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Introduction

These are unofficial lecture notes for the course ”Introduction to Strings”. It will be expanded
and modified over time. I encourage the reader to look for mistakes and provide a feedback.

This course is based mainly on an excellent book [1]. It assumes an elementary knowledge of
classical mechanics, quantum mechanics and special relativity. A basic knowledge of quantum
field theory and general relativity is helpful but not necessary.

Question: What is string theory?

Originally, it is a quantum field theory obtained by a quantization of the mechanics of a
relativistic string moving in the spacetime. For last fifty years it is still believed to be a promising
candidate for a quantum theory of gravity. Why is this important? We know four basic forces
of nature: electromagnetism, weak interaction (description of β-decay), strong force (interaction
of constituents of the atom nuclei) and gravity. There are two major achievements of physics of
the twentieth century:

(i) Standard model of particle physics: This is a pinnacle of quantum field theory. It
describes all known elementary particles and correctly predicts their interactions. It is fully
compatible with special relativity. It describes (and to some extent unifies) three of the
above forces.

(ii) General relativity: This is a description of gravity in terms of geometry of spacetime. It
proved to be extremely successful in describing the macroscopic Universe. Modern cosmol-
ogy is fully based on general relativity and it correctly predicts black holes, gravitational
waves, gravitational lenses, etc.

It seemed inevitable that there is also a quantum field theory of gravity - with a new elementary
particle “graviton”, an intermediate boson serving as a carrier of the gravitational force. However,
it turned out that even in the simplest cases (the spacetime is almost flat) and out of any
extremities (black holes), all naive attempts fail. This is mainly because the resulting theory
always horribly fails at high energies. Using more clever words, one observes that it is non-
renormalizable. But we need a high-energy sector of gravity to understand early universe and
black holes! String theory is one of many theories offering partial answers.

What are successful features of string theory?

(1) Gravity is discovered within string theory - it is an intrinsic feature.

(2) It contains all particles of the Standard model.

(3) By design, it is free of UV divergences, the biggest plague of naive quantum gravity.

(4) String theory fueled tremendous advancements in mathematics.

What are failures of string theory?

(1) The original idea was to reduce number of “god given” parameters of the Standard model.
However, it turns that there is unfortunately many possibilities (10500 − 10272000) how the
universe can look like. This leads to a not-so-well received anthropic principle.
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(2) It requires supersymmetry to be consistent. In a nutshell, supersymmetry conjectures a
symmetry between bosons (carriers of force) and fermions (matter fields). Each particle
(e.g. photon) has its superpartner (e.g. photino). No such particles were ever observed. If
supersymmetry fails, string theory fails.

(3) Some critics of string theory say that its unfalsifiabile - that is there is no experiment which
can be designed to test whether the theory is true or false. It does not give any predictions
which can be actually measured.

(4) Many people object that the hype surrounding string theory overshadows other viable quan-
tum gravity theories (e.g. loop quantum gravity) and makes it difficult for people working
in those to get funds and job positions.

Despite the listed shortcomings, string theory is still a fascinating achievement of theoretical
physics, fueling a unforeseen and fruitful collaboration of mathematicians and physicists. I hope
this course will serve well as a glimpse into this tremendously huge theory.

Please be aware that your lecturer is learning with you. Do not hesistate to ask question,
but do not always expect well-thought-out answers.
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1 Special relativity and extra dimensions

1.1 Conventions and basic notions

As any viable modern physical theory, string theory must be fully compatible with special rela-
tivity. This amounts to working with spacetime. Let us thus recall basic conventions we will use
throughout this course.

If we want to describe some event happening, we record a time t when it happened, and its
coordinates (x, y, z) in some chosen reference inertial frame. It is convenient to combine those
into an 4-tuple (ct, x, y, z), where c is the speed of light. Note that all four variables have a
dimension of length. It is convenient to introduce those on equal footing as

xµ = (x0, x1, x2, x3) ≡ (ct, x, y, z). (1)

In other words, we fix some coordinate frame xµ on a spacetime R4.

Now, suppose two events are described by coordinates xµ and xµ + ∆xµ. The invariant
interval ∆s2 separating these two events is defined by

−∆s2 = −(∆x0)2 + (∆x1)2 + (∆x2)2 + (∆x3)2. (2)

The main postulate of special relativity is the following: If x′µ and x′µ+∆x′µ are the coordinates
of the same event with respect to any other inertial frame, one has ∆s2 = ∆s′2.

We say that this interval is timelike, if ∆s2 > 0. For example, movement of a massive
particle can be described by a curve xµ = xµ(τ) caled the worldline, any two points on this
curve are separated by a time-like interval. In this case, we define

∆s :=
√
∆s2. (3)

We say that the interval is spacelike, if ∆s2 < 0 and lightlike, if ∆s2 = 0. Any two points on
the world-line of photon are separated by a light-like interval.

Now, suppose we have two sets of coordinates xµ and x′µ with respect to their inertial frames.
Suppose those are related by a linear transformation, that is

x′µ = Lµ
νx

ν , (4)

for some matrix L = [Lµ
ν ] ∈ R4,4. Note that we will always label rows by the first index and

columns by the second index, regardless of its vertical position. Let us record two events in both
coordinates:

(i) First event is described by (0, 0, 0, 0) in both frames;

(ii) The second event is described by xµ and x′µ, respectively.

The invariance of the spacetime interval forces

−(x′0)2 + (x′1)2 + (x′2)2 + (x′3)2 = −(x0)2 + (x1)2 + (x2)2 + (x3)2. (5)

It is convenient to write this as
ηµνx

′µx′ν = ηµνx
µxν , (6)
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where η00 = −1, η11 = 1, η22 = 1, η33 = 1, that is we have a matrix η = [ηµν ] ∈ R4,4 in the form

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (7)

If we introduce a notation xµ := ηµνx
ν , we can write the above equation simply as x′µx

′µ = xµx
µ,

where we always utilize the Einstein summation convention. If we plug in (4), it is not difficult
to work out the relation

ηµνL
µ
λL

ν
κ = ηλκ, (8)

for each λ, κ ∈ {0, 1, 2, 3}. In matrix form, this can be written as LT ηL = η. Linear trans-
formations satisfying this constraints are called Lorentz transformations and they form the
Lorentz group O(3, 1).

Now, suppose we have a quantity a = (aµ) labeled by four spacetime indices, with respect
to some Lorentz frame coordinates xµ. One says that a is a Lorentz vector, if its version
a′ = (a′µ) in with respect to the frame (4) takes the form

a′µ = Lµ
νa

ν . (9)

It is easy to see that aµaµ is independent of the Lorentz frame, it is an example of a Lorentz
scalar. For any two Lorentz vectors a and b, we write

a · b := aµb
µ = aµbµ = ηµνa

µbν . (10)

Now, suppose we have a worldline of a massive particle described as a curve xµ = xµ(t). Let
us fix two times t0 < t1. The proper time elapsed between events xµ(t0) and x

µ(t1) is defined
as an integral

s(t1, t0) :=

∫ t1

t0

√
1− v(t)2

c2
dt, (11)

where v⃗(t) is the usual velocity, that is v⃗(t) = dx⃗
dt . One often fixes t0 and writes

s(t) := s(t, t0) =

∫ t

t0

dt

γ(t)
(12)

It has an important feature. Suppose (ct′, x′, y′, z′) is a different Lorentz frame, related to
(ct, x, y, z) by (4). Then s′(t′1, t

′
0) = s(t1, t0). Moreover, note that

ds

dt
(t) =

1

γ(t)
> 0, (13)

which means that we may use s as a convenient parametrization of worldlines, that is write
xµ = xµ(s) as a curve parametrized by the proper time s.

Exercise 1.1. Show that proper time is indeed a Lorentz invariant.

Proof. Suppose x′µ = Lµ
νx

ν . Since we require both t0 < t1 and t′0 < t′1, we only consider an
ortochronous Lorentz transformation. Equivalently, L0

0 > 0. Then

s′(t′1, t
′
0) =

∫ t′1

t′0

√
1− v′2(t′)

c2
dt′ =

∫ t′1

t′0

1

c

√
−ηµν

dx′µ

dt′
dx′ν

dt′
dt′ (14)
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We can now plug in the transformation

dx′µ

dt′
= Lµ

λ
dxλ

dt′
= Lµ

λ
dt

dt′
dxλ

dt
(15)

By plugging this in, we can continue and write∫ t′1

t′0

1

c

√
−ηµν

dx′µ

dt′
dx′ν

dt′
dt′ =

∫ t′1

t′0

1

c

√
−ηµνLµ

λLν
κ(

dt

dt′
)2
dxλ

dt

dxκ

dt
dt′

=

∫ t′1

t′0

1

c

√
−ηκλ

dxλ

dt

dxκ

dt

dt

dt′
dt′

=

∫ t1

t0

1

c

√
−ηκλ

dxλ

dt

dxκ

dt
dt = s(t1, t0).

(16)

Note that the fact that L is ortochonous implies that dt
dt′ > 0. ■

1.2 Light-cone variables

Let xµ = (x0, x1, x2, x3) be a fixed set of Cartesian coordinates of the Minkowski spacetime. It
is convenient to introduce new coordinates

x+ :=
1√
2
(x0 + x1), x− :=

1√
2
(x0 − x1). (17)

Remaining coordinates are not modified. It is easy to find the inverse transformations. Coor-
dinates (x+, x−, x2, x3) are called light-cone coordinates corresponding to xµ. For a photon
moving in the positive x direction, we have x− constant and x+ increases.

Note that xµ and (x+, x−, x2, x3) are never related by Lorentz transformation. For example,
we can calculate the components of the Minkowski metric

η++ =
∂xµ

∂x+
∂xν

∂x+
ηµν = − ∂x0

∂x+
∂x0

∂x+
+
∂x1

∂x+
∂x1

∂x+
= −1

2
+

1

2
= 0, (18)

η−− =
∂xµ

∂x+
∂xν

∂x+
ηµν = − ∂x0

∂x−
∂x0

∂x−
+
∂x1

∂x−
∂x1

∂x−
= −1

2
+

1

2
= 0, (19)

η+− =
∂xµ

∂x+
∂xν

∂x−
ηµν = − ∂x0

∂x+
∂x0

∂x−
+
∂x1

∂x+
∂x1

∂x−
= −1

2
− 1

2
= −1. (20)

The matrix of the Minkowski metric thus takes the form

η̂ =


0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

 (21)

Obviously η̂ ̸= η. Note that every Lorentz vector a can be also described by its coordinates
a± := 1√

2
(a0 ± a1) together with a2 and a3. Note that in light-cone coordinates, one has

a · b = η̂µνa
µbν = −a+b− − a−b+ + a2b2 + a3b3. (22)

We can also lower and raise indices using η̂, that is define aµ := η̂µνa
ν . Note that then a± = −a∓.

To avoid confusion, we shall henceforth use light-cone indices + and − only in the upper position.
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1.3 Energy and momentum

Having an invariant proper time, let xµ = xµ(s) be a worldline of a massive particle. Then its
four-velocity is defined as

uµ(s) :=
dxµ

ds
(s), (23)

It follows that uµ(s) forms a Lorentz vector. One can express it in terms of the coordinate time
t. Then, plugging in the inverse to (13), one has

uµ(t) =
dxµ

dt
(t)

dt

ds
= γ(t)

dxµ

dt
= γ(t) · (c, v⃗(t)). (24)

Note that u2 = uµu
µ = −γ(t)2(c2 − v2(t)) = −c2γ(t)2(1− v2(t)

c2 ) = −c2. If m is the rest mass of
the particle, we can define its four-momentum as

pµ := muµ = mγ · (c, v⃗) = (
E

c
, p⃗), (25)

where E := γmc2 and p⃗ := γmv⃗. It follows that p2 = pµpµ = −m2c2, which proves the relativistic
energy-momentum constraint

E2

c2
− p⃗ · p⃗ = m2c2. (26)

Note that unlike 4-velocity, 4-momentum is well-defined also for massless particles.

Let us discuss energy and momentum in light-cone variables. Observe that

dx±

ds
=
∂x±

∂x0
u0 +

∂x±

∂x1
u1 =

1√
2
(u0 ± u1) > 0. (27)

This is because (u0)2− (u1)2 ≥ −u ·u = c2, so |u0| > |u1|. This means that for massive particles,
both x+ and x− increase along the worldline. It is easy to show that this is true also for photons,
except the case when they move in ±x1 direction - then either x− or x+ “freezes”. One can thus
declare either of those variables to be the light-cone time coordinate. By convention, one chooses
this to be x+. What variable plays the role of energy in light-cone coordinates? Note that

p0 =
E

c
=
√
p⃗ · p⃗+m2c2 > |p⃗| ≥ |p1|, (28)

so p± = 1√
2
(p0 ± p1) is always positive. Note that p · x = −p0x0 + x⃗ · p⃗. In light-cone variables,

we have
p · x = p+x

+ + p−x
− + p2x

2 + p3x
3. (29)

Since we have chosen x+ to be our “time variable”, we propose p+ = −Elc

c . Since p+ = −p−,
and we have promised to not use the lower light-cone indices, we define

Elc := cp−. (30)

This choice is motivated as follows. Recall that wavefunction of a particle with a momentum
p = (Ec , p⃗) can be written as

ψ(t, x⃗) = exp(− i

ℏ
(Et− p⃗ · x⃗)) = exp(

i

ℏ
p · x). (31)
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The Schrödinger equation can be rewritten as

iℏ
∂ψ

∂x0
=
E

c
ψ. (32)

It follows that in light-cone variables, we get

iℏ
∂ψ

∂x+
= iℏ

i

ℏ
p+ψ = p−ψ =:

Elc

c
ψ. (33)

1.4 Extra dimensions

It will turn out that it is not enough to consider a four-dimensional spacetime. Instead, we will
have to assume that our spacetime is D-dimensional, where D > 4. Mathematically, nothing
changes too much, we will consider coordinates xµ, µ ∈ {0, . . . , D}.

The Minkowski metric tensor on RD is given by η = −dx0 ⊗ dx0 +
∑D

i=1 dx
i ⊗ dxi, a by

Lorentz transformations, we mean elements of the group O(d, 1), where d := D − 1. Light-
cone coordinates are defined in the same way as before. As they involve only x0 and x1, all
considerations are valid for an arbitrary D ≥ 4.

However, it will also turn out that the extra dimensions will be in fact compact. In strict
mathematical sense of the word, space time manifoldM will be a fiber bundle over the Minkowski
spacetime R4 with compact fibers. For our purposes, we assume that some of the coordinates
describe space with some its points identified.

For example, we can consider a space of points x on the real line, where we impose the
identification x ∼ x+ 2πnR for all n ∈ Z, where R > 0. Clearly, this is just a circle of a radius
R. This is a convenient how to treat compact spaces which can be constructed in this way, since
functions on the circle can be described as f = f(x) of the original “Cartesian” variable, only
with the identification f(x) = f(x+ 2πnR) for all n ∈ Z.

We will sometimes use the term fundamental domain, which is a connected subset of the
space “before identification”, such that

(i) No its two points are identified;

(ii) Every point is either in the fundamental domain, or is identified with some point in the
fundamental domain.

In the above example, the fundamental domain is for example [0, 2πR). The resulting compact
space can be constructed by adding a boundary to the fundamental domain and applying the
identifications on the boundary. In our example, take [0, 2πR] and identify 0 ∼ 2πR to obtain
the circle of radius R.

Example 1.2 (Extra dimensions affect physics). Let us first consider a well-known example
of a one-dimensional “infinite potential well”. When looking for the energy spectrum of this
problem, one solves the equation

− ℏ2

2m
∆ψ(x) + V (x)ψ(x) = Eψ(x), (34)

where the potential V (x) satisfies

V (x) =

{
0 if x ∈ (0, a)
∞ if x /∈ (0, a)

(35)

8



One finds ψ(x) = 0 for all x /∈ (0, a) and for x ∈ (0, a), the eigenfunctions satisfying the correct
boundary conditions are

ψk(x) =

√
2

a
sin(

kπx

a
), k ∈ N. (36)

The corresponding energies are then given by

Ek =
ℏ2

2m
(
kπ

a
)2. (37)

Suppose that we now add an extra dimension y, being curled into a small circle of radius R, that
is y ∼ y+2πR. For simplicity, assume that V does not depend on y. One solves the Schrödinger
equation by the separation of variables, that is ψ(x, y) = ψ(x) ·ϕ(y). The equation for x ∈ (0, a)
turns into

− ℏ2

2m

1

ψ(x)

d2ψ(x)

dx2
− ℏ2

2m

1

ϕ(y)

d2ϕ(y)

dy2
= E. (38)

Hence both x-dependent and y-dependent parts of this equation have to be separately constant.
The solutions are of the form ψk,ℓ(x, y) = ψk(x)ϕℓ(y), where

ψk(x) = ck sin(
kπx

a
), (39)

is the solution of the original Schrödinger equation satisfying the boundary conditions at x ∈
{0, a}, and ϕℓ(y) is of the form

ϕℓ(y) = aℓ sin(
ℓy

r
) + bℓ cos(

ℓy

R
), (40)

which is a unique solution to the 1-dimensional problem with the periodicity condition ϕℓ(y) =
ϕℓ(y + 2πR). There are no other restrictions in ϕℓ(y). The corresponding eigenvalues are

Ek,ℓ =
ℏ2

2m
[(
kπ

a
)2 + (

ℓ

R
)2]. (41)

The original energy levels correspond to ℓ = 0. Let us now consider a lowest non-trivial “new”
energy level, that is E1,1. One has

E1,1 =
ℏ2

2m
(
π2

a2
+

1

R2
). (42)

Suppose that the compact dimension is very small, that is R ≪ a. We see that in this case

E1,1 ≈ h2

2m
1
R2 . Let us compare this to the original energy levels Ek, that is we ask for which k

one has E1,1 ≈ Ek. This gives us
1

R
≈ kπ

a
, (43)

that is k ≈ π a
R . Since R ≪ a, this means that k is “very large”. We start to notice something

happening to the spectrum only at very high energy levels.
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2 Electromagnetism and gravity

2.1 Covariant electrodynamics

Recall that in Heavyside-Lorentz units, Maxwell equations (in vacuum) take the form

rot(E⃗) +
1

c

∂B⃗

∂t
= 0, (44)

div(B⃗) = 0, (45)

div(E⃗) = ρ, (46)

rot(B⃗)− 1

c

∂E⃗

∂t
=

1

c
j⃗, (47)

where E⃗ is the electric field, B⃗ is the magnetic field, ρ is the charge density and j⃗ is the current
density. Note that ϵ0 = µ0 = 1 in this system and [E⃗] = [B⃗]. First two Maxwell equations are
called homogeneous.

Suppose (E⃗, B⃗) solve homogeneous Maxwell equations. Since div(B⃗) = 0, one can write

B⃗ = rot(A⃗) (48)

for some vector field A⃗. Plugging this into the first equation, we see that rot(E⃗ + 1
c
∂A⃗
∂t ) = 0⃗,

hence there is a scalar field Φ, such that

E⃗ = −1

c

∂A⃗

∂t
−∇Φ. (49)

Conversely, if we choose any (Φ, A⃗), we can solve the homogeneous Maxwell equations by declar-

ing B⃗ and E⃗ by (48) and (49), respectively. We can certainly modify A⃗ by adding a gradient of
some scalar field ϵ, that is

A⃗′ := A⃗+∇ϵ, (50)

without changing B⃗. If want this transformation to preserve also E⃗, we must modify the scalar
potential Φ as

Φ′ := Φ− 1

c

∂ϵ

∂t
(51)

We say that the physics is invariant under the gauge transformations. One can combine those
fields into a single Lorentz vector Aµ := (Φ, A⃗), called the 4-potential of an electromagnetic

field. Corresponding Lorentz covector is Aµ := ηµνA
ν = (−Φ, A⃗). One can then construct a

electromagnetic field strength as

Fµν := ∂µAν − ∂νAµ, (52)

where we will always use the shorthand notation ∂µ := ∂
∂xµ . The gauge transformations can be

then simply written as
A′

µ := Aµ + ∂µϵ. (53)

Exercise 2.1. Show that E⃗ and B⃗ can be obtained from the field strength Fµν as

Ei = Fi0, Bi =
1

2
ϵijkFjk. (54)
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Let us construct the completely skew-symmetric tensor:

Tλµν := ∂λFµν + ∂νFλµ + ∂µFνλ. (55)

Show that this tensor is completely skew-symmetric and homogeneous Maxwell equations are
equivalent to Tλµν = 0.

Proof. One has

Ei = ∂iA0 − ∂0Ai = −∂iΦ− 1

c
∂tAi

Bi =
1

2
ϵijk(∂jAk − ∂kAj) = ϵijk∂jAk ≡ rot(A⃗)i

(56)

The fact that Tλµν is skew-symmetric follows from a general fact: if Sλµν is skew-symmetric in
µν, the symbol Tλµν := S[λµν] ≡ Sλµν + Sνλµ + Sµνλ is completely skew-symmetric. The only
non-trivial components of Tλµν are

T123 = ∂1F23 + ∂3F12 + ∂2F31 = ∂iBi = div(B⃗),

1

2
ϵijkT0jk =

1

2
ϵijk{∂0Fjk + ∂kF0j + ∂jFk0}

=
1

c
∂tBi + ϵijk∂jEk =

1

c
∂tBi + rot(E⃗)i.

(57)

This proves the claim. ■

Let us examine the inhomogeneous Maxwell equations. One combines (ρ, j⃗) into a single
quantity, 4-current jµ := (cρ, j⃗).

Exercise 2.2. Show that inhomogeneous Maxwell equations can be written as

∂µF
µν +

1

c
jν = 0. (58)

where Fµν = ηµληνκFλκ.

Proof. This equation has four components. For ν = 0, using the skew-symmetry of Fµν and
F i0 = −Fi0 = −Ei, one finds

0 = ∂iF
i0 +

1

c
cρ = −div(E⃗) + ρ. (59)

Next, note that the relation of Fµν to B⃗ can be inverted, one finds F ij = Fij = ϵijkBk. For each
k ∈ {1, 2, 3}, one thus has

0 = ∂µF
µk +

1

c
jk = ∂0F

0k + ∂jF
jk +

1

c
jk

=
1

c
∂tEk + ∂j(ϵjkℓBℓ) +

jk

c
=

1

c
∂tEk − ϵkjℓ∂jBℓ +

jk

c

=
1

c
∂tEk − rot(B⃗)k +

jk

c
.

(60)

This finishes the calculation. ■
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Exercise 2.3. Let x′µ = Lµ
νx

ν . We impose that 4-potential transforms as Lorentz vector, that
is A′µ(x′) = Lµ

νA
ν(x).

(i) How does Aµ transform?

(ii) Show that Fµν transforms as a Lorentz covariant 2-tensor.

(iii) Show that Maxwell equations are invariant under Lorentz transformations, if jµ forms a
Lorentz 4-vector.

Proof. Suppose aµ are components of the Lorentz vector. The relation LT ηL = η can be also
translated as L−1 = η−1LT η, that is [L−1]µν = ηµλLκ

ληκν ≡ Lν
µ. Then one finds

a′µ = ηµνa
′ν = ηµνL

ν
λa

λ = ηκλLν
ληνµaκ = Lµ

κaκ. (61)

Consequently, we immediately find that

A′
µ(x

′) = Lµ
νAν(x). (62)

We can now also easily deduce the transformation rules for partial derivatives:

∂′µ =
∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
= [L−1]νµ∂ν = Lµ

ν∂ν . (63)

It is now easy to find the transformation rule for Fµν , namely

F ′
µν(x

′) = ∂′µA
′
ν(x

′)− ∂′νA
′
µ(x

′) = Lµ
κLν

λ{∂κAλ(x)− ∂λAκ(x)}
= Lµ

κLν
λFκλ(x)

(64)

It is straightforward to write the transformation rule for Fµν , namely F ′µν(x′) = Lµ
κL

ν
λF

κλ(x).
We can thus for example verify that the inhomogeneous Maxwell equations transform as Lorentz
vector. In particular, they are hold in all inertial frames at once:

∂′µF
′µν(x′) = Lµ

λ∂λ{Lµ
κL

ν
χF

κχ(x)} = [L−1]λµL
µ
κL

ν
χ∂λF

κχ(x) = Lν
χ∂λF

λχ(x). (65)

Similarly, one can prove that Tλµν transforms as a covariant Lorentz 3-tensor. ■

2.2 Electrodynamics in more dimensions

The above description of electromagnetism allows for an easy generalization to an arbitrary
dimension. We simply declare Aµ to be the potential, µ ∈ {0, . . . , D}, and the field strength is
the corresponding 2-tensor Fµν defined by the same formula.

Hence let D ≥ 4, and write d := D − 1. Observe that one can still define the electric field,
namely let Ei := Fi0 for i ∈ {1, . . . , D}. Note that the magnetic field is no longer a vector field,
but rather a (time-dependent) 2-form on Rd.

Note that the zeroth component of the inhomogeneous Maxwell equation (58) still gives the
Gauss law:

∂iEi = ρ. (66)
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Suppose we want to find the electric field of a static point charge q at the origin. Let r :=√
(x1)2 + · · ·+ (xd)2 be the radius. We can integrate both sides over the d-dimensional ball

Bd(r) around the origin. This gives ∫
Bd(r)

∂iEi · dvol = q. (67)

The Stokes theorem is still valid - we may replace the integral by the flow of E⃗ over the boundary
∂Bd(r) = Sd−1(r). Since we can assume that E⃗ is radial and depends only on r, one finds∫

Bd(r)

∂iEi · dvol =
∫
Sd−1(r)

E⃗(r) · dS⃗ = vol(Sd−1(r)) · E(r) =
2πd/2rd−1

Γ(d2 )
E(r). (68)

We thus find the electric field of a point charge in the form

E(r) =
Γ(d2 )

2π
d
2

q

rd−1
. (69)

We see that in more space dimensions, electric field of the point charge falls of faster! In general,
suppose that we have time-independent Aµ. Then

Ei = Fi0 = ∂iA0 − ∂0Ai = −∂iΦ, (70)

that is E⃗ = − grad(Φ). Plugging this into Gauss law gives the Poisson equation ∆Φ = −ρ,
where the Laplacian is defined accordingly as ∆ =

∑d−1
i=1 ∂

2
i .

Exercise 2.4. Let d ≥ 1. Prove that the volume of of the (d − 1)-dimensional unit sphere
Sd−1 = {(x1, · · · , xd) ∈ Rd | (x1)2 + · · ·+ (xd)2 = 1} is given by the formula

vol(Sd−1) =
2π

d
2

Γ(d2 )
, (71)

where Γ(x) is the function defined for each x > 0 by the integral

Γ(x) =

∫ ∞

0

dt e−ttx−1. (72)

Derive the formula for the general radius r. Prove that the volume of the d-dimensional unit ball
is given by

vol(Bd) =
πd/2

Γ(1 + d
2 )
. (73)

Proof. One proves the formula by evaluating the integral

Id :=

∫
Rd

dx1 · · · dxne−r2 (74)

in two different ways. First, one can write this as a product of one-dimensional Gaussian integrals

Id =

d∏
i=1

∫ ∞

−∞
dxie−(xi)2 = (

√
π)d = π

d
2 . (75)
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On the other hand, by a simple rescaling argument, one can argue that vol(Sd−1(r)) = rd−1 vol(Sd−1),
where Sd−1(r) denotes the (d−1)-dimensional sphere of radius r. One can calculate the integral
Id by dissecting Rd into thin spherical shells of radius r and thus

Id =

∫ ∞

0

dr vol(Sd−1(r))e−r2 = vol(Sd−1) ·
∫ ∞

0

dr rd−1e−r2

= vol(Sd−1) · 1
2

∫ ∞

0

dt t
d
2−1e−t = vol(Sd−1) · 1

2
Γ(
d

2
).

(76)

Comparing the two expressions gives the result. For the volume of the unit ball, one can certainly
calculate it as

vol(Bd) =

∫ 1

0

vol(Sd−1(r))dr =
2π

d
2

Γ(d2 )
[
rd

d
]10 =

π
d
2

d
2Γ(

d
2 )

=
π

d
2

Γ(d2 + 1)
, (77)

where in the last step, we have used the recurrence relation Γ(x + 1) = x · Γ(x). This can be
obtained immediately by using per partes for the evaluation of Γ(x+1). It is easy to check that

Γ(1) =

∫ ∞

0

dt e−t = 1, (78)

Γ(
1

2
) =

∫ ∞

0

dtt
1
2 e−t = 2

∫ ∞

0

dre−r2 =
√
π. (79)

This can be now easily used together with the above recurrence relation to prove the required
volumes. E.g. for d = 3, one finds

Γ(
3

2
) =

1

2
Γ(

1

2
) =

1

2

√
π, hence vol(S2(r)) =

2π
3
2

1
2

√
π
r2 = 4πr2. (80)

This finishes the discussion. ■

2.3 Gravity and Planck’s length

Recall that in general relativity, gravity is described by a metric tensor g. In some (local)
coordinates, it can be written as

g = gµν(x)dx
µ ⊗ dxν , (81)

and the equations for g are given by the Einstein’s field equations

Rµν + (Λ− 1

2
R)gµν =

8πG

c4
Tµν . (82)

For the purposes of quantum theory (and classical limit), one assumes that gµν can be expanded
as a fluctuation around a flat metric, that is

gµν(x) = ηµν + hµν(x). (83)

Plugging this into (82) for Λ = 0 and Tµν = 0 and considering only terms linear in h gives the
linearized equation for h, namely

□hµν − ∂α(∂
µhνα + ∂νhµα) + ∂µ∂νh = 0, (84)
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where hµν = ηµληνκhλκ and h = ηµνhµν . This can be viewed as a gravitational analogue to the
Maxwell equations without the presence of sources, since

0 = ∂µF
µν = ∂µ(∂

µAν − ∂νAµ) = □Aν − ∂µ∂
νAµ. (85)

Linearized gravity exhibits some similarities to electromagnetism. Indeed, suppose that we con-
sider a coordinate transformation

x′µ := xµ − ϵµ(x), (86)

for small ϵµ (and with small derivatives). In new coordinates, the metric tensor field is given by

g′µν(x
′) =

∂xκ

∂x′ν
∂xλ

∂x′µ
gµν(x). (87)

By plugging in the expansions around the flat metric and neglecting second order terms in ϵ, we
find the transformation rule

h′µν(x) = hµν(x) + ∂µϵν(x) + ∂νϵµ(x) +O(ϵ, h) ≡ hµν(x) + δ0h
µν(x) +O(ϵ, h). (88)

where O(ϵ, h) contains terms linear in h and ϵ. Instead of viewing this as an expression of
the same tensor in different coordinates, one can view this as a gauge transformation of the
field hµν(x). In fact, it turns out that the equations (84) are (exactly!) invariant under the
transformation

h′µν(x) = hµν(x) + δ0h
µν(x) (89)

Note that the field hµν(x) transforms as a covariant Lorentz 2-tensor under Lorentz transforma-
tions. This makes the analogy with electromagnetism complete.

Now, let us discuss dimensions. Newton’s gravitation law in four dimensions says that the
magnitude of force between two masses m1 and m2 separated by a distance r is given by

|F⃗ (4)| = Gm1m2

r2
. (90)

For the dimensions, this gives us

[G] = [Force] · L
2

M2
=
ML

T 2

L2

M2
=

L3

MT 2
. (91)

Numerical values of the three fundamental fundamental constants G, c and ℏ are

G = 6.674× 10−11 m3

kg · s2
, c = 2.998× 108

m

s
, ℏ = 1.055× 10−34 kg ·m2

s
. (92)

One can attempt to find new units of length, mass and times, such that the numerical value of
those constants in these units is one. These are called the Planck length ℓP , the Planck time tP
and the Planck mass mP . We thus require

G = 1 · ℓ3P
mP · t2P

, c = 1 · mP

tP
, ℏ = 1 · mP ℓ

2
P

tP
. (93)

To do so, let us plug these expressions into

(G)α(c)β(ℏ)γ = ℓ3α+β+2γ
P ·mγ−α

P · t−2α−β−γ
P . (94)
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There is a unique choice of parameters (α, β, γ) allowing us to express ℓP , mP and tP :

ℓP =

√
Gℏ
c3

= 1.616× 10−33cm, (95)

mP =

√
ℏc
G

= 2.176× 10−5g, (96)

tP =

√
Gℏ
c5

= 5.391× 10−44s. (97)

This also shows that ℓP is the unique length, which can be expressed as a product of powers of
fundamental constants (G, c, ℏ).

Suppose we have a gravitational field g⃗. Force it exerts on test particle of mass m is given
by F⃗ = mg⃗. From Newton’s gravitational law, one can deduce the Gauss gravitational law,
in its differential form

div g⃗ = −4πGρ, (98)

where ρ = ρ(x⃗) is the mass density. Since gravity is a conservative force, one has g⃗ = − grad(Vg),
and the above equation becomes the Poisson equation for Vg, namely

∆Vg = 4πGρ. (99)

Let us discuss units. Since [⃗g] = [Force] ·M−1 = L · T−2, we have [Vg] = L · [⃗g] = L2 · T−2.
Consequently, one has [∆Vg] = T−2. Suppose that we want this to hold in arbitrary number of
D spacetime dimensions, that is

∆V (D)
g = 4πG(D)ρ. (100)

The left-hand side has the same dimension, but note that then

[G(D)] = [∆V (D)
g ] · [ρ]−1 =

LD−1

MT 2
(101)

One can now again define theD-dimensional Planck length ℓ
(D)
P as the one which can be expressed

as a unique product of powers of G(D), c and ℏ. One finds

(ℓ
(D)
P )D−2 =

ℏG(D)

c3
=

ℏG
c3

· G
(D)

G
= ℓ2P · G

(D)

G
, (102)

where G = G(4) and ℓP = ℓ
(4)
P are the ordinary quantities defined above.

2.4 Compact extra dimensions

Note that [G(D)/G] = LD−4, that is precisely the length to the power of number of extra di-
mensions. Recall that we have considered the idea that the extra dimensions are compact, that
is “curled” up. They can thus in principle span the finite volume, the quantity precisely of the
dimension LD−4. This suggests that the ratio of gravitational constants may be in theory related
to this volume. This can be verified by the following thought experiment.

Suppose we have three usual spatial directions (x1, x2, x3), and one extra dimension x4,
which is assumed to be curled into a circle of radius R, that is we impose the identification
x4 ∼ x4 + 2πR. We suppose that in five-dimensional spacetime, the total mass M is distributed
uniformly at the circle x1 = x2 = x3 = 0. We thus have M = 2πRm, where m is the mass per
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unit length. For symmetry reasons, the resulting potential V
(5)
g cannot depend on the coordinate

x4. The corresponding mass density can be written as

ρ(5) = m · δ(x1)δ(x1)δ(x2). (103)

This is well normalized and has correct dimensions, since∫
R3

dx1dx2dx3
∫ 2πR

0

dx4ρ(5) = 2πRm =M. (104)

Now, an effectively four-dimensional observer, this is observed as a point mass M at (0, 0, 0),
hence ρ(4) =Mδ(x1)δ(x2)δ(x3). The 5-dimensional Gauss law takes the form

∆V (5)
g (x1, x2, x3) = 4πG(5)ρ(5) = 4π

G(5)

2πR
ρ(4). (105)

Since V
(5)
g is for all purposes (forces on test masses) the effective potential in the 4-dimensional

world, and ∆ is effectively just a three-dimensional Laplacian, this has to be the Gauss law for

the point mass M . But this shows that G = G(5)

2πR ≡ G(5)

ℓC
, where ℓC is the length of the extra

compact dimension. This can be, with some grain of salt, generalized to

G(D)

G
= VC , (106)

where VC is the volume of the extra dimensions. Suppose that VC = (ℓC)
D−4. Then one can

express ℓC , that is the required length of compactified dimensions, in terms of the D-dimensional

Planck length ℓ
(D)
P and our “effective” Planck length ℓP as

ℓC = ℓ
(D)
P (

ℓ
(D)
P

ℓP
)

2
D−4 . (107)

It turns out that if ℓC is “sufficiently small”, the fundamental length scale ℓ
(D)
P in more dimensions

can be a lot bigger. For example, one can suppose that it is only a tiny bit smaller than today

scope of experiments, say ℓ
(D)
P ≈ 10−18cm. Then ℓC ≈ 10

30
D−4−18cm. Hence e.g. for D = 10, one

has ℓC ≈ 10−13cm.

3 Non-relativistic string

3.1 Equations of motion

In this section, we will consider a motion of non-relativistic string of length a in (x, y) plane,
stretched along the x axis by tension T0. We consider only infinitesimal transversal oscillations.
We assume that the string does not stretch, that is the tension and mass density per unit length
do not change, and the motion is fully described as a function y = y(t, x), where x ∈ [0, a].

By analyzing the forces exerted on infinitesimal pieces of the string, one arrives to the wave
equation:

∂2y

∂t2
=
T0
µ0

∂2y

∂x2
, (108)

where T0 is the string tension and µ0 is the mass density per unit length. Let v0 :=
√
T0/µ0 be

the corresponding phase velocity of the propagating waves.

One usually imposes two different kinds of boundary conditions at string endpoints x ∈ {0, a}.
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(a) Dirichlet boundary conditions: This assumes that the endpoints of the string are fixed
and their position is equal to zero, that is

y(t, 0) = y(t, a) = 0, (109)

for all t ∈ R. In this case the solution can be found as a sum of modes in the form

y(x, t) = yn(x) sin(ωnt+ φn), (110)

for each n ∈ N, where ωn = v0
nπ
a and the function yn(x) has the form

yn(x) = An sin(
nπx

a
). (111)

(b) Neumann boundary conditions: This assumes that the endpoints of the string are mass-
less hoops which can slide along infinite poles. This requires

∂y

∂x
(t, 0) =

∂y

∂x
(t, a) = 0, (112)

for all t ∈ R. In this case, the shape of the solution in the n-th mode is given by

yn(x) = An cos(
nπx

a
), (113)

and the equation also allows for a uniformly moving string y(t, x) = a0t+ y0.

Both boundary conditions can be also combined. The constants {An, φn}∞n=1 must be determined
by initial conditions. The general solution of the wave equation is of the d’Alembert form

y(t, x) = h+(x− v0t) + h−(x+ v0t), (114)

where h± = h±(u) are functions of a single variable. By declaring the initial shape y(x) = y(x, 0)
and initial velocity v(x) = ∂y

∂t (0, x), one can fully solve the equation. Indeed, one obtains the
system of equations

y(x) = h+(x) + h−(x),

v(x) = − v0h
′
+(x) + v0h

′
−(x).

(115)

One can express h−(x) in terms of h+(x) and a known function y(x), plug it in the second one
and solve the ordinary differential equation for h+(x). The second function h−(x) can be then
calculated from the first equation.

Exercise 3.1. Let us consider the Dirichlet string. Find the general solution using the procedure
hinted above.

Proof. First note that the above system in fact determines h±(x) only for x ∈ [0, a]. However,
we may try to extend y and v to entire R. Hence suppose that we have done so. Plugging from
the first equation to the second equation gives

h′+(x) =
1

2
y′(x)− v(x)

2v0
(116)
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This can be integrated uniquely up to an additive constant, which will play no role in the final
solution, hence

h+(x) =
1

2
y(x)−

∫ x

0

v(x)

2v0
. (117)

Consequently, one finds h−(x) =
1
2y(x) +

∫ x

0
v(x)
2v0

. Hence the full solution is given by

y(t, x) =
1

2
y(x− v0t) +

1

2
y(x+ v0t) +

∫ x+v0t

x−v0t

v(x)

2v0
dx. (118)

Let us now examine the boundary conditions. First, let x = 0. This gives us

0 =
1

2
y(−v0t) +

1

2
y(v0t) +

∫ v0t

−v0t

v(x)

2v0
dx (119)

We see that the simplest way to solve this condition is to assume that the extension of v to R is
an odd function. This makes the integral to vanish and we realize that the extension of y to R
must be odd. Now, plugging in the other boundary condition gives

0 =
1

2
y(a− v0t) +

1

2
y(a+ v0t) +

∫ a+v0t

a−v0t

v(x)

2v0
dx. (120)

Since this has to hold for all t ∈ R, we can change the variable to u := v0t− a. This gives us

0 =
1

2
y(−u) + 1

2
y(u+ 2a) +

∫ u+2a

−u

v(x)

2v0
dx. (121)

Since we already know that both y and v are odd functions. we can rewrite this as

y(u) = y(u+ 2a) +

∫ u+2a

u

v(x)

v0
dx. (122)

We see that to get rid of the integral, we may assume that v(x) is periodic with period 2a. Then
we get ∫ u+2a

u

v(x)

v0
dx =

∫ a

−a

v(x)

v0
dx = 0. (123)

Finally, we see that y simply has to be periodic with period 2a. Note that this also forces
y(a) = 0, which is in accordance with the fact that y(x) = y(0, x) should satisfy the boundary
conditions. This gives us a general answer:

For any initial conditions y = y(x), v = v(x), where x ∈ [0, a], find their unique odd extensions
periodic with period 2a. Then one can write the solution using (118). ■

3.2 Lagrangian mechanics of a string

Now, let us suppose we want to write down the Lagrangian for the string defined in the previous
section. Note that one should view it as a system with infinitely many degrees of freedom whose
coordinates are labeled by x ∈ [0, a]. We expect the Lagrangian for a given string configuration
y = y(t, x) be a function of time, given by the difference of the overall kinetic and potential
energy at a given time t:,

L(t) = T (t)− V (t), (124)
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The kinetic energy is simply the sum of kinetic energies of inifinitesimal pieces of string:

T (t) =

∫ a

0

dx µ0(
∂y

∂t
)2(t, x) (125)

Now, the work which has to be to stretch the infinitesimal piece of string to its configuration is
T0 times the change of length, one finds

T0
(√

(dx2 + y(t, x+ dx)− y(t, x))2 − dx
)
= T0

(√
1 + (

∂y

∂x
)2(t, x)− 1)dx

=
1

2
T0(

∂y

∂x
)2(t, x).

(126)

The overall potential energy of the string is thus the sum of these, that is

V (t) =

∫ a

0

dx T0(
∂y

∂x
)2(t, x)dx (127)

We thus propose the string Lagrangian in the form

L(t) =

∫ a

0

[
1

2
µ0(

∂y

∂t
)2 − 1

2
T0(

∂y

∂x
)2] dx ≡

∫ a

0

L dx, (128)

where we drop the explicit writing of the arguments and define the Lagrangian density as

L(∂y
∂t
,
∂y

∂x
) :=

1

2
µ0(

∂y

∂t
)2 − 1

2
T0(

∂y

∂x
)2. (129)

Strictly speaking, L is an ordinary function of two variables, which we compose with the partial
derivatives of the field y = y(t, x), and integrate the resulting function of (t, x) over x ∈ [0, a].

The action functional S has the function y = y(t, x) as its dynamical variable, and

S[y] :=

∫ tf

ti

L(t)dt =

∫ tf

ti

dt

∫ a

0

dx [
1

2
µ0(

∂y

∂t
)2 − 1

2
T0(

∂y

∂x
)2]. (130)

Now, we expect to obtain the equations of motion by Hamilton’s principle. In other words, the
actual motion in the time interval [ti, tf ] should extremalize the action functional. We find it by
performing an infinitesimal variation

y′(t, x) = y(t, x) + ϵ · δy(t, x). (131)

One finds

S[y′] = S[y] + ϵ

∫ tf

ti

dt

∫ a

0

dx [µ0
∂y

∂t

∂(δy)

∂t
− T0

∂y

∂x

∂(δy)

∂x
] +O(ϵ2). (132)

Let us denote the term proportional to ϵ as δS. We can get rid of partial derivatives of variations
by performing the respective per parts integration. One gets

δS = −
∫ tf

ti

dt

∫ a

0

dx [µ0
∂2y

∂t2
− T0

∂2y

∂x2
] · δy

+

∫ a

0

dx [µ0
∂y

∂t
δy]

t=tf
t=ti

+

∫ tf

ti

dt [−T0
∂y

∂x
δy]x=a

x=0 .

(133)
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Now, since we can choose δy to be a bump function around any point (t, x) ∈ (ti, tf )× (0, a), the
function multiplying δy in the first term must vanish. This gives use the corresponding Lagrange-
Euler equation, which indeed happens to be the wave equation. Next, we always consider only
the variations which do not change the initial and final configuaration of the string, that is
δy(ti, x) = δy(tf , x) = 0 for all x ∈ [0, a]. This make the second term to disappear.

We see that δS = 0 for any y = y(t, x) describing the movement of of the string must satisfy

0 =

∫ tf

ti

dt[−T0
∂y

∂x
(t, a)δy(t, a) + T0

∂y

∂x
(t, 0)δy(t, 0)]. (134)

Let x∗ ∈ {0, a} be the generic notion for the endpoint of the string.

1. If we allow an arbitrary motion and variation of a given endpoint x∗, we are forced to
impose the Neumann boundary condition

∂y

∂x
(t, x∗) = 0, (135)

for all t ∈ [ti, tf ].

2. We can impose the Dirichlet boundary condition at a given endpoint x∗, which forces
y(t, x∗) = 0. In particular, this forces δy(t, x∗) = 0 and the corresponding term above
vanishes. It is convenient to write the Dirichlet condition as

∂y

∂t
(t, x∗) = 0, (136)

although the position of the endpoint has to be specified (e.g. by initial conditions).

Let us demonstrate the physical significance of the boundary conditions. The transversal mo-
mentum of the string is given by the sum of the momenta carried by infinitesimal elements of
the string, that is

py(t) =

∫ a

0

µ0
∂y

∂t
(t, x) dx. (137)

We can tackle the question of its conservation. One has

d

dt
py(t) =

∫ a

0

µ0
∂2y

∂t2
dx =

∫ a

0

T0
∂2y

∂x2
dx = T0

(∂y
∂x

(t, a)− ∂y

∂x
(t, 0)

)
. (138)

This means that for a string not satisfying the Neumann boundary condition, the overall momen-
tum of the strung is not conserved. This is not unphysical - e.g. for a string with fixed endpoints,
the “wall” exerts a force to its endpoints - the momentum flows out of and back in the string.
Let us finish this section by rewritting the above calculation slightly differently, mainly for the
future purposes. Write ẏ := ∂y

∂t and y′ := ∂y
∂x . Then L = L(ẏ, y′). Let

Pt :=
∂L
∂ẏ

= µ0ẏ, Px :=
∂L
∂y′

= −T0y′. (139)

Pt can be viewed as a momentum density corresponding to the variable y. The variation of
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the action can be then written as

δS =

∫ tf

ti

dt

∫ a

0

dx [
∂L
∂ẏ

δẏ +
∂L
∂y′

δy′] =

∫ tf

ti

dt

∫ a

0

dx [Ptδẏ + Pxδy′]

= −
∫ tf

ti

dt

∫ a

0

dx [
∂Pt

∂t
+
∂Px

∂x
]δy

+

∫ a

0

dx [Ptδy]
t=tf
t=ti +

∫ tf

ti

[Pxδy]x=a
x=0 .

(140)

We see that the Lagrange-Euler equation can be written as

∂Pt

∂t
+
∂Px

∂x
= 0, (141)

the Neumann boundary condition at the given endpoint x∗ ∈ {0, a} then reads Px(t, x∗) = 0,
and for a string satisfying the Dirichlet condition at a given endpoint, we have Pt(t, x∗) = 0.

Exercise 3.2. Let y(t, x) = A sin(knx) · cos(ωnt + φ) be the n-th mode of the Dirichlet string.
Calculate the corresponding momentum py(t).

Proof. Recall that kn = nπ
a and ωn = v0kn, where v0 =

√
T0/µ0. Then

Pt(t, x) = µ0
∂y

∂t
= −µ0Aωn · sin(knx) sin(ωnt+ φ). (142)

By integrating this over x ∈ [0, a], we obtain

py(t) =
µ0Aωn

kn
sin(ωnt+ φ) · [cos(knx)]a0 = A ·

√
T0µ0[(−1)n+1 − 1] sin(ωnt+ φ). (143)

We see that the momentum of even modes is conserved, whereas the momentum of odd modes
is not. ■

Exercise 3.3. Let us consider a closed string wrapped around an infinite cylinder of radius R,
such that it can move without friction along its axis. This amounts to considering the identifi-
cation x ∼ x + 2πR. The equation of motion for y = y(t, x) is still the wave equation with a
general d’Alembert solution

y(t, x) = h+(x− v0t) + h−(x+ v0t). (144)

(i) What conditions must be imposed on y? What are the corresponding periodicity conditions
on derivatives of h±?

(ii) Show that one can write h+(u) = αu + f(u) and h−(u) = βu + g(u), where f and g are
periodic functions and α, β ∈ R. What is the relation of α and β?

(iii) Calculate the momentum carried by the string in the y direction. Is it conserved?

Proof. We must obviously impose the periodicity condition y(t, x) = y(t, x+ 2πR) for all t ∈ R
and x ∈ R. But this implies also the periodicity of both its partial derivatives:

ẏ(t, x) = ẏ(t, x+ 2πR), y′(t, x) = y′(t, x+ 2πR). (145)
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One finds

ẏ(t, x) = − v0h
′
+(x− v0t) + v0h

′
−(x+ v0t), (146)

y′(t, x) = h′+(x− v0t) + h′−(x+ v0t). (147)

Plugging those into above periodicity conditions at t = 0 gives the system

−h′+(x+ 2πR) + h′−(x+ 2πR) = − h′+(x) + h′−(x) (148)

h′+(x+ 2πR) + h′−(x+ 2πR) = h′+(x) + h′−(x). (149)

Taking the sum and the difference of these two equations yields

h′±(x+ 2πR) = h′±(x). (150)

It is easy to see that this already implies (145). This concludes (i). Next, let h+(u) be a primitive
of a periodic function h′+(u), hence we can write it as

h+(u) =

∫ u

u0

h′+(v)dv, (151)

for some u0 ∈ R. Let α := 1
2πR

∫ 2πR

0
h′+(v)dv. Then the function

f(u) := h+(u)− αu (152)

is easily checked to be periodic in u with period 2πR. This is because α is chosen precisely so
that h+(u+2πR) = h+(u)+(2πR)α. This shows that we can write h±(u) as in (ii). By plugging
in, one finds

y(t, x) = α(x− v0t) + β(x+ v0t) + f(x− v0t) + g(x+ v0t). (153)

By plugging into the periodicity condition at t = 0 now immediately gives α = −β. In conclusion,
one can write the most general solution of the motion of the closed string as

y(t, x) = vt+ f(x− v0t) + g(x+ v0t), (154)

where v is an arbitrary constant having the dimension of velocity, and f = f(u) and g = g(u) are
completely arbitrary differentiable functions with the period 2πR. The transversal momentum
reads

py(t) =

∫ 2πR

0

µ0ẏ(t, x) dx = µ0

∫ 2πR

0

[v − v0f
′(x− v0t) + v0g

′(x+ v0t)]dx

= (2πR)µ0v + [−v0f(x− v0t) + v0g(x+ v0t)]
x=2πR
x=0

= Mv,

(155)

where M = (2πR)µ0 is the overall mass of the string. And yes, py is conserved. ■

4 Relativistic free particle

4.1 Action functional

Suppose we want to find an action function describing the motion of a free massive particle in
D-dimensional spacetime. We want the resulting equations of motion to be Lorentz invariant in
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the following sense. If one Lorentz observer concludes that particle obeys equations of motion in
his frame (it is “physical”), every other Lorentz observer must come to the same conclusion.

One idea is to define an action functional which becomes a Lorentz scalar. Since the motion
happens along a path which is a stationary point of the action, both observes will agree on that
stationary point, regardless of its coordinate description.

Let xµ(t) be a worldline of the particle, connecting the initial point xµ(ti) and the final point
xµ(tf ), where ti < tf . We have already constructed a Lorentz scalar out of these data, namely
the proper time s(ti, tf )! Note that the dimension of the action is [S] = [Energy] · T , that is

[S] =ML2T−1 = [ℏ]. (156)

To obtain correct dimensionality, we must multiply s(ti, tf ) by some constant having the dimen-
sion of energy. We thus propose

S := −mc2s(ti, tf ) = −mc2
∫ tf

ti

√
1− v2

c2
dt. (157)

We see that the Lagrangian of the theory is given by

L = −mc2
√
1− v2

c2
. (158)

Note that in a fixed frame, the dynamical variables are spatial coordinates of the particle. This
obscures the Lorentz invariance of the theory. It is much more convenient to consider the arbitrary
parametrization of the worldline xµ = xµ(τ), the only requirement being that the value of the
parametr in [τi, τf ] strictly increases between as the world-line goes from the initial point xµi to
the final point xµf . The action functional S is now written as

S[xµ] = −mc
∫ τf

τi

√
−ηµν

dxµ

dτ

dxν

dτ
dτ, (159)

and its dynamical variables are functions xµ = xµ(τ) for µ ∈ {0, . . . , D}.

Exercise 4.1. (i) Prove that S is reparametrization invariant.

(ii) Prove that S is a Lorentz scalar.

(iii) Check that if we choose the parameter to be the coordinate time, we obtain the action above.

Proof. The calculation is completely the same as in Exercise 1.1. ■

4.2 Equations of motion

Let us calculate the equations of motion from the Hamilton’s principle. Let us consider a variation
x′µ(τ) = xµ(τ) + ϵ · δxµ(τ) satisfying δxµ(τi) = δxµ(τf ) = 0.

To do so, let us use the shorthand notation ẋµ := dxµ

dτ and note that we implicitly assume

that (ẋ)2 = ηµν ẋ
µẋν < 0. Then the action takes the form S[xµ] = −mc

∫ τf
τi

√
−(ẋ)2dτ . Then

(ẋ′)2 = (ẋ)2 + 2ϵηµν ẋ
µδẋν +O(ϵ2), (160)
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where we write δẋν = d
dτ δx

ν . We can thus write

−(ẋ′)2 = −(ẋ)2(1− 2ϵ
ẋµδẋ

µ

−(ẋ)2
+O(ϵ2)) (161)

Taking the square root of this equation and using
√
1− y ≈ 1− 1

2y, we arrive to√
−(ẋ′)2 =

√
−(ẋ)2 − ϵ

ẋµδẋ
µ√

−(ẋ)2
+O(ϵ2). (162)

Plugging this into the action, we get that S[x′µ] = S[xµ] + ϵ · δS +O(ϵ2), where

δS = mc

∫ τf

τi

ẋµδẋ
µ√

−(ẋ)2
dτ (163)

Since we assume δxµ(ti) = δxµ(tf ) = 0, we can use the integration by parts to move the τ
derivative, obtaining the expression

δS = −mc
∫ τf

τi

d

dτ

( ẋµ√
−(ẋ)2

)
· δxµdτ. (164)

From this we already obtain the equations of motion in the form

d

dτ

(
mc

ẋµ√
−(ẋ)2

)
= 0. (165)

Exercise 4.2. Show that the equations (165) are reparametrization and Lorentz invariant.

Do the above equations agree with our expectactions? To see this, let us observe how four-
velocity looks in the general parametrization of the worldline. Recall that the proper time can
be expressed in terms of τ as

s(τ) =

∫ τ

τi

1

c

√
−(ẋ)2 dτ, that is

ds

dτ
=

1

c

√
−(ẋ)2. (166)

Consequently, one finds

uµ =
dxµ
ds

=
dxµ
dτ

dτ

ds
=

cẋµ√
−(ẋ)2

. (167)

But this means that the above equation (165) can be rewritten simply as

dpµ
dτ

= 0. (168)

This is fully with our expectations for the movement of a relativistic free particle.

Exercise 4.3. What is the canonical momentum associated with the coordinate xµ = xµ(τ)?

Proof. The Lagrangian of the theory is given by

L(ẋ) = −mc
√

−(ẋ)2. (169)

The canonical momentum associated with xµ is

pµ :=
∂L

∂ẋµ
= −mc 1

2
√
−(ẋ)2

∂

∂ẋµ
(−ηκλẋκẋλ) =

mc√
−(ẋ)[2

ηµλẋ
λ =

mcẋµ√
−(ẋ)2

. (170)

We see that the canonical momentum corresponds to the actual “physical” four-momentum. ■
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4.3 Relativistic particle with electric charge

Suppose that our relativistic particle has an electric charge q and moves through the electro-
magnetic field Fµν . First observe that the Lorentz force acting on the particle can be compactly
written as a Lorentz covector:

FL
µ =

q

c
Fµνu

ν . (171)

The equation of motion for a charged particle moving in the field Fµν can be written as

dpµ
ds

=
q

c
Fµν(x)u

ν =
q

mc
Fµν(x)p

ν . (172)

Exercise 4.4. Examine the components FL
µ in terms of coordinate velocities and usual Maxwell

fields in four dimensions. What is the content of (172) in the zeroth component?

Proof. Recall that in a Lorentz frame (ct, x, y, z), uµ = dxµ

ds = γ(t)dx
µ

dt = (cγ(t), γ(t)v⃗). One has

FL
0 =

q

c
F0iu

i = −γ(t)q
c
Eivi = −γ(t)q

c
E⃗ · v⃗. (173)

FL
i =

q

c
Fiνu

ν =
q

c
Eiu

0 +
q

c
ϵijkBku

j = γ(t)q(E⃗ +
1

c
v⃗ × B⃗)i (174)

Hence, up to the γ(t) factor, we recover the standard Lorentz force. Finally, observe that

dp0
ds

= −γ(t)1
c

dE

dt
(175)

Ther zeroth component of (172) thus gives the equation

dE

dt
= qE⃗ · v⃗, (176)

which shows that the energy of the particle changes by the power exerted by the Lorentz force
acting on the particle. ■

Let us now attempt to add the interaction to the action. We again want to produce the
Lorentz scalar, the first idea which comes to mind is the contraction of the form Aµu

µ, where
Aµ is the four-potential for Fµν . We thus propose, in an arbitrary parametrization:

SI [x] :=
q

c

∫ τf

τi

Aµ(x(τ)) ẋ
µ(τ)dτ. (177)

The entire action is thus given by S = S0 + SI , where S0 is the original free particle action. Let
us find the variation of the action:

SI [x
′] =

q

c

∫ τf

τi

Aµ(x+ ϵδx) · (ẋµ + ϵδẋµ)dτ

= SI [x] +
qϵ

c

∫ τf

τi

[(∂νAµ)(x)δx
ν ẋµ +Aν(x)δẋ

ν ] dτ +O(ϵ2).

(178)

Using the integration by parts and d
dτAν(x) = (∂µAν)(x)ẋ

µ, we find that

δSI =

∫ τf

τi

q

c
Fµν(x)ẋ

νδxµdτ =

∫ τf

τi

FL
µ (x, ẋ)δxµdτ. (179)
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Since the variation of the free particle action takes the form

δS0 =

∫ τf

τi

−dpµ
dτ

δxµdτ, (180)

we indeed obtain the equation of motion (172).

Exercise 4.5. We want to promote the electromagnetic field Aµ to the dynamic variable. To do
so, we introduce the action

S[x,A] := S0[x] + SI [x,A] + SEM [A], (181)

where the kinetic term for the action is given by

SEM [A] := − 1

4c

∫
dDx FµνF

µν . (182)

Find the equations of motion of this action. What role does the particle xµ = xµ(τ) play?

Proof. One considers the variation A′
µ = Aµ + ϵ · δAµ. It is a straightforward calculation that

SEM [A′] = SEM [A]− ϵ

c

∫
dDx Fµν∂µ(δAν) +O(ϵ2) (183)

One can now perform the integration by parts, assuming the δAν disappears in the inifinities.
This gives the variation of the kinetic term in the action

δSEM =
1

c

∫
dDx ∂µF

µν · δAν . (184)

To calculate the variation of the term SI [x,A] =
q
c

∫ τf
τi
Aµ(x(τ))ẋ

µ(τ) dτ , one first has to find a
spacetime integral there. We will do this by inserting a delta function:

SI [x,A] =
q

c

∫ τf

τi

Aµ(x(τ))ẋ
µ(τ)dτ

=
q

c

∫ τf

τi

∫
dDx Aµ(x)δ

D(x− x(τ))ẋµ(τ)dτ

=
q

c

∫
dDx Aµ(x)

∫ τf

τi

δD(x− x(τ))ẋµ(τ)dτ

(185)

It is now easy to calculate the variation of the action under the variation of Aµ. One finds

δSI =
q

c

∫
dDx [

∫ τf

τi

δD(x− x(τ))ẋν(τ)dτ ] · δAν . (186)

This suggests to define a four-current jν(x) as

jν(x) := qc

∫ τf

τi

δD(x− x(τ))ẋν(τ)dτ (187)

The resulting Lagrange-Euler equation for the electromagnetic potential Aµ = Aµ(x) is thus
precisely the Maxwell equation

∂µF
µν +

1

c
jν = 0. (188)
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What is the interpretation of jµ. Suppose we choose τ to be the coordinate time in a given
Lorentz frame. Then xµ(τ) = (cτ, x⃗(τ)). It is convenient to write the D-dimensional delta
function as

δD(x− x(τ)) = δ(x0 − cτ) · δd(x⃗− x⃗(τ)) =
1

c
δ(
x0

c
− τ) · δd(x⃗− x⃗(τ)). (189)

If we consider t ∈ (τi, τf ), one thus obtains

j0(t, x⃗) = cq · δd(x⃗− x⃗(t)). (190)

Since j0 = c · ρ, this shows that ρ(t, x⃗) = q · δd(x⃗ − x⃗(t)). This is a charge density of a single
point charge. For spatial components, one obtains

jk(t, x⃗) = q · δd(x⃗− x⃗(t))ẋk(t). (191)

But this is precisely the current density for a point charge moving with a velocity x⃗ = dx⃗
dt . ■

Exercise 4.6. Find a Hamiltonian formulation of the relativistic particle. Verify that Hamilton
equations of motion give the correct result.

Proof. We have to work in a given Lorentz frame (ct, x, y, z). The transition to the Hamiltonian
formulation is not Lorentz covariant. We have

L = −mc2
√
1− v2

c2
. (192)

The Legandre transformation is done with respect to spatial velocities and momenta, that is

H =
∂L

∂vi
vi − L, (193)

and we have to write vi as functions of positions and momenta to obtain the Hamiltonian. We
have already shown that

pi :=
∂L

∂vi
=

mvi√
1− v2

c2

, (194)

hence one finds the formula

H =
mv2√
1− v2

c2

+mc2
√

1− v2

c2
=

mc2√
1− v2

c2

. (195)

This is the expression for a relativistic energy of the free particle. Instead of trying to express
vi explicitly on terms of pi, we just remember the energy-momentum constraint

E2 = m2c4 + (p⃗ · p⃗)c2. (196)

Consequently, we obtain the Hamiltonian in the form

H(x⃗, p⃗, t) = c
√
m2c2 + p⃗ · p⃗ (197)

This is not Lorentz covariant in any sense (it is a zero component of 4-momentum). What are
the Hamilton equations? Recall that they have the form

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
. (198)
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Since the Hamiltonian is independent of the positions, we get immediately ṗi = 0 and the second
equation gives the expression of velocities in terms of momenta:

ẋi =
cpi√

m2c2 + p⃗ · p⃗
=
c2pi

E
. (199)

This is a known fact that spatial velocity can be expressed as a ration ẋi = c p
i

p0 . ■

Exercise 4.7. Viewing the relativistic particle as a field theory, one can consider the “field
theoretic” Hamiltonian (density), defined by

H =
∂L

∂ẋµ
ẋµ − L. (200)

What does it give for L = −mc
√
−(ẋ)2? Why do you think this happens?

5 Relativistic string

5.1 Nambu-Goto action

Observe that the action for the relativistic particle can be interpreted as follows. We have a
curve xµ(τ). The action then simply measures its length between two events, xµi = xµ(τi) and
xνf = xν(τf ). We can view the curve as a map x : R → RD. One then pulls back the “target
space” Minkowski metric η to construct a new metric g = x∗(η) on R. Viewing τ as a coordinate
function on R, we have simply g = g(τ) dτ ⊗ dτ , where

g = ηµν
dxµ

dτ

dxν

dτ
. (201)

“Measuring the length” then corresponds to finding the volume of the interval [τi, τf ] using the
volume form corresponding to g. Note that for general x, g is not a metric. This is where physics
comes in - we are interested in a movement of a massive particle, so we only consider curves with
timelike tangent vectors, since the particle cannot move faster then light. This is equivalent to

g(τ) < 0, (202)

for all τ ∈ [τi, τf ]. The corresponding volume form is then
√
−g(τ)dτ , so the volume of [τi, τf ]

is indeed given by the integral. ∫ τf

τi

√
−ηµν ẋµẋνdτ. (203)

Now, let us attempt to describe the motion of a string in a D-dimensional spacetime.

It will be described by aD-tuple of functionsXµ = Xµ(τ, σ) of two parameters. τ will play the
role of a “time parameter” and σ will describe the position on the string. In a more mathematical
language, we shall consider embeddings X : Σ → RD from a 2-dimensional parameter manifold
Σ to the Minkowski spacetime RD. (τ, σ) are (possibly local) coordinates on Σ and

Xµ(τ, σ) = xµ(X(τ, σ)). (204)

The image of Σ under X is called the worldsheet of the string. To make things confusing, Σ is
also usually called a worldsheet.
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There are thus some restrictions to X. We assume that each point of the worldsheet is (at
least locally) uniquely described by parameters (τ, σ). Recall that one can consider the tangent
vectors to the worldsheet, pointing in the “coordinate” directions. From a differential geometry
course, you know that their components with respect to the coordinates xµ on RD are given by

∂Xµ

∂τ
(τ, σ),

∂Xµ

∂σ
(τ, σ). (205)

Since they can be also written as X∗(∂τ ) and X∗(∂σ), respectively, they have to be linearly
independent. Since τ is to be a “time parameter”, we assume that the time coordinate of the
string flows as τ flows, that is

∂X0

∂τ
(τ, σ) > 0, (206)

for all values of σ.

Similarly to the relativistic particle, we may now define the induced metric g on Σ. Let ξα

be some general coordinates on Σ, α ∈ {1, 2}. Let g := X∗(η). Hence

g = gαβ(ξ
1, ξ2) dξα ⊗ dξβ , (207)

where the functions gαβ are given by the formula

gαβ = ηµν
∂Xµ

∂ξα
∂Xν

∂ξβ
. (208)

Note that even if X is an embedding, this is not necessarily a metric. The reason is η being
indefinite. Moreover, to calculate the volume form, we need to take the square root of the absolute
value of the determinant. We would be happy to avoid this. Let ξ1 = τ and ξ2 = σ, and write

Ẋµ :=
∂Xµ

∂τ
, X ′µ :=

∂Xµ

∂σ
. (209)

We will also write Ẋ and X ′ for the whole vectors. One can thus write

g11 = (Ẋ)2, g12 = Ẋ ·X ′, g22 = (X ′)2, (210)

where by square and · we mean the Lorentz pseudoscalar product. Hence the 2 × 2 component
matrix of g takes the form (where we mildly abuse the notation):

g =

(
(Ẋ)2 Ẋ ·X ′

Ẋ ·X ′ (X ′)2

)
. (211)

Consequently, one has
det(g) = (Ẋ)2(X ′)2 − (Ẋ ·X ′)2. (212)

We will now find some physical arguments ensuring that this is always strictly negative, except
for string endpoints.

Observe that the space tangent to every point of a worldsheet is a two-dimensional vector
space spanned by vectors Ẋ andX ′. Now, if we observe string at fixed value of time in any Lorentz
frame, the tangent vector to this constant time section of the worldsheet must be spacelike. It
thus makes sense to make the following assumption:

We will thus assume that at each point of the worldsheet, except for string endpoints, that
there are both spacelike and timelike vectors. Note that this assumption is purely geometrical -
it does not assume any particular parametrization.
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Remark 5.1. Except for string endpoints, there is no significant point on the string. τ 7→ Xµ(τ, σ)
is not a worldline of a “piece of string”. In particular, Ẋµ can be a spacelike vector!

Lemma 5.2. At any point p of the worldsheet, there exist both spacelike and tangent vectors to
the worldsheet, iff [det(g)](p) is strictly negative.

Proof. Up to a multiplicative constant, the most general tangent vector at p takes the form

vµ(λ) = Ẋµ + λX ′µ, (213)

for some λ ∈ R, since Ẋµ and X ′µ are linearly independent. Note that X ′µ(p) is obtained as a
limit λ→ ∞. The character of the vector is preserved under scalar multiplications. Then

vµ(λ)vµ(λ) = λ2(X ′)2 + 2λ(Ẋ ·X ′) + (Ẋ)2. (214)

This is a polynomial quadratic in λ. Its graph is a parabola. It attains both positive and
negative value, iff it has two distinct roots. In other words, the corresponding discriminant is
strictly positive. This gives the condition

(Ẋ ·X ′)− (Ẋ)2(X ′)2 > 0. (215)

By (212), this is equivalent to the strict negativity of the determinant at p. ■

It cannot happen that all of the tangent vectors at a given point of the worldsheet are
spacelike. Regardless of parametrization, no point of a string would at some time t be able to
reach any other point of the string in next instant t+dt without moving faster then light. There
thus must be at least some lightlike tangent vector. Since there are no timelike vectors, this
means that the quadratic equation has precisely one root λ0, and its discriminant has to vanish.
This means that there has to be a unique “lightlike direction”, corresponding to a physical
movement of the given point with a speed of light. It turns out that we have to allow precisely
this to happen at the endpoints of the open string.

Remark 5.3. Observe that the negativity of the determinant ensures that g is an indefinite metric,
hence of a signature (1, 1).

Having the sign of the determinant settled, we thus propose theNambu-Goto string action
in the form of the area functional of the worldsheet

S[X] := −T0
c

∫ τf

τi

dτ

∫ σ1

0

dσ

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2, (216)

Let us briefly discuss dimensions. We assume [τ ] = T and [σ] = L, but dimensions of parameters
completely cancel anyway. This is expected, since the area obviously has dimension L2. The
dimension of the action must be energy times time, so the constant in front of it must be the
one of force divided by speed. Hence T0 has a dimension of force. We will show that it is related
to the tension of the string.

Being just the scalar multiple of the area functional, the Nambu-Goto action can be rewritten
using arbitrary parameters (ξ1, ξ2):

S[X] = −T0
c

∫
dξ1dξ2

√
−det(gαβ), (217)

where gαβ is a matrix of functions defined by (208).

Exercise 5.4. Verify this claim explicitly.
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5.2 Equations of motion, boundary conditions, D-branes

Let us find the equations of motion defined by S. The corresponding Lagrangian density takes
the form

L(Ẋµ, X ′µ) = −T0
c

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2. (218)

Let us define the canonical momentum densities

Pτ
µ :=

∂L
∂Ẋµ

, Pσ
µ :=

∂L
∂X ′µ . (219)

We let X ′µ := Xµ + ϵδXµ. We again get S[X ′] = S[X] + ϵδS +O(ϵ2), where

δS =

∫ τf

τi

dτ

∫ σ1

0

dσ [
∂L
∂Ẋµ

δẊµ +
∂L
∂X ′µ δX

′µ]

=

∫ τf

τi

dτ

∫ σ1

0

dσ [Pτ
µδẊ

µ + Pσ
µ δX

′µ].

(220)

Using the fact that δẊµ = d
dτ (δX

µ) and δX ′µ = d
dσ (δX

µ) and integration by parts, this gives

δS = −
∫ τf

τi

dτ

∫ σ1

0

dσ [
∂Pτ

µ

∂τ
+
∂Pσ

µ

∂σ
] δXµ

+

∫ σ1

0

dσ [δXµPτ
µ ]

τ=τf
τ=τi +

∫ τf

τi

dτ [δXµPσ
µ ]

σ=σ1
σ=0

(221)

We again assume δXµ(τi, σ) = δXµ(τf , σ) = 0 for all σ ∈ [0, σ1]. The first term must vanish
independently of the last one, which gives the Largange-Euler equation:

∂Pτ
µ

∂τ
+
∂Pσ

µ

∂σ
= 0. (222)

It remains to deal with the boundary term. At each string endpoint σ∗ ∈ {0, σ1}, we thus have
to impose some boundary condition.

1. We can require the endpoint to remain stationary in a given direction. We cannot do so
for X0 since we assume (206). For any given µ ∈ {1, . . . , D} and any given σ∗ ∈ {0, σ1},
we can thus impose a Dirichlet boundary condition.

∂Xµ

∂τ
(τ, σ∗) = 0. (223)

2. We can allow for a free motion of the string endpoint. Then we have to impose a free
endpoint condition:

Pσ
µ (τ, σ∗) = 0, (224)

for each µ ∈ {1, . . . , D} and σ∗ ∈ {0, σ1}. For µ = 0, we have to impose the boundary
condition

Pσ
0 (τ, σ1) = Pσ

0 (τ, 0) = 0. (225)
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So far, the situation does not look too complicated. The devil is in the details. The momenta
densities are ugly. In particular, one has

Pτ
µ =

∂L
∂Ẋµ

= −T0
c

(Ẋ ·X ′)X ′
µ − (X ′)2Ẋµ√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
, (226)

Pσ
µ =

∂L
∂Ẋµ

= −T0
c

(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′
µ√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2
. (227)

In particular, it is not easy to directly interpret free endpoint conditions.

Let us elaborate on Dirichlet boundary conditions. By declaring some of the spatial string
coordinates Xµ to have some prescribed value at the string endpoint σ∗, we effectively allow its
free motion only along the p-dimensional objects called D-branes. Or Dp-branes, if we want
to emphasize the dimension. For example, if we require the Dirichlet boundary condition at
a given endpoint σ∗ for all µ ∈ {1, . . . , D}, we specify a D0-brane and require the string to
be attached to it. On the other hand, if we choose the free endpoint boundary condition for
every µ ∈ {1, . . . , D}, we define the space-filling D(d-1)-brane. D-branes in string theory are not
necessarily hyperplanes and they have their own dynamics and physical properties.

Note that we can also consider the movement of a closed string. The σ direction is now
made into a circle, which corresponds to the identification (τ, σ) ∼ (τ, σ + σc). We can however
simply parametrize it by σ ∈ [0, σc] and require Xµ(τ, 0) = Xµ(τ, σc). There are no boundary
conditions in this case.

5.3 Static gauge and a static string

The key to understand the motion of the string is a convenient choice of its parametrization.
The most obvious one is to fix τ so that it corresponds to a coordinate time in some Lorentz

frame. This is possible thanks to our assumption ∂X0

∂τ (τ, σ) > 0. Indeed, we can simply do the
transformation

τ ′ :=
1

c
X0(τ, σ), σ′ := σ. (228)

It follows that in these coordinates, one has X0(τ ′, σ) = cτ ′. Let us henceforth drop the prime.
This simplifies mainly the temporal components of the tangent vectors, namely

X ′ = (
∂X0

∂σ
,
∂X⃗

∂σ
) = (0,

∂X⃗

∂σ
), (229)

Ẋ = (
∂X0

∂τ
,
∂X⃗

∂τ
= (c,

∂X⃗

∂τ
) (230)

The expressions for momenta are still incredibly ugly. Let us try to give some meaning to the
constant T0. Let us consider a static string stretched from x1 = 0 to x1 = a. We thus have

X0(τ, σ) = cτ, X1(τ, σ) = f(σ), X2(τ, σ) = · · · = XD(τ, σ) = 0, (231)

where f : [0, σ1] → R is a function satisfying f(0) = 0 and f(σ1) = a, such that f ′(σ) > 0.

One has X ′ = (0, f ′(σ), 0, . . . , 0) and Ẋ = (c, 0⃗), whence

(X ′)2 = (f ′(σ))2, (Ẋ)2 = −c2, X ′ ·X ′ = 0. (232)
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The Lagrangian of this string is calculated as an integral of the density L, one finds

L(τ) =

∫ σ1

0

L(Ẋ, Ẋ ′) dσ = −T0
c

∫ σ1

0

cf ′(σ) dσ = −T0[f(σ)]σ=a
σ=0 = −T0a. (233)

Since the static string has no kinetic energy and L(τ) = T (τ) − V (τ), we identify T0a with the
potential energy of the string. Note that it does not depend on the particular function f = f(σ).
This is in accordance with the reparametrization invariance.

Since the nonrelativistic static string has a zero potential energy, this should be identified
with the with the rest mass energy of the string. It is also precisely the energy required for
stretching a infinitesimally small string to a finite length a, assuming the tension stays constant
throughout the process. If µ0 is the rest mass of the string per unit length, we get µ0c

2 = T0, so

µ0 =
T0
c2
. (234)

The mass of the relativistic arise only due to it having a tension!

Our interpretations can be invalid, if the proposed solution describing the static string would
fail to satisfy the equations of motion! One has√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 = cf ′(σ). (235)

It is easy to see

Pτ
0 = −T0

c
f ′(σ), Pσ

0 = 0, Pτ
1 = 0, Pσ

1 = −T0, (236)

and trivially Pτ
i = Pσ

i = 0 for all i ∈ {2, . . . , D}. It is easy to check now that the equations of
motion are satisfied. Finally, one has to check that in the temporal direction, the free endpoint
condition is satisfied. But we have Pσ

0 = 0 identically.

Note that in this parametrization, Ẋ is indeed timelike and X ′ is spacelike. In general, notice
that in the static gauge, X ′ is always spacelike.

5.4 Action in terms of a transverse velocity

As we have already noted, it does not make any physical sense to interpret Ẋi(τ, σ) as a velocity
of a piece of string corresponding to the fixed value of the parameter σ. We assume that we
work in the static gauge. There is however a parametrization independent notion of transverse
velocity.

At each coordinate time t, we may record the position of the string X⃗(t, σ). At that point, we
construct a hyperplane perpendicular to the string at the fixed time t. This is always possible,

since the vector ∂X⃗
∂σ is nonzero along the worldsheet. An infinitesimal moment later, at t + dt,

we record the point where the string intersects the hyperplane. The difference of the two points
in the hyperplane defines a space vector dX⃗⊥, and the transverse velocity is obtained as

v⃗⊥(t, σ) :=
dX⃗⊥

dt
. (237)

This velocity should be independent of the parametrization σ. Suppose that n⃗∥(t, σ) is a unit

vector tangent to the string at X⃗(t, σ). Consider the following image:
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t

t+ dt

σ
X⃗(t, σ)

X⃗(t+ dt, σ)

n⃗∥(t, σ)

dX⃗⊥

dX⃗

We see that dX⃗⊥ can be obtained as a projection of the difference dX⃗ := X⃗(t+ dt, σ)− X⃗(t, σ)
into the direction perpendicular to n⃗∥(t, σ). It follows that

dX⃗⊥ = dX⃗ − (dX⃗ · n⃗∥(τ, σ)) n⃗∥(τ, σ). (238)

Dividing this by dτ , we see that the transverse velocity can be obtained (or defined) by

v⃗∥ =
∂X⃗

∂t
− (

∂X⃗

∂t
· n⃗∥) n⃗∥. (239)

We only have to find an explicit formula for n⃗∥. There are two ways how to define it. First, one
can define a function s = s(t, σ) measuring the length of a string at a given time t. Explicitly, it
has the following form:

s(t, σ) =

∫ σ

0

∥∂X⃗
∂σ

(t, σ)∥ dσ. (240)

Note that we can view this as a reparametrization (t, σ) 7→ (t, s). It is well-defined, since the
Jacobi matrix of the coordinate transformation is(

1 0
∂s
∂t ∥∂X⃗

∂σ ∥

)
, (241)

which is everywhere non-singular. We claim that we can then choose n⃗∥ = ∂X⃗
∂s . One has

∂X⃗

∂σ
=
∂X⃗

∂s

∂s

∂σ
+
∂X⃗

∂t

∂t

∂σ
=
∂X⃗

∂s
∥∂X⃗
∂σ

∥. (242)

But this shows that ∂X⃗
∂s = ∥∂X⃗

∂σ ∥−1 ∂X⃗
∂σ is just a normalization of the vector ∂X⃗

∂σ , which is tangent
to the string. This proves the claim. The final formula is thus

v⃗⊥ =
∂X⃗

∂t
− (

∂X⃗

∂t
· ∂X⃗
∂s

)
∂X⃗

∂s
. (243)

Exercise 5.5. Verify that v⃗⊥ does not depend on the parametrization.

Proof. We shall consider the reparametrization t′ = t and σ′ = f(t, σ). We also require

∂f

∂σ
̸= 0. (244)

The base tangent vectors to worldsheet are related as

∂X⃗

∂t
=
∂X⃗

∂t′
+
∂f

∂t

∂X⃗

∂σ′ , (245)

∂X⃗

∂σ
=
∂f

∂σ

∂X⃗

∂σ′ . (246)
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This explicitly demonstrates that the tangent to the worldsheet along the line of constant σ
indeed has no significance. The second equation shows that both tangent vectors along the line
of constant t′ = t are colinear. But this means

∂X⃗

∂s
= ±∂X⃗

∂s′
, (247)

depending on the sign of ∂f
∂σ . Since ∂X⃗

∂t and ∂X⃗
∂t′ differ by something parallel to the string, their

projections to the perpendicular direction are the same. This can be also verified directly by
plugging in (245) and (246) to the definition of v⃗⊥. ■

We will now argue that the action can be rewritten in a neat way using the transverse velocity.
First, notice that

v2⊥ = (
∂X⃗

∂t
)2 − (

∂X⃗

∂t
· ∂X⃗
∂s

)2. (248)

In the following, we will write

ds

dσ
:=

∂s

∂σ
= ∥∂X⃗

∂σ
∥ (249)

Using this notation, one has

(Ẋ)2 = (
∂X⃗

∂t
)2 − c2, (X ′)2 = (

ds

dσ
)2, Ẋ ·X ′ =

ds

dσ

∂X⃗

∂t
· ∂X⃗
∂s

(250)

Consequently, one finds

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 = (
ds

dσ
)2[(

∂X⃗

∂t
· ∂X⃗
∂s

)2 + c2 − (
∂X⃗

∂t
)2]

= (
ds

dσ
)2 c2(1− v2⊥

c2
).

(251)

We see that the Nambu-Goto action can be rewritten in terms of the transverse velocity as

S = −T0
∫ tf

ti

dt

∫ σ1

0

dσ
ds

dσ

√
1−

v2⊥
c2
. (252)

In particular, we see that at points where the term under the square root is positive, the transverse
velocity is strictly smaller then the speed of light!

Exercise 5.6. Show that one can express the momenta densities as

Pτ0 =
T0
c

ds

dσ

1√
1− v2

⊥
c2

, P⃗τ =
T0
c2

ds

dσ

v⃗⊥√
1− v2

⊥
c2

, (253)

Pσ0 = −T0
c

∂X⃗
∂t · ∂X⃗

∂s√
1− v2

⊥
c2

, P⃗σ = −T0
c2

(∂X⃗∂t · ∂X⃗
∂s )

∂X⃗
∂t + (c2 − (∂X⃗∂t )

2)∂X⃗∂s√
1− v2

⊥
c2

. (254)

Although these expressions are still immensely complicated, they allow for a very important
observation. In the next paragraph, we shall assume the free endpoint condition in all directions,
that is the string is attached to the space-filling D-brane. This requires Pσµ(t, σ∗) = 0 for
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σ∗ ∈ {0, σ1}. First, since the expression in the denominator is always in the interval [0, 1], we
get the following condition at the endpoints:

∂X⃗

∂t
· ∂X⃗
∂s

= 0. (255)

Recall that the endpoints of the open string are physically significant and their velocity ∂X⃗
∂t (t, σ∗)

is of importance. The condition means the endpoints of the string move transversaly to the string,

and thus also v⃗⊥ = ∂X⃗
∂t at both endpoints.

Exercise 5.7. Under which conditions is ∂X⃗
∂t well-behaved at the endpoints.

Proof. In Exercise 5.5, we have examined the transformations of the two tangent vectors under
the most general reparametrization preserving the satic gauge. In particular, we have found

∂X⃗

∂t
=
∂X⃗

∂t′
+
∂f

∂t

∂X⃗

∂σ′ (256)

If we want the velocities the endpoints to stay the same, we get the condition

∂f

∂t
(t, σ∗) = 0. (257)

But this only means that the position of the endpoints in the new parametrization, described
by f(t, σ∗) are actually independent of time. We secretly always assume this, otherwise e.g. the
integration per parts in the double integral leading to the free endpoint conditions would not be
possible. ■

The condition (255) in principle still allows for a zero velocity at the endpoints. However,

plugging into the expression for P⃗σ and noting the v⃗ := ∂X⃗
∂t = v⃗⊥ at the endpoints, we find the

condition

0⃗ = P⃗σ(t, σ∗) = −T0

√
1− v2(t, σ∗)

c2
∂X⃗

∂s
(t, σ∗) (258)

This shows that necessarily
v2(t, σ∗) = c2, (259)

that is the string endpoints move with the speed of light.

Exercise 5.8. Consider the relativistic string with endpoints attached at (0, 0⃗) and (a, 0⃗). Find
the non-relativistic limit.

Proof. We assume X1(t, 0) = 0 and X1(t, σ1) = a. Write X⃗ = (X1, y⃗). We assume small
oscillations, that is the situation differs only slightly from the static string. In particular, we
assume that

∂X1

∂σ
> 0. (260)

This allows us to parametrize the string by x = x1, that is we choose the new parameter
x := X1(t, σ). Hence X⃗(t, x) = (x, y⃗(t, x)) and consequently

∂X⃗

∂x
= (1,

∂y⃗

∂x
),

∂X⃗

∂t
= (0,

∂y⃗

∂t
). (261)
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and thus
ds

dσ
=

√
1 + (

∂y⃗

∂x
)2 ≈ 1 +

1

2
(
∂y⃗

∂x
)2. (262)

For small oscilations, the transverse direction and the direction perpendicular to x are almost
the same, hence

v⃗⊥ ≈ ∂X⃗

∂t
= (0,

∂y⃗

∂t
). (263)

We also assume that v2⊥ ≪ c2, so we can rewrite the action as

S ≈ − T0

∫ tf

ti

dt

∫ a

0

dx(1 + (
∂y

∂x
)2) · (1− 1

2c2
(
∂y⃗

∂t
)2)

≈
∫ tf

ti

dt
(
− T0a+

∫ a

0

dx [
1

2

T0
c2

(
∂y

∂t
)2 − 1

2
T0(

∂y

∂x
)2]

(264)

This is indeed an action functional for the non-relativistic string with tension T0 and a mass
density µ0 = T0/c

2. The constant term corresponds to the potential energy of the static string -
the energy we need to put in the string with tension T0 to stretch it between its endpoints. ■

Exercise 5.9. At t = 0, a closed string forms a circle of radius R0 in the (x, y) plane and has
zero velocity. Assume that the string remains circular, that is it is described by a single function
R = R(t). Find the evolution of R by looking at the Nambu-Goto action.

Proof. If we make the assumption about its movement, we certainly have v⊥ = Ṙ. The La-
grangian then takes the form

L(t) = −T0
∫
SR(t)

ds

√
1− Ṙ2(t)

c2
= −T02πR(t) ·

√
1− Ṙ2(t)

c2
. (265)

One can view this as a Lagrangian for a system with one degree of freedom, described by a
function R(t). The canonical momentum P corresponding to R is thus

P :=
∂L

∂Ṙ
=

2πT0RṘ

c2
√
1− Ṙ2

c2

. (266)

We can thus pass to the Hamiltonian function, finding

H = PṘ− L =
2πT0R√
1− Ṙ2

c2

(267)

Since L does not explicitly depent on time, H corresponds to the conserved energy. By plugging
R(0) = R0 and Ṙ(0) = 0, we get that the energy of the string equals to

2πT0R0. (268)

We thus obtain the energy contraint

R0 =
R√

1− Ṙ2

c2

(269)
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This can be rewritten as
Ṙ2 + (

c

R0
)2R2 = c2. (270)

One can differentiate this equation to get the equation of motion

2Ṙ(R̈+ (
c

R0
)2R) = 0. (271)

Assume for a moment that Ṙ ̸= 0, so we get the equation of motion for the harmonic oscillator
with the solution (satisfying the initial conditions):

R(t) = R0 cos(
c

R0
t). (272)

Note that then Ṙ(t) = −c sin( c
R0
t). The string collapses to zero at t1 = πR0

2c , and note that then

Ṙ(t1) = −c. The solution Ṙ ≡ 0 fails to satisfy the original Largrange-Euler equations. ■

Exercise 5.10. Let L be the Lagrangian density for the Nambu-Goto action in the static gauge,
expressed in terms of ∂tX⃗ and ∂σX⃗. The canonical conjugate momentum is defined by

P⃗τ (t, σ) :=
∂L

∂(∂tX⃗)
=
T0
c2

ds

dσ

v⃗⊥√
1− v⃗2

⊥
c2

. (273)

Find the Hamiltonian density H := P⃗τ · ∂τ X⃗ − L and express it in terms of v⃗⊥.

Proof. One has ∂tX⃗ = v⃗⊥ + (something tangent to the string). The scalar product of the coor-
dinate velocity with the transverse velocity thus gives simply the square v2⊥. Whence

H = P⃗τ · v⃗⊥ − L =
T0
c2

ds

dσ

v2⊥√
1− v2

⊥
c2

+ T0
ds

dσ

√
1−

v2⊥
c2

=
ds

dσ

T0√
1− v2

⊥
c2

(274)

Consequently, we find

H =

∫ σ1

0

dσ
ds

dσ

T0√
1− v2

⊥
c2

=

∫
ds

µ0c
2√

1− v2
⊥
c2

, (275)

so the energy of the string is the sum over relativistic energies of pieces with mass per unit length
µ0 moving with the velocity v⃗⊥. ■

6 String parametrization and classical motion

6.1 Choosing a σ parametrization

So far, working in the static gauge, we have shown that we need to examine the string surface
described by functions X⃗(t, σ). We would like to conveniently choose the parametrization of the
string surface. The idea is the following:

At some fixed time t0, the string is parametrized by σ ∈ [0, σ1]. For each value σ0 of the
parameter σ, draw a straight line perpendicular to the t = t0 string. For some small ϵ > 0, it
intersects some point of the t = t0 + ϵ string. This point on the t = t0 + ϵ string will be assigned
to the same value σ0 of the parameter. In this way, we will obtain the parametrization of the
t = t0+ϵ string. By repeating this procedure, we can find a parametrization of t = t0+2ϵ string.
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σ0

t0

t0 + ϵ

By repeating this procedure, we obtain a parametrization σ of the whole string surface, having
the property the lines of constant σ are perpendicular to the strings, that is

∂X⃗

∂t
· ∂X⃗
∂σ

= 0. (276)

Since the movement of the string endpoints is transverse to strings, the value of the new parameter
at the endpoints remains sting equal to the ones at t = t0 string we have started with, say
σ∗ ∈ {0, σ1}. For closed string, we have σ ∈ [0, σc].

Let us attempt to discuss this more rigorously. Suppose that we are given functions X⃗(t, σ)

where (t, σ) ∈ [ti, tf ]× [0, σ1] and we assume that ∂tX⃗ · ∂σX⃗ = 0 for all (t, σ∗) ∈ [ti, tf ]×{0, σ1}.
We are looking for a new parameter σ′ := f(t, σ). Let us also formally write t′ := t. To simplify
notation, let t0 = 0. We look for the function f , satisfying ∂σf ̸= 0 and the condition

f(0, σ) = σ, (277)

this is because at t = 0 string, we want the new parametrization to coincide with the old one.
We have already shown that the tangent vectors transform as in (245, 246). By inverting those
relations, we can express primed derivatives in terms of unprimed:

∂X⃗

∂σ′ = (
∂f

∂σ
)−1 ∂X⃗

∂σ
,
∂X⃗

∂t′
=
∂X⃗

∂t
− ∂f

∂t
(
∂f

∂σ
)−1 ∂X⃗

∂σ
. (278)

Our requirement is that the vectors tangent to the strings t′ = t′0 are perpendicular to the vectors
tangent to the lines of constant σ′. This gives us the equation

0 =
∂X⃗

∂σ′ ·
∂X⃗

∂t′
= (

∂f

∂σ
)−1 ∂X⃗

∂t
· ∂X⃗
∂σ

− ∂f

∂t
(
∂f

∂σ
)−2∥∂X⃗

∂σ
∥2. (279)

This can be rewritten as the partial differential equation

∂f

∂t
=
∂f

∂σ

∂X⃗
∂t · ∂X⃗

∂σ

∥∂X⃗
∂σ ∥2

. (280)

Observe that the fraction multiplying the partial derivative with respect to σ is a known function
of (t, σ), that is we are solving the equation

∂f

∂t
=
∂f

∂σ
K(t, σ). (281)

Observe that we have assumed that K(t, σ∗) = 0. This immediately implies that the solution to
this equation will satisfy ∂f

∂t (t∗, σ) = 0. This confirms that the numerical value of the endpoints
remains constant in time.
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Exercise 6.1. Show that there is a solution to (281) with the initial condition f(0, σ) = σ defined
on entire string surface.

Proof. The solution to this partial differential equation is obtained by “method of characteris-
tics”. It follows that the graph of the solution defines a surface

S := {(t, σ, f(t, σ)) | (t, σ) ∈ [ti, tf ]× [0, σ1]}, (282)

such that the vector field V := (1,−K(x, y), 0) is tangent to the surface for all (x, y, z) ∈ S.

For future purposes, suppose that we impose a boundary condition f(0, σ) = F (σ), where
F : [0, σ1] → [0, σ1] is an arbitrary function satisfying

F (0) = 0, F (σ1) = σ1, F ′(σ) > 0. (283)

But this means that the surface S must necessarily contain the curve

Γ := {(0, r, F (r)) | r ∈ [0, σ1]}. (284)

The idea is to find the integral curve of V starting from (0, r, F (r)) for each r ∈ [0, σ1]. We thus
look for functions x = x(s, r), y = y(s, r) and z = z(s, r), satisfying the system of equations

∂x

∂s
(s, r) = 1, (285)

∂y

∂s
(s, r) = −K(x(s, r), y(s, r)), (286)

∂z

∂s
(s, r) = 0, (287)

together with the initial conditions at s = 0, which give

x(0, r) = 0, y(0, r) = r, z(0, r) = F (r). (288)

We can fully solve two of the equations, namely x(s, r) = s and z(s, r) = F (r), and it remains
to solve a single ordinary differential equation

∂y

∂s
(s, r) = −K(s, y(s, r)), (289)

which is possible for all r ∈ [0, σ1] and s ∈ [−a, a] for some a > 0. Let us now consider a map
ϕ(s, r) := (x(s, r), y(s, r)). One can calculate its differential at (0, r):

(Dϕ)(0, r) =

(
∂x
∂s (0, r)

∂x
∂r (0, r)

∂y
∂s (0, r)

∂y
∂r (0, r)

)
=

(
1 0

−K(0, r) 1

)
(290)

By the inverse function theorem, there is a neighborhood U of each (0, r) and a neighborhood
V of ϕ(0, r) = (0, r), such that ϕ : U → V is a diffeomorphism. Since we can do this for all
r ∈ [0, σ1], we can find the inverse expressions s = s(x, y) and r = r(x, y) for all x ∈ [−b, b] and
y ∈ [0, σ1], where b > 0.

Finally, define f(t, σ) := z(s(t, σ), r(t, σ)) = F (r(t, σ)), for all t ∈ [−b, b] and σ ∈ [0, σ1]. It
follows from the construction that f solves the partial differential equation (281) with the correct
boundary condition.
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It remains to check that ∂f
∂σ (t, σ) ̸= 0. One has

∂f

∂σ
(t, σ) = F ′(r(t, σ))

∂r

∂σ
(t, σ). (291)

Since we have assumed that F ′(σ) > 0, this amounts to checking that ∂r
∂y (x, y) ̸= 0 for all

x ∈ [−b, b] and y ∈ [0, σ1]. To do so, observe that

(Dϕ)(s, r) =

(
1 0

−K(s, y(s, r)) ∂y
∂r (s, r)

)
(292)

This matrix is invertible wherever ϕ is invertible. In particular, at these points one has ∂y
∂r (s, r) ̸=

0 , and it follows that ∂r
∂y (x, y) is given by the bottom-right corner of the inverse matrix. Explicitly,

one has
∂r

∂y
(x, y) =

1
∂y
∂r (s(x, y), r(x, y))

̸= 0 (293)

for all x ∈ [−b, b] and y ∈ [0, σ1].

Observe that the resulting domain of f does depend only on the function K, not on the
function F describing the boundary condition! By only a slight modification, for each t0 ∈ [ti, tf ],
we find b > 0 , such that for any F : [0, σ1] → [0, σ1] as above, there is a solution to (281) defined
on [t0 − b, t0 + b]× [0, σ1] and satisfying the boundary condition f(t0, σ) = F (σ).

We can now cover [ti, tf ] by finitely many such intervals, we can find a finite subdivision
t0 = ti < · · · < tn = tf , such that for each i ∈ {0, . . . , n − 1} we have a solution fi on some
rectangle containing [ti, ti+1]× [0, σ1] for each boundary condition fi(ti, σ) = Fi(σ). We can now
inductively construct f . We declare it to be f0 on [t0, t1] × [0, σ1] with the boundary condition
f0(0, σ) = σ. Then we choose f1 on [t1, t2] × [0, σ1] with the boundary condition f1(t1, σ) =
f0(t1, σ). By iterating this procedure, we find the solution to f on the whole [ti, tf ]× [0, σ1]. It

obviously satisfies ∂f
∂σ ̸= 0. ■

In our new parametrization, the transverse velocity is therefore given simply by

v⃗⊥ =
∂X⃗

∂t
. (294)

We shall henceforth denote is simply by v⃗. We can now rewrite the canonical momenta densities
in our new gauge. One finds

Pτ0 =
T0
c

ds

dσ

1√
1− v2

c2

, P⃗τ =
T0
c2

ds

dσ

v⃗√
1− v2

c2

, (295)

Pσ0 = 0, P⃗σ = −T0

√
1− v2

c2
∂X⃗

∂s
. (296)

6.2 Physical interpretation of the string equation of motion

Recall that the string equation of motion is simply

∂Pτµ

∂τ
+
∂Pσµ

∂σ
= 0, (297)
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for each µ ∈ {0, . . . , D}. In the static gauge, we have τ = t. Plugging the above expressions for
µ = 0 thus gives the equation

∂

∂t

(T0
c

ds

dσ

1√
1− v2

c2

)
= 0. (298)

This is nothing but the energy conservation law. In fact, one can define a function

E(σ) :=

∫ σ

0

dσ
ds

dσ

T0√
1− v2

c2

, (299)

which is independent of time and satisfies E′(σ) > 0. This will be an important observation. On
the other hand, by plugging into the spatial components of the equation and using (298), one
finds

T0
c2

ds

dσ

1√
1− v2

c2

∂2X⃗

∂t2
=

∂

∂σ
(T0

√
1− v2

c2
∂X⃗

∂s
) (300)

Finally, rewrite the σ differentiation using the s differentiation and cancel ds
dσ . We find the

equation

T0
c2

1√
1− v2

c2

∂2X⃗

∂t2
=

∂

∂s
(T0

√
1− v2

c2
∂X⃗

∂s
). (301)

This already somewhat resembles the wave equation for a non-relativistic string, which can be

written as µ0
∂2y⃗
∂t2 = ∂

∂x (T0
∂y⃗
∂x ). This leads us to define the effective tension and the effective

mass density. They are both functions of both t and σ:

Teff := T0

√
1− v2

c2
, µeff :=

T0
c2

1√
1− v2

c2

(302)

6.3 Wave equation and constraints

Let us suggestively rewrite the equation (300) as

T0
c2
∂2X⃗

∂t2
= T0

√
1− v2

c2

ds
dσ

∂

∂σ

(√1− v2

c2

ds
dσ

∂X⃗

∂σ

)
. (303)

If only we could choose a new parameter σ′ = σ′(σ), such that

∂

∂σ
=

ds

dσ

1√
1− v2

c2

∂

∂σ′ . (304)

But we are in luck, since there is one such parameter - the energy of the string segment from 0
to σ, up to a constant. In other words, let

σ′ :=
1

T0
E(σ) =

∫ σ

0

ds

dσ

1√
1− v2

c2

. (305)

Note that [σ′] = L, as required. Importantly, lines of constant σ′ still remain transversal to
strings. We shall henceforth use this parametrization. Note that the range of this new coordinate
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is [0, σ′
1], where σ

′
1 = E

T0
, where E is the conserved overall energy of the string. We will henceforth

drop the primes and assume that σ corresponds to the string energy.

Note that we still have to remember that σ corresponds to the energy of the string. This
gives us a constraint

σ =

∫ σ

0

ds

dσ

1√
1− v2

c2

dσ. (306)

Since the values of both sides are the same at σ = 0, we can instead compare the derivatives of
both sides with respect to σ, finding

1 =
ds

dσ

1√
1− v2

c2

(307)

Taking the square and recalling that ds
dσ = ∥∂X⃗

∂σ ∥2 gives the equation

(
∂X⃗

∂σ
)2 +

1

c2
(
∂X⃗

∂t
)2 = 1. (308)

This equation is a relic of our parametrization condition. When we look for a solution of equations
of motion, we impose this as a constraint. This is quite a common occurrence in theories with
some gauge invariance. Let us also examine the momenta densities and boundary conditions. It
follows from (307) that

ds

dσ
=

√
1− v2

c2
. (309)

Plugging this into (295) and (296), we find

Pτ0 =
T0
c
, P⃗τ =

T0
c2
∂X⃗

∂t
, Pσ0 = 0, P⃗σ = −T0

∂X⃗

∂σ
. (310)

But this shows that the free endpoint boundary condition Pσµ(t, σ∗) = 0 turns into the Neumann
boundary condition:

∂Xµ

∂σ
(t, σ∗) = 0. (311)

Let us summarize all the equations and constraints we have to solve to find the solution:

wave equation:
∂2X⃗

∂t2
= c2

∂2X⃗

∂σ2
, (312)

transversality condition:
∂X⃗

∂t
· ∂X⃗
∂σ

= 0, (313)

energy parametrization: (
∂X⃗

∂σ
)2 +

1

c2
(
∂X⃗

∂t
)2 = 1, (314)

boundary conditions:
∂X⃗

∂σ
(t, σ∗) = 0. (315)

Note that the relic of the choice of the static gauge is that X0(t, σ) = ct.
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6.4 General motion of an open string

The most general solution to the wave equation (312) can be written as

X⃗(t, σ) =
1

2
(F⃗ (ct+ σ) + G⃗(ct− σ)), (316)

for arbitrary vector functions F⃗ = F⃗ (u) and G⃗ = G⃗(u). We impose free endpoint conditions
(315) at both endpoints. The σ∗ = 0 condition leads to

F⃗ ′(ct)− G⃗′(ct) = 0, (317)

for all t ∈ R. Hence G⃗(u) = F⃗ (u) + a⃗0 for some constant vector. Plugging this back in gives

X⃗(t, σ) =
1

2
(F⃗ (ct+ σ) + F⃗ (ct− σ) + a⃗0). (318)

One can absorb the constant vector a⃗0 by redefining F⃗ (u) 7→ F⃗ (u) + a⃗0/2, and we find

X⃗(t, σ) =
1

2
(F⃗ (ct+ σ) + F⃗ (ct− σ)). (319)

Next, we can plug this into the boundary condition (315) at σ∗ = σ1. We find

F⃗ ′(ct+ σ1)− F⃗ ′(ct− σ1) = 0. (320)

Since this has to hold for all t ∈ R, this shows that F⃗ ′(u) = F⃗ ′(u+ 2σ1). This means that F⃗ is
quasiperiodic in u, that is

F⃗ (u+ 2σ1) = F⃗ (u) + 2σ1
v⃗0
c
, (321)

where we have chosen the unknown constant v⃗0 to have the dimension of velocity. It remains to
plug into the parametrization conditions (313, 314). It is useful to add and subtract 2/c multiple
of the first condition to the second, finding

(
∂X⃗

∂σ
± 1

c

∂X⃗

∂t
)2 = 1. (322)

By plugging in (319), we get

∂X⃗

∂σ
=

1

2
(F⃗ ′(ct+ σ)− F⃗ ′(ct− σ)), (323)

1

c

∂X⃗

∂t
=

1

2
(F⃗ ′(ct+ σ) + F⃗ ′(ct− σ)). (324)

Plugging this back gives

∂X⃗

∂σ
± 1

c

∂X⃗

∂t
= ±F⃗ ′(ct± σ). (325)

We thus find the simple condition on F⃗ , namely

∥F⃗ ′(u)∥2 = 1. (326)

We thus conclude that the general motion of a string satisfying (312 - 315) can be written as

X⃗(t, σ) =
1

2
(F⃗ (ct+ σ) + F⃗ (ct− σ)), σ ∈ [0, σ1], (327)
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where σ1 = E/T0 and the (yet) undetermined vector function F⃗ = F⃗ (u) has to satisfy

∥F⃗ ′(u)∥2 = 1, F⃗ (u+ 2σ1) = F⃗ (u) + 2σ1
v⃗0
c
. (328)

There is a direct interpretation of the function F⃗ . Indeed, one has X⃗(t, 0) = F⃗ (ct), that is

F⃗ (u) = X⃗(
u

c
, 0). (329)

We see that F⃗ (u) is the position of the string σ = 0 endpoint at time u
c . We can further

interpret the free velocity parameter v⃗0.

Exercise 6.2. Show that

X⃗(t+
2σ1
c
, σ)− X⃗(t, σ) = (

2σ1
c

)v⃗0, (330)

v⃗0 is the average velocity of any point σ in an arbitrary time interval of length 2σ1

c .

Exercise 6.3. Show that
∂X⃗

∂t
(t+

2σ1
c
, σ) =

∂X⃗

∂t
(t, σ), (331)

that is the velocity must be periodical with period 2σ1

c .

Let us now consider the following problem. We assume that we have an open string which
rotates rigidly in (x, y) plane around its origin with a constant angular frequency ω. Suppose
that it is of length ℓ. The movement of its endpoint will thus be described as

X⃗(t, 0) = (
ℓ

2
cos(ωt),

ℓ

2
sin(ωt)), (332)

where we explicitly describe only the first two components. This forces F⃗ to have the form

F⃗ (u) ≡ X⃗(
u

c
, 0) = (

ℓ

2
cos(

ωu

c
),
ℓ

2
sin(

ωu

c
)). (333)

Since v⃗0 is the average velocity during the period of the velocity vector of the endpoint, and this
does repeat after a full turn of a string, we have v⃗0 = 0⃗. We thus assume that F⃗ is periodic with
period 2σ1. This gives the condition

ω

c
(2σ1) = 2πm⇒ ω

c
=

π

σ1
m. (334)

where m ∈ Z. Now, observe that this gives

X⃗(0, σ) =
1

2
(F (σ) + F (−σ)) = (

ℓ

2
cos(

πσ

σ1
m), 0). (335)

But X⃗(0, σ) must be injective for σ ∈ [0, σ1], which forces m = 1. We find that

F⃗ (u) = (
ℓ

2
cos(

π

σ1
u),

ℓ

2
sin(

π

σ1
u)) (336)

Finally, we have the normalization condition on the tangent vector to the curve F⃗ (u). One has

F⃗ ′(u) = (− ℓπ

2σ1
sin(

π

σ1
u),

ℓπ

2σ1
cos(

π

σ1
u)). (337)

46



We see that

∥F⃗ ′(u)∥ = 1 ⇔ ℓ2π2

4σ2
1

= 1. (338)

If we recall that σ1 = E
T0
, this gives a relation between the length ℓ and the overall energy of the

string, namely

E =
π

2
T0ℓ. (339)

In terms of energy, we ω = T0πc
E . The velocity of the endpoint is thus

ℓ

2
ω =

1

2

2E

πT0

T0πc

E
= c. (340)

In conclusion, we have found that

F⃗ (u) =
σ1
π
(cos(

πu

σ1
), sin(

πu

σ1
)). (341)

We can now use it to find the final solution to our problem, finding:

X⃗(t, σ) =
σ1
π

cos(
πσ

σ1
) · (cos(πct

σ1
), sin(

πct

σ1
)). (342)

6.5 Motion of closed strings and cusps

Let us now try to solve the motion of the closed string. We again solve (312 - 314), except there
is no boundary condition (315). It is replaced by the periodicity condition in parameter σ. The
solution to (312) is given by

X⃗(t, σ) =
1

2
(F⃗ (ct+ σ) + G⃗(ct− σ)). (343)

By plugging into (322), we find the normalization of the tangent vectors in the form

∥F⃗ ′(u)∥2 = ∥G⃗′(v)∥2 = 1, (344)

for all u, v ∈ R. We have to impose the condition

X⃗(t, σ + σ1) = X⃗(t, σ), (345)

where σ1 = E/T0. We can pass to new independent variables u := ct + σ and v := ct − σ. By
plugging in (343) into (345), we find

1

2
(F⃗ (u+ σ1) + G⃗(v − σ1)) =

1

2
(F⃗ (u) + G⃗(u)). (346)

This can be rewritten as

F⃗ (u+ σ1)− F⃗ (u) = G⃗(v)− G⃗(v − σ1). (347)

Since u and v are independent variables, both sides must be the identical constant vectors. This
means that both F⃗ = F⃗ (u) and G⃗ = G⃗(v) change by the same constant vector when their
argument is increased by σ1. In particular, one finds

F⃗ ′(u+ σ1) = F⃗ ′(u), G⃗′(v + σ1) = G⃗′(v). (348)
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Up to some integration constant, the motion of the closed string is thus described by two periodic
unit vectors F⃗ ′(u) and F⃗ ′(v). These can be equivalently viewed as two loops on a unit sphere.
There are some strange things that can happen when the two loops intersects, that is

F⃗ ′(u0) = G⃗′(v0), (349)

for some values u0, v0 ∈ R. Let (t0, σ0) be the corresponding values of the parameters, that is
u0 = ct0 + σ0 and v0 = ct0 − σ0. One finds

1

c

∂X⃗

∂t
(t0, σ0) =

1

2
(F⃗ ′(u0) + G⃗′(v0)) = F⃗ ′(u0). (350)

Since the right-hand side is a unit vector, we realize that at t0, the point σ = σ0 on the string
reaches the speed of light! What is even worse, one gets

∂X⃗

∂σ
(t0, σ0) =

1

2
(F⃗ ′(u0)− G⃗′(v0)) = 0⃗. (351)

But this means that the parametrization of the t0 string becomes singular at σ = σ0. By fixing
t = t0, we can consider the Taylor expansion:

X⃗(t0, σ) = X⃗(t0, σ0) +
1

2
(σ − σ0)

2 ∂
2X⃗

∂σ2
(t0, σ0) +

1

3!
(σ − σ0)

3 ∂
3X⃗

∂σ3
(t0, σ0) + · · · (352)

By defining the constant vectors

X⃗0 := X⃗(t0, σ0), T⃗ :=
∂2X⃗

∂σ2
(t0, σ0), R⃗ :=

∂3X⃗

∂σ3
(t0, σ0), (353)

we see that

X⃗(t0, σ) = X⃗0 +
1

2
(σ − σ0)

2T⃗ +
1

3!
(σ − σ0)

3R⃗+ · · · . (354)

In the general scenario, T⃗ and R⃗ are non-zero and non-parallel. As σ reaches σ0 from below, the
string reaches X⃗0 along the T⃗ and then moves away along T⃗ as σ grows above σ0. One says that
the string forms a cusp. For bigger σ − σ0 the cusp opens thanks to the R⃗ term.

X⃗0

T⃗

R⃗

Note that since F⃗ ′(u) and G⃗′(v) are periodic with period σ1, the cusps on the closed strings do
appear and disappear periodically. It can also happen that the two loops on the sphere intersect
at several points - each of these intersections comes with its sequence of cusps.

Exercise 6.4. The movement of the initially static closed string: Suppose we assume

∂X⃗

∂t
(0, σ) = 0. (355)

How the general discussion changes? Suppose that at t = 0, the string traces a closed curve γ⃗ of
length ℓ. Describe the procedure of a solution.
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Proof. By plugging (343) into (355), we find that

0⃗ =
1

c

∂X⃗

∂t
(0, σ) =

1

2
(F⃗ ′(σ) + G⃗′(−σ)), (356)

This shows that G⃗′(u) = −F⃗ ′(−u) for all u ∈ R, which can be integrated to G⃗(u) = F⃗ (−u)+ a⃗0.
By plugging this back into (343), we see that one can absorb the integration constant by suitably

redefining F⃗ and we can assume that

X⃗(t, σ) =
1

2
(F⃗ (σ + ct) + F⃗ (σ − ct)). (357)

We can now plug into the periodicity condition X⃗(t, σ+σ1) = X⃗(t, σ). By defining the indepen-
dent variables u := σ + ct and v := σ − ct, one obtains the condition

F⃗ (u+ σ1)− F⃗ (u) = −(F⃗ (v + σ1)− F⃗ (v)). (358)

Both sides must be equal to a constant vector. But this is only possible if this vector is zero and
we conclude that F⃗ must be a periodic function:

F⃗ (u+ σ1) = F⃗ (u). (359)

The interpretation of F⃗ is obvious - it corresponds to the initial shape of the string, since

F⃗ (u) = X⃗(0, u). (360)

To fully solve the equations of motion, we thus have to specify the initial shape of the string.
However, there are still parametrization constraints. One finds

1

c

∂X⃗

∂t
(t, σ) =

1

2
(F⃗ ′(u)− F⃗ ′(v)),

∂X⃗

∂σ
(t, σ) =

1

2
(F⃗ ′(u) + F⃗ ′(v)). (361)

We thus obtain a single condition, namely

|F⃗ ′(u)|2 = 1, (362)

for all u ∈ R. Equivalently, for an initially static string, we can examine (314) at (0, σ), finding

(
∂X⃗

∂σ
)2(0, σ) = 1. (363)

But this means that at t = 0, the length the initial string must be parametrized by its length!
This gives us the relation of the initial length ℓ an the energy of the string, namely

E = T0ℓ. (364)

Compare this to (339). Let us now discuss the general solution. Suppose we want the string to
trace the initial shape γ⃗ = γ⃗(λ), where λ ∈ [0, λ0]. We thus have to parametrize the string by
its length, that is introduce a new parameter

σ(λ) :=

∫ λ

0

∥dγ⃗
dλ

∥ dλ (365)

In order for σ to be a well-defined parameter, we must assume that ∥dγ⃗
dλ∥ > 0. The length of

the string is then just ℓ = σ(λ0). One then has to invert the relation and write λ = λ(σ). The
function F is then defined simply by

F⃗ (u) := γ⃗(λ(u)). (366)

■
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Exercise 6.5. Let us consider the situation from Exercise 5.9, where at t = 0, the closed string
forms a circle of radius R0 in the (x, y) plane. Show that the assumption that the string remains
circular was correct.

Proof. In light of the previous exercise, we have γ⃗(λ) = R0(cos(λ), sin(λ)), λ ∈ [0, 2π]. We have
∥dγ⃗
dλ∥ = R0, whence σ(λ) = R0λ. We thus have to set

F⃗ (u) = R0(cos(
u

R0
), sin(

u

R0
)). (367)

We also get the relation of the energy of the string to R0, that is E = 2πT0R0, which agrees
with Exercise 5.9. Finally, the full movement of the string is given by

X⃗(t, σ) =
1

2
(F⃗ (σ + ct) + F⃗ (σ − ct)) = R0 cos(

ct

R0
) · (cos( σ

R0
), sin(

σ

R0
)). (368)

The function multiplying the vector is indeed the previously obtained function R(t) and for each
t, the string is a circle of radius R(t). ■

7 Worldsheet currents

7.1 Noether theorem for field theories

Let us consider the following general setting. Suppose we have an action functional

S =

∫
dξ1 · · · dξkL(ϕa, ∂αϕa), (369)

for fields ϕa = ϕa(ξ1, . . . , ξk), a ∈ {1, . . . , n}. We write ∂αϕ
a = ∂ϕa

∂ξα . The Lagrangian density L
is an ordinary function in n+ k · n variables. We can consider the variation

ϕ′a := ϕa + δϕa (370)

The derivatives vary accordingly, that is ∂αϕ
′a = ∂αϕ

a + ∂α(δϕ
a). We usually consider the

infinitesimal variations of the form δϕa = ϵihai (ϕ), where ϵ
i are independent parameters of the

transformation which are assumed to be small. One finds

L(ϕ′a, ∂αϕ′a) = L(ϕa, ∂αϕa) + δL+O(ϵ2), (371)

We say that L is invariant with respect to (370), if δL = 0. Explicitly, one has

δL =
∂L
∂ϕa

δϕa +
∂L

∂(∂αϕa)
∂α(δϕ

a). (372)

Beware that there are two Einstein summations involved. Now, suppose that ϕa satisfy the
equations of motion. This means that they are subject to the Lagrange-Euler equation:

∂L
∂ϕa

= ∂α(
∂L

∂(∂αϕa
), (373)

for each a ∈ {1, . . . , n}. For the solutions of equations of motion, one thus finds

0 = δL = ∂α(
∂L

∂(∂αϕa)
δϕa) = ϵi∂α(

∂L
∂(∂αϕa)

hai (ϕ)). (374)
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This suggests to define the conserved currents in the form

jαi :=
∂L

∂(∂αϕa)
hai (ϕ). (375)

Let us emphasize that jαi are functions of just (ξ1, . . . , ξk), we assume that we plug in some field
configuration to the right-hand side. We have just argued that for a solution of equations of
motion, assuming that L is invariant under (370), these satisfy

∂αj
α
i = 0. (376)

Exercise 7.1. Suppose jαi is a conserved current, and assume that ξ0 has the role of a “time
parameter”. Let us consider the quantity

Qi(ξ
0) :=

∫
dξ1 · · · dξkj0i . (377)

Show that dQ
dξ0 = 0, if jαi vanish at the boundary (or in infinities) for α ∈ {1, . . . , k}. For each

infinitesimal parameter, we thus obtain an actual integral of motion Qi called the conserved
charge (which is actually conserved).

7.2 Conserved currents on the worldsheet

Now, recall that relativistic string is a two-dimensional field theory, where (ξ1, ξ2) = (τ, σ). The
fields of the theory are Xµ = Xµ(τ, σ). In the context of the previous subsection, we thus
consider the infinitesimal variations

δXµ = ϵihµi (X), (378)

and the corresponding conserved currents are then have two components:

jτi =
∂L
∂Ẋµ

hµi = Pτ
µh

µ
i (X), jσi =

∂L
∂X ′µh

µ
i (X) = Pσ

µh
µ
i (X) (379)

In particular, the Lagrange density depends only on the derivatives of fields. This means that
one can consider transformations

δXµ := ϵµ = ϵνδνµ. (380)

The index labeling the infinitesimal parameters coincides with the spacetime index. The corre-
sponding conserved currents are thus labeled by µ ∈ {0, . . . , D} and have the components

jτµ = Pτ
µ , jσµ = Pσ

µ . (381)

The equation ∂αj
α
µ = 0 turns into

∂Pτ
µ

∂τ
+
∂Pσ

µ

∂σ
= 0, (382)

that is equations of motion for the string. Now, according to Exercise 7.1, the corresponding
charge is the total space momentum

pµ(τ) :=

∫ σ1

0

dσ Pτ
µ(τ, σ). (383)
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Let us examine its derivative with respect to the parameter τ . One finds

dpµ
dτ

=

∫ σ1

0

dσ
∂Pτ

µ

∂τ
= −

∫ σ1

0

dσ
∂Pσ

µ

∂σ
= −[Pσ

µ ]
σ1
σ=0. (384)

For open string, if the free endpoint condition is imposed on both ends, this makes the quantity
pµ constant in τ . This is true also for a closed string, since there is a periodicity condition
imposed on the fields. pµ is not conserved for Dirichlet endpoints!

7.3 The complete momentum current

There is one issue with the above discussion. Our description of the string was intended to be
reparametrization invariant. Our definition of the conserved momentum currents depends on the
parametrization. Is there some way to describe a momentum conservation of a string?

First, there is one important observation. Let us consider a general parametrization (ξ1, ξ2)
of the worldsheet. Let

Pα
µ :=

∂L
∂(∂αXµ)

(385)

be the associated momentum current. This can be viewed as a vector field Pµ = Pα
µ ∂α.

Now, suppose that a Lorentz observer a string at some coordinate time t. He uses a static
gauge τ = t do describe the worldsheet and constructs a a density currents Pτ

µ and Pσ
µ . He

then defines a momentum of a τ = t string by a integral pµ(t) =
∫ σ1

0
dσPτ

µ(σ, t). This can
be interpreted as a flux of Pµ across the curve γ of constant τ . Indeed, the unit vector n⃗⊥
perpendicular to γ is ∂τ and Pµ · ∂τ = Pτ

µ .

This leads us to the following idea. Let γ be any curve in the worlsheet connecting its σ = 0
boundary to the σ = σ1 boundary. The flux of the vector field Pµ across γ is usually written as

pµ(γ) :=

∫
γ

(Pτ
µdσ − Pσ

µdτ) (386)

In more detail, if γ(λ) = (τ(λ), σ(λ)) for λ ∈ [0, λ0], the integral is given by

pµ(γ) =

∫ λ0

0

dλ
(
Pτ
µ(τ(λ), σ(λ))

dσ

dλ
(λ)− Pσ

µ (τ(λ), σ(λ))
dτ

dλ
(τ) (387)

The crucial observation is the following one:

Proposition 7.2. Suppose γ′ is any other curve connecting the σ = 0 and σ = σ1 boundary of
the worldsheet. Then

pµ(γ) = pµ(γ
′). (388)

Proof. First observe that if Γ is any closed curve in Σ encircling a simply connected region R,
then the outgoing flux over Γ is∮

Γ

Pτ
µdσ − Pσ

µdτ =

∫
R
(
∂Pτ

µ

∂τ
+
∂Pσ

∂σ
)dτdσ = 0. (389)

If γ and γ′ are two curves connecting the boundaries of the worldsheet, we may consider the
curve Γ as in the following figure:
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σ = 0

σ = σ1

R γ
γ′

Γ

We see that outgoing flux across Γ is pµ(γ)− pµ(γ
′) plus the flux across the σ = σ0 and σ = σ1

segments. But those do not contribute thanks to the free endpoint conditions. Indeed, the flux
across the lower segment is

−
∫ τ1

τ0

Pσ
µ (τ, 0)dτ = 0. (390)

This finishes the proof. ■

For closed strings, the situation is somewhat similar, excepts γ is assumed to be an arbitrary
closed curve wrapping once around the worldsheet. The proof of the independence of pµ(γ) on a
particular choice of the curve is analogous, except the boundary Γ of the region R consists just
of the two curves γ and γ′.

γ

How is this useful for the notion of a string momentum? Suppose a given Lorentz observer
observes a string at some coordinate time t. Geometrically, this is an intersection of the string
worldsheet with the x0 = ct hyperplane. Suppose he uses an arbitrary parametrization (τ, σ).
In this parametrization, string is a general curve γ in the parameter space connecting the two
edges of a worldsheet. He then views pµ(γ) as a momentum of the string at time t.

If he decides to do so at any other coordinate time t′, using the same parametrization, he
calculates pµ(γ

′) along the different curve γ′. By comparing the two numerical values, he realizes
that the momentum is preserved.

Note that the numerical value of pµ can still depend on the parametrization. It turns out
that this is not the case

Exercise 7.3. Consider a general reparametrization ξ′α = ξ′α(ξ1, ξ2). Let

J =

(
∂ξ′1

∂ξ1
∂ξ′1

∂ξ2

∂ξ′2

∂ξ1
∂ξ′2

∂ξ2

)
, (391)

be its Jacobi matrix. Show that the corresponding momentum currents Pα
µ and P ′α

µ are related
by the formula (

P ′1
µ

P ′2
µ

)
=

1

|detJ|
J

(
P1
µ

P2
µ

)
(392)

Show that when |detJ| > 0, the flux (386) in both parametrizations is the same.
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Proof. Directly from (226) and (227), using the fact that the Lagrangian density gets multiplied
by |detJ| under reparametrization, one can derive the formulas

P1
µ =

detJ

|detJ|
(J2

2P ′1
µ − J2

1P ′2
µ ), P2

µ =
detJ

|detJ|
(−J1

2P ′1
µ + J1

1P ′2
µ ), (393)

By rearranging this using the explicit formula for 2 × 2 matrix inverse, we get (392). Now, the
differentials transform as

(dξ′1,dξ′2) = (dξ1,dξ2) · J. (394)

Let us write Pµ = Pα
µ

∂
∂ξα and similarly P ′

µ is defined with primed variables. Those are now the

same vector fields, but one has P ′
µ = |detJ|−1Pµ. However, one can define a 1-form

ιPµ
(dξ1 ∧ dξ2). (395)

The contributions from the determinants cancel, and one finds

ιP′
µ
(dξ′

1 ∧ dξ′
2
) = sgn(det(J)) · ιPµ

(dξ1 ∧ dξ2) (396)

If det(J) > 0, those forms coincide. But the flux (386) in two parametrizations is then just an
integral of the same 1-form over γ. ■

Finally, note that the constants pµ are connected with the choice of Lorentz frame xµ. It is
easy to check that if we choose a different Lorentz frame x′µ = Lµ

νx
ν , they transform as Lorentz

covectors, that is
p′µ = Lµ

νpν . (397)

7.4 Currents associated to Lorentz symmetry

We have constructed the Lagrangian density for the string to be invariant under Lorentz trans-
formations. How does this translate in terms of infinitesimal transformations?

Recall that the spacetime coordinates transform as x′µ = Lµ
νx

ν . To examine the infinitesimal
transformations, write Lµ

ν = δµν + ϵµν , for some matrix ϵµν with very small inputs. Since L is
to be a Lorentz transformation, we get the relation

ηλκ = ηµνL
µ
λL

ν
κ = ηµν(δ

µ
λ + ϵµλ)(δ

ν
κ + ϵνκ) = ηλκ + ηλνϵ

ν
κ + ηµκϵ

µ
λ +O(ϵ2) (398)

This imposes the condition ηλνϵ
ν
κ + ηµκϵ

µ
λ = 0. Invoking the usual convention for raising and

lowering indices, this can be rewritten simply as ϵλκ+ ϵκλ = 0. Pluging back into the coordinate
transformation then reads

x′µ = (δνν + ϵµν)x
ν = xµ + ϵµνxν , (399)

where the matrix with two indices up is also skew-symmetric, that is ϵµν = −ϵνµ.
Going back to the relativistic string, this means that the corresponding infinitesimal trans-

formation of the string fields reads

X ′µ = Xµ + ϵµνXν , that is δX
µ = ϵµνXν . (400)

Exercise 7.4. Check that L of the Nambu-Goto action is indeed invariant under (400).
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Proof. Since L is independent of Xµ, one has

δL =
∂L

∂(∂αXµ)
∂α(δX

µ) = Pτ
µδẊ

µ + Pσ
µ δ(X

′µ)

= ϵµν(Pτ
µẊν + Pσ

µX
′
ν)

= − ϵµνT0
c

( (Ẋ ·X ′)(X ′
µẊν + ẊµX

′
ν)− (X ′)2ẊµẊν − (X ′)2X ′

µX
′
ν√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

)
= 0,

(401)

where we have used the fact that ϵµν is skew-symmetric and the term in the big parentheses is
symmetric in (µ, ν). ■

We can rewrite the variation in the following form

δXµ = ϵλνδµλXν =
1

2
ϵλν(δµλXν − δµνXλ). (402)

We see that, using the notation introduced above, one identifies hµλν = δµλXν − δµνXλ, and the
corresponding conserved current is

jαλν :=
∂L

∂(∂αXµ)
hµλν = Pα

µ (δ
µ
λXν − δµνXλ) = Pα

λXν − Pα
ν Xλ. (403)

Since the overall factor is irrelevant, one defines the respective currents as:

Mα
µν := XµPα

ν −XνPα
µ . (404)

For Xµ solving the equations of motion, one has

∂Mτ
µν

∂τ
+
∂Mσ

µν

∂σ
= 0. (405)

Similarly to the momentum, the corresponding conserved charges are defined by an integral

Mµν :=

∫
γ

(Mτ
µνdσ −Mσ

µνdτ). (406)

The fact that the definition does not depend on γ and can be interpreted as a conserved quantity
needs to be checked for the open strings. For this to be correct, the integrals along the segments
on the worldsheet boundary must vanish. But this happens since Mσ

µν(τ, σ∗) = 0 due to free
endpoint conditions.

Now, for D = 4, we have six independent conserved charges. Three correspond to rotations,
and are usually identified with the conserved angular momentum, that is Lk = 1

2ϵkijMij . The
other two are associated to the Lorentz boosts. Explicitly, in the static gauge, one has

M0i =

∫ σ1

0

dσ(X0Pτi −XiPτ0) = ctpi −
∫ σ1

0

dσXiPτ0. (407)

By multiplying both sides by c/E, where E is the overall energy of the string, and rearranging,
one has

1

E

∫ σ1

0

dσ(Xi · P
τ0

c
) = −cM

0i

E
+ t

c2pi

E
. (408)

Since Pτ0/c is the energy density, the left-hand side can be viewed as a position of the center of
mass, and we have found that

Xi
cm(t) = −cM

0i

E
+ t

c2pi

E
. (409)
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7.5 The slope parameter α′

Let us consider the rigid rotating string in the (x, y) plane. We have already solved this problem,
finding the solution (342). We sill show that there is a constant of proportionality α′ relating
the overall angular momentum J of the string to its energy as

J

ℏ
= α′E2. (410)

Note that [J ] = ML2T−1 = [ℏ], so the left-hand side has no dimension and thus [α′] = [E]−2.
The only non-vanishing spatial component of the angular momentum isM12, given by the formula

M12 =

∫ σ1

0

(X1Pτ
2 −X2Pτ

1 )dσ, (411)

that is J = |M12|. In our chosen parametrization (t, σ), we have

X⃗(t, σ) =
σ1
π

cos(
πσ

σ1
) · (cos(πct

σ1
), sin(

πct

σ1
)), (412)

and thus

P⃗τ (t, σ) =
T0
c2
∂X⃗

∂t
=
T0
c

cos(
πσ

σ1
)(− sin(

πct

σ1
), cos(

πct

σ1
)) (413)

Consequently, one finds

M12 =
σ1
π

T0
c

∫ σ1

0

dσ cos2(
πσ

σ1
){cos2(πct

σ1
) + sin2(

πct

σ1
)} =

σ2
1T0
2πc

. (414)

Recall that σ1 = E/T0, that is we find

J =
1

2πT0c
E2 =

ℏ
2πT0ℏc

E2, (415)

hence finding

α′ =
1

2πT0ℏc
, T0 =

1

2πα′ℏc
. (416)

Note that [α′] =M−2T 4L−4. Note that the triple {α′, ℏ, c} has the same convenient property as
{G, ℏ, c} we have discussed before. In particular, there is a unique length which can be obtained
as a product of powers of those three quantities. This is called a string length:

ℓs = ℏc
√
α′ =

√
ℏc

2πT0
. (417)

Note that if ℓs is of the same order as ℓP , we find T0 ∝ 1027N .

8 Light-cone relativistic string

8.1 A class of choices for τ

So far, we have worked in the static gauge, where X0(τ, σ) = cτ . This can be interpreted as
follows - we want the intersection of the worldsheet and hyperplanes of constant t to correspond
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to the constant value of τ . The normal vector to those hyperplanes is n = (1, 0, . . . , 0). The
above condition can be thus rewritten as nµX

µ(τ, σ) = cτ .

Now, suppose n is an arbitrary non-zero constant vector. We can now require

nµX
µ(τ, σ) = λτ, (418)

where λ ̸= 0 is some constant. This means that the intersection of any hyperplane orthogonal to
n with the worldsheet is a line of constant τ .

n

τ = const.

Let ∆Xµ be a difference of any two points of the worldsheet with the same value of τ . We do not
want this to be a timelike vector. Since nµ∆X

µ = 0, it suffices to assume that n is not spacelike.

Exercise 8.1. Let n ∈ RD be a non-zero vector which is not spacelike. Then any Lorentz vector
a ∈ RD which satisfies n · a = 0 is not timelike.

Proof. First, suppose that n is timelike. Since n · a = 0 is a Lorentz invariant condition, we
can choose the frame where n = (n0, 0⃗). Then n · a = n0a0 and thus a0 ̸= 0, that is a cannot
be timelike. Next, suppose that n is lightlike. Write n = (n0, n⃗). We thus have (n0)2 = (n⃗)2.
Suppose for a contradiction that a is timelike. We can thus examine everything in the frame
where a = (a0, 0⃗), a0 ̸= 0. Hence 0 = a · n = a0n

0 implies n0 = 0 and thus also (n⃗)2 = 0, which
contradicts the assumption n ̸= 0. ■

Wemust also argue that we can always consider such a gauge. Starting with a parametrization
(τ, σ), we thus pass to a new parameters σ′ := σ and τ ′ := 1

λnµX
µ(τ, σ). For this to be a

reparametrization, we need to check that n · Ẋ ̸= 0. Without the loss of generality, we can
assume that (t, σ) are the convenient parameters from the previous sections, where Ẋ = (c, v⃗⊥).
This vector is timelike except for string endpoints. If n is timelike, Ẋ can never be orthogonal
to it by previous exercise. If n is lightlike (which we will consider), it can happen that n · Ẋ = 0
at string endpoints - the parametrization has its limits.

Exercise 8.2. Suppose a, b ∈ RD are two non-zero lightlike vectors with a · b = 0. Then a and b
are colinear.

Proof. We can rotate the spatial coordinates so that a = (a0, a0, 0⃗) and b = (b0, b1, b⃗) for b⃗ ∈ RD−2

and a0, b0 ̸= 0. The condition a·b = 0 implies a0(b0−b1) = 0, that is b1 = b0. But the assumption
b2 = 0 then implies

0 = −(b0)2 + (b0)2 + (⃗b)2 ⇒ b⃗ = 0. (419)
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This proves the claim. ■

This exercise shows that the issue arises for a lightlike n when some of the endpoints moves
with the velocity v⃗λ = c · n⃗

∥n⃗∥ . We thus have to assume that this is not happening. The non-zero

constant λ is still for us to choose. Now, we have argued that to each string, there is an associated
conserved momentum pµ. This is a non-zero timelike vector, hence n · p ̸= 0. We will thus write

nµX
µ(τ, σ) = (n · p)λτ, (420)

for some non-zero constant λ. Note that the momentum is conserved for open string with free
endpoints. However, we only need to ensure that n ·p is a conserved quantity. In order to achieve
that, it suffices to impose a weaker condition on the endpoints, namely

nµPσ
µ (τ, σ∗) = 0. (421)

Let us discuss units. We will henceforth choose (τ, σ) to be dimension-less. The dimension
of n plays no role in the discussion, whence

[λ] = L[p]−1 = L(MLT−1)−1 = TM−1. (422)

This is velocity divided by force, so the natural choice would be λ ∝ c
T0

= 2πα′ℏc2.
Let us also further work in the natural units, where we set ℏ = 1 and c = 1, as if they were

dimension-less. This a great computational help. If we want to physically interpret any resulting
quantity, we must keep track of its original dimension - and insert (the suitable) power of ℏ and
c to get it. The simiplified relations between α′ and T0 and ℓs are then

α′ =
1

2πT0
, T0 =

1

2πα′ , ℓs =
√
α′. (423)

In the natural units, we fix (for open strings) the constant of proportionality to be λ = 2α′, so
our final gauge condition is

nµX
µ(τ, σ) = 2α′(n · p)τ. (424)

Exercise 8.3. Argue whe pµ is a non-zero timelike vector.

Proof. We can work in the static gauge and a convenient parametrization. We have

Pτ0 =
T0
c
, P⃗τ =

T0
c2
v⃗⊥. (425)

For a given t, we thus have

pµpµ =

∫ σ1

0

dσ

∫ σ1

0

dσ′Pτµ(t, σ)Pτ
µ(t, σ

′)

= − T 2
0

c4

∫ σ1

0

dσ

∫ σ1

0

dσ′(c2 − v⃗⊥(t, σ) · v⃗⊥(t, σ′))

(426)

We claim that the term under integral is strictly positive inside of the [0, σ1] × [0, σ1] square.
Using the Cauchy-Schwarz inequality, we have

|v⃗⊥(t, σ) · v⃗⊥(t, σ′)| ≤ v⊥(t, σ) · v⊥(t, σ′) (427)

This expression strictly lesser then c2 inside of the square. We see that pµpµ < 0. ■
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8.2 The associated σ parametrization

Now, in our choice of σ parametrization, we have chosen σ so that

1 =
ds

dσ

1√
1− v2

⊥
c2

(428)

In particular, we require that Pτ0 is (a very particular) constant along each string. Since n =
(1, 0⃗) in that case, we are in fact imposing n · Pτ to be constant along each string.

Now, let us consider a general reparametrization τ ′ := τ and σ′ = σ′(τ, σ). Let us examine
how the quantity n · Pτ transforms under such reparametrization. Note that we are assuming
n ·X = λτ , so n · Ẋ = λ and n ·X ′ = 0. By plugging into (226), we thus have

n · Pτ = − 1

2πα′
λT0(X

′)2√
(Ẋ · Ẋ ′)2 − (Ẋ)2(X ′)2

(429)

Now, recall that one has
∂Xµ

∂σ
=
∂σ′

∂σ

∂Xµ

∂σ′ (430)

The denominator gets multiplied by an absolute value of the determinant of the transformation.
But this is |∂σ

′

∂σ |. We conclude that

n · Pτ = |∂σ
′

∂σ
| (n · P ′τ ) (431)

Exercise 8.4. Calculate Pτ
µPτµ in an arbitrary parametrization (τ, σ). Show that in the gauge

(418), Pτ is not spacelike and it is timelike if and only if X ′ is spacelike.

Proof. One uses (226). By simply plugging this into the square gives

Pτ
µPτµ = −(

1

2πα′ )
2(X ′)2. (432)

Now, differentiating (418) with respect to σ gives n·X ′ = 0. Since n is non-zero and not spacelike,
X ′ cannot be timelike. ■

Looking at (429), we see that n · Pτ is non-zero at all points where X ′ is spacelike. Those
are precisely the points where Pτ

µ is timelike.

Exercise 8.5. Show that X ′ cannot be lightlike at string endpoints.

Proof. We know that X ′ is everywhere non-vanishing. Since n ·X ′ = 0, it can only be lightlike,
if it is a non-zero multiple of n, say X ′ = αn. Evaluating the term under the square root of a
Nambu-Goto action then gives

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 = (Ẋ ·X ′)2 = α2(Ẋ · n) = α2λ2 > 0. (433)

But we have argued that this quantity has to vanish at string endpoints. ■
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Let us further assume that this does not happen, that is n · Pτ ̸= 0. We can then consider a
reparametrization

σ′(τ, σ) := κ ·
∫ σ

0

(n · Pτ (τ, σ))dσ, (434)

for some non-zero constant κ. One finds σ′(τ, 0) = 0 and σ′(τ, σ1) = κ · (n · p). We want a new
parameter to be dimensionless. By convention, we choose κ = π(n · p)−1, so that σ′ ∈ [0, π].
Now, since σ′ grows as σ grows, one has

∂σ′

∂σ
=
π(n · Pτ )

n · p
> 0. (435)

By plugging into (431), we thus find

n · Pτ =
π(n · Pτ )

n · p
· (n · P ′τ ′

). (436)

By canceling n · Pτ on both sides and rearranging the constants, and finally dropping primes,
we have found ourselves a parametrization (τ, σ) satisfying the constraint

n · Pτ =
n · p
π

. (437)

Let us examine consequences of this choice. Multiplying the equations of motion by n, we get

∂

∂τ
(n · Pτ ) +

∂

∂σ
(n · Pσ) = 0. (438)

The first term vanishes and we conclude that ∂σ(n · Pσ) = 0. Since for open strings, we have
(n · Pσ)(t, σ∗) = 0, this ensures that

(n · Pσ)(τ, σ) = 0, (439)

for all τ and σ ∈ [0, π].

The discussion for closed strings is a bit more involved (there is no free endpoint condition).
First, for convenience, the gauge fix for the closed strings is slightly modified to

n ·X(τ, σ) = α′(n · p)τ, (440)

that is without a factor 2. The consequent σ parametrization is then defined to satisfy the
constraint

n · Pτ =
n · p
2π

, (441)

so that its range for closed strings is σ ∈ [0, 2π]. In (434) defined a new parameter σ to have value
zero wherever the original parameter did. As n ·Pτ is constant in both (τ, σ), we are free to shift
the σ = 0 line wherever we want to. More precisely, we can consider a further reparametrization

τ ′ := τ, σ′ := σ − f(τ), (442)

where f(τ) is some arbitrary function of τ . By looking at (431), this does not change n · Pτ and
thus the gauge condition (434), neither the condition (440). This is defined so that the σ′ = 0
line corresponds to the curve (τ, f(τ)) in the (τ, σ) parametrization.

Our guiding principle is that the quantity n · P ′σ′
must vanish along σ′ = 0 line, that is

(n · P ′σ′
)(τ ′, 0) = 0, (443)
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for all τ ′. Recall that the (τ, σ) satisfying (440), one can plug into (227) to find

n · Pσ = −n · p
2π

Ẋ ·X ′√
(Ẋ · Ẋ ′)2 − (Ẋ)2(X ′)2

(444)

The derivatives transform as

∂Xµ

∂τ
=
∂Xµ

∂τ ′
− f ′

∂Xµ

∂σ′ ,
∂Xµ

∂σ
=
∂Xµ

∂σ′ . (445)

Since the Jacobian of the transformation (442) is just 1, one finds the transformation rule

n · Pσ = n · P ′σ′
+ f ′

n · p
2π

(X ′)2√
(Ẋ · Ẋ ′)2 − (Ẋ)2(X ′)2

. (446)

In other words, we have just found that

n · P ′σ′
= −n · p

2π

Ẋ ·X ′ − f ′(X ′)2√
(Ẋ · Ẋ ′)2 − (Ẋ)2(X ′)2

(447)

By evaluating both sides at (t, f(τ)), our condition leads to the ordinary differential equation

f ′(τ) = (
Ẋ ·X ′

(X ′)2
)(τ, f(τ)), (448)

for an unknown function f(τ). Note that the initial condition can be set arbitrarily. This can
be always solved on a compact interval [τi, τf ]. We can thus drop the primes and declare that in
our gauge, one has (n · Pσ)(τ, 0) = 0 for all τ . Since ∂σ(n · Pσ) = 0 by equations of motion, we
find that n · Pσ = 0 also for a closed string.

Let us summarize our choice of gauge:

n ·X(τ, σ) = βα′(n · p)τ, (449)

2π

β
n · Pτ = n · p, (450)

n · Pσ = 0, (451)

where β = 2 for open strings and β = 1 for closed strings, and σ ∈ [0, (3− β)π].

8.3 Constraints and wave equations

Let us examine the consequences of (449-451). By differentiating (449) with respect to τ and
plugging the result for the expression for n · Pσ obtained from (227), the condition (451) gives

Ẋ ·X ′ = 0. (452)

Using this in (226) and plugging this into (450) leads to together with (449) gives

1 =
(X ′)2√
−X2Ẋ2

(453)
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Using the assumption (X ′)2 > 0, this can be squared and rearranged to

(Ẋ)2 + (X ′)2 = 0. (454)

These two constraints can be added and subtracted to obtain a convenient form

(Ẋ ±X ′)2 = 0. (455)

Exercise 8.6. Check that for n = (1, 0⃗), we obtain the static gauge situation.

Proof. The only difference should be in the constants. First, (449) gives

X0(τ, σ) = (βα′p0)τ. (456)

Note that in natural units, one has [α′] = L2, whereas [p0] = M = L−1, so τ is indeed dimen-
sionless. On thus has

Ẋ = (βα′p0,
˙⃗
X), X ′ = (0, X⃗ ′). (457)

The condition (452) thus gives simply
˙⃗
X · X⃗ ′ = 0, and (454) reads

(
˙⃗
X)2 + (X⃗ ′)2 = β2α′2(p0)2. (458)

■

Using (452) and (454) significantly simplifies the expressions for the momenta. Indeed, e.g.
for Pτµ, one finds

Pτ
µ = − 1

2πα′
(Ẋ ·X ′)X ′

µ − (X ′)2Ẋµ√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

=
1

2πα′ Ẋµ. (459)

Similarly, one gets

Pσ
µ = − 1

2πα′X
′
µ. (460)

Observe that Pτ
µ and Pσ

µ indeed satisfy (450) and (451) thanks to (449). Finally, plugging into
the equations of motion, one obtains just the wave equations!

Ẍµ −Xµ′′ = 0. (461)

8.4 Wave equation and mode expansions

Let us now solve the equation of motion (461) satisfying the constraint (455) together with the
free endpoint boundary conditions. The most general solution to (461) has the form

Xµ(τ, σ) =
1

2
(fµ(τ + σ) + gµ(τ − σ)). (462)

The free endpoint boundary condition turns into a Neumann boundary condition Xµ(τ, σ∗) = 0.
At σα = 0, this gives

f ′µ(τ)− g′µ(τ) = 0. (463)

Hence fµ and gµ differ only by a constant, which can be absorbed into a definition of fµ, so

Xµ(τ, σ) =
1

2
(fµ(τ + σ) + fµ(τ − σ)). (464)
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Plugging into the boundary condition at σ∗ = π then gives

f ′µ(τ + π)− f ′µ(τ − π) = 0, (465)

that is f ′µ is periodic with period 2π. We can thus expand it using Fourier series as

f ′µ(u) = fµ1 +

∞∑
n=1

(
aµn cos(nu) + bµn sin(nu)

)
. (466)

We can integrate this (and absorb the integration constants into new coefficients) to find

fµ(u) = fµ0 + fµ1 u+

∞∑
n=1

(
Aµ

n cos(nu) +Bµ
n sin(nu)

)
. (467)

Plugging this into the formula for Xµ and using some formulas for sums of (co)sines, this gives

Xµ(τ, σ) = fµ0 + fµ1 τ +

∞∑
n=1

(
Aµ

n cos(nτ) +Bµ
n sin(nτ)

)
cos(nσ). (468)

Now, the idea is to replace pairs of real constants Aµ
n and Bµ

n with a complex constants with
better physical interpretation. One has

Aµ
n cos(nτ) +Bµ

n sin(nτ) = − i

2

(
(Bµ

n + iAµ
n)e

inτ − (Bµ
n − iAµ

n)e
−inτ

)
= − i

√
2α′
√
n

(
aµ∗n einτ − aµne

−inτ
)
.

(469)

Note that [Aµ
n] = [Bµ

n ] = L, so we have chosen a normalization by a constant of dimension
[
√
α′] = L, so that new coefficients are dimension-less. Next, note that

Pτµ =
1

2πα′ f
µ
1 +

∞∑
n=1

(· · · ) cos(nσ). (470)

Integrating this over [0, π], this gives us the overall momentum of a string. Since
∫ π

0
cos(nσ) = 0

for every n ∈ N, one has

pµ =

∫ π

0

1

2πα′ f
µ
1 =

1

2α′ f
µ
1 ⇒ fµ1 = 2α′pµ. (471)

By writing fµ0 = xµ0 , we can thus write

Xµ(τ, σ) = xµ0 + 2α′pµτ − i
√
2α′

∞∑
n=1

(aµ∗n einτ − aµne
−inτ )

cos(nσ)√
n

. (472)

Finally, this can further rewritten as follows. One introduces new complex constants {αn}n∈Z as

αµ
0 :=

√
2α′pµ, αµ

n := aµn
√
n, αµ

−n = aµ∗n
√
n, for n ≥ 1. (473)

This allows us to write the above expression as

Xµ(τ, σ) = xµ0 +
√
2α′αµ

0 τ + i
√
2α′

∑
n ̸=0

1

n
αµ
ne

−inτ cos(nσ) (474)
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Why is this parametrization convenient? Because partial derivatives od Xµ look particularly
nice! One finds

Ẋµ(τ, σ) =
√
2α′

∑
n∈Z

αµ
ne

−inτ cos(nσ), (475)

X ′µ(τ, σ) = −i
√
2α′

∑
n∈Z

αµ
ne

−inτ sin(nσ). (476)

In particular, one finds

Ẋµ ±X ′µ =
√
2α′

∑
n∈Z

αµ
ne

−in(τ±σ). (477)

Remark 8.7. Note that the solution using mode expansions has its drawbacks (usually ignored).
First, X = X(τ, σ) may happen to be not injective. Moreover, it can happen that in isolated
points, the tangent vector X ′ vanishes, i.e. the string has cusps.

8.5 Light-cone solution of equations of motion

In this subsection, we will finally fix our choice of the direction vector n. Set

nµ = (
1√
2
,
1√
2
, 0, . . . , 0). (478)

With this choice, we thus have

n ·X =
1√
2
(X0 +X1) ≡ X+, n · p = 1√

2
(p0 + p1) ≡ p+. (479)

The gauge conditions (449 - 451) can be thus written as

X+(τ, σ) = βα′p+τ, Pτ+ =
β

2π
p+, Pσ+ = 0. (480)

This is what is usually called the light-cone gauge. Let us write XI = (X2, . . . , Xd), that is
X = (X+, X−, XI) in light-cone coordinates. The string coordinates XI are called transverse.
Note that p+ = n · p > 0 for a physical string. The crucial observation is that the constraint
(455) can be now solved in a very easy way. Indeed, one has

0 = (Ẋ ±X ′)2 = −2(Ẋ+ ±X ′+)(Ẋ− ±X ′−) + (ẊI ±X ′I)2, (481)

where we write (aI)2 :=
∑d

I=2 a
IaI . But one has Ẋ+ ±X ′+ = βα′p+ ̸= 0. Hence

Ẋ− ±X ′− =
1

βα′
1

2p+
(ẊI ±XI′

)2. (482)

This means that Ẋ− and X ′− can be fully expressed purely in terms of the transversal string
coordinates. This is the reason why the light-cone gauge is so useful. More precisely, the
transversal string coordinates fully determine a 1-form

dX− = Ẋ−dτ +X ′−dσ. (483)

To find X− we need to fix its value X−(p) at some point of the worldsheet. For any other point
q, one connects it to p by a curve γ and defines X−(q) := X−(p) +

∫
γ
dX−. This is always

possible for open strings. For closed strings, there is an obstruction (to be discussed later).
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Let us try to fully solve the open string case using the mode expansion above. Since X±

and XI satisfy the wave equations and free endpoint conditions, we can use completely the same
notation. For the + coordinate, we find

x+0 = 0, α+
0 =

√
2α′p+, α+

n = 0 for all n ̸= 0. (484)

Moreover, one has

Ẋ− ±X ′− =
√
2α′

∑
n∈Z

α−
n e

−in(τ±σ), (485)

ẊI ±X ′I =
√
2α′

∑
n∈Z

αI
ne

−in(τ±σ). (486)

Plugging this into (482) gives

√
2α′

∑
n∈Z

α−
n e

−in(τ±σ) =
1

2α′
1

2p+
2α′

∑
p,q∈Z

αI
pα

I
qe

−i(p+q)(τ±σ)

=
1

2p+

∑
n∈Z

(
∑
p∈Z

αI
n−pα

I
p)e

−in(τ±σ).

(487)

By comparing the coefficients, we find that

√
2α′α−

n =
1

2p+

∑
p∈Z

αI
n−pα

I
p. (488)

The combination of the transverse oscillators on the right-hand side has its own name, called the
transverse Virasoso mode L⊥

n . One has

L⊥
n :=

1

2

∑
p∈Z

αI
n−pα

I
p ⇒

√
2α′α−

n =
L⊥
n

p+
. (489)

Note that (L⊥
n )

∗ = L⊥
−n. In particular, for n = 0, this gives 2p+p− = 1

α′L
⊥
0 . It follows that X

−

can be expressed using the transverse Virasoro modes as

X−(τ, σ) = x−0 +
1

p+
L⊥
0 τ +

i

p+

∑
n ̸=0

1

n
L⊥
n e

−inτ cos(nσ). (490)

The mass of the string is defined as M2 = −p2 = 2p+p− − pIpI . Using the above expression for
2p+p−, one finds the expression

2p+p− =
1

α′L
⊥
0 =

1

2α′

∑
n∈Z

αI
−nα

I
n =

1

2α′α
I
0α

I
0 +

1

α′

∞∑
n=1

naI∗n a
I
n = pIpI +

1

α′

∞∑
n=1

naI∗n a
I
n. (491)

We conclude that

M2 =
1

α′

∞∑
n=1

naI∗n a
I
n. (492)

We observe that M2 ≥ 0, which is in accordance with our expectations. Moreover, one has
M = 0, iff aIn = 0 for all n ∈ N and I ∈ {2, . . . , d}. What is the string then? It is easy to see that
it collapses to a point massless particle (hence moving with the speed of light). To conclude, the
motion of the open string is fully determined by the following constants:

x−0 , p+, xI0 αI
n for all I ∈ {2, . . . , d} and n ∈ N0. (493)

Note that for negative n < 0, one has αI
n = αI∗

−n.
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Exercise 8.8. Consistency checks on the solution for X−.

Suppose Ẋ− and X ′− are defined by the formula (482). It is not clear that this gives a
solution to the wave equation with appropriate boundary conditions.

(i) Check that the 1-form dX− defined by (483) is exact, if XI satisfies the wave equation for
every I ∈ {2, . . . , d}.

(ii) Show that X− satisfies the wave equation, if XI does so for every I ∈ {2, . . . , d}.

(iii) Suppose that for each I ∈ {2, . . . , n}, XI satisfies either Dirichlet or Neumann boundary
condition at either endpoint. Then X− satisfies the Neumann boundary condition.

Proof. It follows from (482) that

Ẋ− = k
(
(ẊI +X ′I)2 + (ẊI −X ′I)2

)
= 2k

(
((ẊI)2 + (X ′I)2)

)
, (494)

X ′− = k
(
(ẊI +X ′I)2 + (ẊI −X ′I)2

)
= 2k

(
2ẊIX ′I), (495)

where k > 0 is some constant. It is not relevant for this exercise, so we write simply

Ẋ− = (ẊI)2 + (X ′I)2, X ′− = 2ẊIX ′I (496)

Consequently, we find

∂σẊ
− = 2ẊI(∂σẊ

I) + 2X ′I(∂σX
′I), (497)

∂τX
′− = 2(∂τ Ẋ

I)X ′I + 2ẊI(∂τX
′I). (498)

Subtracting both sides thus gives

∂σX
′− − ∂τX

′− = 2ẊI(∂σẊ
I − ∂τX

′I) + 2X ′I(∂σX
′I − ∂τ Ẋ

I). (499)

Now, the term proportional to ẊI vanishes since XI have continous partial derivatives. The
term proportional to X ′I vanishes if XI satisfies the wave equation. This proves (i). Also

∂τ Ẋ
− = 2ẊI(∂τ Ẋ

I) + 2X ′I(∂τX
′I), (500)

∂σX
′− = 2(∂σẊ

I)X ′I + 2ẊI(∂σX
′I).. (501)

Subtracting both sides thus gives

∂τ Ẋ
− − ∂σX

′− = 2ẊI(∂τ Ẋ
I − ∂σX

′I) + 2X ′I(∂τX
′I − ∂σẊ

I). (502)

The term proportional to ẊI is precisely the wave equation for XI , the term proportional to
X ′I vanishes since each XI has continuous partial derivatives. This proves (ii).

Finally, we see that X ′−(τ, σ∗) ∝ ẊI(τ, σ∗)X
′I(τ, σ∗). This vanishes whenever for each I,

one has either a Neumann boundary condition X ′I(τ, σ∗) = 0 or a Dirichlet boundary condition
ẊI(τ, σ∗) = 0. This proves (iii). ■

Exercise 8.9. Consider the open string described by x−0 = xI0 := 0 and α
(2)
1 := a, α

(3)
1 = ia,

where a > 0. Other coefficients vanish.

(i) What is the mass M of this string;
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(ii) Write down X2(τ, σ) and X3(τ, σ). What is the length of the string?

(iii) Calculate L⊥
n for all n ∈ N0. Use this to write X−(τ, σ);

(iv) Choose p+ to ensure that the string moves in (x2, x3) plane, that is X1(τ, σ) = 0; Find the
relation between t and τ ;

(v) Find the relation between energy and length.

Proof. One has M2 = 1
α′

∑∞
n=1 na

I∗
n a

I
n = 1

α′ (a
2 + a2) = 2a2

α′ . Next, one has

X2(τ, σ) = i
√
2α′(α

(2)
1 e−iτ − α

(2)∗
−1 e

iτ ) cos(σ) = −i
√
2α′a(eiτ − e−iτ ) cos(σ)

=
√
2α′2a sin(τ) cos(σ),

X3(τ, σ) =
√
2α′2a sin(τ) cos(σ).

(503)

This is a rigidly rotating string in (x2, x3) plane of length ℓ =
√
2α′4a. Let us calculate the

transverse virasoro modes. One has

L⊥
n =

1

2

∑
p∈Z

αI
n−pα

I
p =

1

2
(αI

n−1α
I
1 + αI

n+1α
I
−1). (504)

The only non-zero situation can happen for n = 0 and n = ±2, and one finds

L⊥
0 = αI

−1α
I
1 = |αI

1|2 = 2a2, (505)

L⊥
2 =

1

2
αI
1α

I
1 =

1

2
(a2 − a2) = 0. (506)

Plugging into (490) thus gives

X−(τ, σ) =
1

p+
L⊥
0 τ =

2a2

p+
τ. (507)

Recall that X+(τ, σ) = 2α′p+τ . One gets

X1(τ, σ) =
1√
2
(X+(τ, σ)−X−(τ, σ)) =

1√
2
(2α′p+ − 2a2

p+
)τ. (508)

The requirement X1(τ, σ) = 0 thus uniquely determines p+ =
√
a2/α′. Consequently, one has

X0(τ, σ) =
4√
2

√
α′aτ. (509)

The relation to the coordinate time t (in natural units) is therefore

t =
4√
2

√
α′aτ. (510)

Finally, one has 2p+p− = 1
α′L

⊥
0 = 2a2

α′ , so

p− =
1

2p+
2a2

α′ =
1

2

√
α′

a

2a2

α′ =
a√
α′
. (511)
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We can use this to calculate the energy of the string, namely

E = p0 =
1√
2
(p+ + p−) =

√
2a√
α′

(512)

We find that a = ℓ
4
√
2α′ and thus E = ℓ

4α′ = 2πT0
ℓ
4 = π

2T0ℓ. This precisely the relation (339). ■

Exercise 8.10. Study the solution for the open string with x−0 = xI0 = 0 and αI
n = 0 except for

α
(2)
1 = α

(2)∗
−1 = a. (513)

Fix constants so that strings moves in (x1, x2) having a zero momentum in this plane.

(i) Find explicit expressions for X0, X1 and X2;

(ii) Confirm that τ flows as t flows.

(iii) At τ = 0 the string has a zero length. Study a motion for τ ≪ 1. Calculate τ = τ(t, σ) and
find X1(t, σ) and X2(t, σ).

Proof. The only non-zero Virasoro operators are

L⊥
0 = αI

−1α
I
1 = a2, (514)

L⊥
2 =

1

2
αI
1α

I
1 =

1

2
a2. (515)

Plugging this into the formula for X−, one gets

X+(τ, σ) = 2α′p+τ, (516)

X−(τ, σ) =
1

p+
L⊥
0 +

1

p+
L⊥
2 sin(2τ) cos(2σ). (517)

The momentum in the − direction is

p− =
1

2p+α′L
⊥
0 =

a2

2p+α′ . (518)

Since p2 ∝ α
(2)
0 = 0, we need 0 = p1 ∝ (p+ − p−). This gives the condition

p+ =
a√
2α′

. (519)

By plugging in into the above formulas give

1√
2α′a

X+(τ, σ) = τ, (520)

1√
2α′a

X−(τ, σ) = τ +
1

2
sin(2τ) cos(2σ) (521)

Combining those into X0 and X1, one gets the final list

1√
2α′a

X0(τ, σ) =
√
2(τ +

1

4
sin(2τ) cos(2σ)), (522)

1√
2α′a

X1(τ, σ) = − 1

2
√
2
sin(2τ) cos(2σ), (523)

1√
2α′a

X2(τ, σ) = 2 sin(τ) cos(σ). (524)
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This finishes the part (i). We will further ignore the constants. One has

∂X0

∂τ
=

√
2(1 +

1

2
sin(2τ) cos(2σ)) > 0, (525)

This shows that the “time flows” as τ flows, that is part (ii). Now, τ = 0 corresponds to t = 0
string. This string has zero length, since X1(0, σ) = X2(0, σ) = 0. Now, if τ ≪ 1, we have

X0(τ, σ) ≈
√
2(τ +

1

4
2τ cos(2σ)) =

√
2(1 +

1

2
cos(2σ))τ. (526)

We can now introduce a new parameter t, so that X0(t, σ) = t. This amounts to solving the
equation

t =
√
2(1 +

1

2
cos(2σ))τ, (527)

which can be done to get the formula

τ =

√
2

2 + cos(2σ)
t. (528)

For each t≪ 1, we thus get a parametrized string:

X1(t, σ) = − cos(2σ)

2 + cos(2σ)
t, (529)

X2(t, σ) =
2
√
2 cos(σ)

2 + cos(2σ)
t. (530)

This is the following constant shape expanding linearly in time:

-0.10 -0.05 0.05 0.10
X^1

-0.10

-0.05

0.05

0.10
X^2

■
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9 Light-cone fields and particles

Let us now briefly recall some classical fields appearing in physics. We will also discuss their
quantized version. This is to later identify those as states of quantum strings.

9.1 Real scalar field

Scalar field is given by a single real function ϕ = ϕ(x0, . . . , xD). Its action is given by

S[ϕ] =

∫
dDx(−1

2
∂µϕ∂

µϕ− 1

2
m2ϕ2), (531)

where m > 0 is its rest mass and ∂µϕ ≡ ∂ϕ
∂xµ . The corresponding Lagrange-Euler equation (for

variations vanishing at infinity) is the Klein-Gordon equation:

∂µ(∂µϕ)−m2ϕ = 0. (532)

The canonical momentum associated to ϕ is

Π :=
∂L

∂(∂0ϕ)
= ∂0ϕ, (533)

and the corresponding Hamiltonian is then obtained as

H =

∫
ddx(Π∂0ϕ− L) =

∫
ddx

1

2
(Π2 + ∥∇ϕ∥2 +m2ϕ2). (534)

One usually solves the Klein-Gordon equation by performing a D-dimensional continuous Fourier
transformation. One defines a function ϕ̂(p) by the formula

ϕ(x) =

∫
dDp

1

(2π)D
eip·xϕ̂(p). (535)

By plugging this into the Klein-Gordon equation (532), one obtains

−
∫

dDp
1

(2π)D
(p2 +m2)ϕ̂(p) = 0, (536)

which is equivalent to the equation

(p2 +m2)ϕ̂(p) = 0. (537)

We see that on the mass-shell p2+m2 = 0, the value ϕ̂(p) can be arbitrary, and it has to vanish
elsewhere. The mass shell is a hyperboloid (p⃗)2 − (p0)2 = m2. Its two components are described
by p0 = ±

√
(p⃗)2 +m2 ≡ ±Ep. We can thus write

ϕ̂(p) = (2π)Da(p⃗) · δ(p0 − Ep) + (2π)Db(p⃗) · δ(p0 + Ep). (538)

Now note that ϕ(x) has to be a real function. Plugging this into (535), we obtin the condition

ϕ̂∗(p) = ϕ̂(−p). (539)

70



Plugging the above expression, we find that this forces b(p⃗) = a∗(−p⃗). We can plug this back
into (535), finding

ϕ(x) =

∫
dDp

(
a(p⃗)δ(p0 − Ep) + a∗(−p⃗)δ(p0 + Ep)

)
eip·x

=

∫
ddp⃗

(
a(p⃗)e−iEpt + a∗(−p⃗)eiEpt)eip⃗·x⃗

)
=

∫
ddp⃗

(
a(p⃗)e−iEpt+p⃗·x⃗ + a∗(p⃗)eiEpt−ip⃗·x⃗).

(540)

This is a standard solution as a superposition of plane-waves. Note that in the light-cone gauge,
the procedure is similar. Write x = (x+, x−, x⃗T ) and p = (p+, p−, p⃗T ). This time, one considers
the Fourier transform

ϕ(x+, x−, x⃗T ) =

∫
dp+
(2π)

∫
dd−1p⃗T
(2π)d−1

e−ix−p++ix⃗T ·p⃗T ϕ̂(x+, p+, p⃗T ). (541)

The Klein-Gordon equation takes the form

−2∂+(∂−ϕ) + ∆Tϕ−m2ϕ = 0, (542)

where ∆T := ∂I∂I is the “transverse” Laplacian. Plugging the above expansion gives

2ip+∂+ϕ̂− ((p⃗T )
2 +m2)ϕ̂ = 0. (543)

We claim that this has a non-trivial solutions only for p+ ̸= 0. Indeed, suppose that p+ = 0.
But then p2 = −2p+p− + (p⃗T )

2 = (p⃗T )
2 ≥ 0. But for p+ = 0, the equation would give

(p⃗T )
2 +m2)ϕ̂ = 0 and thus ϕ̂ = 0. To get non-trivial solutions, we can thus divide both sides of

(543) by 2p+ to get the “Schrödinger type equation”:

i∂+ϕ̂ =
1

2p+
((p⃗T )

2 +m2))ϕ̂ (544)

Note that the right-hand side is precisely the solution for p− of the mass-shell condition. We will
make use of this equation later.

9.2 Quantum scalar fields and particle states

Suppose that our classical field is restricted to a finite d-dimensional volume V , e.g. a box with
sides L1, . . . , Ld. In this case V = L1 · · ·Ld. Let us consider a plane-wave solution as above, just
with a different normalization:

ϕp(t, x⃗) =
1√
V

1√
2Ep

(ape
−iEpt+ip⃗·x⃗ + a∗pe

iEpt−ip⃗·x⃗), (545)

One usually requires the field ϕp to be periodic in each its variable with period Li. This can be
ensured by by requiring

piLi = 2πni, (546)

for each i ∈ {1, . . . , d}, where ni ∈ Z. We thus assume that the momenta pi become “quantized”.
Let us evaluate the Klein-Gordon action (531) for ϕd. Let us move chose the spatial coordinates
so that the the box correspond to xi ∈ [0, Li]. Recall that

L =
1

2
(∂0ϕ)

2 − 1

2
(∂iϕ)(∂iϕ)−

1

2
m2ϕ2. (547)
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By plugging in (545), observe that no term which contains e±2ip⃗·x⃗ survives the integration. This
is because ∫ L1

0

dx1 · · ·
∫ Ld

0

dxde±2ip⃗·x⃗ = 0. (548)

By plugging into the action and Hamiltonian (534), we find

S[ϕp] = 0, (549)

H[ϕp] = Epa
∗
pap. (550)

Exercise 9.1. Let us consider a Lagrangian density L = L(ϕa, ∂αϕa), and let us consider an
infinitesimal transformation

ϕ′a = ϕa + ϵβ∂βϕ
a, (551)

that is δϕa = ϵβ∂βϕ
a. Show that

δL = ϵβ∂α(δ
α
βL). (552)

Show that in this case, there is a conserved current

Tα
β =

∂L
∂(∂αϕa)

∂βϕ
a − δαβL. (553)

This quantity is called the energy-momentum tensor.

The momentum density P⃗ of the Klein-Gordon field is obtained from components T i
0, i ∈

{1, . . . , d}, and the conserved momentum P⃗ is thus given by

Pi =

∫
ddx

∂L
∂(∂iϕ)

∂0ϕ = −
∫

ddx(∂0ϕ)(∂iϕ). (554)

Plugging in (545) gives

P⃗ = p⃗ a∗pap. (555)

These observations suggest how to “quantize” things. We will declare ap to be the annihilation
operator and a∗p to be the creation operator a†p. We impose the canonical commutation relations

[ap, a
⊥
p ] = 1, (556)

with other combinations vanishing. In full generality, the full quantum field ϕ(x) is a sum over
all spatial momenta:

ϕ(x) =
1√
V

∑
p⃗

1√
2Ep

(
ape

−iEpt+ip⃗·x⃗ + a†pe
iEpt−ip⃗·x⃗), (557)

where one imposes the (only non-vanishing) commutation relations

[ap, a
⊥
q ] = δp,q. (558)

The quantum version of the Hamiltonian H and P⃗ take the form

H =
∑
p⃗

Epa
†
pap, P⃗ =

∑
p⃗

p⃗ a†pap. (559)
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One assumes the existence of a vacuum state |Ω⟩, having the property that ap|Ω⟩ = 0 for all

momenta p. It follows that H|Ω⟩ = 0 and P⃗ |Ω⟩ = 0.

One defines the k-particle states by acting by k creation operators, that is

a†p1
· · · a†pk

|Ω⟩. (560)

It is easy to see that (560) are eigenvectors of H and P⃗ with eigenvalues Ep1 + · · · + Epk
and

p⃗1 + · · ·+ p⃗k, respectively.

Exercise 9.2. Solve 544 and plug it into (541) to find a plane-wave expansion in the light-cone
gauge. How do you quantize such a field?

Proof. The solution of this equation is simple, just

ϕ̂(x+, p+, p⃗T ) = ap+,p⃗T
exp(− i

2p+
((p⃗T )

2 +m2)x+), (561)

for an arbitrary complex number ap+,p⃗T
. Since p+ ̸= 0, it is convenient to write the solution

using two independent constants which depend only on the absolute value |p+|, that is write

ϕ̂(x+, p+, p⃗T ) = (2π)dϑ(p+) · b|p+|,p⃗T
exp(− i

2p+
((p⃗T )

2 +m2)x+)

+ (2π)dϑ(−p+) · b′|p+|,p⃗T
exp(− i

2p+
((p⃗T )

2 +m2)x+),

(562)

where ϑ(x) is the Heaviside function. The reason why we use this strange parametrization is the
following. We want ϕ(x+, x−, x⃗T ) to be real. This implies

ϕ̂(x+, p+, p⃗T )
∗ = ϕ̂(x+,−p+,−p⃗T ). (563)

Plugging the above expression into this condition implies b′|p+|,p⃗T
= b∗|p+|,−p⃗T

, that is

ϕ̂(x+, p+, p⃗T ) = (2π)dϑ(p+) · b|p+|,p⃗T
exp(− i

2p+
((p⃗T )

2 +m2)x+)

+ (2π)dϑ(−p+) · b∗|p+|,−p⃗T
exp(− i

2p+
((p⃗T )

2 +m2)x+),

(564)

Plugging this into the expansion (541) gives the expression

ϕ(x) =

∫
dp+

∫
dd−1p⃗T

(
ϑ(p+)b|p+|,p⃗T

e−i|p−|x+−ix−p++x⃗T ·p⃗T

+ ϑ(−p+)b∗|p+|,−p⃗T
ei|p

−|x+−ix1p++x⃗T ·p⃗T
)
,

(565)

where |p−| := 1
2|p+| ((p⃗T )

2 +m2). Finally, we can change the integration variables from (p+, p⃗T )

to (−p+,−p⃗T ) in the second term, change the range of the p+ integral to get

ϕ(x) =

∫ ∞

0

dp+

∫
dd−1p⃗T

(
bp+,p⃗T

eip·x + b∗p+,p⃗T
e−ip·x). (566)

Note that p · x = −p−x+ − p+x− + p⃗T x⃗T , where p
− = 1

2p+ ((p⃗T )
2 +m2). ■
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Lagrangian of the action (531) in light-cone coordinates reads

L = ∂+ϕ∂−ϕ− 1

2
(∇Tϕ)2 − 1

2
m2ϕ2. (567)

Now, x+ plays the role of the light-cone time, so the corresponding conjugate momentum Π+

takes the form

Π+ =
∂L

∂(∂+ϕ)
= ∂−ϕ. (568)

But this means that the light-cone Hamiltonian density is just

Hlc = Π+∂+ϕ− L =
1

2
(∇Tϕ)2 +

1

2
m2ϕ2. (569)

The light-cone Hamiltonian is then

H lc =

∫
dx−

∫
dx⃗T Hlc. (570)

It follows that the convenient parametrization of the single plane-wave solution is now

ϕp(x) =
1√
V

1√
2p+

(
bp+,p⃗T

eip·x + b∗p+,p⃗T
e−ip·x). (571)

We again assume the integration only over a finite box in (x−, x⃗T ) space of volume V and

quantizing the momenta p+ and p⃗T , so that the exponentials eip
+x− and eip

kxk

are killed in the
integration process. One finds

H lc =
1

2p+
((p⃗T )

2 +m2)b∗p+,p⃗T
bp+,p⃗T

(572)

But this is fully in accordance with our expectation that the light-cone energy should be p−!
The other conserved momenta are given by

P+ =

∫
dx−

∫
dx⃗T (∂−ϕ)

2, P I = −
∫

dx−

∫
dx⃗T∂Iϕ∂iϕ, (573)

and one finds that P+[ϕp] = p+b∗p+,p⃗T
bp+,p⃗T

, P I [ϕp] = pIb∗p+,p⃗T
bp+,p⃗T

. This again suggests

to define creation and annihilation operators b†p+,p⃗T
and bp+,p⃗T

parametrized by p+ > 0 and

p⃗T ∈ Rd−1. We impose the commutation relations

[bp+,p⃗T
, b†q+,q⃗T

] = δp+,q+δp⃗T ,q⃗T . (574)

9.3 Maxwell fields and photon states

Recall that the classical Maxwell field is given by Lorentz covector Aµ = Aµ(x). In vacuum, it
is subject to the Maxwell equations in the form

□Aµ − ∂µ(∂νAν) = 0. (575)

These equations are invariant under the gauge transformations A′
µ = Aµ+∂µϵ, where ϵ = ϵ(x) is

an arbitrary function. We may try to solve the Maxwell equations using the Fourier transform:

Aµ(x) =

∫
dDp

(2π)D
eip·xÂµ(p). (576)
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Plugging this into (575) gives the equation for Âµ(p) in the form

p2Âµ(p)− pµ(p · Â(p)) = 0. (577)

One can Fourier-transform also the gauge parameter, that is

ϵ(x) =

∫
dDp

(2π)D
eip·xϵ̂(p) (578)

It follows that in the momentum representation, the gauge transformation takes the form

Â′
µ(p) = Aµ(p) + ipµϵ̂(p). (579)

Now, since both Aµ(x) and ϵ(x) must be real functions, ϵ̂(p) must satisfy the condition

Â∗
µ(p) = Âµ(−p), ϵ̂∗(p) = ϵ̂(−p). (580)

We can look on the gauge transformation of the + light-cone component of the field Â(p), finding

Â′+(p) = Â+(p) + ip+ϵ̂(p). (581)

Assuming the p+ > 0 (we always do this in light-cone gauge situations), one can choose ϵ̂(p) =
i
p+ Â

+(p) to make the + component of Â(p) to vanish. This is called the light-cone gauge:

Â+
µ (p) = 0. (582)

Looking at the + component of (577) gives

0 = p+Â+(p)− p+(p · Â) = p+(p · Â(p)), (583)

that is p · Â(p) = 0. Expanding this condition gives

−p+Â−(p)− p−Â+(p) + pIÂI(p) = 0. (584)

This allows us to express Â−(p) as

Â−(p) =
1

p+
(pIAI). (585)

We can now use p · Â(p) = 0 in (577) to get

p2Âµ(p) = 0, (586)

for all µ ∈ {+,−, I}. If we impose it for µ = I, the − component already follows from (585).
For each I ∈ {2, . . . , d}, one thus finds the equation

p2ÂI(p) = 0. (587)

For p2 ̸= 0, one necessarily has ÂI(p) = 0. For p2 = 0, there is no constraint on ÂI(p). Using the
similar procedure as in Exercise 9.2, one can obtain annihilation and creation operators aIp+,p⃗T

and aI†p+,p⃗T
, where p+ > 0. The one-photon states are then given by

aI†p+,p⃗T
|Ω⟩. (588)

I labels polarizations. For each point on the physical (p+ > 0) part of mass-shell described by
(p+, p⃗T ), we have (D − 2 linearly independent one-photon states. The general one-photon state
of the space-time momentum p = (p+, p⃗T ) is given by

d∑
I=2

ξIa
I†
p+,p⃗T

|Ω⟩. (589)
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Exercise 9.3. Show that in arbitrary gauge, every solution of (577) for p2 ̸= 0 is a pure gauge,
hence defines a zero electromagnetic field.

Proof. Recall that Aµ is called a pure gauge, if it is gauge-equivalent to the zero field. In
other words, one has Aµ(x) = ∂µϵ(x) for some function ϵ. In the momentum representation, this
translates as

Âµ(p) = ipµϵ̂(p). (590)

Now, suppose that Âµ(p) solves (577) for p
2 ̸= 0. Then we can express it as

Âµ(p) =
pµ(p · Â(p)

p2
= ipµ

−i(p · Â(p))
p2

. (591)

Note that in momentum representation, for pure gauge one has

F̂µν(p) = ipµÂν(p)− ipνÂµ(p) = ipµ(ipν ˆϵ(p))− ipν(ipµϵ̂(p)) = 0. (592)

This shows that for p2 ̸= 0, there is no contribution to the electromagnetic field. ■

9.4 Gravitational fields and graviton fields

Now, recall that we have considered a linearized gravity action for a metric fluctuation h =
hµν(x). The corresponding equation of motion was given by (84), that is

□hµν − ∂α(∂
µhνα + ∂νhµα) + ∂µ∂νh = 0, (593)

where h = ηµνhµν . We have also claimed that these equations are invariant under the gauge
transformation

h′µν(x) = hµν(x) + δ0h
µν(x), δ0h

µν(x) = ∂µϵν(x) + ∂νϵµ(x). (594)

We will now examine those in the momentum representation, that is write

hµν(x) =

∫
dDp

(2π)D
eip·xĥµν(p). (595)

Plugging this into (593) gives

Sµν(p) := p2ĥµν(p)− pα(p
µĥνα(p) + pν ĥµα(p)) + pµpν ĥ(p) = 0. (596)

Now, in momentum representation, the gauge transformation takes the form

δĥµν(p) = ipµϵ̂ν(p) + ipν ϵ̂µ(p). (597)

Exercise 9.4. Check that (596) is indeed invariant under such a transformation.

Proof. First, observe that
δĥ(p) = ηµνδĥ

µ(p) = 2ip · ϵ̂(p). (598)
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Consequently, one finds

1

i
δ0S

µν(p) = p2
(
pµϵ̂ν(p) + pν ϵ̂µ(p)

)
− pα

(
pµ(pν ϵ̂α(p) + pαϵ̂ν(p))

)
− pα

(
pν(pµϵ̂α(p) + pαϵ̂µ(p)))

+ 2pµpνp · ϵ̂(p)
= p2

(
pµϵ̂ν(p) + pν ϵ̂µ(p)

)
− pµpνp · ϵ̂(p)− p2pµϵ̂ν(p)− pµpνp · ϵ̂(p)− p2pν ϵ̂µ(p)

+ 2pµpνp · ϵ̂(p) = 0.

(599)

This finishes the check. ■

Now, we shall write the components of ĥµν(p) with respect to the light-cone coordinates. We
would like to choose the gauge so that all components containing the + direction are zero. One
finds

δĥ++(p) = 2ip+ϵ̂+(p), (600)

δĥ+−(p) = ip+ϵ̂−(p) + ip−ϵ̂+(p), (601)

δĥ+I(p) = ip+ϵ̂I(p) + ipI ϵ̂+(p). (602)

We see that we can choose ϵ̂+(p) to make the right-hand side of δĥ++ equal to −ĥ++(p), namely

ϵ̂+(p) =
i

2p+
ĥ++(p). (603)

Similarly, we can choose ϵ̂− and ϵ̂I to force δĥ+−(p) = −ĥ+−(p) and δĥ+I(p) = −ĥ+I(p):

ϵ̂−(p) =
i

p+
(ĥ+−(p)− p−

2
ĥ++(p)), ϵ̂I(p) =

i

p+
(ĥ+I(p)− pI

2
ĥ++(p)). (604)

We again assume that p+ ̸= 0, so this is possible. We conclude that we can choose a light-cone
gauge, where ĥ++ = ĥ+− = ĥ+I ≡ 0. Let us now try to solve the equations of motion. First,
the ++ component of (596) gives

(p+)2ĥ(p) = 0, (605)

that is ĥ(p) = 0. Since ĥ(p) = −2ĥ+−(p) + ĥII = ĥII , we conclude that the matrix ĥIJ of the
transversal components is traceless. We thus remain with

p2ĥµν(p) = pα(p
µĥνα(p) + pν ĥµα(p)). (606)

If we choose µ = +, this forces
pαĥ

αν(p) = 0, (607)

for all ν ∈ {+,−, I}. By plugging this back into the remaining equation, we get

p2ĥµν(p) = 0. (608)

First, let us examine the implications of (607). Its only non-trivial components are for ν ∈ {I,−}:

0 = pαĥ
αI(p) = −p+ĥ−I(p) + pJ ĥ

JI(p) ⇒ ĥ−I(p) =
1

p+
pJ ĥ

JI(p), (609)

h0 = pαĥ
α−(p) = −p+ĥ−−(p) + pJ ĥ

J−(p) ⇒ ĥ−−(p) =
1

p+
pJ ĥ

J−(p) =
1

(p+)2
pIpJ ĥ

IJ(p).

(610)
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This means that we express ĥ−I(p) and ĥ−−(p) in terms of the transverse directions! It remains
to examine the equation (608) for transversal indices. We find

p2ĥIJ(p) = 0. (611)

Note that the remaining equations p2ĥ−I(p) = 0 and p2ĥ−−(p) = 0 follow automatically from
(611) and (609, 610).

It follows that for each physical value of momentum p, that is p2 = 0 with p+ > 0, we
can choose arbitrary symmetric trace-less (D − 2) × (D − 2) matrix ĥIJ(p). By repeating the

procedure of Example 9.2, one arrives to annihilation and creation operators aIJp+,p⃗T
and aIJ†p+,p⃗T

,

which give raise to general one-graviton states with momentum (p+, p⃗T ):

d∑
I,J=2

ξIJa
IJ†
p+,p⃗T

|Ω⟩. (612)

where ξIJ is the symmetric and trace-less polarization tensor. The number n(D) of indepen-
dent polarizations of graviton is thus equal to the dimension of the space of symmetric trace-less
(D − 2)× (D − 2) matrices, i.e.

n(D) =
(D − 1)(D − 2)

2
− 1 =

1

2
D(D − 3). (613)

We see that n(4) = 2, n(10) = 35 and n(26) = 299.
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