Graded Generalized Geometry

Jan Vysoký

42nd WINTER SCHOOL GEOMETRY AND PHYSICS Srní, 15-22 January 2022

- *M* is an arbitrary smooth manifold, \mathcal{C}_M^∞ its structure sheaf of smooth functions.
- Sections $\Gamma_E = \mathfrak{X}_M \oplus \Omega^1_M$ is a sheaf of \mathcal{C}^{∞}_M -modules.
- We have a canonical pairing $\langle \cdot, \cdot \rangle_E : \Gamma_E(M) \times \Gamma_E(M) \to \mathcal{C}^{\infty}_M(M)$

 $\langle (X,\xi), (Y,\eta) \rangle_E = \xi(Y) + \eta(X).$

• There is a canonical Dorfman bracket

 $[(X,\xi),(Y,\eta)]_E = ([X,Y],\mathcal{L}_X\eta - \mathrm{d}\xi(Y,\cdot))$

making $(E, \operatorname{pr}_{TM}, \langle \cdot, \cdot \rangle_E, [\cdot, \cdot]_E)$ into a **Courant algebroid**.

• Various geometries arise as sub-structures of *E*. Poisson manifods are involutive Lagrangian subbundles, generalized Riemannian metrics are maximal positive definite subbundles, etc.

Idea: consider $\mathcal{E} = T\mathcal{M} \oplus T^*\mathcal{M}$, where \mathcal{M} is a \mathbb{Z} -graded manifold.

同下 イヨト イヨト

э.

- *M* is an arbitrary smooth manifold, \mathcal{C}_M^∞ its structure sheaf of smooth functions.
- Sections $\Gamma_E = \mathfrak{X}_M \oplus \Omega^1_M$ is a sheaf of \mathcal{C}^{∞}_M -modules.
- We have a canonical pairing $\langle \cdot, \cdot \rangle_E : \Gamma_E(M) \times \Gamma_E(M) \to \mathcal{C}^{\infty}_M(M)$

 $\langle (X,\xi), (Y,\eta) \rangle_E = \xi(Y) + \eta(X).$

• There is a canonical Dorfman bracket

 $[(X,\xi),(Y,\eta)]_E = ([X,Y],\mathcal{L}_X\eta - \mathrm{d}\xi(Y,\cdot))$

making $(E, \operatorname{pr}_{TM}, \langle \cdot, \cdot \rangle_E, [\cdot, \cdot]_E)$ into a **Courant algebroid**.

• Various geometries arise as sub-structures of *E*. Poisson manifods are involutive Lagrangian subbundles, generalized Riemannian metrics are maximal positive definite subbundles, etc.

Idea: consider $\mathcal{E} = T\mathcal{M} \oplus T^*\mathcal{M}$, where \mathcal{M} is a \mathbb{Z} -graded manifold.

回 と く ヨ と く ヨ と

= nar

- *M* is an arbitrary smooth manifold, \mathcal{C}_M^∞ its structure sheaf of smooth functions.
- Sections $\Gamma_E = \mathfrak{X}_M \oplus \Omega^1_M$ is a sheaf of \mathcal{C}^{∞}_M -modules.
- We have a canonical pairing $\langle \cdot, \cdot \rangle_E : \Gamma_E(M) \times \Gamma_E(M) \to \mathcal{C}^{\infty}_M(M)$

 $\langle (X,\xi), (Y,\eta) \rangle_E = \xi(Y) + \eta(X).$

• There is a canonical Dorfman bracket

 $[(X,\xi),(Y,\eta)]_E = ([X,Y],\mathcal{L}_X\eta - \mathrm{d}\xi(Y,\cdot))$

making $(E, \operatorname{pr}_{TM}, \langle \cdot, \cdot \rangle_E, [\cdot, \cdot]_E)$ into a **Courant algebroid**.

• Various geometries arise as sub-structures of *E*. Poisson manifods are involutive Lagrangian subbundles, generalized Riemannian metrics are maximal positive definite subbundles, etc.

Idea: consider $\mathcal{E} = T\mathcal{M} \oplus T^*\mathcal{M}$, where \mathcal{M} is a \mathbb{Z} -graded manifold.

伺 ト イヨト イヨト

≡ nar

- *M* is an arbitrary smooth manifold, \mathcal{C}_M^∞ its structure sheaf of smooth functions.
- Sections $\Gamma_E = \mathfrak{X}_M \oplus \Omega^1_M$ is a sheaf of \mathcal{C}^{∞}_M -modules.
- We have a canonical pairing $\langle \cdot, \cdot \rangle_E : \Gamma_E(M) \times \Gamma_E(M) \to \mathcal{C}^{\infty}_M(M)$

$$\langle (X,\xi), (Y,\eta) \rangle_E = \xi(Y) + \eta(X).$$

• There is a canonical Dorfman bracket

$$[(X,\xi),(Y,\eta)]_E = ([X,Y],\mathcal{L}_X\eta - \mathrm{d}\xi(Y,\cdot))$$

making $(E, \operatorname{pr}_{TM}, \langle \cdot, \cdot \rangle_{E}, [\cdot, \cdot]_{E})$ into a **Courant algebroid**.

• Various geometries arise as sub-structures of *E*. Poisson manifods are involutive Lagrangian subbundles, generalized Riemannian metrics are maximal positive definite subbundles, etc.

Idea: consider $\mathcal{E} = T\mathcal{M} \oplus T^*\mathcal{M}$, where \mathcal{M} is a \mathbb{Z} -graded manifold.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

- *M* is an arbitrary smooth manifold, \mathcal{C}_M^∞ its structure sheaf of smooth functions.
- Sections $\Gamma_E = \mathfrak{X}_M \oplus \Omega^1_M$ is a sheaf of \mathcal{C}^{∞}_M -modules.
- We have a canonical pairing $\langle \cdot, \cdot \rangle_E : \Gamma_E(M) \times \Gamma_E(M) \to \mathcal{C}^{\infty}_M(M)$

$$\langle (X,\xi), (Y,\eta) \rangle_E = \xi(Y) + \eta(X).$$

• There is a canonical Dorfman bracket

$$[(X,\xi),(Y,\eta)]_E = ([X,Y],\mathcal{L}_X\eta - \mathrm{d}\xi(Y,\cdot))$$

making $(E, \operatorname{pr}_{TM}, \langle \cdot, \cdot \rangle_E, [\cdot, \cdot]_E)$ into a **Courant algebroid**.

• Various geometries arise as sub-structures of *E*. Poisson manifods are involutive Lagrangian subbundles, generalized Riemannian metrics are maximal positive definite subbundles, etc.

Idea: consider $\mathcal{E} = T\mathcal{M} \oplus T^*\mathcal{M}$, where \mathcal{M} is a \mathbb{Z} -graded manifold.

- *M* is an arbitrary smooth manifold, \mathcal{C}_M^∞ its structure sheaf of smooth functions.
- Sections $\Gamma_E = \mathfrak{X}_M \oplus \Omega^1_M$ is a sheaf of \mathcal{C}^{∞}_M -modules.
- We have a canonical pairing $\langle \cdot, \cdot \rangle_E : \Gamma_E(M) \times \Gamma_E(M) \to \mathcal{C}^{\infty}_M(M)$

$$\langle (X,\xi), (Y,\eta) \rangle_E = \xi(Y) + \eta(X).$$

• There is a canonical Dorfman bracket

$$[(X,\xi),(Y,\eta)]_E = ([X,Y],\mathcal{L}_X\eta - \mathrm{d}\xi(Y,\cdot))$$

making $(E, \operatorname{pr}_{TM}, \langle \cdot, \cdot \rangle_E, [\cdot, \cdot]_E)$ into a **Courant algebroid**.

• Various geometries arise as sub-structures of *E*. Poisson manifods are involutive Lagrangian subbundles, generalized Riemannian metrics are maximal positive definite subbundles, etc.

Idea: consider $\mathcal{E} = T\mathcal{M} \oplus T^*\mathcal{M}$, where \mathcal{M} is a \mathbb{Z} -graded manifold.

It is a pair $\mathcal{M} = (M, \mathcal{C}^{\infty}_{\mathcal{M}})$, having the properties:

- M a second countable Hausdorff space;
- (a) $\mathcal{C}^{\infty}_{\mathcal{M}}$ is a sheaf of graded commutative associative algebras, i.e.
 - For $U \in \mathbf{Op}(M)$, $\mathcal{C}^{\infty}_{\mathcal{M}}(U) \in \mathbf{gcAs}$;
 - For $V \subseteq U$, we can restrict from $\mathcal{C}^{\infty}_{\mathcal{M}}(U)$ to $\mathcal{C}^{\infty}_{\mathcal{M}}(V)$;
 - For every open cover {U_α}_{α∈I} of any U ∈ Op(M), we may compare functions locally and glue local functions which agree on the overlaps.
- C[∞]_M is locally isomorphic to the graded domain C[∞]_(nj), where (n_j)_{j∈Z} is a sequence of non-negative integers (called the graded dimension of M) such that ∑_{j∈Z} n_j < ∞.</p>
- Some technical requirements (graded locally ringed space, etc.).

M becomes an ordinary n_0 -dimensional manifold. Each $f \in C^{\infty}_{\mathcal{M}}(U)$ has its **body** $\underline{f} \in C^{\infty}_{\mathcal{M}}(U)$. Surjective graded algebra morphism.

くぼう くほう くほう

It is a pair $\mathcal{M} = (M, \mathcal{C}^\infty_{\mathcal{M}})$, having the properties:

M a second countable Hausdorff space;

- (a) $\mathcal{C}^{\infty}_{\mathcal{M}}$ is a sheaf of graded commutative associative algebras, i.e.
 - For $U \in \mathbf{Op}(M)$, $\mathcal{C}^{\infty}_{\mathcal{M}}(U) \in \mathbf{gcAs}$;
 - For $V \subseteq U$, we can restrict from $\mathcal{C}^{\infty}_{\mathcal{M}}(U)$ to $\mathcal{C}^{\infty}_{\mathcal{M}}(V)$;
 - For every open cover {U_α}_{α∈I} of any U ∈ Op(M), we may compare functions locally and glue local functions which agree on the overlaps.
- C[∞]_M is locally isomorphic to the graded domain C[∞]_(nj), where (n_j)_{j∈Z} is a sequence of non-negative integers (called the graded dimension of M) such that ∑_{j∈Z} n_j < ∞.</p>
- Some technical requirements (graded locally ringed space, etc.).

M becomes an ordinary n_0 -dimensional manifold. Each $f \in C^{\infty}_{\mathcal{M}}(U)$ has its **body** $\underline{f} \in C^{\infty}_{\mathcal{M}}(U)$. Surjective graded algebra morphism.

2/15

くぼう くほう くほう

It is a pair $\mathcal{M} = (M, \mathcal{C}^{\infty}_{\mathcal{M}})$, having the properties:

- M a second countable Hausdorff space;
- **2** $\mathcal{C}^{\infty}_{\mathcal{M}}$ is a sheaf of graded commutative associative algebras, i.e.
 - For $U \in \mathbf{Op}(M)$, $\mathcal{C}^{\infty}_{\mathcal{M}}(U) \in \mathbf{gcAs}$;
 - For V ⊆ U, we can restrict from C[∞]_M(U) to C[∞]_M(V);
 - For every open cover {U_α}_{α∈I} of any U ∈ Op(M), we may compare functions locally and glue local functions which agree on the overlaps.
- O[∞]_M is locally isomorphic to the graded domain C[∞]_(nj), where (n_j)_{j∈Z} is a sequence of non-negative integers (called the graded dimension of M) such that ∑_{j∈Z} n_j < ∞.</p>
- Some technical requirements (graded locally ringed space, etc.).

M becomes an ordinary n_0 -dimensional manifold. Each $f \in C^{\infty}_{\mathcal{M}}(U)$ has its **body** $\underline{f} \in C^{\infty}_{\mathcal{M}}(U)$. Surjective graded algebra morphism.

3

・ 同 ト ・ ヨ ト ・ ヨ ト

It is a pair $\mathcal{M} = (M, \mathcal{C}^{\infty}_{\mathcal{M}})$, having the properties:

- M a second countable Hausdorff space;
- **2** $\mathcal{C}^{\infty}_{\mathcal{M}}$ is a sheaf of graded commutative associative algebras, i.e.
 - For $U \in \mathbf{Op}(M)$, $\mathcal{C}^{\infty}_{\mathcal{M}}(U) \in \mathbf{gcAs}$;
 - For V ⊆ U, we can restrict from C[∞]_M(U) to C[∞]_M(V);
 - For every open cover {U_α}_{α∈I} of any U ∈ Op(M), we may compare functions locally and glue local functions which agree on the overlaps.
- C[∞]_M is locally isomorphic to the graded domain C[∞]_(nj), where (n_j)_{j∈Z} is a sequence of non-negative integers (called the graded dimension of M) such that ∑_{j∈Z} n_j < ∞.
- Some technical requirements (graded locally ringed space, etc.).

M becomes an ordinary n_0 -dimensional manifold. Each $f \in C^{\infty}_{\mathcal{M}}(U)$ has its **body** $\underline{f} \in C^{\infty}_{\mathcal{M}}(U)$. Surjective graded algebra morphism.

* (四) * 注 * * 注 * … 注

It is a pair $\mathcal{M} = (M, \mathcal{C}^{\infty}_{\mathcal{M}})$, having the properties:

- M a second countable Hausdorff space;
- **2** $\mathcal{C}^{\infty}_{\mathcal{M}}$ is a sheaf of graded commutative associative algebras, i.e.
 - For $U \in \mathbf{Op}(M)$, $\mathcal{C}^{\infty}_{\mathcal{M}}(U) \in \mathbf{gcAs}$;
 - For V ⊆ U, we can restrict from C[∞]_M(U) to C[∞]_M(V);
 - For every open cover {U_α}_{α∈I} of any U ∈ Op(M), we may compare functions locally and glue local functions which agree on the overlaps.
- C[∞]_M is locally isomorphic to the graded domain C[∞]_(nj), where (n_j)_{j∈Z} is a sequence of non-negative integers (called the graded dimension of M) such that ∑_{j∈Z} n_j < ∞.
- Some technical requirements (graded locally ringed space, etc.).

M becomes an ordinary n_0 -dimensional manifold. Each $f \in C^{\infty}_{\mathcal{M}}(U)$ has its **body** $\underline{f} \in C^{\infty}_{\mathcal{M}}(U)$. Surjective graded algebra morphism.

2/15

伺い イヨン イヨン ニヨ

Example (Graded domain)

- $(n_j)_{j \in \mathbb{Z}}$ a sequence of non-negative integers with $\sum_{j \in \mathbb{Z}} n_j < \infty$.
- Let $n_*:=\sum_{j
 eq 0}n_j$ and consider variables $\{\xi_\mu\}_{\mu=1}^{n_*}$ with $|\xi_\mu|\in\mathbb{Z}$ and

$$n_j = \#\{\mu \in \{1, \ldots, n_*\} \mid |\xi_\mu| = j\}.$$

- These variables commute as $\xi_{\mu}\xi_{\nu} = (-1)^{|\xi_{\mu}||\xi_{\nu}|}\xi_{\nu}\xi_{\mu}$.
- For each $U \in \mathbf{Op}(\mathbb{R}^{n_0})$, $f \in \mathcal{C}^{\infty}_{(n_j)}(U)$ of degree |f| = k is the formal power series in $(\xi_{\mu})_{\mu=1}^{n_*}$ with coefficients in $\mathcal{C}^{\infty}_{\mathbb{R}^{n_0}}(U)$ of degree k, i.e. each summand has the form

$$f(x^1,\ldots,x^{n_0})\cdot(\xi_1)^{p_1}\ldots(\xi_{n_*})^{p_{n_*}},$$

where $f \in \mathcal{C}^{\infty}_{\mathbb{R}^{n_0}}(U)$, $\sum_{\mu=1}^{n_*} p_{\mu} |\xi_{\mu}| = k$ and $p_{\mu} \in \{0, 1\}$ for $|\xi_{\mu}|$ odd.

- Multiplication is a product of formal power series + reordering using the graded commutativity of variables.
- Sheaf restrictions restrict coefficient functions.

白 ト イヨ ト イヨ ト

Example (Graded domain)

- $(n_j)_{j \in \mathbb{Z}}$ a sequence of non-negative integers with $\sum_{j \in \mathbb{Z}} n_j < \infty$.
- Let $n_* := \sum_{j \neq 0} n_j$ and consider variables $\{\xi_\mu\}_{\mu=1}^{n_*}$ with $|\xi_\mu| \in \mathbb{Z}$ and

$$n_j = \#\{\mu \in \{1, \ldots, n_*\} \mid |\xi_\mu| = j\}.$$

- These variables commute as $\xi_{\mu}\xi_{\nu} = (-1)^{|\xi_{\mu}||\xi_{\nu}|}\xi_{\nu}\xi_{\mu}$.
- For each U ∈ Op(ℝ^{n₀}), f ∈ C[∞]_(nj)(U) of degree |f| = k is the formal power series in (ξ_μ)ⁿ_{μ=1} with coefficients in C[∞]_{ℝ^{n₀}}(U) of degree k, i.e. each summand has the form

$$f(x^1,\ldots,x^{n_0})\cdot(\xi_1)^{p_1}\ldots(\xi_{n_*})^{p_{n_*}},$$

where $f \in \mathcal{C}^{\infty}_{\mathbb{R}^{n_0}}(U)$, $\sum_{\mu=1}^{n_*} p_{\mu} |\xi_{\mu}| = k$ and $p_{\mu} \in \{0,1\}$ for $|\xi_{\mu}|$ odd.

- Multiplication is a product of formal power series + reordering using the graded commutativity of variables.
- Sheaf restrictions restrict coefficient functions.

<四→ < □→ < □→ □ □

Example (Graded domain)

- $(n_j)_{j\in\mathbb{Z}}$ a sequence of non-negative integers with $\sum_{j\in\mathbb{Z}} n_j < \infty$.
- Let $n_* := \sum_{j \neq 0} n_j$ and consider variables $\{\xi_\mu\}_{\mu=1}^{n_*}$ with $|\xi_\mu| \in \mathbb{Z}$ and

$$n_j = \#\{\mu \in \{1, \ldots, n_*\} \mid |\xi_\mu| = j\}.$$

- These variables commute as $\xi_{\mu}\xi_{\nu} = (-1)^{|\xi_{\mu}||\xi_{\nu}|}\xi_{\nu}\xi_{\mu}$.
- For each U ∈ Op(ℝ^{n₀}), f ∈ C[∞]_(nj)(U) of degree |f| = k is the formal power series in (ξ_μ)ⁿ_{μ=1} with coefficients in C[∞]_{ℝ^{n₀}}(U) of degree k, i.e. each summand has the form

$$f(x^1,\ldots,x^{n_0})\cdot(\xi_1)^{p_1}\ldots(\xi_{n_*})^{p_{n_*}},$$

where $f \in \mathcal{C}^{\infty}_{\mathbb{R}^{n_0}}(U)$, $\sum_{\mu=1}^{n_*} p_{\mu} |\xi_{\mu}| = k$ and $p_{\mu} \in \{0,1\}$ for $|\xi_{\mu}|$ odd.

- Multiplication is a product of formal power series + reordering using the graded commutativity of variables.
- Sheaf restrictions restrict coefficient functions.

(四) (ヨ) (ヨ) (ヨ)

By a **graded vector bundle** \mathcal{E} over a graded manifold \mathcal{M} , we mean a locally freely and finitely generated sheaf $\Gamma_{\mathcal{E}}$ of graded $\mathcal{C}^{\infty}_{\mathcal{M}}$ -modules of a constant graded rank. In other words:

- For each $U \in \mathbf{Op}(M)$, $\Gamma_{\mathcal{E}}(U)$ is a graded vector space.
- For each $\psi \in \Gamma_{\mathcal{E}}(U)$ and $f \in \mathcal{C}^{\infty}_{\mathcal{M}}(U)$, we have

 $f\psi\in \Gamma_{\mathcal{E}}(U)$, such that $|f\psi|=|f|+|\psi|$,

the action is \mathbb{R} -bilinear and compatible with the multiplication. $\Gamma_{\mathcal{E}}(U)$ is a **graded** $\mathcal{C}^{\infty}_{\mathcal{M}}(U)$ -**module**.

•
$$(f\psi)|_V = f|_V\psi|_V$$
 for any $V \subseteq U$.

 There is a finite-dimensional K ∈ gVect, such that Γ_ε is locally isomorphic to the sheaf

 $U\mapsto \mathcal{C}^{\infty}_{\mathcal{M}}(U)\otimes_{\mathbb{R}} K.$

 $(r_j)_{j\in\mathbb{Z}} := \operatorname{gdim}(K)$ is called a **graded rank** of \mathcal{E} .

э

By a **graded vector bundle** \mathcal{E} over a graded manifold \mathcal{M} , we mean a locally freely and finitely generated sheaf $\Gamma_{\mathcal{E}}$ of graded $\mathcal{C}^{\infty}_{\mathcal{M}}$ -modules of a constant graded rank. In other words:

- For each $U \in \mathbf{Op}(M)$, $\Gamma_{\mathcal{E}}(U)$ is a graded vector space.
- For each $\psi \in \Gamma_{\mathcal{E}}(U)$ and $f \in \mathcal{C}^{\infty}_{\mathcal{M}}(U)$, we have

 $f\psi\in \Gamma_{\mathcal{E}}(U)$, such that $|f\psi|=|f|+|\psi|$,

the action is \mathbb{R} -bilinear and compatible with the multiplication. $\Gamma_{\mathcal{E}}(U)$ is a **graded** $\mathcal{C}^{\infty}_{\mathcal{M}}(U)$ -**module**.

•
$$(f\psi)|_V = f|_V\psi|_V$$
 for any $V \subseteq U$.

 There is a finite-dimensional K ∈ gVect, such that Γ_ε is locally isomorphic to the sheaf

 $U\mapsto \mathcal{C}^{\infty}_{\mathcal{M}}(U)\otimes_{\mathbb{R}} K.$

 $(r_j)_{j\in\mathbb{Z}} := \operatorname{gdim}(K)$ is called a **graded rank** of \mathcal{E} .

通 と く ヨ と く ヨ と

By a **graded vector bundle** \mathcal{E} over a graded manifold \mathcal{M} , we mean a locally freely and finitely generated sheaf $\Gamma_{\mathcal{E}}$ of graded $\mathcal{C}^{\infty}_{\mathcal{M}}$ -modules of a constant graded rank. In other words:

- For each $U \in \mathbf{Op}(M)$, $\Gamma_{\mathcal{E}}(U)$ is a graded vector space.
- For each $\psi \in \Gamma_{\mathcal{E}}(U)$ and $f \in \mathcal{C}^{\infty}_{\mathcal{M}}(U)$, we have

 $f\psi\in \Gamma_{\mathcal{E}}(U)$, such that $|f\psi|=|f|+|\psi|$,

the action is \mathbb{R} -bilinear and compatible with the multiplication. $\Gamma_{\mathcal{E}}(U)$ is a graded $\mathcal{C}^{\infty}_{\mathcal{M}}(U)$ -module.

•
$$(f\psi)|_V = f|_V\psi|_V$$
 for any $V \subseteq U$.

• There is a finite-dimensional $K \in gVect$, such that $\Gamma_{\mathcal{E}}$ is locally isomorphic to the sheaf

$$U\mapsto \mathcal{C}^{\infty}_{\mathcal{M}}(U)\otimes_{\mathbb{R}} K.$$

 $(r_j)_{j\in\mathbb{Z}} := \operatorname{gdim}(K)$ is called a **graded rank** of \mathcal{E} .

By a **graded vector bundle** \mathcal{E} over a graded manifold \mathcal{M} , we mean a locally freely and finitely generated sheaf $\Gamma_{\mathcal{E}}$ of graded $\mathcal{C}^{\infty}_{\mathcal{M}}$ -modules of a constant graded rank. In other words:

- For each $U \in \mathbf{Op}(M)$, $\Gamma_{\mathcal{E}}(U)$ is a graded vector space.
- For each $\psi \in \Gamma_{\mathcal{E}}(U)$ and $f \in \mathcal{C}^{\infty}_{\mathcal{M}}(U)$, we have

 $f\psi\in \Gamma_{\mathcal{E}}(U)$, such that $|f\psi|=|f|+|\psi|$,

the action is \mathbb{R} -bilinear and compatible with the multiplication. $\Gamma_{\mathcal{E}}(U)$ is a graded $\mathcal{C}^{\infty}_{\mathcal{M}}(U)$ -module.

- $(f\psi)|_V = f|_V\psi|_V$ for any $V \subseteq U$.
- There is a finite-dimensional $K \in gVect$, such that $\Gamma_{\mathcal{E}}$ is locally isomorphic to the sheaf

$$U\mapsto \mathcal{C}^{\infty}_{\mathcal{M}}(U)\otimes_{\mathbb{R}} K.$$

 $(r_j)_{j\in\mathbb{Z}} := \operatorname{gdim}(\mathcal{K})$ is called a **graded rank** of \mathcal{E} .

Equivalently, for each $m \in M$, there exists a local frame $\{\Phi_{\mu}\}_{\mu=1}^{r}$ over $U \ni m$ for \mathcal{E} , that is

•
$$\Phi_{\mu} \in \Gamma_{\mathcal{E}}(U), r_j = \#\{\mu \in \{1, \ldots, r\} \mid |\Phi_{\mu}| = j\}.$$

2 Each $\psi \in \Gamma_{\mathcal{E}}(U)$ can be written as

$$\psi = f^{\mu} \Phi_{\mu},$$

for unique functions $f^{\mu} \in \mathcal{C}^{\infty}_{\mathcal{M}}(U)$ with $|f^{\mu}| = |\psi| - |\Phi_{\mu}|$.

Example (**Dual vector bundle**)

Let \mathcal{E} be a graded vector bundle over M. For each $U \in \mathbf{Op}(M)$, set

$$(\Gamma_{\mathcal{E}^*}(U))_k := \{\xi : \Gamma_{\mathcal{E}}(U) \to \mathcal{C}^{\infty}_{\mathcal{M}}(U) \mid |\xi(\psi)| = |\psi| + k,$$

$$\xi \text{ is } \mathbb{R}\text{-linear}$$

$$\xi(f\psi) = (-1)^{|f|k} f\xi(\psi)$$

Then $\Gamma_{\mathcal{E}^*}$ defines a graded vector bundle \mathcal{E}^* called **the dual to** \mathcal{E} . If $(r_j)_{j\in\mathbb{Z}} = \operatorname{grk}(\mathcal{E})$, the $\operatorname{grk}(\mathcal{E}^*) = (r_{-j})_{j\in\mathbb{Z}}$. $(\mathcal{E}^*)^* \cong \mathcal{E}$.

★ ∃ ► < ∃ ►</p>

Equivalently, for each $m \in M$, there exists a local frame $\{\Phi_{\mu}\}_{\mu=1}^{r}$ over $U \ni m$ for \mathcal{E} , that is

•
$$\Phi_{\mu} \in \Gamma_{\mathcal{E}}(U), r_j = \#\{\mu \in \{1, \ldots, r\} \mid |\Phi_{\mu}| = j\}.$$

2 Each $\psi \in \Gamma_{\mathcal{E}}(U)$ can be written as

$$\psi = f^{\mu} \Phi_{\mu},$$

for unique functions $f^{\mu} \in \mathcal{C}^{\infty}_{\mathcal{M}}(U)$ with $|f^{\mu}| = |\psi| - |\Phi_{\mu}|$.

Example (Dual vector bundle)

Let \mathcal{E} be a graded vector bundle over M. For each $U \in \mathbf{Op}(M)$, set

$$\begin{aligned} (\Gamma_{\mathcal{E}^*}(U))_k &:= \{\xi : \Gamma_{\mathcal{E}}(U) \to \mathcal{C}^{\infty}_{\mathcal{M}}(U) \mid |\xi(\psi)| = |\psi| + k, \\ \xi \text{ is } \mathbb{R}\text{-linear} \\ \xi(f\psi) &= (-1)^{|f|k} f\xi(\psi) \}. \end{aligned}$$

Then $\Gamma_{\mathcal{E}^*}$ defines a graded vector bundle \mathcal{E}^* called **the dual to** \mathcal{E} . If $(r_j)_{j\in\mathbb{Z}} = \operatorname{grk}(\mathcal{E})$, the $\operatorname{grk}(\mathcal{E}^*) = (r_{-j})_{j\in\mathbb{Z}}$. $(\mathcal{E}^*)^* \cong \mathcal{E}$.

э

Example (Tangent bundle)

For every graded manifold \mathcal{M} and $U \in \mathbf{Op}(M)$, let

 $\mathfrak{X}_{\mathcal{M}}(U) := \mathsf{gDer}(\mathcal{C}^{\infty}_{\mathcal{M}}(U)).$

Section $X \in \mathfrak{X}_{\mathcal{M}}(U)$ of degree |X| is called a **vector field on** \mathcal{M} of **degree** |X| satisfying

$$X(fg) = X(f)g + (-1)^{|X||f|} fX(g).$$

By setting $\Gamma_{T\mathcal{M}} := \mathfrak{X}_{\mathcal{M}}$ we obtain the **tangent bundle to** \mathcal{M} . If $(n_j)_{j \in \mathbb{Z}} = \operatorname{gdim}(\mathcal{M})$, then $\operatorname{grk}(T\mathcal{M}) = (n_{-j})_{j \in \mathbb{Z}}$.

• Cotangent bundle is $T^*\mathcal{M} := (T\mathcal{M})^*$. $\Omega^1_{\mathcal{M}} := \Gamma_{T^*\mathcal{M}}$.

 \bullet For any graded vector bundle ${\mathcal E}$ and any $\ell\in{\mathbb Z},$ we set

$$\Gamma_{\mathcal{E}[\ell]}(U) := (\Gamma_{\mathcal{E}}(U))[\ell].$$

Modify $\mathcal{C}^{\infty}_{\mathcal{M}}(U)$ -module structure: $f \triangleright' \psi := (-1)^{|f|\ell} f \psi$. $\mathcal{E}[\ell]$ is called the **degree shift of** \mathcal{E} .

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example (Tangent bundle)

For every graded manifold \mathcal{M} and $U \in \mathbf{Op}(M)$, let

 $\mathfrak{X}_{\mathcal{M}}(U) := \mathsf{gDer}(\mathcal{C}^{\infty}_{\mathcal{M}}(U)).$

Section $X \in \mathfrak{X}_{\mathcal{M}}(U)$ of degree |X| is called a **vector field on** \mathcal{M} of **degree** |X| satisfying

$$X(fg) = X(f)g + (-1)^{|X||f|} fX(g).$$

By setting $\Gamma_{T\mathcal{M}} := \mathfrak{X}_{\mathcal{M}}$ we obtain the **tangent bundle to** \mathcal{M} . If $(n_j)_{j \in \mathbb{Z}} = \operatorname{gdim}(\mathcal{M})$, then $\operatorname{grk}(T\mathcal{M}) = (n_{-j})_{j \in \mathbb{Z}}$.

• Cotangent bundle is $T^*\mathcal{M} := (T\mathcal{M})^*$. $\Omega^1_{\mathcal{M}} := \Gamma_{T^*\mathcal{M}}$.

 \bullet For any graded vector bundle ${\mathcal E}$ and any $\ell\in{\mathbb Z},$ we set

$$\Gamma_{\mathcal{E}[\ell]}(U) := (\Gamma_{\mathcal{E}}(U))[\ell].$$

Modify $\mathcal{C}^{\infty}_{\mathcal{M}}(U)$ -module structure: $f \triangleright' \psi := (-1)^{|f|\ell} f \psi$. $\mathcal{E}[\ell]$ is called the **degree shift of** \mathcal{E} .

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example (**Tangent bundle**)

For every graded manifold \mathcal{M} and $U \in \mathbf{Op}(M)$, let

$$\mathfrak{X}_{\mathcal{M}}(U) := \mathsf{gDer}(\mathcal{C}^{\infty}_{\mathcal{M}}(U)).$$

Section $X \in \mathfrak{X}_{\mathcal{M}}(U)$ of degree |X| is called a **vector field on** \mathcal{M} of **degree** |X| satisfying

$$X(fg) = X(f)g + (-1)^{|X||f|} fX(g).$$

By setting $\Gamma_{T\mathcal{M}} := \mathfrak{X}_{\mathcal{M}}$ we obtain the **tangent bundle to** \mathcal{M} . If $(n_j)_{j \in \mathbb{Z}} = \operatorname{gdim}(\mathcal{M})$, then $\operatorname{grk}(T\mathcal{M}) = (n_{-j})_{j \in \mathbb{Z}}$.

- Cotangent bundle is $T^*\mathcal{M} := (T\mathcal{M})^*$. $\Omega^1_{\mathcal{M}} := \Gamma_{T^*\mathcal{M}}$.
- $\bullet\,$ For any graded vector bundle ${\mathcal E}$ and any $\ell\in{\mathbb Z},$ we set

$$\Gamma_{\mathcal{E}[\ell]}(U) := (\Gamma_{\mathcal{E}}(U))[\ell].$$

Modify $\mathcal{C}^{\infty}_{\mathcal{M}}(U)$ -module structure: $f \triangleright' \psi := (-1)^{|f|\ell} f \psi$. $\mathcal{E}[\ell]$ is called the **degree shift of** \mathcal{E} .

(四) (日) (日) (日)

 \mathcal{M} a graded manifold and $p \in \mathbb{N}$. We say that ω is a *p*-form on \mathcal{M} of degree $|\omega|$ and write $\omega \in \Omega^p_{\mathcal{M}}(\mathcal{M})$, if

ω : 𝔅_M(M) × · · · × 𝔅_M(M) → 𝔅[∞]_M(M) is p-linear of degree |ω|.

•
$$\omega(fX_1,\ldots,X_p)=(-1)^{|f||\omega|}f\omega(X_1,\ldots,X_p).$$

•
$$\omega(\ldots, X_i, X_{i+1}, \ldots) = (-1)^{|X_i||X_{i+1}|} \omega(\ldots, X_{i+1}, X_i, \ldots).$$

There is a way to make it into a sheaf $\Omega^p_{\mathcal{M}}$ of graded $\mathcal{C}^\infty_{\mathcal{M}}$ -modules. Basic facts:

• We identify
$$\Omega^0_{\mathcal{M}} \equiv \mathcal{C}^{\infty}_{\mathcal{M}}$$
;

- 3 Lie derivative $\mathcal{L}_X : \Omega^p_{\mathcal{M}}(M) \to \Omega^p_{\mathcal{M}}(M), |\mathcal{L}_X(\omega)| = |X| + |\omega|.$
- **O Differential** $d: \Omega^p_{\mathcal{M}}(M) \to \Omega^{p+1}_{\mathcal{M}}(M), |d\omega| = |\omega|.$
- **Interior product** + full set of Cartan relations.

 $\Omega^{p}_{\mathcal{M}}$ can be equivalently obtained as a subsheaf of $\Omega_{\mathcal{M}} := \mathcal{C}^{\infty}_{T[1+s]\mathcal{M}}$, where $s \in \mathbb{N}_{0}$ is large enough even, and $T[1+s]\mathcal{M}$ is the total space of shifted tangent bundle.

< 同 > < 三 > < 三 >

 \mathcal{M} a graded manifold and $p \in \mathbb{N}$. We say that ω is a *p*-form on \mathcal{M} of degree $|\omega|$ and write $\omega \in \Omega^p_{\mathcal{M}}(\mathcal{M})$, if

ω : 𝔅_M(M) × · · · × 𝔅_M(M) → 𝔅[∞]_M(M) is p-linear of degree |ω|.

•
$$\omega(fX_1,\ldots,X_p)=(-1)^{|f||\omega|}f\omega(X_1,\ldots,X_p).$$

•
$$\omega(\ldots, X_i, X_{i+1}, \ldots) = (-1)^{|X_i||X_{i+1}|} \omega(\ldots, X_{i+1}, X_i, \ldots).$$

There is a way to make it into a sheaf $\Omega^p_{\mathcal{M}}$ of graded $\mathcal{C}^\infty_{\mathcal{M}}$ -modules. Basic facts:

• We identify
$$\Omega^0_{\mathcal{M}} \equiv \mathcal{C}^{\infty}_{\mathcal{M}}$$
;

- **3** There is $\wedge : \Omega^{p}_{\mathcal{M}}(M) \times \Omega^{q}_{\mathcal{M}}(M) \to \Omega^{p+q}_{\mathcal{M}}(M)$.
- **3** Lie derivative $\mathcal{L}_X : \Omega^p_{\mathcal{M}}(M) \to \Omega^p_{\mathcal{M}}(M), |\mathcal{L}_X(\omega)| = |X| + |\omega|.$
- Differential $d: \Omega^p_{\mathcal{M}}(M) \to \Omega^{p+1}_{\mathcal{M}}(M), |d\omega| = |\omega|.$
- Interior product + full set of Cartan relations.

 $\Omega^{p}_{\mathcal{M}}$ can be equivalently obtained as a subsheaf of $\Omega_{\mathcal{M}} := \mathcal{C}^{\infty}_{T[1+s]\mathcal{M}}$, where $s \in \mathbb{N}_{0}$ is large enough even, and $T[1+s]\mathcal{M}$ is the total space of shifted tangent bundle.

(日本) (日本) (日本) 日本

 \mathcal{M} a graded manifold and $p \in \mathbb{N}$. We say that ω is a *p*-form on \mathcal{M} of degree $|\omega|$ and write $\omega \in \Omega^p_{\mathcal{M}}(\mathcal{M})$, if

ω : 𝔅_M(M) × · · · × 𝔅_M(M) → 𝔅[∞]_M(M) is p-linear of degree |ω|.

•
$$\omega(fX_1,\ldots,X_p)=(-1)^{|f||\omega|}f\omega(X_1,\ldots,X_p).$$

•
$$\omega(\ldots, X_i, X_{i+1}, \ldots) = (-1)^{|X_i||X_{i+1}|} \omega(\ldots, X_{i+1}, X_i, \ldots).$$

There is a way to make it into a sheaf $\Omega^p_{\mathcal{M}}$ of graded $\mathcal{C}^\infty_{\mathcal{M}}$ -modules. Basic facts:

• We identify
$$\Omega^0_{\mathcal{M}} \equiv \mathcal{C}^{\infty}_{\mathcal{M}}$$
;

- **3** Lie derivative $\mathcal{L}_X : \Omega^p_{\mathcal{M}}(M) \to \Omega^p_{\mathcal{M}}(M), |\mathcal{L}_X(\omega)| = |X| + |\omega|.$
- **3** Differential $d: \Omega^{p}_{\mathcal{M}}(M) \to \Omega^{p+1}_{\mathcal{M}}(M), |d\omega| = |\omega|.$
- **Interior product** + full set of Cartan relations.

 $\Omega^{p}_{\mathcal{M}}$ can be equivalently obtained as a subsheaf of $\Omega_{\mathcal{M}} := \mathcal{C}^{\infty}_{\mathcal{T}[1+s]\mathcal{M}}$, where $s \in \mathbb{N}_{0}$ is large enough even, and $\mathcal{T}[1+s]\mathcal{M}$ is the total space of shifted tangent bundle.

(四) (ヨ) (ヨ) (ヨ)

Step 3: what is a fiber-wise metric?

Let \mathcal{E} be a graded vector bundle over \mathcal{M} and $\ell \in \mathbb{Z}$. $g_{\mathcal{E}} : \Gamma_{\mathcal{E}}(\mathcal{M}) \to \Gamma_{\mathcal{E}^*}(\mathcal{M})$ is a **fiber-wise metric on** \mathcal{E} **of degree** ℓ , if

- $g_{\mathcal{E}}$ is a $\mathcal{C}^{\infty}_{\mathcal{M}}(M)$ -linear isomorphism of degree ℓ , i.e. $|g_{\mathcal{E}}(\psi)| = |\psi| + \ell$, $g_{\mathcal{E}}(f\psi) = (-1)^{|f|\ell} fg_{\mathcal{E}}(\psi)$.
- $\langle \psi, \psi' \rangle_{\mathcal{E}} := (-1)^{(|\psi|+\ell)\ell} [g_{\mathcal{E}}(\psi)](\psi')$ satisfies

$$\langle \psi, \psi' \rangle_{\mathcal{E}} = (-1)^{(|\psi|+\ell)(|\psi'|+\ell)} \langle \psi', \psi \rangle_{\mathcal{E}}.$$

It does not exist on every \mathcal{E} , even for $\ell = 0$.

Example

Let $\mathcal{E} := T\mathcal{M}[\ell] \oplus T^*\mathcal{M}$. One has $\mathcal{E}^* \cong T^*\mathcal{M}[-\ell] \oplus T\mathcal{M}$. Set

$$g_{\mathcal{E}}(X,\xi) := (\xi, X). \ |g_{\mathcal{E}}(X,\xi)| = |X| = |(X,\xi)| + \ell.$$

Obvious isomorphism, the corresponding form is

$$\langle (X,\xi), (Y,\eta) \rangle_{\mathcal{E}} = \xi(Y) + (-1)^{|X||Y|} \eta(X).$$

Step 3: what is a fiber-wise metric?

Let \mathcal{E} be a graded vector bundle over \mathcal{M} and $\ell \in \mathbb{Z}$. $g_{\mathcal{E}} : \Gamma_{\mathcal{E}}(\mathcal{M}) \to \Gamma_{\mathcal{E}^*}(\mathcal{M})$ is a fiber-wise metric on \mathcal{E} of degree ℓ , if

- $g_{\mathcal{E}}$ is a $\mathcal{C}^{\infty}_{\mathcal{M}}(M)$ -linear isomorphism of degree ℓ , i.e. $|g_{\mathcal{E}}(\psi)| = |\psi| + \ell$, $g_{\mathcal{E}}(f\psi) = (-1)^{|f|\ell} fg_{\mathcal{E}}(\psi)$.
- $\langle \psi, \psi' \rangle_{\mathcal{E}} := (-1)^{(|\psi|+\ell)\ell} [g_{\mathcal{E}}(\psi)](\psi')$ satisfies

$$\langle \psi, \psi' \rangle_{\mathcal{E}} = (-1)^{(|\psi|+\ell)(|\psi'|+\ell)} \langle \psi', \psi \rangle_{\mathcal{E}}.$$

It does not exist on every \mathcal{E} , even for $\ell = 0$.

Example

Let $\mathcal{E} := T\mathcal{M}[\ell] \oplus T^*\mathcal{M}$. One has $\mathcal{E}^* \cong T^*\mathcal{M}[-\ell] \oplus T\mathcal{M}$. Set

$$g_{\mathcal{E}}(X,\xi) := (\xi,X). \ |g_{\mathcal{E}}(X,\xi)| = |X| = |(X,\xi)| + \ell.$$

Obvious isomorphism, the corresponding form is

$$\langle (X,\xi), (Y,\eta) \rangle_{\mathcal{E}} = \xi(Y) + (-1)^{|X||Y|} \eta(X).$$

Step 3: what is a fiber-wise metric?

Let \mathcal{E} be a graded vector bundle over \mathcal{M} and $\ell \in \mathbb{Z}$. $g_{\mathcal{E}} : \Gamma_{\mathcal{E}}(\mathcal{M}) \to \Gamma_{\mathcal{E}^*}(\mathcal{M})$ is a fiber-wise metric on \mathcal{E} of degree ℓ , if

- $g_{\mathcal{E}}$ is a $\mathcal{C}^{\infty}_{\mathcal{M}}(M)$ -linear isomorphism of degree ℓ , i.e. $|g_{\mathcal{E}}(\psi)| = |\psi| + \ell$, $g_{\mathcal{E}}(f\psi) = (-1)^{|f|\ell} fg_{\mathcal{E}}(\psi)$.
- $\langle \psi, \psi' \rangle_{\mathcal{E}} := (-1)^{(|\psi|+\ell)\ell} [g_{\mathcal{E}}(\psi)](\psi')$ satisfies

$$\langle \psi, \psi' \rangle_{\mathcal{E}} = (-1)^{(|\psi|+\ell)(|\psi'|+\ell)} \langle \psi', \psi \rangle_{\mathcal{E}}.$$

It does not exist on every \mathcal{E} , even for $\ell = 0$.

Example

Let $\mathcal{E} := T\mathcal{M}[\ell] \oplus T^*\mathcal{M}$. One has $\mathcal{E}^* \cong T^*\mathcal{M}[-\ell] \oplus T\mathcal{M}$. Set

$$g_{\mathcal{E}}(X,\xi) := (\xi,X). \ |g_{\mathcal{E}}(X,\xi)| = |X| = |(X,\xi)| + \ell.$$

Obvious isomorphism, the corresponding form is

$$\langle (X,\xi), (Y,\eta) \rangle_{\mathcal{E}} = \xi(Y) + (-1)^{|X||Y|} \eta(X).$$

э

Step 4: what is a graded Courant algebroid?

A graded Courant algebroid of degree ℓ is $(\mathcal{E}, \rho, g_{\mathcal{E}}, [\cdot, \cdot]_{\mathcal{E}})$, where

- \mathcal{E} is a vector bundle over \mathcal{M} .
- $\rho : \Gamma_{\mathcal{E}}(M) \to \mathfrak{X}_{\mathcal{M}}(M)$ is $\mathcal{C}^{\infty}_{\mathcal{M}}(M)$ -linear of degree ℓ .
- $g_{\mathcal{E}}$ is a fiber-wise metric on \mathcal{E} of degree ℓ .
- $\bullet~[\cdot,\cdot]_{\mathcal{E}}$ is an $\mathbb{R}\text{-bilinear}$ bracket of degree $\ell,$ that is

 $|[\psi, \psi']_{\mathcal{E}}| = |\psi| + |\psi'| + \ell.$

- There holds a bunch of axioms:
 - **D** Leibniz rule: $[\psi, f\psi']_{\mathcal{E}} = \pm (\rho(\psi)f)\psi' \pm f[\psi, \psi']_{\mathcal{E}};$
 - Metric compatibility:

 $\rho(\psi)\langle\psi',\psi''\rangle_{\mathcal{E}} = \pm \langle [\psi,\psi']_{\mathcal{E}},\psi''\rangle_{\mathcal{E}} \pm \langle\psi',[\psi,\psi'']_{\mathcal{E}}\rangle_{\mathcal{E}};$

- 3 Jacobi identity: $[\psi, [\psi', \psi'']_{\mathcal{E}}]_{\mathcal{E}} = [[\psi, \psi']_{\mathcal{E}}, \psi'']_{\mathcal{E}} \pm [\psi', [\psi, \psi'']_{\mathcal{E}}]_{\mathcal{E}}.$
- Almost skew-symmetry:

 $[\psi, \psi']_{\mathcal{E}} \pm [\psi', \psi]_{\mathcal{E}} = \pm (g_{\mathcal{E}}^{-1} \circ \rho^{T} \circ d)(\langle \psi, \psi' \rangle_{\mathcal{E}})$

All \pm are signs which have to be carefully determined.

くぼう くほう くほう

Step 4: what is a graded Courant algebroid?

A graded Courant algebroid of degree ℓ is $(\mathcal{E}, \rho, g_{\mathcal{E}}, [\cdot, \cdot]_{\mathcal{E}})$, where

- \mathcal{E} is a vector bundle over \mathcal{M} .
- ρ: Γ_ε(M) → 𝔅_M(M) is C[∞]_M(M)-linear of degree ℓ.
- $g_{\mathcal{E}}$ is a fiber-wise metric on \mathcal{E} of degree ℓ .
- $[\cdot,\cdot]_{\mathcal{E}}$ is an $\mathbb{R}\text{-bilinear}$ bracket of degree $\ell,$ that is

$$|[\psi, \psi']_{\mathcal{E}}| = |\psi| + |\psi'| + \ell.$$

• There holds a bunch of axioms:

) Leibniz rule: $[\psi, f\psi']_{\mathcal{E}} = \pm (\rho(\psi)f)\psi' \pm f[\psi, \psi']_{\mathcal{E}};$

Metric compatibility:

 $\rho(\psi)\langle\psi',\psi''\rangle_{\mathcal{E}} = \pm \langle [\psi,\psi']_{\mathcal{E}},\psi''\rangle_{\mathcal{E}} \pm \langle\psi',[\psi,\psi'']_{\mathcal{E}}\rangle_{\mathcal{E}};$

- 3 Jacobi identity: $[\psi, [\psi', \psi'']_{\mathcal{E}}]_{\mathcal{E}} = [[\psi, \psi']_{\mathcal{E}}, \psi'']_{\mathcal{E}} \pm [\psi', [\psi, \psi'']_{\mathcal{E}}]_{\mathcal{E}}.$
- Almost skew-symmetry:

 $[\psi, \psi']_{\mathcal{E}} \pm [\psi', \psi]_{\mathcal{E}} = \pm (g_{\mathcal{E}}^{-1} \circ \rho^{T} \circ \mathbf{d})(\langle \psi, \psi' \rangle_{\mathcal{E}})$

All \pm are signs which have to be carefully determined.

< 同 > < 回 > < 回 > …

Step 4: what is a graded Courant algebroid?

A graded Courant algebroid of degree ℓ is $(\mathcal{E}, \rho, g_{\mathcal{E}}, [\cdot, \cdot]_{\mathcal{E}})$, where

- \mathcal{E} is a vector bundle over \mathcal{M} .
- ρ : Γ_ε(M) → 𝔅_M(M) is C[∞]_M(M)-linear of degree ℓ.
- $g_{\mathcal{E}}$ is a fiber-wise metric on \mathcal{E} of degree ℓ .
- $[\cdot,\cdot]_{\mathcal{E}}$ is an $\mathbb{R}\text{-bilinear}$ bracket of degree $\ell,$ that is

$$|[\psi, \psi']_{\mathcal{E}}| = |\psi| + |\psi'| + \ell.$$

- There holds a bunch of axioms:
 - **1** Leibniz rule: $[\psi, f\psi']_{\mathcal{E}} = \pm (\rho(\psi)f)\psi' \pm f[\psi, \psi']_{\mathcal{E}};$
 - Metric compatibility:

 $\rho(\psi)\langle\psi',\psi''\rangle_{\mathcal{E}} = \pm \langle [\psi,\psi']_{\mathcal{E}},\psi''\rangle_{\mathcal{E}} \pm \langle\psi',[\psi,\psi'']_{\mathcal{E}}\rangle_{\mathcal{E}};$

- **3** Jacobi identity: $[\psi, [\psi', \psi'']_{\mathcal{E}}]_{\mathcal{E}} = [[\psi, \psi']_{\mathcal{E}}, \psi'']_{\mathcal{E}} \pm [\psi', [\psi, \psi'']_{\mathcal{E}}]_{\mathcal{E}}.$
- Almost skew-symmetry:

$$[\psi, \psi']_{\mathcal{E}} \pm [\psi', \psi]_{\mathcal{E}} = \pm (g_{\mathcal{E}}^{-1} \circ \rho^{\mathsf{T}} \circ \mathrm{d})(\langle \psi, \psi' \rangle_{\mathcal{E}})$$

All \pm are signs which have to be carefully determined.

Example (**Degree** ℓ graded Dorfman bracket)

Consider $\mathcal{E} := T\mathcal{M}[\ell] \oplus T^*\mathcal{M}$ and $H \in \Omega^3_{\mathcal{M}}(M)$, $|H| = -\ell$.

- Set $\rho(X,\xi) = X$. Note that $|\rho(X,\xi)| = |X| = |(X,\xi)| + \ell$.
- Choose $g_{\mathcal{E}}$ as in the previous example.
- The degree ℓ graded Dorfman bracket takes the form

 $[(X,\xi),(Y,\eta)]_D^H = ([X,Y],(-1)^{|X|\ell} \mathcal{L}_X \eta - (-1)^{|X|+\ell} (\mathrm{d}\xi)(Y,\cdot) + H(X,Y,\cdot))$

• This defines a GCA of degree ℓ , iff dH = 0.

For any $\omega \in \Omega^2_{\mathcal{M}}(M)$ with $|\omega| = -\ell$, we have $\omega^{\flat} : \mathfrak{X}_{\mathcal{M}}(M)[\ell] \to \Omega^1_{\mathcal{M}}(M)$ of degree zero. Let $e^{\omega}(X,\xi) = (X,\xi + \omega^{\flat}(X))$. Then

$$[\psi, \psi']_D^{H+d\omega} = e^{-\omega} [e^{\omega}(\psi), e^{\omega}(\psi')]_D^H$$

The above example represents the equivalence class of **exact GCA's** of degree ℓ corresponding to the Ševera class $[H] \in H^3_{-\ell}(\mathcal{M})$

э.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example (**Degree** ℓ graded Dorfman bracket)

Consider $\mathcal{E} := T\mathcal{M}[\ell] \oplus T^*\mathcal{M}$ and $H \in \Omega^3_{\mathcal{M}}(M)$, $|H| = -\ell$.

- Set $\rho(X,\xi) = X$. Note that $|\rho(X,\xi)| = |X| = |(X,\xi)| + \ell$.
- Choose $g_{\mathcal{E}}$ as in the previous example.
- The degree ℓ graded Dorfman bracket takes the form

 $[(X,\xi),(Y,\eta)]_D^H = ([X,Y],(-1)^{|X|\ell} \mathcal{L}_X \eta - (-1)^{|X|+\ell} (\mathrm{d}\xi)(Y,\cdot) + H(X,Y,\cdot))$

• This defines a GCA of degree ℓ , iff dH = 0.

For any $\omega \in \Omega^2_{\mathcal{M}}(M)$ with $|\omega| = -\ell$, we have $\omega^{\flat} : \mathfrak{X}_{\mathcal{M}}(M)[\ell] \to \Omega^1_{\mathcal{M}}(M)$ of degree zero. Let $e^{\omega}(X,\xi) = (X,\xi + \omega^{\flat}(X))$. Then

$$[\psi,\psi']_D^{H+\mathrm{d}\omega}=e^{-\omega}[e^{\omega}(\psi),e^{\omega}(\psi')]_D^H$$

The above example represents the equivalence class of **exact GCA's** of degree ℓ corresponding to the Ševera class $[H] \in H^3_{-\ell}(\mathcal{M})$

- A subbundle L ⊆ E is a subsheaf Γ_L ⊆ Γ_E of graded C[∞]_M-modules, compatible with a local trivialization of E.
- For each $m \in M$, there is a fiber $\mathcal{E}_m \in \mathbf{gVect}$ of \mathcal{E} , $\mathcal{E}_m \cong K$.
- $g_{\mathcal{E}}$ induces a bilinear form $\langle \cdot, \cdot \rangle_m : \mathcal{E}_m \times \mathcal{E}_m \to \mathbb{R}$ of degree ℓ .
- Each subbundle \mathcal{L} has an orthogonal complement $\mathcal{L}^{\perp} \subseteq \mathcal{E}$.

Definition (**Dirac structure**)

A subbundle $\mathcal{L} \subseteq \mathcal{E}$ of GCA is called a **Dirac structure**, if

- ◎ $\forall m \in M$, \mathcal{L}_m is maximal isotropic in \mathcal{E}_m w.r.t. $\langle \cdot, \cdot \rangle_m$;
- If ℓ (mod 4) ≠ 0, first two conditions are L = L[⊥]. Maximality is equivalent to conditions on grk(L).
- $\mathcal{L}_m \subseteq \mathcal{L}'_m$ does not imply $\mathcal{L} \subseteq \mathcal{L}'$.

- 4 同 ト 4 三 ト 4 三 ト

- A subbundle $\mathcal{L} \subseteq \mathcal{E}$ is a subsheaf $\Gamma_{\mathcal{L}} \subseteq \Gamma_{\mathcal{E}}$ of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$ -modules, compatible with a local trivialization of \mathcal{E} .
- For each $m \in M$, there is a fiber $\mathcal{E}_m \in \mathbf{gVect}$ of \mathcal{E} , $\mathcal{E}_m \cong K$.
- $g_{\mathcal{E}}$ induces a bilinear form $\langle \cdot, \cdot \rangle_m : \mathcal{E}_m \times \mathcal{E}_m \to \mathbb{R}$ of degree ℓ .
- Each subbundle \mathcal{L} has an orthogonal complement $\mathcal{L}^{\perp} \subseteq \mathcal{E}$.

Definition (**Dirac structure**)

A subbundle $\mathcal{L} \subseteq \mathcal{E}$ of GCA is called a **Dirac structure**, if

- ◎ $\forall m \in M$, \mathcal{L}_m is maximal isotropic in \mathcal{E}_m w.r.t. $\langle \cdot, \cdot \rangle_m$;
- If ℓ (mod 4) ≠ 0, first two conditions are L = L[⊥]. Maximality is equivalent to conditions on grk(L).
- $\mathcal{L}_m \subseteq \mathcal{L}'_m$ does not imply $\mathcal{L} \subseteq \mathcal{L}'$.

3

・ロト ・ 一下・ ・ ヨト・

- A subbundle $\mathcal{L} \subseteq \mathcal{E}$ is a subsheaf $\Gamma_{\mathcal{L}} \subseteq \Gamma_{\mathcal{E}}$ of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$ -modules, compatible with a local trivialization of \mathcal{E} .
- For each $m \in M$, there is a fiber $\mathcal{E}_m \in \mathbf{gVect}$ of \mathcal{E} , $\mathcal{E}_m \cong K$.
- $g_{\mathcal{E}}$ induces a bilinear form $\langle \cdot, \cdot \rangle_m : \mathcal{E}_m \times \mathcal{E}_m \to \mathbb{R}$ of degree ℓ .
- Each subbundle \mathcal{L} has an orthogonal complement $\mathcal{L}^{\perp} \subseteq \mathcal{E}$.

Definition (**Dirac structure**)

A subbundle $\mathcal{L} \subseteq \mathcal{E}$ of GCA is called a **Dirac structure**, if

- ② $\forall m \in M$, \mathcal{L}_m is maximal isotropic in \mathcal{E}_m w.r.t. $\langle \cdot, \cdot \rangle_m$;
- $\ \, {\bf O} \ \, [\Gamma_{\mathcal L}(M),\Gamma_{\mathcal L}(M)]_{\mathcal E}\subseteq \Gamma_{\mathcal L}(M).$
 - If ℓ (mod 4) ≠ 0, first two conditions are L = L[⊥]. Maximality is equivalent to conditions on grk(L).
 - $\mathcal{L}_m \subseteq \mathcal{L}'_m$ does not imply $\mathcal{L} \subseteq \mathcal{L}'$.

(日) (周) (ヨ) (ヨ) (ヨ)

- A subbundle $\mathcal{L} \subseteq \mathcal{E}$ is a subsheaf $\Gamma_{\mathcal{L}} \subseteq \Gamma_{\mathcal{E}}$ of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$ -modules, compatible with a local trivialization of \mathcal{E} .
- For each $m \in M$, there is a fiber $\mathcal{E}_m \in \mathbf{gVect}$ of \mathcal{E} , $\mathcal{E}_m \cong K$.
- $g_{\mathcal{E}}$ induces a bilinear form $\langle \cdot, \cdot \rangle_m : \mathcal{E}_m \times \mathcal{E}_m \to \mathbb{R}$ of degree ℓ .
- Each subbundle \mathcal{L} has an orthogonal complement $\mathcal{L}^{\perp} \subseteq \mathcal{E}$.

Definition (**Dirac structure**)

A subbundle $\mathcal{L} \subseteq \mathcal{E}$ of GCA is called a **Dirac structure**, if

- ② $\forall m \in M$, \mathcal{L}_m is maximal isotropic in \mathcal{E}_m w.r.t. $\langle \cdot, \cdot \rangle_m$;
- $\ \, {\bf O} \ \, [\Gamma_{\mathcal L}(M),\Gamma_{\mathcal L}(M)]_{\mathcal E}\subseteq \Gamma_{\mathcal L}(M).$
 - If ℓ (mod 4) ≠ 0, first two conditions are L = L[⊥]. Maximality is equivalent to conditions on grk(L).

•
$$\mathcal{L}_m \subseteq \mathcal{L}'_m$$
 does not imply $\mathcal{L} \subseteq \mathcal{L}'$.

Let $\mathcal{E} = T\mathcal{M}[\ell] \oplus T^*\mathcal{M}$ with the graded Dorfman bracket of degree ℓ . $\Gamma_{\mathcal{L}}(\mathcal{M}) := \{(\Pi^{\sharp}(\xi), \xi) \mid \xi \in \Omega^1_{\mathcal{M}}(\mathcal{M})\},\$ $\Pi^{\sharp} : \Omega^1_{\mathcal{M}}(\mathcal{M}) \to \mathfrak{X}_{\mathcal{M}}(\mathcal{M})[\ell] \text{ is } \mathcal{C}^{\infty}_{\mathcal{M}}(\mathcal{M})\text{-linear. } \Pi(\xi, \eta) := [\Pi^{\sharp}(\xi)](\eta).$ $\mathcal{L} = \mathcal{L}^{\perp} \Leftrightarrow \Pi(\xi, \eta) + (-1)^{|\xi||\eta| + \ell} \Pi(\eta, \xi) = 0.$ $\Gamma_{\mathcal{L}}(\mathcal{M}) \text{ involutive } \Leftrightarrow \frac{1}{2}[\Pi, \Pi]_{\mathcal{S}} = \pm \mathcal{H} \circ \wedge^3 \Pi^{\sharp}.$

 Π defines an *H*-twisted graded Poisson structure on \mathcal{M} of degree $\ell.$

Step 6: what are generalized complex structures?

Definition (Generalized complex structure) A subbundle $\mathcal{L} \subseteq \mathcal{E}_{\mathbb{C}}$ of *GCA* is a generalized complex structure, if ① \mathcal{L} is isotropic w.r.t $(g_{\mathcal{E}})_{\mathbb{C}}$ and involutive w.r.t $[\cdot, \cdot]_{\mathcal{E}_{\mathbb{C}}}$; ② $\mathcal{E}_{\mathbb{C}} = \mathcal{L} \oplus \overline{\mathcal{L}}$. Let $\mathcal{E} = T\mathcal{M}[\ell] \oplus T^*\mathcal{M}$ with the graded Dorfman bracket of degree ℓ . $\Gamma_{\mathcal{L}}(\mathcal{M}) := \{(\Pi^{\sharp}(\xi), \xi) \mid \xi \in \Omega^1_{\mathcal{M}}(\mathcal{M})\},\$ $\Pi^{\sharp} : \Omega^1_{\mathcal{M}}(\mathcal{M}) \to \mathfrak{X}_{\mathcal{M}}(\mathcal{M})[\ell] \text{ is } \mathcal{C}^{\infty}_{\mathcal{M}}(\mathcal{M})\text{-linear. } \Pi(\xi, \eta) := [\Pi^{\sharp}(\xi)](\eta).$ $\mathcal{L} = \mathcal{L}^{\perp} \Leftrightarrow \Pi(\xi, \eta) + (-1)^{|\xi||\eta| + \ell} \Pi(\eta, \xi) = 0.$ $\Gamma_{\mathcal{L}}(\mathcal{M}) \text{ involutive } \Leftrightarrow \frac{1}{2}[\Pi, \Pi]_{\mathcal{S}} = \pm \mathcal{H} \circ \wedge^3 \Pi^{\sharp}.$

 Π defines an H-twisted graded Poisson structure on $\mathcal M$ of degree $\ell.$

Step 6: what are generalized complex structures?

Definition (Generalized complex structure) A subbundle $\mathcal{L} \subseteq \mathcal{E}_{\mathbb{C}}$ of *GCA* is a generalized complex structure, if \mathcal{L} is isotropic w.r.t $(g_{\mathcal{E}})_{\mathbb{C}}$ and involutive w.r.t $[\cdot, \cdot]_{\mathcal{E}_{\mathbb{C}}}$; $\mathcal{E}_{\mathbb{C}} = \mathcal{L} \oplus \overline{\mathcal{L}}$.

Let $\mathcal{E} = \mathcal{TM}[\ell] \oplus \mathcal{T}^*\mathcal{M}$ with the graded Dorfman bracket of degree ℓ . $\Gamma_{\mathcal{L}}(\mathcal{M}) := \{(\Pi^{\sharp}(\xi), \xi) \mid \xi \in \Omega^1_{\mathcal{M}}(\mathcal{M})\},\$ $\Pi^{\sharp} : \Omega^1_{\mathcal{M}}(\mathcal{M}) \to \mathfrak{X}_{\mathcal{M}}(\mathcal{M})[\ell] \text{ is } \mathcal{C}^{\infty}_{\mathcal{M}}(\mathcal{M})\text{-linear. } \Pi(\xi, \eta) := [\Pi^{\sharp}(\xi)](\eta).$ $\mathcal{L} = \mathcal{L}^{\perp} \Leftrightarrow \Pi(\xi, \eta) + (-1)^{|\xi||\eta| + \ell} \Pi(\eta, \xi) = 0.$ $\Gamma_{\mathcal{L}}(\mathcal{M}) \text{ involutive } \Leftrightarrow \frac{1}{2}[\Pi, \Pi]_{\mathcal{S}} = \pm \mathcal{H} \circ \wedge^3 \Pi^{\sharp}.$

 Π defines an H-twisted graded Poisson structure on $\mathcal M$ of degree $\ell.$

Step 6: what are generalized complex structures?

Definition (Generalized complex structure)

A subbundle $\mathcal{L} \subseteq \mathcal{E}_{\mathbb{C}}$ of *GCA* is a **generalized complex structure**, if

9 \mathcal{L} is isotropic w.r.t $(g_{\mathcal{E}})_{\mathbb{C}}$ and involutive w.r.t $[\cdot, \cdot]_{\mathcal{E}_{\mathbb{C}}}$;

- Any GCS *L* induces an endomorphism *J* : Γ_ε(*M*) → Γ_ε(*M*) satisfying *J*² = −1. *L* is +*i* eigenbundle of *J*_C.
- The converse is not true. Eigenbundles of $\mathcal{J}^2 = -1$ are not necessarily subbundles.

Definition (Differential GCA)

Let \mathcal{E} be a GCA of degree ℓ . A degree 1 map $\Delta : \Gamma_{\mathcal{E}}(M) \to \Gamma_{\mathcal{E}}(M)$ is called a **differential** on \mathcal{E} and (\mathcal{E}, Δ) a **differential GCA**, if

$$\Delta^2 = 0.$$

$$\exists \underline{\Delta} \in \mathfrak{X}_{\mathcal{M}}(M), \text{ s.t. } \Delta(f\psi) = \underline{\Delta}(f)\psi \pm f\Delta(\psi);$$

 $\ \, \bullet \ \, \Delta[\psi,\psi']_{\mathcal E}=[\Delta(\psi),\psi']_{\mathcal E}\pm[\psi,\Delta(\psi')]_{\mathcal E};$

Example

 $\Delta = [\phi, \cdot]_{\mathcal{E}}$ for $\phi \in \Gamma_{\mathcal{E}}(M)$ with $|\phi| = 1 - \ell$ makes (\mathcal{E}, Δ) into *dGCA* iff $[\phi, \phi]_{\mathcal{E}} = 0$. $\underline{\Delta} = \pm \rho(\phi)$ and one employs GCA axioms.

- Any GCS *L* induces an endomorphism *J* : Γ_ε(*M*) → Γ_ε(*M*) satisfying *J*² = −1. *L* is +*i* eigenbundle of *J*_C.
- The converse is not true. Eigenbundles of $\mathcal{J}^2 = -1$ are not necessarily subbundles.

Definition (Differential GCA)

Let \mathcal{E} be a GCA of degree ℓ . A degree 1 map $\Delta : \Gamma_{\mathcal{E}}(M) \to \Gamma_{\mathcal{E}}(M)$ is called a **differential** on \mathcal{E} and (\mathcal{E}, Δ) a **differential GCA**, if

$$\Delta^2 = 0.$$

$$\exists \underline{\Delta} \in \mathfrak{X}_{\mathcal{M}}(M), \text{ s.t. } \Delta(f\psi) = \underline{\Delta}(f)\psi \pm f\Delta(\psi);$$

Example

 $\Delta = [\phi, \cdot]_{\mathcal{E}}$ for $\phi \in \Gamma_{\mathcal{E}}(M)$ with $|\phi| = 1 - \ell$ makes (\mathcal{E}, Δ) into *dGCA* iff $[\phi, \phi]_{\mathcal{E}} = 0$. $\underline{\Delta} = \pm \rho(\phi)$ and one employs GCA axioms.

- Any GCS *L* induces an endomorphism *J* : Γ_ε(*M*) → Γ_ε(*M*) satisfying *J*² = −1. *L* is +*i* eigenbundle of *J*_C.
- The converse is not true. Eigenbundles of $\mathcal{J}^2 = -1$ are not necessarily subbundles.

Definition (**Differential GCA**)

Let \mathcal{E} be a GCA of degree ℓ . A degree 1 map $\Delta : \Gamma_{\mathcal{E}}(M) \to \Gamma_{\mathcal{E}}(M)$ is called a **differential** on \mathcal{E} and (\mathcal{E}, Δ) a **differential GCA**, if

$$\Delta^2 = 0$$

$$\exists \underline{\Delta} \in \mathfrak{X}_{\mathcal{M}}(M), \text{ s.t. } \Delta(f\psi) = \underline{\Delta}(f)\psi \pm f\Delta(\psi);$$

Example

 $\Delta = [\phi, \cdot]_{\mathcal{E}}$ for $\phi \in \Gamma_{\mathcal{E}}(M)$ with $|\phi| = 1 - \ell$ makes (\mathcal{E}, Δ) into *dGCA* iff $[\phi, \phi]_{\mathcal{E}} = 0$. $\underline{\Delta} = \pm \rho(\phi)$ and one employs GCA axioms.

- Any GCS *L* induces an endomorphism *J* : Γ_ε(*M*) → Γ_ε(*M*) satisfying *J*² = −1. *L* is +*i* eigenbundle of *J*_C.
- The converse is not true. Eigenbundles of $\mathcal{J}^2 = -1$ are not necessarily subbundles.

Definition (**Differential GCA**)

Let \mathcal{E} be a GCA of degree ℓ . A degree 1 map $\Delta : \Gamma_{\mathcal{E}}(M) \to \Gamma_{\mathcal{E}}(M)$ is called a **differential** on \mathcal{E} and (\mathcal{E}, Δ) a **differential GCA**, if

$$\Delta^2 = 0$$

2
$$\exists \underline{\Delta} \in \mathfrak{X}_{\mathcal{M}}(M)$$
, s.t. $\Delta(f\psi) = \underline{\Delta}(f)\psi \pm f\Delta(\psi)$;

3
$$\Delta g_{\mathcal{E}} = 0$$
, $\rho \circ \Delta = \pm [\underline{\Delta}, \rho(\cdot)]$

Example

 $\Delta = [\phi, \cdot]_{\mathcal{E}} \text{ for } \phi \in \Gamma_{\mathcal{E}}(M) \text{ with } |\phi| = 1 - \ell \text{ makes } (\mathcal{E}, \Delta) \text{ into } dGCA \text{ iff } [\phi, \phi]_{\mathcal{E}} = 0. \ \underline{\Delta} = \pm \rho(\phi) \text{ and one employs GCA axioms.}$

Definition

Let (\mathcal{E}, Δ) be a dGCA of degree ℓ . A Dirac structure $\mathcal{L} \subseteq \mathcal{E}$ is called Δ -compatible, if $\Delta(\Gamma_{\mathcal{L}}(M)) \subseteq \Gamma_{\mathcal{L}}(M)$.

Example

Let
$$\mathcal{E} = T\mathcal{M}[\ell] \oplus T^*\mathcal{M}$$
. $\mathcal{L} = gr(\Pi^{\sharp})$.

• The most general Δ corresponds to (Q, θ) , where $Q \in \mathfrak{X}_{\mathcal{M}}(M)$ with |Q| = 1 and $\theta \in \Omega^2_{\mathcal{M}}(M)$ with $|\theta| = 1 - \ell$ satisfies $d\theta = 0$, and

$$[Q, Q] = 0, \quad \mathcal{L}_Q(\theta + i_Q H) = 0.$$

 \bullet The $\Delta\text{-compatibility}$ of $\mathcal L$ takes the form

$$\mathcal{L}_Q(\Pi) \pm (\theta \pm H(Q, \cdot, \cdot)) \circ \Lambda^2 \Pi^{\sharp} = 0.$$

For H = 0 and $\theta = 0$, this gives a **QP manifold**. dGCA together with Δ -compatible Dirac structures provide generalizations.

 Δ -compatible GCS are defined analogously - they generalize differential graded symplectic manifolds.

Definition

Let (\mathcal{E}, Δ) be a dGCA of degree ℓ . A Dirac structure $\mathcal{L} \subseteq \mathcal{E}$ is called Δ -compatible, if $\Delta(\Gamma_{\mathcal{L}}(M)) \subseteq \Gamma_{\mathcal{L}}(M)$.

Example

Let
$$\mathcal{E} = T\mathcal{M}[\ell] \oplus T^*\mathcal{M}$$
. $\mathcal{L} = gr(\Pi^{\sharp})$.

• The most general Δ corresponds to (Q, θ) , where $Q \in \mathfrak{X}_{\mathcal{M}}(M)$ with |Q| = 1 and $\theta \in \Omega^2_{\mathcal{M}}(M)$ with $|\theta| = 1 - \ell$ satisfies $d\theta = 0$, and

$$[Q,Q]=0, \ \mathcal{L}_Q(\theta+i_QH)=0.$$

• The Δ -compatibility of $\mathcal L$ takes the form

$$\mathcal{L}_Q(\Pi) \pm (\theta \pm H(Q, \cdot, \cdot)) \circ \Lambda^2 \Pi^{\sharp} = 0.$$

For H = 0 and $\theta = 0$, this gives a **QP manifold**. dGCA together with Δ -compatible Dirac structures provide generalizations.

△-compatible GCS are defined analogously - they generalize differential graded symplectic manifolds.

Definition

Let (\mathcal{E}, Δ) be a dGCA of degree ℓ . A Dirac structure $\mathcal{L} \subseteq \mathcal{E}$ is called Δ -compatible, if $\Delta(\Gamma_{\mathcal{L}}(M)) \subseteq \Gamma_{\mathcal{L}}(M)$.

Example

Let
$$\mathcal{E} = T\mathcal{M}[\ell] \oplus T^*\mathcal{M}$$
. $\mathcal{L} = gr(\Pi^{\sharp})$.

• The most general Δ corresponds to (Q, θ) , where $Q \in \mathfrak{X}_{\mathcal{M}}(M)$ with |Q| = 1 and $\theta \in \Omega^2_{\mathcal{M}}(M)$ with $|\theta| = 1 - \ell$ satisfies $d\theta = 0$, and

$$[Q,Q]=0, \ \mathcal{L}_Q(\theta+i_QH)=0.$$

 \bullet The $\Delta\text{-compatibility}$ of $\mathcal L$ takes the form

$$\mathcal{L}_Q(\Pi) \pm (\theta \pm H(Q, \cdot, \cdot)) \circ \Lambda^2 \Pi^{\sharp} = 0.$$

For H = 0 and $\theta = 0$, this gives a **QP manifold**. dGCA together with Δ -compatible Dirac structures provide generalizations.

 Δ -compatible GCS are defined analogously - they generalize differential graded symplectic manifolds.

14 / 15

Outlooks

- More interesting examples of GCA's: transitive ones (using graded principal bundles), graded Lie bialgebroids.
- Examples of GCS encoding some interesting geometries.
- Morphisms of GCA's using Lagrangian relations needs better understanding of graded vector bundles (some well known theorems do not work!).

э

Thank you for your attention!

Jan Vysoký: Global Theory of Graded Manifolds, arXiv:2105.02534.

