Graded Generalized Geometry

Jan Vysoký

42nd WINTER SCHOOL GEOMETRY AND PHYSICS
Srní, 15-22 January 2022

Generalized geometry $=$ geometry of $E:=T M \oplus T^{*} M$

- M is an arbitrary smooth manifold, \mathcal{C}_{M}^{∞} its structure sheaf of smooth functions.
- Sections $\Gamma_{E}=\mathfrak{X}_{M} \oplus \Omega_{M}^{1}$ is a sheaf of \mathcal{C}_{M}^{∞}-modules.
- We have a canonical pairing $\langle\cdot, \cdot\rangle_{E}: \Gamma_{E}(M) \times \Gamma_{E}(M) \rightarrow \mathcal{C}_{M}^{\infty}(M)$

$$
\langle(X, \xi),(Y, \eta)\rangle_{E}=\xi(Y)+\eta(X)
$$

- There is a canonical Dorfman bracket

$$
[(X, \xi),(Y, \eta)]_{E}=\left([X, Y], \mathcal{L}_{X} \eta-\mathrm{d} \xi(Y, \cdot)\right)
$$

making $\left(E, \operatorname{pr}_{T M},\langle\cdot, \cdot\rangle_{E},[\cdot, \cdot]_{E}\right)$ into a Courant algebroid.

- Various geometries arise as sub-structures of E. Poisson manifods are involutive Lagrangian subbundles, generalized Riemannian metrics are maximal positive definite subbundles, etc.

Idea: consider $\mathcal{E}=T \mathcal{M} \oplus T^{*} \mathcal{M}$, where \mathcal{M} is a \mathbb{Z}-graded manifold.

Generalized geometry $=$ geometry of $E:=T M \oplus T^{*} M$

- M is an arbitrary smooth manifold, \mathcal{C}_{M}^{∞} its structure sheaf of smooth functions.
- Sections $\Gamma_{E}=\mathfrak{X}_{M} \oplus \Omega_{M}^{1}$ is a sheaf of \mathcal{C}_{M}^{∞}-modules.
- We have a canonical pairing $\langle\cdot, \cdot\rangle_{E}: \Gamma_{E}(M) \times \Gamma_{E}(M) \rightarrow \mathcal{C}_{M}^{\infty}(M)$

$$
\langle(X, \xi),(Y, \eta)\rangle_{E}=\xi(Y)+\eta(X) .
$$

- There is a canonical Dorfman bracket

$$
[(X, \xi),(Y, \eta)]_{E}=([X, Y], \mathcal{L} \times \eta-d \xi(Y, \cdot))
$$

making $\left(E, \operatorname{pr}_{T M},\langle\cdot, \cdot\rangle_{E},[\cdot, \cdot]_{E}\right)$ into a Courant algebroid.

- Various geometries arise as sub-structures of E. Poisson manifods are involutive Lagrangian subbundles, generalized Riemannian metrics are maximal positive definite subbundles, etc.

Idea: consider $\mathcal{E}=T \mathcal{M} \oplus T^{*} \mathcal{M}$, where \mathcal{M} is a \mathbb{Z}-graded manifold.

Generalized geometry $=$ geometry of $E:=T M \oplus T^{*} M$

- M is an arbitrary smooth manifold, \mathcal{C}_{M}^{∞} its structure sheaf of smooth functions.
- Sections $\Gamma_{E}=\mathfrak{X}_{M} \oplus \Omega_{M}^{1}$ is a sheaf of \mathcal{C}_{M}^{∞}-modules.
- We have a canonical pairing $\langle\cdot, \cdot\rangle_{E}: \Gamma_{E}(M) \times \Gamma_{E}(M) \rightarrow C_{M}^{\infty}(M)$ $\langle(X, \xi),(Y, \eta)\rangle_{E}=\xi(Y)+\eta(X)$.
- There is a canonical Dorfman bracket

$$
[(X, \xi),(Y, \eta)]_{E}=\left([X, Y], \mathcal{L}_{X} \eta-\mathrm{d} \xi(Y, \cdot)\right)
$$

making $\left(E, \operatorname{pr}_{T M},\langle\cdot, \cdot\rangle_{E},[\cdot, \cdot]_{E}\right)$ into a Courant algebroid.

- Various geometries arise as sub-structures of E. Poisson manifods are involutive Lagrangian subbundles, generalized Riemannian metrics are maximal positive definite subbundles, etc.

Idea: consider $\mathcal{E}=T \mathcal{M} \oplus T^{*} \mathcal{M}$, where \mathcal{M} is a \mathbb{Z}-graded manifold.

Generalized geometry $=$ geometry of $E:=T M \oplus T^{*} M$

- M is an arbitrary smooth manifold, \mathcal{C}_{M}^{∞} its structure sheaf of smooth functions.
- Sections $\Gamma_{E}=\mathfrak{X}_{M} \oplus \Omega_{M}^{1}$ is a sheaf of \mathcal{C}_{M}^{∞}-modules.
- We have a canonical pairing $\langle\cdot, \cdot\rangle_{E}: \Gamma_{E}(M) \times \Gamma_{E}(M) \rightarrow \mathcal{C}_{M}^{\infty}(M)$

$$
\langle(X, \xi),(Y, \eta)\rangle_{E}=\xi(Y)+\eta(X) .
$$

- There is a canonical Dorfman bracket

$$
[(X, \xi),(Y, \eta)]_{E}=\left([X, Y], \mathcal{L}_{X} \eta-\mathrm{d} \xi(Y, \cdot)\right)
$$

making $\left(E, \mathrm{pr}_{T M},\langle\cdot, \cdot\rangle_{E},[\cdot, \cdot]_{E}\right)$ into a Courant algebroid.

- Various geometries arise as sub-structures of E. Poisson manifods are involutive Lagrangian subbundles, generalized Riemannian metrics are maximal positive definite subbundles, etc.

Generalized geometry $=$ geometry of $E:=T M \oplus T^{*} M$

- M is an arbitrary smooth manifold, \mathcal{C}_{M}^{∞} its structure sheaf of smooth functions.
- Sections $\Gamma_{E}=\mathfrak{X}_{M} \oplus \Omega_{M}^{1}$ is a sheaf of \mathcal{C}_{M}^{∞}-modules.
- We have a canonical pairing $\langle\cdot, \cdot\rangle_{E}: \Gamma_{E}(M) \times \Gamma_{E}(M) \rightarrow \mathcal{C}_{M}^{\infty}(M)$

$$
\langle(X, \xi),(Y, \eta)\rangle_{E}=\xi(Y)+\eta(X) .
$$

- There is a canonical Dorfman bracket

$$
[(X, \xi),(Y, \eta)]_{E}=\left([X, Y], \mathcal{L}_{X} \eta-\mathrm{d} \xi(Y, \cdot)\right)
$$

making ($E, \mathrm{pr}_{T M},\langle\cdot, \cdot\rangle_{E},[\cdot, \cdot]_{E}$) into a Courant algebroid.

- Various geometries arise as sub-structures of E. Poisson manifods are involutive Lagrangian subbundles, generalized Riemannian metrics are maximal positive definite subbundles, etc.

Generalized geometry $=$ geometry of $E:=T M \oplus T^{*} M$

- M is an arbitrary smooth manifold, \mathcal{C}_{M}^{∞} its structure sheaf of smooth functions.
- Sections $\Gamma_{E}=\mathfrak{X}_{M} \oplus \Omega_{M}^{1}$ is a sheaf of \mathcal{C}_{M}^{∞}-modules.
- We have a canonical pairing $\langle\cdot, \cdot\rangle_{E}: \Gamma_{E}(M) \times \Gamma_{E}(M) \rightarrow \mathcal{C}_{M}^{\infty}(M)$

$$
\langle(X, \xi),(Y, \eta)\rangle_{E}=\xi(Y)+\eta(X) .
$$

- There is a canonical Dorfman bracket

$$
[(X, \xi),(Y, \eta)]_{E}=\left([X, Y], \mathcal{L}_{X} \eta-\mathrm{d} \xi(Y, \cdot)\right)
$$

making ($E, \mathrm{pr}_{T M},\langle\cdot, \cdot\rangle_{E},[\cdot, \cdot]_{E}$) into a Courant algebroid.

- Various geometries arise as sub-structures of E. Poisson manifods are involutive Lagrangian subbundles, generalized Riemannian metrics are maximal positive definite subbundles, etc.

Idea: consider $\mathcal{E}=T \mathcal{M} \oplus T^{*} \mathcal{M}$, where \mathcal{M} is a \mathbb{Z}-graded manifold.

Step 1: what is a graded manifold?

It is a pair $\mathcal{M}=\left(M, C_{\mathcal{M}}^{\infty}\right)$, having the properties:
(1) M a second countable Hausdorff space;
(2) $\mathcal{C}_{\mathcal{M}}^{\infty}$ is a sheaf of graded commutative associative algebras, i.e.

- For $U \in \operatorname{Op}(M), \mathcal{C}_{\mathcal{M}}^{\infty}(U) \in \operatorname{gcAs}$;
- For $V \subseteq U$, we can restrict from $\mathcal{C}_{\mathcal{M}}^{\infty}(U)$ to $\mathcal{C}_{\mathcal{M}}^{\infty}(V)$;
- For every open cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ of any $U \in \operatorname{Op}(M)$, we may compare functions locally and glue local functions which agree on the overlaps.
(3) $\mathcal{C}_{\mathcal{M}}^{\infty}$ is locally isomorphic to the graded domain $\mathcal{C}_{\left(n_{j}\right)}^{\infty}$, where $\left(n_{j}\right)_{j \in \mathbb{Z}}$ is a sequence of non-negative integers (called the graded dimension of \mathcal{M}) such that $\sum_{j \in \mathbb{Z}} n_{j}<\infty$.
(- Some technical requirements (graded locally ringed space, etc.)
M becomes an ordinary n_{0}-dimensional manifold. Each $f \in \mathcal{C}_{\mathcal{M}}^{\infty}(U)$ has
its body $\underline{f} \in \mathcal{C}_{M}^{\infty}(U)$. Surjective graded algebra morphism.

Step 1: what is a graded manifold?
It is a pair $\mathcal{M}=\left(M, \mathcal{C}_{\mathcal{M}}^{\infty}\right)$, having the properties:
(1) M a second countable Hausdorff space;
(3) $\mathcal{C}_{\mathcal{M}}^{\infty}$ is a sheaf of graded commutative associative algebras, i.e

- For $U \in \mathbf{O p}(M), \mathcal{C}_{\mathcal{M}}^{\infty}(U) \in \mathbf{g c A s}$;
- For $V \subseteq U$, we can restrict from $\mathcal{C}_{\mathcal{M}}^{\infty}(U)$ to $\mathcal{C}_{\mathcal{M}}^{\infty}(V)$
- For every open cover $\left\{U_{\alpha}\right\}_{\alpha \in 1}$ of any $U \in \operatorname{Op}(M)$, we may compare functions locally and glue local functions which agree on the overlaps.
- $\mathcal{C}_{\mathcal{M}}^{\infty}$ is locally isomorphic to the graded domain $\mathcal{C}_{\left(n_{j}\right)}^{\infty}$, where $\left(n_{j}\right)_{j \in \mathbb{Z}}$ is a sequence of non-negative integers (called the graded dimension of \mathcal{M}) such that \sum
- Some technical requirements (graded locally ringed space, etc.)
M becomes an ordinary n_{0}-dimensional manifold. Each $f \in \mathcal{C}_{\mathcal{M}}^{\infty}(U)$ has
its body $\underline{f} \in \mathcal{C}_{M}^{\infty}(U)$. Surjective graded algebra morphism.

Step 1: what is a graded manifold?
It is a pair $\mathcal{M}=\left(M, \mathcal{C}_{\mathcal{M}}^{\infty}\right)$, having the properties:
(1) M a second countable Hausdorff space;
(2) $\mathcal{C}_{\mathcal{M}}^{\infty}$ is a sheaf of graded commutative associative algebras, i.e.

- For $U \in \mathbf{O p}(M), \mathcal{C}_{\mathcal{M}}^{\infty}(U) \in \mathbf{g c A s}$;
- For $V \subseteq U$, we can restrict from $\mathcal{C}_{\mathcal{M}}^{\infty}(U)$ to $\mathcal{C}_{\mathcal{M}}^{\infty}(V)$;
- For every open cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ of any $U \in \mathbf{O p}(M)$, we may compare functions locally and glue local functions which agree on the overlaps.
- Some technical requirements (graded locally ringed space, etc.)
M becomes an ordinary n_{0}-dimensional manifold. Each $f \in \mathcal{C}_{\mathcal{M}}^{\infty}(U)$ has
its body $\underline{f} \in \mathcal{C}_{M}^{\infty}(U)$. Surjective graded algebra morphism.

Step 1: what is a graded manifold?
It is a pair $\mathcal{M}=\left(M, \mathcal{C}_{\mathcal{M}}^{\infty}\right)$, having the properties:
(1) M a second countable Hausdorff space;
(2) $\mathcal{C}_{\mathcal{M}}^{\infty}$ is a sheaf of graded commutative associative algebras, i.e.

- For $U \in \mathbf{O p}(M), \mathcal{C}_{\mathcal{M}}^{\infty}(U) \in \mathbf{g c A s}$;
- For $V \subseteq U$, we can restrict from $\mathcal{C}_{\mathcal{M}}^{\infty}(U)$ to $\mathcal{C}_{\mathcal{M}}^{\infty}(V)$;
- For every open cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ of any $U \in \mathbf{O p}(M)$, we may compare functions locally and glue local functions which agree on the overlaps.
- $\mathcal{C}_{\mathcal{M}}^{\infty}$ is locally isomorphic to the graded domain $\mathcal{C}_{\left(n_{j}\right)}^{\infty}$, where $\left(n_{j}\right)_{j \in \mathbb{Z}}$ is a sequence of non-negative integers (called the graded dimension of $\mathcal{M})$ such that $\sum_{j \in \mathbb{Z}} n_{j}<\infty$.
- Some technical requirements (graded locally ringed space, etc.).
its body $\underline{f} \in \mathcal{C}_{M}^{\infty}(U)$. Surjective graded algebra morphism.

Step 1: what is a graded manifold?
It is a pair $\mathcal{M}=\left(M, \mathcal{C}_{\mathcal{M}}^{\infty}\right)$, having the properties:
(1) M a second countable Hausdorff space;
(2) $\mathcal{C}_{\mathcal{M}}^{\infty}$ is a sheaf of graded commutative associative algebras, i.e.

- For $U \in \mathbf{O p}(M), \mathcal{C}_{\mathcal{M}}^{\infty}(U) \in \mathbf{g c A s}$;
- For $V \subseteq U$, we can restrict from $\mathcal{C}_{\mathcal{M}}^{\infty}(U)$ to $\mathcal{C}_{\mathcal{M}}^{\infty}(V)$;
- For every open cover $\left\{U_{\alpha}\right\}_{\alpha \in I}$ of any $U \in \mathbf{O p}(M)$, we may compare functions locally and glue local functions which agree on the overlaps.
- $\mathcal{C}_{\mathcal{M}}^{\infty}$ is locally isomorphic to the graded domain $\mathcal{C}_{\left(n_{j}\right)}^{\infty}$, where $\left(n_{j}\right)_{j \in \mathbb{Z}}$ is a sequence of non-negative integers (called the graded dimension of \mathcal{M}) such that $\sum_{j \in \mathbb{Z}} n_{j}<\infty$.
- Some technical requirements (graded locally ringed space, etc.).
M becomes an ordinary n_{0}-dimensional manifold. Each $f \in \mathcal{C}_{\mathcal{M}}^{\infty}(U)$ has its body $\underline{f} \in \mathcal{C}_{M}^{\infty}(U)$. Surjective graded algebra morphism.

Example (Graded domain)

- $\left(n_{j}\right)_{j \in \mathbb{Z}}$ a sequence of non-negative integers with $\sum_{j \in \mathbb{Z}} n_{j}<\infty$.
- Let $n_{*}:=\sum_{j \neq 0} n_{j}$ and consider variables $\left\{\xi_{\mu}\right\}_{\mu=1}^{n_{*}}$ with $\left|\xi_{\mu}\right| \in \mathbb{Z}$ and

$$
n_{j}=\#\left\{\mu \in\left\{1, \ldots, n_{*}\right\}| | \xi_{\mu} \mid=j\right\} .
$$

- These variables commute as $\xi_{\mu} \xi_{\nu}=(-1)^{\left|\xi_{\mu} \|\left|\xi_{\nu}\right|\right.} \xi_{\nu} \xi_{\mu}$.
- For each $U \in \mathbf{O p}\left(\mathbb{R}^{n_{0}}\right), f \in \mathcal{C}_{\left(n_{j}\right)}^{\infty}(U)$ of degree $|f|=k$ is the formal power series in $\left(\xi_{\mu}\right)_{\mu=1}^{n_{*}}$ with coefficients in $\mathcal{C}_{\mathbb{R}^{n_{0}}}^{\infty}(U)$ of degree k, i.e. each summand has the form
where $f \in \mathcal{C}_{\mathbb{R}^{n_{0}}}^{\infty}(U), \sum_{\mu=1}^{n_{*}} p_{\mu}\left|\xi_{\mu}\right|=k$ and $p_{\mu} \in\{0,1\}$ for $\left|\xi_{\mu}\right|$ odd.
- Multiplication is a product of formal power series + reordering using the graded commutativity of variables
- Sheaf restrictions restrict coefficient functions.

Example (Graded domain)

- $\left(n_{j}\right)_{j \in \mathbb{Z}}$ a sequence of non-negative integers with $\sum_{j \in \mathbb{Z}} n_{j}<\infty$.
- Let $n_{*}:=\sum_{j \neq 0} n_{j}$ and consider variables $\left\{\xi_{\mu}\right\}_{\mu=1}^{n_{*}}$ with $\left|\xi_{\mu}\right| \in \mathbb{Z}$ and

$$
n_{j}=\#\left\{\mu \in\left\{1, \ldots, n_{*}\right\}| | \xi_{\mu} \mid=j\right\} .
$$

- These variables commute as $\xi_{\mu} \xi_{\nu}=(-1)^{\left|\xi_{\mu}\right|\left|\xi_{\nu}\right|} \xi_{\nu} \xi_{\mu}$.
- For each $U \in \mathbf{O p}\left(\mathbb{R}^{n_{0}}\right), f \in \mathcal{C}_{\left(n_{j}\right)}^{\infty}(U)$ of degree $|f|=k$ is the formal power series in $\left(\xi_{\mu}\right)_{\mu=1}^{n_{*}}$ with coefficients in $\mathcal{C}_{\mathbb{R}^{n_{0}}}^{\infty}(U)$ of degree k, i.e. each summand has the form

$$
f\left(x^{1}, \ldots, x^{n_{0}}\right) \cdot\left(\xi_{1}\right)^{p_{1}} \ldots\left(\xi_{n_{*}}\right)^{p_{n_{*}}},
$$

where $f \in \mathcal{C}_{\mathbb{R}^{n_{0}}}^{\infty}(U), \sum_{\mu=1}^{n_{*}} p_{\mu}\left|\xi_{\mu}\right|=k$ and $p_{\mu} \in\{0,1\}$ for $\left|\xi_{\mu}\right|$ odd.

- Multiplication is a product of formal power series + reordering using the graded commutativity of variables
- Sheaf restrictions restrict coefficient functions.

Example (Graded domain)

- $\left(n_{j}\right)_{j \in \mathbb{Z}}$ a sequence of non-negative integers with $\sum_{j \in \mathbb{Z}} n_{j}<\infty$.
- Let $n_{*}:=\sum_{j \neq 0} n_{j}$ and consider variables $\left\{\xi_{\mu}\right\}_{\mu=1}^{n_{*}}$ with $\left|\xi_{\mu}\right| \in \mathbb{Z}$ and

$$
n_{j}=\#\left\{\mu \in\left\{1, \ldots, n_{*}\right\}| | \xi_{\mu} \mid=j\right\} .
$$

- These variables commute as $\xi_{\mu} \xi_{\nu}=(-1)^{\left|\xi_{\mu}\right|\left|\xi_{\nu}\right|} \xi_{\nu} \xi_{\mu}$.
- For each $U \in \mathbf{O p}\left(\mathbb{R}^{n_{0}}\right), f \in \mathcal{C}_{\left(n_{j}\right)}^{\infty}(U)$ of degree $|f|=k$ is the formal power series in $\left(\xi_{\mu}\right)_{\mu=1}^{n_{*}}$ with coefficients in $\mathcal{C}_{\mathbb{R}^{n_{0}}}^{\infty}(U)$ of degree k, i.e. each summand has the form

$$
f\left(x^{1}, \ldots, x^{n_{0}}\right) \cdot\left(\xi_{1}\right)^{p_{1}} \ldots\left(\xi_{n_{*}}\right)^{p_{n_{*}}},
$$

where $f \in \mathcal{C}_{\mathbb{R}^{n_{0}}}^{\infty}(U), \sum_{\mu=1}^{n_{*}} p_{\mu}\left|\xi_{\mu}\right|=k$ and $p_{\mu} \in\{0,1\}$ for $\left|\xi_{\mu}\right|$ odd.

- Multiplication is a product of formal power series + reordering using the graded commutativity of variables.
- Sheaf restrictions restrict coefficient functions.

Step 2: what is a graded vector bundle?
By a graded vector bundle \mathcal{E} over a graded manifold \mathcal{M}, we mean a locally freely and finitely generated sheaf $\Gamma_{\mathcal{E}}$ of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$-modules of a constant graded rank. In other words:

- For each $U \in O p(M), \Gamma_{\mathcal{E}}(U)$ is a graded vector space.
- For each $\psi \in \Gamma_{\mathcal{E}}(U)$ and $f \in \mathcal{C}_{\mathcal{M}}^{\infty}(U)$, we have

$$
f \psi \in \Gamma_{\varepsilon}(U), \text { such that }|f \psi|=|f|+|\psi|
$$

the action is \mathbb{R}-bilinear and compatible with the multiplication. $\Gamma_{\mathcal{E}}(U)$ is a graded $\mathcal{C}_{\mathcal{M}}^{\infty}(U)$-module.

- $\left.(f \psi)\right|_{V}=\left.\left.f\right|_{V} \psi\right|_{V}$ for any $V \subseteq U$.
- There is a finite-dimensional $K \in \mathbf{g V e c t}$, such that $\Gamma_{\mathcal{E}}$ is locally isomorphic to the sheaf

$$
U \mapsto \mathcal{C}_{\mathcal{M}}^{\infty}(U) \otimes_{\mathbb{R}} K .
$$

$\left(r_{j}\right)_{j \in \mathbb{Z}}:=\operatorname{gdim}(K)$ is called a graded rank of \mathcal{E}.

Step 2: what is a graded vector bundle?
By a graded vector bundle \mathcal{E} over a graded manifold \mathcal{M}, we mean a locally freely and finitely generated sheaf $\Gamma_{\mathcal{E}}$ of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$-modules of a constant graded rank.

- For each $U \in O p(M), \Gamma_{\mathcal{E}}(U)$ is a graded vector space.
- For each $\psi \in \Gamma_{\mathcal{E}}(U)$ and $f \in \mathcal{C}_{\mathcal{M}}^{\infty}(U)$, we have
the action is \mathbb{R}-bilinear and compatible with the multiplication. $\Gamma_{\mathcal{E}}(U)$ is a graded $\mathcal{C}_{\mathcal{M}}^{\infty}(U)$-module.
- $\left.(f \psi)\right|_{V}=\left.\left.f\right|_{V} \psi\right|_{V}$ for any $V \subseteq U$.
- There is a finite-dimensional $K \in \mathbf{g V e c t}$, such that $\Gamma_{\mathcal{E}}$ is locally isomorphic to the sheaf

$\left(r_{j}\right)_{j \in \mathbb{Z}}:=\operatorname{gdim}(K)$ is called a graded rank of \mathcal{E}

Step 2: what is a graded vector bundle?
By a graded vector bundle \mathcal{E} over a graded manifold \mathcal{M}, we mean a locally freely and finitely generated sheaf $\Gamma_{\mathcal{E}}$ of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$-modules of a constant graded rank. In other words:

- For each $U \in \mathbf{O p}(M), \Gamma_{\mathcal{E}}(U)$ is a graded vector space.
- For each $\psi \in \Gamma_{\mathcal{E}}(U)$ and $f \in \mathcal{C}_{\mathcal{M}}^{\infty}(U)$, we have

$$
f \psi \in \Gamma_{\mathcal{E}}(U), \text { such that }|f \psi|=|f|+|\psi|,
$$

the action is \mathbb{R}-bilinear and compatible with the multiplication.
$\Gamma_{\mathcal{E}}(U)$ is a graded $\mathcal{C}_{\mathcal{M}}^{\infty}(U)$-module.

- $\left.(f \psi)\right|_{V}=\left.\left.f\right|_{V} \psi\right|_{V}$ for any $V \subseteq U$.
- There is a finite-dimensional $K \in g$ Vect, such that $\Gamma_{\mathcal{E}}$ is locally
isomorphic to the sheaf
$\left(r_{j}\right)_{j \in \mathbb{Z}}:=\operatorname{gdim}(K)$ is called a graded rank of \mathcal{E}

Step 2: what is a graded vector bundle?
By a graded vector bundle \mathcal{E} over a graded manifold \mathcal{M}, we mean a locally freely and finitely generated sheaf $\Gamma_{\mathcal{E}}$ of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$-modules of a constant graded rank. In other words:

- For each $U \in \mathbf{O p}(M), \Gamma_{\mathcal{E}}(U)$ is a graded vector space.
- For each $\psi \in \Gamma_{\mathcal{E}}(U)$ and $f \in \mathcal{C}_{\mathcal{M}}^{\infty}(U)$, we have

$$
f \psi \in \Gamma_{\mathcal{E}}(U), \text { such that }|f \psi|=|f|+|\psi|,
$$

the action is \mathbb{R}-bilinear and compatible with the multiplication.
$\Gamma_{\mathcal{E}}(U)$ is a graded $\mathcal{C}_{\mathcal{M}}^{\infty}(U)$-module.

- $\left.(f \psi)\right|_{V}=\left.\left.f\right|_{V} \psi\right|_{V}$ for any $V \subseteq U$.
- There is a finite-dimensional $K \in \mathbf{g V e c t}$, such that $\Gamma_{\mathcal{E}}$ is locally isomorphic to the sheaf

$$
U \mapsto \mathcal{C}_{\mathcal{M}}^{\infty}(U) \otimes_{\mathbb{R}} K
$$

$\left(r_{j}\right)_{j \in \mathbb{Z}}:=\operatorname{gdim}(K)$ is called a graded rank of \mathcal{E}.

Equivalently, for each $m \in M$, there exists a local frame $\left\{\Phi_{\mu}\right\}_{\mu=1}^{r}$ over $U \ni m$ for \mathcal{E}, that is
(1) $\Phi_{\mu} \in \Gamma_{\mathcal{E}}(U), r_{j}=\#\left\{\mu \in\{1, \ldots, r\}| | \Phi_{\mu} \mid=j\right\}$.
(2) Each $\psi \in \Gamma_{\mathcal{E}}(U)$ can be written as

$$
\psi=f^{\mu} \Phi_{\mu}
$$

for unique functions $f^{\mu} \in \mathcal{C}_{\mathcal{M}}^{\infty}(U)$ with $\left|f^{\mu}\right|=|\psi|-\left|\Phi_{\mu}\right|$.
Example (Dual vector bundle)
Let \mathcal{E} be a graded vector bundle over M. For each $U \in \mathbf{O p}(M)$, set

Then $\Gamma_{\mathcal{E}^{*}}$ defines a graded vector bundle \mathcal{E}^{*} called the dual to \mathcal{E}. If $\left(r_{j}\right)_{j \in \mathbb{Z}}=\operatorname{grk}(\mathcal{E})$, the $\operatorname{grk}\left(\mathcal{E}^{*}\right)=\left(r_{-j}\right)_{j \in \mathbb{Z}} \cdot\left(\mathcal{E}^{*}\right)^{*} \cong \mathcal{E}$

Equivalently, for each $m \in M$, there exists a local frame $\left\{\Phi_{\mu}\right\}_{\mu=1}^{r}$ over $U \ni m$ for \mathcal{E}, that is
(1) $\Phi_{\mu} \in \Gamma_{\mathcal{E}}(U), r_{j}=\#\left\{\mu \in\{1, \ldots, r\}| | \Phi_{\mu} \mid=j\right\}$.
(2) Each $\psi \in \Gamma_{\mathcal{E}}(U)$ can be written as

$$
\psi=f^{\mu} \Phi_{\mu}
$$

for unique functions $f^{\mu} \in \mathcal{C}_{\mathcal{M}}^{\infty}(U)$ with $\left|f^{\mu}\right|=|\psi|-\left|\Phi_{\mu}\right|$.

Example (Dual vector bundle)

Let \mathcal{E} be a graded vector bundle over M. For each $U \in \mathbf{O p}(M)$, set

$$
\begin{aligned}
\left(\Gamma_{\mathcal{E}^{*}}(U)\right)_{k}:=\left\{\xi: \Gamma_{\mathcal{E}}(U) \rightarrow \mathcal{C}_{\mathcal{M}}^{\infty}(U) \mid\right. & |\xi(\psi)|=|\psi|+k, \\
& \xi \text { is } \mathbb{R} \text {-linear } \\
& \left.\xi(f \psi)=(-1)^{|f| k} f \xi(\psi)\right\} .
\end{aligned}
$$

Then $\Gamma_{\mathcal{E}^{*}}$ defines a graded vector bundle \mathcal{E}^{*} called the dual to \mathcal{E}. If $\left(r_{j}\right)_{j \in \mathbb{Z}}=\operatorname{grk}(\mathcal{E})$, the $\operatorname{grk}\left(\mathcal{E}^{*}\right)=\left(r_{-j}\right)_{j \in \mathbb{Z}} .\left(\mathcal{E}^{*}\right)^{*} \cong \mathcal{E}$.

Example (Tangent bundle)

For every graded manifold \mathcal{M} and $U \in \mathbf{O p}(M)$, let

$$
\mathfrak{X}_{\mathcal{M}}(U):=\operatorname{gDer}\left(\mathcal{C}_{\mathcal{M}}^{\infty}(U)\right) .
$$

Section $X \in \mathfrak{X}_{\mathcal{M}}(U)$ of degree $|X|$ is called a vector field on \mathcal{M} of degree $|X|$ satisfying

$$
X(f g)=X(f) g+(-1)^{|X||f|} f X(g)
$$

By setting $\Gamma_{T \mathcal{M}}:=\mathfrak{X}_{\mathcal{M}}$ we obtain the tangent bundle to \mathcal{M}. If $\left(n_{j}\right)_{j \in \mathbb{Z}}=\operatorname{gdim}(\mathcal{M})$, then $\operatorname{grk}(T \mathcal{M})=\left(n_{-j}\right)_{j \in \mathbb{Z}}$.

- Cotangent bundle is $T^{*} \mathcal{M}:=(T \mathcal{M})^{*} . \Omega_{\mathcal{M}}^{1}:=\Gamma_{T^{*} \mathcal{M}}$.
- For any graded vector bundle \mathcal{E} and any $\ell \in \mathbb{Z}$, we set

$$
\Gamma_{\varepsilon[g]}(U):=\left(\Gamma_{\varepsilon}(U)\right)[\ell] .
$$

Modify $\mathcal{C}_{\mathcal{M}}^{\infty}(U)$-module structure: $f \triangleright^{\prime} \psi:=(-1)^{|f| \ell} f \psi . \mathcal{E}[\ell]$ is called the degree shift of \mathcal{E}

Example (Tangent bundle)

For every graded manifold \mathcal{M} and $U \in \mathbf{O p}(M)$, let

$$
\mathfrak{X}_{\mathcal{M}}(U):=g \operatorname{Der}\left(\mathcal{C}_{\mathcal{M}}^{\infty}(U)\right) .
$$

Section $X \in \mathfrak{X}_{\mathcal{M}}(U)$ of degree $|X|$ is called a vector field on \mathcal{M} of degree $|X|$ satisfying

$$
X(f g)=X(f) g+(-1)^{|X||f|} f X(g)
$$

By setting $\Gamma_{T \mathcal{M}}:=\mathfrak{X}_{\mathcal{M}}$ we obtain the tangent bundle to \mathcal{M}. If $\left(n_{j}\right)_{j \in \mathbb{Z}}=\operatorname{gdim}(\mathcal{M})$, then $\operatorname{grk}(T \mathcal{M})=\left(n_{-j}\right)_{j \in \mathbb{Z}}$.

- Cotangent bundle is $T^{*} \mathcal{M}:=(T \mathcal{M})^{*} . \Omega_{\mathcal{M}}^{1}:=\Gamma_{T^{*} \mathcal{M}}$.
- For any graded vector bundle \mathcal{E} and any $\ell \in \mathbb{Z}$, we set
$\Gamma_{\mathcal{E}[\ell]}(U):=\left(\Gamma_{\mathcal{E}}(U)\right)[\ell]$.
Modify $\mathcal{C}_{\mathcal{M}}(U)$-module structure: $f D^{\prime} \psi:=(-1)^{f l \ell} f \psi \cdot \mathcal{E}[\ell]$ is called the degree shift of \mathcal{E}

Example (Tangent bundle)

For every graded manifold \mathcal{M} and $U \in \mathbf{O p}(M)$, let

$$
\mathfrak{X}_{\mathcal{M}}(U):=g \operatorname{Der}\left(\mathcal{C}_{\mathcal{M}}^{\infty}(U)\right) .
$$

Section $X \in \mathfrak{X}_{\mathcal{M}}(U)$ of degree $|X|$ is called a vector field on \mathcal{M} of degree $|X|$ satisfying

$$
X(f g)=X(f) g+(-1)^{|X||f|} f X(g)
$$

By setting $\Gamma_{T \mathcal{M}}:=\mathfrak{X}_{\mathcal{M}}$ we obtain the tangent bundle to \mathcal{M}. If $\left(n_{j}\right)_{j \in \mathbb{Z}}=\operatorname{gdim}(\mathcal{M})$, then $\operatorname{grk}(T \mathcal{M})=\left(n_{-j}\right)_{j \in \mathbb{Z}}$.

- Cotangent bundle is $T^{*} \mathcal{M}:=(T \mathcal{M})^{*} . \Omega_{\mathcal{M}}^{1}:=\Gamma_{T^{*} \mathcal{M}}$.
- For any graded vector bundle \mathcal{E} and any $\ell \in \mathbb{Z}$, we set

$$
\Gamma_{\mathcal{E}[\ell]}(U):=\left(\Gamma_{\mathcal{E}}(U)\right)[\ell] .
$$

Modify $\mathcal{C}_{\mathcal{M}}^{\infty}(U)$-module structure: $f \triangleright^{\prime} \psi:=(-1)^{|f| \ell} f \psi$. $\mathcal{E}[\ell]$ is called the degree shift of \mathcal{E}.
\mathcal{M} a graded manifold and $p \in \mathbb{N}$. We say that ω is a p-form on \mathcal{M} of degree $|\omega|$ and write $\omega \in \Omega_{\mathcal{M}}^{p}(M)$, if

- $\omega: \mathfrak{X}_{\mathcal{M}}(M) \times \cdots \times \mathfrak{X}_{\mathcal{M}}(M) \rightarrow \mathcal{C}_{\mathcal{M}}^{\infty}(M)$ is p-linear of degree $|\omega|$.
- $\omega\left(f X_{1}, \ldots, X_{p}\right)=(-1)^{|f||\omega|} f \omega\left(X_{1}, \ldots, X_{p}\right)$.
- $\omega\left(\ldots, X_{i}, X_{i+1}, \ldots\right)=(-1)^{\left|X_{i}\right|\left|X_{i+1}\right|} \omega\left(\ldots, X_{i+1}, X_{i}, \ldots\right)$.

There is a way to make it into a sheaf $\Omega_{\mathcal{M}}^{p}$ of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$-modules.
Basic facts:
(1) We identify $\Omega_{\mathcal{M}}^{0} \equiv \mathcal{C}_{\mathcal{M}}^{\infty}$;
(2) There is $\Lambda: \Omega_{\mathcal{M}}^{p}(M) \times \Omega_{\mathcal{M}}^{q}(M) \rightarrow \Omega_{\mathcal{M}}^{p+q}(M)$.
(3) Lie derivative $\mathcal{L}_{X}: \Omega_{\mathcal{M}}^{p}(M) \rightarrow \Omega_{\mathcal{M}}^{p}(M),\left|\mathcal{L}_{X}(\omega)\right|=|X|+|\omega|$
(-) Differential $\mathrm{d}: \Omega_{\mathcal{M}}^{p}(M) \rightarrow \Omega_{\mathcal{M}}^{p+1}(M),|\mathrm{d} \omega|=|\omega|$.
© Interior product + full set of Cartan relations.
$\Omega_{\mathcal{M}}^{p}$ can be equivalently obtained as a subsheaf of $\Omega_{\mathcal{M}}:=C_{T[1+s] \mathcal{M}}^{\infty}$.
where $s \in \mathbb{N}_{0}$ is large enough even, and $T[1+s] \mathcal{M}$ is the total space of shifted tangent bundle.
\mathcal{M} a graded manifold and $p \in \mathbb{N}$. We say that ω is a p-form on \mathcal{M} of degree $|\omega|$ and write $\omega \in \Omega_{\mathcal{M}}^{p}(M)$, if

- $\omega: \mathfrak{X}_{\mathcal{M}}(M) \times \cdots \times \mathfrak{X}_{\mathcal{M}}(M) \rightarrow \mathcal{C}_{\mathcal{M}}^{\infty}(M)$ is p-linear of degree $|\omega|$.
- $\omega\left(f X_{1}, \ldots, X_{p}\right)=(-1)^{|f||\omega|} f \omega\left(X_{1}, \ldots, X_{p}\right)$.
- $\omega\left(\ldots, X_{i}, X_{i+1}, \ldots\right)=(-1)^{\left|X_{i}\right|\left|X_{i+1}\right|} \omega\left(\ldots, X_{i+1}, X_{i}, \ldots\right)$.

There is a way to make it into a sheaf $\Omega_{\mathcal{M}}^{p}$ of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$-modules. Basic facts:
(1) We identify $\Omega_{\mathcal{M}}^{0} \equiv \mathcal{C}_{\mathcal{M}}^{\infty}$;
(2) There is $\wedge: \Omega_{\mathcal{M}}^{p}(M) \times \Omega_{\mathcal{M}}^{q}(M) \rightarrow \Omega_{\mathcal{M}}^{p+q}(M)$.
(3) Lie derivative $\mathcal{L}_{X}: \Omega_{\mathcal{M}}^{p}(M) \rightarrow \Omega_{\mathcal{M}}^{p}(M),\left|\mathcal{L}_{X}(\omega)\right|=|X|+|\omega|$.
(- Differential $\mathrm{d}: \Omega_{\mathcal{M}}^{p}(M) \rightarrow \Omega_{\mathcal{M}}^{p+1}(M),|\mathrm{d} \omega|=|\omega|$.
(0) Interior product + full set of Cartan relations.
where $s \in \mathbb{N}_{0}$ is large enough even, and $T[1+s] \mathcal{M}$ is the total space of shifted tangent bundle.
\mathcal{M} a graded manifold and $p \in \mathbb{N}$. We say that ω is a p-form on \mathcal{M} of degree $|\omega|$ and write $\omega \in \Omega_{\mathcal{M}}^{p}(M)$, if

- $\omega: \mathfrak{X}_{\mathcal{M}}(M) \times \cdots \times \mathfrak{X}_{\mathcal{M}}(M) \rightarrow \mathcal{C}_{\mathcal{M}}^{\infty}(M)$ is p-linear of degree $|\omega|$.
- $\omega\left(f X_{1}, \ldots, X_{p}\right)=(-1)^{|f||\omega|} f \omega\left(X_{1}, \ldots, X_{p}\right)$.
- $\omega\left(\ldots, X_{i}, X_{i+1}, \ldots\right)=(-1)^{\left|X_{i}\right|\left|X_{i+1}\right|} \omega\left(\ldots, X_{i+1}, X_{i}, \ldots\right)$.

There is a way to make it into a sheaf $\Omega_{\mathcal{M}}^{p}$ of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$-modules. Basic facts:
(c) We identify $\Omega_{\mathcal{M}}^{0} \equiv \mathcal{C}_{\mathcal{M}}^{\infty}$;
(2) There is $\wedge: \Omega_{\mathcal{M}}^{p}(M) \times \Omega_{\mathcal{M}}^{q}(M) \rightarrow \Omega_{\mathcal{M}}^{p+q}(M)$.
(3) Lie derivative $\mathcal{L}_{X}: \Omega_{\mathcal{M}}^{p}(M) \rightarrow \Omega_{\mathcal{M}}^{p}(M),\left|\mathcal{L}_{X}(\omega)\right|=|X|+|\omega|$.
(9) Differential $\mathrm{d}: \Omega_{\mathcal{M}}^{p}(M) \rightarrow \Omega_{\mathcal{M}}^{p+1}(M),|\mathrm{d} \omega|=|\omega|$.

- Interior product + full set of Cartan relations.
$\Omega_{\mathcal{M}}^{p}$ can be equivalently obtained as a subsheaf of $\Omega_{\mathcal{M}}:=\mathcal{C}_{T[1+s] \mathcal{M}}^{\infty}$, where $s \in \mathbb{N}_{0}$ is large enough even, and $T[1+s] \mathcal{M}$ is the total space of shifted tangent bundle.

Step 3: what is a fiber-wise metric?

Let \mathcal{E} be a graded vector bundle over \mathcal{M} and $\ell \in \mathbb{Z}$.
$g_{\mathcal{E}}: \Gamma_{\mathcal{E}}(M) \rightarrow \Gamma_{\mathcal{E}^{*}}(M)$ is a fiber-wise metric on \mathcal{E} of degree ℓ, if

- $g_{\mathcal{E}}$ is a $\mathcal{C}_{\mathcal{M}}^{\infty}(M)$-linear isomorphism of degree ℓ, i.e.

$$
\left|g_{\varepsilon}(\psi)\right|=|\psi|+\ell, g_{\varepsilon}(f \psi)=(-1)^{|f| \ell} f_{g \varepsilon}(\psi) .
$$

- $\left\langle\psi, \psi^{\prime}\right\rangle_{\mathcal{E}}:=(-1)^{(|\psi|+\ell) \ell}\left[g_{\mathcal{E}}(\psi)\right]\left(\psi^{\prime}\right)$ satisfies

$$
\left\langle\psi, \psi^{\prime}\right\rangle_{\mathcal{E}}=(-1)^{(|\psi|+\ell)\left(\left|\psi^{\prime}\right|+\ell\right)}\left\langle\psi^{\prime}, \psi\right\rangle_{\mathcal{E}} .
$$

It does not exist on every \mathcal{E}, even for $\ell=0$.

Example

Let $\mathcal{E}:=T \mathcal{M}[\ell] \oplus T^{*} \mathcal{M}$. One has $\mathcal{E}^{*} \cong T^{*} \mathcal{M}[-\ell] \oplus T \mathcal{M}$. Set

$$
g_{\varepsilon}(X, \xi):=(\xi, X) .\left|g_{\varepsilon}(X, \xi)\right|=|X|=|(X, \xi)|+\ell .
$$

Obvious isomorphism, the corresponding form is

$$
\langle(X, 5),(Y, \eta)\rangle_{\varepsilon}=\overleftarrow{(Y)+(-1)^{X X \| Y} \eta(X) .}
$$

Step 3: what is a fiber-wise metric?
Let \mathcal{E} be a graded vector bundle over \mathcal{M} and $\ell \in \mathbb{Z}$. $g_{\mathcal{E}}: \Gamma_{\mathcal{E}}(M) \rightarrow \Gamma_{\mathcal{E}^{*}}(M)$ is a fiber-wise metric on \mathcal{E} of degree ℓ, if

- $g_{\mathcal{E}}$ is a $\mathcal{C}_{\mathcal{M}}^{\infty}(M)$-linear isomorphism of degree ℓ, i.e.

$$
\left|g_{\mathcal{E}}(\psi)\right|=|\psi|+\ell, g_{\mathcal{E}}(f \psi)=(-1)^{|f| \ell} g_{\mathcal{E}}(\psi) .
$$

- $\left\langle\psi, \psi^{\prime}\right\rangle_{\mathcal{E}}:=(-1)^{(|\psi|+\ell) \ell}\left[g_{\mathcal{E}}(\psi)\right]\left(\psi^{\prime}\right)$ satisfies

$$
\left\langle\psi, \psi^{\prime}\right\rangle_{\mathcal{E}}=(-1)^{(|\psi|+\ell)\left(\left|\psi^{\prime}\right|+\ell\right)}\left\langle\psi^{\prime}, \psi\right\rangle_{\mathcal{E}} .
$$

It does not exist on every \mathcal{E}, even for $\ell=0$.

> Example

Obvious isomorphism, the corresponding form is

Step 3: what is a fiber-wise metric?
Let \mathcal{E} be a graded vector bundle over \mathcal{M} and $\ell \in \mathbb{Z}$.
$g_{\mathcal{E}}: \Gamma_{\mathcal{E}}(M) \rightarrow \Gamma_{\mathcal{E}^{*}}(M)$ is a fiber-wise metric on \mathcal{E} of degree ℓ, if

- $g_{\mathcal{E}}$ is a $\mathcal{C}_{\mathcal{M}}^{\infty}(M)$-linear isomorphism of degree ℓ, i.e.

$$
\left|g_{\mathcal{E}}(\psi)\right|=|\psi|+\ell, g_{\mathcal{E}}(f \psi)=(-1)^{|f| \ell} g_{\mathcal{E}}(\psi)
$$

- $\left\langle\psi, \psi^{\prime}\right\rangle_{\mathcal{E}}:=(-1)^{(|\psi|+\ell) \ell}\left[g_{\mathcal{E}}(\psi)\right]\left(\psi^{\prime}\right)$ satisfies

$$
\left\langle\psi, \psi^{\prime}\right\rangle_{\mathcal{E}}=(-1)^{(|\psi|+\ell)\left(\left|\psi^{\prime}\right|+\ell\right)}\left\langle\psi^{\prime}, \psi\right\rangle_{\mathcal{E}} .
$$

It does not exist on every \mathcal{E}, even for $\ell=0$.

Example

Let $\mathcal{E}:=T \mathcal{M}[\ell] \oplus T^{*} \mathcal{M}$. One has $\mathcal{E}^{*} \cong T^{*} \mathcal{M}[-\ell] \oplus T \mathcal{M}$. Set

$$
g_{\mathcal{E}}(X, \xi):=(\xi, X) .\left|g_{\mathcal{E}}(X, \xi)\right|=|X|=|(X, \xi)|+\ell .
$$

Obvious isomorphism, the corresponding form is

$$
\langle(X, \xi),(Y, \eta)\rangle_{\mathcal{E}}=\xi(Y)+(-1)^{|X||Y|} \eta(X)
$$

Step 4: what is a graded Courant algebroid?

A graded Courant algebroid of degree ℓ is $\left(\mathcal{E}, \rho, g_{\mathcal{E}},[\cdot, \cdot]_{\mathcal{E}}\right)$, where

- \mathcal{E} is a vector bundle over \mathcal{M}.
- $\rho: \Gamma_{\mathcal{E}}(M) \rightarrow \mathfrak{X}_{\mathcal{M}}(M)$ is $\mathcal{C}_{\mathcal{M}}^{\infty}(M)$-linear of degree ℓ.
- $g_{\mathcal{E}}$ is a fiber-wise metric on \mathcal{E} of degree ℓ.
- $[\cdot, \cdot]_{\mathcal{E}}$ is an \mathbb{R}-bilinear bracket of degree ℓ, that is

$$
\left|\left[\psi, \psi^{\prime}\right] \varepsilon\right|=|\psi|+\left|\psi^{\prime}\right|+\ell .
$$

- There holds a bunch of axioms:
(1) Leibniz rule: $\left[\psi, f \psi^{\prime}\right]_{\mathcal{E}}= \pm(\rho(\psi) f) \psi^{\prime} \pm f\left[\psi, \psi^{\prime}\right]_{\mathcal{E}}$;
(3) Metric compatibility:
(3) Jacobi identity: $\left[\psi,\left[\psi^{\prime}, \psi^{\prime \prime}\right]_{\mathcal{E}}\right]_{\mathcal{E}}=\left[\left[\psi, \psi^{\prime}\right]_{\mathcal{E}}, \psi^{\prime \prime}\right]_{\mathcal{E}} \pm\left[\psi^{\prime},\left[\psi, \psi^{\prime \prime}\right]_{\mathcal{E}}\right]_{\mathcal{E}}$
- Almost skew-symmetry:
$\left[\psi, \psi^{\prime}\right]_{\varepsilon} \pm\left[\psi^{\prime}, \psi\right]_{\varepsilon}= \pm\left(g_{\varepsilon}^{-1} \circ \rho^{\top} \circ \mathrm{d}\right)\left(\left\langle\psi, \psi^{\prime}\right\rangle \varepsilon\right)$
All \pm are signs which have to be carefully determined.

Step 4: what is a graded Courant algebroid?
A graded Courant algebroid of degree ℓ is $\left(\mathcal{E}, \rho, g_{\mathcal{E}},[\cdot, \cdot]_{\mathcal{E}}\right)$, where

- \mathcal{E} is a vector bundle over \mathcal{M}.
- $\rho: \Gamma_{\mathcal{E}}(M) \rightarrow \mathfrak{X}_{\mathcal{M}}(M)$ is $\mathcal{C}_{\mathcal{M}}^{\infty}(M)$-linear of degree ℓ.
- $g_{\mathcal{E}}$ is a fiber-wise metric on \mathcal{E} of degree ℓ.
- $[\cdot, \cdot]_{\mathcal{E}}$ is an \mathbb{R}-bilinear bracket of degree ℓ, that is

$$
\left|\left[\psi, \psi^{\prime}\right] \mathcal{E}\right|=|\psi|+\left|\psi^{\prime}\right|+\ell .
$$

- There holds a bunch of axioms:
(2) Metric compatibility
- Jacobi identity
- Almost skew-symmetry

All \pm are signs which have to be carefully determined.

Step 4: what is a graded Courant algebroid?
A graded Courant algebroid of degree ℓ is $\left(\mathcal{E}, \rho, g_{\mathcal{E}},[\cdot, \cdot]_{\mathcal{E}}\right)$, where

- \mathcal{E} is a vector bundle over \mathcal{M}.
- $\rho: \Gamma_{\mathcal{E}}(M) \rightarrow \mathfrak{X}_{\mathcal{M}}(M)$ is $\mathcal{C}_{\mathcal{M}}^{\infty}(M)$-linear of degree ℓ.
- $g_{\mathcal{E}}$ is a fiber-wise metric on \mathcal{E} of degree ℓ.
- $[\cdot, \cdot]_{\mathcal{E}}$ is an \mathbb{R}-bilinear bracket of degree ℓ, that is

$$
\left|\left[\psi, \psi^{\prime}\right] \mathcal{E}\right|=|\psi|+\left|\psi^{\prime}\right|+\ell .
$$

- There holds a bunch of axioms:
(1) Leibniz rule: $\left[\psi, f \psi^{\prime}\right]_{\mathcal{E}}= \pm(\rho(\psi) f) \psi^{\prime} \pm f\left[\psi, \psi^{\prime}\right]_{\mathcal{E}}$;
(2) Metric compatibility:

$$
\rho(\psi)\left\langle\psi^{\prime}, \psi^{\prime \prime}\right\rangle_{\mathcal{E}}= \pm\left\langle\left[\psi, \psi^{\prime}\right]_{\mathcal{E}}, \psi^{\prime \prime}\right\rangle_{\mathcal{E}} \pm\left\langle\psi^{\prime},\left[\psi, \psi^{\prime \prime}\right]_{\mathcal{E}}\right\rangle_{\mathcal{E}}
$$

(3) Jacobi identity: $\left[\psi,\left[\psi^{\prime}, \psi^{\prime \prime}\right]_{\mathcal{E}}\right]_{\mathcal{E}}=\left[\left[\psi, \psi^{\prime}\right]_{\mathcal{E}}, \psi^{\prime \prime}\right]_{\mathcal{E}} \pm\left[\psi^{\prime},\left[\psi, \psi^{\prime \prime}\right]_{\mathcal{E}}\right]_{\mathcal{E}}$.
(3) Almost skew-symmetry:

$$
\left[\psi, \psi^{\prime}\right]_{\mathcal{E}} \pm\left[\psi^{\prime}, \psi\right]_{\mathcal{E}}= \pm\left(g_{\mathcal{E}}^{-1} \circ \rho^{T} \circ \mathrm{~d}\right)\left(\left\langle\psi, \psi^{\prime}\right\rangle_{\mathcal{E}}\right)
$$

All \pm are signs which have to be carefully determined.

Example (Degree ℓ graded Dorfman bracket)

Consider $\mathcal{E}:=T \mathcal{M}[\ell] \oplus T^{*} \mathcal{M}$ and $H \in \Omega_{\mathcal{M}}^{3}(M),|H|=-\ell$.

- Set $\rho(X, \xi)=X$. Note that $|\rho(X, \xi)|=|X|=|(X, \xi)|+\ell$.
- Choose $g_{\mathcal{E}}$ as in the previous example.
- The degree ℓ graded Dorfman bracket takes the form
$[(X, \xi),(Y, \eta)]_{D}^{H}=\left([X, Y],(-1)^{|X| \ell} \mathcal{L}_{X} \eta-(-1)^{|X|+\ell}(\mathrm{d} \xi)(Y, \cdot)+H(X, Y, \cdot)\right)$
- This defines a GCA of degree ℓ, iff $\mathrm{d} H=0$.

For any $\omega \in \Omega_{\mathcal{M}}^{2}(M)$ with $|\omega|=-\ell$, we have $\omega^{b}: \mathfrak{X}_{\mathcal{M}}(M)[\ell] \rightarrow \Omega_{\mathcal{M}}^{1}(M)$ of degree zero. Let $e^{\omega}(X, \xi)=\left(X, \xi+\omega^{b}(X)\right)$. Then

$$
\left[\psi, \psi^{\prime}\right]_{D}^{H+d \omega}=e^{-\omega}\left[e^{\omega}(\psi), e^{\omega}\left(\psi^{\prime}\right)\right]_{D}^{H}
$$

The above example represents the equivalence class of exact GCA's of degree ℓ corresponding to the Ševera class $[H] \in H_{-\ell}^{3}(\mathcal{M})$

Example (Degree ℓ graded Dorfman bracket)

Consider $\mathcal{E}:=T \mathcal{M}[\ell] \oplus T^{*} \mathcal{M}$ and $H \in \Omega_{\mathcal{M}}^{3}(M),|H|=-\ell$.

- Set $\rho(X, \xi)=X$. Note that $|\rho(X, \xi)|=|X|=|(X, \xi)|+\ell$.
- Choose $g_{\mathcal{E}}$ as in the previous example.
- The degree ℓ graded Dorfman bracket takes the form

$$
[(X, \xi),(Y, \eta)]_{D}^{H}=\left([X, Y],(-1)^{|X| \ell} \mathcal{L}_{X} \eta-(-1)^{|X|+\ell}(\mathrm{d} \xi)(Y, \cdot)+H(X, Y, \cdot)\right)
$$

- This defines a GCA of degree ℓ, iff $\mathrm{d} H=0$.

For any $\omega \in \Omega_{\mathcal{M}}^{2}(M)$ with $|\omega|=-\ell$, we have $\omega^{b}: \mathfrak{X}_{\mathcal{M}}(M)[\ell] \rightarrow \Omega_{\mathcal{M}}^{1}(M)$ of degree zero. Let $e^{\omega}(X, \xi)=\left(X, \xi+\omega^{b}(X)\right)$. Then

$$
\left[\psi, \psi^{\prime}\right]_{D}^{H+d \omega}=e^{-\omega}\left[e^{\omega}(\psi), e^{\omega}\left(\psi^{\prime}\right)\right]_{D}^{H}
$$

The above example represents the equivalence class of exact GCA's of degree ℓ corresponding to the Ševera class $[H] \in H_{-\ell}^{3}(\mathcal{M})$

Step 5: what are Dirac structures?

- A subbundle $\mathcal{L} \subseteq \mathcal{E}$ is a subsheaf $\Gamma_{\mathcal{L}} \subseteq \Gamma_{\mathcal{E}}$ of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$-modules, compatible with a local trivialization of \mathcal{E}.
- For each $m \in M$, there is a fiber $\mathcal{E}_{m} \in \operatorname{gVect}$ of $\mathcal{E}, \mathcal{E}_{m} \cong K$.
- $g_{\mathcal{E}}$ induces a bilinear form $\langle\cdot, \cdot\rangle_{m}: \mathcal{E}_{m} \times \mathcal{E}_{m} \rightarrow \mathbb{R}$ of degree ℓ.
- Each subbundle \mathcal{L} has an orthogonal complement $\mathcal{L}^{\perp} \subseteq \mathcal{E}$.

Definition (Dirac structure)

A subbundle $\mathcal{L} \subseteq \mathcal{E}$ of GCA is called a Dirac structure, if
(T) $\mathcal{L} \subseteq \mathcal{L}^{\perp}$;
(2) $\forall m \in M, \mathcal{L}_{m}$ is maximal isotropic in \mathcal{E}_{m} w.r.t. $\langle\cdot, \cdot\rangle_{m}$;
(0) $\left[\Gamma_{\mathcal{L}}(M), \Gamma_{\mathcal{L}}(M)\right]_{\mathcal{E}} \subseteq \Gamma_{\mathcal{L}}(M)$.

- If $\ell(\bmod 4) \neq 0$, first two conditions are $\mathcal{L}=\mathcal{L}^{\perp}$. Maximality is equivalent to conditions on $\operatorname{grk}(\mathcal{L})$.
- $\mathcal{L}_{m} \subseteq \mathcal{L}_{m}^{\prime}$ does not imply $\mathcal{L} \subseteq \mathcal{L}^{\prime}$.

Step 5: what are Dirac structures?

- A subbundle $\mathcal{L} \subseteq \mathcal{E}$ is a subsheaf $\Gamma_{\mathcal{L}} \subseteq \Gamma_{\mathcal{E}}$ of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$-modules, compatible with a local trivialization of \mathcal{E}.
- For each $m \in M$, there is a fiber $\mathcal{E}_{m} \in \mathbf{g V e c t}$ of $\mathcal{E}, \mathcal{E}_{m} \cong K$.
- $g_{\mathcal{E}}$ induces a bilinear form $\langle\cdot, \cdot\rangle_{m}: \mathcal{E}_{m} \times \mathcal{E}_{m} \rightarrow \mathbb{R}$ of degree ℓ.
- Each subbundle \mathcal{L} has an orthogonal complement $\mathcal{L}^{\perp} \subseteq \mathcal{E}$.

Definition (Dirac structure)

\square
\square
(2) $\forall m \in M, \mathcal{L}_{m}$ is maximal isotropic in \mathcal{E}_{m} w.r.t. $\langle\cdot, \cdot\rangle_{m}$;

- $\left[\Gamma_{\mathcal{L}}(M), \Gamma_{\mathcal{L}}(M)\right]_{\mathcal{E}} \subseteq \Gamma_{\mathcal{L}}(M)$
- If $\ell(\bmod 4) \neq 0$, first two conditions are $\mathcal{L}=\mathcal{L}^{\perp}$. Maximality is equivalent to conditions on $\operatorname{grk}(\mathcal{L})$.
- $\mathcal{L}_{m} \subseteq \mathcal{L}_{m}^{\prime}$ does not imply $\mathcal{L} \subseteq \mathcal{L}^{\prime}$.

Step 5: what are Dirac structures?

- A subbundle $\mathcal{L} \subseteq \mathcal{E}$ is a subsheaf $\Gamma_{\mathcal{L}} \subseteq \Gamma_{\mathcal{E}}$ of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$-modules, compatible with a local trivialization of \mathcal{E}.
- For each $m \in M$, there is a fiber $\mathcal{E}_{m} \in \mathbf{g V e c t}$ of $\mathcal{E}, \mathcal{E}_{m} \cong K$.
- $g_{\mathcal{E}}$ induces a bilinear form $\langle\cdot, \cdot\rangle_{m}: \mathcal{E}_{m} \times \mathcal{E}_{m} \rightarrow \mathbb{R}$ of degree ℓ.
- Each subbundle \mathcal{L} has an orthogonal complement $\mathcal{L}^{\perp} \subseteq \mathcal{E}$.

Definition (Dirac structure)

A subbundle $\mathcal{L} \subseteq \mathcal{E}$ of GCA is called a Dirac structure, if
(1) $\mathcal{L} \subseteq \mathcal{L}^{\perp}$;
(2) $\forall m \in M, \mathcal{L}_{m}$ is maximal isotropic in \mathcal{E}_{m} w.r.t. $\langle\cdot, \cdot\rangle_{m}$;

- $\left[\Gamma_{\mathcal{L}}(M), \Gamma_{\mathcal{L}}(M)\right]_{\mathcal{E}} \subseteq \Gamma_{\mathcal{L}}(M)$.
- If $\ell(\bmod 4) \neq 0$, first two conditions are $\mathcal{L}=\mathcal{L}^{\perp}$. Maximality is equivalent to conditions on $\operatorname{grk}(\mathcal{L})$.
- $\mathcal{L}_{m} \subseteq \mathcal{L}_{m}^{\prime}$ does not imply $\mathcal{L} \subseteq \mathcal{L}^{\prime}$.

Step 5: what are Dirac structures?

- A subbundle $\mathcal{L} \subseteq \mathcal{E}$ is a subsheaf $\Gamma_{\mathcal{L}} \subseteq \Gamma_{\mathcal{E}}$ of graded $\mathcal{C}_{\mathcal{M}}^{\infty}$-modules, compatible with a local trivialization of \mathcal{E}.
- For each $m \in M$, there is a fiber $\mathcal{E}_{m} \in \mathbf{g V e c t}$ of $\mathcal{E}, \mathcal{E}_{m} \cong K$.
- $g_{\mathcal{E}}$ induces a bilinear form $\langle\cdot, \cdot\rangle_{m}: \mathcal{E}_{m} \times \mathcal{E}_{m} \rightarrow \mathbb{R}$ of degree ℓ.
- Each subbundle \mathcal{L} has an orthogonal complement $\mathcal{L}^{\perp} \subseteq \mathcal{E}$.

Definition (Dirac structure)

A subbundle $\mathcal{L} \subseteq \mathcal{E}$ of GCA is called a Dirac structure, if
(1) $\mathcal{L} \subseteq \mathcal{L}^{\perp}$;
(2) $\forall m \in M, \mathcal{L}_{m}$ is maximal isotropic in \mathcal{E}_{m} w.r.t. $\langle\cdot, \cdot\rangle_{m}$;

- $\left[\Gamma_{\mathcal{L}}(M), \Gamma_{\mathcal{L}}(M)\right]_{\mathcal{E}} \subseteq \Gamma_{\mathcal{L}}(M)$.
- If $\ell(\bmod 4) \neq 0$, first two conditions are $\mathcal{L}=\mathcal{L}^{\perp}$. Maximality is equivalent to conditions on $\operatorname{grk}(\mathcal{L})$.
- $\mathcal{L}_{m} \subseteq \mathcal{L}_{m}^{\prime}$ does not imply $\mathcal{L} \subseteq \mathcal{L}^{\prime}$.

Example

Let $\mathcal{E}=T \mathcal{M}[\ell] \oplus T^{*} \mathcal{M}$ with the graded Dorfman bracket of degree ℓ.

$$
\Gamma_{\mathcal{L}}(M):=\left\{\left(\Pi^{\sharp}(\xi), \xi\right) \mid \xi \in \Omega_{\mathcal{M}}^{1}(M)\right\},
$$

$\Pi^{\sharp}: \Omega_{\mathcal{M}}^{1}(M) \rightarrow \mathfrak{X}_{\mathcal{M}}(M)[\ell]$ is $\mathcal{C}_{\mathcal{M}}^{\infty}(M)$-linear. $\Pi(\xi, \eta):=\left[\Pi^{\sharp}(\xi)\right](\eta)$.

$$
\mathcal{L}=\mathcal{L}^{\perp} \Leftrightarrow \Pi(\xi, \eta)+(-1)^{|\xi \||\eta|+\ell} \Pi(\eta, \xi)=0 .
$$

$$
\Gamma_{\mathcal{L}}(M) \text { involutive } \Leftrightarrow \frac{1}{2}[\Pi, \Pi]_{S}= \pm H \circ \wedge^{3} \Pi^{\sharp} \text {. }
$$

Π defines an H-twisted graded Poisson structure on \mathcal{M} of degree ℓ.

Step 6: what are generalized complex structures?

Definition (Generalized complex structure)
A subbundle $\mathcal{L} \subseteq \mathcal{E}_{\mathbb{C}}$ of $G C A$ is a generalized complex structure, if
(1) \mathcal{L} is isotropic
$\mathcal{E}_{\mathrm{C}}=\mathcal{L} \oplus \overline{\mathcal{L}}$.

Example

Let $\mathcal{E}=T \mathcal{M}[\ell] \oplus T^{*} \mathcal{M}$ with the graded Dorfman bracket of degree ℓ.

$$
\Gamma_{\mathcal{L}}(M):=\left\{\left(\Pi^{\sharp}(\xi), \xi\right) \mid \xi \in \Omega_{\mathcal{M}}^{1}(M)\right\},
$$

$\Pi^{\sharp}: \Omega_{\mathcal{M}}^{1}(M) \rightarrow \mathfrak{X}_{\mathcal{M}}(M)[\ell]$ is $\mathcal{C}_{\mathcal{M}}^{\infty}(M)$-linear. $\Pi(\xi, \eta):=\left[\Pi^{\sharp}(\xi)\right](\eta)$.

$$
\mathcal{L}=\mathcal{L}^{\perp} \Leftrightarrow \Pi(\xi, \eta)+(-1)^{|\xi \||\eta|+\ell} \Pi(\eta, \xi)=0 .
$$

$$
\Gamma_{\mathcal{L}}(M) \text { involutive } \Leftrightarrow \frac{1}{2}[\Pi, \Pi]_{S}= \pm H \circ \wedge^{3} \Pi^{\sharp} \text {. }
$$

Π defines an H-twisted graded Poisson structure on \mathcal{M} of degree ℓ.

Step 6: what are generalized complex structures?
Definition (Generalized complex structure)
A subbundle $\mathcal{L} \subseteq \mathcal{E}_{\mathbb{C}}$ of $G C A$ is a generalized complex structure, if
(1) \mathcal{L} is isotropic
(3) $\mathcal{E}_{\mathbb{C}}=\mathcal{L} \oplus \overline{\mathcal{L}}$.

Example

Let $\mathcal{E}=T \mathcal{M}[\ell] \oplus T^{*} \mathcal{M}$ with the graded Dorfman bracket of degree ℓ.

$$
\Gamma_{\mathcal{L}}(M):=\left\{\left(\Pi^{\sharp}(\xi), \xi\right) \mid \xi \in \Omega_{\mathcal{M}}^{1}(M)\right\},
$$

$\Pi^{\sharp}: \Omega_{\mathcal{M}}^{1}(M) \rightarrow \mathfrak{X}_{\mathcal{M}}(M)[\ell]$ is $\mathcal{C}_{\mathcal{M}}^{\infty}(M)$-linear. $\Pi(\xi, \eta):=\left[\Pi^{\sharp}(\xi)\right](\eta)$.

$$
\mathcal{L}=\mathcal{L}^{\perp} \Leftrightarrow \Pi(\xi, \eta)+(-1)^{|\xi \||\eta|+\ell} \Pi(\eta, \xi)=0 .
$$

$$
\Gamma_{\mathcal{L}}(M) \text { involutive } \Leftrightarrow \frac{1}{2}[\Pi, \Pi]_{S}= \pm H \circ \wedge^{3} \Pi^{\sharp} \text {. }
$$

Π defines an H-twisted graded Poisson structure on \mathcal{M} of degree ℓ.

Step 6: what are generalized complex structures?

Definition (Generalized complex structure)

A subbundle $\mathcal{L} \subseteq \mathcal{E}_{\mathbb{C}}$ of $G C A$ is a generalized complex structure, if
(1) \mathcal{L} is isotropic w.r.t $\left(g_{\mathcal{E}}\right)_{\mathbb{C}}$ and involutive w.r.t $[\cdot, \cdot]_{\mathcal{E}_{\mathrm{C}}}$;
(2) $\mathcal{E}_{\mathbb{C}}=\mathcal{L} \oplus \overline{\mathcal{L}}$.

- Any GCS \mathcal{L} induces an endomorphism $\mathcal{J}: \Gamma_{\mathcal{E}}(M) \rightarrow \Gamma_{\mathcal{E}}(M)$ satisfying $\mathcal{J}^{2}=-1$. \mathcal{L} is $+i$ eigenbundle of $\mathcal{J}_{\mathbb{C}}$.
- The converse is not true. Eigenbundles of $\mathcal{J}^{2}=-1$ are not necessarily subbundles.

Step 7: Is there actually something new?

Example

- Any GCS \mathcal{L} induces an endomorphism $\mathcal{J}: \Gamma_{\mathcal{E}}(M) \rightarrow \Gamma_{\mathcal{E}}(M)$ satisfying $\mathcal{J}^{2}=-1$. \mathcal{L} is $+i$ eigenbundle of $\mathcal{J}_{\mathbb{C}}$.
- The converse is not true. Eigenbundles of $\mathcal{J}^{2}=-1$ are not necessarily subbundles.

Step 7: Is there actually something new?

Example

- Any GCS \mathcal{L} induces an endomorphism $\mathcal{J}: \Gamma_{\mathcal{E}}(M) \rightarrow \Gamma_{\mathcal{E}}(M)$ satisfying $\mathcal{J}^{2}=-1$. \mathcal{L} is $+i$ eigenbundle of $\mathcal{J}_{\mathbb{C}}$.
- The converse is not true. Eigenbundles of $\mathcal{J}^{2}=-1$ are not necessarily subbundles.

Step 7: Is there actually something new?

Definition (Differential GCA)

Let \mathcal{E} be a GCA of degree ℓ. A degree 1 map $\Delta: \Gamma_{\mathcal{E}}(M) \rightarrow \Gamma_{\mathcal{E}}(M)$ is called a differential on \mathcal{E} and (\mathcal{E}, Δ) a differential GCA, if
(1) $\Delta^{2}=0$.
(2) $\exists \Delta \in \mathfrak{X}_{\mathcal{M}}(M)$, s.t. $\Delta(f \psi)=\underline{\Delta}(f) \psi \pm f \Delta(\psi)$;
(3) $\Delta g_{\mathcal{E}}=0, \rho \circ \Delta= \pm[\underline{\Delta}, \rho(\cdot)]$
(-) $\Delta\left[\psi, \psi^{\prime}\right]_{\mathcal{E}}=\left[\Delta(\psi), \psi^{\prime}\right]_{\mathcal{E}} \pm\left[\psi, \Delta\left(\psi^{\prime}\right)\right]_{\mathcal{E}}$;

- Any GCS \mathcal{L} induces an endomorphism $\mathcal{J}: \Gamma_{\mathcal{E}}(M) \rightarrow \Gamma_{\mathcal{E}}(M)$ satisfying $\mathcal{J}^{2}=-1$. \mathcal{L} is $+i$ eigenbundle of $\mathcal{J}_{\mathbb{C}}$.
- The converse is not true. Eigenbundles of $\mathcal{J}^{2}=-1$ are not necessarily subbundles.

Step 7: Is there actually something new?

Definition (Differential GCA)

Let \mathcal{E} be a GCA of degree ℓ. A degree 1 map $\Delta: \Gamma_{\mathcal{E}}(M) \rightarrow \Gamma_{\mathcal{E}}(M)$ is called a differential on \mathcal{E} and (\mathcal{E}, Δ) a differential GCA, if
(1) $\Delta^{2}=0$.
(2) $\exists \Delta \in \mathfrak{X}_{\mathcal{M}}(M)$, s.t. $\Delta(f \psi)=\underline{\Delta}(f) \psi \pm f \Delta(\psi)$;
(3) $\Delta g_{\mathcal{E}}=0, \rho \circ \Delta= \pm[\underline{\Delta}, \rho(\cdot)]$
(1) $\Delta\left[\psi, \psi^{\prime}\right]_{\mathcal{E}}=\left[\Delta(\psi), \psi^{\prime}\right]_{\mathcal{E}} \pm\left[\psi, \Delta\left(\psi^{\prime}\right)\right]_{\mathcal{E}}$;

Example

$\Delta=[\phi, \cdot]_{\mathcal{E}}$ for $\phi \in \Gamma_{\mathcal{E}}(M)$ with $|\phi|=1-\ell$ makes (\mathcal{E}, Δ) into $d G C A$ iff $[\phi, \phi]_{\mathcal{E}}=0 . \underline{\Delta}= \pm \rho(\phi)$ and one employs GCA axioms.

Definition

Let (\mathcal{E}, Δ) be a dGCA of degree ℓ. A Dirac structure $\mathcal{L} \subseteq \mathcal{E}$ is called Δ-compatible, if $\Delta\left(\Gamma_{\mathcal{L}}(M)\right) \subseteq \Gamma_{\mathcal{L}}(M)$.

Example

$\operatorname{Let} \mathcal{E}-T \mathcal{M}[l] \oplus T^{*} \mathcal{M} . \mathcal{L}=\operatorname{gr}\left(\Pi^{*}\right)$

- The most general Δ corresponds to (Q, θ), where $Q \in \mathscr{X}_{\mathcal{M}}(M)$ with $|Q|=1$ and $\theta \in \Omega_{\mathcal{M}}^{2}(M)$ with $|\theta|=1-\ell$ satisfies $\mathrm{d} \theta=0$, and

$$
[Q, Q]=0, \quad \mathcal{L}_{Q}\left(\theta+i_{Q} H\right)=0
$$

- The Δ-compatibility of \mathcal{L} takes the form

$$
\mathcal{C}_{Q}(\Pi) \pm(\theta \pm H(Q, \cdot)) \circ \wedge^{2} \Pi^{\sharp}=0
$$

For $H=0$ and $\theta=0$, this gives a QP manifold. dGCA together with Δ-compatible Dirac structures provide generalizations.
\triangle-compatible GCS are defined analogously - they generalize differential graded symplectic manifolds.

Definition

Let (\mathcal{E}, Δ) be a dGCA of degree ℓ. A Dirac structure $\mathcal{L} \subseteq \mathcal{E}$ is called Δ-compatible, if $\Delta\left(\Gamma_{\mathcal{L}}(M)\right) \subseteq \Gamma_{\mathcal{L}}(M)$.

Example

Let $\mathcal{E}=T \mathcal{M}[\ell] \oplus T^{*} \mathcal{M} . \mathcal{L}=\operatorname{gr}\left(\Pi^{\sharp}\right)$.

- The most general Δ corresponds to (Q, θ), where $Q \in \mathfrak{X}_{\mathcal{M}}(M)$ with $|Q|=1$ and $\theta \in \Omega_{\mathcal{M}}^{2}(M)$ with $|\theta|=1-\ell$ satisfies $\mathrm{d} \theta=0$, and

$$
[Q, Q]=0, \quad \mathcal{L}_{Q}\left(\theta+i_{Q} H\right)=0
$$

- The Δ-compatibility of \mathcal{L} takes the form

$$
\mathcal{L}_{Q}(\Pi) \pm(\theta \pm H(Q, \cdot, \cdot)) \circ \Lambda^{2} \Pi^{\sharp}=0 .
$$

For $H=0$ and $\theta=0$, this gives a QP manifold. dGCA together with Δ-compatible Dirac structures provide generalizations.
\triangle-compatible GCS are defined analogously - they generalize differential graded symplectic manifolds.

Definition

Let (\mathcal{E}, Δ) be a dGCA of degree ℓ. A Dirac structure $\mathcal{L} \subseteq \mathcal{E}$ is called Δ-compatible, if $\Delta\left(\Gamma_{\mathcal{L}}(M)\right) \subseteq \Gamma_{\mathcal{L}}(M)$.

Example

Let $\mathcal{E}=T \mathcal{M}[\ell] \oplus T^{*} \mathcal{M} . \mathcal{L}=\operatorname{gr}\left(\Pi^{\sharp}\right)$.

- The most general Δ corresponds to (Q, θ), where $Q \in \mathfrak{X}_{\mathcal{M}}(M)$ with $|Q|=1$ and $\theta \in \Omega_{\mathcal{M}}^{2}(M)$ with $|\theta|=1-\ell$ satisfies $\mathrm{d} \theta=0$, and

$$
[Q, Q]=0, \quad \mathcal{L}_{Q}\left(\theta+i_{Q} H\right)=0
$$

- The Δ-compatibility of \mathcal{L} takes the form

$$
\mathcal{L}_{Q}(\Pi) \pm(\theta \pm H(Q, \cdot, \cdot)) \circ \Lambda^{2} \Pi^{\sharp}=0 .
$$

For $H=0$ and $\theta=0$, this gives a QP manifold. dGCA together with Δ-compatible Dirac structures provide generalizations.
Δ-compatible GCS are defined analogously - they generalize differential graded symplectic manifolds.

Outlooks

- More interesting examples of GCA's: transitive ones (using graded principal bundles), graded Lie bialgebroids.
- Examples of GCS encoding some interesting geometries.
- Morphisms of GCA's using Lagrangian relations - needs better understanding of graded vector bundles (some well known theorems do not work!).

Thank you for your attention!
Jan Vysoký: Global Theory of Graded Manifolds, arXiv:2105.02534.

