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Introduction

These are unofficial lecture notes for the course ”Introduction to Strings”. It will be expanded
and modified over time. I encourage the reader to look for mistakes and provide a feedback.

This course is based mainly on an excellent book [1]. It assumes an elementary knowledge of
classical mechanics, quantum mechanics and special relativity. A basic knowledge of quantum
field theory and general relativity is helpful but not necessary.

Question: What is string theory?

Originally, it is a quantum field theory obtained by a quantization of the mechanics of a
relativistic string moving in the spacetime. For last fifty years it is still believed to be a promising
candidate for a quantum theory of gravity. Why is this important? We know four basic forces
of nature: electromagnetism, weak interaction (description of 8-decay), strong force (interaction
of constituents of the atom nuclei) and gravity. There are two major achievements of physics of
the twentieth century:

(i) Standard model of particle physics: This is a pinnacle of quantum field theory. It
describes all known elementary particles and correctly predicts their interactions. It is fully
compatible with special relativity. It describes (and to some extent unifies) three of the
above forces.

(ii) General relativity: This is a description of gravity in terms of geometry of spacetime. It
proved to be extremely successful in describing the macroscopic Universe. Modern cosmol-
ogy is fully based on general relativity and it correctly predicts black holes, gravitational
waves, gravitational lenses, etc.

It seemed inevitable that there is also a quantum field theory of gravity - with a new elementary
particle “graviton”, an intermediate boson serving as a carrier of the gravitational force. However,
it turned out that even in the simplest cases (the spacetime is almost flat) and out of any
extremities (black holes), all naive attempts fail. This is mainly because the resulting theory
always horribly fails at high energies. Using more clever words, one observes that it is non-
renormalizable. But we need a high-energy sector of gravity to understand early universe and
black holes! String theory is one of many theories offering partial answers.

What are successful features of string theory?

1) Gravity is discovered within string theory - it is an intrinsic feature.

2) It contains all particles of the Standard model.

3) By design, it is free of UV divergences, the biggest plague of naive quantum gravity.

(1)
(2)
(3)
(4) String theory fueled tremendous advancements in mathematics.
What are failures of string theory?

(1) The original idea was to reduce number of “god given” parameters of the Standard model.
However, it turns that there is unfortunately many possibilities (1059 — 10272000) how the
universe can look like. This leads to a not-so-well received anthropic principle.



(2) Tt requires supersymmetry to be consistent. In a nutshell, supersymmetry conjectures a
symmetry between bosons (carriers of force) and fermions (matter fields). Each particle
(e.g. photon) has its superpartner (e.g. photino). No such particles were ever observed. If
supersymmetry fails, string theory fails.

(3) Some critics of string theory say that its unfalsifiabile - that is there is no experiment which
can be designed to test whether the theory is true or false. It does not give any predictions
which can be actually measured.

(4) Many people object that the hype surrounding string theory overshadows other viable quan-
tum gravity theories (e.g. loop quantum gravity) and makes it difficult for people working
in those to get funds and job positions.

Despite the listed shortcomings, string theory is still a fascinating achievement of theoretical
physics, fueling a unforeseen and fruitful collaboration of mathematicians and physicists. I hope
this course will serve well as a glimpse into this tremendously huge theory.

Please be aware that your lecturer is learning with you. Do not hesistate to ask question,
but do not always expect well-thought-out answers.



1 Special relativity and extra dimensions

1.1 Conventions and basic notions

As any viable modern physical theory, string theory must be fully compatible with special rela-
tivity. This amounts to working with spacetime. Let us thus recall basic conventions we will use
throughout this course.

If we want to describe some event happening, we record a time ¢ when it happened, and its
coordinates (z,y,z) in some chosen reference inertial frame. It is convenient to combine those
into an 4-tuple (ct,x,y, z), where ¢ is the speed of light. Note that all four variables have a
dimension of length. It is convenient to introduce those on equal footing as

= (2%, 2! 2%, 2%) = (ct, 2y, 2). (1)

In other words, we fix some coordinate frame z* on a spacetime R*.
Now, suppose two events are described by coordinates z# and z* + Az#. The invariant
interval As? separating these two events is defined by
—As? = —(Az%)? + (Azh)? + (A2?)? + (Ax®)2 (2)
The main postulate of special relativity is the following: If z’# and z'# 4+ Ax’* are the coordinates
of the same event with respect to any other inertial frame, one has As? = As’2.

We say that this interval is timelike, if As? > 0. For example, movement of a massive
particle can be described by a curve z#* = z#(7) caled the worldline, any two points on this
curve are separated by a time-like interval. In this case, we define

As =V As2. (3)

We say that the interval is spacelike, if As? < 0 and lightlike, if As? = 0. Any two points on
the world-line of photon are separated by a light-like interval.

Now, suppose we have two sets of coordinates z* and z'# with respect to their inertial frames.
Suppose those are related by a linear transformation, that is

't = LF,x", (4)

for some matrix L = [L*,] € R**. Note that we will always label rows by the first index and
columns by the second index, regardless of its vertical position. Let us record two events in both
coordinates:

(i) First event is described by (0,0, 0,0) in both frames;

(ii) The second event is described by x* and z'¥, respectively.
The invariance of the spacetime interval forces
—(3;‘/0)2 + (.13/1)2 4 (J)/2)2 + ($/3)2 — —(JJO)Q 4 (1‘1)2 4 (1‘2)2 4 (J)S)Q. (5)

It is convenient to write this as
Nz’ = nata?, (6)



where 799 = —1, m11 = 1, me2 = 1, 33 = 1, that is we have a matrix n = [1,,] € R** in the form

100 0
0 1 0 0

10 010 (7)
0 00 1

If we introduce a notation z,, := n,,x", we can write the above equation simply as xzx’“ =x,x",
where we always utilize the Einstein summation convention. If we plug in (4), it is not difficult
to work out the relation

N LP ALY 1o = Mg, (8)

for each A,k € {0,1,2,3}. In matrix form, this can be written as LTnL = 7. Linear trans-
formations satisfying this constraints are called Lorentz transformations and they form the
Lorentz group O(3,1).

Now, suppose we have a quantity a = (a*) labeled by four spacetime indices, with respect
to some Lorentz frame coordinates z#. One says that a is a Lorentz vector, if its version
a’ = (a'*) in with respect to the frame (4) takes the form

o = LFa”. 9)

It is easy to see that a*a, is independent of the Lorentz frame, it is an example of a Lorentz
scalar. For any two Lorentz vectors a and b, we write

a-b:=a,b =a"b, =nu,a"b". (10)

Now, suppose we have a worldline of a massive particle described as a curve z# = x*(t). Let
us fix two times to < ¢1. The proper time elapsed between events a*(ty) and z*(t1) is defined

as an integral
s(t1,to) / \/1 (11)

where #(t) is the usual velocity, that is #(t) = 4%

7. One often fixes to and writes

s(t) = s(t,to):/t % (12)

It has an important feature. Suppose (ct’,2’,y’,2’) is a different Lorentz frame, related to
(ct,z,y, z) by (4). Then §'(t},t}) = s(t1,to). Moreover, note that

ds 1

E(t) = W >0, (13)

which means that we may use s as a convenient parametrization of worldlines, that is write
M = x#(s) as a curve parametrized by the proper time s.

Exercise 1.1. Show that proper time is indeed a Lorentz invariant.

Proof. Suppose z'# = L*,x¥. Since we require both ¢y < t; and ¢, < t}, we only consider an
ortochronous Lorentz transformation. Equivalently, L% > 0. Then

o v"2(t) 1 da/® dz'v
", 1 :/ 1-— ’—/ A =Ny —— dt’ 14
s ( 1 O) " 2 " c Nuv d#  dt’ ( )




We can now plug in the transformation

dz'* dz? dt dz?
. % . g
AT TR T T (15)

By plugging this in, we can continue and write

dx’'» dz'v o dt ., dz> dz*
—Npv —,, dt’ = / C\/_mWLH)\LVH(dt’)Q dt’
t/

e dt’ . dt dt
iy dz> dav dt
— N —dt’ 16
/té]c TR e ar (16)
ti 1 dz* dzx
— . = dt = s(ty, t0).
/toc TR A s(tu,to)

Note that the fact that L is ortochonous implies that <& > 0. ]

dt’

1.2 Light-cone variables

Let z# = (20,21, 2%, 23) be a fixed set of Cartesian coordinates of the Minkowski spacetime. It

is convenient to mtroduce new coordinates

1 1
+ . 0 1 - . 0 1
= T+ T o= T —x). 17
T ), (@~ ") (17)
Remaining coordinates are not modified. It is easy to find the inverse transformations. Coor-
dinates (z*, 27,22, 23) are called light-cone coordinates corresponding to #*. For a photon

moving in the positive o direction, we have 2~ constant and z increases.

Note that z# and (zF, 27,22, 2?) are never related by Lorentz transformation. For example,
we can calculate the components of the Minkowski metric

_ Oxt Oz 02 3x0+8x1 ozt 1+1*0 (18)
T Gt 9zt M T T 9zt 9zt | 9zt ozt 22
_ Oxt Oz o 8x0+8x1 ozt 1+170 (19)
== et 9zt ™ T T g 0z- | 0z 0a— 22
_ Oxt Ox ~ 92° 9a° n ozt ozt 1 1 1 (20)
T et 9z T T gt 9z— | dxtdz- 2 2
The matrix of the Minkowski metric thus takes the form
0 -1 0 O
. -1 0 0 0
1o o 10 (21)
0 0 01
Obviously 77 # 1. Note that every Lorentz vector a can be also described by its coordinates
at = %( a’+a ) together with a? and a3. Note that in light-cone coordinates, one has
a-b=m,a"b’ =—atb” —a b + a*b* + a*b’. (22)
We can also lower and raise indices using 7, that is define a,, := 7j,,,a”. Note that then ax = —aT.

To avoid confusion, we shall henceforth use light-cone indices + and — only in the upper position.



1.3 Energy and momentum

Having an invariant proper time, let a# = z#(s) be a worldline of a massive particle. Then its

four-velocity is defined as
w(s) = () (23)
ds 7

It follows that u*(s) forms a Lorentz vector. One can express it in terms of the coordinate time
t. Then, plugging in the inverse to (13), one has

dz* dt da*
Pty = —()— =~(t)— = (1) - v(t)). 24
w(t) = () 8 =) = 40) - (e ) (24)
Note that u? = u,ut = —y(t)*(c? — v*(t)) = —c*y(t)*(1 — ”iﬁ“) = —c?. If m is the rest mass of
the particle, we can define its four-momentum as
. E
p* = mut =my - (e, V) = (;,ﬁ), (25)

2

where E := ymc? and p’:= ym. It follows that p? = p#p, = —m?c?, which proves the relativistic

energy-momentum constraint
— —p-p=m>c (26)
Note that unlike 4-velocity, 4-momentum is well-defined also for massless particles.

Let us discuss energy and momentum in light-cone variables. Observe that

da®* Ozt ox* 1
= = 9.0 u® + 9l ut = ﬁ(uoiul) > 0. (27)

This is because (u°)? — (u')? > —u-u = ¢?, so [u®| > |u'|. This means that for massive particles,
both 1 and 2~ increase along the worldline. It is easy to show that this is true also for photons,
except the case when they move in +2! direction - then either 2~ or 21 “freezes”. One can thus
declare either of those variables to be the light-cone time coordinate. By convention, one chooses

this to be z7. What variable plays the role of energy in light-cone coordinates? Note that

E e
P = F e > 15 ), (28)

so pt = %(po + p!) is always positive. Note that p-x = —p%2° + # - p. In light-cone variables,
we have
prx=prat +p_x” +pa’ + psa’. (29)
Since we have chosen 2 to be our “time variable”, we propose p;, = —%. Since py = —p~,
and we have promised to not use the lower light-cone indices, we define
E':=cp. (30)

This choice is motivated as follows. Recall that wavefunction of a particle with a momentum
p=(£,p) can be written as

_%(Et_ﬁ.f)):exp(£p~x). (31)

Y(t,Z) = exp( 5



The Schrodinger equation can be rewritten as

o) E

th—— = —. 2
ihy 5=V (32)
It follows that in light-cone variables, we get

. 3¢ . { . Elc

Zh@sci = hﬁpﬂﬁ =p Y= - Y. (33)

1.4 Extra dimensions

It will turn out that it is not enough to consider a four-dimensional spacetime. Instead, we will
have to assume that our spacetime is D-dimensional, where D > 4. Mathematically, nothing
changes too much, we will consider coordinates z*, u € {0,..., D}.

The Minkowski metric tensor on R” is given by n = —da® ® dz® + Z?:1 dz' ® dzt, a by
Lorentz transformations, we mean elements of the group O(d,1), where d := D — 1. Light-
cone coordinates are defined in the same way as before. As they involve only z° and x!, all
considerations are valid for an arbitrary D > 4.

However, it will also turn out that the extra dimensions will be in fact compact. In strict
mathematical sense of the word, space time manifold M will be a fiber bundle over the Minkowski
spacetime R* with compact fibers. For our purposes, we assume that some of the coordinates
describe space with some its points identified.

For example, we can consider a space of points z on the real line, where we impose the
identification  ~ x + 2mnR for all n € Z, where R > 0. Clearly, this is just a circle of a radius
R. This is a convenient how to treat compact spaces which can be constructed in this way, since
functions on the circle can be described as f = f(z) of the original “Cartesian” variable, only
with the identification f(z) = f(z + 27nR) for all n € Z.

We will sometimes use the term fundamental domain, which is a connected subset of the
space “before identification”, such that

(i) No its two points are identified;

(ii) Every point is either in the fundamental domain, or is identified with some point in the
fundamental domain.

In the above example, the fundamental domain is for example [0, 27 R). The resulting compact
space can be constructed by adding a boundary to the fundamental domain and applying the
identifications on the boundary. In our example, take [0, 27 R] and identify 0 ~ 27 R to obtain
the circle of radius R.

Example 1.2 (Extra dimensions affect physics). Let us first consider a well-known example
of a one-dimensional “infinite potential well”. When looking for the energy spectrum of this
problem, one solves the equation

o A() + V(@)le) = B), (34)

where the potential V(x) satisfies



One finds ¢(z) = 0 for all z ¢ (0,a) and for = € (0, a), the eigenfunctions satisfying the correct
boundary conditions are

V() = \/z sin(k%), kN (36)

The corresponding energies are then given by

B km
_ (=

B, — —
k 2m - a

2. (37)
Suppose that we now add an extra dimension y, being curled into a small circle of radius R, that
is y ~ y+ 27 R. For simplicity, assume that V' does not depend on y. One solves the Schrodinger
equation by the separation of variables, that is ¢ (z,y) = ¥ (z) - ¢(y). The equation for = € (0, a)

turns into B2 1 d%yx) R 1 d2p(y)
T @) At wmely) AP >

Hence both z-dependent and y-dependent parts of this equation have to be separately constant.
The solutions are of the form ¥y, ¢(z,y) = Vi (z)@e(y), where

kmx

Yr() = g sin(T), (39)

is the solution of the original Schrédinger equation satisfying the boundary conditions at x €
{0,a}, and ¢y (y) is of the form

oe(y) = ag sin(%) + by cos(%)7 (40)

which is a unique solution to the 1-dimensional problem with the periodicity condition ¢.(y) =
¢¢(y + 2 R). There are no other restrictions in ¢¢(y). The corresponding eigenvalues are

l

= 21T 4 () (a1)

2m = a
The original energy levels correspond to ¢ = 0. Let us now consider a lowest non-trivial “new”

energy level, that is F; ;. One has

hZ 72 1
E11:7(af2+ﬁ)~ (42)

Suppose that the compact dimension is very small, that is R < a. We see that in this case

Ei1 = %% Let us compare this to the original energy levels Ej, that is we ask for which k
one has Fy 1 = Ej. This gives us

1 km

s (43)

that is k ~ m%. Since R < a, this means that k is “very large”. We start to notice something
happening to the spectrum only at very high energy levels.



2 Electromagnetism and gravity

2.1 Covariant electrodynamics

Recall that in Heavyside-Lorentz units, Maxwell equations (in vacuum) take the form

. 108
rot(E) + o 0, (44)
div(B) = 0, (45)
le(E) =P, (46)
- 10E 1.
rot(B) — o o (47)

where E is the electric field, B is the magnetic field, p is the charge density and 5 is the current
density. Note that g = pg = 1 in this system and [E] = [B]. First two Maxwell equations are
called homogeneous.

Suppose (E, B) solve homogeneous Maxwell equations. Since div(B) = 0, one can write

B = rot(A) (48)
for some vector field A. Plugging this into the first equation, we see that rot(E + %%—‘f) =0,
hence there is a scalar field ®, such that

o 104
EFE=———-Vo. 49
c Ot (49)

-,

Conversely, if we choose any (®, A), we can solve the homogeneous Maxwell equations by declar-
ing B and E by (48) and (49), respectively. We can certainly modify A by adding a gradient of
some scalar field e, that is

A" = A+ Ve, (50)

without changing B. If want this transformation to preserve also E, we must modify the scalar
potential ® as

1 0e
USRS S 51
c ot (51)
We say that the physics is invariant under the gauge transformations. One can combine those
fields into a single Lorentz vector A* := (&, A), called the 4-potential of an electromagnetic

field. Corresponding Lorentz covector is A, := n,, A" = (—<I>,/Y).
electromagnetic field strength as

One can then construct a

F,, =0,A, —0,A,, (52)
where we will always use the shorthand notation 9,, := %. The gauge transformations can be
then simply written as

Al = A, + O (53)

Exercise 2.1. Show that E and B can be obtained from the field strength F,, as

1
Ei = FiO; Bz = iﬁiijjk‘ (54)

10



Let us construct the completely skew-symmetric tensor:
T)\Hi/ = 8AF;UJ + 81/F)\u + auFll)\- (55)

Show that this tensor is completely skew-symmetric and homogeneous Mazwell equations are
equivalent to Th,, = 0.

Proof. One has

Ei = 6'2A0 — 80A1 = *81(13 — latAl
¢ (56)

1
B; = 5eijn(0;Ar — Opdj) = €ij0; Ay = rot(A);

The fact that T, is skew-symmetric follows from a general fact: if Sy, is skew-symmetric in
puv, the symbol Ty, = S[)\W] = S + Suap + Sy is completely skew-symmetric. The only
non-trivial components of T, are

Tio3 = 01Fos + 03 F12 + 0o F31 = 9;B; = div(B),
%eijkTOjk = %eijk{aOij + O Fo; + 0;Fro} (57)
= %&Bi + €ijk0; By, = %&Bi + rot(E);.
This proves the claim. |

-,

Let us examine the inhomogeneous Maxwell equations. One combines (p,j) into a single
quantity, 4-current j* := (¢p, j).
Exercise 2.2. Show that inhomogeneous Mazwell equations can be written as
2 1 3%
O, F +E] =0. (58)

where FH = ntAgsFy ..

Proof. This equation has four components. For v = 0, using the skew-symmetry of F*” and
F = _F,y = —E;, one finds

) 1 _
0=0;F"° + —ep = —div(E) + p. (59)

Next, note that the relation of F,, to B can be inverted, one finds F* = Fij = €1, By. For each
k € {1,2,3}, one thus has

1 %, 1
0= Qb + —j% = QF* + 0;FF + —j*

1 g1 gk
= EatEk + 0j(€jreBe) + - EatEk — €kje0;Be + ” (60)
1 -, ik
= ~9,E), — rot(B)y + L.
c c
This finishes the calculation. |

11



Exercise 2.3. Let z'* = L*,x¥. We impose that 4-potential transforms as Lorentz vector, that
is A (z") = L, AY (z).

(i) How does A, transform?

(it) Show that F, transforms as a Lorentz covariant 2-tensor.

(iti) Show that Mazwell equations are invariant under Lorentz transformations, if j* forms a
Lorentz 4-vector.

Proof. Suppose a* are components of the Lorentz vector. The relation LTnL = 7 can be also
translated as L™ = n~' LTy, that is [L™!*, = n**L"\n., = L,*. Then one finds

a;L = nua’ = nHVL”Aa)‘ = 77“)‘L"A77WaR =L, a. (61)
Consequently, we immediately find that
A:L(x') =L,"A, (). (62)
We can now also easily deduce the transformation rules for partial derivatives:

0 ox¥ 0 11 y
On=gom = gwmggr ~ LV u0r = L0y (6
It is now easy to find the transformation rule for F),,, namely

Fl (') = 0,A,(a)) = 0,A],(2') = L,"L, M0 Ax(z) — OrAr(x)}

64
— L;J,KLUAFNA(J)) ( )

It is straightforward to write the transformation rule for F**, namely F'* (z') = LM, LY \F**(z).
We can thus for example verify that the inhomogeneous Maxwell equations transform as Lorentz
vector. In particular, they are hold in all inertial frames at once:

O FM (2) = L O\ LF o LY\ F™ (x)} = [L7'Y LF o LY \ONF"™X(2) = LY O\FX(x).  (65)

Similarly, one can prove that T),, transforms as a covariant Lorentz 3-tensor. |

2.2 Electrodynamics in more dimensions

The above description of electromagnetism allows for an easy generalization to an arbitrary
dimension. We simply declare A* to be the potential, u € {0,..., D}, and the field strength is
the corresponding 2-tensor F},, defined by the same formula.

Hence let D > 4, and write d := D — 1. Observe that one can still define the electric field,
namely let E; := Fjo for ¢ € {1,...,D}. Note that the magnetic field is no longer a vector field,
but rather a (time-dependent) 2-form on R<.

Note that the zeroth component of the inhomogeneous Maxwell equation (58) still gives the

Gauss law:

12



Suppose we want to find the electric field of a static point charge ¢ at the origin. Let r :=
V(@2 + -+ (z9)2 be the radius. We can integrate both sides over the d-dimensional ball
B4(r) around the origin. This gives

/ 0;F; - dvol = q. (67)
Bd(r)

The Stokes theorem is still valid - we may replace the integral by the flow of E over the boundary
OB (r) = S%1(r). Since we can assume that F is radial and depends only on r, one finds

- R 27Td/27"d_1
/ O, - dvol — / B(r)-d§ = vol(5*" () - E(r) = 2 " B(r). (68)
Bd(r) Sd=1(r) F(§)
We thus find the electric field of a point charge in the form
L'(§) q
E(r)= ord a1 (69)

We see that in more space dimensions, electric field of the point charge falls of faster! In general,
suppose that we have time-independent A,. Then

E; = Fyo = 0;A¢ — 00A; = —0;P, (70)

that is E = — grad(®). Plugging this into Gauss law gives the Poisson equation A® = —p,
where the Laplacian is defined accordingly as A = Zf;ll o2,

Exercise 2.4. Let d > 1. Prove that the volume of of the (d — 1)-dimensional unit sphere
Sa=L = {(2t, - Jad)y e R | (21)2 + -+ + (29)2 = 1} is given by the formula

ol

2

vol(§471) = (71)

)7

where T'(x) is the function defined for each x > 0 by the integral

—
—~
[V]IS®

I(z) = /0 T at et (72)

Derive the formula for the general radius r. Prove that the volume of the d-dimensional unit ball
is given by

/2
vol(BY) = ———. 73
Proof. One proves the formula by evaluating the integral
1 n_—r?
I; = dz---da"e (74)
Rd

in two different ways. First, one can write this as a product of one-dimensional Gaussian integrals

vl

d oo .
=] [ e ==t (75)
i=1Y —X®

13



On the other hand, by a simple rescaling argument, one can argue that vol(S9=1(r)) = 741 vol(S9~1),
where S971(r) denotes the (d — 1)-dimensional sphere of radius 7. One can calculate the integral
I, by dissecting R into thin spherical shells of radius r and thus

Iy =

. 2
dler

/ drvol(Sd_l(r))e_T2 = VOl(Sd_l) / drr
0 0

1 [ 1...d
vol(S4-1) . 5/ dtt2 et = vol(S4-1) .
0

(76)
=T'(=2).
2 (2)
Comparing the two expressions gives the result. For the volume of the unit ball, one can certainly
calculate it as

1 2 % d
vol(BY) = / vol(S4=1(r))dr = 272"
0

—

F(%) d]é: %

iR

d
2 ™
_ , 77
rg) TE+1) (1)
where in the last step, we have used the recurrence relation I'(x + 1) = z - I'(x). This can be
obtained immediately by using per partes for the evaluation of T'(z 4+ 1). It is easy to check that

rQ) = / dte ' =1,
0

(78)
1 > 1 4 o 2
I(z) = dttze™ =2 dre™™ =/
2 0 0

(79)
This can be now easily used together with the above recurrence relation to prove the required
volumes. E.g. for d = 3, one finds

F(%) = %F(l) = %\/7? hence vol(S2(r)) =

ond 9 9
re = 4qre. (80)
VT

This finishes the discussion. |
2.3 Gravity and Planck’s length

Recall that in general relativity, gravity is described by a metric tensor g. In some (local)
coordinates, it can be written as

g = g (z)dz* ® dz”,

and the equations for g are given by the Einstein’s field equations

(81)
1 &G
Ry + (A= gR)gpw =i L

(82)
For the purposes of quantum theory (and classical limit), one assumes that g,,, can be expanded
as a fluctuation around a flat metric, that is

g,w(:b‘) = Nuv + huu(w)'

Plugging this into (82) for A = 0 and T, = 0 and considering only terms linear in h gives the
linearized equation for h, namely

(83)

O™ — 9 (9B + 8 hH™) 4 O*0"h = 0,

(84)
14



where W = n* p**hy, and h = 7" h,,. This can be viewed as a gravitational analogue to the
Maxwell equations without the presence of sources, since

0=0,F" =0,(0"A” — 0" A*) =0A" — 0,0" A*. (85)

Linearized gravity exhibits some similarities to electromagnetism. Indeed, suppose that we con-
sider a coordinate transformation
't =gt — (), (86)

for small e* (and with small derivatives). In new coordinates, the metric tensor field is given by

oz oz
g:“,(x’) = W@Qw(x) (87)

By plugging in the expansions around the flat metric and neglecting second order terms in €, we
find the transformation rule

W (2) = W (z) + O1e” (z) + 87" (z) + O(e, h) = W (z) + Soh (z) + O(e, h).  (88)

where O(e, h) contains terms linear in h and e. Instead of viewing this as an expression of
the same tensor in different coordinates, one can view this as a gauge transformation of the
field h#*¥(x). In fact, it turns out that the equations (84) are (exactly!) invariant under the
transformation

WP () = BV () + Soht () (89)

Note that the field h,, (z) transforms as a covariant Lorentz 2-tensor under Lorentz transforma-
tions. This makes the analogy with electromagnetism complete.

Now, let us discuss dimensions. Newton’s gravitation law in four dimensions says that the
magnitude of force between two masses m; and ms separated by a distance r is given by

-, G
|F(4)| _ iy (90)

r2
For the dimensions, this gives us

L? ML L? L3
[G} = [FOI'CG] . W = T2 W = MT2 . (91)

Numerical values of the three fundamental fundamental constants GG, ¢ and A are

. 2
G =6.674 %101 sakg - m”

c=2.998 x 1052, 1 =1.055 x 10~ (92)
S

m
kg - s?’
One can attempt to find new units of length, mass and times, such that the numerical value of
those constants in these units is one. These are called the Planck length {p, the Planck time tp
and the Planck mass mp. We thus require

G=1- i Ce=1.12 5:1.%_ (93)
mp - t?; ﬁp tp
To do so, let us plug these expressions into
3a 2 —« —2a—p—
(G)* ()P (h)Y = 5720 2P0 (94)
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There is a unique choice of parameters («, 3,7) allowing us to express {p, mp and tp:

Gh
lp = == 1.616 x 10~ 3¢m, (95)
he _5
mp =[5 = 2176 x 1077, (96)
Gh
tp =/ —5 = 5391 x 10~s. (97)

This also shows that £p is the unique length, which can be expressed as a product of powers of
fundamental constants (G, ¢, h).

Suppose we have a gravitational field g. Force it exerts on test particle of mass m is given
by F = mg. From Newton’s gravitational law, one can deduce the Gauss gravitational law,
in its differential form

divg = —4nGp, (98)

where p = p(Z) is the mass density. Since gravity is a conservative force, one has § = — grad(V}),
and the above equation becomes the Poisson equation for V,, namely

AV, = 4nGp. (99)

Let us discuss units. Since [§] = [Force] - M~' = L -T2, we have [V,] = L-[g] = L* -T2
Consequently, one has [AV,] = T—2. Suppose that we want this to hold in arbitrary number of
D spacetime dimensions, that is

AVP) = 4xGP)p. (100)
The left-hand side has the same dimension, but note that then
-1

[GP)] = [AVQ(D)] N — Vv (101)

One can now again define the D-dimensional Planck length KEDD) as the one which can be expressed
as a unique product of powers of G(P), ¢ and A. One finds

RGP rG G , GO

=02 = 102
03 03 G P Ga (O)

D _
(tp)P=

where G = G and (p = Kgf) are the ordinary quantities defined above.

2.4 Compact extra dimensions

Note that [GP)/G] = LP~%, that is precisely the length to the power of number of extra di-
mensions. Recall that we have considered the idea that the extra dimensions are compact, that
is “curled” up. They can thus in principle span the finite volume, the quantity precisely of the
dimension LP~*. This suggests that the ratio of gravitational constants may be in theory related
to this volume. This can be verified by the following thought experiment.

Suppose we have three usual spatial directions (x',z2 2%), and one extra dimension z*,

which is assumed to be curled into a circle of radius R, that is we impose the identification
x* ~ z* + 27 R. We suppose that in five-dimensional spacetime, the total mass M is distributed

uniformly at the circle ! = 2% = 23 = 0. We thus have M = 2w Rm, where m is the mass per
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unit length. For symmetry reasons, the resulting potential Vg(5) cannot depend on the coordinate
4. The corresponding mass density can be written as

p®) = m - 6(x1)0(x1)0(x2). (103)
This is well normalized and has correct dimensions, since
27 R
/ dxldxzdx?’/ dz*p® = 2rRm = M. (104)
R3 0

Now, an effectively four-dimensional observer, this is observed as a point mass M at (0,0, 0),
hence p®) = M§(2')d(22)5(2%). The 5-dimensional Gauss law takes the form
5 (.1 .2 .3 5) (5 GO
AVg( )zt 22, 2%) = 4n GO p® :47rﬁp( ). (105)
Since Vg(s) is for all purposes (forces on test masses) the effective potential in the 4-dimensional
world, and A is effectively just a three-dimensional Laplacian, this has to be the Gauss law for

the point mass M. But this shows that G = gﬁ% = %05)7 where {¢ is the length of the extra

compact dimension. This can be, with some grain of salt, generalized to
G
— =V, 106
=V (106)

where V¢ is the volume of the extra dimensions. Suppose that Vo = (£¢)P~%. Then one can
express {¢, that is the required length of compactified dimensions, in terms of the D-dimensional

Planck length ZSPD) and our “effective” Planck length /p as

(o)l 2
P

It turns out that if £ is “sufficiently small”, the fundamental length scale KSDD) in more dimensions
can be a lot bigger. For example, one can suppose that it is only a tiny bit smaller than today
scope of experiments, say égDD) ~ 10~18¢cm. Then (o ~ 100318
has £c ~ 10~ 3¢em.

cm. Hence e.g. for D = 10, one

3 Non-relativistic string

3.1 Equations of motion

In this section, we will consider a motion of non-relativistic string of length a in (z,y) plane,
stretched along the = axis by tension Ty. We consider only infinitesimal transversal oscillations.
We assume that the string does not stretch, that is the tension and mass density per unit length
do not change, and the motion is fully described as a function y = y(¢, x), where = € [0, al.

By analyzing the forces exerted on infinitesimal pieces of the string, one arrives to the wave
equation:
Py Ty Py
ot g 0x?’
where T} is the string tension and pg is the mass density per unit length. Let vy := /7o /o be
the corresponding phase velocity of the propagating waves.

(108)

One usually imposes two different kinds of boundary conditions at string endpoints z € {0, a}.

17



(a) Dirichlet boundary conditions: This assumes that the endpoints of the string are fixed
and their position is equal to zero, that is

y(t,0) =y(t,a) =0, (109)
for all ¢t € R. In this case the solution can be found as a sum of modes in the form

y(x,t) = yn(x) sin(wnt + ©n), (110)

for each n € N, where w,, = vo™" and the function y,(x) has the form

Yn () :Ansin($). (111)

(b) Neumann boundary conditions: This assumes that the endpoints of the string are mass-
less hoops which can slide along infinite poles. This requires

% oy = Wit a) =
%(tvo) - ox (tva) - 07 (112)

for all ¢ € R. In this case, the shape of the solution in the n-th mode is given by

yn(2) = Ay cos(@), (113)

a
and the equation also allows for a uniformly moving string y(¢, ) = aot + yo.

Both boundary conditions can be also combined. The constants { A, ¢, }52; must be determined
by initial conditions. The general solution of the wave equation is of the d’Alembert form

y(t,x) = hy(x — vot) + h_(x + vot), (114)

where ho+ = hi(u) are functions of a single variable. By declaring the initial shape y(z) = y(z,0)
and initial velocity v(z) = %(O,z)7 one can fully solve the equation. Indeed, one obtains the
system of equations

y() = hy(z) + h-(2),

v(x) = —vol!y (x) + voh(x). (115)

One can express h_(z) in terms of hy(x) and a known function y(x), plug it in the second one
and solve the ordinary differential equation for h (z). The second function h_(z) can be then
calculated from the first equation.

Exercise 3.1. Let us consider the Dirichlet string. Find the general solution using the procedure
hinted above.

Proof. First note that the above system in fact determines hy (x) only for x € [0, a]. However,

we may try to extend y and v to entire R. Hence suppose that we have done so. Plugging from
the first equation to the second equation gives

W (@) = 5o/ () - 2 (116)
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This can be integrated uniquely up to an additive constant, which will play no role in the final
solution, hence

hy(z) = %y(x) - /Ow v(a) (117)

21}0 '

Consequently, one finds h_(z) = %y(m) + fom UQ(U? Hence the full solution is given by

x+vot

o) gy (118)

1 1
y(t,x) = ay(m —vot) + §y(x + vot) + / Sy

r—uvot

Let us now examine the boundary conditions. First, let x = 0. This gives us

1 1 vt y(x)
= —y(—vot = t —=d 11
0= gutut) + goteon) + [ Ga (19)

We see that the simplest way to solve this condition is to assume that the extension of v to R is
an odd function. This makes the integral to vanish and we realize that the extension of y to R
must be odd. Now, plugging in the other boundary condition gives

a+vot U(CL’)

1 1
0= iy(a — ’Uot) -+ gy(a -+ ’Uot) -+ / dz. (120)

a—vpt 21}0

Since this has to hold for all £ € R, we can change the variable to u := vgt — a. This gives us

1 1 ut2a g (x)
0= iy(fu) + iy(u + 2a) + / TUde. (121)

—Uu
Since we already know that both y and v are odd functions. we can rewrite this as

u+2a v (l‘)

Vo

y(u) = y(u + 2a) + / dz. (122)

u

We see that to get rid of the integral, we may assume that v(z) is periodic with period 2a. Then

we get
/uuﬂa de = /a de =0. (123)

Vo —a Vo
Finally, we see that y simply has to be periodic with period 2a. Note that this also forces

y(a) = 0, which is in accordance with the fact that y(z) = y(0, ) should satisfy the boundary
conditions. This gives us a general answer:

For any initial conditions y = y(z), v = v(x), where z € [0, al, find their unique odd extensions
periodic with period 2a. Then one can write the solution using (118). ]

3.2 Lagrangian mechanics of a string

Now, let us suppose we want to write down the Lagrangian for the string defined in the previous
section. Note that one should view it as a system with infinitely many degrees of freedom whose
coordinates are labeled by x € [0, a]. We expect the Lagrangian for a given string configuration
y = y(t,z) be a function of time, given by the difference of the overall kinetic and potential
energy at a given time ¢:,

L(t) =T(t) — V(t), (124)



The kinetic energy is simply the sum of kinetic energies of inifinitesimal pieces of string:

T(t) = / @ o P21, ) (125)

Now, the work which has to be to stretch the infinitesimal piece of string to its configuration is
Ty times the change of length, one finds

To (\/(de—l—y(t,x—i—dx)—y( x))? — dz) = To( 1+(gx) (t,x) —1)dz

(126)
= ST (t.)
0oz ’
The overall potential energy of the string is thus the sum of these, that is
_ / dz To(2Y)2(t, ) da (127)
0 al’
We thus propose the string Lagrangian in the form
“1 Oy, 1. 0y, @
L(t) = — —To(==)"] dx = Ld 128
0= [ lgmGhr =~ 5nGh = [ L, (128)

where we drop the explicit writing of the arguments and define the Lagrangian density as

9y 9y, 1 0y, 9y .o

G aa) = 3t 3Tl

Strictly speaking, £ is an ordinary function of two variables, which we compose with the partial
derivatives of the field y = y(¢, ), and integrate the resulting function of (¢, z) over z € [0, al.

(129)

The action functional S has the function y = y(¢, x) as its dynamical variable, and

Sly) = /tifL(t)dt:/tifdt/Oadx [%uo(%f - %To(%ﬁ. (130)

Now, we expect to obtain the equations of motion by Hamilton’s principle. In other words, the
actual motion in the time interval [t;, ] should extremalize the action functional. We find it by
performing an infinitesimal variation

One finds

(9y (6y) .. Oy 0(531)

Let us denote the term proportlonal to € as 6S. We can get rid of partial derivatives of variations
by performing the respective per parts integration. One gets

(32y
_T 277,
/t dt/ dx MO t2 To 2] oy

+ / a [0 2oy (133)
0

(LT
‘*‘/t' dt [—To%&‘ﬂg;:&

i
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Now, since we can choose dy to be a bump function around any point (t,x) € (t;,tf) x (0,a), the
function multiplying dy in the first term must vanish. This gives use the corresponding Lagrange-
Euler equation, which indeed happens to be the wave equation. Next, we always consider only
the variations which do not change the initial and final configuaration of the string, that is
0y(ti, x) = 0y(ty,x) = 0 for all = € [0,a]. This make the second term to disappear.

We see that 45 = 0 for any y = y(t, z) describing the movement of of the string must satisfy

Y dy dy
0= /t [Ty S (1, )6yt @) + To 52 (1,0)6y(, 0)]. (134)

Let x. € {0,a} be the generic notion for the endpoint of the string.

1. If we allow an arbitrary motion and variation of a given endpoint z,, we are forced to
impose the Neumann boundary condition
oy

o, (T =0, (135)

for all t € [t;, tf].

2. We can impose the Dirichlet boundary condition at a given endpoint x., which forces
y(t,z«) = 0. In particular, this forces dy(¢,z.) = 0 and the corresponding term above
vanishes. It is convenient to write the Dirichlet condition as

9y

S (L) =0, (136)

although the position of the endpoint has to be specified (e.g. by initial conditions).
Let us demonstrate the physical significance of the boundary conditions. The transversal mo-

mentum of the string is given by the sum of the momenta carried by infinitesimal elements of
the string, that is

¢ 9
pu)= [ it do (137)
0
We can tackle the question of its conservation. One has
d “ 9%y “ 0%y Oy Oy
— = —dz = To=—dex =Ty == - == . 1
S0 / po g d / vogde = To (52 (ta) = 52(1,0)) (138)

This means that for a string not satisfying the Neumann boundary condition, the overall momen-
tum of the strung is not conserved. This is not unphysical - e.g. for a string with fixed endpoints,
the “wall” exerts a force to its endpoints - the momentum flows out of and back in the string.
Let us finish this section by rewritting the above calculation slightly differently, mainly for the

future purposes. Write g := % and ' := g—g. Then £ = L(3,y'). Let

x .

c
=y ~Toy'. (139)

oL .
Pt = aiy = KoY, P

P! can be viewed as a momentum density corresponding to the variable y. The variation of
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the action can be then written as

ty a ty a
55:/ dt/ dz [%5%2"%5 = / dt/ dz [P'6y + Po6y
t; 0
ty P P
14
/ dt/ sy (140)

+ / de [Poy]=l + / (Pe oyt
0

i

We see that the Lagrange-Euler equation can be written as

oP' 0P
ot ox

=0, (141)
the Neumann boundary condition at the given endpoint z, € {0,a} then reads P*(¢,z.) =
and for a string satisfying the Dirichlet condition at a given endpoint, we have P!(¢, x,) = 0.
Exercise 3.2. Let y(t,z) = Asin(k,x) - cos(wnt + ¢) be the n-th mode of the Dirichlet string.

Culculate the corresponding momentum py(t).

Proof. Recall that k,, = “F and w,, = vokn, where vg = \/Ty/p10. Then

Pl(t,x) = — o Awy, - sin(kpx) sin(wpt + ). (142)

oy
Ho—4, 6t

By integrating this over x € [0, a], we obtain

Awn,
py(t) = %sin(wnt + ) - [cos(knz)]d = A - /Topo[(—1)" T — 1] sin(w,t + ). (143)

n

We see that the momentum of even modes is conserved, whereas the momentum of odd modes
is not. |

Exercise 3.3. Let us consider a closed string wrapped around an infinite cylinder of radius R,
such that it can move without friction along its axis. This amounts to considering the identifi-
cation x ~ x + 2w R. The equation of motion for y = y(t,x) is still the wave equation with a
general d’Alembert solution

y(t,xz) = hy(x —vot) + h_(x + vot). (144)

(i) What conditions must be imposed on y? What are the corresponding periodicity conditions
on deriatives of h4 ?

(i) Show that one can write hy(u) = au + f(u) and h_(u) = pu + g(u), where f and g are
periodic functions and a, B € R. What is the relation of o and B¢

(iti) Calculate the momentum carried by the string in the y direction. Is it conserved?

Proof. We must obviously impose the periodicity condition y(¢,z) = y(t,z + 27 R) for all t € R
and x € R. But this implies also the periodicity of both its partial derivatives:

jt,z) = y(t,x +2xR), y(t,x) =y (t,x + 27 R). (145)
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One finds

y(t,x) = —voh!,(x — vot) + voh’_(x + vot), (146)
y'(t,x) = W (x — vot) + . (z + vot). (147)

Plugging those into above periodicity conditions at t = 0 gives the system

—h' (z+27R) + h_(z+27R) = — I/ () + h'_(z) (148)
W, (xz +27R) + h'_(z 4+ 2rR) = I/ (z) + h'_(z). (149)

Taking the sum and the difference of these two equations yields
b (x +27R) = b/, (z). (150)

It is easy to see that this already implies (145). This concludes (7). Next, let hy (u) be a primitive
of a periodic function A/  (u), hence we can write it as

hy(u) = /“ R, (v)dv, (151)

0

1 2TR

for some up € R. Let a:= 5 [; 7\ (v)dv. Then the function

flw) :=hi(u) —au (152)

is easily checked to be periodic in u with period 27 R. This is because « is chosen precisely so
that hy(u+27R) = hy(u)+ (27 R)a. This shows that we can write hy (u) as in (i7). By plugging
in, one finds

y(t,x) = a(x — vot) + B(x + vot) + f(z — vot) + g(z + vot). (153)

By plugging into the periodicity condition at t = 0 now immediately gives &« = —f. In conclusion,
one can write the most general solution of the motion of the closed string as

y(t,x) = vt + f(z —vot) + g(z + vot), (154)

where v is an arbitrary constant having the dimension of velocity, and f = f(u) and g = g(u) are
completely arbitrary differentiable functions with the period 2w R. The transversal momentum
reads

27t R 27 R
py(t) = / woy(t, x) do = uo/ [v —vo f'(z — vot) + vog (z + vot)]dx
0 0 . (155)
= (27 R)pov + [—vo f (x — vot) + vog(z + vot)| 225"
= M,
where M = (2w R)py is the overall mass of the string. And yes, p, is conserved. |

4 Relativistic free particle

4.1 Action functional

Suppose we want to find an action function describing the motion of a free massive particle in
D-dimensional spacetime. We want the resulting equations of motion to be Lorentz invariant in
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the following sense. If one Lorentz observer concludes that particle obeys equations of motion in
his frame (it is “physical”), every other Lorentz observer must come to the same conclusion.

One idea is to define an action functional which becomes a Lorentz scalar. Since the motion
happens along a path which is a stationary point of the action, both observes will agree on that
stationary point, regardless of its coordinate description.

Let z#(t) be a worldline of the particle, connecting the initial point z#(¢;) and the final point
x#(ty), where t; < ty. We have already constructed a Lorentz scalar out of these data, namely
the proper time s(¢;,t7)! Note that the dimension of the action is [S] = [Energy] - T, that is

[S] = ML*T~! = [n]. (156)

To obtain correct dimensionality, we must multiply s(¢;,t¢) by some constant having the dimen-
sion of energy. We thus propose

ty 2
S = —mc*s(t;, ty) = —ch/t m dt. (157)

We see that the Lagrangian of the theory is given by

L=-mc*\/1—=. (158)

Note that in a fixed frame, the dynamical variables are spatial coordinates of the particle. This
obscures the Lorentz invariance of the theory. It is much more convenient to consider the arbitrary
parametrization of the worldline z# = z#(7), the only requirement being that the value of the
parametr in [7;, 7] strictly increases between as the world-line goes from the initial point z!" to
the final point :céf The action functional S is now written as

ik dat dav
I Ny —— —— 1
SlaH] me /T T dr, (159)
and its dynamical variables are functions x* = z#(7) for u € {0,..., D}.

Exercise 4.1. (i) Prove that S is reparametrization invariant.
(i) Prove that S is a Lorentz scalar.

(i4i) Check that if we choose the parameter to be the coordinate time, we obtain the action above.

Proof. The calculation is completely the same as in Exercise 1.1. ]

4.2 Equations of motion

Let us calculate the equations of motion from the Hamilton’s principle. Let us consider a variation
(1) = a#(7) + € - 0x#(7) satisfying ozt (1;) = daH(14) = 0.
To do so, let us use the shorthand notation z# := ddi: and note that we implicitly assume

that (¢)? = n,,@"3" < 0. Then the action takes the form S[z*] = —mc [/ \/—(&)2d7. Then

(&")? = ()% + 2en,, 355" + O(€?), (160)
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where we write d2¥ = %(Sx”. We can thus write

—(2")? = —(2)%*(1 — 26% +0(€%)) (161)

Taking the square root of this equation and using /1 —y ~ 1 — %y, we arrive to

V(@) = /(1) - e% +0(e%). (162)

Plugging this into the action, we get that S[a2’#] = S[z*] + €- 05 + O(€?), where
EREN
Since we assume dz#(t;) = dx*(ty) = 0, we can use the integration by parts to move the 7

derivative, obtaining the expression

08 =mc dr (163)

T d Ty
08 = —mc —<7) - dxtdr. (164)
R AWEE
From this we already obtain the equations of motion in the form
d Ty

Exercise 4.2. Show that the equations (165) are reparametrization and Lorentz invariant.

Do the above equations agree with our expectactions? To see this, let us observe how four-
velocity looks in the general parametrization of the worldline. Recall that the proper time can
be expressed in terms of 7 as

s(r) = /T %\/—(siz)2 dr,that is g = % —(z)2. (166)

Consequently, one finds

dz, dz,dr ciy
= kTR R 167
n ds dr ds — ()2 (167)
But this means that the above equation (165) can be rewritten simply as
dp,
— =0. 168
dr (168)

This is fully with our expectations for the movement of a relativistic free particle.

Exercise 4.3. What is the canonical momentum associated with the coordinate z = z(1)?

Proof. The Lagrangian of the theory is given by
L(&) = —mey/ —()2. (169)

The canonical momentum associated with z* is

oL 1 me A medy,

oL 1 0 oeoa__ Mmc oy mch,
Pu = Hin = mch@i/‘( MAZ"E") = e "M T e (70)

We see that the canonical momentum corresponds to the actual “physical” four-momentum. W
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4.3 Relativistic particle with electric charge

Suppose that our relativistic particle has an electric charge ¢ and moves through the electro-
magnetic field F},,. First observe that the Lorentz force acting on the particle can be compactly
written as a Lorentz covector:

q v
Fr = EF,wu . (171)
The equation of motion for a charged particle moving in the field F,, can be written as
Wu_ G5 @ = L F (@) (172)
ds c me "

Exercise 4.4. Examine the components FHL in terms of coordinate velocities and usual Mazwell
fields in four dimensions. What is the content of (172) in the zeroth component?

Proof. Recall that in a Lorentz frame (ct,z,y, 2), ut = ddi: = ’y(t)ddif = (¢y(t),v(t)¥). One has
FOL = gqui = —’y(t)gEi’Ui = —W(t)gE . 17 (173)
c c c
: L1 .
FF = % i’ = %Eiuo + %eijkBkuj =~(t)q(E + Eﬁ x B); (174)

Hence, up to the y(¢) factor, we recover the standard Lorentz force. Finally, observe that

dpo 1dFE
2 — N == 175
ds ( )c dt (175)
Ther zeroth component of (172) thus gives the equation
dE =
_— = E .U 1
o — e (176)

which shows that the energy of the particle changes by the power exerted by the Lorentz force
acting on the particle. [ ]

Let us now attempt to add the interaction to the action. We again want to produce the
Lorentz scalar, the first idea which comes to mind is the contraction of the form A,u", where
A, is the four-potential for F},,. We thus propose, in an arbitrary parametrization:

Sifa) =2 / _Tf A (2(7)) #(r)dr. (177)

The entire action is thus given by S = Sy + S, where Sy is the original free particle action. Let
us find the variation of the action:

S’ = 4 / T A (@4 ez) - (i + bt )dr
e (178)
= Sila] + % / (9 A,) (2)5a" ¥ + A, (2)53"] dr + O(2).

k3

Using the integration by parts and %Ay () = (0,A,)(z)2", we find that

Tf Tf
8S; = /T %Fuu(x)a'sy(Sx“dT: /T | Fr(x, &)6ztdr. (179)

i
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Since the variation of the free particle action takes the form
5Sy = /T 1- f%Jx“dT, (180)

we indeed obtain the equation of motion (172).

Exercise 4.5. We want to promote the electromagnetic field A, to the dynamic variable. To do
so, we introduce the action

Slx, A] := Solz] + Si[z, A] + Spar|Al, (181)

where the kinetic term for the action is given by
SparlA] = —~ [ dPa F Fm
Em[A] =~ x F, M. (182)
Find the equations of motion of this action. What role does the particle x* = x* (1) play?

Proof. One considers the variation A), = A, +¢-J4,. It is a straightforward calculation that
Searl ] = SealA] - © / P FP9,(5A,) + O(&) (183)

One can now perform the integration by parts, assuming the dA, disappears in the inifinities.
This gives the variation of the kinetic term in the action

5SEM = 1/ole 0, F" - §A,. (184)
C

To calculate the variation of the term Srlz, A] = ¢ [77 A, (x(7))é*(7) dr, one first has to find a
spacetime integral there. We will do this by inserting a delta function:

Sife, A] = 4 / " A ()i ()

_ ¢ / Y / AP A, (2)5P (x — o(r))i (r)dr (185)

=1 [0 a@) [ 6@ - a(ri ryar
It is now easy to calculate the variation of the action under the variation of A,. One finds

051 = %/d% [/Tf 6P (x — a(7))2” (r)dr] - §A,. (186)

This suggests to define a four-current j¥(z) as

J(x) = qe / 7500 — a(r))® (r)dr (187)
The resulting Lagrange-Euler equation for the electromagnetic potential A, = A,(z) is thus
precisely the Maxwell equation

1
uF™ + —j* = 0. (188)
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What is the interpretation of j*. Suppose we choose 7 to be the coordinate time in a given
Lorentz frame. Then a*(7) = (er,Z(7)). It is convenient to write the D-dimensional delta
function as

1 0
80 (x — a(r)) = 8(2° — er) - 6T — F(r)) = E‘S(% — 1) 84T — #(1)). (189)
If we consider ¢ € (7;,7¢), one thus obtains
o, 7) = eq - 8(F - 7(t)). (190)

Since j° = ¢ - p, this shows that p(t, ) = ¢ - 04(¥ — #(t)). This is a charge density of a single
point charge. For spatial components, one obtains

3 (t,7) = ¢ 04T — T(1)a" (). (191)
But this is precisely the current density for a point charge moving with a velocity & = i—f. |

Exercise 4.6. Find a Hamiltonian formulation of the relativistic particle. Verify that Hamilton
equations of motion give the correct result.

Proof. We have to work in a given Lorentz frame (ct, x,y, z). The transition to the Hamiltonian
formulation is not Lorentz covariant. We have

L:—mc%u—v—2 (192)
c?’

The Legandre transformation is done with respect to spatial velocities and momenta, that is

H=_—-v -1, (193)
and we have to write v’ as functions of positions and momenta to obtain the Hamiltonian. We
have already shown that

hence one finds the formula

2 2 2
PO Y R (195)
/1 _ v2 c _ v
c2 c2

This is the expression for a relativistic energy of the free particle. Instead of trying to express
v* explicitly on terms of p;, we just remember the energy-momentum constraint

E? = m?c* + (- Pt (196)
Consequently, we obtain the Hamiltonian in the form

H(Z,p,t) =c\/m22+p-p (197)

This is not Lorentz covariant in any sense (it is a zero component of 4-momentum). What are
the Hamilton equations? Recall that they have the form
_OH OH

- Op;’ Pi= Tt (198)

i,i

28



Since the Hamiltonian is independent of the positions, we get immediately p; = 0 and the second
equation gives the expression of velocities in terms of momenta:

) 2,1

. C C
g P (199)
A /m2c2 + p . p E
This is a known fact that spatial velocity can be expressed as a ration & = cg—;. |

Exercise 4.7. Viewing the relativistic particle as a field theory, one can consider the “field
theoretic” Hamiltonian (density), defined by

L
H = %g’;“ — L. (200)

What does it give for L = —mcy/—(2)2¢ Why do you think this happens?

5 Relativistic string

5.1 Nambu-Goto action

Observe that the action for the relativistic particle can be interpreted as follows. We have a
curve z#(7). The action then simply measures its length between two events, z!' = 2#(7;) and
T = x” (7). We can view the curve as a map z : R — RP. One then pulls back the “target
space” Minkowski metric 7 to construct a new metric g = 2*(n) on R. Viewing 7 as a coordinate
function on R, we have simply g = ¢g(7) dr ® dr, where

dz# dx”

=Ny — . 201
s dr dr (201)

9

“Measuring the length” then corresponds to finding the volume of the interval [r;, 7;] using the
volume form corresponding to g. Note that for general z, g is not a metric. This is where physics
comes in - we are interested in a movement of a massive particle, so we only consider curves with
timelike tangent vectors, since the particle cannot move faster then light. This is equivalent to

g(7) <0, (202)

for all 7 € [1;,7¢]. The corresponding volume form is then \/—g(7)dr, so the volume of [7;, 7¢]

is indeed given by the integral.
Ty
/ V N dtardr. (203)

Now, let us attempt to describe the motion of a string in a D-dimensional spacetime.

It will be described by a D-tuple of functions X* = X*(r, o) of two parameters. 7 will play the
role of a “time parameter” and o will describe the position on the string. In a more mathematical
language, we shall consider embeddings X : ¥ — R from a 2-dimensional parameter manifold
¥ to the Minkowski spacetime R”. (7,0) are (possibly local) coordinates on ¥ and

XH(r,0) = 2" (X (1,0)). (204)

The image of ¥ under X is called the worldsheet of the string. To make things confusing, ¥ is
also usually called a worldsheet.
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There are thus some restrictions to X. We assume that each point of the worldsheet is (at
least locally) uniquely described by parameters (7,0). Recall that one can consider the tangent
vectors to the worldsheet, pointing in the “coordinate” directions. From a differential geometry
course, you know that their components with respect to the coordinates z* on RP are given by

oxXH oxH
W(Ta O-)a 870_(7-7 U)' (205)

Since they can be also written as X.(9,) and X.(0,), respectively, they have to be linearly
independent. Since 7 is to be a “time parameter”, we assume that the time coordinate of the
string flows as 7 flows, that is
0x°
W(T’ o) >0, (206)

for all values of o.

Similarly to the relativistic particle, we may now define the induced metric g on ¥. Let ¢
be some general coordinates on X, a € {1,2}. Let g := X*(n). Hence

9= gap(£",6%) dg* @ d¢”, (207)
where the functions g, are given by the formula
oXH oX"

gaﬁ:nuyww. (208)
Note that even if X is an embedding, this is not necessarily a metric. The reason is 1 being
indefinite. Moreover, to calculate the volume form, we need to take the square root of the absolute
value of the determinant. We would be happy to avoid this. Let & = 7 and & = o, and write
_ox* _ox*

S XM= (209)

XM
We will also write X and X’ for the whole vectors. One can thus write
g1 = (X)?% gi2=X X', gor = (X')?, (210)

where by square and - we mean the Lorentz pseudoscalar product. Hence the 2 x 2 component
matrix of g takes the form (where we mildly abuse the notation):

)2 v .Y
9= ()((X‘)Xv/ )((X;;g> . (211)

Consequently, one has ) .
det(g) = (X)*(X')? — (X - X')*. (212)

We will now find some physical arguments ensuring that this is always strictly negative, except
for string endpoints.

Observe that the space tangent to every point of a worldsheet is a two-dimensional vector
space spanned by vectors X and X'. Now, if we observe string at fixed value of time in any Lorentz
frame, the tangent vector to this constant time section of the worldsheet must be spacelike. It
thus makes sense to make the following assumption:

We will thus assume that at each point of the worldsheet, except for string endpoints, that
there are both spacelike and timelike vectors. Note that this assumption is purely geometrical -
it does not assume any particular parametrization.
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Remark 5.1. Except for string endpoints, there is no significant point on the string. 7 — X*(7,0)
is not a worldline of a “piece of string”. In particular, X* can be a spacelike vector!

Lemma 5.2. At any point p of the worldsheet, there exist both spacelike and tangent vectors to
the worldsheet, iff [det(g)](p) is strictly negative.

Proof. Up to a multiplicative constant, the most general tangent vector at p takes the form
vH(N) = XH + AX'H, (213)

for some \ € R, since X* and X’* are linearly independent. Note that X'#(p) is obtained as a
limit A — oo. The character of the vector is preserved under scalar multiplications. Then

(N, (N) = A2 (X)) 4+ 20(X - X') + (X)2 (214)

This is a polynomial quadratic in A. Its graph is a parabola. It attains both positive and
negative value, iff it has two distinct roots. In other words, the corresponding discriminant is
strictly positive. This gives the condition

(X -X") = (X)%(X)? > 0. (215)
By (212), this is equivalent to the strict negativity of the determinant at p. |

It cannot happen that all of the tangent vectors at a given point of the worldsheet are
spacelike. Regardless of parametrization, no point of a string would at some time ¢ be able to
reach any other point of the string in next instant ¢ + d¢ without moving faster then light. There
thus must be at least some lightlike tangent vector. Since there are no timelike vectors, this
means that the quadratic equation has precisely one root Ay, and its discriminant has to vanish.
This means that there has to be a unique “lightlike direction”, corresponding to a physical
movement of the given point with a speed of light. It turns out that we have to allow precisely
this to happen at the endpoints of the open string.

Remark 5.3. Observe that the negativity of the determinant ensures that g is an indefinite metric,
hence of a signature (1,1).

Having the sign of the determinant settled, we thus propose the Nambu-Goto string action
in the form of the area functional of the worldsheet

S[X] = —% /Tf dr /001 do /(X - X172 = (X)2(x0)2, (216)

Let us briefly discuss dimensions. We assume [7] = T and [o] = L, but dimensions of parameters
completely cancel anyway. This is expected, since the area obviously has dimension L?. The
dimension of the action must be energy times time, so the constant in front of it must be the
one of force divided by speed. Hence Tj has a dimension of force. We will show that it is related
to the tension of the string.

Being just the scalar multiple of the area functional, the Nambu-Goto action can be rewritten
using arbitrary parameters (£%, £2):

511 = -2 [ dgidgey /= det(ga). (217)

where g, is a matrix of functions defined by (208).
Exercise 5.4. Verify this claim explicitly.
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5.2 Equations of motion, boundary conditions, D-branes

Let us find the equations of motion defined by S. The corresponding Lagrangian density takes
the form

£k, xm) = 20 [k xny2 - (K2(x0p (218)
c
Let us define the canonical momentum densities
. oL s OL
P= 2 = (219)

We let X'* := X* + e§X*. We again get S[X'] = S[X] + €65 + O(e?), where

7 o1 oL . oL
= _— ® w
58 /T dT/O do [ 0X0 4 o6 X

s o1 (220)
= / dr / do [P76 X" +PIsX™).
Ti 0

Using the fact that 6X* = Ofi—q_(éX“) and 6 X'* = %(&X’”) and integration by parts, this gives

T OPp 0PI

o 7 (221)
b [ o xrppr 4 [ ar pxep)ezy
0 T,

i

We again assume 6X#(1;,0) = 0X*(17,0) = 0 for all o € [0,01]. The first term must vanish
independently of the last one, which gives the Largange-Euler equation:

oy | L _

Lo =0. (222)

It remains to deal with the boundary term. At each string endpoint o, € {0,071}, we thus have
to impose some boundary condition.

1. We can require the endpoint to remain stationary in a given direction. We cannot do so
for X0 since we assume (206). For any given pu € {1,...,D} and any given o, € {0,01},
we can thus impose a Dirichlet boundary condition.

oxXH

5. (1.0.) =0. (223)

2. We can allow for a free motion of the string endpoint. Then we have to impose a free
endpoint condition:

P(r,0:) =0, (224)

for each p € {1,...,D} and o, € {0,01}. For u = 0, we have to impose the boundary
condition
P§(r,01) = P§(1,0) = 0. (225)
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So far, the situation does not look too complicated. The devil is in the details. The momenta
densities are ugly. In particular, one has
oL Ty (X X)X — (X)X
axm c \/(X,X/)Q_(X)Q(X/)z
oL To (X X)X, —(X)*X!
Py = .:f—O(_ )"(_)“. (227)
oXr e X - (o

In particular, it is not easy to directly interpret free endpoint conditions.

Let us elaborate on Dirichlet boundary conditions. By declaring some of the spatial string
coordinates X* to have some prescribed value at the string endpoint o,, we effectively allow its
free motion only along the p-dimensional objects called D-branes. Or Dp-branes, if we want
to emphasize the dimension. For example, if we require the Dirichlet boundary condition at
a given endpoint o, for all 4 € {1,..., D}, we specify a DO-brane and require the string to
be attached to it. On the other hand, if we choose the free endpoint boundary condition for
every u € {1,..., D}, we define the space-filling D(d-1)-brane. D-branes in string theory are not
necessarily hyperplanes and they have their own dynamics and physical properties.

Note that we can also consider the movement of a closed string. The o direction is now
made into a circle, which corresponds to the identification (7,0) ~ (7,0 4+ 0.). We can however
simply parametrize it by o € [0,0.] and require X#(7,0) = X*(7,0.). There are no boundary
conditions in this case.

5.3 Static gauge and a static string

The key to understand the motion of the string is a convenient choice of its parametrization.
The most obvious one is to fix 7 so that it corresponds to a coordinate time in some Lorentz

frame. This is possible thanks to our assumption ST)S)(T’ o) > 0. Indeed, we can simply do the
transformation 1
"= =-X%r0), o :=o0. (228)
c

It follows that in these coordinates, one has X°(7/,0) = cr’. Let us henceforth drop the prime.
This simplifies mainly the temporal components of the tangent vectors, namely

0X° 9X 0X

! Ty = v
X - ( aa_ 9 80) ( ’ 60’ )a (229)

. 0X° 0X 0X
X:(W’E:(C’E) (230)

The expressions for momenta are still incredibly ugly. Let us try to give some meaning to the
constant Ty. Let us consider a static string stretched from 2! = 0 to ' = a. We thus have
X7, 0)=cr, X'(1,0) = f( X2(r,0)=---=XP(r,0) =0, (231)

),
where f :[0,01] — R is a function satisfying f(0) = 0 and f(o1) = a, such that f'(o) > 0.
One has X’ = (0, f'(5),0,...,0) and X = (¢,0), whence

(X')? = (f'(0))? (X)? ==&, X'-X'=0. (232)
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The Lagrangian of this string is calculated as an integral of the density £, one finds

Ty (1

c /. cf'(0) do = =Ty[f(0)]5=5 = —Toa. (233)

Ul . .
L(7) :/ L(X,X") do =
0
Since the static string has no kinetic energy and L(7) = T(7) — V(7), we identify Toa with the
potential energy of the string. Note that it does not depend on the particular function f = f(o).
This is in accordance with the reparametrization invariance.

Since the nonrelativistic static string has a zero potential energy, this should be identified
with the with the rest mass energy of the string. It is also precisely the energy required for
stretching a infinitesimally small string to a finite length a, assuming the tension stays constant
throughout the process. If g is the rest mass of the string per unit length, we get poc? = Tp, so

To
po =2, (234)

The mass of the relativistic arise only due to it having a tension!

Our interpretations can be invalid, if the proposed solution describing the static string would
fail to satisfy the equations of motion! One has

VX2 (X)2(X1)2 = of (o). (235)
It is easy to see
T
Py =—-Lf'(0), P§=0, P[ =0, P{ =T, (236)

and trivially P = PZ =0 for all i € {2,...,D}. Tt is easy to check now that the equations of
motion are satisfied. Finally, one has to check that in the temporal direction, the free endpoint
condition is satisfied. But we have P§ = 0 identically.

Note that in this parametrization, X is indeed timelike and X’ is spacelike. In general, notice
that in the static gauge, X’ is always spacelike.

5.4 Action in terms of a transverse velocity

As we have already noted, it does not make any physical sense to interpret X {(1,0) as a velocity
of a piece of string corresponding to the fixed value of the parameter 0. We assume that we
work in the static gauge. There is however a parametrization independent notion of transverse
velocity.

At each coordinate time ¢, we may record the position of the string X(t, o). At that point, we
construct a hyperp}ane perpendicular to the string at the fixed time ¢. This is always possible,
since the vector %—f is nonzero along the worldsheet. An infinitesimal moment later, at ¢ 4 dt,
we record the point where the string intersects the hyperplane. The difference of the two points

in the hyperplane defines a space vector dX | , and the transverse velocity is obtained as

dx,

Uy (t,0) = Tt (237)

This velocity should be independent of the parametrization o. Suppose that 7 (¢, o) is a unit
vector tangent to the string at X (t,0). Consider the following image:
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We see that df(l can be obtained as a projection of the difference dX = )?(t +dt, o) — )?(t, o)
into the direction perpendicular to 7 (¢, o). It follows that

dX | = dX — (dX - 7 (7,0)) 7 (1,0). (238)
Dividing this by d7, we see that the transverse velocity can be obtained (or defined) by
. X  oX

We only have to find an explicit formula for 7). There are two ways how to define it. First, one
can define a function s = s(¢, o) measuring the length of a string at a given time ¢t. Explicitly, it
has the following form:

s(t,0) = / ||§X (t.0)|| do. (240)

Note that we can view this as a reparametrization (¢,0) — (t,s). It is well-defined, since the
Jacobi matrix of the coordinate transformation is

1 0
ds X ) (24].)
o 5|

which is everywhere non-singular. We claim that we can then choose 7| = BX . One has

0X 09X os oX ot 00X 0X

242
B0 8380+8t80 s g |- (242)
But this shows that %X =5 oX [ 1 is just a normalization of the vector 2 aa , which is tangent
to the string. This proves the clalm The final formula is thus
0X 98X 09X oX
0 o= o (22 TANTA 243
UL ot ( ot 0Os ) Js (243)
Exercise 5.5. Verify that v, does not depend on the parametrization.
Proof. We shall consider the reparametrization t' = ¢ and ¢’ = f(t,0). We also require
0
f 7& 0. (244)
The base tangent vectors to worldsheet are related as
0X 90X of oX
— =4+ = — 245
R T (245)
0X of 09X
— = = —. 246
do do Odo’ (246)
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This explicitly demonstrates that the tangent to the worldsheet along the line of constant o
indeed has no significance. The second equation shows that both tangent vectors along the line
of constant ¢’ = ¢ are colinear. But this means

oX 90X

55~ Tos (247)

depending on the sign of g—i. Since %—)E and ‘35 differ by something parallel to the string, their

projections to the perpendicular direction are the same. This can be also verified directly by
plugging in (245) and (246) to the definition of ¥/, . |

We will now argue that the action can be rewritten in a neat way using the transverse velocity.
First, notice that
0X 0X 0X,,

2 04 04 OA
In the following, we will write
ds Js 0X
FE ||37H (249)
Using this notation, one has
: X ds . ds 90X 90X
X2 =(=—)2-¢, (X")V?=(2)? X .- X' =—2"."2 2
(02 = (7= (X = ()% o (250)
Consequently, one finds
: : ds 5, 0X 0X X
X'X/Q—XQX/2:727'72 2 (Y2
(XX = (KPP = (P15 S+ = () .
ds _u

= (P Ea-2).

We see that the Nambu-Goto action can be rewritten in terms of the transverse velocity as

b dsW
= T e . 252
s o/tidt/o do /1 -4 (252)

In particular, we see that at points where the term under the square root is positive, the transverse
velocity is strictly smaller then the speed of light!

Exercise 5.6. Show that one can express the momenta densities as

_ Tyds 1 = Tpyds UL

PO — _— P == 253
¢ do 02 c? do 02 (253)
i Ty ajaj - To(ﬂ.g)@'ﬂg_(aﬁy)g
P 0 _ ? ot 62 ; PO = _072 ot Js / 0Ot : t s (254)
~- 1-%

Although these expressions are still immensely complicated, they allow for a very important
observation. In the next paragraph, we shall assume the free endpoint condition in all directions,
that is the string is attached to the space-filling D-brane. This requires P (t,0.) = 0 for
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o« € {0,01}. First, since the expression in the denominator is always in the interval [0, 1], we

get the following condition at the endpoints:
X 90X
o os (255)

Recall that the endpoints of the open string are physically significant and their velocity %}E (t,04)
is of importance. The condition means the endpoints of the string move transversaly to the string,

and thus also v, = 88—)3 at both endpoints.

Exercise 5.7. Under which conditions is %—f well-behaved at the endpoints.

Proof. In Exercise 5.5, we have examined the transformations of the two tangent vectors under
the most general reparametrization preserving the satic gauge. In particular, we have found

0X 0X  ofoX

- =L 256
ot o ot oo’ (256)
If we want the velocities the endpoints to stay the same, we get the condition
of
—(t,04) =0. 257
t,0.) (257)

But this only means that the position of the endpoints in the new parametrization, described
by f(t,o.) are actually independent of time. We secretly always assume this, otherwise e.g. the
integration per parts in the double integral leading to the free endpoint conditions would not be

possible. |
The condition (255) in principle still allows for a zero velocity at the endpoints. However,
plugging into the expression for P° and noting the v := %—f = ¢, at the endpoints, we find the

condition ~
v2(t,04) 0X

0="P(t0.) = —Tpy/1— =
(t,0) 0 c? Os

(t,04) (258)

This shows that necessarily

vi(t,0,) = 2, (259)
that is the string endpoints move with the speed of light.
Exercise 5.8. Consider the relativistic string with endpoints attached at (0,0) and (a,0). Find
the non-relativistic limit.

Proof. We assume X'(£,0) = 0 and X'(t,01) = a. Write X = (X!,7). We assume small
oscillations, that is the situation differs only slightly from the static string. In particular, we
assume that

ox!
> 0. 260
o (260)
This allows us to parametrize the string by * = ', that is we choose the new parameter

@ := X'(t,0). Hence X (t,2) = (,7(t,z)) and consequently

oxX oy

= = )@f
ox  ox” Ot

*(07@

). (261)
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and thus
ds oy 1 0y
— =/1 “ZY2 1+ = (=2)2.
do +(8aj) + 2(8x)

For small oscilations, the transverse direction and the direction perpendicular to x are almost
the same, hence

(262)

0X oy
v~ — =(0,=—). 263
nn = (0,2) (263)
We also assume that Ui < 2, so we can rewrite the action as
tr @ Jy 1 0y

S~ —T dt dz(l+ (=2)?) - (1 — —(=2)?

o[ [Caste GBY) - - 5(R)
‘ ‘ (264)

f

e 1Ty 0y 1_ Oy
~ dt —Ta+/ de [ 5 (52)% — = To(+2)?
/ti (-To 0 [2 02(875) 2 O(ﬁx) ]
This is indeed an action functional for the non-relativistic string with tension 7 and a mass
density pg = Typ/c?. The constant term corresponds to the potential energy of the static string -
the energy we need to put in the string with tension Tj to stretch it between its endpoints. W

Exercise 5.9. Att =0, a closed string forms a circle of radius Ry in the (x,y) plane and has
zero velocity. Assume that the string remains circular, that is it is described by a single function
R = R(t). Find the evolution of R by looking at the Nambu-Goto action.

Proof. If we make the assumption about its movement, we certainly have v; = R. The La-
grangian then takes the form

L(t) = Ty /S ds {[1- Rzgt) — _Ty2rR(t)- /1 - Rzgt). (265)
R(t)

One can view this as a Lagrangian for a system with one degree of freedom, described by a
function R(t). The canonical momentum P corresponding to R is thus

p._ 0L _ 2nThRR

== (266)
OR 2. /1 %2
We can thus pass to the Hamiltonian function, finding
. 27T
H=pi—— 2Tk (267)

R2
Vvi—a
Since L does not explicitly depent on time, H corresponds to the conserved energy. By plugging
R(0) = Ry and R(0) = 0, we get that the energy of the string equals to

2’/TT‘(]R(). (268)

We thus obtain the energy contraint

Ry= —— (269)
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This can be rewritten as B

Ry
One can differentiate this equation to get the equation of motion

R? +(=)?R* = (270)

2R(R + (—)2R) = 0. (271)
Ry

Assume for a moment that R # 0, so we get the equation of motion for the harmonic oscillator

with the solution (satisfying the initial conditions):

R(t) = Ry cos(RiOt). (272)

Note that then R(t) = —c sin(-t). The string collapses to zero at t; = THo " and note that then

R(tl) — —c¢. The solution R = 0 fails to satisfy the original Largrange-Euler equations. ]

Exercise 5.10. Let L be the Lagrangian density for the Nambu-Goto action in the static gauge,
expressed in terms of ;X and 0,X. The canonical conjugate momentum is defined by

oL Tyds @
(0, X) c*do 72

2

P(t,0) = (273)

Find the Hamiltonian density H := P09, X — L and express it in terms of U .

Proof. One has 8,X = ¥, + (something tangent to the string). The scalar product of the coor-
dinate velocity with the transverse velocity thus gives simply the square vf_. Whence

~ To ds v2 ds | v2 ds To
H=P .§ —L=—2"__“L 721 L__=__"9 274
vt 2 do 02 %do 2 do v (274)
7072 - 2

Consequently, we find

o ds T 2
H:/ do —Sioz/dsL, (275)
o g -4

so the energy of the string is the sum over relativistic energies of pieces with mass per unit length
1o moving with the velocity v . |

6 String parametrization and classical motion

6.1 Choosing a ¢ parametrization

So far, working in the static gauge, we have shown that we need to examine the string surface

described by functions X (¢,0). We would like to conveniently choose the parametrization of the
string surface. The idea is the following:

At some fixed time tg, the string is parametrized by o € [0,01]. For each value o( of the
parameter o, draw a straight line perpendicular to the ¢ = ¢y string. For some small € > 0, it
intersects some point of the t = ty + € string. This point on the t = tg + € string will be assigned
to the same value oy of the parameter. In this way, we will obtain the parametrization of the
t = to+ € string. By repeating this procedure, we can find a parametrization of ¢ = ty + 2¢ string.
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By repeating this procedure, we obtain a parametrization o of the whole string surface, having
the property the lines of constant o are perpendicular to the strings, that is

X oX
ot Odo
Since the movement of the string endpoints is transverse to strings, the value of the new parameter

at the endpoints remains sting equal to the ones at ¢t = t; string we have started with, say
ox € {0,01}. For closed string, we have o € [0, o.].

0. (276)

Let us attempt to discuss this more rigorously. Suppose that we are given functions X (t,0)
where (t,0) € [t;,tf] x [0,01] and we assume that X -0,X =0 for all (t,0,) € [ti, tf] x {0,041}
We are looking for a new parameter o’ := f(¢,0). Let us also formally write ¢’ := ¢. To simplify
notation, let tg = 0. We look for the function f, satisfying d, f # 0 and the condition

f(0,0) =0, (277)

this is because at t = 0 string, we want the new parametrization to coincide with the old one.
We have already shown that the tangent vectors transform as in (245, 246). By inverting those
relations, we can express primed derivatives in terms of unprimed:

@ = (ﬁ)—l 87)? 87)? = @ — ﬁ(ﬁ)q@

do’ ‘0o do’ o ot Ot 0o’ Do’
Our requirement is that the vectors tangent to the strings ¢’ = ¢{, are perpendicular to the vectors
tangent to the lines of constant ¢’. This gives us the equation

(278)

09X 0X of _,0X 90X Of 0f _, 0X ,
“%0 or 9 ot o or'a0) gl (279)
This can be rewritten as the partial differential equation
X  oX
Or _ 0 ‘oo (280)

ot O oX |2
155l

Observe that the fraction multiplying the partial derivative with respect to o is a known function
of (t,0), that is we are solving the equation

of _ of
ot o
Observe that we have assumed that K(¢,0,) = 0. This immediately implies that the solution to

this equation will satisfy %(t*, o) = 0. This confirms that the numerical value of the endpoints
remains constant in time.

K(t, o). (281)
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Exercise 6.1. Show that there is a solution to (281) with the initial condition f(0,0) = o defined
on entire string surface.

Proof. The solution to this partial differential equation is obtained by “method of characteris-
tics”. It follows that the graph of the solution defines a surface

S :={(t,o, f(t,0)) | (t,0) € [ti,ts] x [0,01]}, (282)

such that the vector field V := (1, —K(z,y),0) is tangent to the surface for all (z,y,z) € S.

For future purposes, suppose that we impose a boundary condition f(0,0) = F(o), where
F :[0,01] — [0,01] is an arbitrary function satisfying

F(0)=0, F(o1) =01, F'(0)>0. (283)
But this means that the surface S must necessarily contain the curve
[:={(0,r,F(r)) | r €[0,01]}. (284)

The idea is to find the integral curve of V starting from (0, r, F(r)) for each r € [0,01]. We thus
look for functions x = x(s,r), y = y(s,r) and z = z(s,r), satisfying the system of equations

Ox
%(577”) =1, (285)
Dosr) = ~ Ko, ylo,1) (250)
0z
%(5771) = 07 (287)

together with the initial conditions at s = 0, which give
2(0,7) =0, y(0,r)=r, z(0,r) = F(r). (288)

We can fully solve two of the equations, namely x(s,r) = s and z(s,r) = F(r), and it remains
to solve a single ordinary differential equation

Yy

%(5774) = —K(S,y(S,T)), (289)
which is possible for all r € [0,01] and s € [—a, a] for some a > 0. Let us now consider a map
o(s,7) := (x(s,7),y(s,r)). One can calculate its differential at (0,7r):

9z, 1) 9z(0, ) 1 0
D = s P = 2
(D)(0,7) (%;(077“) %’(O,r)) (K(O,r) 1) (290)
By the inverse function theorem, there is a neighborhood U of each (0,r) and a neighborhood
V of ¢(0,7) = (0,7), such that ¢ : U — V is a diffeomorphism. Since we can do this for all
r € [0,01], we can find the inverse expressions s = s(z,y) and r = r(z,y) for all z € [—b,b] and
y € [0,01], where b > 0.

Finally, define f(t,0) := z(s(t,0),r(t,0)) = F(r(t,0)), for all t € [=b,b] and ¢ € [0,01]. Tt

follows from the construction that f solves the partial differential equation (281) with the correct
boundary condition.
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It remains to check that %(t, o) # 0. One has

of o
8—0(15,0) =F'(r(t,0))

or

o5 (t:0). (291)

Since we have assumed that F’(o) > 0, this amounts to checking that g—;(aj,y) £ 0 for all
x € [-b,b] and y € [0, 01]. To do so, observe that

0661 = (s oy 20m) (202)

s, y(s,7)) 5

This matrix is invertible wherever ¢ is invertible. In particular, at these points one has %(s, r) #
0, and it follows that g—Z(x, y) is given by the bottom-right corner of the inverse matrix. Explicitly,

one has 5 )
r
oY = B ) 2%

for all € [—b,b] and y € [0, o1].

Observe that the resulting domain of f does depend only on the function K, not on the
function F' describing the boundary condition! By only a slight modification, for each to € [t;,],
we find b > 0, such that for any F : [0,01] — [0, 01] as above, there is a solution to (281) defined
on [tg — b, to + b] x [0,01] and satisfying the boundary condition f(tg,0) = F(o).

We can now cover [t;,ty] by finitely many such intervals, we can find a finite subdivision
to =t; < --- < t, = ty, such that for each ¢ € {0,...,n — 1} we have a solution f; on some
rectangle containing [t;,t;11] X [0, 1] for each boundary condition f;(¢;,0) = F;(c). We can now
inductively construct f. We declare it to be fy on [to,t1] x [0, 01] with the boundary condition
f0(0,0) = 0. Then we choose fi on [t1,t2] x [0,01] with the boundary condition fi(t;,0) =
fo(t1,0). By iterating this procedure, we find the solution to f on the whole [t;,¢;] x [0,01]. It
obviously satisfies g—i # 0. ]

In our new parametrization, the transverse velocity is therefore given simply by

ox
ot

—

vl (294)

We shall henceforth denote is simply by . We can now rewrite the canonical momenta densities
in our new gauge. One finds

T

C dO' v2 ’ C2 dO' v2 ’
1- 2 T2
zpoO rPU T v
’ 0y c? s (296)

6.2 Physical interpretation of the string equation of motion

:T()E 1 73_T()d8 il

PO (295)

Recall that the string equation of motion is simply

op™H  gpoH
ot g =0, (297)
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for each p € {0,..., D}. In the static gauge, we have 7 = t. Plugging the above expressions for
=0 thus gives the equation

0 To ds 1
(22— ) —o. 298
8t( cdo [ 2 ) (298)
c2
This is nothing but the energy conservation law. In fact, one can define a function
(299)

7 ds To
E(0) ::/ do <520
dJ 2
0 /1 — 2

which is independent of time and satisfies E’(c) > 0. This will be an important observation. On
the other hand, by plugging into the spatial components of the equation and using (298), one

finds - =
Ty ds 1 0?X 0 v2 0X
0 - T T /1—- ===
2 do w2 Ot2 o (To 2 0s ) (300)

Finally, rewrite the o differentiation using the s differentiation and cancel g—j. We find the

equation
o, 1 &X 9 [ 20X
— = —(To\/1 — ——). 301
2 i w2 Ot? 85(0 c? 85) (301)

This already somewhat resembles the wave equation for a non-relativistic string, which can be

written as uo%g = %(Tg g—g). This leads us to define the effective tension and the effective
mass density. They are both functions of both ¢ and o:

/ V2 T 1
Tog :=Tor/1 — 2 eff i= 0—372 (302)

()2
6.3 Wave equation and constraints
Let us suggestively rewrite the equation (300) as
o 02 2 o
T082X—T\/1"‘28(\/1‘"‘28X) (303)
2oz ° s Jo s 9o/

If only we could choose a new parameter ¢’ = ¢/(o), such that

0 _ds 1 9 (304)

00~ do fi 00

But we are in luck, since there is one such parameter - the energy of the string segment from 0
to o, up to a constant. In other words, let

1 7 ds 1
b Lpgy = [ 1 305
7= B = [ —— (305)
2
Note that [¢'] = L, as required. Importantly, lines of constant ¢’ still remain transversal to

strings. We shall henceforth use this parametrization. Note that the range of this new coordinate

43



is [0, o1], where o] = T%, where E is the conserved overall energy of the string. We will henceforth

drop the primes and assume that o corresponds to the string energy.

Note that we still have to remember that o corresponds to the energy of the string. This
gives us a constraint

7 ds 1
= — ———do. 306
7 /0 do _v? 7 (306)
CZ

Since the values of both sides are the same at 0 = 0, we can instead compare the derivatives of
both sides with respect to o, finding

ds 1
1= ——— 307
o (307)
—
Taking the square and recalling that g—j = %W gives the equation
0X 1 90X
(7= + () =1 (308)

oo 2ot
This equation is a relic of our parametrization condition. When we look for a solution of equations
of motion, we impose this as a constraint. This is quite a common occurrence in theories with
some gauge invariance. Let us also examine the momenta densities and boundary conditions. It

follows from (307) that

ds v2

— =4/1-—=. 309

do c? (309)
Plugging this into (295) and (296), we find

_ X
PO =0, P’ = fTO%—U. (310)

Ty = Ty0X
70770 T:ii
P 70’7) 2 ot’

But this shows that the free endpoint boundary condition P7# (¢, 0,) = 0 turns into the Neumann
boundary condition:

oXH
——(t,0.) =0. (311)
Oo
Let us summarize all the equations and constraints we have to solve to find the solution:
9?X 92X
wave equation: 52 = 2 952 (312)
0X 00X
transversality condition: 5 9o 0, (313)
0X 10X
energy parametrization: (%)2 + 672(5)2 =1, (314)
0X
boundary conditions: a—(t, ox) =0. (315)
o

Note that the relic of the choice of the static gauge is that X%(t, o) = ct.
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6.4 General motion of an open string

The most general solution to the wave equation (312) can be written as

= 1

X(t,o) =5 (F(ct + o) + G(ct — o)), (316)

for arbitrary vector functions F = F(u) and G = G(u). We impose free endpoint conditions
(315) at both endpoints. The o, = 0 condition leads to

F'(ct) — G'(ct) = 0, (317)
for all ¢ € R. Hence é(u) = F(u) + @ for some constant vector. Plugging this back in gives

Xt 0) = %(ﬁ(ct + o)+ Flet — o)+ dy). (318)

One can absorb the constant vector @ by redefining F(u) — F(u) + @o/2, and we find

—

1, = .,
X(t,o)= §(F(ct +0)+ F(ct —0)). (319)
Next, we can plug this into the boundary condition (315) at o, = o1. We find
F'(ct+0,) — F'(ct — 01) = 0. (320)

Since this has to hold for all ¢ € R, this shows that F’(u) = F'(u + 201). This means that F is
quasiperiodic in u, that is

—
— —

U
F(u+201) = F(u) 4 201 —, (321)
c
where we have chosen the unknown constant ¢y to have the dimension of velocity. It remains to
plug into the parametrization conditions (313, 314). It is useful to add and subtract 2/¢ multiple
of the first condition to the second, finding

0X 10X
— - )=1. 22
(60 c Ot ) (322)
By plugging in (319), we get
X 1, o
10X 1,5 _,
Plugging this back gives
X | 10X .
— +-—— =4F'(ct £o). 2
9o~ c ot (ct+0) (825)

We thus find the simple condition on F, namely
IF (w)||* = 1. (326)
We thus conclude that the general motion of a string satisfying (312 - 315) can be written as

—

X(t,0) = =(F(ct +0) + F(ct — 0)), o €0,04], (327)

N |
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where o1 = E/Tj and the (yet) undetermined vector function F' = F\(u) has to satisfy

—

- - = v
IF'(w)|? =1, F(u+201) :F(u)+201?0. (328)

There is a direct interpretation of the function F. Indeed, one has X (t,0) = F(ct), that is

—

F(u) = X(=,0). (329)

u

We see that ﬁ(u) is the position of the string ¢ = 0 endpoint at time %. We can further
interpret the free velocity parameter vj.

Exercise 6.2. Show that

-, 2 = 2
X+ o) - X (t,0) = ()i, (330)
C

c
. . . . . . . 2
Uo s the average velocity of any point o in an arbitrary time interval of length =2-.

Exercise 6.3. Show that .

0X 20 . 90X
B bt o) =5 (

that is the velocity must be periodical with period 2%

t,0), (331)

Let us now consider the following problem. We assume that we have an open string which
rotates rigidly in (z,y) plane around its origin with a constant angular frequency w. Suppose
that it is of length ¢. The movement of its endpoint will thus be described as

X(t,0) = (g cos(wt), g sin(wt)), (332)

where we explicitly describe only the first two components. This forces F' to have the form

~ = U l wu, ¢ wu
F(u) = X(—,0) = (z cos(—), = sin(—)). 333
(w) = X(%,0) = (5 cos(“), 5 sin(“™)) (333)
Since 7 is the average velocity during the period of the velocity vector of the endpoint, and this
does repeat after a full turn of a string, we have vy = 0. We thus assume that F' is periodic with

period 207. This gives the condition

E(2(11) —2tm = 2 = L. (334)
c c g1
where m € Z. Now, observe that this gives
. 1 ¢
X(0,0) = 5(F(o) + F(=a)) = (5 cos(“2m), 0) (335)
1

But X (0,0) must be injective for o € [0, 0], which forces m = 1. We find that

Fu) = (= cos(Zu), g sin(-u)) (336)

— cos(—u)). (337)



We see that 22
T
=1. 338
40% ( )

IF (u)]| =1

If we recall that o1 = TEO, this gives a relation between the length ¢ and the overall energy of the
string, namely

E= gTOE. (339)
In terms of energy, we w = % The velocity of the endpoint is thus
y4 1 2F Tyme
o= =c. 340
2T 2nT, E € (340)
In conclusion, we have found that
F(u) = E(COS(E),SiD(ﬂ)). (341)
™ 01 01

We can now use it to find the final solution to our problem, finding;:

R(to) =2 Cos(%) - (cos(%),sin(%)). (342)

6.5 Motion of closed strings and cusps

Let us now try to solve the motion of the closed string. We again solve (312 - 314), except there
is no boundary condition (315). It is replaced by the periodicity condition in parameter o. The
solution to (312) is given by

X(t,0) = =(F(ct + o) + G(ct — 0)). (343)

N

By plugging into (322), we find the normalization of the tangent vectors in the form
IF' (w)|* = |G"()|* =1, (344)

for all u,v € R. We have to impose the condition

— —

X(t,o+01)=X(t,0), (345)

where 01 = E/Ty. We can pass to new independent variables u := ¢t + ¢ and v := ¢t — 0. By
plugging in (343) into (345), we find

—

(F(u+01) + G —01)) = =(F(u) + G(u)). (346)

N =
N =

This can be rewritten as

— — — —

F(u+o01) — F(u) = G(v) — G(v — 01). (347)

Since v and v are independent variables, both sides must be the identical constant vectors. This
means that both F' = F(u) and G = G(v) change by the same constant vector when their
argument is increased by 0. In particular, one finds

Fllu+oy) =F'(u), Gw+o1) =G ). (348)
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Up to some integration constant, the motion of the closed string is thus described by two periodic
unit vectors F'(u) and F’(v). These can be equivalently viewed as two loops on a unit sphere.
There are some strange things that can happen when the two loops intersects, that is

F'(ug) = G'(vo), (349)
for some values ug,vg € R. Let (¢g,00) be the corresponding values of the parameters, that is
ug = ctg + o9 and vy = ctg — gg. One finds

18X
c Ot 2

Since the right-hand side is a unit vector, we realize that at ¢y, the point 0 = oy on the string
reaches the speed of light! What is even worse, one gets

=2 (ty, 00) = (ﬁ’(uo) + G (v0)) = F'(ug). (350)

X 1, . -
870'(750,0-0) = §(F/(UO) — G/(Uo)) =0. (351)
But this means that the parametrization of the ty string becomes singular at ¢ = 0y. By fixing

t = tg, we can consider the Taylor expansion:

= ﬂ 1 02X 1 L 03X
X(to,O’) :X(t0,00)+§(0—00) 302 (t0700)+§(0'_0'0) W(to,do)—f—-'- (352)
By defining the constant vectors
5 = . X . X
Xo = X(to,Uo), T := W(fo,O’o), R = W(to,do), (353)
we see that )
X(to,a):fo+§(ofao)2f+ §(0700)3é+-~'. (354)

In the general scenario, T and R are non-zero and non-parallel. As o reaches oy from below, the
string reaches Xo along the T and then moves away along Taso grows above 0. One says that
the string forms a cusp. For bigger o — o the cusp opens thanks to the R term.

—

R

el

—

Xo

Note that since F/(u) and G'(v) are periodic with period o1, the cusps on the closed strings do
appear and disappear periodically. It can also happen that the two loops on the sphere intersect
at several points - each of these intersections comes with its sequence of cusps.

Exercise 6.4. The movement of the initially static closed string: Suppose we assume
0X
ot

How the general discussion changes? Suppose that at t = 0, the string traces a closed curve 5 of

length £. Describe the procedure of a solution.

(0,0) = 0. (355)
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Proof. By plugging (343) into (355), we find that

- 10X 1, = .
= - — = — F/ '(—
0=-(0,0) = 5(F(0) + G'(~0), (356)
This shows that G/(u) = —F'(—u) for all u € R, which can be integrated to G(u) = F(—u)+ do.
By plugging this back into (343), we see that one can absorb the integration constant by suitably
redefining F' and we can assume that

= 1

(F(0 + ct) + F(o — ct)). (357)
We can now plug into the periodicity condition )Z'(t, o+o1)= )?(t, o). By defining the indepen-
dent variables u := o + ¢t and v := 0 — ct, one obtains the condition

F(u+0y) — F(u) = —(F(v+01) — F(v)). (358)
Both sides must bei equal to a constant vector. But this is only possible if this vector is zero and
we conclude that F' must be a periodic function:

—

Flu+0y) = F(u). (359)

The interpretation of F is obvious - it corresponds to the initial shape of the string, since

—

F(u) = X(0,u). (360)

To fully solve the equations of motion, we thus have to specify the initial shape of the string.
However, there are still parametrization constraints. One finds

10X 1, S 0X 1, - 5
104 — Z(F _F va — _(F F! . 1
L 0) = S (F ()~ F'0)), T (t,0) = 5(F(u) + (o) (361)
We thus obtain a single condition, namely
|Fr(u)® =1, (362)
for all u € R. Equivalently, for an initially static string, we can examine (314) at (0,0), finding
0xX
—)(0 =1. 363
(E2(0,0) (363)

But this means that at t = 0, the length the initial string must be parametrized by its length!
This gives us the relation of the initial length ¢ an the energy of the string, namely

E = Ty. (364)

Compare this to (339). Let us now discuss the general solution. Suppose we want the string to
trace the initial shape ¥ = §(\), where A € [0, \g]. We thus have to parametrize the string by
its length, that is introduce a new parameter

A =
o(\) = / 1) ax (365)

In order for o to be a well-defined parameter, we must assume that ||§—i|| > 0. The length of
the string is then just £ = o(\g). One then has to invert the relation and write A = A(o). The
function F' is then defined simply by

Fu) = 7(A(u)). (366)
|



Exercise 6.5. Let us consider the situation from Ezercise 5.9, where at t = 0, the closed string
forms a circle of radius Ry in the (x,y) plane. Show that the assumption that the string remains
circular was correct.

Proof. In light of the previous exercise, we have 7()\) = Rg(cos()),sin())), A € [0,27]. We have
H%” = Ry, whence o(\) = RgA. We thus have to set

Flu) = Ro(cos(RiO), sin(RiO)). (367)

We also get the relation of the energy of the string to Ry, that is F = 27Ty Ry, which agrees
with Exercise 5.9. Finally, the full movement of the string is given by

X(t,o)= %(ﬁ(a +ct) + F(o — ct)) = Rycos(—) - (cos(—),sin(i)). (368)

S ct o
Ry Ry Ry

The function multiplying the vector is indeed the previously obtained function R(¢) and for each
t, the string is a circle of radius R(t). |

7 Worldsheet currents

7.1 Noether theorem for field theories

Let us consider the following general setting. Suppose we have an action functional

5= [deteagheen 0,00) (369)
for fields ¢¢ = ¢2(¢,...,€%), a € {1,...,n}. We write 0,¢® = g%ﬁ:. The Lagrangian density £
is an ordinary function in n + k - n variables. We can consider the variation

' = ¢ + 69" (370)

The derivatives vary accordingly, that is 0,¢'* = 9,0% + 0,(0¢%). We usually consider the
infinitesimal variations of the form §¢® = €'h¢(¢), where €' are independent parameters of the
transformation which are assumed to be small. One finds

L(¢',0a9"") = L($%,0ad®) + 6L + O(?), (371)
We say that £ is invariant with respect to (370), if £ = 0. Explicitly, one has
oL oL
= T+ 25 5 (56%). 372
567"+ 5(agm ") (872)

Beware that there are two Einstein summations involved. Now, suppose that ¢® satisfy the
equations of motion. This means that they are subject to the Lagrange-Fuler equation:

oL

oL oL
o = Oulg) (373)
for each a € {1,...,n}. For the solutions of equations of motion, one thus finds
oL ; oL
0=0L=04(77—=00") = € 0u(z7—<h¢ . 374
(Grongm ") = a5, g1 () (374)
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This suggests to define the conserved currents in the form

oL
ik = —m—=<hi (). 375
30007 () (375)
Let us emphasize that j& are functions of just (£!,..., &%), we assume that we plug in some field

configuration to the right-hand side. We have just argued that for a solution of equations of
motion, assuming that £ is invariant under (370), these satisfy

daji* = 0. (376)

Exercise 7.1. Suppose j& is a conserved current, and assume that ° has the role of a “time
parameter”. Let us consider the quantity

Qu(e®) = / det - ek, (377)

Show that g—g) =0, if §& vanish at the boundary (or in infinities) for a € {1,...,k}. For each
infinitesimal parameter, we thus obtain an actual integral of motion Q; called the conserved
charge (which is actually conserved).

7.2 Conserved currents on the worldsheet

Now, recall that relativistic string is a two-dimensional field theory, where (¢!, &%) = (7,0). The
fields of the theory are X* = X*(r,0). In the context of the previous subsection, we thus
consider the infinitesimal variations

SXH = 'hl(X), (378)
and the corresponding conserved currents are then have two components:

I oL w_ DT SO oL H — PoRHH
Ji = 6X“hi _Puhi (X)> Ji = aX'“hi (X)_Puhi (X) (379)

In particular, the Lagrange density depends only on the derivatives of fields. This means that
one can consider transformations

XM =€l =6y (380)
The index labeling the infinitesimal parameters coincides with the spacetime index. The corre-
sponding conserved currents are thus labeled by p € {0, ..., D} and have the components
Jn="PL Jp=P. (381)
The equation 9,j,; = 0 turns into
oPT  OPS
—L 4+ —FE=0 382
or + oo ’ (382)

that is equations of motion for the string. Now, according to Exercise 7.1, the corresponding
charge is the total space momentum

pu(T) = /001 do P, (7,0). (383)
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Let us examine its derivative with respect to the parameter 7. One finds

d&_/m apl__/ol OPL _ oy
ar s o == do 5 [Piloto- (384)

For open string, if the free endpoint condition is imposed on both ends, this makes the quantity
pu constant in 7. This is true also for a closed string, since there is a periodicity condition
imposed on the fields. p, is not conserved for Dirichlet endpoints!

7.3 The complete momentum current

There is one issue with the above discussion. Our description of the string was intended to be
reparametrization invariant. Our definition of the conserved momentum currents depends on the
parametrization. Is there some way to describe a momentum conservation of a string?

First, there is one important observation. Let us consider a general parametrization (&1, £2)
of the worldsheet. Let
oL

P = X5 (385)

be the associated momentum current. This can be viewed as a vector field P, = Pﬁ@a.

Now, suppose that a Lorentz observer a string at some coordinate time ¢. He uses a static
gauge 7 = t do describe the worldsheet and constructs a a density currents P, and P;. He
then defines a momentum of a T = ¢ string by a integral p,(t) = [ doP/(0,t). This can
be interpreted as a flux of P, across the curve v of constant 7. Indeed, the unit vector 7
perpendicular to v is 9; and P, - 0r = P].

This leads us to the following idea. Let v be any curve in the worlsheet connecting its o = 0
boundary to the o = 0, boundary. The flux of the vector field P,, across vy is usually written as

pu(y) = /(P;da — PZdT) (386)

In more detail, if y(A) = (7(A),0(A)) for A € [0, Ag], the integral is given by
Ao . do - dr
pu) = [ X (P o) FFON) = PE ), o) T (7) (387)
0
The crucial observation is the following one:

Proposition 7.2. Suppose v is any other curve connecting the o = 0 and o = o1 boundary of
the worldsheet. Then

pu(y) = pu(’Y/)- (388)

Proof. First observe that if ' is any closed curve in ¥ encircling a simply connected region R,
then the outgoing flux over I is

P,  OP°
T _ PO — H —
ﬁpuda Ppdr /R( o + B )drdo = 0. (389)

If v and 4/ are two curves connecting the boundaries of the worldsheet, we may consider the
curve I' as in the following figure:
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We see that outgoing flux across I' is p,(v) — p.(7") plus the flux across the o = 0 and 0 = o
segments. But those do not contribute thanks to the free endpoint conditions. Indeed, the flux
across the lower segment is

—/T Py (r,0)dr = 0. (390)

This finishes the proof. |

For closed strings, the situation is somewhat similar, excepts 7y is assumed to be an arbitrary
closed curve wrapping once around the worldsheet. The proof of the independence of p, () on a
particular choice of the curve is analogous, except the boundary I' of the region R consists just
of the two curves v and ~'.

How is this useful for the notion of a string momentum? Suppose a given Lorentz observer
observes a string at some coordinate time ¢. Geometrically, this is an intersection of the string
worldsheet with the 2% = ¢t hyperplane. Suppose he uses an arbitrary parametrization (7,0).
In this parametrization, string is a general curve 7 in the parameter space connecting the two
edges of a worldsheet. He then views p,(7) as a momentum of the string at time ¢.

If he decides to do so at any other coordinate time ', using the same parametrization, he
calculates p, (") along the different curve 4'. By comparing the two numerical values, he realizes
that the momentum is preserved.

Note that the numerical value of p, can still depend on the parametrization. It turns out
that this is not the case

Exercise 7.3. Consider a general reparametrization £'“ = ¢'*(£4,€2). Let

o€ 9t
J= ( oo gg) : (391)

ogl g2

be its Jacobi matriz. Show that the corresponding momentum currents P7 and ’Pl’f“ are related
by the formula
rp/l 1 fPl
1 — J H 392
() = e (7 (592)
Show that when | det J| > 0, the flux (386) in both parametrizations is the same.
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Proof. Directly from (226) and (227), using the fact that the Lagrangian density gets multiplied
by | det J| under reparametrization, one can derive the formulas

det J
(J3PL = JiP2), Pl = (=33P + TP, (393)

detJ
1
P B det J|

# 7 Tdet J|

By rearranging this using the explicit formula for 2 x 2 matrix inverse, we get (392). Now, the
differentials transform as

(A", de") = (dg',de?) - J. (394)
Let us write P, = 7338% and similarly 73; is defined with primed variables. Those are now the
same vector fields, but one has P;, = |det J|~'P,. However, one can define a 1-form

vp, (€ A dE?). (395)
The contributions from the determinants cancel, and one finds
vp, (A€ A dE™) = sgn(det(J)) - up, (dE' A dE?) (396)

If det(J) > 0, those forms coincide. But the flux (386) in two parametrizations is then just an
integral of the same 1-form over ~. |

Finally, note that the constants p,, are connected with the choice of Lorentz frame z#. It is
easy to check that if we choose a different Lorentz frame z'* = L*,z", they transform as Lorentz
covectors, that is

piL = prpw (397)

7.4 Currents associated to Lorentz symmetry

We have constructed the Lagrangian density for the string to be invariant under Lorentz trans-
formations. How does this translate in terms of infinitesimal transformations?

Recall that the spacetime coordinates transform as z'# = L*,x”. To examine the infinitesimal
transformations, write L¥, = §¥ + €*,, for some matrix e, with very small inputs. Since L is
to be a Lorentz transformation, we get the relation

e = N LM ALY o = 1 (08 4+ € X) (0, 4+ €”1c) = e + €’k + Nure! s + O(é?) (398)

This imposes the condition 7y, €” + 7uc€* ) = 0. Invoking the usual convention for raising and
lowering indices, this can be rewritten simply as €y, + €. = 0. Pluging back into the coordinate
transformation then reads

't = (6 + )z =t + ey, (399)

nr Iam

where the matrix with two indices up is also skew-symmetric, that is € —€

Going back to the relativistic string, this means that the corresponding infinitesimal trans-
formation of the string fields reads

X" = XF+ "X, that is 6X* = " X,. (400)

Exercise 7.4. Check that L of the Nambu-Goto action is indeed invariant under (400).
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Proof. Since L is independent of X*, one has
oL

- = B — DTSYH o m
5L a(aaxu)a“(5X> ProXt + PIS(XM)
= e (P;X, + P X))
L (KX X)) - (0 R oy )
- C

VX2 - (X202
=0,

where we have used the fact that e*” is skew-symmetric and the term in the big parentheses is
symmetric in (g, V). [ |

We can rewrite the variation in the following form
1
SXH =Ml X, = 53“(55}@ — 01 X). (402)

We see that, using the notation introduced above, one identifies hf, = 04X, — 64X, and the
corresponding conserved current is

o, a‘c Mmoo [ ¥EY] T o « «a
I = WhAVfP“((SAny(SVX)\) fPAnypyAX)\. (403)
Since the overall factor is irrelevant, one defines the respective currents as:

My, =X, Py — X, Py (404)
For X* solving the equations of motion, one has
oM}, N oM7,
or do
Similarly to the momentum, the corresponding conserved charges are defined by an integral

—0. (405)

M, = /(M;l,da - M, dr). (406)
R

The fact that the definition does not depend on <y and can be interpreted as a conserved quantity
needs to be checked for the open strings. For this to be correct, the integrals along the segments
on the worldsheet boundary must vanish. But this happens since Mg, (7,0.) = 0 due to free
endpoint conditions.

Now, for D = 4, we have six independent conserved charges. Three correspond to rotations,
and are usually identified with the conserved angular momentum, that is Ly = %ekijMij. The
other two are associated to the Lorentz boosts. Explicitly, in the static gauge, one has

. o1 X . ) o1 )
MY = / do(XOP7" — X'P™0) = ctp’ — / do XP70. (407)
0 0

By multiplying both sides by ¢/E, where E is the overall energy of the string, and rearranging,
one has 0 o 5
1 [ . PT cM™ c*pt

— do(X*- =— t . 408

E /0 o o) E TE (408)

Since P70/c is the energy density, the left-hand side can be viewed as a position of the center of

mass, and we have found that
‘ MO 2pi
X! (t)=— t . 4
em (t) T tig (409)
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7.5 The slope parameter o

Let us consider the rigid rotating string in the (z,y) plane. We have already solved this problem,
finding the solution (342). We sill show that there is a constant of proportionality o' relating
the overall angular momentum J of the string to its energy as

% =d E% (410)

Note that [J] = ML*T~! = [h], so the left-hand side has no dimension and thus [o/] = [E]~2.
The only non-vanishing spatial component of the angular momentum is M5, given by the formula

M12 = / (X173; — XQP{)dO’, (411)
0

that is J = |Mj2]. In our chosen parametrization (¢, ), we have

= o1 To mwet, .  mct
X(t,o) = — —)- — — 412
(t.7) = 2 cos(2%) - cos( 2 sin( T, (412
and thus .
- To0X Ty o . mct mct
T -0 Y 22y (= I — 41
Pr(t,0) = oy 5y = - cos( 20 (= sin( ) cos(Z0)) (413)
Consequently, one finds
o1 Ty [ 5, MO o5 et . o Tt 2Ty
2= ; o cos (01 ){cos (01 ) + sin (01 )} e (414)
Recall that o1 = E /Ty, that is we find
1 2 h 2
= = E 415
27TT()C 27TTOhC ’ ( )
hence finding
1 1
@ 2rTohc’ O~ 9ra’he (416)

Note that [o/] = M~2T*L~*. Note that the triple {a/, i, ¢} has the same convenient property as
{G, h, c} we have discussed before. In particular, there is a unique length which can be obtained
as a product of powers of those three quantities. This is called a string length:

7
ly = heval = 27r;0' (417)

Note that if ¢ is of the same order as £p, we find Ty o 10> N.
8 Light-cone relativistic string

8.1 A class of choices for 7

So far, we have worked in the static gauge, where X°(7,0) = cr. This can be interpreted as
follows - we want the intersection of the worldsheet and hyperplanes of constant ¢ to correspond

56



to the constant value of 7. The normal vector to those hyperplanes is n = (1,0,...,0). The
above condition can be thus rewritten as n,X*(7,0) = cr.

Now, suppose n is an arbitrary non-zero constant vector. We can now require
n, X"(r,0) = A, (418)

where A # 0 is some constant. This means that the intersection of any hyperplane orthogonal to
n with the worldsheet is a line of constant 7.

Let AX* be a difference of any two points of the worldsheet with the same value of 7. We do not
want this to be a timelike vector. Since n,AX* = 0, it suffices to assume that n is not spacelike.

Exercise 8.1. Let n € RP be a non-zero vector which is not spacelike. Then any Lorentz vector
a € RP which satisfies n - a = 0 is not timelike.

Proof. First, suppose that n is timelike. Since n -a = 0 is a Lorentz invariant condition, we
can choose the frame where n = (n° 0). Then n-a = n% and thus ag # 0, that is a cannot
be timelike. Next, suppose that n is lightlike. Write n = (n°, 7). We thus have (n°)? = (7).

Suppose for a contradiction that a is timelike. We can thus examine everything in the frame

where a = (a°,0), a® # 0. Hence 0 = a - n = agn® implies n® = 0 and thus also (77)2 = 0, which
contradicts the assumption n # 0. |

We must also argue that we can always consider such a gauge. Starting with a parametrization
(1,0), we thus pass to a new parameters ¢’ := o and 7 := %nﬂX“(T, o). For this to be a
reparametrization, we need to check that n - X # 0. Without the loss of generality, we can
assume that (¢, 0) are the convenient parameters from the previous sections, where X = (¢, 7, ).
This vector is timelike except for string endpoints. If n is timelike, X can never be orthogonal
to it by previous exercise. If n is lightlike (which we will consider), it can happen that n - X=0
at string endpoints - the parametrization has its limits.

Exercise 8.2. Suppose a,b € RP are two non-zero lightlike vectors with a-b=0. Then a and b
are colinear.

Proof. We can rotate the spatial coordinates so that a = (a°,a®,0) and b = (b°,b!,b) for b € RP~2
and a®,b° # 0. The condition a-b = 0 implies a’(b° —b') = 0, that is b! = b°. But the assumption
b? = 0 then implies

—

0=—("2+ @)%+ ()2 =b=0. (419)
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This proves the claim. |

This exercise shows that the issue arises for a lightlike n when some of the endpoints moves
with the velocity v = c¢- ﬁ We thus have to assume that this is not happening. The non-zero
constant A is still for us to choose. Now, we have argued that to each string, there is an associated

conserved momentum p#. This is a non-zero timelike vector, hence n - p # 0. We will thus write

n,X*(1,0) = (n-p)At, (420)

for some non-zero constant A. Note that the momentum is conserved for open string with free
endpoints. However, we only need to ensure that n-p is a conserved quantity. In order to achieve
that, it suffices to impose a weaker condition on the endpoints, namely

P (r,0.) = 0. (421)

Let us discuss units. We will henceforth choose (7,0) to be dimension-less. The dimension
of n plays no role in the discussion, whence

N =Lp ' =LMLT Yt =TM. (422)

This is velocity divided by force, so the natural choice would be X o T = 2ma’ hc?.

Let us also further work in the natural units, where we set h = 1 and ¢ = 1, as if they were
dimension-less. This a great computational help. If we want to physically interpret any resulting
quantity, we must keep track of its original dimension - and insert (the suitable) power of /i and
c to get it. The simiplified relations between o’ and Ty and £, are then

1 1
_ — /!
T() = 271_0/, fs . (423)

/

o =—
27TTO
In the natural units, we fix (for open strings) the constant of proportionality to be A = 2/, so

our final gauge condition is
nX*(r,0) =2d'(n - p)r. (424)

Exercise 8.3. Argue whe p* is a non-zero timelike vector.
Proof. We can work in the static gauge and a convenient parametrization. We have
70 _ —U T _ VU=
PV =— P = 2 v]. (425)

For a given t, we thus have

p“p#:/ da/ do'PTH(t,0)P;(t,0")
0 0 (426)

T2 o1 J1
—6—2/ da/ do’(? = TL(t,0) - UL (t,0"))
0 0

We claim that the term under integral is strictly positive inside of the [0,01] X [0,01] square.
Using the Cauchy-Schwarz inequality, we have

[9L(t,0) - TL(t, o) < vi(t,0) - vi(t o) (427)

This expression strictly lesser then c¢? inside of the square. We see that pp, < 0. |
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8.2 The associated o parametrization

Now, in our choice of ¢ parametrization, we have chosen ¢ so that

_ds 1

do [

c2

1 (428)

In particular, we require that P is (a very particular) constant along each string. Since n =
(1,0) in that case, we are in fact imposing n - P to be constant along each string.

Now, let us consider a general reparametrization 7/ := 7 and ¢’ = ¢/(7,0). Let us examine
how the quantity n - P” transforms under such reparametrization. Note that we are assuming
n-X=MAr,son-X =Xand n- X' =0. By plugging into (226), we thus have

N2
1 NTo(X') (429)

727(0/ \/(X . X/)z _ (X)Q(X’)Q

Now, recall that one has
oX*  0Oo' OXH
9o Do o’
The denominator gets multiplied by an absolute value of the determinant of the transformation.
But this is |%" We conclude that

(430)

!/
n-PT= %\ (n-P") (431)

Exercise 8.4. Calculate P P™" in an arbitrary parametrization (1,0). Show that in the gauge
(418), P is not spacelike and it is timelike if and only if X' is spacelike.

Proof. One uses (226). By simply plugging this into the square gives
1

2o

PP = —( V2 (X2, (432)

Now, differentiating (418) with respect to o gives n- X’ = 0. Since n is non-zero and not spacelike,
X’ cannot be timelike. [ ]

Looking at (429), we see that n - P7 is non-zero at all points where X’ is spacelike. Those
are precisely the points where P is timelike.

Exercise 8.5. Show that X’ cannot be lightlike at string endpoints.
Proof. We know that X’ is everywhere non-vanishing. Since n - X’ = 0, it can only be lightlike,

if it is a non-zero multiple of n, say X’ = an. Evaluating the term under the square root of a
Nambu-Goto action then gives

(X - XV —(X)HX')?=(X-X)=a%X -n)=a®X2>0. (433)

But we have argued that this quantity has to vanish at string endpoints. |
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Let us further assume that this does not happen, that is n- P™ # 0. We can then consider a
reparametrization

o' (r,0) :=k- /Oa(n -P7(r,0))do, (434)

for some non-zero constant . One finds ¢’(7,0) = 0 and ¢’(7,01) = k- (n-p). We want a new
parameter to be dimensionless. By convention, we choose k = 7(n - p)~!, so that ¢’ € [0,7].
Now, since ¢’ grows as o grows, one has

do’  w(n-P7)

— = ———>0. 435
do n-p ~ (435)
By plugging into (431), we thus find
nopr = X PD oy, (436)
n-p

By canceling n - P7 on both sides and rearranging the constants, and finally dropping primes,
we have found ourselves a parametrization (7, ) satisfying the constraint
n-p

—

n-PT = (437)

Let us examine consequences of this choice. Multiplying the equations of motion by n, we get

o) I oy _
5 (0 PT)+ o (nP7) =0. (438)

The first term vanishes and we conclude that d,(n - P?) = 0. Since for open strings, we have
(n-P7)(t,0.) = 0, this ensures that

(n-P7)(r,0) =0, (439)

for all 7 and o € [0,7].

The discussion for closed strings is a bit more involved (there is no free endpoint condition).
First, for convenience, the gauge fix for the closed strings is slightly modified to

n-X(r,0)=d(n-p), (440)

that is without a factor 2. The consequent o parametrization is then defined to satisfy the
constraint n-p
n-PT=—=, 441
o (441)
so that its range for closed strings is o € [0, 27]. In (434) defined a new parameter o to have value
zero wherever the original parameter did. As n-P7 is constant in both (7, 0), we are free to shift

the o = 0 line wherever we want to. More precisely, we can consider a further reparametrization

!

=1, 0 =0— f(1), (442)

where f(7) is some arbitrary function of 7. By looking at (431), this does not change n - P and
thus the gauge condition (434), neither the condition (440). This is defined so that the ¢/ =0
line corresponds to the curve (7, f(7)) in the (7, 0) parametrization.

Our guiding principle is that the quantity n - P’ " must vanish along ¢’ = 0 line, that is

(n-P7)(+,0) =0, (443)
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for all 7. Recall that the (7,0) satisfying (440), one can plug into (227) to find

n-p X X'

n-P7=— 5 —— - (444)
X - (e
The derivatives transform as
ox*  oXxH ,0XH 0XH  OXH
= - = . 445
or ot / do’ 7 do do’ (445)
Since the Jacobian of the transformation (442) is just 1, one finds the transformation rule
, . X/ 2
P’ =n. P74 XS . (446)
X2 -
In other words, we have just found that
, . X X = (X2

M J k& - Gpxy?
By evaluating both sides at (¢, f(7)), our condition leads to the ordinary differential equation

"(1) = XX T, f(r

for an unknown function f(7). Note that the initial condition can be set arbitrarily. This can
be always solved on a compact interval [7;, 7¢]. We can thus drop the primes and declare that in
our gauge, one has (n-P7)(7,0) =0 for all 7. Since J,(n - P?) = 0 by equations of motion, we
find that n - P? = 0 also for a closed string.

Let us summarize our choice of gauge:

n- X(Ta 0) = 60/(71 : p)T7 (449)
%n -PT=mn-p, (450)
n-P° =0, (451)

where 8 = 2 for open strings and 8 =1 for closed strings, and o € [0, (3 — 8)7].

8.3 Constraints and wave equations

Let us examine the consequences of (449-451). By differentiating (449) with respect to 7 and
plugging the result for the expression for n - P? obtained from (227), the condition (451) gives

X-X'=0. (452)
Using this in (226) and plugging this into (450) leads to together with (449) gives
(X")?

v —X2X2
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Using the assumption (X’)? > 0, this can be squared and rearranged to
(X)?+ (X2 =0. (454)
These two constraints can be added and subtracted to obtain a convenient form
(X+X")2=0. (455)

-
)

Exercise 8.6. Check that for n = (1,0), we obtain the static gauge situation.
Proof. The only difference should be in the constants. First, (449) gives
X(r,0) = (Ba'p)r. (456)

Note that in natural units, one has [o/] = L%, whereas [p°] = M = L1, so 7 is indeed dimen-
sionless. On thus has

X = (Ba'p’, X), X' = (0,X"). (457)

The condition (452) thus gives simply X X = 0, and (454) reads
(X)?+ (X)? = 320" (")2, (458)
]

Using (452) and (454) significantly simplifies the expressions for the momenta. Indeed, e.g.
for P7#, one finds
1 (X XX — (X)X, 1 .
Pr=—— ( X = XX X, (459)

Similarly, one gets

1
P = X' (460)

2 M

Observe that P and Py indeed satisfy (450) and (451) thanks to (449). Finally, plugging into
the equations of motion, one obtains just the wave equations!

Xr - Xr" = . (461)

8.4 'Wave equation and mode expansions

Let us now solve the equation of motion (461) satisfying the constraint (455) together with the
free endpoint boundary conditions. The most general solution to (461) has the form

1
XH(r,0) = S (A7 +0) +g"(1 = 0)). (462)
The free endpoint boundary condition turns into a Neumann boundary condition X*(r,0,) = 0.

At 0, = 0, this gives
fH(r) —g"(r)=0. (463)

Hence f* and g* differ only by a constant, which can be absorbed into a definition of f*, so

X4(r,0) = 5 (4(r +0) + (7 ~ o). (164)
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Plugging into the boundary condition at o, = 7 then gives
fr+m)— f*(r—-m) =0, (465)
that is f’* is periodic with period 2. We can thus expand it using Fourier series as
M uw) = fI"+ Z (ak cos(nu) + b sin(nu)). (466)
n=1
We can integrate this (and absorb the integration constants into new coefficients) to find
[ee]
) = 8 + fllu+ Z (A% cos(nu) + BE sin(nu)). (467)
n=1
Plugging this into the formula for X* and using some formulas for sums of (co)sines, this gives
XH¥(r,o) = fi'+ fi't+ Z (A% cos(nT) + BE sin(n7)) cos(no). (468)
n=1
Now, the idea is to replace pairs of real constants A# and BF with a complex constants with
better physical interpretation. One has
A cos(nt) + Bl sin(nt) = — %((Bﬁ + A" — (B — i At )em T
o _ _ (469)
_ Z \/ﬁ (aﬁ*eln’r _ aﬁefzn’r) .

Note that [A¥] = [B¥] = L, so we have chosen a normalization by a constant of dimension
[Vo/] = L, so that new coefficients are dimension-less. Next, note that

PTH — 27r10/ e Z(. .Y cos(no). (470)
n=1

Integrating this over [0, 7|, this gives us the overall momentum of a string. Since foﬂ cos(no) =0
for every n € N, one has

1 1
7 :/o omar 11 = gl = i =207 (471)

By writing f{' = 2k, we can thus write

cos(no)

NG

Finally, this can further rewritten as follows. One introduces new complex constants {ay, }nez as

oo
XM(1,0) = xh + 2a'pHT — i\/TMZ(a’fL*ei"T —ale™™T)

n

(472)

n=1

ab == V2a'pt, ol :i=ak\/n, ot =al*\/n, forn > 1. (473)

This allows us to write the above expression as

1 .
XH(r,0) =z + V2ol +ivV2a/ E —ale™™ cos(no) (474)
n
n#0
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Why is this parametrization convenient? Because partial derivatives od X* look particularly
nice! One finds

XH(r,0) = V2 Z ate™ 7 cos(no), (475)

nez
X'*(r,0) = —iV2 Z e sin(no). (476)
nez
In particular, one finds
Xt 4+ X' =2a/ Z afem (o) (477)
nez

Remark 8.7. Note that the solution using mode expansions has its drawbacks (usually ignored).
First, X = X (7,0) may happen to be not injective. Moreover, it can happen that in isolated
points, the tangent vector X’ vanishes, i.e. the string has cusps.

8.5 Light-cone solution of equations of motion

In this subsection, we will finally fix our choice of the direction vector n. Set

1 1

n, = (ﬁ,ﬁ,o,...,oy (478)

With this choice, we thus have

1
n-X=-—(X'4+XHY=X" n.p=

V2

The gauge conditions (449 - 451) can be thus written as

X*(r,0) = Ba'pTr, PTF = %pﬂ Pt =0. (480)

®° +p") =p". (479)

Sl

This is what is usually called the light-cone gauge. Let us write X! = (X2,..., X%), that is
X = (X1, X, XT) in light-cone coordinates. The string coordinates X! are called transverse.
Note that p™ = n-p > 0 for a physical string. The crucial observation is that the constraint
(455) can be now solved in a very easy way. Indeed, one has

0=(X+X)=2XT+X) (X £X)+ X £Xx7)? (481)
where we write (a’)? := Y29_, a’a’. But one has X+ 4+ X't = Ba/p* # 0. Hence

1

. 1
X"+ X = e
Ba’ 2pt

(xT+£x1)2 (482)

This means that X~ and X'~ can be fully expressed purely in terms of the transversal string
coordinates. This is the reason why the light-cone gauge is so useful. More precisely, the
transversal string coordinates fully determine a 1-form

dX~ = X~dr + X'~ do. (483)

To find X~ we need to fix its value X~ (p) at some point of the worldsheet. For any other point
g, one connects it to p by a curve v and defines X~ (q) := X~ (p) + fv dX~. This is always
possible for open strings. For closed strings, there is an obstruction (to be discussed later).
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Let us try to fully solve the open string case using the mode expansion above. Since X+
and X! satisfy the wave equations and free endpoint conditions, we can use completely the same
notation. For the + coordinate, we find

ry =0, af =V2a'pt, o =0 forall n # 0. (484)
Moreover, one has

X" +X"=V2 Za e~ mn(rEo) (485)

nez
X'+ X" = V2o Z ol emin(rEo), (486)
nez
Plugging this into (482) gives
— _—in(t+o) __ I —i(p+q)(t£o
\/To/z:ane ( )_2a’2p+ Zapae (pta)(r+0)
neZ Z
© P (487)
_ —ML(T:I:rr)
- 2p+ > anpop)
n€Z peL
By comparing the coefficients, we find that
I oI
V2ola, = 2p =Y a0 (488)
PEZL

The combination of the transverse oscillators on the right-hand side has its own name, called the
transverse Virasoso mode L;-. One has

Lt
Zan pap = V2da, = p— (489)
pGZ

Note that (L;-)* = L*, . In particular, for n = 0, this gives 2pTp~ = %Lé‘. It follows that X~
can be expressed using the transverse Virasoro modes as

X~ (r,0) = x5 + LL = Z Ll T cos(no). (490)
n#O

The mass of the string is defined as M? = —p? = 2pTp~ — p’p’. Using the above expression for
2pTp~, one finds the expression

1 1
+ - 1L _ I I _ il I
2p7pT = — Ly = S eZa_nozn = 5o E na a =plp! + E na *a,. (491)

We conclude that
1 .
M? = > Z nal*al. (492)
n=1

We observe that M2 > 0, which is in accordance with our expectations. Moreover, one has
M =0,iffal =0foralln € Nand I € {2,...,d}. What is the string then? It is easy to see that
it collapses to a point massless particle (hence moving with the speed of light). To conclude, the
motion of the open string is fully determined by the following constants:

T s pt ol ol forall T €{2,...,d} and n € Ny. (493)

Note that for negative n < 0, one has o, = al* .
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Exercise 8.8. Consistency checks on the solution for X .

Suppose X~ and X'~ are defined by the formula (482). It is not clear that this gives a
solution to the wave equation with appropriate boundary conditions.

(i) Check that the 1-form dX~ defined by (483) is evact, if X! satisfies the wave equation for
every I € {2,...,d}.

(ii) Show that X~ satisfies the wave equation, if X! does so for every I € {2,...,d}.

(iii) Suppose that for each I € {2,...,n}, X satisfies either Dirichlet or Neumann boundary
condition at either endpoint. Then X~ satisfies the Neumann boundary condition.

Proof. Tt follows from (482) that

X~ =k((XT+ X"+ (X = X")?) =2k (((XT)2 + (X')?)), (494)
X7 =k((XT+ X7+ (X' = X'T)?) =2k (2X X)), (495)

where k£ > 0 is some constant. It is not relevant for this exercise, so we write simply

X~ = (X2 (X2, x'm =2X"x" (496)

Consequently, we find
0e X~ = 2X1(0,XT) + 2X" (0, X'T), (497)
9. X'~ =20, XH) X" +2Xx1(9,X'). (498)

Subtracting both sides thus gives
0, X'~ — 0. X'~ =2X1 (9, X1 — 0, X'") + 2x"1 (9, X" — 0. X"). (499)

Now, the term proportional to X7 vanishes since X7 have continous partial derivatives. The
term proportional to X’/ vanishes if X! satisfies the wave equation. This proves (7). Also
9. X~ =2x1(8. X1 +2x" (9, X', (500)
0. X'~ =200, X)X +2X1(9,Xx").. (501)
Subtracting both sides thus gives
0. X~ — 0, X'~ =2X1(0, X" — 9, X"y + 2Xx" (9. X1 — 9,X7). (502)
The term proportional to X7 is precisely the wave equation for X7, the term proportional to

X! vanishes since each X' has continuous partial derivatives. This proves (ii).

Finally, we see that X'~ (7,0,) o X'(r,0,)X"/(r,0,). This vanishes whenever for each I,
one has either a Neumann boundary condition X'/(7,.) = 0 or a Dirichlet boundary condition

X*(7,0.) = 0. This proves (iii). |

(2) . (3)
1

Exercise 8.9. Consider the open string described by x; = zf := 0 and a;” = a, "’ = ia,

where a > 0. Other coefficients vanish.

(i) What is the mass M of this string;
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(ii) Write down X2(1,0) and X3(7,0). What is the length of the string?
(i4i) Calculate Ly- for all n € Ny. Use this to write X ~(1,0);

(iv) Choose p* to ensure that the string moves in (z2, %) plane, that is X1(7,0) = 0; Find the
relation between t and T;

(v) Find the relation between energy and length.

A2 — L oo I I _ 1 (.2 2\ _ 2d° .
Proof. One has M* = -5 >~ na,*a, = -7(a”® + a®) = =%-. Next, one has

X2(1,0) = iV 2a’(a§2)6_” - a(fi*e”) cos(o) = —ivV2a'a(e’™ — e™'7) cos(o)
= V2a/2asin(r) cos(o), (503)
X3(1,0) = V2a/2asin(7) cos().
This is a rigidly rotating string in (z2,2%) plane of length ¢ = v2a/4a. Let us calculate the
transverse virasoro modes. One has

1 1
L= 3 aflfpaé = i(afhla{ + ai+1a£1). (504)
peZ

The only non-zero situation can happen for n = 0 and n = £2, and one finds

Ly = ol jof = |od? = 24, (505)
1 1
Ly = —alal = §(a2 —a*) =0 (506)
Plugging into (490) thus gives
X~(r.0) = L rdr =20 7
(7’,0)—p—+ ()T—pTT. (507)

Recall that X (7,0) = 2a/pT7. One gets

2a?

X1(r,0) = ——(X*(r,0) - X~ (r,0)) = —=(20'p" 5

V2 V2

The requirement X!(7,0) = 0 thus uniquely determines p™ = /a2/a’. Consequently, one has

). (508)

XO(r,0) = \%\@m. (509)

The relation to the coordinate time ¢ (in natural units) is therefore
t= i\/o/aT. (510)
V2

24>
-, 80

Finally, one has 2pTp~ = LLg =

1 2a2 1 1 202
» _ 127 _1Va'2? o« , (511)
2pt o 2 a o Vao!
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We can use this to calculate the energy of the string, namely

o Loy 7:\/§a
E=p —\/i(p +p7) N/ (512)

We find that a = 4\/27 and thus E = ;5 = 27Ty4 = ZT,¢. This precisely the relation (339). W

Exercise 8.10. Study the solution for the open string with x5 = xl =0 and ol =0 except for
a§2) = oz(_?* =a. (513)
Fiz constants so that strings moves in (x',2%) having a zero momentum in this plane.
(i) Find explicit expressions for X°, X' and X?;
(ii) Confirm that T flows as t flows.

(11i) At T =0 the string has a zero length. Study a motion for 7 < 1. Calculate 7 = 7(t,0) and
find X*(t,0) and X2(t,0).

Proof. The only non-zero Virasoro operators are

L = ol ol = d? (514)
Ly = %a{a{ = %aQ. (515)
Plugging this into the formula for X, one gets
Xt(r,0)=2ap"T, (516)
X (r,0) = iL& + pi+L2+ sin(27) cos(20). (517)
The momentum in the — direction is
b= I = (515)

- 2pta’ 0 - 2ptal’

Since p? 04(()2) =0, we need 0 = p' oc (p™ — p~). This gives the condition

a
pt= = (519)

By plugging in into the above formulas give
1

XH(r,0) =1, (520)
20'a
1 _ L.
—— X7 (1,0) = 7 + = sin(27) cos(20) (521)
20/a 2

Combining those into X° and X!, one gets the final list

210/@ XO(r,0) = V2(r + isin(QT) cos(20)), (522)
1 1.

2O/aXl(T, o)= — Wi sin(27) cos(20), (523)
210/a X2(1,0) = 2sin(7) cos(a). (524)
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This finishes the part (i). We will further ignore the constants. One has

0X0
or

=201+ %sin(QT) cos(20)) > 0,

(525)

This shows that the “time flows” as 7 flows, that is part (i7). Now, 7 = 0 corresponds to t = 0
string. This string has zero length, since X'(0,0) = X?(0,0) = 0. Now, if 7 < 1, we have

XO(r,0) =~ V2(1 + %27’ cos(20)) = V2(1 + %cos(2o—))7. (526)

We can now introduce a new parameter t, so that X°(¢,0) = t. This amounts to solving the

equation
1
t=2(1+ 3 cos(20))T,

which can be done to get the formula

V2
r=— "t
2 + cos(20)

For each t < 1, we thus get a parametrized string:

1 B cos(20)
0= = o)
Xl0) = Pyt

This is the following constant shape expanding linearly in time:

X2
0.10

0.05

L 1 1 1 1 1 1
-0.10 -0.05

-0.05-

-0.10-
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9 Light-cone fields and particles

Let us now briefly recall some classical fields appearing in physics. We will also discuss their
quantized version. This is to later identify those as states of quantum strings.

9.1 Real scalar field

Scalar field is given by a single real function ¢ = ¢(2°, ..., 2P). Its action is given by
D 1 L 5.9
Slol = [ aPa(-50,00"0 — sm*?), (531)
where m > 0 is its rest mass and 0,9 = Baw%' The corresponding Lagrange-Euler equation (for

variations vanishing at infinity) is the Klein-Gordon equation:
O (0,¢) —m2¢ = 0. (532)
The canonical momentum associated to ¢ is

oL
= oud) Ao, (533)

and the corresponding Hamiltonian is then obtained as
1
H= /ddz(Haogb —L) = /dd:r§(H2 + V|12 + m?p?). (534)

One usually solves the Klein-Gordon equation by performing a D-dimensional continuous Fourier
transformation. One defines a function ¢(p) by the formula

1.
_ dD ip-xT .
@) = [ Pp e i) (535)
By plugging this into the Klein-Gordon equation (532), one obtains
1 .
_[qP 2 2 _
[ 47 0+ i) = 0 (536)

which is equivalent to the equation
(p® +m?)d(p) = 0. (537)

We see that on the mass-shell p? +m? = 0, the value é(p) can be arbitrary, and it has to vanish
elsewhere. The mass shell is a hyperboloid ()2 — (p°)2 = m?2. Its two components are described

by p° = £/(p)? + m? = £E,. We can thus write

é(p) = 2m)Pa(p) - 5(° — Ep) + (2m)b(p) - 6(p° + Ep). (538)
Now note that ¢(z) has to be a real function. Plugging this into (535), we obtin the condition
¢*(p) = $(—p). (539)



Plugging the above expression, we find that this forces b(p) = a*(—p). We can plug this back
into (535), finding

6w) = [ aPp(alPoe” - By) +a’ (-3 + By
- / A7 (a(F)eBrt + 0 (—p)eiBrt) P (540)
_ /ddﬁ (a(@efiEthrﬁ'f+a*(meiEpt7iﬁ-f).
This is a standard solution as a superposition of plane-waves. Note that in the light-cone gauge,

the procedure is similar. Write z = (x*, 2™, Zr) and p = (p™,p~, pr). This time, one considers
the Fourier transform

ot o7 = | ?573/ m“””””T'ﬁé(x*,ptm). (541)
The Klein-Gordon equation takes the form
—20,(0_¢) + Apd —m?¢p =0, (542)
where Ar := 0;0; is the “transverse” Laplacian. Plugging the above expansion gives
2ipt 0,6 — ((Fr)” + m*)é = 0. (543)
We claim that this has a non-trivial solutions only for p™ # 0. Indeed, suppose that p™ = 0.
But then p? = —2ptp~ + (pr)? = (pr)?> > 0. But for pT = 0, the equation would give

(pr)% + m?)¢ = 0 and thus ¢ = 0. To get non-trivial solutions, we can thus divide both sides of
(543) by 2p™ to get the “Schrodinger type equation”:

10, = 21_%(@)2 +m?))d (544)

Note that the right-hand side is precisely the solution for p~ of the mass-shell condition. We will
make use of this equation later.

9.2 Quantum scalar fields and particle states

Suppose that our classical field is restricted to a finite d-dimensional volume V', e.g. a box with

sides Ly,...,Lg. In this case V = Ly --- L4. Let us consider a plane-wave solution as above, just
with a different normalization:
1 1 . U . L,
¢p(t,f) e—zEpt—i-zp‘x + a;ezEpt—zp‘m), (545)

= WiTEp(ap

One usually requires the field ¢, to be periodic in each its variable with period L;. This can be
ensured by by requiring

for each i € {1,...,d}, where n; € Z. We thus assume that the momenta p; become “quantized”.
Let us evaluate the Klein-Gordon action (531) for ¢4. Let us move chose the spatial coordinates
so that the the box correspond to z' € [0, L;]. Recall that

1 1 1
L= 5(000)° ~ 5(0:0)(0i0) — 5. (547)
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By plugging in (545), observe that no term which contains e*2##

is because
L, Ly o
/ dzt - / dz?e2PT = q, (548)
0 0

By plugging into the action and Hamiltonian (534), we find

survives the integration. This

Slépl = 0, (549)
H(¢p] = Epayap. (550)

Exercise 9.1. Let us consider a Lagrangian density L = L(¢%, 0,0"), and let us consider an
infinitesimal transformation

¢’ = 6" + 700", (551)
that is 6¢% = #95¢*. Show that
5L = €?0,(55L). (552)
Show that in this case, there is a conserved current
oL
T = ————03¢9" — d3 L. 553
B 3(8a¢a) B B ( )

This quantity is called the energy-momentum tensor.

The momentum density P of the Klein-Gordon field is obtained from components T, i €

{1,...,d}, and the conserved momentum P is thus given by
P = /ddxaiﬁﬁ = f/ddz(a ?)(0:9) (554)
P = 9(0,0) o = o iP).

Plugging in (545) gives

P =payap. (555)
These observations suggest how to “quantize” things. We will declare a, to be the annihilation
operator and ay to be the creation operator a;:. We impose the canonical commutation relations

lap,ai] = 1, (556)

v

with other combinations vanishing. In full generality, the full quantum field ¢(x) is a sum over
all spatial momenta:

1 1 . g . -
00) = = D0 e (aye™ P ), (557)
7 p

where one imposes the (only non-vanishing) commutation relations
1
[ap, Qg ] =0dpq- (558)
The quantum version of the Hamiltonian H and P take the form

H=> Epafa, P=) pala,. (559)
7 i
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One assumes the existence of a vacuum state |{2), having the property that a,|Q) = 0 for all
momenta p. It follows that H|2) = 0 and P|Q2) = 0.

One defines the k-particle states by acting by k creation operators, that is

al ---al |Q). (560)

It is easy to see that (560) are eigenvectors of H and P with eigenvalues F,, +---+ E,, and
p1+ - -+ + Pk, respectively.

Exercise 9.2. Solve 544 and plug it into (541) to find a plane-wave expansion in the light-cone
gauge. How do you quantize such a field?

Proof. The solution of this equation is simple, just

. ) i
(=t T, pr) = ap+ 5, e><10(—2]7((pT)2 +m?)at), (561)

for an arbitrary complex number a,+ z,.. Since p™ # 0, it is convenient to write the solution
using two independent constants which depend only on the absolute value |pT|, that is write

1

$($+7P+7ﬁT) = (27T)d79(79+) “bip+|,pr eXP(—F((ﬁT)Q + m2)=’f+)
P . (562)
+ @m)(=pT) - Vs 5 exp(— g ((Pr)” + m?)a™),

where ¥(x) is the Heaviside function. The reason why we use this strange parametrization is the
following. We want ¢(z™, 2™, #r) to be real. This implies

¢(‘r+7p+7ﬁT)* = (£($+, _p+a _ﬁT) (563)

Plugging the above expression into this condition implies b =b , that is

*
lp* .57 lp*|,—pr

Ot p* r) = @) (DT) - by exp(— o () + m)a)

It

P . (564)

@) (=p") - Uy 5, XD (= () +mP)a™),
Plugging this into the expansion (541) gives the expression
¢>($) _ /dp.;,_/dd_lﬁT (ﬁ(p+)b|p+‘7ﬁT6—i\P7|x+_ir’p++fT~ﬁT
(565)
* ilp~ |zt —izlpt+Zr -7
+19(_P+)b|p+\,fﬁT€ e Pt pT)a
where [p~| = ﬁ((ﬁﬂz +m?). Finally, we can change the integration variables from (p*, pr)
to (—p*, —pT) in the second term, change the range of the p, integral to get
#(z) = /O dp. / A4 Gip (b 5y €7 + B, P (566)
Note that p-x = —p~ 2T — pta™ + pr@r, where p~ = 27%((;5&)2 +m?). [ |
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Lagrangian of the action (531) in light-cone coordinates reads

L£=0,60_6— 5(VT0) — m?6. (567)

Now, =T plays the role of the light-cone time, so the corresponding conjugate momentum II
takes the form
oL

I, = s = d_g. (568)

But this means that the light-cone Hamiltonian density is just
He=T1,0,¢— L = %(VT@Q + %m2¢2. (569)
The light-cone Hamiltonian is then
H'° = / da_ / dzr H'. (570)
It follows that the convenient parametrization of the single plane-wave solution is now

1 1 ip-x * —ip-x
= 7 T b €7 B e 7). (571)

We again assume the integration only over a finite box in (z~,Z7) space of volume V and

bp(z)

quantizing the momenta p* and pr, so that the exponentials e - and e**" are killed in the
integration process. One finds

1
= o7

lc

((P)* + m*)bps 5,0yt o (572)

But this is fully in accordance with our expectation that the light-cone energy should be p~!
The other conserved momenta are given by

pt = /dx,/dfT(a,qé)?, Pl = —/dx, /d:E'TBI¢8i¢7 (573)

and one finds that Pt[¢,] = p+b;+,ﬁpr+7ﬁT, Plp,] = plb;+7ﬁpr+,ﬁT. This again suggests

to define creation and annihilation operators b;r#ﬁT and b,+ 5, parametrized by p™ > 0 and

pr € R1. We impose the commutation relations

[bp+7ﬁT7b;;+’q‘T] = §p+7q+6ﬁT7(TT' (574)

9.3 Maxwell fields and photon states

Recall that the classical Maxwell field is given by Lorentz covector A, = A,(x). In vacuum, it
is subject to the Maxwell equations in the form

OA" — 9"(9,A,) = 0. (575)

These equations are invariant under the gauge transformations AL = A, +0,€, where € = €(x) is
an arbitrary function. We may try to solve the Maxwell equations using the Fourier transform:

D ~
A () = / (gﬂ)pD e A (). (576)
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Plugging this into (575) gives the equation for Au (p) in the form

p*A*(p) — p"(p- Ap)) = 0. (577)
One can Fourier-transform also the gauge parameter, that is
de ip-za
@) = [ gt ) (578)
It follows that in the momentum representation, the gauge transformation takes the form
A7, (p) = Au(p) + ipué(p). (579)
Now, since both A, (z) and €(z) must be real functions, é(p) must satisfy the condition
A (p) = Au(-p), &(p)=&(-p) (580)
We can look on the gauge transformation of the + light-cone component of the field /Al(p)7 finding
A (p) = A* (p) +ip*e(p). (581)

Assuming the p* > 0 (we always do this in light-cone gauge situations), one can choose é(p) =
p%A* (p) to make the + component of A(p) to vanish. This is called the light-cone gauge:

Af(p) =0. (582)
Looking at the + component of (577) gives
0=p"A%(p) —pT(p-A) = p*(p- A(p)), (583)
that is p - A(p) = 0. Expanding this condition gives
A (p) = p~ AT (p) + " AT (p) = 0. (584)
This allows us to express A_(p) as
A(p) = A" (585)

We can now use p- A(p) = 0 in (577) to get
p* Ak (p) =0, (586)

for all p € {+,—,I}. If we impose it for 4 = I, the — component already follows from (585).
For each I € {2,...,d}, one thus finds the equation

Al (p) = 0. (587)

For p? # 0, one necessarily has AT (p) = 0. For p? = 0, there is no constraint on AI(p). Using the
similar procedure as in Exercise 9.2, one can obtain annihilation and creation operators oLIIJ P
and aii o where p™ > 0. The one-photon states are then given by
P [e)) (588)
pt.p :

sPT

I labels polarizations. For each point on the physical (p™ > 0) part of mass-shell described by
(p™,pr), we have (D — 2 linearly independent one-photon states. The general one-photon state
of the space-time momentum p = (p*, pr) is given by

d
Y &al L [9). (589)
=2

(0]



Exercise 9.3. Show that in arbitrary gauge, every solution of (577) for p*> # 0 is a pure gauge,
hence defines a zero electromagnetic field.

Proof. Recall that A, is called a pure gauge, if it is gauge-equivalent to the zero field. In
other words, one has A, (z) = 0,¢(z) for some function e. In the momentum representation, this
translates as

Au(p) = ipué(p). (590)
Now, suppose that /Al# (p) solves (577) for p? # 0. Then we can express it as
i pulp-Alp) _ . —i(p- A(p

Note that in momentum representation, for pure gauge one has

Fu(p) = ipuAu(p) — ipy Au(p) = ipu(ipue(p)) — ipu (ipué(p)) = 0. (592)

This shows that for p? # 0, there is no contribution to the electromagnetic field. |

9.4 Gravitational fields and graviton fields

Now, recall that we have considered a linearized gravity action for a metric fluctuation h =
hyw(z). The corresponding equation of motion was given by (84), that is

O — 9, (0" h"® + 8" M) + 818V h = 0, (593)

where h = n*"h,,. We have also claimed that these equations are invariant under the gauge
transformation

WH () = W'Y (z) + dohtY (z), doht (z) = 0" €’ (z) + 8" e (x). (594)

We will now examine those in the momentum representation, that is write

W (z) = / d’lel‘p-zﬁuv( ) (595)
(2m)P -
Plugging this into (593) gives
S (p) := P (p) = pa(p"h"*(p) + p" 1" (p)) + p"p" h(p) = 0. (596)

Now, in momentum representation, the gauge transformation takes the form
Sh™ (p) = ip"e” (p) + ip" € (p). (597)
Exercise 9.4. Check that (596) is indeed invariant under such a transformation.

Proof. First, observe that R X
dh(p) = nuoht (p) = 2ip - €(p). (598)
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Consequently, one finds

1 AV 178
=005 (p) = p*(p"€” (p) +p"é"(p))
—pa (P (p7€%(p) + € (p))) — pa (" (P"E%(p) + P € (p)))
+ 2p"'p“p - €(p) (599)
= p*(p"e”(p) + p"é"(p))
—p'p’p-é(p) — P’ (p) — p'p"p - E(p) — p°p e (p)
+ 2ptp”p - é(p) = 0.
This finishes the check. [ |
Now, we shall write the components of A*¥(p) with respect to the light-cone coordinates. We

would like to choose the gauge so that all components containing the + direction are zero. One
finds

Sh*T(p) = 2ipTet(p), (600)
Sht(p) = ipTe (p) +ip~ €M (p), (601)
Sh (p) = ip*él (p) +ip"ét (p). (602)

We see that we can choose é(p) to make the right-hand side of At equal to —hA™*(p), namely

H(p) = %%hwp). (603)

Similarly, we can choose ¢~ and €’ to force Sh™~ (p) = —h*~ (p) and 6h* (p) = —ht!(p):

) = () = ), ) = () - T ). (60)

We again assume that p 2 0, so this is possible. We conclude that we can choose a light-cone

gauge, where AT+ = pt— = h*I = 0. Let us now try to solve the equations of motion. First,

the ++ component of (596) gives

(p")*h(p) =0, (605)

that is h(p) = 0. Since h(p) = —2h~ (p) + h'T = h!! we conclude that the matrix A’/ of the
transversal components is traceless. We thus remain with

PP (p) = pa (PR (p) + 1" (p)). (606)

If we choose u = +, this forces

pah® (p) =0, (607)
for all v € {4, —, I}. By plugging this back into the remaining equation, we get
PR (p) = 0. (608)

First, let us examine the implications of (607). Its only non-trivial components are for v € {I, —}:

. . . . 1 .
0= pah™(p) = —p"h~ (p) + psh’"  (p) = ™" (p) = qurh‘”(p), (609)

O = pali®™ (p) = =y )+ s (p) = ) = b’ () = ﬁpm.fﬁ”@).
(610)
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This means that we express b~ (p) and ﬁ“(p) in terms of the transverse directions! It remains
to examine the equation (608) for transversal indices. We find

p*h! (p) = 0. (611)
Note that the remaining equations p2h~!(p) = 0 and p2h~(p) = 0 follow automatically from
(611) and (609, 610).

It follows that for each physical value of momentum p, that is pf = 0 with p™ > 0, we
can choose arbitrary symmetric trace-less (D — 2) x (D — 2) matrix h!/(p). By repeating the
1J

. o . IJ
procedure of Example 9.2, one arrives to annihilation and creation operators a5 and ap+TﬁT,
; .

which give raise to general one-graviton states with momentum (p™*, pr):
d
1J
> ol 1) (612)
1,J=2

where £;; is the symmetric and trace-less polarization tensor. The number n(D) of indepen-
dent polarizations of graviton is thus equal to the dimension of the space of symmetric trace-less
(D —2) x (D —2) matrices, i.e.

(D-1)(D-2) . 1
T 1= 5D(D - 3), (613)

We see that n(4) = 2, n(10) = 35 and n(26) = 299.

n(D) =
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