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Generalized geometry = geometry of E := TM ⊕ T ∗M

M is an arbitrary smooth manifold, C∞
M its structure sheaf of smooth

functions.

Sections ΓE = XM ⊕ Ω1
M is a sheaf of C∞

M -modules.

We have a canonical pairing ⟨·, ·⟩E : ΓE (M)× ΓE (M) → C∞
M (M)

⟨(X , ξ), (Y , η)⟩E = ξ(Y ) + η(X ).

There is a canonical Dorfman bracket

[(X , ξ), (Y , η)]E = ([X ,Y ],LXη − dξ(Y , ·))

making (E , prTM , ⟨·, ·⟩E , [·, ·]E ) into a Courant algebroid.

Various geometries arise as sub-structures of E . Poisson manifods
are involutive Lagrangian subbundles, generalized Riemannian
metrics are maximal positive definite subbundles, etc.

Idea: consider E = TM⊕ T ∗M, where M is a Z-graded manifold.
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Step 1: what is a graded manifold?

It is a pair M = (M, C∞
M), having the properties:

1 M a second countable Hausdorff space;
2 C∞

M is a sheaf of graded commutative associative algebras, i.e.

For U ∈ Op(M), C∞
M(U) ∈ gcAs;

For V ⊆ U, we can restrict from C∞
M(U) to C∞

M(V );
For every open cover {Uα}α∈I of any U ∈ Op(M), we may compare
functions locally and glue local functions which agree on the overlaps.

3 C∞
M is locally isomorphic to the graded domain C∞

(nj )
, where (nj)j∈Z

is a sequence of non-negative integers (called the graded dimension
of M) such that

∑
j∈Z nj <∞.

4 Some technical requirements (graded locally ringed space, etc.).

M becomes an ordinary n0-dimensional manifold. Each f ∈ C∞
M(U) has

its body f ∈ C∞
M (U). Surjective graded algebra morphism.

Jan Vysoký Graded Generalized Geometry 2 / 15



Step 1: what is a graded manifold?

It is a pair M = (M, C∞
M), having the properties:

1 M a second countable Hausdorff space;
2 C∞

M is a sheaf of graded commutative associative algebras, i.e.

For U ∈ Op(M), C∞
M(U) ∈ gcAs;

For V ⊆ U, we can restrict from C∞
M(U) to C∞

M(V );
For every open cover {Uα}α∈I of any U ∈ Op(M), we may compare
functions locally and glue local functions which agree on the overlaps.

3 C∞
M is locally isomorphic to the graded domain C∞

(nj )
, where (nj)j∈Z

is a sequence of non-negative integers (called the graded dimension
of M) such that

∑
j∈Z nj <∞.

4 Some technical requirements (graded locally ringed space, etc.).

M becomes an ordinary n0-dimensional manifold. Each f ∈ C∞
M(U) has

its body f ∈ C∞
M (U). Surjective graded algebra morphism.
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Example (Graded domain)

(nj)j∈Z a sequence of non-negative integers with
∑

j∈Z nj <∞.

Let n∗ :=
∑

j ̸=0 nj and consider variables {ξµ}n∗µ=1 with |ξµ| ∈ Z and

nj = #{µ ∈ {1, . . . , n∗} | |ξµ| = j}.

These variables commute as ξµξν = (−1)|ξµ||ξν |ξνξµ.

For each U ∈ Op(Rn0), f ∈ C∞
(nj )

(U) of degree |f | = k is the formal

power series in (ξµ)
n∗
µ=1 with coefficients in C∞

Rn0 (U) of degree k, i.e.
each summand has the form

f (x1, . . . , xn0) · (ξ1)p1 . . . (ξn∗)pn∗ ,

where f ∈ C∞
Rn0 (U),

∑n∗
µ=1 pµ|ξµ| = k and pµ ∈ {0, 1} for |ξµ| odd.

Multiplication is a product of formal power series + reordering using
the graded commutativity of variables.

Sheaf restrictions restrict coefficient functions.
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Jan Vysoký Graded Generalized Geometry 3 / 15



Step 2: what is a graded vector bundle?

By a graded vector bundle E over a graded manifold M, we mean a
locally freely and finitely generated sheaf ΓE of graded C∞

M-modules of a
constant graded rank. In other words:

For each U ∈ Op(M), ΓE(U) is a graded vector space.

For each ψ ∈ ΓE(U) and f ∈ C∞
M(U), we have

f ψ ∈ ΓE(U), such that |f ψ| = |f |+ |ψ|,

the action is R-bilinear and compatible with the multiplication.
ΓE(U) is a graded C∞

M(U)-module.

(f ψ)|V = f |Vψ|V for any V ⊆ U.

There is a finite-dimensional K ∈ gVect, such that ΓE is locally
isomorphic to the sheaf

U 7→ C∞
M(U)⊗R K .

(rj)j∈Z := gdim(K ) is called a graded rank of E .
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Jan Vysoký Graded Generalized Geometry 4 / 15



Equivalently, for each m ∈ M, there exists a local frame {Φµ}rµ=1 over
U ∋ m for E , that is

1 Φµ ∈ ΓE(U), rj = #{µ ∈ {1, . . . , r} | |Φµ| = j}.
2 Each ψ ∈ ΓE(U) can be written as

ψ = f µΦµ,

for unique functions f µ ∈ C∞
M(U) with |f µ| = |ψ| − |Φµ|.

Example (Dual vector bundle)

Let E be a graded vector bundle over M. For each U ∈ Op(M), set

(ΓE∗(U))k := {ξ : ΓE(U) → C∞
M(U) | |ξ(ψ)| = |ψ|+ k,

ξ is R-linear

ξ(f ψ) = (−1)|f |k f ξ(ψ)}.

Then ΓE∗ defines a graded vector bundle E∗ called the dual to E . If
(rj)j∈Z = grk(E), the grk(E∗) = (r−j)j∈Z. (E∗)∗ ∼= E .
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Jan Vysoký Graded Generalized Geometry 5 / 15



Example (Tangent bundle)

For every graded manifold M and U ∈ Op(M), let

XM(U) := gDer(C∞
M(U)).

Section X ∈ XM(U) of degree |X | is called a vector field on M of
degree |X | satisfying

X (fg) = X (f )g + (−1)|X ||f |fX (g).

By setting ΓTM := XM we obtain the tangent bundle to M. If
(nj)j∈Z = gdim(M), then grk(TM) = (n−j)j∈Z.

Cotangent bundle is T ∗M := (TM)∗. Ω1
M := ΓT∗M.

For any graded vector bundle E and any ℓ ∈ Z, we set

ΓE[ℓ](U) := (ΓE(U))[ℓ].

Modify C∞
M(U)-module structure: f ▷′ ψ := (−1)|f |ℓf ψ. E [ℓ] is

called the degree shift of E .
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M a graded manifold and p ∈ N. We say that ω is a p-form on M of
degree |ω| and write ω ∈ Ωp

M(M), if

ω : XM(M)× · · · × XM(M) → C∞
M(M) is p-linear of degree |ω|.

ω(fX1, . . . ,Xp) = (−1)|f ||ω|f ω(X1, . . . ,Xp).

ω(. . . ,Xi ,Xi+1, . . . ) = (−1)|Xi ||Xi+1|ω(. . . ,Xi+1,Xi , . . . ).

There is a way to make it into a sheaf Ωp
M of graded C∞

M-modules.
Basic facts:

1 We identify Ω0
M ≡ C∞

M;

2 There is ∧ : Ωp
M(M)× Ωq

M(M) → Ωp+q
M (M).

3 Lie derivative LX : Ωp
M(M) → Ωp

M(M), |LX (ω)| = |X |+ |ω|.
4 Differential d : Ωp

M(M) → Ωp+1
M (M), |dω| = |ω|.

5 Interior product + full set of Cartan relations.

Ωp
M can be equivalently obtained as a subsheaf of ΩM := C∞

T [1+s]M,

where s ∈ N0 is large enough even, and T [1 + s]M is the total space of
shifted tangent bundle.
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M(M)× Ωq

M(M) → Ωp+q
M (M).

3 Lie derivative LX : Ωp
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4 Differential d : Ωp

M(M) → Ωp+1
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Step 3: what is a fiber-wise metric?

Let E be a graded vector bundle over M and ℓ ∈ Z.
gE : ΓE(M) → ΓE∗(M) is a fiber-wise metric on E of degree ℓ, if

gE is a C∞
M(M)-linear isomorphism of degree ℓ, i.e.

|gE(ψ)| = |ψ|+ ℓ, gE(f ψ) = (−1)|f |ℓfgE(ψ).

⟨ψ,ψ′⟩E := (−1)(|ψ|+ℓ)ℓ[gE(ψ)](ψ
′) satisfies

⟨ψ,ψ′⟩E = (−1)(|ψ|+ℓ)(|ψ
′|+ℓ)⟨ψ′, ψ⟩E .

It does not exist on every E , even for ℓ = 0.

Example

Let E := TM[ℓ]⊕ T ∗M. One has E∗ ∼= T ∗M[−ℓ]⊕ TM. Set

gE(X , ξ) := (ξ,X ). |gE(X , ξ)| = |X | = |(X , ξ)|+ ℓ.

Obvious isomorphism, the corresponding form is

⟨(X , ξ), (Y , η)⟩E = ξ(Y ) + (−1)|X ||Y |η(X ).
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Step 4: what is a graded Courant algebroid?

A graded Courant algebroid of degree ℓ is (E , ρ, gE , [·, ·]E), where
E is a vector bundle over M.

ρ : ΓE(M) → XM(M) is C∞
M(M)-linear of degree ℓ.

gE is a fiber-wise metric on E of degree ℓ.

[·, ·]E is an R-bilinear bracket of degree ℓ, that is

|[ψ,ψ′]E | = |ψ|+ |ψ′|+ ℓ.

There holds a bunch of axioms:
1 Leibniz rule: [ψ, f ψ′]E = ±(ρ(ψ)f )ψ′ ± f [ψ,ψ′]E ;
2 Metric compatibility:
ρ(ψ)⟨ψ′, ψ′′⟩E = ±⟨[ψ,ψ′]E , ψ

′′⟩E ± ⟨ψ′, [ψ,ψ′′]E⟩E ;
3 Jacobi identity: [ψ, [ψ′, ψ′′]E ]E = [[ψ,ψ′]E , ψ

′′]E ± [ψ′, [ψ,ψ′′]E ]E .
4 Almost skew-symmetry:

[ψ,ψ′]E ± [ψ′, ψ]E = ±(g−1
E ◦ ρT ◦ d)(⟨ψ,ψ′⟩E)

All ± are signs which have to be carefully determined.
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Example (Degree ℓ graded Dorfman bracket)

Consider E := TM[ℓ]⊕ T ∗M and H ∈ Ω3
M(M), |H| = −ℓ.

Set ρ(X , ξ) = X . Note that |ρ(X , ξ)| = |X | = |(X , ξ)|+ ℓ.

Choose gE as in the previous example.

The degree ℓ graded Dorfman bracket takes the form

[(X , ξ), (Y , η)]HD = ([X ,Y ], (−1)|X |ℓLXη−(−1)|X |+ℓ(dξ)(Y , ·)+H(X ,Y , ·))

This defines a GCA of degree ℓ, iff dH = 0.

For any ω ∈ Ω2
M(M) with |ω| = −ℓ, we have ω♭ : XM(M)[ℓ] → Ω1

M(M)
of degree zero. Let eω(X , ξ) = (X , ξ + ω♭(X )). Then

[ψ,ψ′]H+dω
D = e−ω[eω(ψ), eω(ψ′)]HD

The above example represents the equivalence class of exact GCA’s of
degree ℓ corresponding to the Ševera class [H] ∈ H3

−ℓ(M)
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Step 5: what are Dirac structures?

A subbundle L ⊆ E is a subsheaf ΓL ⊆ ΓE of graded C∞
M-modules,

compatible with a local trivialization of E .
For each m ∈ M, there is a fiber Em ∈ gVect of E , Em ∼= K .

gE induces a bilinear form ⟨·, ·⟩m : Em × Em → R of degree ℓ.

Each subbundle L has an orthogonal complement L⊥ ⊆ E .

Definition (Dirac structure)

A subbundle L ⊆ E of GCA is called a Dirac structure, if

1 L ⊆ L⊥;

2 ∀m ∈ M, Lm is maximal isotropic in Em w.r.t. ⟨·, ·⟩m;
3 [ΓL(M), ΓL(M)]E ⊆ ΓL(M).

If ℓ (mod 4) ̸= 0, first two conditions are L = L⊥. Maximality is
equivalent to conditions on grk(L).
Lm ⊆ L′

m does not imply L ⊆ L′.
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Example

Let E = TM[ℓ]⊕ T ∗M with the graded Dorfman bracket of degree ℓ.

ΓL(M) := {(Π♯(ξ), ξ) | ξ ∈ Ω1
M(M)},

Π♯ : Ω1
M(M) → XM(M)[ℓ] is C∞

M(M)-linear. Π(ξ, η) := [Π♯(ξ)](η).

L = L⊥ ⇔ Π(ξ, η) + (−1)|ξ||η|+ℓΠ(η, ξ) = 0.

ΓL(M) involutive ⇔ 1

2
[Π,Π]S = ±H ◦ ∧3Π♯.

Π defines an H-twisted graded Poisson structure on M of degree ℓ.

Step 6: what are generalized complex structures?

Definition (Generalized complex structure)

A subbundle L ⊆ EC of GCA is a generalized complex structure, if

1 L is isotropic w.r.t (gE)C and involutive w.r.t [·, ·]EC ;

2 EC = L ⊕ L.
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Any GCS L induces an endomorphism J : ΓE(M) → ΓE(M)
satisfying J 2 = −1. L is +i eigenbundle of JC.

The converse is not true. Eigenbundles of J 2 = −1 are not
necessarily subbundles.

Step 7: Is there actually something new?

Definition (Differential GCA)

Let E be a GCA of degree ℓ. A degree 1 map ∆ : ΓE(M) → ΓE(M) is
called a differential on E and (E ,∆) a differential GCA, if

1 ∆2 = 0.

2 ∃∆ ∈ XM(M), s.t. ∆(f ψ) = ∆(f )ψ ± f∆(ψ);

3 ∆gE = 0, ρ ◦∆ = ±[∆, ρ(·)]
4 ∆[ψ,ψ′]E = [∆(ψ), ψ′]E ± [ψ,∆(ψ′)]E ;

Example

∆ = [ϕ, ·]E for ϕ ∈ ΓE(M) with |ϕ| = 1− ℓ makes (E ,∆) into dGCA iff
[ϕ, ϕ]E = 0. ∆ = ±ρ(ϕ) and one employs GCA axioms.
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Jan Vysoký Graded Generalized Geometry 13 / 15



Definition

Let (E ,∆) be a dGCA of degree ℓ. A Dirac structure L ⊆ E is called
∆-compatible, if ∆(ΓL(M)) ⊆ ΓL(M).

Example

Let E = TM[ℓ]⊕ T ∗M. L = gr(Π♯).

The most general ∆ corresponds to (Q, θ), where Q ∈ XM(M) with
|Q| = 1 and θ ∈ Ω2

M(M) with |θ| = 1− ℓ satisfies dθ = 0, and

[Q,Q] = 0, LQ(θ + iQH) = 0.

The ∆-compatibility of L takes the form

LQ(Π)± (θ ± H(Q, ·, ·)) ◦ Λ2Π♯ = 0.

For H = 0 and θ = 0, this gives a QP manifold. dGCA together
with ∆-compatible Dirac structures provide generalizations.

∆-compatible GCS are defined analogously - they generalize differential
graded symplectic manifolds.
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Outlooks

More interesting examples of GCA’s: transitive ones (using graded
principal bundles), graded Lie bialgebroids.

Examples of GCS encoding some interesting geometries.

Morphisms of GCA’s using Lagrangian relations - needs better
understanding of graded vector bundles (some well known theorems
do not work!).
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