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Generalized geometry = geometry of £ := TM & T*M

@ M is an arbitrary smooth manifold, Cyy its structure sheaf of smooth
functions.

e Sections g = Xy ® Q}, is a sheaf of Cyo-modules.
@ We have a canonical pairing (-, -)g : Te(M) x Tg(M) — C37(M)

<(X7§)7 (Yﬂ?»E = E(Y) + U(X)
@ There is a canonical Dorfman bracket
[(X,ﬁ), (Yvn)]E = ([Xa Y]?»CX’O - df(y7 ))

making (E, pryy, (-, )&, [+, ]e) into a Courant algebroid.
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@ M is an arbitrary smooth manifold, Cyy its structure sheaf of smooth
functions.

e Sections g = Xy ® Q}, is a sheaf of Cyo-modules.
@ We have a canonical pairing (-, -)g : Te(M) x Tg(M) — C37(M)

<(X7§)7 (Yﬂ?»E = E(Y) + U(X)
@ There is a canonical Dorfman bracket
[(X,ﬁ), (Yvn)]E = ([Xa Y]?»CX’O - df(y7 ))

making (E, pryy, (-, )&, [+, ]e) into a Courant algebroid.

@ Various geometries arise as sub-structures of E. Poisson manifods
are involutive Lagrangian subbundles, generalized Riemannian
metrics are maximal positive definite subbundles, etc.
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Generalized geometry = geometry of £ := TM & T*M

@ M is an arbitrary smooth manifold, Cyy its structure sheaf of smooth
functions.

e Sections g = Xy ® Q}, is a sheaf of Cyo-modules.
@ We have a canonical pairing (-, -)g : Te(M) x Tg(M) — C37(M)

<(X7§)7 (Yﬂ?»E = E(Y) + U(X)
@ There is a canonical Dorfman bracket
[(X,ﬁ), (Yvn)]E = ([Xa Y]?»CX’O - df(y7 ))

making (E, pryy, (-, )&, [+, ]e) into a Courant algebroid.

@ Various geometries arise as sub-structures of E. Poisson manifods
are involutive Lagrangian subbundles, generalized Riemannian
metrics are maximal positive definite subbundles, etc.

Idea: consider £ = TM @ T*M, where M is a Z-graded manifold.

Jan Vysoky Graded Generalized Geometry 1/15



Step 1: what is a graded manifold?
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Step 1: what is a graded manifold?

It is a pair M = (M,C%;), having the properties:
@ M a second countable Hausdorff space;
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Step 1: what is a graded manifold?

It is a pair M = (M,C%;), having the properties:
@ M a second countable Hausdorff space;

@ Cg is a sheaf of graded commutative associative algebras, i.e.
e For U € Op(M), C(U) € gcAs;
e For V C U, we can restrict from C35(U) to Cy(V);

o For every open cover {Uq }aes of any U € Op(M), we may compare
functions locally and glue local functions which agree on the overlaps
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Step 1: what is a graded manifold?

It is a pair M = (M,C%;), having the properties:
@ M a second countable Hausdorff space;

@ Cg is a sheaf of graded commutative associative algebras, i.e.
e For U € Op(M), C(U) € gcAs;
e For V C U, we can restrict from C35(U) to Cy(V);
o For every open cover {Uq }aes of any U € Op(M), we may compare
functions locally and glue local functions which agree on the overlaps.
@ Cg; is locally isomorphic to the graded domain C(f",jj), where (nj)jez
is a sequence of non-negative integers (called the graded dimension
of M) such that >, , n; < occ.

@ Some technical requirements (graded locally ringed space, etc.).
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Step 1: what is a graded manifold?

It is a pair M = (M,C%;), having the properties:
@ M a second countable Hausdorff space;

@ Cg is a sheaf of graded commutative associative algebras, i.e.
e For U € Op(M), C(U) € gcAs;
e For V C U, we can restrict from C35(U) to Cy(V);
o For every open cover {Uq }aes of any U € Op(M), we may compare
functions locally and glue local functions which agree on the overlaps.

Q C5; is locally isomorphic to the graded domain Ciy, where (nj)jez
is a sequence of non-negative integers (called the graded dimension
of M) such that >, , n; < occ.

@ Some technical requirements (graded locally ringed space, etc.).

M becomes an ordinary np-dimensional manifold. Each f € C35(U) has
its body f € C37(U). Surjective graded algebra morphism.
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Example (Graded domain)

® (nj)jez a sequence of non-negative integers with > ., n; < co.
o Let n, :=} ., n; and consider variables {{,}~; with |{,| € Z and

J
m=#{me {10} |6 =}

o These variables commute as £,&, = (—1)l&llEl¢ ¢ .
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Example (Graded domain)

® (nj)jez a sequence of non-negative integers with > ., n; < co.
o Let n, :=} ., n; and consider variables {{,}~; with |{,| € Z and

J
m=#{me {10} |6 =}

o These variables commute as £,&, = (—1)l&llEl¢ ¢ .
@ For each U € Op(R™), f € Cf:j)(U) of degree |f| = k is the formal

power series in (&), with coefficients in Cg5, (U) of degree k, i.e.
each summand has the form

f(le ooa 7Xn0) ’ (gl)p1 cee (gn* )pn*’
where f € Cg% (U), >0, puléul = k and p, € {0,1} for [€,| odd.
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Example (Graded domain)

® (nj)jez a sequence of non-negative integers with > ., n; < co.
o Let n, :=} ., n; and consider variables {{,}~; with |{,| € Z and

J
m=#{me {10} |6 =}

o These variables commute as £,&, = (—1)l&llEl¢ ¢ .
@ For each U € Op(R™), f € Cf:j)(U) of degree |f| = k is the formal

power series in (&), with coefficients in Cg5, (U) of degree k, i.e.
each summand has the form

F(x, .., x™) - (&)P ... (€n)P,

where f € Cg% (U), >0, puléul = k and p, € {0,1} for [€,| odd.

@ Multiplication is a product of formal power series + reordering using
the graded commutativity of variables.

@ Sheaf restrictions restrict coefficient functions.
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Step 2: what is a graded vector bundle?
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Step 2: what is a graded vector bundle?

By a graded vector bundle £ over a graded manifold M, we mean a
locally freely and finitely generated sheaf ['¢ of graded C{-modules of a
constant graded rank.
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Step 2: what is a graded vector bundle?

By a graded vector bundle £ over a graded manifold M, we mean a
locally freely and finitely generated sheaf ['¢ of graded C{-modules of a
constant graded rank. In other words:

@ For each U € Op(M), T'g(U) is a graded vector space.
@ For each v € T¢(U) and f € C35(U), we have

fip € T¢(U), such that |fy] = |f] + ¢,

the action is R-bilinear and compatible with the multiplication.
Fe(U) is a graded C35(U)-module.

o (fu)|lv = flvy|v forany V C U.
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Step 2: what is a graded vector bundle?

By a graded vector bundle £ over a graded manifold M, we mean a
locally freely and finitely generated sheaf ['¢ of graded C{-modules of a
constant graded rank. In other words:

@ For each U € Op(M), T'g(U) is a graded vector space.
@ For each v € T¢(U) and f € C35(U), we have

fip € T¢(U), such that |fy] = |f] + ¢,

the action is R-bilinear and compatible with the multiplication.
Fe(U) is a graded C35(U)-module.

o (fu)|lv = flvy|v forany V C U.

@ There is a finite-dimensional K € gVect, such that l¢ is locally
isomorphic to the sheaf

U~ CH(U)er K.
(r7)jez = gdim(K) is called a graded rank of £.
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Equivalently, for each m € M, there exists a local frame {®,}/_, over
U> m for &, that is

Q b, cTe(U), n=#{pec{l,....r}||®.] =]}
@ Each ¢ € T¢(U) can be written as

b= o,

for unique functions f# € C3G(U) with [f#]| = || — [®,,].
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Equivalently, for each m € M, there exists a local frame {®,}/_, over
U> m for &, that is

Q b, cTe(U), n=#{pec{l,....r}||®.] =]}
@ Each ¢ € T¢(U) can be written as

b= 1o,
for unique functions f# € C3G(U) with [f#]| = || — [®,,].

Example (Dual vector bundle)

Let £ be a graded vector bundle over M. For each U € Op(M), set
(Fe= (Ui :={E€: Te(U) = C(U) [ [E()] = [9] + K,
& is R-linear
§(fy) = (1) Fe(w)}-

Then lg« defines a graded vector bundle £* called the dual to £. If
(r)jez = grk(€), the grk(E*) = (r—)jez- (€7)* = E.
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Example (Tangent bundle)
For every graded manifold M and U € Op(M), let

Xm(U) := gDer(C5 (V).

Section X € X aq(U) of degree |X] is called a vector field on M of
degree |X| satisfying

X(fg) = X(flg + (=)™ (g).

By setting ['7A¢ := X o We obtain the tangent bundle to M. If
(n)jez = gdim(M), then grk(TM) = (n—)jez.
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Example (Tangent bundle)
For every graded manifold M and U € Op(M), let

Xm(U) := gDer(C5 (V).

Section X € X aq(U) of degree |X] is called a vector field on M of
degree |X| satisfying

X(fg) = X(flg + (=)™ (g).

By setting ['7A¢ := X o We obtain the tangent bundle to M. If
(n)jez = gdim(M), then grk(TM) = (n—)jez.

e Cotangent bundle is T*M := (TM)*. Q) =711
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Example (Tangent bundle)
For every graded manifold M and U € Op(M), let

Xm(U) := gDer(C5 (V).

Section X € X aq(U) of degree |X] is called a vector field on M of
degree |X| satisfying

X(fg) = X(flg + (=)™ (g).

By setting ['7A¢ := X o We obtain the tangent bundle to M. If
(n)jez = gdim(M), then grk(TM) = (n—)jez.

e Cotangent bundle is T*M := (TM)*. Q}Vl =T 7M.
@ For any graded vector bundle £ and any ¢ € Z, we set
Fepg(U) = (Te(U))1A]-

Modify C35(U)-module structure: ' ¢ := (=1)If1¢fy. £[(] is
called the degree shift of &£.
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M a graded manifold and p € N. We say that w is a p-form on M of
degree |w| and write w € QF (M), if

o w:iXp(M)x - x Xpm(M) = CG(M) is p-linear of degree |w|.
o w(fXy,..., X,) = (D)l fu(Xy, ..., X,).
o w(..., Xj, Xig1,...) = (=1)XillXealyy(L o0 Xy, Xiy o).

There is a way to make it into a sheaf Qf; of graded C3%-modules.
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M a graded manifold and p € N. We say that w is a p-form on M of
degree |w| and write w € QF (M), if

o w:iXp(M)x - x Xpm(M) = CG(M) is p-linear of degree |w|.
o w(fXy,..., X,) = (D)l fu(Xy, ..., X,).
] w(. .. ,X,'7X,'+17. . ) = (_1)|X,-HX,~+1\W(- .. 7X,'+]_,X,', .. )

There is a way to make it into a sheaf Qf; of graded C3%-modules.
Basic facts:

@ We identify Q%, = Cs

@ There is A : QR (M) x Q%,(M) — Q79 (M).

@ Lie derivative Lx : QF (M) — Q) (M), |Lx(w)] = |X]| + |w|.
O Differential d : Q% (M) — Q%1 (M), |dw| = |w].

@ Interior product + full set of Cartan relations.
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M a graded manifold and p € N. We say that w is a p-form on M of
degree |w| and write w € QF (M), if

o w:iXp(M)x - x Xpm(M) = CG(M) is p-linear of degree |w|.
o w(fXy,..., X,) = (D)l fu(Xy, ..., X,).
] w(. .. ,X,'7X,'+17. . ) = (_1)|X,-HX,~+1\W(- .. 7X,'+]_,X,', .. )

There is a way to make it into a sheaf Qf; of graded C3%-modules.
Basic facts:

@ We identify Q%, = Cs

@ There is A : QR (M) x Q%,(M) — Q79 (M).

@ Lie derivative Lx : QF (M) — Q) (M), |Lx(w)] = |X]| + |w|.

O Differential d : Q°, (M) — Q% H(M), |dw| = |w].

@ Interior product + full set of Cartan relations.
Qf( can be equivalently obtained as a subsheaf of Qp := C%‘EHS]M,
where s € Ny is large enough even, and T[1 4 s]M is the total space of
shifted tangent bundle.
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Step 3: what is a fiber-wise metric?
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Step 3: what is a fiber-wise metric?

Let £ be a graded vector bundle over M and ¢ € Z.
ge : Te(M) = T'g-(M) is a fiber-wise metric on £ of degree /, if
o gg is a C35(M)-linear isomorphism of degree ¢, i.e.

ge (V)| = || + ¢, ge(fv) = (—1)I"fge(v).
o (Y, i= (—1)IPITD ge ()](1') satisfies

(¥, ") e = (—1)IVHOW 0 (e

It does not exist on every &, even for £ = 0.
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Step 3: what is a fiber-wise metric?

Let £ be a graded vector bundle over M and ¢ € Z.
ge : Te(M) = T'g-(M) is a fiber-wise metric on £ of degree /, if

o gg is a C35(M)-linear isomorphism of degree ¢, i.e.

ge (V)| = || + ¢, ge(fv) = (—1)I"fge(v).
o (P, 9")e = (—1) ¥+ ge(1)](¢)') satisfies

(¥, ") e = (—1)IVHOW 0 (e

It does not exist on every &, even for £ = 0.

Example
Let £ := TM[{]® T*M. One has E* = T*M[—£] ® TM. Set

8e(X,€) = (& X). lge(X, ) = [X] = (X, &) + £.

Obvious isomorphism, the corresponding form is

(X,6), (Y.m)e = &(Y) + (=1)XIWIy(x).
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Step 4: what is a graded Courant algebroid?
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Step 4: what is a graded Courant algebroid?

A graded Courant algebroid of degree ¢ is (€, p, ge, [, |<), where
e & is a vector bundle over M.
o p:leg(M)—= X (M) is C35(M)-linear of degree .
@ g¢c is a fiber-wise metric on £ of degree /.
@ [, ]¢ is an R-bilinear bracket of degree ¢, that is

[, 9 lel = [9] + ¢ + £

@ There holds a bunch of axioms:
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Step 4: what is a graded Courant algebroid?

A graded Courant algebroid of degree ¢ is (€, p, ge, [, |<), where
e & is a vector bundle over M.
o p:leg(M)—= X (M) is C35(M)-linear of degree .
@ g¢c is a fiber-wise metric on £ of degree /.
@ [, ]¢ is an R-bilinear bracket of degree ¢, that is

[, 9 lel = [9] + ¢ + £

@ There holds a bunch of axioms:
@ Leibniz rule: [, f']e = £(p() ) + [, ¢ ]e;
© Metric compatibility:
P " e = £, ¢']e, ") e + (W', [0, 9" ]e)e;
@ Jacobi identity: [, [¢/, 0" ]e]le = [[¥,¥]e, ¥ ]e £ [¢', [, ¥ ]|e]e.

© Almost skew-symmetry:
[v,9]e £ [, 9]e = £(gz " 0 p" 0 d)((1,9)e)

All £ are signs which have to be carefully determined.
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Example (Degree ¢ graded Dorfman bracket)

Consider £ := TM[{]® T*M and H € Q3,(M), |H| = —¢.
@ Set p(X,&) = X. Note that [p(X,&)| = |X| = |(X,&)| + £
@ Choose gg¢ as in the previous example.

@ The degree ¢ graded Dorfman bracket takes the form
[(X,€), (Y. m)1B = (IX, Y], (=1) X1 Lxn—(=1)XF(dg)(Y, ) +H(X, Y, )

@ This defines a GCA of degree ¢, iff dH = 0.
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Example (Degree ¢ graded Dorfman bracket)

Consider £ := TM[{]® T*M and H € Q3,(M), |H| = —¢.
@ Set p(X,&) = X. Note that [p(X,&)| = |X| = |(X,&)| + £
@ Choose gg¢ as in the previous example.

@ The degree ¢ graded Dorfman bracket takes the form
[(X.€), (Y, m13 = (IX, Y], (=) Lxn—(=1) X&)V, ) +H(X, Y. )
@ This defines a GCA of degree ¢, iff dH = 0.

For any w € Q2 (M) with |w| = —¢, we have w’ : X, (M)[] — Q% (M)
of degree zero. Let e¥(X,¢) = (X, & +w’(X)). Then

[0, 915" = e [e“(¥), e“ (¥

The above example represents the equivalence class of exact GCA'’s of
degree ¢ corresponding to the Severa class [H] € H3 ,(M)
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Step 5: what are Dirac structures?
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Step 5: what are Dirac structures?

o A subbundle £ C £ is a subsheaf ' C I'¢ of graded C55-modules,
compatible with a local trivialization of £.

o For each m € M, there is a fiber £,, € gVect of &€, £, = K.
@ g¢ induces a bilinear form (-, -)p, : Em X Em — R of degree £.
e Each subbundle £ has an orthogonal complement £+ C £.
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Step 5: what are Dirac structures?

o A subbundle £ C £ is a subsheaf ' C I'¢ of graded C55-modules,
compatible with a local trivialization of £.

o For each m € M, there is a fiber £,, € gVect of &€, £, = K.
@ g¢ induces a bilinear form (-, -)p, : Em X Em — R of degree £.
e Each subbundle £ has an orthogonal complement £+ C £.

Definition (Dirac structure)

A subbundle £ C € of GCA is called a Dirac structure, if
Q@ LCLh
@ Vm e M, L, is maximal isotropic in , w.r.t. (-, -)m;
Q [M(M),Te(M)]e € Tr(M).
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Step 5: what are Dirac structures?

o A subbundle £ C £ is a subsheaf ' C I'¢ of graded C55-modules,
compatible with a local trivialization of £.

o For each m € M, there is a fiber £,, € gVect of &€, £, = K.
@ g¢ induces a bilinear form (-, -)p, : Em X Em — R of degree £.
e Each subbundle £ has an orthogonal complement £+ C £.

Definition (Dirac structure)

A subbundle £ C € of GCA is called a Dirac structure, if
Q@ £LC Lt
@ Vm e M, L, is maximal isotropic in , w.r.t. (-, -)m;
Q [M(M),Te(M)]e € Tr(M).

e If £ (mod 4) # 0, first two conditions are £ = £+. Maximality is
equivalent to conditions on grk(L£).

e L, C L does not imply L C L.
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Let £ = TM[{] @ T*M with the graded Dorfman bracket of degree .
Mo(M) = {(MF(€),€) | € € Qyy(M)},
MF 2 Q5 (M) = Xm(M)[] is €35 (M)-linear. N(&, n) = [MTH(€)](n)-
L =L e NEn) + (-1lEh+ne,¢) = o.
[z(M) involutive < %[n, M]s = £H o A3N%.

I defines an H-twisted graded Poisson structure on M of degree /.
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Let £ = TM[{] @ T*M with the graded Dorfman bracket of degree .
Mo(M) = {(MF(€),€) | € € A (M)},

% Qf (M) = Xp(M)[4] is C35(M)-linear. TI(€,n) = [M#(£)](n)-
L=L* & NEn)+ (-1EM*ne,¢) = o.

1
(M) involutive < Z[11, M]s = +H o A3IE.
I defines an H-twisted graded Poisson structure on M of degree /.

Step 6: what are generalized complex structures?
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Let £ = TM[{] @ T*M with the graded Dorfman bracket of degree .
Mo(M) = {(MF(€),€) | € € Qyy(M)},
MF 2 Q5 (M) = Xm(M)[] is €35 (M)-linear. N(&, n) = [MTH(€)](n)-
L =L e NEn) + (-1lEh+ne,¢) = o.
[z(M) involutive < %[n, M]s = £H o A3N%.

I defines an H-twisted graded Poisson structure on M of degree /.

Step 6: what are generalized complex structures?

Definition (Generalized complex structure)

A subbundle £ C & of GCA is a generalized complex structure, if
@ L is isotropic w.r.t (g¢)c and involutive w.r.t [-, |e.;
Q& =LDL.

Jan Vysoky Graded Generalized Geometry 12/15



e —
@ Any GCS £ induces an endomorphism J : [¢(M) — ['g(M)
satisfying J2 = —1. L is +i eigenbundle of J¢.

@ The converse is not true. Eigenbundles of 72 = —1 are not
necessarily subbundles.
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@ Any GCS L induces an endomorphism J : ['¢(M) — 's(M)
satisfying J2 = —1. L is +i eigenbundle of J¢.

@ The converse is not true. Eigenbundles of 72 = —1 are not
necessarily subbundles.

Step 7: Is there actually something new?
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@ Any GCS £ induces an endomorphism J : [¢(M) — ['g(M)
satisfying J2 = —1. L is +i eigenbundle of J¢.

@ The converse is not true. Eigenbundles of 72 = —1 are not
necessarily subbundles.

Step 7: Is there actually something new?

Definition (Differential GCA)

Let £ be a GCA of degree ¢. A degree 1 map A : Tg(M) — (M) is
called a differential on € and (€, A) a differential GCA, if

Q@ A%=0.

@ 34 € Xp(M), st. A(fY) = A(F)y + FA®W);
Q Age =0, poA==£[Ap()]

Q Ay, ¢']e = [A(Y), ¥']e  [¥, AW )]e;
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@ Any GCS £ induces an endomorphism J : [¢(M) — ['g(M)
satisfying J2 = —1. L is +i eigenbundle of J¢.

@ The converse is not true. Eigenbundles of 72 = —1 are not
necessarily subbundles.

Step 7: Is there actually something new?

Definition (Differential GCA)

Let £ be a GCA of degree ¢. A degree 1 map A : Tg(M) — (M) is
called a differential on € and (€, A) a differential GCA, if

Q@ A%=0.

@ 34 € Xp(M), st. A(fY) = A(F)y + FA®W);
Q Age =0, poA==£[Ap()]

Q Ay, ¢']e = [A(Y), ¥']e  [¥, AW )]e;

Example

A = [¢p, )¢ for ¢ € Tg(M) with |¢| =1 — ¢ makes (€, A) into dGCA iff
[¢, #le =0. A = +p(¢) and one employs GCA axioms.
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Let (£,A) be a dGCA of degree ¢. A Dirac structure £ C £ is called
A-compatible, if A(Tz(M)) C T (M).
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Let (£,A) be a dGCA of degree ¢. A Dirac structure £ C £ is called
A-compatible, if A(Tz(M)) C T (M).

Let £ = TM[ @ T*M. L = gr(N%).
@ The most general A corresponds to (Q,0), where Q € X (M) with
|Q| =1 and 6 € Q3 (M) with || = 1 — ¢ satisfies d§ = 0, and

[Q, Q] =0, Lo(f+igH)=0.
@ The A-compatibility of £ takes the form
Lo(M £ 0+ H(Q,-,-)) oA N* =0.

For H =0 and 6 = 0, this gives a QP manifold. dGCA together
with A-compatible Dirac structures provide generalizations.
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Let (£,A) be a dGCA of degree ¢. A Dirac structure £ C £ is called
A-compatible, if A(Tz(M)) C T (M).

Let £ = TM[ @ T*M. L = gr(N%).
@ The most general A corresponds to (Q,0), where Q € X (M) with
|Q| =1 and 6 € Q3 (M) with || = 1 — ¢ satisfies d§ = 0, and

[Q, Q] =0, Lo(f+igH)=0.
@ The A-compatibility of £ takes the form
Lo(M £ 0+ H(Q,-,-)) oA N* =0.

For H =0 and 6 = 0, this gives a QP manifold. dGCA together
with A-compatible Dirac structures provide generalizations.

A-compatible GCS are defined analogously - they generalize differential
graded symplectic manifolds.
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Outlooks

o More interesting examples of GCA's: transitive ones (using graded
principal bundles), graded Lie bialgebroids.

@ Examples of GCS encoding some interesting geometries.

@ Morphisms of GCA's using Lagrangian relations - needs better
understanding of graded vector bundles (some well known theorems
do not work!).
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Thank you for your attention!

Jan Vysoky: Global Theory of Graded Manifolds, arXiv:2105.02534.



