟩ described by the wave equation:

ψ(z, 0) = f(z) (initial position),
∂ψ

∂t
(z, 0) = g(z) (initial velocity),

where f, g : ⟨0, L⟩ → R.

7. D’Alembert’s solution to the 1D wave equation:

ψ(z, t) = F (z − vt) +G(z + vt),

where F,G : R → R are arbitrary functions (of one variable) that describe the shape of the
wave propagating in the positive (for F ) and negative (for G) directions along the z-axis at
phase velocity v.

*Of twenty-six points, i.e. it is 10 in number base of 26.
1But not sufficient...
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8. Harmonic travelling wave in real and complex form:

ψ(z, t) = A cos(ωt− kz + φ), ψ(z, t) = Aei(ωt−kz+φ),

where ω ∈ R+ is the angular frequency and k ∈ R+ is the wavenumber. This wave propagates
through the medium with phase velocity vφ = ω

k
.

9. The dispersion relation gives the allowed combinations of ω and k, for which a travelling wave
can propagate in a given medium. The dispersion relation is given by the function ω(k), or
inversely k(ω) (or implicitly by f(ω, k) = 0). The permissible ω for a given k is obtained as
ω = ω(k) (and permissible k for a given ω is obtained as k = k(ω)).

10. The group velocity for a wave packet with a central wavenumber k0 is

vg =
dω

dk
(k0).

This velocity represents the speed at which the wave packet (its amplitude envelope) propagates.

11. At the interface between two media, an incident wave of the form F (x) reflects in the form
RF (−x) and transmits in the form PF (v1

v2
x), where vi are the phase velocities of the respec-

tive media, and R and P are the reflection and transmission coefficients. The shape of the
reflected wave is mirrored along ”vertical” axis and the shape of the transmitted wave is con-
tracted/elongated along the direction of propagation by a factor v2

v1
.

For harmonic travelling waves, the incident wave is ψd(z, t) = ei(ωt−k1z), the reflected wave is
ψr(z, t) = Rei(ωt+k1z), and the transmitted wave is ψt(z, t) = Pei(ωt−k2z).

12. The spatial wave equation is the equation for a spatial wave ψ(r⃗, t) of the form:

∂2ψ

∂t2
= v2∆ψ,

where ∆ is the Laplace operator in the respective dimension. In 3D Cartesian coordinates:

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

The phase velocity v represents the speed at which the wavefronts propagate through the
medium.

13. Wavefronts are surfaces of constant phase of a given wave. Specifically, for ψ(r⃗, t) = eiφ(r⃗,t),
the wavefronts are defined by the equation φ(r⃗, t) = φ0 for individual values of φ0.

14. � A harmonic travelling plane 3D wave is of the form:

ψ(r⃗, t) = Aei(ωt−k⃗·r⃗),

where k⃗ = k n⃗ is the wave vector, k = |⃗k| is the wavenumber, and n⃗, |n⃗| = 1, is the
direction of propagation. The wavefronts are planes perpendicular to n⃗. The propagation
speed is given by the phase velocity vφ = ω

k
.

� A harmonic travelling spherical 3D wave is of the form:

ψ(r⃗, t) =
A

r
ei(ωt−kr).

The wavefronts are spheres with the centers at the origin. The propagation speed is given
by the phase velocity vφ = ω

k
. The amplitude decreases as 1

r
.
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15. Maxwell’s equations in a homogeneous medium (described by permittivity ε and permeability
µ – so-called linear medium) without free charges and currents are of the form:

div E⃗ = 0 (Gauss’s law), rot E⃗ = −∂B⃗
∂t

(Faraday’s law),

div B⃗ = 0, rot B⃗ = εµ
∂E⃗

∂t
(Ampère-Maxwell law).

16. A plane harmonic electromagnetic wave is a solution of the wave equations for E⃗ and B⃗ derived
from Maxwell’s equations,

∂2E⃗

∂t2
= v2∆E⃗,

∂2B⃗

∂t2
= v2∆B⃗,

with v = 1√
εµ
, in the form

E⃗(r⃗, t) = E⃗0e
i(ωt−k⃗·r⃗), B⃗(r⃗, t) = B⃗0e

i(ωt−k⃗·r⃗),

where ω = v|⃗k| (the dispersion relation for EM waves), E⃗ ⊥ n⃗ and B⃗ ⊥ n⃗ (the EM wave is a

transverse wave), E⃗ ⊥ B⃗, E = vB, and (E⃗, B⃗, n⃗) form a right-handed set of vectors.

17. The intensity of an EM wave is given by I = ⟨S⃗⟩, where S⃗ is the Poynting vector (energy flux),

which for an EM wave has the form S⃗ =
√

ε
µ
E2 n⃗, where n⃗ is a direction of propagation.

18. � A fully (generally elliptically) polarized EM wave traveling in the z-axis direction has the
form

E⃗(r⃗, t) = Ex0 x⃗ e
i(ωt−kz+φ1) + Ey0 y⃗ e

i(ωt−kz+φ2).

� A linearly polarized EM wave has the form

E⃗(r⃗, t) = E0 n⃗ e
i(ωt−kz+φ),

where n⃗ is the unit vector of the polarization direction. For a given z, the electric field E⃗
traces a line segment in the xy plane over time.

� A circularly polarized EM wave is a wave where, for a given z, the electric field E⃗ traces
a circle in the xy plane over time. One possible form of a circularly polarized wave is

E⃗(r⃗, t) = E0 x⃗ cos(ωt)± E0 y⃗ sin(ωt),

where the different signs correspond to different directions of the rotation of the vector E⃗
in the xy plane.

19. � A polarizer transmits only the electric field component in the transmission direction n⃗
according to the relation

E⃗out = (E⃗in · n⃗) n⃗.

� A wave plate with a phase shift ∆φ and axis n⃗ alters the electric field in the following
manner. If the input field is

E⃗in = E1 n⃗ e
i(ωt+φ1) + E2 n⃗⊥e

i(ωt+φ2),

then the output field has the form

E⃗out = E1 n⃗ e
i(ωt+φ1+∆φ) + E2 n⃗⊥e

i(ωt+φ2),

where n⃗⊥ is the unit vector perpendicular to n⃗.

3



20. The refractive index n of a medium is defined as n = c
v
, where v is the phase velocity in the

medium. The corresponding dispersion relation is of the form ω = c
n
|⃗k|.

21. The law of reflection and refraction of a plane EM wave at a planar interface. For the angles
of incidence ϑd, reflection ϑr, and refraction ϑt, measured from the normal to the interface, the
following holds:

ϑd = ϑr, n1 sinϑd = n2 sinϑt,

where n1 and n2 are the refractive indices of the ”incident” and ”transmitted” media. The
critical angle ϑC is given by sinϑC = n2

n1
for n2 < n1. For n1 < n2 there is no critical angle. For

incidence angles ϑd ≥ ϑC , total internal reflection occurs.

22. The diffraction integral

E⃗ = E⃗0

∫
B

1

r
ei(ωt−kr) dS,

represents the superposition of spherical waves with the same but undefined amplitude, emitted
from every point of the aperture B in the screen. The simplest approximation is the so-called
Fraunhofer diffraction integral:

E⃗ =
E⃗0

R
ei(ωt−kR)

∫
B

ei
k
R
(xX+yY ) dS,

with the meaning of the individual symbols detailed in the textbook.

23. A diffraction pattern is the spatial distribution of intensity I(x, y) = ⟨E⃗(x, y)2⟩ on the screen
in the xy plane.

24. A diffraction pattern typically contains maxima and minima of intensity, observed at an angle
θ (the angular deviation from the aperture axis). Qualitatively, we have

sin θ ∝ m
λ

d
,

where m ∈ N0 is the so-called order of the maximum, λ is the wavelength of the light used, and
d is the characteristic dimension of the aperture — for example, the distance between adjacent
slits, the size of a circular aperture, etc.

25. For the positions of the maxima on the screen close to the aperture axis, we have

ym ∝ mL
λ

d
,

where L is the distance between the screen and the aperture.

26. A diffraction grating with N slits narrows the diffraction maxima according to the relation

∆(sin θ) ∝ 1

N

λ

d
.
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